Eigenvalues of the Orr-Sommerfeld Equation in an Unbounded Domain

MILAN MIKLAVČIČ

Communicated by D. D. JOSEPH

1. Introduction

The main purpose of this paper is to prove that in the space \((L^2(0, \infty))^4\) the generalized Orr-Sommerfeld equation [10] has only finitely many eigenvalues when the mean flow exponentially approaches a constant. This surprising fact was discovered by numerical studies of eigenvalues for Blasius mean flow [4, 9]. It has been proven [10] that when the mean flow approaches a constant slowly enough, the generalized Orr-Sommerfeld equation can have infinitely many eigenvalues. There is also a nontrivial condition [10] (involving the Reynolds number) which implies that the Orr-Sommerfeld equation has no eigenvalues. The proof given here is based on Lemma 2, which can be considered a generalization of some standard results [e.g. 3, 11].

Given are several properties of, and bounds for eigenvalues which can be used to estimate the critical Reynolds number and to help in the numerical search for eigenvalues.

An expectation [12] that eigenvalues should not be imbeded in the continuous spectrum [10] is also proven. These facts may suggest a way [3, 10] to obtain a spectral resolution. One can show, however, that there can exist (finitely many) spectral singularities not corresponding to eigenvalues, i.e. \(-1\) can be an eigenvalue of \(RQ_0(\sqrt{1-R^2})\) (see Section 3) even if \(z\) is not an eigenvalue of the generalized Orr-Sommerfeld equation. In such a case it is still possible to define a spectral resolution in a suitable subspace [3, 10]. If the Reynolds number is sufficiently small, then the corresponding operator is spectral. This can easily be seen from [3, 7, 10]. Since these spectral results are rather far from what one would want [1, 2, 12] and since the proofs are very cluttered, details will not be presented.

In Section 2 the main theorem is given. The idea of the proof is worked out in Section 3 and the proof of the main theorem is presented in Section 4.

I wish to thank MICHAEL WILLIAMS for suggesting the problem and I am grateful to DAVID ISAACSON for a critical reading of the manuscript.
2. The Main Theorem

The generalized Orr-Sommerfeld equation is given by [6, 10]

\[
\frac{\partial u_1}{\partial t} - \frac{1}{R} \frac{\partial^2 u_1}{\partial y^2} + h(y) u_1 + i\beta_1 (y) u_2 + i\alpha p = 0, \tag{1}
\]

\[
\frac{\partial u_2}{\partial t} - \frac{1}{R} \frac{\partial^2 u_2}{\partial y^2} + h(y) u_2 + \frac{\partial p}{\partial y} = 0, \tag{2}
\]

\[
\frac{\partial u_3}{\partial t} - \frac{1}{R} \frac{\partial^2 u_3}{\partial y^2} + h(y) u_3 + i\beta_2 (y) u_2 + i\alpha p = 0, \tag{3}
\]

\[
ixu_1 + i\beta u_3 + \frac{\partial u_2}{\partial y} = 0, \tag{4}
\]

\[
ixu_k(0, t) = 0 \quad \text{for} \quad j = 1, 2, 3 \tag{5}
\]

where \(h(y) = (\alpha^2 + \beta^2)/R + i\alpha v_1(y) + i\beta v_3(y) \) and the primes denote derivatives \(u = u(y, t) = (u_1, u_2, u_3) \) and \(p = p(y, t) \) denote the velocity and pressure of the fluid at a point \(y \geq 0 \) and time \(t \geq 0 \) respectively; \(R \) as usual is the Reynolds number. \(v_1 \) and \(v_3 \) are the \(x \) and \(z \) components of the mean flow while \(\alpha \) and \(\beta \) are the wave numbers in the \(x \) and \(z \) directions of the mean flow.

Throughout \(\mathcal{H}(\mathcal{H}) \) denotes the Hilbert space \(L^2(0, \infty) \) (\(j \)-fold product of \(L^2(0, \infty) \)). The set of all complex-valued functions which are absolutely continuous on \([0, a]\) for every \(a > 0 \) is denoted by \(\mathcal{A} \).

A map \((u, p)\) from the interval \((0, \infty)\) into \(\mathcal{H}^4 \) is said to be a solution of equations (1–5) if for each \(t \in (0, \infty) \) the following conditions are satisfied [10]:

(i) \(u_j, p, \frac{\partial u_j}{\partial y} \in \mathcal{H} \cap \mathcal{A} \), \(\frac{\partial^2 u_j}{\partial y^2} \in \mathcal{H} \) for \(j = 1, 2, 3 \) and \(u = (u_1, u_2, u_3) \)

(ii) \(u \) is continuously differentiable in \(t \)

(iii) \(\frac{\partial u_2}{\partial t} \in \mathcal{A} \) and \(\frac{\partial^2 u_2}{\partial t \partial y} = \frac{\partial^2 u_2}{\partial y \partial t} \)

(iv) \(u, p \) satisfy equations (1–5)

(v) \(\lim_{t \to 0^+} u(t) \) exists.

\(\mathcal{S}_0 \) is the set of all such maps. \((u, p) \in \mathcal{S}_0 \) is an eigenvector if \(u(t) = e^{-\sigma t} u_0 \) and \(p(t) = e^{-\sigma t} p_0 \) for some \(z \in \mathbb{C} \), \(u_0 \in \mathcal{H}^3 \setminus \{0\} \) and \(p_0 \in \mathcal{H} \). The set of all such \(z \) is denoted by \(\sigma_{0z} \).

The main theorem may now be stated.

Theorem 1. Suppose:

(i) \(v_1, v_3 \in \mathcal{A} \),

(ii) the limits \(\lim_{y \to \infty} v_1(y) = \overline{v}_1 \) and \(\lim_{y \to \infty} v_3(y) = \overline{v}_3 \) exist and are finite,

(iii) \(v_1 - \overline{v}_1, v_3 - \overline{v}_3, v'_1, v'_3 \in \mathcal{H} \),

(iv) \(\alpha^2 + \beta^2 \in \mathbb{C} \setminus (-\infty, 0] \), \(R > 0 \).
Let $\lambda = \sqrt{\alpha^2 + \beta^2}$, $\text{Re}(\lambda) > 0$, $\mu = \lambda^2/R + i\alpha \tilde{v}_1 + i\beta \tilde{v}_3$ and $g_1 = \alpha(\tilde{v}_1 - v_1) + \beta(\tilde{v}_3 - v_3)$. Then

a) If $g_1, g_1' \in L^1(0, \infty)$, then for every $z \in \sigma_0$,

$$|z - \mu| \leq R \left(\|g_1\|_1 + \frac{2 |\lambda| + 1}{(\text{Re}(\lambda))^2} \|g_1'\|_1 \right) \left(\|g_1\|_1 + \left(\frac{2 |\lambda|}{(\text{Re}(\lambda))^2} + 1 \right) \|g_1'\|_1 \right).$$

b) If for some $\varepsilon > 0 \int_0^\infty e^{\varepsilon x} |g_1'(x)| \, dx < \infty$, then σ_0 is finite.

c) If g_1 and λ are real valued, then for every $z \in \sigma_0$,

$$\text{Re}(z - \mu) > -\frac{1}{\lambda} \inf_{\rho \in [2, \infty)} \left(\frac{\lambda}{2} \right)^{1/\rho} \|g_1'\|_p.$$

d) If $g_1', g_1'' \in \mathcal{H}$, $\lambda > 0$ and if $g_1(x) > 0$, $2\lambda^2g_1(x) + g_1''(x) \geq 0$ for all $x \in (0, \infty)$, then $\text{Im}(z - \mu) < 0$ for every $z \in \sigma_0$.

Remark: If $v_3 = 0$ and v_1 is the usual Blasius mean flow, then the assumptions in parts a and b are satisfied. If, in addition, $\alpha > 0$ and $\beta \in \mathbb{R}$ then the assumptions in parts c and d are also satisfied.

3. Preliminaries

In this section the stage is set for the proof of parts a and b of the Main Theorem. The main idea is represented in the following lemmas. The notation used is standard [8]; for $a \in \mathbb{R}$ let $\varphi(a) = \{z \in \mathbb{C} \mid \text{Re}(z) > a\}$.

Lemma 1. Suppose:

(i) $T, A_1, \ldots, A_n, B_1, \ldots, B_n$ are operators on a Banach space X, $R \in (0, \infty)$. Set $S = \frac{1}{R} T + B_1 A_1 + \ldots + B_n A_n$.

(ii) There exists a family of operators $K(z)$ on X for $z \in \overline{\varphi}(0)$ such that $K(z)(T + z^2)f = f$ for all $f \in \mathcal{D}(T)$ and all $z \in \overline{\varphi}(0)$.

(iii) There exists a family of operators $C_i(z)$ on X for $z \in \overline{\varphi}(0) \setminus \{0\}, i = 1, \ldots, n$ such that $C_i(z) \supset A_i K(z)$ and Range $(B_i) \subset \mathcal{D}(C_i(z))$ for all $z \in \overline{\varphi}(0) \setminus \{0\}$ and all $i, j \in \{1, \ldots, n\}$.

(iv) There exists a family of operators $Q_{ij}(z)$ on X for $z \in \overline{\varphi}(0) \setminus \{0\}, i, j \in \{1, \ldots, n\}$ such that $Q_{ij}(z) \supset C_i(z) B_j$ and $\|Q_{ij}(z)\| \leq q_{ij}/|z| < \infty$ for all $z \in \overline{\varphi}(0) \setminus \{0\}$ and all $i, j \in \{1, \ldots, n\}$.

Then for every $z \in \sigma_0(S)$

$$|z| \leq R \sum_{ij} q_{ij}^2.$$
Lemma 2. If assumptions (i) through (iv) of Lemma 1 are satisfied and if there is an \(\varepsilon > 0 \) such that \(Q_{\phi}(\tilde{z}) \) are holomorphic families of compact operators on \(X \) for \(z \in \mathcal{V}(\varepsilon) \) and \(i, j \in \{1, \ldots, n\} \), then \(\sigma_{\phi}(S) \) is a finite set.

Proof. Suppose that \(z \in \sigma_{\phi}(S) \setminus \{0\} \). Let \(f \neq 0 \) be such that
\[
\sum_{i=1}^{n} B_{i}(A_{i}f) = \left(z - \frac{1}{R} T \right) f.
\]
Then
\[
RK \left(\sqrt{-Rz} \right) \sum_{i=1}^{n} B_{i}(A_{i}f) = -f, \quad \Re \left(\sqrt{-Rz} \right) \geq 0,
\]
\[RA_{j}K \left(\sqrt{-Rz} \right) \sum_{i=1}^{n} B_{i}(A_{i}f) = -A_{j}f, \text{for } j = 1, \ldots, n,
\]
\[
RC_{j} \left(\sqrt{-Rz} \right) \sum_{i=1}^{n} B_{i}(A_{i}f) = -A_{j}f,
\]
\[
R \sum_{i=1}^{n} Q_{ji} \left(\sqrt{-Rz} \right) (A_{i}f) = -A_{j}f.
\]
Let \(x = (A_{1}f, \ldots, A_{n}f) \in X^{n} \) and let \(Q_{\phi}(\tilde{z}) = \{Q_{\phi}(\xi)_{ij}\} \). Clearly, \(x \neq 0 \) and
\[
1 \leq \| RQ_{\phi} \left(\sqrt{-Rz} \right) \|^{2} \leq \frac{R}{|z|} \sum_{ij} q_{ij}^{2},
\]
which proves Lemma 1. Lemma 2 is now obvious [8].

Now several operators on \(\mathcal{H} \) will be introduced. For \(z \in \mathcal{V}(0) \) and \(g \in \mathcal{H} \), define \(F_{z}, G_{z} \in \mathcal{B}(\mathcal{H}) \) by
\[
(F_{z}g)(x) = \int_{0}^{x} e^{z(s-x)} g(s) \, ds
\]
and
\[
(G_{z}g)(x) = \int_{x}^{\infty} e^{z(s-x)} g(s) \, ds.
\]
The operator \(T \) is defined by \(Tf = -f'' \) for \(f \in \mathcal{D}(T) = \{f \mid f, f' \in \mathcal{H} \cap \mathcal{H}' \}, f'' \in \mathcal{H}, f(0) = 0 \).

For \(z \in \mathcal{C} \) and \(x, y \in [0, \infty) \) define
\[
k(z, x, y) = \int_{0}^{\min(x, y)} e^{z(t-x-y)} \, ds.
\]
Observe that \(|k(z, x, y)| \leq \frac{1}{|z|} \) for \(z \in \mathcal{V}(0) \setminus \{0\} \). If \(\varepsilon \in (0, \infty) \), \(\delta \in [0, \varepsilon) \) and \(z \in \mathcal{V}(\varepsilon) \), then
\[
|k(z, x, y)| \leq \frac{1}{\varepsilon - \delta} e^{\varepsilon(x+y)}.
\]
If $\xi \in \mathbb{C} \setminus \{0\}$, $\varepsilon \in (0, \infty)$, $\delta \in [0, \varepsilon)$ and $z \in \mathcal{V}(\frac{\xi}{\varepsilon} - \delta)$, then
\[
\left| \frac{k(z + \xi, x, y) - k(z, x, y)}{\varepsilon} - \frac{\partial k(z, x, y)}{\partial z} \right| \leq |\xi| \left(\frac{3}{\varepsilon - \delta} \right)^3 e^{\varepsilon(x+y)}.
\] (7)

Define the family of operators $K(z)$ for $z \in \overline{\mathcal{V}}(0)$ by $\mathcal{D}(K(z)) = \{ f \in \mathcal{H} \}$ for all $x \in [0, \infty)$ \(\lim_{z \to \infty} \int_0^x k(z, x, y)f(y) \, dy = g(x) \), and $g \in \mathcal{D}(T)$,
\[
(K(z)f)(x) = \lim_{z \to \infty} \int_0^x k(z, x, y)f(y) \, dy \quad \text{for } f \in \mathcal{D}(K(z)).
\]

Integration by parts gives $K(z)(T + z^2)f = f$ for every $f \in \mathcal{D}(T)$ and every $z \in \overline{\mathcal{V}}(0)$. Note that if $z \in \mathbb{C}$ and $e^{-z(t)}f(\cdot) \in L^1(0, \infty)$, then $k(z, x, \cdot)f(\cdot) \in L^1(0, \infty)$ for all $x \in [0, \infty)$.

Suppose that $h_1, h_2 \in \mathcal{H}$ and that $\lambda, \lambda_1 \in \mathcal{V}(0)$. In \mathcal{H} define operators A and B in the following way:

Case I: \(A = h_1, \ B = h_2, \)

Case II: \(A = h_1, \ B = G_{\lambda_1}h_2, \)

Case III: \(A = h_1F_{\lambda_1}, \ B = h_2, \)

Case IV: \(A = h_1F_{\lambda_1}, \ B = G_{\lambda_1}h_2. \)

$G_{\lambda_1}h_2$ is a product of operators G_{λ_1} and the multiplication operator h_2.

Case I. Define the family $C(z)$ for $z \in \overline{\mathcal{V}}(0) \setminus \{0\}$ by $\mathcal{D}(C(z)) = \{ f \in \mathcal{H} \}$ for all $x \in [0, \infty)$ \(\lim_{z \to \infty} \int_0^x k(z, x, y)f(y) \, dy = g(x) \), and $g \in \mathcal{H}$,
\[
(C(z)f)(x) = h_1(x) \lim_{z \to \infty} \int_0^x k(z, x, y)f(y) \, dy \quad \text{for } f \in \mathcal{D}(C(z)).
\]

Clearly, $C(z) \supset AK(z)$ for all $z \in \overline{\mathcal{V}}(0) \setminus \{0\}$.

For $z \in \overline{\mathcal{V}}(0) \setminus \{0\}$ define the family $Q(z)$ by
\[
(Q(z)f)(x) = h_1(x) \int_0^\infty k(z, x, y) h_2(y)f(y) \, dy, \quad f \in \mathcal{H}.
\]

Clearly, $\|Q(z)\| \leq \|h_1\|_2 \|h_2\|_2 / |z|$, Range $(B) \subset \mathcal{D}(C(z))$ and $C(z)B \subset Q(z)$ for all $z \in \overline{\mathcal{V}}(0) \setminus \{0\}$.

Case II. Define the family $C(z)$ as in Case I. For $z \in \overline{\mathcal{V}}(0) \setminus \{0\}$ define the family $Q(z)$ by
\[
(Q(z)f)(x) = h_1(x) \int_0^\infty k(z, x, y) \left(\int_y^x e^{\lambda_1(y-s)} h_2(s)f(s) \, ds \right) \, dy
\]
\[
= h_1(x) \int_0^x \left(\int_0^y k(z, x, s) e^{\lambda_1(s-y)} \, ds \right) h_2(y)f(y) \, dy, \quad f \in \mathcal{H}.
\]
Thus \(\|Q(z)\| \leq \frac{\|h_1\|_2 \|h_2\|_2}{|z| \text{ Re } (\lambda_1)} \), Range \((B) \subset \mathcal{D}(C(z))\) and \(C(z) B \subset Q(z)\) for all \(z \in \mathcal{V}(0) \setminus \{0\}\).

Case III. Now, define the family \(C(z)\) for \(z \in \mathcal{V}(0) \setminus \{0\}\) by \(\mathcal{D}(C(z)) = \{f \in \mathcal{H} | f(x) = \lim_{s \to \infty} \int_0^x k(z, x, y) f(y) dy = g(x)\text{ and if } h(x) = \int_0^x e^{\lambda(t-x)} g(s) ds \text{ then } hh_1 \in \mathcal{H}\} \),

\[
(C(z)f)(x) = h_1(x) \int_0^x e^{\lambda(t-x)} \left(\lim_{t \to \infty} \int_0^t k(z, t, y) f(y) dy \right) dt, \quad f \in \mathcal{D}(C(z)).
\]

Clearly, \(C(z) \supset AK(z)\) for all \(z \in \mathcal{V}(0) \setminus \{0\}\).

For \(z \in \mathcal{V}(0) \setminus \{0\}\) and \(f \in \mathcal{H}\) let

\[
(Q(z)f)(x) = \int_0^x h_1(x) e^{\lambda(t-x)} \left(\int_0^\infty k(z, x, y) h_2(y) f(y) dy \right) ds
\]

\[
\quad = \int_0^\infty h_1(x) \left(\int_0^x k(z, s, y) e^{\lambda(t-x)} ds \right) h_2(y) f(y) dy.
\]

Again \(\|Q(z)\| \leq \frac{\|h_1\|_2 \|h_2\|_2}{|z| \text{ Re } (\lambda)}\), Range \((B) \subset \mathcal{D}(C(z))\) and \(C(z) B \subset Q(z)\) for all \(z \in \mathcal{V}(0) \setminus \{0\}\).

Case IV. Let the family \(C(z)\) be as in Case III. For \(z \in \mathcal{V}(0) \setminus \{0\}\) and \(f \in \mathcal{H}\) define

\[
(Q(z)f)(x) = h_1(x) \int_0^x e^{\lambda(t-x)} \left(\int_y^\infty e^{\lambda(y-s)} h_2(s) f(s) ds \right) dy \right) dt
\]

\[
\quad = \int_0^\infty h_1(x) \left(\int_0^x dt \int_0^y ds k(z, t, s) e^{\lambda(t-x)+\lambda(s-x)} \right) h_2(y) f(y) dy.
\]

Thus \(\|Q(z)\| \leq \frac{\|h_1\|_2 \|h_2\|_2}{|z| \text{ Re } (\lambda) \text{ Re } (\lambda_1)}\), Range \((B) \subset \mathcal{D}(C(z))\) and \(C(z) B \subset Q(z)\) for all \(z \in \mathcal{V}(0) \setminus \{0\}\).

If, in addition, there is an \(\epsilon > 0\) such that \(\int_0^\infty |h_1(x) e^{\lambda x}|^2 dx < \infty\), then inequalities (6) and (7) imply that in all of the above cases \(Q(z)\) can be extended to a holomorphic family of compact operators for \(z \in \mathcal{V}(-\epsilon)\).

3. Proof of the Main Theorem

Parts a and b. It has been shown [10] that

\[
\sigma_{0a} - \mu \subset \sigma_p(D_{11}) \cup \sigma_p(D_{22})
\]
The Orr-Sommerfeld Equation

\[D_{11} = \frac{1}{R} T - i g_1, \]
\[D_{22} = \frac{1}{R} T - i g_1 - 2i\lambda G_i g_1 F_\lambda + i g_1 F_2. \]

Therefore, it is enough to prove the following theorem.

Theorem 2. Suppose that \(\phi_1, \phi_2, \phi_3 \in L^2(0, \infty) \cap L^1(0, \infty), \ R \in (0, \infty) \) and \(\lambda, \lambda_1 \in \mathcal{Y}(0). \) Set \(S = \frac{1}{R} T + \phi_1 + G_i \phi_2 F_\lambda + \phi_3 F_2. \) Then

a) For every \(z \in \sigma_p(S) \)

\[|z| \leq R \left(\|\phi_1\|_1 + \frac{\|\phi_2\|_1}{(\text{Re} \ (\lambda))^2} + \frac{\|\phi_3\|_1}{(\text{Re} \ (\lambda))^2} \right) \left(\|\phi_1\|_1 + \frac{\|\phi_2\|_1}{(\text{Re} \ (\lambda))^2} + \|\phi_3\|_1 \right). \]

b) If, in addition, there is an \(\epsilon > 0 \) such that \(\int_0^\infty |\phi_i(x)| e^{\epsilon x} \ dx < \infty, \ i = 1, 2, 3 \) then \(\sigma_p(S) \) is finite.

Proof. Define

\[A_1 = |\phi_1|^{\frac{1}{2}}, \quad B_1 = \text{sgn} (\phi_1) |\phi_1|^{\frac{1}{2}}, \]
\[A_2 = |\phi_2|^{\frac{1}{2}} F_\lambda, \quad B_2 = G_i \text{sgn} (\phi_2) |\phi_2|^{\frac{1}{2}}, \]
\[A_3 = |\phi_3|^{\frac{1}{2}} F_2, \quad B_3 = \text{sgn} (\phi_3) |\phi_3|^{\frac{1}{2}}, \]

where \(\text{sgn} (\phi) (x) = \phi(x) / |\phi(x)| \) if \(\phi(x) \neq 0 \) and 1 otherwise. \(B_2 \) is considered as a product of operators. Hence

\[S = \frac{1}{R} T + B_1 A_1 + B_2 A_2 + B_3 A_3, \]

Define the families \(C(z), Q_0(z) \) as in the above cases. An application of Lemma 1 and Lemma 2 completes the proof.

Parts c and d. Suppose that \(\lambda > 0 \) and that \(g_1 \) is a real valued function. If \(z \in \sigma_p(D_{11}) \), then

\[\frac{1}{R} Tf - ig_1 f = zf, \quad f \in \mathcal{D}(T) \setminus \{0\}, \]

so that

\[\|f\|_2^2 \text{Im} (z) = -(g_1 f, f), \]
\[\|f\|_2^2 \text{Re} (z) = \frac{1}{R} \|f'\|_2^2. \]

If \(z \in \sigma_p(D_{22}) \), then

\[\frac{1}{R} Tf - ig_1 f - 2i\lambda G_i g_1 F_\lambda f + i g_1 F_2 f = zf, \quad f \in \mathcal{D}(T) \setminus \{0\}. \]
Hence

\[\|f\|_2^2 \Re (z) = \frac{1}{R} \|f'\|_2^2 - \Im (g_1 F_2 f, f) \]

\[> - \|f\|_2^2 \frac{1}{\lambda} \inf_{\rho \in [2, \infty]} \left(\frac{1}{2} \right)^{\frac{1}{p}} \|g_1'\|_p \]

which proves part c. This bound is somewhat weaker than those obtained in the bounded domain [5]; however, it does not require that \(g_1 \in L^\infty(0, \infty) \). Assuming, in addition, that \(g_1 \in \mathcal{A}^\infty \) and \(g_1' \in \mathcal{H} \) gives

\[- \|f\|_2^2 \Im (z) = (g_1, f, f) + 2\lambda (g_1 F_2 f, F_2 f) - \Re (g_1' F_2 f, f) \]

\[= (g_1, f, f) + 2\lambda (g_1 F_2 f, F_2 f) - \left(\left(\lambda g_1' - \frac{1}{2} g_1'' \right) F_2 f, F_2 f \right) \]

\[= (g_1 (F_2 f)', (F_2 f)'), \left(\left(\lambda^2 g_1 + \frac{1}{2} g_1'' \right) F_2 f, F_2 f \right) \]

which proves part d. Note that this equality can also give bounds on \(\Im (z) \), which are similar to those in [5].

References

Department of Mathematical Sciences
Rensselaer Polytechnic Institute
Troy, New York 12181

(Received May 18, 1982)