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In this paper we prove a result that is used in the investigation of finite
Kyp-groups of local characteristic p. It is part of an attempt to revise a
major part of the classification of the finite simple groups. An overview of
this revision can be found in [MSS].

More precisely, the P!-Theorem proved in this paper together with
the P!-Theorem in [PPS] show that under certain hypotheses there exist
parabolic parabolic subgroups P and P (containing a common Sylow p-
subgroup) in a Kp-group H of local characteristic p that behave like the two
minimal parabolic subgroups of a group of Lie type in characteristic p that
correspond to the end node and its neighbor in the Dynkin diagram. They
also establish that the remaining part of a hypothetical Dynkin diagram for
H can be found in a single maximal p-local subgroup, which is called C
further below.

Moreover, as it is outlined in [MSS, 2.4.9], these two theorems allow to
restrict the structure of C' and consequently that of the missing part of the
diagram.

To get started we need some definitions. Let H be a finite group and p
a fixed prime. Then H is of characteristic p if

Cu(Op(H)) < Op(H),

and H is of local characteristic p if every p-local subgroup of H is of
characteristic p. Moreover, H is a Kp-group if the simple sections of p-
local subgroups are "known” simple groups'.

!"Which means, they are groups of prime order, groups of Lie type, alternating groups
or one of the 26 sporadic groups.



For any p-local subgroup L < H let Y7, be the largest elementary abelian
normal p-subgroup of L satisfying

Op(L/CL(YL)) = 1.

For elementary properties of this subgroup see [MSS] and [PPS].

By Lp(X) we denote the set of subgroups L < H containing a given
subgroup X and satisfying C(O,(L)) < Op(L), and by My (X) the set of
maximal p-local subgroups containing X.

We fix S € Syl,(H) and C € My (Np(1Z(S))) and put

Q := Op(é) and X°:=(Q" | h € H with Q" < X) for X < H.

By Pu(S) we denote the set of subgroups P < H such that P £ Ny (S),
Op(P) # 1 and S is contained in a unique maximal subgroup of P. The
elements of Py (S) are called the minimal parabolic subgroups of H
containing S.

Let K = SL,(p*) or Spa,(p¥) and V be an irreducible GF (p) K-module.
Set F' = Endg (V). Then V is a natural SL,(p*)-module for K if K =
SL,(p*) and dimpV = n, and V is a natural Spy,(p*)-module for K,
if K 2 Spo,(p¥), dimpV = 2n, and K leaves invariant a non-degenerate
symplectic form s on the F-space V.

Note that a natural module for SLy(p*) is unique up to isomorphism. For
SL,(p*), n > 2, and Sp4(2F) there are two isomorphism classes of natural
modules. The second class can be obtained from the first one by applying a
graph automorphism.

By a k-dimensional subspace of V we mean an k-dimensional F-
subspace of V.

For K = Spy,(p*) a k-dimensional subspace U of V is singular if the
symplectic form s restricted to U is zero. Since s is unique (up to scalar
multiplication by elements of F'), the definition of a singular subspace does
not depend on the choice of s.

For K = SL,(p*) any subspace of V is called singular.

In this paper we investigate finite Kp-groups of local characteristic p
satisfying in addition:

Cr(z) < C forevery l £z € Cr(Q) (Q-uniqueness).

We prove:



P!-Theorem. Let H be a LKy-group of local characteristic p that
satisfies Q-uniqueness. Suppose that there exists P € Py (S) such that P £
C and Yy < Q for every M € My (P). Then one of the following holds:

(a) There exists at most one P € Py(S) such_that P £ Ny(P°)
and (P,P) € Ly(P). Moreover, if such P exists and M; :=
(P, P)°Cs(Yp), then

(a1) My/Cur, (Yay) = SL3(p"), Spa(p™), or Spa(2)' (and p =2), and
(a2) [Yar,, My] is the corresponding natural module for My /Chr, (Yar,)-

(b) There ezist at least two Py, Py € Py (S) such that P; £ Ny (P°) and
Z) € Ly(P), i = 1,2. Moreover, for any such P; and M; :=

P7 )CS(YP) 1=1,2:

b) M;i/Op(M;) = SL3(p),

b3) Op(M;)/Z(Op(M;)) and Z(O,(M;)) are natural SLsz(p)-modules
for M;/Op(M;) dual to each other.

(P,
(
(b1) p=3 or5 and OP (M, N M) = P,
(
(

The P!-Theorem is a corollary of the following more general result on
amalgams. By 3Sp4(2)’ we denote a non-split central extension of a group of
order 3 by Sp4(2)’, and by 3Sp4(2) a group that has 3S5p,(2)’ as a subgroup
of index 2 and Sp4(2) as a factor group.

Theorem 1. Let G be group generated be two finite subgroups My and
My. Set B := My N My and M; := M;/Cu,(Yyr,), and suppose that for
1= 1,2 the following hold:

(1) Syl,(My)NSyl,(Ms2) = Syl,(B), and My and My are of characteristic
.
2

No non-trivial normal subgroup of G is contained in B.

= SL3(qi), Spa(ai), ¢i = p™, or Spa(2) (and ¢ =p = 2).

[Yar,, OP(M;)] is a natural module for M;, and Z(M;) = 1.

3

(2)
(3) M
(4)
(5) There exists a 2-dimensional singular subspace W in [Yyr,, OP(M;)]

such that OV (- 77, (W)) < B.



(6) Cur,(Yar,) = Op(M;), or ¢; =2 and
M;/O2(M;) = 3Spa(2) or 3Spa(2)".
Then one of the following holds for i = 1,2:
(a) ;12)4: 2,22’1\/11. = O2(M;), M;/Oo(M;) = Sps(2) or Sps(2), and |Yar,| =
or 2°.

(b) g:=q1 =q2, p=3 or q=25, M;/O,(M;) = SL3(q), and Op(M;)/ Y,
and Yy, are natural SLz(q)-modules for M;/Op,(M;) dual to each
other.

Since Theorem 1 does not depend on the hypothesis of the ﬁ!—Theorem,
it may also be useful in more general situations; for example, when the
condition Yy; < @ is not satisfied.

We also want to remark that Theorem 1 is in the same vein as the (much
more general) main result of [ST]. Unfortunately, the hypotheses there are
not compatible with the situation here, our Hypothesis (5) being the reason.

1 Elementary Properties

Throughout this section H is a finite group of local characteristic p satisfying
Q-uniqueness (with the notation given in the introduction), and X is an
arbitrary finite group.

1.1 Let X be of characteristic p, S € Syl,(X) and P € Px(S). Then the
following hold:

(a) 2 (Z(5)) < Yx.
(b) X = Nx(8)(Px(5)).

(¢) For every normal subgroup N of P either OP(P) < N or SN N <

Op(P).
(d) For every normal subgroup T of S either OP(P) = [OP(P),T] or T <
Op(P).
Proof. See (1.2) (¢) and (1.3) (a), (b), (c) of [PPS]. O



1.2 Let X be of characteristic p, S € Syl,(X), Yx < N I X, and V :=
(1(Z(S))*). Then the following hold:

(a) Yx <Yy.
(b) Yx =Yy if Cs(Yx) < N.
() V = Cy(X)[V,0P(X)] and V < Y.

Proof. Recall that Yy is the unique maximal elementary abelian normal
p-subgroup of N satisfying O,(N/Cn(Yn)) = 1. Hence, Yy is characteristic
in N and thus normal in X.

Set X := X/Cx(Yx). Then 1 = O,(N) = O,(N/Cxn(Yx)), so Yx < Yx.
This is (a).

Assume now that Cs(Yyx) < N, and let D < S such that

DCx (Yn)/Cx(Yn) = Op(X/Cx (Yn)).

Since YX S YN we have Cx(YN) S Cx(Yx) Thus DCX(Y)()/C)((Y)() S
Op(X/Cx(Yx)) =1 and D < Cg(Yx) < N. It follows that

DCx(Yy)/Cx(Yn) =2 D/Cp(Yn) = DCON(YN)/Cn(YN) < Op(N/Cn(YN)),
and thus D < Cg(Yy) and O,(X/Cx(Yn)) = 1. Hence Yy < Yx, and (a)
implies (b).
A proof for the first part of (c) can be found in [CD], Lemma 2.5, the

second part follows from 1.1 (a). O
1.3 The following hold:

(a) Q=Q" and h € 5f0r every h € H with Q" < C.

(b) If T is a p-subgroup containing Q, then Ny (T) < C.

Proof. For (a) see (1.6) of [PPS]; (b) is a direct consequence of (a).
a

1.4 Let L € Ly (S). Then [Cr(YL),L°] < Opy(L).
Proof. See 2.4.2 (dc) in [MSS]. O

1.5 Let L € Ly(S), P € Pr(S) and Ly := L°Cs(Y). Then one of the
following holds:



(a) P < L()S,
(b) P < NL(SN L) N Np(Lo) N C,
(¢) [OP(P),L°] < Oy(L) and P < C.

Proof. If OP(P) < Cr(YL), then 1.4 and 1.1 (a) give (c). Thus, we may
assume that OP(P) £ Cr(Yr). Then 1.1 (c) yields C5(Yr) < O,(P), in
particular Cs(Yr) = Cp(Yz) N O,(P). Hence, Cs(Y7,) is normal in P, and
P < Np(Lp). Now SN Ly is normal in S, and 1.1 (d) shows that either
SN Ly < Op(P) or OP(P) = [OP(P),S N L)

In the first case SN Ly = Op(P) N Lo, so SN Ly is normal in P. As
Q < SN Lo, 1.3 (b) implies P < C, and (b) holds.

In the second case OP(P) < Lg since P < Np(Lg), and (a) holds. O

1.6 Let V be an irreducible GF (p) X -module and F := Endx (V). Then the
direct sum 'V @&V contains ezactly |F| +1 GF (p)X -submodules isomorphic
to V.

Proof. This follows from Theorem 3.5.6 in [Go]. O

Let L = SLy(q), g = p", and V be a natural GF(p) L-module. Set F :=
Endr (V). Since L = Spse(q) there exists an L-invariant non-degenerated
symplectic form

s: VxV —=PF.

Let {v,w} be a basis of the F-space V such that s(v,w) =1, and set

Qo = {(u(v),v) | 4 € F} and Q1 = {(u(v),w) | u € F¥}.

Note that s(u(v),w) = p, so s(21) U {0} = F. Note further that Q :=
Qo U U{(v,0),(0,0)} is a set of representatives for the L-orbits on V x V.
We consider F' as a trivial GF(p)L-module.

1.7 Let C be any trivial GF(p)L-module and o : VXV — C be L-invariant
and GF(p)-bilinear. Then there exists a GF(p)L-module homomorphism
B: F — C such that B(s(z,y)) = a(z,y) for all z,y € V.

Proof. For every p € F the pair (u(v),v + w) is in the same L-orbit as
(u(v),w). It follows that

a(p(v), w) = a(p(v),v +w) = alp(v),v) + a(p(v), w),



and a(u(v),v) = 0. Moreover, the linearity of a gives a(v,0) = «a(0,0) = 0.
We define

B: F=s(Q1)U{0} = C with s(u(v),w) — a(u(v), w) and 0 — 0,

so As|la = alqg. As s and « are both L-invariant and  is a set of represen-
tatives for the L-orbits of V' x V, this shows that s = «. Moreover, it is
easy to check that g is a GF(p) L-module homomorphism from F' into C. O

2 Properties of Sps(q) and SL3(q)

In this section G € {SL3(q), Spa(q)}, where ¢ is a power of the prime p, and
V' is a natural GF(p)G-module. We fix a 2-dimensional singular subspace
W of V and we set P := OF (Ng(W)).

The next two Lemmata give properties of G we assume the reader to be
familiar with:

2.1 Let G = SL3(q) and S € Syl,(P). Then |P| = ¢*|SL2(q)|, and the
following hold:

(a) G is 2-transitive on the 1-dimensional and on the 2-dimensional sub-
spaces of V.

(0) [V,0p(P)] =W and Cg(W) = Op(P).

(c) P/Op(P) = SLa(q) and Syl,(P) C Syl,y(G).
(d) W and O,(P) are natural SLy(q)-modules for P/O,(P).
(

f) G is generated by three conjugates of Z(S).

)
)
)
e) |Z(S)| = |Cv(S)| = q and Z(S) = Ca(W) N Ca(V/Cv (S5)).
(f)
(9)

g) If A < S such that |[V, A]| = q or |V/Cv(A)| = q, then A is conjugate
to a subgroup of Z(S).

(h) Ng(W) is the unique maximal subgroup of G containing P. O

2.2 Let G = Spa(q), S € Syl,(P) and A be a minimal normal subgroup of
Ng(W). Then |P| = ¢*|SL2(q)|, and the following hold:

(a) Ng(W) is a mazimal subgroup of G.



(b) P/Oy(P) = SLs(q), Syl,(P) C Syl,(G), and Oy(P) is elementary

abelian.
(c) [W,0,(P)] =0, and [v,0p(P)] =W for everyv e V\W.
(d) W and V/W are natural SLy(q)-modules for P/Op(P).
(e) Either

(e1) A= 0Op(P) andp # 2, or

(e2) p = 2, |A] = ¢ and O2(P)/A is a natural SL2(q)-module for
P/OQ(P)7 or

(es) ¢ =2, |A| =4 and [v,A] =W for everyv e V\W.
(f) There ezists g € G with W N WY = 0. Moreover,
X £ Ng(W¥) and G = (P9, X)
for any such g and for any 1 # X < Oy(P).
(9) A £ Op(Cq(z)) for every x € W¥.

(h) Ng(W) is the unique maximal subgroup of G containing P. O

2.3 Let G = SL3(q) and g € G\ Ng(W). Then Op(P) N O,(PY) =1,
and there exists S € Syly(P) such that Oy(P) N PY = Z(S); in particular
|0p(P)/Op(P) N P9| = q.

Proof. Let Vo = W NW9Y. Then Vj is 1-dimensional, and by 2.1 (a) and
(e) there exists S € Syl,(P) such that Vo = Cy(S). Hence 2.1 (b) and (e)
give
Z(8) < 0p(P)NCa(V/Vo) < Op(P) N Na(W),
N

P
s0 Z(S) < Op(P)NPY. On the other hand O, (P)NO,(PY) < Ca(WWI) =1,
so by 2.1 (¢) and (e) Z(S) = Op(P) N PY. O

2.4 Let G = Spa(q) and B < O,(P) be such that |V/Cy(B)| = q or
|[V,B]| = q. Then the following hold:

(a) [V,A] =W for every non-trivial normal subgroup A of P in Oy(P).
(0) [V/Cv(B)| = [V, B]l = q and |B| < q.



Proof. By 2.2 (d) P acts irreducible on W and by 2.2 (c) [V, O,(P)] = W.
This gives (a).

Note that [V, B] is perpendicular to Cy (B) with respect to the symplectic
form on V. Hence, the dimension formula gives

dimV = dim Cy(B) + dim [V, B|

and the first part of (b). Then |B/Cg(v)| < ¢ for v € V' \ Cy(B), and
V = Cy(B) + Vi, where Vj is the subspace generated by v. This gives
Cp(v) =1and |B| <q. O

The next result follows from Theorem A in [CD]:

2.5 Let Y be a faithful GF(p)G-module and 1 # A an elementary abelian
p-subgroup of G. Suppose that G = SL3(q) and |Y/Cy(A)| < |A|. Then
Y, G]/Cly,1(G) is a natural module or the direct sum of two isomorphic
natural modules for G. a

2.6 Let M be a finite group of characteristic p with subgroups Y < D < M
such that D is a normal p-subgroup of M and Vi := ®(D) < 1 Z(0,(M)).
Suppose that for V.= D/Z(D) and P, := O (N (Y NV1)):

(a) M/Op(M) = SL3(q), and Vi is a natural module for M/O,(M).

)
(b) D=(YM) Y £ Z(D) and Cp(y) = Cp(Y) for ally € Y \ V4.
(¢) Y NVy is 2-dimensional subspace of Vi, and [Y, P1] <Y NV].
(d) |V/C (1) < |T/Op(M)| where T := Op(Cri(2)), 1 # z € Vi.
Then V is a natural SLs(q)-module dual to V.
Proof. Set M := M/O,(M), so M = SL3(q) and by 2.1 (c)
P1/0y(P1) = SLy(q) and Syl,(P1) C Syl,(M).

By (b) and (c) [D,0,(M)] < Vi and V = [V,M]Y; in particular V is
a GF(p)M-module. As Y is centralized by a Sylow p-subgroup of M,
Gaschiitz’ Theorem implies that V = [V, M M|Cy(M).

Let Vi < U < D be such that U is M-invariant and U # 1, and pick
y € Y\Vi. By (¢) [y, U] is a Pi-submodule of V1, so by (a) either [y,U] = 1 or



[y, U] = Y N V1. In the first case (b) yields U < Cp(Y) and then U < Z(D),
which contradicts U # 1. Hence, we have

(*) [yaU]:Ym‘/l;

in particular Cy(M) =1 and V =V, M].

Assume now, in addition, that U is an irreducible M-module. We apply
2.5. Then U is a natural SLs(q)-module for M. Moreover, since U/Cy(y)
and [y, U] =Y NV, are isomorphic Pj-modules, the module U is dual to Vi.
It remains to prove that U=D.

Assume that D # U. Then, again by 2.5, V is the direct sum of two
natural modules isomorphic to U. Thus V /Cs 7 (P1) is the direct sum of two
natural modules for 1 /O, (P1). By 1.6 there are exactly g+1 ‘M-submodules
UO, .. U isomorphic to U in V and also q + 1 irreducible P;-submodules
in V/Cf/(Pl), S0) ﬁiCﬁ(Pl)/Cr/(Pl), i=0,...,q, are these P;-submodules.

Let Dy := Cp(y). As seen above D/D, is a natural P;-module. Hence,
also lNDy involves a natural Pj-module. Moreover, an application of the
Three-Subgroups Lemma shows that Cp(Py) < 5y. Thus, there exists
k € {0,...,q} such that lNDy = (U N ﬁy)C‘;(Pl). Then

ﬁk = (ﬁk N f)y)Cﬁk(Pl) < Dy,
which contradicts (). a

2.7 Let L be a finite group, p an odd prime, and D a normal p-subgroup
of L such that Z(D) = Qy(Z (D)) =: V, and let A be the set of all normal
subgroups A of L satisfying A < D, |A| = ¢* and Cp(A) = A. Suppose that

(1) L/Op(L) = SLa(q), ¢ =p",

(i1) V is a natural module and D/D' is the direct sum of two natural
modules for L/Op(L),

(iii) |A| > 2, [D',L] <V and |D'| = ¢*.
Then one of the following holds:
(a) p#3 and |A| = 3.
(b) p=3 and |A| =q.

10



Proof. Set R := D’ and D := D/R. Note that by (ii) any non-trivial
proper L-invariant subgroup of D has order ¢*. Also

(1) A= Cp(A) < R for everyA € A.

By (ii) [R, D, D] < [V, D] = 1, so the Three Subgroups Lemma gives [R, R] =
1. Thus

(2) R is abelian.

Let 1 #2z € A\V. By (1) and (iii) L normalizes [z, D] and thus [z, D] =V
and |D/Cp(z)| = ¢*. On the other hand, by (1) and (2)

R S CD(A) S CD(QZ) and CD(A) 7& R
since A = Cp(A)’". Now (ii) implies that
Cp(A) = Cp(x) for every z € A\ V.

According to (iii) there exists B € A such that A # B. As A = Cp(z)' for
every x € A\'V and B = Cp(z)' for every z € B\ 'V, we get

(3) V=ANDB, R=AB and D = Cp(A) x Cp(B).

Moreover Cp(A) and Cp(B) are natural L/O,(L)-modules.

Let K := Endy(V) and R := R/V,so R = A x B. By (ii) K = GF(q).
From now on we will view V as a vector space over K; in particular addition
replaces multiplication. Moreover, we write kv rather than k(v) for k € K
and v € V.

There exist GF'(p)L-isomorphisms

$a: V = Cp(A) and ¢ : V — Cp(B).

Let r € R and z,y € D. Then [z,7] := [;,\;] and [7,7] := [z,r] are well-
defined by (2). Let z € A. Since [z, L] = 1, the map

ph(z): V=V with v — [¢p(v), Z]
is L-invariant. Thus p%(2) € K.
If % (2) = 0, then [2,Cp(B)] = 1 and thus by (3) 2 < Z(V), so z = 1.

Since B
pas A= Kz piy(2)

11



is a group homomorphism, we conclude that it is injective. Hence, as both A
and K have order ¢, p% is an isomorphism. Let p4 be its inverse. Similarly

define /1.
Let k, h € K and v,w € V. Then

(4) kv =[¢p(v), pa(k)] = [pa(v), up (k)]

and

(5) [pa(v)pB(w), pa(k)ps(h)] = kw + ho,

(recall that we write V' additively).

For every z € R\ A there exist kK € K and h € K* such that z =
pa(k)pp(h). Let 2, k) € R be such that Z, 5y = pa(—=kh Y)up(—1). Then
(2) and (5) yield

Cp(2) = Cp(2(nr))-

Hence
{Cp(2) | z€ R\V} ={Cp(A)} U{Cp(pa(t)up(-1)) |t € K}.

For t € K set Dy := Cp(pa(t)pp(—1)) and By := Z(D;). From (5) we
obtain:

(6)  Di={pa(tv)¢p(v) | v €V} and B, = {pa(th)up(~k) | k € K}.

In the following we determine for which ¢ € K actually By € A. As By =
B € A we can assume that t # 0.

We investigate the L-invariant G F(p)-bilinear form x on D induced by
the commutator mapping

k: D x D — R with (Z,y) — [z,y] for all z,y € D.
As R=Ax E, the projection mappings
TA : E—)zzlvandm;: R— B
give rise to L-invariant GF'(p)-bilinear forms k74 and kg satisfying
[z,9] = [z, y]lmalz, Y] B,

so kmap’y and kg are GF(p)-bilinear forms with values in K.

12



We now restrict k to Cp(A) x Cp(A), Cp(B) x Cp(B) and Cp(A) x
Cp(B), respectively. Let s be an L-invariant non-degenerate symplectic
form on V. According to 1.7 there exist GF(p)L-module homomorphisms

)\AaABapAapB K=+ K

such that for all v,w € V

(7) [¢4(v), pa(w)] = pa(Aa(s(v, w))),
(8) [¢5(v), pB(w)] = pB(AB(s(v, w))),
(9) [$a(v), pB(w)] = [Pa(v), pp(w)]Ta[pa(v), pB(Ww)]TH

= pa(pa(s(v,w)))us(p(s(v, w))).

It follows that

—~
—_
o
~
I |

Let x,y,z € D. The Jacobi identity

[2,y~ Y 2y, 2 )z ey =1
yields

(11) [y,f,f]-i—[?,y,f]—l-[w,z,y] =0

since V < Z(D) and R < Z(D).
Let v,w € V and k € K¥. We will compute all three triple commutators
for T = ¢pa(v), y = pa(kw) and z = ¢p(w). From (9) we get

[palkw), dp(w)] = palpa(s(bw,w)))pp(pp(s(kw,w)))
= pa(pa(0))np(pp(0)) = 1.

Thus, (5), (7), (9) and (10) give
(¢4 (), pa(kw), ¢p(w)] = [na(Aa(s(v, kw))), dp(w)]

= —A4(s(v, kw))w = Mg (s(kw,v))w,

[pB(w), pa(v), pa(kw)] = [palpa(s(w,v)))us(ps(s(w,v))), ¢A(/€w)]
= —pp(s(w, ))kw

[pa(kw), dp(w), pa(v)] =0.
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Now (11) yields:
(12) Aa(s(kw,v))w = pp(s(w,v))kw for every v,w € V and k € K.
Choosing v, w € V such that s(w,v) = ko one gets from (12)
Aa(k1k2) = pp(ko)ky for all ky, ko € K.
A similar argument (with the roles of A and B reversed) gives
Ag(k1ke) = pa(ka)ky for all ky, ke € K.

In particular, with £4 := A4(1) and £ := Ap(1) the cases k1 =1 or ko = 1,
respectively, yield:

(13)  pp(k) = Aa(k) = L4k and pa(k) = Ag(k) = £k for all k € K.

We now determine for which ¢ the subgroup By is in A. Let v,w € V and
t € K#. Put k := s(v, w) and recall that 4, up are homomorphisms from
the additive group of K into the multiplicative group A or E, respectively.
It follows from (7) — (10) and (13) that

[pa(tv)dp(v), pa(tw)pp(w)] =

[pa(tv), pa(tw)][pa(tv), pp(w)][ds(v), pa(tw)][pp(v), ds(w)] =
pa(Aa(s(tv, tw)))pa(p ( (tv,w)))up(pB(s(tv, w)))pa(pa((s(v, tw)))
us(ps(s(v, lW’)))MB( B(s(v,w)))

= pa(Aa(t?k) + 2PA(tk))UB(2PB(tk) + Ag(k))

= pua(k(t?la +2tlp))up(k(2tla + (p)).

For ¢ := ﬁ—i we get

{lpa(tv)dp(v), pa(tw)dp(w)] [ v,w € VI = q <=

(14)
t ¢ {—2¢,—1¢}.
By (6)
(15) D) < By <= t*04+2tlg = (—t)(Lp + 2tly).

The equation on the right hand is equivalent to

(16) 3t = —3¢,
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since we are assuming that ¢ # 0. Hence, according to (14)
1
Dy =B; < 3t=-3(and t ¢ {-2¢, —56}.

If p # 3, then (16) has a unique solution, namely t = —¢, so A = {A, B, B_4}
and (a) holds.

Assume now that p = 3. Then every ¢t € K satisfies (16), and every
t # ¢ satisfies t & {—2¢, —%E}. Hence, there are g — 2 elements in A different
from A and B, and (b) holds. O

2.8 Let L be as in 2.7. Suppose in addition that L is a subgroup of the
finite group M, and

(6) M/Op(M) = SL3(q)

(11) Z(Op(M)) and Op(M)/Z(Op(M)) are natural SL3(q)-modules dual to
each other.

Then ¢ =5 or p = 3.

Proof. We may assume that p # 3. Then by 2.7 | 4| = 3. A comparison
of orders shows that L contains a Sylow p-subgroup of M and D = O,(L)
(D as in 2.7). Hence there exists L < R < M such that L = O (R) and
R/O,(M) is a maximal parabolic subgroup of M/O,(M).

Let Y = Z(0p(M)). By our hypothesis O,(M) = Cp(Y) and O,(M)" =
Y,s0Y € A. Let A and B be the other two elements of A, and let Ry be
the unique subgroup of index 2 in R with L < Ry, so K := Ry/L is cyclic
of order 45=. Since R normalizes Y and acts on A, Ry normalizes A and B.

Let D = D/Z(D). Then Y A and B are three different GF(p)K
submodules of order ¢ in D', so the GF( )K-modules W; := Y and W, :=

D'/Y are isomorphic.

Let F; = Endg(W;), i = 1,2, and note that K is embedded in F; since

K is abelian. Then there exists a field isomorphism

w: Fy — Fy with 7| = id.

On the other hand, by our hypothesis W5 is a submodule of the module
Op(M)/Y, which is dual to Y. Thus, there exists a field isomorphism

p: Fy — Fy with kv k™! for k € K.

Hence, 0 := pm is an automorphism of F} that inverts the elements of K.
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As every automorphism of Fy is a power of the Frobenius automorphism
x +— 2P, there exists 0 < m < n (where ¢ = p”) such that f° = fP" for
f € Fy and
K =kt = k" for k € K.

It follows that kP! =1 and thus

-1
Kl =5~ "+ 1

This shows that
qg—1=p" —1<2p" +2and p™(p" ™ —2) <3,
som =0 and g =5. |

2.9 Let G be a finite group, and let L, My, and Ms be subgroups of G such
that L < My N Ms. Suppose that the following hold:

(a) L satisfies 2.7.

)
(b) My and My satisfy 2.8 in place of M.
(€) Op(My) # Oy(Mz), and Ci(Op(M;)) < Op(M;), i =1, 2.
(d) Ca(L/D)/D is a p'-group (D as in 2.7).

Then q =3 or 5.

Proof. Let T € Syl,(L) and set
U := Ne(L) N Ng(T), Uy := UN L, U; := U N M;.

Moreover, let A and V be as in 2.7. We use a similar approach as in
2.8 getting T € Syly(M;), D = O,(M;)Oy(Ms), Z(0,(M;)) € A, and
Z(0,(M) Z(0y(My)) = .

Observe that U;/T = Cy—1 x Cy—1 and that U; and Us centralize Uy /T
Note further that Ng(L)/Ca(L/D) is a subgroup of Aut(La(q)). Thus, the
structure of Aut(L2(q)) together with the hypothesis on Cg(L/D) shows
that (Uy,Us)/T is a p'-group. Now the Theorem of Schur-Zassenhaus gives
a complement X for 7' in (Uy, Us).

According to 2.7 and 2.8 we may assume that p = 3 and |A| = q. Set
D = D/D'. By 1.6 there are exactly ¢ + 1 natural L/D-submodules in D.
On the other hand, for every A € A the factor group Cp(A)/D’ is one of
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these submodules. Hence there exists a unique D’ < Wy < D such that Wg
is a natural L/D-module and W§ ¢ A. In particular X normalizes W.
Assume first that |X| = (¢ — 1)2. Then U; = U, and, similar as in
2.8, the GF(p)U;-modules Z(O,(M,))/V and D’/Z(O,(M,)) are isomorphic
and dual to each other with Cy, (Z(M;)/V) = Up. As |U1/Up| =q—1, an

argument as in 2.8 gives
q—1=p"—1|p"+1 for some 0 < k < n,

andn=1,k=0and qg=3. .
Assume now that |X| > (¢ — 1)2. Since XL/Cxr,(Wo) = GLy(q) we
conclude that Cx (W) # 1 and X' < Cx(Wj). On the other hand

Cx (D) = Cx(D) < Cx(0p(M1)) = 1

since X is a p’-group. It follows that also Wy := [D,CX(WO)]D’ # D', so
W, is also a natural L/D-module. In particular A := W/ € A.
Now with the same argument as above Cx (W7) # 1 and X' < Cx (W),

X' < Cx(Wo) N Cx (W) = Cx (D) < Cx (0,(My)) =1,

and X is abelian.
IfA= Z(Op(Ml)), then W1 = Op(Ml) and

Cx (W) = Cx(0p(M1)) =1,

a contradiction. With the same argument A # Z(Op,(Ms)), so there are
three X-submodules of order ¢ in D'/V, namely A/V, Z(Op,(M;))/V, and
Z(0p(M>))/V. Hence, these submodules are isomorphic.

If X normalizes Z(O,(Mz)), then Z(Op(M;))/V and D'/Z(O,(M,)) are
isomorphic GF(p)U;-modules and dual to each other, so as above ¢ = 3.
Thus we may assume that there exists x € X such that Z(O,(Mz3))* #
Z(0p(M3)). Now Z(0p(M>))/V and D'/Z(0O,(Ms))* are isomorphic and
dual to each other as GF(p)Ujs-modules, and again g = 3. O

3 The Local P!-Theorem

In this section we assume that H is a KCp-group of local characteristic p, which
satisfies Q-uniqueness. Moreover, we assume that there exists P € Pp(S)
such that P £ C and Yy < @Q for every M € Mg (P).

Notation. For L € Ly(S) set Lo := L°Cs(Y1).
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We first collect two results from [PPS]:

3.1 Py/Oy(Po) = SLa(p™), and Yp is a natural SLay(p™)-module for
Po/Op(P).

Proof. This follows from the P!-Theorem in [PPS]. O
8.2 Let L€ Ly(P) and L := L/C(Yy). Then the following hold:
(a) F*(L) = [Lo, Lo, Lo = SLu(p™), Span(p™) or Spa(2)' (and p =2),
(b) [Yr, Lo] is the corresponding natural module, and Z(L) = 1.
(¢) Yp is a 2-dimensional (singular) subspace of [Y1,, Lg].
(d) Either Cr,(Yr) = Op(Ly), or p=2 and Ly/O2(Ly) = 3Sp4(2)'.
() Cs(Yp)

e) Py < Lo and SN Py € Syly(Lo), or Ly = Sps(2) and LoCs(Yp) =
Spa(2).

Proof. Claims (a) — (d) follow from the Corollary in [PPS]. For the proof
of (e) set Py := Py N Lo and Sp := S N Ly. Since P° < P,

P°Cs(Yp) = Py = P.Cs(Yp).

From (a), (b) and (c) we get that |So/Cs,(Yp)| = p™. On the other hand,
Cs,(Yp) = Cs(Yp) N Py and thus

PL/Cs,(Yp) = Py/Cs(Yp) & SLy(p™),

so Sy < P.

If Cs(Yp) = Cs,(Yp), then the first possibility of (e) holds. Thus we
may assume that there exists ¢ € Cs(Yp) \ So; in particular # ¢ Lg. This
element induces an automorphism in Ly that centralizes a 2-dimensional
singular subspace of [Yr, Lo].

An inspection of the automorphisms of SL3(p™) and Sp4(p™) having this
property shows that either # € Ly, which is not the case, or Ly = Spy(2)’
and the second possibilty of (e) holds. O

3.3 Ny(Yp)° = P° and P° is normal in Ng(Yp).

Proof. By 3.1, P is acts transitively on Yp, so the claim follows from
(2.4.2)(dd) in [MSS]. O
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3.4 Let L€ Ly(P) and S;:=LNS. Then
Ni(S1) < Np(Yp) < Np(P°).
In particular, for every Pe Pr(S) either P < Np(P°) or P < LgS.

Proof. The structure of Lo and [Y7, Lo] described in 3.2 shows that
Yp is the unique S;-invariant 2-dimensional singular subspace of [Y7, Lo].
Together with 3.3 we get that N.,(S1) < Np(Yp) < Np(P°). Now 1.5 yields
the second part of the claim. |

3.5 Local I-N’!-Theox;em. Let L € Ly(P) be such that P° # L°. Then
there exists a unique P € Pr(S) such that P £ Nr(P°). Moreover, for
U:= (P,P), U*:=U°Cs(Yp) and U := U*/Cy-(Yy) the following hold:

(a) U=U*S and U" = SL3(p™), Spa(p™) or Sps(2)' (and p = 2).

Proof. Set S1 := SN Ly. It is evident that P° < L°. Thus, if Ly < P,
then L° = P°, which contradicts the hypothesis. Hence, we have Lo £ P,
and the structure of Ly and [Y7, L] described in 3.2 shows:

(*) There exists a unique minimal parabolic subgroup R € Pr,(S1) such
that R £ NLO(YP)-

_ Pick P € Pr(S) with P £ Np(P°). We first _prove the uniqueness of
P. Let X be the unique maximal subgroup of P containing S, and set
P, := PN Ly. By 3.4 and 1.1 (b) P = SPy,

Py = Np (S)(P | P € Pp (S1)) and N5(S1) < Np(P°) < X.

Hence, there exists U € 73131(81) such that U £ X, and () implies U = R,

consequently RS = P. This shows that P is uniquely determined.

We now apply 3.2 with U and U = U/Cy;(Yy) in place of L and L. Note
that by 3.2 (e) Cs(Yy) < Uy < U* and that Uy and U* are both normal in
U. Hence 1.2 yields Yy = Yy, = Yy-. Note further that by 3.2 (e) either
Up=U*or Uy = Sps(2) and U" 2 Spy(2). Then the claims (a) - (e) follow
from the corresponding claims in 3.2 since U has Lie rank 2. O
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3.6 Suppose that there exist two different P,P€ P (S) such that
P; £ Ny (P°) and Op((P;, P)) # 1 (i =1,2).

Set M; = (P,E)OCS(YP) and G := (M, Msy). Then G together with M
and My satisfies the hypothesis of Theorem 1.

Proof. Note that 3.5 applies to M; in place of U*, for 1 = 1 and 2. The
Hypotheses (1), (3), (4), and (6) of Theorem 1 follow from (2.5) (e), (a),
(b), and (d), respectively.

Assume that there exists 1 # N < G such that N < B. Since B has
characteristic p, we get O,(N) # 1 and thus O,(G) # 1. Since S normalizes
G we get that GS € Ly (P), and 3.5 applies to G'S.

In particular, there exists a unique P € Pgs(S) not normalizing P°.
This contradicts P; # P», and this contradiction shows Hypothesis (2) of
Theorem 1.

By 3.5 (e) Py < M1 N Ms. Hence 3.5 (a), (c) and (e) give Hypothesis (5)
of Theorem 1.

4 The Coset Graph

In this section we assume that the Hypothesis of Theorem 1 holds. We
will apply the amalgam method to the group G := (M7, Ms) and the pair of
subgroups M; and M> using the standard notation (see for example [PPS] or
[ST]). For the convenience of the reader we will repeat some of the notation.

Let I" be the coset graph of G with respect to the subgroups M; and Mp;
so the vertices are the right cosets of M1 and M5 in G, and two vertices are
adjacent if and only if they are different and have non-empty intersection.
Then G acts by right multiplication on I'; and the vertex stabilizers in G are
conjugate to My or Mo, while the edge stabilizers are conjugate to M; N Mo.
By d(, ) we denote the usual distance metric on I'.

For a finite group L define Z;, := (Q(Z(T)) | T € Syl,y(L)).

For every § € T" define

A@) =={N[dE,N) =1}, G5 :={geG]|d =0,

Y; =Ygy, Zs = Zgyg,

Qs = 0y(Gy), V)= (Zy ] (X, 8) =),
Vs = V5(1), D5 = Cg;(Vs),

Gs = Gs/Cqs(Z5),
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and
b:=min{d(0,) | 0, € ' and Zs £ Q\}.

For adjacent vertices a and 3 define
b 1= O (GanNGp), Qapi=0p(Glg),  Zap = Zar,.

A pair («a,a’) of vertices is called critical if Z, £ Q. and d(a,a’) = b.
If (o, ) is a critical pair, then we fix a path of length b from « to o’ and
denote its vertices by

(a,a+1,...,a+0b)or (¢ —b,,...a —1,d),
soa+i=da —(b—1i).

The first lemma mostly phrases the hypothesis of Theorem 1 in terms of
this new setup and notation.

4.1 Let a and B be adjacent vertices in I'. Then the following hold:
(a) Gq is of characteristic p, and Syly(Gy5) = Sylp(Ga) N Sylp(Gp).
(b) No non-trivial subgroup of G} 5 is normal in both G and Gg.

(¢) Ga = SL3(qa), Spa(ga) or Spa(2)" (and qo = 2).

(d) Zo = [Ya, OP(G4)] is a natural module for G, and Z(Gq) = 1.
(€) Zap = Za N Zg, | Zapl = 43 = ¢}, and OP (Ng,_ (Zap)) = Gop-
f) 4= g0 =g

) G

) Z

)
(f)
(9) Ca,(Za) = Qa, 07 p=qa =2 and Go/Qq = 3Sp4a(2) or 3Sp4(2)".
(h) NG.(Zap) is the unique mazimal subgroup of Go containing Gy, 5

Proof. The pair {G,,Gp} is conjugate to {M;i, M>}, so the hypothesis
of Theorem 1 applies to both G, and Gjg.

From 1.2 (c) we get that Z, = [Za, OP(G4)|1(Z(G,)) and Z, < Y.
Now Hypothesis (4) of Theorem 1 yields Z(G,) = 1 and Z, = [Ya, OP(G4)].
In particular, C¢, (Ya) < Cg,(Za), and the action of G, on [Y,, OP(G,)]
given in Hypothesis (4) of Theorem 1 shows that C¢, (Ya) = Ca, (Za).

With these remarks in mind the statements (a), (b), (c), (d) and (g)
follow from the Hypotheses (1), (2), (3), (4) and (6) of Theorem 1.
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By Hypothesis (5) of Theorem 1 there exists a 2-dimensional singular
subspace W, < Zo with OF (Ng_(Wa)) < Go NGg. By 2.1 (d) or 2.2 (d)
N¢, (W,) acts irreducibly on W, so

Wa < Za,B < ZaﬂZQ.

With a symmetric argument there also exists a 2-dimensional singular sub-
space W3 < Zg such that Op'(Naﬁ(W[g)) <GyNGgand

Wg < Zag < Za N Zg.

Suppose that Wo # Zo N Zg. Let T € Syly(Gpp). If Go = SL3(qa),
then clearly Cr(Z, N Zg) = Qq since Z, is 3-dimensional. If G = Sp4(qq)
or Sp4(2)’, then Cr(Zy N Zg) = Qq follows from 2.2 (d). Thus Cp(Z, N
Zg) = Qq holds in both cases. Now (b) implies that Cr(Z, N Zg) # Q3.
Consequently, the above argument shows that W3 = Z, N Zg. But now
the irreducibility of W, as a Gzﬂ—module yields W, = Wg = Z, N Zg, a
contradiction.

We have shown that W, = Z, N Zg. Then with a symmetric argument
also Wg = Zo N Zg and thus

Wo = Zag = Wi,
in particular ¢, = gg and G} 5 < Ng, (Wa). Hence, (e), (f) and (h) hold. O

In the following we use the parameter ¢ as defined in 4.1 (f). Observe
that QuQs < Qap. Thus, because of 4.1 (c), (d), (e), properties of the
action of Qo Qg on Z, and Zg are given in 2.1 or 2.2, respectively. This fact
will be used frequently.

4.2 Let (o, ) be a critical pair. Then
(a) [Zom Za’] < ZgN Za+17 and

(b) [Za, Zar] # 1; in particular (¢, @) is also a critical pair.

Proof. As Z, < Qq+1, claim (a) follows from 4.1 and 2.1 (b) or 2.2 (c),
respectively. Claim (b) is a consequence of 4.1 (g). O

4.3 Let o, €T be adjacent. Then QaQp = Qag, or

(¥) ¢=2,|Qap/QuaQs| =2, and G522 Sps(2) for every 6 €T.
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Proof. Set A := Q,Qp. Since A is a normal p-subgroup of G’;ﬁ we have
A< Qqp. By 4.1 (b) AL Qqor AL Qp, and we choose our notation such

that A £ Q.
Assume that A # Qqp. Then 2.1 (d) shows that G, ¥ SL3(g), and 2.2

(e) implies that either
g=2and |Qup/A| =2, or p=2and |Qup/A| = q°.

In the first case computing |Q,5/A| in G shows ().
Hence, we may assume that we are in the second case. Then either

(I) G = Spa(q) and |A/Qg| = ¢, or

. Similarly, (I) and
), a contradiction.

(1) Gy = SLy(g) and Qu < 4 = Q5.
< Qa
= J(Qp
0

From 2.2 (d) and |Qag/A| = ¢* we get J(A)

(II) both imply J(A) < Q. Thus J(Q.) = J(A)
Go such that X <«

Suppose that X <
, X] £ Ya.

4.4 Let a,8 € T be adjacent.
Na,(Zag) and A < Zg such that A £ Y,. Then [A

Proof. Assume that [A, X] < Y,. Then X normalizes AY, and thus
also [AYq,, Qa] = [4,Qs]. Now 4.3, 2.1 (b) and 2.2 (c¢) and (e) show that
d

[A,Qu] = Zyp and X < Ng,(Z4p), a contradiction.
4.5 Let o, 3 € T be adjacent such that G, = Gz = SL3(q), and let z € Qq
be such that [x,Go] = Z,. Suppose that Vg £ Qn. Then x € Z(Qa).

Proof. Assume that z ¢ Z(Qa). We set Y := [Qa, G} 43]Cq, (z) and
Qo := Qu/Co, (z). Note that Cq, (z) = Co, (£Z4), so Cq, (z) is normal in

Go. The mapping
Qo — Zo such that yCo, (z) = [y, z]

shows:
(1) Z, and @a are isomorphic GF(p)G,-modules, in particular

(2) Y is contained in every non-trivial 7, ;-invariant subgroup of @a.
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On the other hand, G5 = SL3(q) and thus by 4.3 and 2.1 (d) Q, =Y. It
follows that Qo = (QaNQ3)Y . On the other hand, by (1) Q.NQs £ Cq, ()
since |Qq/Qa N Q5] < ¢%, so (2) implies that Qn = (Qa N Qs)Co, (z). In
particular

(3) [Qa, Vgl < [Qp, V5]Cq, (2).

Again, as G5 = SL3(q), we get that Z5/Z,5 is a G, g-invariant subgroup
of order ¢q. But Qq3/Q. is an irreducible G, B—module of order ¢2, so Zg <
Qa, and (2) yields Zg < Cq, ().

In particular Z, < Qg and thus V3 < Qg. By 2.1 (b) [Z4,Qp] < Zap <
Zg, so [V3,Q8] < Zg < Cq, (). Now (3) shows that Vg centralizes Qa.-

Since V3 £ Q. we conclude that G, = (Vga), and éa is a central G-
module. This contradicts (1). O

4.6 Suppose that § € T with G5 = SL3(q). Then Gs acts transitively on
set of pairs (B,7y) with B,y € A(0) and Zgs # Z.s5.

Proof. It is easy to see that GZ’(S acts transitively on the 2-dimensional
subspaces of Zs that are distinct from Zgs. Now let 7,7 € A(d) be such
that Z,s = Zys5 # Zgs. By 4.1 (h) there exists + € Ng;(Z,5) such that
v* =+'. On the other hand

Ne;s(Zys) = (Gs N Nas(Z46))Gorss

so this z can be chosen in GZ 5> and the result follows. a

5 The Discussion of the Amalgam Problem.

In this section we adopt the hypothesis and notation of Section 4. Moreover,
(a, ) is always a critical pair, and

AMa, o) :={p € A(e) | Zos £ Nao(Zap)}-
5.1 The following hold:
(a) Aa,a') # 0.
(0) (Zw,Gy,) = Go for every p € Aa,a').

Proof. By 4.2 (b) Zy £ Qq, s0 Zy does not stabilize every 2-dimensional
subspace of Z,. Hence, 4.1 (e) gives (a).
Claim (b) follows from 4.1 (h). O
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5.2 Suppose that o — 1 € Ao, &') with Zo—1 N Qu—1 # Za—1a- Then the
following hold:

(a Gal = SLg(q)

b) |[Zas Zo]l = q-

)
()
() Zoa—1 £ Za and Zy o1 < V.
(d) If Za—1 < Qu—1, then Go—1 = SL3(q).

Proof. Set A :=Z, 1NQqy—1. Since A £ Zpo—1and Zy £ Na, (Zaa—1);
4.4 implies [A, Zy] £ Zg, in particular [Z,, Zy| < [AZqy, Zy]. As AZ, <
Qu—1 < Qu—1a, we get from 2.1 (b) and 2.2 (c) that [AZ,, Zy] < Zo—10-
Since Z, _14 18 a 2-dimensional subspace of Z,s this implies:

Zota/ -1 = [AZouZa’]a |[Z047Za’]| =qand Zyy 1 £ Za-

This gives (b) and the first part of (c). As AZ, <V, and V,, is normal in
Ga, we get Zy o1 = [AZy, Zo] < Vi, and the second part of (c).

Suppose now that Gy = Spi(q) or Sps(2)'. Let X := Zy N Qq =
Cz,,(Za). Since |[Zq, Zy]| = q we conclude from 2.4 that |Z, /X| = q and
|Caz, (X)Quw/Qu| < q. As |ZyQu/Qu| = q and A £ Z,Qy, this shows
that [A, X] # 1. Note that [A, X] < Zy-1a4 < Zq-

If [A, X] £ [Za, Zy] then

Za’o/fl = [AZaaZa’] = [AaX][ZocaZa’] < Zou

a contradiction. Thus [Z,, Zy] = [A, X] < Z4_1o and so Z, normalizes
Zw-1a, again a contradiction. This shows that G, = SL3(q), and (a) holds.

Set Y := AN (Z,Qq ). Then by 2.1 (d) |[A/Y| < q. Since [Y, Zy] < Zq,
4.4 implies Y = Z, 1, and thus |A/Z, 14| < ¢. This rules out the case
A= Zq 1 and Go_1 = Sps(q), Spa(2)’, so (d) holds. ]

5.3 Suppose that G5 = Spa(q) or Sps(2)' for some § € I'. Then b= 1.

Proof. We say that Gy is of symplectic type if G5 = Sp4(q) or Sp4(2)'.
First we will show that there exists a critical pair (a, o) such that

(x) Gq is of symplectic type, and either G, is of symplectic type or
Zas Zaor]] = 4°.
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Let a —1 € A(a,'). Suppose first that b is even. Then G, is conjugate
to Gy, so (%) holds if Gy, is of symplectic type. Assume that G, = SL3(q).
Then by our hypothesis G,_1 is of symplectic type, and by 5.2 (a—1,a' —1)
is critical. Hence (« — 1,/ — 1) satisfies (x).

Suppose now that b is odd. Since also (o, @) is critical we may assume
that G is of symplectic type. Thus by 5.2 Z, 1 N Quw—-1 = Za_14, in
particular (o — 1,a’ — 1) is critical. Since b is odd, we get that G, 1 is
conjugate to Gy, 50 Go_1 is of symplectic type and |Z4_1/Zq_10| = ¢*. It
follows that |Zq 1Qu1/Qa 1| = ¢* and either G/ is of symplectic type
or [[Zo—1, Za—1]| = ¢%, 50 (a — 1,/ — 1) satisfies ().

Choose a critical pair (o, ') that satisfies (x). Let D be a three di-
mensional subspace of Z, containing Z, N @, and let > be the set of
1-dimensional subspaces F of D with £ £ Z,,y1. For E € ¥ pick a 2-
dimensional singular subspace Wg of Z, with Wy N D = E. Note that
Zo =Wg X Zaay1-

By 2.2 (f) Z, does not normalize Wg. Pick pr € A(a) with Z,,, = WE.
Then pugp € A(a, ), so by (x) and 5.2 (up, o’ — 1) is critical.

Assume that b > 1. Then [Z,,,Zy 1] < Zow -1 < Qy, and

HE>
[Z,uEaZa’fl] < ZauE NQu < ZauE ND=EFE.

Hence F = [Z,,,, Zo 1) < Zo/—2a/—1-
Since this is true for all £ € ¥ we get that D = (¥) < Zy_oy—1. But
D has order ¢ while Z, _5,_; has only order ¢?. This contradiction shows

that b = 1. O
5.4 b<2.

Proof. Suppose b > 3. Then by 5.3 G5 = SL3(q) for all § € T'. We will
first show that there exists a critical pair («, ') such that

(*) Zo 100 < Vo

Let a—1 € A(a, o). If (a—1, &/ —1) is not critical, then 5.2 (¢) implies (x) for
(a, @'). Suppose that (a —1,a’ — 1) is critical. Since [Zy—1, Zy 1] < Za—1a
and Z, does not normalize Z, 1, we have [Zy, Zo/] £ [Za—1, Zor—1]. Thus
A = [Zo, Zo)[Za-1, Zor 1] < Za has order at least g°>. Moreover A <
Zo—1Zo < Vi, and Zy centralizes A since b > 1. Thus A < Cy_ (Zy) =
Zaa+t1, and since Z,q 11 has order ¢? we get Zaar1 = A < Vi, so (*) holds
for (¢, ).
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Now choose a critical pair (a, ) satisfying (x). Suppose first that b > 3.
Then [Vi?, Vo] = 1, so (+) implies [VA?, Zyar—1] = 1. Thus 4.4 with

(o =2,/ =1, Zgar—1, V) in place of (o, 8, A, X)

(07

gives Zorar 1 = Zor 1002 0 Vo < Na, (Zar 1002)- Evidently the first

case implies the second one. Thus we have in both cases VOE2) < Gy_q
by 4.1 (e). Hence VOEQ) < CGalil(ZOélalfl) = Qua'—1 and [VOEQ),ZQI] <
Zyo—1 < Vo. This shows that Z, and G7,,_, normalize V,,_1V,. Since
a—1 € Aa, o) we conclude from 5.1 (b) that V1V, is normal in G,. The
transitivity of G, on A(«) gives VY = Vo Vp for all € A(a). Conjugation
to Gto yields VOE_QBQ = Viut2Vats, in particular

Za < Va+2Va+3 < Qa’a

a contradiction.
We have shown that b = 3. Let (u, ') be any critical pair. Suppose that
ZM+1M+2 = ZH'IH'Q' Then VM < Cgp+2(Z“/M+2) < Q.U’IH‘Q and thus

[Zu’a Vu] < Zu’u+2 = Zytipte < Zyt1.

Let o — 1 € A(p,p'). Then 4.4, with (u,p — 1,Zy, Z,—1) in place of
(a,B,X,A), implies that [Z, 1,Z,] £ Z,. In particular [V,,Z,,] £ Z,
and thus [Z,,,V,] > [Z,s, Z,]. Since Z, is a natural SLs(q)-module for G,
we get that

[ZNI,V“] = ZM'IH'? and ||:ZMI,ZN]| =q.

From 4.1 (e), applied to the vertices in A(u), we get [V}, Q] = Z,. Hence,
as [V, Zy) £ Z,,

[V/u QuZu’] = Zu[V/u Zu’] = ZpZiyt1-

Moreover, |[Z,, Z,]| = q together with 2.4 shows that Z,, is a 1-dimensional
subspace of @u 11 As é;u 11 1s transitive on these 1-dimensional subspaces
and Ng,(Z,yQu) < Na,(Zuu+v1), we get with the Frattini argument

Ng, (Zpp+1) = GZM+1NGH (Zw Qu)-

Since [Vy,, Q. Z,] is normalized by Ng,(Z,/Q,) while Z,,Z, 1 is normalized
by G}, 11, we conclude that N¢, (Z,+1) normalizes Z,,Z, 1. Since Z,Z;,—

27



is not normal in G, and Ng,(Z,,41) is a maximal subgroup of G, this
shows that

Ne, (Zyus1) = Na (ZuZ,11).
Hence, edge-transitivity also gives
NGu+2(ZH’ZH+2) = NGu+2(ZM’u+2) = NGu+2(Z#+1u+2) = NGN+2(ZH+1ZH+2)7
and the transitivity of G2 on A(p + 2) yields
Zy < ZypZpvo = Zp2Zpt1 < Qs

a contradiction.
This contradiction shows that Z, 1,40 # Z,,42 for all critical pairs
(u, p'); in particular

(**) Zat1at2 F Zaraye and Zaat1 # Zat2a+1-

But then Zyi2 = Zat1a42Za’ar2, and (%) implies that Z,19 < V,. On
the other hand, by () and 4.6 there exists an element in G,+1 that maps
(,a+2) to (a+2,a), so also Z, < Vy42. Since b > 2 we get that Vo is
abelian and Z, and Z, centralize each other. This contradicts 4.2. O

5.5 Suppose that b > 1. Let § € T and v,y € A(S). Then the following
hold:

(a) Dy = Zs.
(b) (v,7') is critical if and only if Z\s # Zys.

Proof. From 5.3 and 5.4 we get that b = 2 and G5/Qs = SL3(q) for
every 0 €. Let S =a+ 1.

Since G, = (Zocj"‘)Qa we get from 4.4, with (Z3,OP(G,)) in place of
(A4, X), that [Z5,(Z5*)] £ Ya. Hence

(1) [Va, Zo] £ Ya

Assume next that Z,g5 = Zy 5. Then V,, < Cg,(Zag) < Qurp and so
[VonZa’] < Zo/ﬁ = Zaﬁ < Zg.
This contradicts (1). Thus

(2) Zap # Zarp-
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From 4.6 we conclude that (b) holds for all § € B¢.

Assume that D, = Z,. Then there exists @ — 1 € A(«) such that
(a—1, ) is a critical pair. By a symmetric argument (b) now also holds for
all § € o© and thus for all § € I". It remains to show that D, = Z,. So we
assume:

(3) Do # Za.

Note that Dy, < QN Qo < Qupg, 50 by 2.1 (d) and 4.1 (e) ®(Dy) < Qu.
It follows that [®(D,),(Z5°)] = 1. As Go = (Z5°)Qq and by 4.1 (d)
Z(Gy) =1, we get that ®(Dy) N Z(Qq) = 1 and thus ®(D,) = 1; i.e.,

(4) D, is elementary abelian.

Let N be the largest normal subgroup of G, in D, such that N < Z,Q.
Then [N, Z,| < Z, and thus also [N, OP(G,)] = Z,. Hence 4.5 shows that

N < QI(Z(QOL)) =Y,.

Since |N/Cn(Zy)| = q we get from 2.1 (f) N = Z, x Cn(G,). Thus, 4.1
(d) implies that N = Z,. In particular, by (3) D, £ N. Hence, 2.1 (b)
gives [Zy, Do) = Zyg. From (2) we get

Za[Dom Za’] = ZaZa’/J’ = ZaZB < Dy,
S0
(5) Vo < Dg; in particular, V, is abelian and V, < Qg.

Let « — 1 € Ala,a’). Then 4.4, with (o, — 1,Z,,Z, 1) in place of
(o, B, X, A), implies that Z,_1N(ZqQu) = Zaa—1 and thus Vo Qy = QpQu-

By symmetry in « and o/,
(6) VaQa’ = DaQa’ = QﬁQa’ and QﬁQa = Da’Qa = Va’Qa-

Set Qg := Qa/Do. We apply 2.1 (d). Then Qqs/Qp is a natural module
for Gzﬁ/Qag, so ®(Qa) < Qp, and @, is elementary abelian. Similarly
CQas/@s(Gap) = 1 and thus C@a(Ga) = 1. Moreover, by 2.3 |Qa/Qa N

Garl = g, 50 [Qa N Gor, Zo] < Zg < Do yields |Qa/Cp, (Za)| < q. Hence
2.5 and 2.1 (f) imply:

(7) @a is a G4-module dual to Z,.
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From (7) we get |Qa/Da| = ¢% and [z, Q3]Da/Da = (QaNQp)/ Dy for every
z € Qq \ Q. Hence (6) gives

Qa N QB = [Qa N Ga’aDa’]Da = (Da’ N Qa)Da and Qﬂ = DDy .
In particular

(1)
B(Qp) < Do N Dy < 0 (Z(Qp)) £ Vs < Dy Dy

Thus, we get
(8) Da N Dy =Y, ®(Qp) <V and |Qp/Yp| = ¢".

Note that |Dy/Dg N (ZaQu)| < q and [Dy N (ZaQu)s Zor] < Zg. Thus
Zy centralizes a subgroup of index ¢ in W := D, /Z,. From 2.1 (f) we get
that W/Cw (G,) is a natural SL3(q)-module for G,. Since G5 normalizes
ZgZ«[Zq, this module is dual to Z,.

Let U be the inverse image of Cy (G,) in D,. By 4.5 and (4)

U< Ql(Z(Qa)) =Y,.

On the other hand, Y, < D, since b > 1, so (1) and (6) imply that Y, <
ZaQur . Since Z(G,) =1, again 2.1 (f) yields Y, = Z,. We have shown:

(9) Do/Zy is a Go-module dual to Z,; in particular Y = Zg and |Qa| =
1Qsl = ¢°.

By (9) [Da,Qal = Za. Pick z € Qa NQg, so [z,G 5] < Dq by (7). Then
[Qa. 7] Z0o is G} g-invariant and |[Qa, 7] Za/Za| < q>. Hence (9) shows that
Qa,z] < ZyZg. It follows that [x,Qa,G’;ﬁ] < Z, and [Gzﬁ,x,Qa] < Zg,.
Thus, also [Qa, GZB,LE] < Zg. Since [Qq, GZB]DQ = Qq by (7), we conclude
that

(10) Qu/Z4 is abelian.

From (6) and (10) we get Cg, /7, (Do) = Cq, /2., (Qag), so (7) and (9) imply
1Cgu /2. (Qap)|<q?. On the other hand, by (9) |Da| = [Dur| = ¢°, so by (6)
Do N Qu| = q* and |(Dy N Qo) Za/Za| = ¢*. Hence (4) implies

(11) CQa/Za(Qaﬁ) = OQQ/ZQ (Da’) = (Da’ N Qa)Za/Za-

Set A := (Do NQq)Zs- Recall from the above considerations that |A| = ¢°
and (Do NQa)/Zg| = q. Let ¥ C A(B) be such that « € ¥ and for each
2-dimensional subspace W of Zg there exists a unique o € ¥ with Z,53 = W.
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Then |X| = ¢? + ¢+ 1, and by (2) and 4.6 any distinct pair of elements in 3
is critical. Let o € ¥ be with o # a. Then by (11), applied to o in place of
o, we get

(Dy N Qq)Zy = A.

We conclude that for all o € X, D, N Q, is a subgroup of index ¢ in A.
On the other hand, by (8) and (9) the groups (D, N Qa)/Z3 have pairwise
trivial intersection, so |A/Zs| > ¢*> + ¢ + 1, a contradiction as |A/Z3| = ¢*.

a

5.6 Suppose that b > 1. Then b = 2, and for every 6 € ' the following
hold:

(a) Gs = SLs(q), p=3 orq=5.
(0) Qs =5,
(¢) Vs5/Zs is a natural SL3(q)-module dual to Zs.

Proof. From 5.3, 5.4 and 5.5 we get the following information for every
0el:

(1) b=2.
(2) Gs/Qs = SL3(q) and Zs = Ds.
(3) Let 7,v" € A(). Then (v,v') is critical if and only if Z,5 # Z;.

We fix a critical pair (o, ') and set 8 := a + 1. If |[Za, Zo]| = ¢%, then
Zop = [Zas Zor| = Zy g which contradicts (3). Thus |[Z,, Zy]| = ¢, and by
2.1 (g)

(4) ZyQo/Qq is the center of a Sylow p-subgroup of G,/Q, for every
critical pair («, o).

According to (3) it suffices to show (a) — (c) for 0 = /.

By (4) and 2.3 there exists a — 1 € A(a) such that Z, < G,—1 but
Zy £ Qaa—1. In particular R := [Zaa—1,Zo] # 1, 80 Zaa—1 # Zag, and by
(3) (a—1,p) is critical.

The action of G}, | on Zy_1q4, see 2.1 (d), gives

R = Zaa 1N Zap = [Za-1, Z5).
Hence, since |[Zq, Zy']| = q, we get
R =[Za_1,25) = [Zas Zor] < Z5 N Zay
and thus
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(5) Za—l < Ga’-

Again by 2.3 we have Z,_1 £ Qgq since (a — 1, ) is critical. As Z,Qq =
Zo-1aQq we conclude that |Z,_1Qu/Qu| = ¢* and thus | Z4_ 1 N Qu| = ¢.
We have shown:

(6) |Za-1Qu/Qu|=¢* and Zoy_1 N Qo = R < Zy.
Let A :=V,yNG,. There are ¢+ 1 2-dimensional subspaces of Z, containing

R. Since A fixes Z,3 we get that 1ZA, | < q,50 |[AJANGa—1] < q. By 2.3,
applied to Gg, also |V /Vy NG| < g, s0 we get

(7) Var/Vr NGaa] < q2-

On the other hand, (5) and (6) imply that [Z,—1, VaNGa-1] < Za—1NQy <
Zg . Thus (6) yields

|‘7a’/c‘~/a/ (Za71)| < q2 = |Za71Qa’/Qa’|a

where éal = Qa’ /Zal.

Clearly, ®(Qu) < Do = Zy, so V, # 1 shows that ®(Qn) = ®(Vy) =
Zq . Hence, we are able to apply 2.6 with M := Gy, D := Vy, Y = Zg,
and V] := Z,, and get that 170/ is a natural G /Qy-module dual to Z,.
Thus (c) holds.

Note that G, acts transitively on (V,,/Z,)*. So every element in V,, has
order p. Since V, is not abelian we conclude that p # 2.

By (3) Qo = (Qa’ N QB)VO/ and
[Qa’ N Q,BaZa] < Za N Zﬁ < Zﬁa
so (c) gives [Vaf, Za| < Zg. It follows that |[@a/, Zo| = |Zg| =q.
Let U be the parabolic subgroup of G fixing Zz. Then Z, < 0,(U),

and since p # 2 there exists K < U of order ¢ — 1 such that [Zg,F] =1 and
[Za, K] = Z,. In addition, since Qq/Vy is central

Qo = Vo C, where C = CQ ,(f)

It follows that B _

[C7K7706] = ]' = [7047077]7
and thus alsoJf, Za,é] = [70”6‘] =1 AsVy, isa natural module, (4)
implies that |Qar/Cé (Za)| = q. Hence, 2.1 (f) yields Qn = VaCg (Ga),
and 4.5 gives Vy = Q.. Thus, also (b) holds.
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Now let L := G5, D := Qup, V := Zyp and Y := ZgZy. From (b)
and (c) we get that Y = Q3N Qu, |Y] = ¢* and [Y, L] = V. Moreover,
L/D = SLy(q), and D/Y = Qg/Y x Qu /Y is the direct sum of the natural
L/D-modules.

Let A € {/,8}. Then Cp(Zy) = Qy and so Cp(Zy) = Z,. Thus
D' = Z,Zg =Y. Hence, the hypotheses of 2.7 are satisfied, and (a) follows.

O

5.7 Suppose that b= 1. Then G5/Qs = Spa(2) or Sps(2)', Qs = Y5, and
|Ys5| = 2% or 25 for all 6 € T.

Proof. As o € A(a) we get from 4.1 together with 2.1 (d) or 2.2 (b)
that Qaq/Qu is elementary abelian and

[Zaa Zo/] =ZoNQuw = Zaw' -
In particular ®(Q,) < QuNQqy since b= 1,50 P(Q,) < Dy and [Dy, Zy] =
1. Since G, = (ZS,“)Qa, we conclude that
[Qa, OP(Go)] < Zy and [D,, OP(G4)] = 1.

Now Z(Gy) =1 (4.1 (d)) implies ®(Q,) = 1 and thus Q4 = Y,.

Suppose that G, = SL3(g). Then by 4.1 (d) and (e) [Qq, OP(GE,)] <
Zaot < Qo and so by 4.3 [Qaa /Qu, OP(G,/)] = 1, which contradicts 2.1
(d).

By 4.2 (b) and a symmetric argument Y; = Q; and Gs = Spy(q) or
Spy(2) for all 6 € I'. Hence Z,Qq/Qu is a normal subgroup of order ¢? in
G* ./ /Qa, 50 2.2 (e) implies ¢ = 2. In particular

(1) 02(0*(G)) < QuQur-
It remains to prove that |Qs| = 2% or 2°.

From 2.2 (d) we get that Cy, (G* ,) = 1. In particular, by 4.1 (a),

aa!

Co, (7)) (Ghy) = 1 for T € Syla(GY,,). 1t follows that also
2) Cau (0*(Gh)) = 1.
Let D := Qo NQy. Then Q,Q, centralizes D and
[D,0*(G0)] € Za N Qo < ZoaN Zy = Zgy-
Moreover, by (1) O%(G*

o) acts as a cyclic group of order 3 on D. Thus

D = ZaaICD(O2(G2a/)) (i) Zao! s

and |Qs/Zaa| < 22 for § = a, . As | Zao| = 4, the edge-transitivity of G
on T gives |Qs| = 2% or 2° for every 0 € T. O

33



6 The Proof of Theorem 1 and the P!-Theorem

Theorem 1 follows from 5.7 and 5.6.

The proof of the Pl-Theorem: Suppose that there exists P; € Pu(S)
such that P, £ Ng(P°) and (Py, P) € Ly (P). Set M, := (P, P)°Cs(Yp).
Then we are allowed to apply the Local P-Theorem 3.5 with M in place of
U*. Observe (with the notation from 3.5) that U = Uy, and also U = U
or U = Spy(2) and U = Spy(2). Hence 3.5 gives (a1) and (ag) for M;.

Suppose now, in addition, that there exists ﬁz € P(S) such that ]31 # ﬁg,
Py £ Ny(P°) and (Py, P) € Ly (P). Set

M; := (P;, P)°Cs(Yp) and V; := [Yar,, OP(M;)], i = 1,2

According to 3.6 G = (M, My) satisfies the hypothesis of Theorem 1 with
respect to My and Mo.

Assume first that we are in case (a) of Theorem 1. Then p = 2 and
Y, € Y, and P N M, stabilizes a 2-dimensional singular subspace of V.
Moreover, by 2.4 Y3y, does not centralize a hyperplane in V;. It follows that

|V2/V1 ﬂV2| = |V1 ﬂV2| =4.

Pick 1 #z € Z(S)NVi NV, Then 2.2 (g) implies that Vo £ Oo(Cly, (7)).
On the other hand, Q-uniqueness gives Cy(7) < C. Hence, also V2 £ @Q,
but this contradicts the hypothesis of the P!-Theorem.

Assume now that case (b) of Theorem 1 holds. Let L := P°Cp(Yp) and
observe that Cy(L/Oy(L))/O,(L) is a p'-group since P contains a Sylow
p-subgroup of H. Then L satisfies the hypothesis of 2.7, and H, L, M; and
Mo the hypothesis of 2.9. Hence, ¢ = 3 or 5 follows.
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