Funkcialaj Ekvacioj, 33 (1990) 291-305

Galerkin Approximations for Weakly Nonlinear
Second Order Evolution Equations

By

Milan MIKLAVCIC
(Michigan State University, U.S.A))

1. Introduction
The main purpose of this paper is to prove the following theorem.
1.1 Theorem. Suppose

a) # is a complex Hilbert space with inner product (-,") and the
corresponding norm || ||

b) @, for n = 1; let ¥, denotes the collection of all linear combinations
of ©1,...,0, and assume that \J2,¥; is dense in H

c) S:9(5) = U, ¥;—> H is a linear operator such that for some re R and
some y€(0, o©) we have that

y|Im((Sx, x))} < Re((Sx, x)) + r|[x||>  for all xeD(S)
d) there exists be[0, o) such that for all x, y in 9(S) we have
|Re((Sx, y) — (x, Sy))| < b(Re((Sx, x)) + (1 + N[ x]I> + [ y[?)

e) Te(0, o), F: [0, T] x # — S is continuous and for some Le [0, c0) we
have that

IF@ x)—F@ I <Llix—yl  for te[0, T], x,ye .

Choose any xoeH, yoe #H. Let Sy denotes the Friedrichs extension of S.
Then, for each n > 1 there exists a unique v, C2([0, T], ¥,) such that for
all ze¥, we have

(n (2), 2) + (Sv,(t), 2) = (F(t, v,(1)), 2)  for te[0, T,
(©3(0), 2) = (¥o, 2),
(©4(0), 2) = (o, 2).
Moreover, there exists ve C([0, T], ) such that

i o2y 100 =00 =0



292 Milan MIKLAVEIS

Furthermore, D(Sp) = 2(S%) and this v is the unique element of C([0, T], #)

that has the following properties:

(v, 2)e C*([0, T], C) Jor ze 2(S%),
700, 2 + 00, 55 = (F, o), ) for 1€00, T, 2<(S})
WO = %o, 50 Dm0 =009 Jor 2eF(SP)

Observe that S is defined only on finite linear combinations of the basis
functions ¢, and that c) and d) need to be verified only on %(S), the domain of
S. This and the fact that the only requirement on the initial data x,, y, is that
they belong to # makes the verification of hypotheses elementary for a very
large class of problems.

a), b) and c) imply that S has a m-sectorial extension Sp-called the
Friedrichs extension of § [10]. When S is elliptic operator the condition ¢) is,
in effect, the Garding’s inequality [12,16,18]. Condition d) has been used
before in connection with the wave equation, see [19 p. 420, 4274307, [15] and
it actually implies the bound in c).

1.2 Example, Suppose that £ is an arbitrary nonempty open set in R",
n>1Let # = L*Q). Basis functions ¢, can be chosen so that the
assumption b) is satisfied and that 2(S)c WH2(Q)nW?%(Q) (a simple
construction of ¢,e C3(€2) can be done as in [2]). Assume

a;€ CHR)n WH>(Q) are real vlued for 1 <i, j < n; for some § >0

||M=

i (X)L > 6 z £ for (GruenE)eRY, x€Q;
B s
ieC Y)nwh=(Q) for 1 <i<n;cel®Q)

and define

M=
M:s

Su= —

i

D{a;Du) + z bDu + cue #  for ue%(S).

15=1

Observe that it is not required that a;; = a;; Sy may have no eigenvalues.

It will be shown that assumptions c) and d) of Theorem 1.1 are
satisfied. In concrete applications (known nice ¢,) no references to the Sobolev
spaces are needed to apply the following argument.

Integration by parts gives for u, ve Z(S)

ZJ a;DuD;v + ZjﬁbiDiuﬁ-J‘ cuv
1j=1 0 Q

.M-‘*

2 (Su, v) =

15
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Holder’s inequalities and (1) imply that for all ue 2(S) we have

€) Re((Su, w)) > 0[ul® — w[ullull — usllul®
) Tm((Su, w)| < ps[u]® + pLud lull + pllull

where p,, u,, Uy are some constants and [u] is given by

n 1/2
= (5 [ oar)

(3), (4) and a little of algebra imply c).
(2) implies that for u, ve 2(S)
j i=1

i=1j=1/Jo Q

ub,D;v + J cub.
2

Two integrations by parts give that for u, ve 2(S)

J aiijEDiu =J a;DuDo + J oD;a;;D;u —j oD;a;D;u;
0 2 2 2

this, (2) and (5)-after another integration by parts, give
(Su, v) — (u, Sv) =J o(>. (b;+b;+ Y, Djla;—ay) Du+(c—c+ Y. D,b)u)
a i=1 =1 i=1

and therefore

|(Su, v) — (u, Sv)| < vl (palul + psliull)
for some constants u,, us; this, (3) and a little of algebra imply d). O

The assumptions of the theorem can be easily verified also when S is very
singular and degenerate “elliptic” operator with no restrictions on the boundary
of the domain [2, 15]. Theorem 1.1 obviously applies also to systems.

A result similar to Theorem 1.1 has been obtained in [15]. In [15] the
conditions on F are weaker, however, x, is required to belong to the
completion of 2(S) under the norm

|x[* = Re((Sx, x)) + (1 + n)|x|?

and the procedure for calculation of v,(0) is more involved. Results of [15] are
needed for proof of Theorem 1.1-which can be found at the end of the
paper. It appears that the proofs in [15] can not be adapted to yield the
results of this paper directly. A stronger version of Theorem 1.1 is given in
Theorem 2.10 which can be used also to prove convergence of finite element
approximations. Various other interesting convergence results are known



294 Milan MikLAVEIES

[5,7,8]-under different sets of assumptions. Use of the Friedrichs extension in
connection with convergence of Galerkin approximations seems to have first
appeared in [14].

2. Sectorial Form Approach

Hypotheses of this section begin with H #: and they are in effect in the text
that follows.

H1i: # is a complex Hilbert space with inner product (-,-) and the
corresponding norm || - ||.

H2: ¥ is a dense subspace of #, moreover, ¥ is a Hilbert space with
inner product [-,-] and norm |-|. There exists M, (0, co) such that

x| < M |x| for all xe?".

H3: #:.:9 x¥ - C is a sesquilinear form such that for some
M,, M3€(0, )

|F (x, )| < Ma|x]|yl for x, ye?’,
Re(F(x, x)) = M;|x|? for xe¥ .

Proof of the following representation theorem (or its equivalent) can be
found in many places [10,12,14,18,...].

2.1 Theorem. There exists a closed densely defined linear operator A in #
with the following additional properties:
1) if eR and 3 < M M{? then A is in the resolvent set of A and

1A =A™ < MMT2 =)

2) D(A) <= v, D(A) is dense (in |'| norm) in ¥V

3) F(x,y)=(Ax, y) for all xe 2(A), ye V"

4y xeD(A) iff xe v and for some re[0, o0) we have that |F (x, y)| < r|yl
for all yev”

5) Re((4%x, x)) = (M3 M2y | x||? for «a€[0, 1], xe P(A%

6) if F(x,y)= F,x) for x, y in ¥ then A= A* ¥ = DA% and
F(x,y) = (AY%x, AY2y) for all x, y in V.

Let F*(x, y)= Z(y, x) for x, y in ¥ and note that the operator given
by Theorem 2.1 when & is replaced by F* equals A*, the adjoint of 4 [10].
Let Ay denote the linear operator given by Theorem 2.1 when applied to the
form Fg(x,y)=(F(x,y) + F(» x))/2. Let us abbreviate G=Ax* and
observe that 2(G) = ¥, G is selfadjoint, (Gx, x) > M3>M7 | x||* for xe?,
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G < M, M52,
M;|x)* < [|Gx|? < M,|x|? for xev".

Proof of the following theorem can be found in [10 p.337].

2.2 Theorem. There exists a bounded linear operator B on H# such that
F(x,y)=(1+iB)Gx, Gy)  for x, ye?,
moreover, B is selfadjoint and A = G(1 + iB)G.

One has to make additional assumptions when studying the second order
evolution equations. The following assumption is, in effect, used in [19 p.427-
430] where the wave equation is studied. See also [8,11,15].

H4: Assume that for some be[0, o) we have that

IRe(Z(x, y) — #(y, X)) < b(IxI* + [ y1?)

for all x, y in a dense (in |-| norm) subset of 7.
It is not hard to see that H4 implies (and is implied by)

|Z(x, y) — F(y, x)| < 2bIx||lyll  for x,y in ¥".

1) and 2) of the lemma below are proven in [11]. For a stronger result
see [13].

2.3 Lemma.

1) DA = D(AZ) = DA for all ael0, 1]

2)  Ar=(1/2)(4 + 4%

3) | BGx|| < 2c||x|| for all xe¥", where, 2c = bM 3 '/?

4)  if LeR, |Al >c then |(G + iBG + A*°G™ Y™ < (2]4] — 2¢)7 L

Proof. If xeP(A) then xe¥ and for all ye¥” we have
|7 *(x, M = F(, x) — F(x, y) + (4x, y)| < 2b|x| + | Ax|)||y|

therefore x € 2(A*) by 4) of Theorem 2.1 and thus 9(4) = P(A*). Similarly we
obtain that 2(4*) c Z(A), hence, D(A*) = D(A).

It can be easily seen, by a similar argument, that Z(A4z) = 9(4). From 3)
of Theorem 2.1 we obtain 2).

If xe9(4), ye? then
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[(Ax — A*x, y)| = [F(x, y) — Z(y, x) | < 2b|x| [ y|

and hence for xe 2(A)
(A — A%)x|| < 2b|x| < 2bM3 2 Re((Ax, x))/? < 2bM3 M2 || Ax |12 || x ||1/?
(4 = Ag)x|l = (4 — A*)x]|/2 < bM3 Y2 | Ax |12 || x||*/?

and this implies 1), see [9 p.28].
Theorem 2.2 and H4 imply that for x, ye¢¥” we have

12i(Gx, BGy)| = |#(x, y) — #(y, x) | < 2b[x[[[y]| < 2bM3 [ Gx| [ y||
and this implies 3).
To show 4) let P = G + iBG + A2G™ %, #(P)=¥". Observe that for xe ¥
0<1G"2x —|A1G™12x|* = ((G + A2G™Y)x, x) — 2| A [|x1%;
this and 3) imply

(1) Re((Px, x)) = 2(12] — o) x|
Since
[(GBG + 22G™H)(G + w)™ 'l < Qc+ 22| G7H)(u + My M7 H™!
for p> — MY2M;!
we have that
P+w'=(G+w (1 +(EBG+ 222G YG+pw ) !
for p large enough; this and (1) imply 4). O
Define X = # x s#. X is a Hilbert space with inner product
({x, v}, {2 w}) = (x, 2) + (o, w).
Define H: 2(H)—» X by 2(H) = {{x, y}|xe?", ye?},
H{x, y} = {—- Gy, (1 +iB)Gx} for {x, y} e 2(H).
For different approaches to second order problems see [4,5,6,7,8,15,18,19].

2.4 Theorem. H is the generator of a strongly continuous group e, teR,
on X. Moreover, | e®|| < el for teR (c is an in Lemma 2.3).

Proof. If u = {x, y} € 2(H) then
Re((Hu, u)) = Re((iBGx, y))
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and by 3) of Lemma 2.3
1) IRe((Hu, )| < 2c|x| Iyl < cllul®
If {w,v}eX, AeR, |A| > c then 4) of Lemma 2.3 enables us to define
x=(G+iBG + A2G™Y) Y(v — AG"w), y = — G (Ax + w);
it can be easily verified that (H — A){x, y} = {w, v}. This and (1) imply that
I(H -2 < —¢)t for leR, {A| >c. O
H5: Suppose Te(0, c0), F: [0, T] x s# — # is continuous and that for
some Le[0, c0) we have that
IF(t, x) — F(t, )| < Lllx —y||  for te[0, T], x, ye #.

2.5 Theorem. For each x,€H#, y,eH there exists a unique
{x, y}eC([0, T], X) such that

(X0, W)} = e™{x0, G 1yo} + fte"’“‘s’{oa G™F (s, x(s))} ds
0
for te[0, T].

Moreover, if uge #, voeH and {u, v} C([0, T], X) is such that
t

{u(t), o(t)} = e " *{ug, G vy} + J e HE=900, G™1F(s, ul(s))} ds

0

for te[0, T]
then
” {X(t), y(t)} - {M(t), U(t)} H < K“ {xO: G—1YO} - {u09 G_lvo} ”
for te[0, T]
where K = exp(LTM ;M3 Y? + ¢T) = exp(| G| LT + cT).
Proof. This follows immediately from the fixed point theorem and the
Gronwall’s inequality. For details see [16 p.184]. O

If xe C([0, T], #) is as in the above theorem then x is said to be the mild
solution of

x"(t) + Ax(t) = F{t, x(t)), x(0) = x4, X'(0) = yq.

In the following 3 theorems a relation between mild and weak solutions is
examined. See also [1].
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2.6 Theorem. If x,e?", yoe# and {x, y}eC([0, T]1, X) is such that

t

{x(2), y(©)} = e ®{x0, G™1yo} + f e HE=9£0, G™1F (s, x(s))} ds
V]
for te[0, T]
then xe C([0, T1, 7)nC([0, T], #), x(0) = x4, X' (0) = y,,
(x,a Z)ECI([O, T:I5 Q for ZEV,

%(X’(t), z2) + F (1), 2) = (F(t, (1)), 2) for te[0, T], ze?,

ft x(s)dse D(A) for te[0, T],

0

xX'(t) — yo + Ajt x(s)ds = JtF(s, x(s))ds  for te[0, T].

0 0

Proof. Let f(t)=1{0, G"'F(t, x(t))}. Since f, HfeC([0, T], X),
(x(0), W0)} e P(H) we have that [10,16] {x, y}eCX([O0, T], X),
H{x, y}eC([0, T], X) and

(X0, y()} + H{x(®), y(©)} =f(t) = {0, GT'F(¢t, x(1))} for te[0, T].

Since ||(1 +iB)™!|| <1 this implies that x, ye C([0, T], ¥)nC*([0, T], #)
and that for te[0, T] we have

x'(t) = Gut)
y'(¢) + (1 + iB)Gx(t) = G 1F(t, x(1)).
Therefore x'(0) = y, and for te[0, T], ze¥” we have
(Y (1), Gz) + (1 + iB)Gx(t), Gz) = (G~ F(t, x(t)), Gz),

d
L0, 9 = $00), 69 = (Flt, x(0), )~ F (), 2,

*'(®, 2) — (x0), 2) = J 0((F (s, x(s)), 2) — F(x(5), 2))ds,

t

x'(®), z) — (x'(0), z) — <Jt F(s, x(s))ds, z> = — f(f x(s) ds, z);
0 0

by 4) and 3) of Theorem 2.1 we are done. [l

2.7 Theorem. If xeC([0, T, ¥")nC}([0, T], &) and
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%(x'(t), z) + F(x(t), z) = (F (¢, x(t)), z)  fot te[0, T], ze¥",
then, {x, G~'x'}e C([0, T, X) and for all te[0, T] we have
{x(1), G™'x'(t)} = e”T{x(0), G~ 'x'(0)} + J: e HO=900, G™F (s, x(s))} ds.
Proof. Let y =G~ !x' and note that for ze¥", te[0, T] we have

%(y(t), Gz) + ((1 + iB)Gx(t), Gz) = (G™'F (¢, x(t)), Gz),
(1), Gz) — (¥(0), Gz) = f (G YF(s, x(s)) — (1 + iB)Gx(s), Gz)ds,
0

ne) — y(0) = J t (G™'F(s, x(s)) — (1 + iB)Gx(s))ds,
0

therefore ye C([0, T], ¥)nCY([0, T], #) and

Y(®) + (1 + iB)Gx(t) = G~ 'F(t, x(t)),
{x@®, y®)} + H{x(), ¥0)} = {0, GT'F(t, x(1))}

and this implies the assertions of the theorem. O
2.8 Theorem. If x,€#, yoeH and if xe C([0, T], #) is the mild solution
of
x"(t) + Ax(t) = F(t, x(1)), x(0) = x4, x'(0) = y,,
then this x is the unique element of C([0, T, #) with the following properties:
(x, 2)e CX[0, T, O) for ze D(A¥),

2

;—tz—(x(t), z) + (x(r), A*z) = (F(t, x(t)), z) for te[0, T, ze 9(4%),

d
X(0) = Xo, (% Dli=0 = (Vo 2) Jor ze 2(A%).

Proof. For n>1 let w,e?” be such that lim,_[|w, — x,|| =0.
Let u, be the mild solution of

ux(t) + Aun(t) = F(t: un(t))a un(O) = Wy, u;l(o) = Yo-
Theorem 2.6 implies that for te[0, T], ze 2(A*) we have
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t

(un(t)3 Z)L(Wn5 Z)_t(yoa Z): J (t—S) ((F(S’ un(s))7 Z)_g;(un(s)s Z))dS

0
= L (t—5) (F (s, u,(s), 2)—(u,(s), A*z))ds

and since |lu,(f) — x(®)|| < K| w, — x|, by Theorem 2.5, we have
(x(t), 2)— (X0, 2)— Yo, 2)= f (t—s) ((F(s, x(5)), 2)—(x(s), A*z))ds

0

and this implies that x has the properties stated.
To show uniqueness suppose that ye C([0, T], #) also has the properties
stated. Define ¢(t) = F(¢, y(t)) and note that for te[0, T], ze 9(4*) we have

(¥(®), 2) = (X0, 2) — Yo, 2) = L (t = 5) ((9(s), 2) — (s), A*2))ds

8) — xo — tyo — J (t —s)g(s)ds, z) = — <j (t — s)y(s)ds, A*Z)

0 0

and therefore

t

yt) — xo —ty, + 4 ft (t —s)y(s)ds = J (t — s)g(s)ds for te[0, T].

0
This implies that if v = A~y then ve CX[0, T], #) and
v"(t) + Av(t) = A7 g(t)  for te[0, T],
v(0) = A7 1x,, v'(0) = A7 1y,.
Let h = G~ and note that Theorem 2.2 implies
{v(@t), W©®)} + H{v(t), h(t)} = {0, G A7 1g(t)} for te[0, T]
(v, e C([0, T], X), H{v, h} e C([0, T, X)

and therefore

t

{00), WD)} = e H{A " x,, G A"y} + J o- =)
0

1)
{0, G147 g(s)} ds.

Using A7 =G~ '(1 +iB)"'G™! gives (for any x,, y, in #)
H{A 7 x, GT'A7 o} = {— A7y, G Mxo},
H{— A7y, G_lxo} = — {Xo, G_1YO}-
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Thus, the right hand side of (1) is in 2(H?) and

t

— H*{u(t), h(t)} = e #{x,, G 'yo} + f e HO=900, G~ 1g(s)} ds
(o]

and an evaluation of H*{v, h} gives

00, (L+ B)GY (D)} = e ™ {x0, G 1y} + f M0, GTIF(s, 3(9)} ds

0

and by Theorem 2.5 we have that y =x. [

The weakest condition that ensures convergence of the interior approxim-
ations of A7 1f is given by the following [3,5]
H6: Let 7, ¥5,... be finite dimensional subspaces of ¥” such that

lim inf |y —z|=0
R0 zety,

for all y in a dense (in || norm) subset of #".
We shall denote by P, the orthogonal (in #°) projection of 5# onto ¥, and
by P, the orthogonal (in ¥7) projection of ¥~ onto #;,. observe that H6 implies

lim |P,x — x| =0 for all xe v .

R0

2.9 Theorem. Choose any woe?", yoe #. Then, for each n>1 there
exists a unique u,€C*([0, T, ¥,) such that for all ze¥, we have

(n(®), 2) + F (1), 2) = (F(t, w,(1)), ) for te[0, T],
(,(0), 2) = (¥o, 2),
[4,(0), 2] = [wy, z].
Moreover, there exists ue C([0, T, ¥ )nCL([0, T], #) such that

lim sup ([u(t) —u @] + [4() —wO)]) =0,

u(0) = wy, u(0) = y,,

Sfurthermore, u is the mild solution of
u'(t) + Au(t) = F(t, w(), u(0) = wo, '(0) = y,.

This result has been proved in [15] (under weaker conditions on F). In
[15] a different definition of the mild solution is used, however, in the proof of
the following theorem it will be shown that the “furthermore” part of Theorem
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2.9 remains valid under the present definition of the mild solution. Observe
that we have to have wye¥” and that u,(0) is determined by u,(0) = P,w,. In
order to prove Theorem 1.1 we need to have wye # and u,(0) = P,w,. This is
achieved in the following theorem. See [5,7,8] for various other interesting
convergence results-under different sets of assumptions.

2.10 Theorem. Choose any xo€H#, yoeH#. Then, for each n> 1 there
exists a unique v,€ C*([0, T], ¥,) such that for all ze ¥, we have

Wa(0), 2) + F(0,(2), 2) = (F(, v,(1), 2)  for te[0, T],
(:0), 2) = (yo, 2),
(0:(0), 2) = (xo, 2).
Moreover, there exists ve C([0, T], #) such that

%, 0B, 100 =00l =0,

Sfurthermore, v is mild solution of
V(1) + Au(t) = F(2, v(t)), v(0) = xo, v'(0) = y,.
Remark. All assumptions are contained in H1, H2, H3, H4, HS, H6.

Proof. Observe that assumptions H1, H2, H3, H4, H5 remain valid (with
the same constants!) if both " and # are replaced by ¥, and if F is replaced
by P,F (restricted to [0, T] x ¥;). X,= ¥, X ¥.. G,, H,,... are obtained as G,
H,...; we shall also use the obvious modifications of preceding theorems.

Choose any wye?” and let u,, u be as in the Theorem 2.9.

Note that u,(0) = P,w,, u,(0) = P,y, and Theorem 2.7 implies

t

{u,0), G, 'u, (1)} = e #*{P,wo, G, 1Py} + J e~ Hnl=9)

0

{0, Gy *P,F(s, uy(s))} ds.
If zev", te[0, T] then by Theorem 2.9

t
(1), P,2) — (u,(0), P,z) = J ((F(s, ufs), Poz) — F(u,(s), P,z))ds,
0
the convergence result of Theorem 2.9 and H6 imply

(W' (0), 2) = (W(0), 2) = L((F(S, u(s)), z) — F(u(s), 2))ds,

L0002+ F, 2 = (PG uo), 2
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and by Theorem 2.7 we have that {u, G"*w'}eC([0, T], X) and for all
te[0, T]

t

{u(t), G (@)} = e T{wy, G 1yo} + j e HC™9{0, GT1F (s, u(s))} ds,

thus, Theorem 2.5 implies that the “furthermore” part of Theorem 2.9 remains
valid under the present definition of the mild solution.

Existence and uniqueness of v, is obvious (ODE’s-or see Theorem
2.8). Theorem 2.7 implies that for te[0, T]

t

{v0), Gy 10, (0)} = e ™" {Pyxo, G, ' Py} + J e #7940, G 1P, F(s, v,(s))} ds.
0

By Theorem 2.5 there exists {v, y}€ C([0, T], X) such that for te[0, T]

{v(9), y(©)} = e " {xq, G 1y} + ﬁe’H(‘_s’{O, G~ 'F(s, 1(s))} ds.

Theorem 2.5 implies that for te[0, T]
o) — u @O < K| Pxo — Pywol,
v(®) — u(@) | < K| xo — woll

and hence

[va(t) — v < o) — ulD | + ll(t) — (@) | + [[ut) — v(0) |

S K| Pyxo — Pywoll + Kllxo — wo ll + llu,(t) — u(®)||
and since || P,xq — Pywol < | xo — wol + 2M | P,wo — wo| we have
loa®) — v | <2K | x — wo | +2KM | P,wo — wo| + | u,(t) — u() |-

Since wy e ¥ is arbitrary and ¥ is dense in # we see that H6 and Theorem 2.9
imply the assertions of the theorem. [J

3. Proof of Theorem 1.1

It is well known [10, 14,17] that a), b), ¢) imply that there exist a subspace
¢ of #, an inner product [-,-] on ¥~ and a sesquilinear form & on ¥~ such
that the assumptions H1, H2, H3 of Section 2 are satisfied and that also the
following holds

i) 2(S) is dense (in |-| norm) subspace of ¥~
i) [x, y1=((5x, )+ (x, $y)/2+ (1 + r)(x, y) for x, y in Z(S)
i) Z(x,y)=(S+r+ 1)x,y) for x, y in 2(S).
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Observe that d), i), ii) imply H4 and that b), i) imply H6. The operator A
given by Theorem 2.1 is an extension of S+ r + 1l and 4 —r — 1 = S, is called
the Friedrichs extension of S [10]. 2(Sp) = 2(S¥) by Lemma 2.3.

Let F(t,x)=(1 +rx + F(t, x) for te[0, T], xe#. So, HS is satisfied-
with F; in place of F. Theorems 2.8, 2.10 imply Theorem 1.1.
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