ON LIMIT STATES OF A LINEARIZED BOLTZMANN EQUATION*

MILAN MIKLAVČIȆ

Abstract. With methods of mean ergodic theory a very simple criterion for existence of limit states of linearized Boltzmann equation is proven.

Key words. linearized Boltzmann equation, ergodic theory

AMS(MOS) subject classifications. 45A05, 47A35

A linearized Boltzmann equation can under some conditions ([4], see also [1], [8]) be written in the form

$$\frac{du}{dt} + u = Bu$$

where B is typically a Markov operator on some L^1 . The solution of this equation is $e^{-t}e^{Bt}u_0$ and one would like to know how the solution behaves as $t \to \infty$. In this paper this equation is considered in an arbitrary Banach space X and B is assumed to be a bounded linear operator on X such that $\sup_{n\geq 0} \|B^n\| < \infty$. Let $N = \{x \in X \mid Bx = x\}$ and $R = \{x \in X \mid x = y - By \text{ for some } y \in X\}.$

THEOREM 1. If $x \in X$, $x_0 \in X$, then the following statements are equivalent:

(a) There exist integers $n_1 < n_2 < \cdots$ such that $\lim_{i \to \infty} y((1/n_i) \sum_{k=0}^{n_i-1} B^k x) = y(x_0)$ for all $y \in X^*$.

(b) There exist t_1, t_2, \dots in $(0, \infty)$ such that $\lim_{i \to \infty} t_i = \infty$ and $\lim_{i \to \infty} y(e^{-t_i}e^{Bt_i}x) =$ $y(x_0)$ for all $y \in X^*$.

(c) $x_0 \in N$ and $x - x_0 \in \overline{R}$.

- (d) $\lim_{n\to\infty} \|(1/n)\sum_{k=0}^{n-1} B^k x x_0\| = 0.$ (e) $\lim_{t\to\infty} \|e^{-t}e^{Bt} x x_0\| = 0.$

This theorem implies that all standard mean ergodic theorems (e.g. (2)) are applicable in the study of limits of $e^{-t} e^{Bt} x!$ A simple and quite powerful criterion for existence of the limit is given by the following.

THEOREM 2. If $x \in X$ and if the set $\{B^n x \mid n \ge 0\}$ is weakly sequentially compact, then there exists $x_0 \in N$ such that

$$\lim_{t\to\infty} \|e^{-t} e^{Bt} x - x_0\| = 0.$$

Proof. Let $C = \{B^n x \mid n \ge 0\}$ and let C_1 be the convex hull of C. Since $(1/n)\sum_{k=0}^{n-1} B^k x \in C_1$ for $n \ge 1$ and since C_1 is weakly sequentially compact [2, Krein-Šmulian Theorem] there exists $x_0 \in X$ such that part (a) of Theorem 1 is satisfied.

There are many ways of showing that the set $\{B^n x \mid n \ge 0\}$ is weakly sequentially compact [2]. In [3], [5] conditions like strong (weak) constrictiveness (and some other conditions) are required; the following observation shows that these conditions are much more restrictive than those of Theorem 2. If $x \in X$, then the set $\{B^n x \mid n \ge 0\}$ is weakly sequentially compact if and only if there exists a weakly compact set F (for this x!) such that $\lim_{n\to\infty} \text{dist}(B^n x, F) = 0$.

If B is positive quasi-compact operator then even convergence rates can be estimated.

^{*} Received by the editors March 31, 1986; accepted for publication February 9, 1987.

[†] Department of Mathematics, Michigan State University, East Lansing, Michigan 48824.

THEOREM 3. Suppose that X is real Banach space and that X^+ is a closed subset of X with the following properties:

(1) If $x \in X^+$, $y \in X^+$, $\alpha \in [0, \infty)$ then $x + y \in X^+$ and $\alpha x \in X^+$;

(2) There exists $M_0 \in (0, \infty)$ such that for each $x \in X$ there exist $x_+ \in X^+$ and $x_- \in X^+$ which satisfy

$$x = x_{+} - x_{-}, \quad ||x_{+}|| \le M_{0}||x||, \quad ||x_{-}|| \le M_{0}||x||$$

and if $x = y_{+} - y_{-}$ for some $y_{+} \in X^{+}$, $y_{-} \in X^{+}$, then $y_{+} - x_{+} \in X^{+}$.

(3) If $x \in X^+$, $y \in X^+$, then $||x|| \le ||x+y||$.

Suppose also that T is bounded linear operator on X such that (4) $TX^+ \subset X^+$.

(5) $\lim_{n\to\infty} (1/n)y(T^n x) = 0$ for all $x \in X$ and all $y \in X^*$.

(6) $||T^m - K|| < 1$ for some integer m and some compact linear operator K.

Then there exist $a \in (0, \infty)$, $b \in (0, \infty)$ such that for every $x \in X$ there exists $x_0 \in X$ for which

$$\left\|\frac{1}{n}\sum_{k=0}^{n-1}T^{k}x-x_{0}\right\|\leq \frac{b}{n}\|x\|, \qquad \|e^{-t}e^{Tt}x-x_{0}\|\leq b\|x\|\ e^{-at}$$

whenever $n \ge 1$, t > 0.

Proof of Theorem 3 can be found in [7] and follows from the fact that $T^n x$ is actually asymptotically periodic for every $x \in X$ (see also [6]). Operators considered in [5] in connection with the Boltzmann equation satisfy above assumptions.

Proof of Theorem 1. Equivalence of statements (a), (c), (d) is well known [2]. It is obvious that (e) implies (b) and (c); it is enough to prove that (b) implies (c) and that (c) implies (e).

Let $M = \sup_{n \ge 0} ||B^n||$, A = I - B and

$$F(t) = e^{-t} + e^{-t} \sum_{n=0}^{\infty} \frac{t^n}{n!} \left| \frac{t}{n+1} - 1 \right|.$$

Identities

$$e^{-At} = e^{-t} e^{Bt} = e^{-t} \sum_{n=0}^{\infty} \frac{t^n}{n!} B^n,$$
$$Ae^{-At} = e^{-t} + e^{-t} \sum_{n=0}^{\infty} \frac{t^n}{n!} \left(\frac{t}{n+1} - 1\right) B^{n+1}$$

imply that for t > 0

$$\|e^{-At}\| \leq M, \qquad \|Ae^{-At}\| \leq MF(t).$$

A nasty but straightforward exercise gives that $\lim_{t\to\infty} F(t) = 0$.

Assume (b). Then for all $y \in X^*$

$$0 = \lim_{i \to \infty} y(Ae^{-At_i}x) = \lim_{i \to \infty} (A^*y)(e^{-At_i}x) = (A^*y)(x_0) = y(Ax_0);$$

hence, $Ax_0 = 0$. If $x - x_0 \notin \overline{R}$, then there exists $y_0 \in X^*$ such that $A^*y_0 = 0$ and $y_0(x - x_0) = 1$, which leads to the contradiction

$$1 = y_0(x - x_0) = (e^{-A^* t_i} y_0)(x - x_0) = y_0(e^{-A t_i} x - x_0) = 0$$

and therefore $x - x_0 \in \overline{R}$ and (c) is true.

Assume (c). Pick $\varepsilon > 0$ and let $z \in X$ be such that $||x - x_0 - Az|| < \varepsilon/(1+M)$; hence, for t > 0

$$\|e^{-At}x - x_0\| \le \|e^{-At}(x - x_0 - Az)\| + \|Ae^{-At}z\|$$
$$\le M\varepsilon/(1+M) + MF(t)\|z\|$$

and this implies (e).

Acknowledgment. It is my pleasure to thank T. Y. Li for many illuminating discussions.

REFERENCES

- M. F. BARNSLEY AND G. TURCHETTI, On the Abel transformation and the nonlinear Boltzmann equation, Phys. Lett. A, 72 (1979), pp. 417-419.
- [2] N. DUNFORD AND J. T. SCHWARTZ, Linear Operators, Part 1, Wiley-Interscience, New York, 1967.
- [3] J. KOMORNIK, Asymptotic periodicity of the iterates of weakly constrictive Markov operators, Tôhoku Math. J., to appear.
- [4] A. LASOTA, Statistical stability of deterministic systems, Lecture Notes in Mathematics, 1017, Springer-Verlag, New York, 1983, pp. 386-419.
- [5] A. LASOTA, T. Y. LI AND J. A. YORKE, Asymptotic periodicity of the iterates of Markov operators, AMS Transactions, 286 (1984), pp. 751-764.
- [6] M. LIN, Quasi-compactness and uniform ergodicity of positive operators, Israel J. Math., 29 (1978), pp. 309-311.
- [7] M. MIKLAVČIČ, Asymptotic periodicity of the iterates of positivity preserving operators, AMS Transactions, submitted.
- [8] J. A. TJON AND T. T. WU, Numerical aspects of the approach to a Maxwellian-distribution, Phys. Rev. A., 19 (1979), pp. 883-888.