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In this paper we prove a result that is used in the investigation of �nite
Kp-groups of local characteristic p. It is part of an attempt to revise a
major part of the classi�cation of the �nite simple groups. An overview of
this revision can be found in [MSS].

More precisely, the eP !-Theorem proved in this paper together with
the P !-Theorem in [PPS] show that under certain hypotheses there exist
parabolic parabolic subgroups P and eP (containing a common Sylow p-
subgroup) in a Kp-group H of local characteristic p that behave like the two
minimal parabolic subgroups of a group of Lie type in characteristic p that
correspond to the end node and its neighbor in the Dynkin diagram. They
also establish that the remaining part of a hypothetical Dynkin diagram for
H can be found in a single maximal p-local subgroup, which is called eC
further below.

Moreover, as it is outlined in [MSS, 2.4.9], these two theorems allow to
restrict the structure of eC and consequently that of the missing part of the
diagram.

To get started we need some de�nitions. Let H be a �nite group and p
a �xed prime. Then H is of characteristic p if

CH(Op(H)) � Op(H);

and H is of local characteristic p if every p-local subgroup of H is of
characteristic p. Moreover, H is a Kp-group if the simple sections of p-
local subgroups are "known" simple groups1.

1Which means, they are groups of prime order, groups of Lie type, alternating groups
or one of the 26 sporadic groups.
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For any p-local subgroup L � H let YL be the largest elementary abelian
normal p-subgroup of L satisfying

Op(L=CL(YL)) = 1:

For elementary properties of this subgroup see [MSS] and [PPS].
By LH(X) we denote the set of subgroups L � H containing a given

subgroup X and satisfying CH(Op(L)) � Op(L), and by MH(X) the set of
maximal p-local subgroups containing X.

We �x S 2 Sylp(H) and eC 2MH(NH(
1Z(S))) and put

Q := Op( eC) and X� := hQh j h 2 H with Qh � Xi for X � H:

By PH(S) we denote the set of subgroups P � H such that P 6� NH(S),
Op(P ) 6= 1 and S is contained in a unique maximal subgroup of P . The
elements of PH(S) are called the minimal parabolic subgroups of H
containing S.

Let K �= SLn(pk) or Sp2n(pk) and V be an irreducible GF (p)K-module.
Set F = EndK(V ). Then V is a natural SLn(pk)-module for K if K �=
SLn(pk) and dimF V = n, and V is a natural Sp2n(pk)-module for K,
if K �= Sp2n(pk), dimFV = 2n, and K leaves invariant a non-degenerate
symplectic form s on the F -space V .

Note that a natural module for SL2(pk) is unique up to isomorphism. For
SLn(pk), n > 2, and Sp4(2k) there are two isomorphism classes of natural
modules. The second class can be obtained from the �rst one by applying a
graph automorphism.

By a k-dimensional subspace of V we mean an k-dimensional F -
subspace of V .

For K �= Sp2n(pk) a k-dimensional subspace U of V is singular if the
symplectic form s restricted to U is zero. Since s is unique (up to scalar
multiplication by elements of F ), the de�nition of a singular subspace does
not depend on the choice of s.

For K �= SLn(pk) any subspace of V is called singular.

In this paper we investigate �nite Kp-groups of local characteristic p
satisfying in addition:

CH(x) � eC for every 1 6= x 2 CH(Q) (Q-uniqueness):

We prove:
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eP ! -Theorem. Let H be a LKp-group of local characteristic p that
satis�es Q-uniqueness. Suppose that there exists P 2 PH(S) such that P 6�
eC and YM � Q for every M 2MH(P ). Then one of the following holds:

(a) There exists at most one eP 2 PH(S) such that eP 6� NH(P �)
and hP; eP i 2 LH(P ). Moreover, if such eP exists and M1 :=
hP; eP i�CS(YP ), then

(a1) M1=CM1(YM1) �= SL3(pn), Sp4(pn), or Sp4(2)0 (and p = 2), and
(a2) [YM1 ;M1] is the corresponding natural module for M1=CM1(YM1).

(b) There exist at least two eP1; eP2 2 PH(S) such that ePi 6� NH(P �) and
hP; ePii 2 LH(P ), i = 1; 2. Moreover, for any such ePi and Mi :=
hP; ePii�CS(YP ), i = 1; 2 :

(b1) p = 3 or 5 and Op0(M1 \M2) = P ,
(b2) Mi=Op(Mi) �= SL3(p),
(b3) Op(Mi)=Z(Op(Mi)) and Z(Op(Mi)) are natural SL3(p)-modules

for Mi=Op(Mi) dual to each other.

The eP ! -Theorem is a corollary of the following more general result on
amalgams. By 3Sp4(2)0 we denote a non-split central extension of a group of
order 3 by Sp4(2)0, and by 3Sp4(2) a group that has 3Sp4(2)0 as a subgroup
of index 2 and Sp4(2) as a factor group.

Theorem 1. Let G be group generated be two �nite subgroups M1 and
M2. Set B := M1 \M2 and M i := Mi=CMi(YMi), and suppose that for
i = 1; 2 the following hold:

(1) Sylp(M1)\Sylp(M2) = Sylp(B), and M1 and M2 are of characteristic
p.

(2) No non-trivial normal subgroup of G is contained in B.

(3) M i �= SL3(qi), Sp4(qi), qi = pni, or Sp4(2)0 (and qi = p = 2).

(4) [YMi ; Op(Mi)] is a natural module for M i, and Z(Mi) = 1.

(5) There exists a 2-dimensional singular subspace W in [YMi ; Op(Mi)]
such that Op0(NM i(W )) � B.
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(6) CMi(YMi) = Op(Mi), or qi = 2 and

Mi=O2(Mi) �= 3Sp4(2) or 3Sp4(2)0:

Then one of the following holds for i = 1; 2:

(a) p = 2, YMi = O2(Mi), Mi=O2(Mi) �= Sp4(2)0 or Sp4(2), and jYMi j =
24 or 25.

(b) q := q1 = q2, p = 3 or q = 5, Mi=Op(Mi) �= SL3(q), and Op(Mi)=YMi
and YMi are natural SL3(q)-modules for Mi=Op(Mi) dual to each
other.

Since Theorem 1 does not depend on the hypothesis of the eP !-Theorem,
it may also be useful in more general situations; for example, when the
condition YM � Q is not satis�ed.

We also want to remark that Theorem 1 is in the same vein as the (much
more general) main result of [ST]. Unfortunately, the hypotheses there are
not compatible with the situation here, our Hypothesis (5) being the reason.

1 Elementary Properties

Throughout this sectionH is a �nite group of local characteristic p satisfying
Q-uniqueness (with the notation given in the introduction), and X is an
arbitrary �nite group.

1.1 Let X be of characteristic p, S 2 Sylp(X) and P 2 PX(S). Then the
following hold:

(a) 
1(Z(S)) � YX .

(b) X = NX(S)hPX(S)i.

(c) For every normal subgroup N of P either Op(P ) � N or S \ N �
Op(P ).

(d) For every normal subgroup T of S either Op(P ) = [Op(P ); T ] or T �
Op(P ).

Proof. See (1.2) (c) and (1.3) (a), (b), (c) of [PPS]. 2
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1.2 Let X be of characteristic p, S 2 Sylp(X), YX � N E X, and V :=
h
1(Z(S))Xi. Then the following hold:

(a) YX � YN .

(b) YX = YN if CS(YX) � N .

(c) V = CV (X)[V;Op(X)] and V � YX .

Proof. Recall that YN is the unique maximal elementary abelian normal
p-subgroup of N satisfying Op(N=CN (YN )) = 1. Hence, YN is characteristic
in N and thus normal in X.

Set eX := X=CX(YX). Then 1 = Op( eN) �= Op(N=CN (YX)), so YX � YN .
This is (a).

Assume now that CS(YX) � N , and let D � S such that

DCX(YN )=CX(YN ) = Op(X=CX(YN )):

Since YX � YN we have CX(YN ) � CX(YX). Thus DCX(YX)=CX(YX) �
Op(X=CX(YX)) = 1 and D � CS(YX) � N . It follows that

DCX(YN )=CX(YN ) �= D=CD(YN ) �= DCN (YN )=CN (YN ) � Op(N=CN (YN ));

and thus D � CS(YN ) and Op(X=CX(YN )) = 1. Hence YN � YX , and (a)
implies (b).

A proof for the �rst part of (c) can be found in [CD], Lemma 2.5, the
second part follows from 1.1 (a). 2

1.3 The following hold:

(a) Q = Qh and h 2 eC for every h 2 H with Qh � eC.

(b) If T is a p-subgroup containing Q, then NH(T ) � eC.

Proof. For (a) see (1.6) of [PPS]; (b) is a direct consequence of (a).
2

1.4 Let L 2 LH(S). Then [CL(YL); L�] � Op(L).

Proof. See 2.4.2 (dc) in [MSS]. 2

1.5 Let L 2 LH(S), P 2 PL(S) and L0 := L�CS(YL). Then one of the
following holds:
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(a) P � L0S,

(b) P � NL(S \ L0) \NL(L0) \ eC,

(c) [Op(P ); L�] � Op(L) and P � eC.

Proof. If Op(P ) � CL(YL), then 1.4 and 1.1 (a) give (c). Thus, we may
assume that Op(P ) 6� CL(YL). Then 1.1 (c) yields CS(YL) � Op(P ), in
particular CS(YL) = CP (YL) \ Op(P ). Hence, CS(YL) is normal in P , and
P � NL(L0). Now S \ L0 is normal in S, and 1.1 (d) shows that either
S \ L0 � Op(P ) or Op(P ) = [Op(P ); S \ L0].

In the �rst case S \ L0 = Op(P ) \ L0, so S \ L0 is normal in P . As
Q � S \ L0, 1.3 (b) implies P � eC, and (b) holds.

In the second case Op(P ) � L0 since P � NL(L0), and (a) holds. 2

1.6 Let V be an irreducible GF (p)X-module and F := EndX(V ). Then the
direct sum V � V contains exactly jF j+ 1 GF (p)X-submodules isomorphic
to V .

Proof. This follows from Theorem 3.5.6 in [Go]. 2

Let L = SL2(q), q = pn, and V be a natural GF (p)L-module. Set F :=
EndL(V ). Since L �= Sp2(q) there exists an L-invariant non-degenerated
symplectic form

s : V � V ! F:

Let fv; wg be a basis of the F -space V such that s(v; w) = 1, and set


0 := f(�(v); v) j � 2 Fg and 
1 = f(�(v); w) j � 2 F ]g:

Note that s(�(v); w) = �, so s(
1) [ f0g = F . Note further that 
 :=

0[
1[f(v; 0); (0; 0)g is a set of representatives for the L-orbits on V �V .

We consider F as a trivial GF (p)L-module.

1.7 Let C be any trivial GF (p)L-module and � : V�V ! C be L-invariant
and GF (p)-bilinear. Then there exists a GF (p)L-module homomorphism
� : F ! C such that �(s(x; y)) = �(x; y) for all x; y 2 V .

Proof. For every � 2 F the pair (�(v); v + w) is in the same L-orbit as
(�(v); w). It follows that

�(�(v); w) = �(�(v); v + w) = �(�(v); v) + �(�(v); w);
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and �(�(v); v) = 0. Moreover, the linearity of � gives �(v; 0) = �(0; 0) = 0.
We de�ne

� : F = s(
1) [ f0g ! C with s(�(v); w) 7! �(�(v); w) and 0 7! 0;

so �sj
 = �j
. As s and � are both L-invariant and 
 is a set of represen-
tatives for the L-orbits of V � V , this shows that �s = �. Moreover, it is
easy to check that � is a GF (p)L-module homomorphism from F into C. 2

2 Properties of Sp4(q) and SL3(q)

In this section G 2 fSL3(q); Sp4(q)g, where q is a power of the prime p, and
V is a natural GF (p)G-module. We �x a 2-dimensional singular subspace
W of V and we set P := Op0(NG(W )).

The next two Lemmata give properties of G we assume the reader to be
familiar with:

2.1 Let G = SL3(q) and S 2 Sylp(P ). Then jP j = q2jSL2(q)j, and the
following hold:

(a) G is 2-transitive on the 1-dimensional and on the 2-dimensional sub-
spaces of V .

(b) [V;Op(P )] =W and CG(W ) = Op(P ).

(c) P=Op(P ) �= SL2(q) and Sylp(P ) � Sylp(G).

(d) W and Op(P ) are natural SL2(q)-modules for P=Op(P ).

(e) jZ(S)j = jCV (S)j = q and Z(S) = CG(W ) \ CG(V=CV (S)).

(f) G is generated by three conjugates of Z(S).

(g) If A � S such that j[V;A]j = q or jV=CV (A)j = q, then A is conjugate
to a subgroup of Z(S).

(h) NG(W ) is the unique maximal subgroup of G containing P . 2

2.2 Let G = Sp4(q), S 2 Sylp(P ) and A be a minimal normal subgroup of
NG(W ). Then jP j = q3jSL2(q)j, and the following hold:

(a) NG(W ) is a maximal subgroup of G.
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(b) P=Op(P ) �= SL2(q), Sylp(P ) � Sylp(G), and Op(P ) is elementary
abelian.

(c) [W;Op(P )] = 0, and [v;Op(P )] =W for every v 2 V nW .

(d) W and V=W are natural SL2(q)-modules for P=Op(P ).

(e) Either

(e1) A = Op(P ) and p 6= 2, or
(e2) p = 2, jAj = q and O2(P )=A is a natural SL2(q)-module for

P=O2(P ), or
(e3) q = 2, jAj = 4 and [v;A] =W for every v 2 V nW .

(f) There exists g 2 G with W \W g = 0. Moreover,

X 6� NG(W g) and G = hP g; Xi

for any such g and for any 1 6= X � Op(P ).

(g) A 6� Op(CG(x)) for every x 2W ].

(h) NG(W ) is the unique maximal subgroup of G containing P . 2

2.3 Let G = SL3(q) and g 2 G n NG(W ). Then Op(P ) \ Op(P g) = 1,
and there exists S 2 Sylp(P ) such that Op(P ) \ P g = Z(S); in particular
jOp(P )=Op(P ) \ P gj = q.

Proof. Let V0 =W \W g. Then V0 is 1-dimensional, and by 2.1 (a) and
(e) there exists S 2 Sylp(P ) such that V0 = CV (S). Hence 2.1 (b) and (e)
give

Z(S) � Op(P ) \ CG(V=V0) � Op(P ) \NG(W g);

so Z(S) � Op(P )\P g. On the other handOp(P )\Op(P g) � CG(WW g) = 1,
so by 2.1 (c) and (e) Z(S) = Op(P ) \ P g. 2

2.4 Let G = Sp4(q) and B � Op(P ) be such that jV=CV (B)j = q or
j[V;B]j = q. Then the following hold:

(a) [V;A] =W for every non-trivial normal subgroup A of P in Op(P ).

(b) jV=CV (B)j = j[V;B]j = q and jBj � q.
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Proof. By 2.2 (d) P acts irreducible onW and by 2.2 (c) [V;Op(P )] =W .
This gives (a).

Note that [V;B] is perpendicular to CV (B) with respect to the symplectic
form on V . Hence, the dimension formula gives

dimV = dimCV (B) + dim [V;B]

and the �rst part of (b). Then jB=CB(v)j � q for v 2 V n CV (B), and
V = CV (B) + V0, where V0 is the subspace generated by v. This gives
CB(v) = 1 and jBj � q. 2

The next result follows from Theorem A in [CD]:

2.5 Let Y be a faithful GF (p)G-module and 1 6= A an elementary abelian
p-subgroup of G. Suppose that G = SL3(q) and jY=CY (A)j � jAj. Then
[Y;G]=C[Y;G](G) is a natural module or the direct sum of two isomorphic
natural modules for G. 2

2.6 Let M be a �nite group of characteristic p with subgroups Y � D �M
such that D is a normal p-subgroup of M and V1 := �(D) � 
1Z(Op(M)).
Suppose that for eV = D=Z(D) and P1 := Op0(NM (Y \ V1)):

(a) M=Op(M) = SL3(q), and V1 is a natural module for M=Op(M).

(b) D = hYM i, Y 6� Z(D) and CD(y) = CD(Y ) for all y 2 Y n V1.

(c) Y \ V1 is 2-dimensional subspace of V1, and [Y; P1] � Y \ V1.

(d) jeV =CeV (T )j � jT=Op(M)j where T := Op(CM (z)), 1 6= z 2 V1.

Then eV is a natural SL3(q)-module dual to V1.

Proof. Set M :=M=Op(M), so M = SL3(q) and by 2.1 (c)

P 1=Op(P 1) �= SL2(q) and Sylp(P1) � Sylp(M):

By (b) and (c) [D;Op(M)] � V1 and eV = [eV ;M ]eY ; in particular eV is
a GF (p)M -module. As eY is centralized by a Sylow p-subgroup of M ,
Gasch�utz' Theorem implies that eV = [eV ;M ]CeV (M).

Let V1 � U � D be such that U is M -invariant and eU 6= 1, and pick
y 2 Y nV1. By (c) [y; U ] is a P1-submodule of V1, so by (a) either [y; U ] = 1 or
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[y; U ] = Y \V1. In the �rst case (b) yields U � CD(Y ) and then U � Z(D),
which contradicts eU 6= 1. Hence, we have

(�) [y; U ] = Y \ V1;

in particular CeV (M) = 1 and eV = [eV ;M ].
Assume now, in addition, that eU is an irreducible M -module. We apply

2.5. Then eU is a natural SL3(q)-module for M . Moreover, since U=CU (y)
and [y; U ] = Y \V1 are isomorphic P1-modules, the module eU is dual to V1.
It remains to prove that eU = eD.

Assume that eD 6= eU . Then, again by 2.5, eV is the direct sum of two
natural modules isomorphic to eU . Thus eV =CeV (P1) is the direct sum of two
natural modules for P1=Op(P1). By 1.6 there are exactly q+1M -submodules
eU0; : : : ; eUq isomorphic to eU in eV and also q + 1 irreducible P1-submodules
in eV =CeV (P1), so eUiCeV (P1)=CeV (P1), i = 0; : : : ; q, are these P1-submodules.

Let Dy := CD(y). As seen above D=Dy is a natural P1-module. Hence,
also eDy involves a natural P1-module. Moreover, an application of the
Three-Subgroups Lemma shows that CeV (P1) � eDy. Thus, there exists
k 2 f0; : : : ; qg such that eDy = (eUk \ eDy)CeV (P1). Then

eUk = (eUk \ eDy)CeUk(P1) � eDy;

which contradicts (�). 2

2.7 Let L be a �nite group, p an odd prime, and D a normal p-subgroup
of L such that Z(D) = 
1(Z(D)) =: V , and let A be the set of all normal
subgroups A of L satisfying A � D, jAj = q3 and CD(A)0 = A. Suppose that

(i) L=Op(L) �= SL2(q), q = pn,

(ii) V is a natural module and D=D0 is the direct sum of two natural
modules for L=Op(L),

(iii) jAj � 2, [D0; L] � V and jD0j = q4.

Then one of the following holds:

(a) p 6= 3 and jAj = 3.

(b) p = 3 and jAj = q.
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Proof. Set R := D0 and D := D=R. Note that by (ii) any non-trivial
proper L-invariant subgroup of D has order q2. Also

(1) A = CD(A)0 � R for everyA 2 A:

By (ii) [R;D;D] � [V;D] = 1, so the Three Subgroups Lemma gives [R;R] =
1. Thus

(2) R is abelian:

Let 1 6= x 2 A n V . By (1) and (iii) L normalizes [x;D] and thus [x;D] = V
and jD=CD(x)j = q2. On the other hand, by (1) and (2)

R � CD(A) � CD(x) and CD(A) 6= R

since A = CD(A)0. Now (ii) implies that

CD(A) = CD(x) for every x 2 A n V:

According to (iii) there exists B 2 A such that A 6= B. As A = CD(x)0 for
every x 2 A n V and B = CD(x)0 for every x 2 B n V , we get

(3) V = A \B; R = AB and D = CD(A)� CD(B):

Moreover CD(A) and CD(B) are natural L=Op(L)-modules.
Let K := EndL(V ) and eR := R=V , so eR = eA� eB. By (ii) K �= GF (q).

From now on we will view V as a vector space over K; in particular addition
replaces multiplication. Moreover, we write kv rather than k(v) for k 2 K
and v 2 V .

There exist GF (p)L-isomorphisms

�A : V ! CD(A) and �B : V ! CD(B):

Let r 2 R and x; y 2 D. Then [x; y] := ][x; y] and [x; er] := [x; r] are well-
de�ned by (2). Let z 2 A. Since [ez; L] = 1, the map

��A(ez) : V ! V with v 7! [�B(v); ez]

is L-invariant. Thus ��A(ez) 2 K.
If ��A(ez) = 0, then [z; CD(B)] = 1 and thus by (3) z � Z(V ), so ez = 1.

Since
��A : eA! K; ez 7! ��A(ez)
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is a group homomorphism, we conclude that it is injective. Hence, as both eA
and K have order q, ��A is an isomorphism. Let �A be its inverse. Similarly
de�ne �B.

Let k; h 2 K and v; w 2 V . Then

(4) kv = [�B(v); �A(k)] = [�A(v); �B(k)]

and

(5) [�A(v)�B(w); �A(k)�B(h)] = kw + hv;

(recall that we write V additively).
For every z 2 R n A there exist k 2 K and h 2 K] such that ez =

�A(k)�B(h). Let z(h;k) 2 R be such that ez(h;k) = �A(�kh�1)�B(�1). Then
(2) and (5) yield

CD(z) = CD(z(h;k)):

Hence

fCD(z) j z 2 R n V g = fCD(A)g [ fCD(�A(t)�B(�1)) j t 2 Kg:

For t 2 K set Dt := CD(�A(t)�B(�1)) and Bt := Z(Dt). From (5) we
obtain:

(6) Dt = f�A(tv)�B(v) j v 2 V g and eBt = f�A(tk)�B(�k) j k 2 Kg:

In the following we determine for which t 2 K actually Bt 2 A. As B0 =
B 2 A we can assume that t 6= 0.

We investigate the L-invariant GF (p)-bilinear form � on D induced by
the commutator mapping

� : D �D ! eR with (x; y) 7! [x; y] for all x; y 2 D:

As eR = eA� eB, the projection mappings

�A : eR! eA and �B : eR! eB

give rise to L-invariant GF (p)-bilinear forms ��A and ��B satisfying

[x; y] = [x; y]�A[x; y]�B;

so ��A��A and ��B��B are GF (p)-bilinear forms with values in K.
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We now restrict � to CD(A) � CD(A), CD(B) � CD(B) and CD(A) �
CD(B), respectively. Let s be an L-invariant non-degenerate symplectic
form on V . According to 1.7 there exist GF (p)L-module homomorphisms

�A; �B; �A; �B : K ! K

such that for all v; w 2 V

(7) [�A(v); �A(w)] = �A(�A(s(v; w)));

(8) [�B(v); �B(w)] = �B(�B(s(v; w)));

(9) [�A(v); �B(w)] = [�A(v); �B(w)]�A[�A(v); �B(w)]�B

= �A(�A(s(v; w)))�B(�B(s(v; w))):

It follows that

(10)

[�B(v); �A(w)] = [�A(w); �B(v)]�1
= (�A(�A(s(w; v)))�B(�B(s(w; v))))�1
= (�A(�A(s(w; v))))�1(�B(�B(s(w; v))))�1
= �A(�A(�s(w; v)))�B(�B(�s(w; v)))
= �A(�A(s(v; w)))�B(�B(s(v; w))):

Let x; y; z 2 D. The Jacobi identity

[x; y�1; z]y[y; z�1; x]z[z; x�1; y]x = 1

yields

(11) [y; x; z] + [z; y; x] + [x; z; y] = 0

since V � Z(D) and eR � Z( eD).
Let v; w 2 V and k 2 K]. We will compute all three triple commutators

for x = �A(v), y = �A(kw) and z = �B(w). From (9) we get

[�A(kw); �B(w)] = �A(�A(s(kw;w)))�B(�B(s(kw;w)))
= �A(�A(0))�B(�B(0)) = 1:

Thus, (5), (7), (9) and (10) give

[�A(v); �A(kw); �B(w)] = [�A(�A(s(v; kw))); �B(w)]
= ��A(s(v; kw))w = �A(s(kw; v))w;

[�B(w); �A(v); �A(kw)] = [�A(�A(s(w; v)))�B(�B(s(w; v))); �A(kw)]
= ��B(s(w; v))kw;

[�A(kw); �B(w); �A(v)] = 0:
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Now (11) yields:

(12) �A(s(kw; v))w = �B(s(w; v))kw for every v; w 2 V and k 2 K:

Choosing v; w 2 V such that s(w; v) = k2 one gets from (12)

�A(k1k2) = �B(k2)k1 for all k1; k2 2 K:

A similar argument (with the roles of A and B reversed) gives

�B(k1k2) = �A(k2)k1 for all k1; k2 2 K:

In particular, with `A := �A(1) and `B := �B(1) the cases k1 = 1 or k2 = 1,
respectively, yield:

(13) �B(k) = �A(k) = `Ak and �A(k) = �B(k) = `Bk for all k 2 K:

We now determine for which t the subgroup Bt is in A. Let v; w 2 V and
t 2 K#. Put k := s(v; w) and recall that �A; �B are homomorphisms from
the additive group of K into the multiplicative group eA or eB, respectively.
It follows from (7) { (10) and (13) that

[�A(tv)�B(v); �A(tw)�B(w)] =
[�A(tv); �A(tw)][�A(tv); �B(w)][�B(v); �A(tw)][�B(v); �B(w)] =
�A(�A(s(tv; tw)))�A(�A(s(tv; w)))�B(�B(s(tv; w)))�A(�A((s(v; tw)))
�B(�B(s(v; tw)))�B(�B(s(v; w)))
= �A(�A(t2k) + 2�A(tk))�B(2�B(tk) + �B(k))
= �A(k(t2`A + 2t`B))�B(k(2t`A + `B)):

For ` := `B`A we get

(14)
jf[�A(tv)�B(v); �A(tw)�B(w)] j v; w 2 V gj = q ()

t 62 f�2`;�1
2`g:

By (6)

(15) D0t � Bt () t2`A + 2t`B = (�t)(`B + 2t`A):

The equation on the right hand is equivalent to

(16) 3t = �3`;
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since we are assuming that t 6= 0. Hence, according to (14)

D0t = Bt () 3t = �3` and t 62 f�2`;�
1
2
`g:

If p 6= 3, then (16) has a unique solution, namely t = �`, so A = fA;B;B�`g
and (a) holds.

Assume now that p = 3. Then every t 2 K] satis�es (16), and every
t 6= ` satis�es t 62 f�2`;�1

2`g. Hence, there are q�2 elements in A di�erent
from A and B, and (b) holds. 2

2.8 Let L be as in 2:7. Suppose in addition that L is a subgroup of the
�nite group M , and

(i) M=Op(M) �= SL3(q)

(ii) Z(Op(M)) and Op(M)=Z(Op(M)) are natural SL3(q)-modules dual to
each other.

Then q = 5 or p = 3.

Proof. We may assume that p 6= 3. Then by 2.7 jAj = 3. A comparison
of orders shows that L contains a Sylow p-subgroup of M and D = Op(L)
(D as in 2.7). Hence there exists L � R � M such that L = Op0(R) and
R=Op(M) is a maximal parabolic subgroup of M=Op(M).

Let Y = Z(Op(M)). By our hypothesis Op(M) = CD(Y ) and Op(M)0 =
Y , so Y 2 A. Let A and B be the other two elements of A, and let R0 be
the unique subgroup of index 2 in R with L � R0, so K := R0=L is cyclic
of order q�1

2 . Since R normalizes Y and acts on A, R0 normalizes A and B.
Let eD := D=Z(D). Then eY , eA, and eB are three di�erent GF (p)K-

submodules of order q in eD0, so the GF (p)K-modules W1 := eY and W2 :=
eD0=eY are isomorphic.

Let Fi = EndK(Wi), i = 1; 2, and note that K is embedded in Fi since
K is abelian. Then there exists a �eld isomorphism

� : F2 ! F1 with �jK = id:

On the other hand, by our hypothesis W2 is a submodule of the module
Op(M)=Y , which is dual to Y . Thus, there exists a �eld isomorphism

� : F1 ! F2 with k 7! k�1 for k 2 K:

Hence, � := �� is an automorphism of F1 that inverts the elements of K.
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As every automorphism of F1 is a power of the Frobenius automorphism
x 7! xp, there exists 0 � m < n (where q = pn) such that f� = fpm for
f 2 F1 and

k� = k�1 = kp
m
for k 2 K:

It follows that kpm+1 = 1 and thus

jKj =
q � 1
2

j pm + 1:

This shows that

q � 1 = pn � 1 � 2pm + 2 and pm(pn�m � 2) � 3;

so m = 0 and q = 5. 2

2.9 Let G be a �nite group, and let L, M1, and M2 be subgroups of G such
that L �M1 \M2. Suppose that the following hold:

(a) L satis�es 2:7.

(b) M1 and M2 satisfy 2:8 in place of M .

(c) Op(M1) 6= Op(M2), and CG(Op(Mi)) � Op(Mi), i = 1; 2.

(d) CG(L=D)=D is a p0-group (D as in 2:7).

Then q = 3 or 5.

Proof. Let T 2 Sylp(L) and set

U := NG(L) \NG(T ); U0 := U \ L; Ui := U \Mi:

Moreover, let A and V be as in 2.7. We use a similar approach as in
2.8 getting T 2 Sylp(Mi), D = Op(M1)Op(M2), Z(Op(Mi)) 2 A, and
Z(Op(M1))Z(Op(M2)) = D0.

Observe that Ui=T �= Cq�1 �Cq�1 and that U1 and U2 centralize U0=T .
Note further that NG(L)=CG(L=D) is a subgroup of Aut(L2(q)). Thus, the
structure of Aut(L2(q)) together with the hypothesis on CG(L=D) shows
that hU1; U2i=T is a p0-group. Now the Theorem of Schur-Zassenhaus gives
a complement X for T in hU1; U2i.

According to 2.7 and 2.8 we may assume that p = 3 and jAj = q. Set
eD = D=D0. By 1.6 there are exactly q + 1 natural L=D-submodules in eD.
On the other hand, for every A 2 A the factor group CD(A)=D0 is one of
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these submodules. Hence there exists a unique D0 �W0 � D such that fW0
is a natural L=D-module and W 00 62 A. In particular X normalizes W0.

Assume �rst that jXj = (q � 1)2. Then U1 = U2 and, similar as in
2.8, the GF (p)U1-modules Z(Op(M1))=V andD0=Z(Op(M1)) are isomorphic
and dual to each other with CU1(Z(M1)=V ) = U0. As jU1=U0j = q � 1, an
argument as in 2.8 gives

q � 1 = pn � 1 j pk + 1 for some 0 � k < n;

and n = 1, k = 0 and q = 3.
Assume now that jXj > (q � 1)2. Since XL=CXL(fW0) �= GL2(q) we

conclude that CX(fW0) 6= 1 and X 0 � CX(fW0). On the other hand

CX( eD) = CX(D) � CX(Op(M1)) = 1

since X is a p0-group. It follows that also W1 := [D;CX(fW0)]D0 6= D0, so
fW1 is also a natural L=D-module. In particular A :=W 01 2 A.

Now with the same argument as above CX(fW1) 6= 1 and X 0 � CX(fW1),
so

X 0 � CX(fW0) \ CX(fW1) = CX( eD) � CX(Op(M1)) = 1;

and X is abelian.
If A = Z(Op(M1)), then W1 = Op(M1) and

CX(fW1) = CX(Op(M1)) = 1;

a contradiction. With the same argument A 6= Z(Op(M2)), so there are
three X-submodules of order q in D0=V , namely A=V , Z(Op(M1))=V , and
Z(Op(M2))=V . Hence, these submodules are isomorphic.

If X normalizes Z(Op(M2)), then Z(Op(M1))=V and D0=Z(Op(M1)) are
isomorphic GF (p)U1-modules and dual to each other, so as above q = 3.
Thus we may assume that there exists x 2 X such that Z(Op(M2))x 6=
Z(Op(M2)). Now Z(Op(M2))=V and D0=Z(Op(M2))x are isomorphic and
dual to each other as GF (p)U2-modules, and again q = 3. 2

3 The Local eP ! -Theorem

In this section we assume thatH is aKp-group of local characteristic p, which
satis�es Q-uniqueness. Moreover, we assume that there exists P 2 PH(S)
such that P 6� eC and YM � Q for every M 2MH(P ).

Notation. For L 2 LH(S) set L0 := L�CS(YL):
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We �rst collect two results from [PPS]:

3.1 P0=Op(P0) �= SL2(pm), and YP is a natural SL2(pm)-module for
P0=Op(P0).

Proof. This follows from the P !-Theorem in [PPS]. 2

3.2 Let L 2 LH(P ) and L := L=CL(YL). Then the following hold:

(a) F �(L) = [L0; L0], L0 �= SLn(pm), Sp2n(pm) or Sp4(2)0 (and p = 2),

(b) [YL; L0] is the corresponding natural module, and Z(L) = 1.

(c) YP is a 2-dimensional (singular) subspace of [YL; L0].

(d) Either CL0(YL) = Op(L0), or p = 2 and L0=O2(L0) �= 3Sp4(2)0.

(e) P0 � L0 and S \ P0 2 Sylp(L0), or L0 �= Sp4(2)0 and L0CS(YP ) �=
Sp4(2).

Proof. Claims (a) { (d) follow from the Corollary in [PPS]. For the proof
of (e) set P1 := P0 \ L0 and S0 := S \ L0. Since P � � P1

P �CS(YP ) = P0 = P1CS(YP ):

From (a), (b) and (c) we get that jS0=CS0(YP )j = pm. On the other hand,
CS0(YP ) = CS(YP ) \ P1 and thus

P1=CS0(YP ) �= P0=CS(YP )
3:1�= SL2(pm);

so S0 � P1.
If CS(YP ) = CS0(YP ), then the �rst possibility of (e) holds. Thus we

may assume that there exists t 2 CS(YP ) n S0; in particular t 62 L0. This
element induces an automorphism in L0 that centralizes a 2-dimensional
singular subspace of [YL; L0].

An inspection of the automorphisms of SL3(pm) and Sp4(pm) having this
property shows that either t 2 L0, which is not the case, or L0 �= Sp4(2)0
and the second possibilty of (e) holds. 2

3.3 NH(YP )� = P � and P � is normal in NH(YP ).

Proof. By 3.1, P is acts transitively on YP , so the claim follows from
(2.4.2)(dd) in [MSS]. 2
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3.4 Let L 2 LH(P ) and S1 := L \ S. Then

NL(S1) � NL(YP ) � NL(P �):

In particular, for every eP 2 PL(S) either eP � NL(P �) or eP � L0S.

Proof. The structure of L0 and [YL; L0] described in 3.2 shows that
YP is the unique S1-invariant 2-dimensional singular subspace of [YL; L0].
Together with 3.3 we get that NL(S1) � NL(YP ) � NL(P �). Now 1.5 yields
the second part of the claim. 2

3.5 Local eP ! -Theorem. Let L 2 LH(P ) be such that P � 6= L�. Then
there exists a unique eP 2 PL(S) such that eP 6� NL(P �). Moreover, for
U := hP; eP i, U� := U�CS(YP ) and U

� := U�=CU�(YU ) the following hold:

(a) U = U�S and U� �= SL3(pm), Sp4(pm) or Sp4(2)0 (and p = 2).

(b) Z(U�) = 1, and [YU ; U�] is a corresponding natural module for U�.

(c) YP is a 2-dimensional singular subspace of [YU ; U�].

(d) CU�(YU ) = Op(U�) or p = 2 and U�=O2(U�) �= 3Sp4(2)0 or 3Sp4(2).

(e) P0 � U� and S \ P0 2 Sylp(U�).

Proof. Set S1 := S \ L0. It is evident that P � � L�. Thus, if L0 � P ,
then L� = P �, which contradicts the hypothesis. Hence, we have L0 6� P ,
and the structure of L0 and [YL; L0] described in 3.2 shows:

(�) There exists a unique minimal parabolic subgroup R 2 PL0(S1) such
that R 6� NL0(YP ).

Pick eP 2 PL(S) with eP 6� NL(P �). We �rst prove the uniqueness of
eP . Let X be the unique maximal subgroup of eP containing S, and set
eP1 := eP \ L0. By 3.4 and 1.1 (b) eP = S eP1,

eP1 = N eP1(S1)hP̂ j P̂ 2 P eP1(S1)i and N eP (S1) � N eP (P �) � X:

Hence, there exists U 2 P eP1(S1) such that U 6� X, and (�) implies U = R,
consequently RS = eP . This shows that eP is uniquely determined.

We now apply 3.2 with U and U = U=CU (YU ) in place of L and L. Note
that by 3.2 (e) CS(YU ) � U0 � U� and that U0 and U� are both normal in
U . Hence 1.2 yields YU = YU0 = YU� . Note further that by 3.2 (e) either
U0 = U� or U0 �= Sp4(2)0 and U

� �= Sp4(2). Then the claims (a) { (e) follow
from the corresponding claims in 3.2 since U has Lie rank 2. 2
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3.6 Suppose that there exist two di�erent eP1; eP2 2 PH(S) such that

ePi 6� NH(P �) and Op(h ePi; P i) 6= 1 (i = 1; 2):

Set Mi := hP; ePii�CS(YP ) and G := hM1;M2i. Then G together with M1
and M2 satis�es the hypothesis of Theorem 1.

Proof. Note that 3.5 applies to Mi in place of U�, for i = 1 and 2. The
Hypotheses (1), (3), (4), and (6) of Theorem 1 follow from (2.5) (e), (a),
(b), and (d), respectively.

Assume that there exists 1 6= N E G such that N � B. Since B has
characteristic p, we get Op(N) 6= 1 and thus Op(G) 6= 1. Since S normalizes
G we get that GS 2 LH(P ), and 3.5 applies to GS.

In particular, there exists a unique eP 2 PGS(S) not normalizing P �.
This contradicts eP1 6= eP2, and this contradiction shows Hypothesis (2) of
Theorem 1.

By 3.5 (e) P0 �M1 \M2. Hence 3.5 (a), (c) and (e) give Hypothesis (5)
of Theorem 1.

4 The Coset Graph

In this section we assume that the Hypothesis of Theorem 1 holds. We
will apply the amalgam method to the group G := hM1;M2i and the pair of
subgroupsM1 andM2 using the standard notation (see for example [PPS] or
[ST]). For the convenience of the reader we will repeat some of the notation.

Let � be the coset graph of G with respect to the subgroupsM1 andM2;
so the vertices are the right cosets of M1 and M2 in G, and two vertices are
adjacent if and only if they are di�erent and have non-empty intersection.
Then G acts by right multiplication on �, and the vertex stabilizers in G are
conjugate toM1 orM2, while the edge stabilizers are conjugate toM1\M2.
By d( ; ) we denote the usual distance metric on �.

For a �nite group L de�ne ZL := h
1(Z(T )) j T 2 Sylp(L)i.
For every � 2 � de�ne

�(�) := f� j d(�; �) = 1g; G� := fg 2 G j �g = �g;
Y� := YG� ; Z� := ZG� ;
Q� := Op(G�); V (i)

� := hZ� j d(�; �) = ii;
V� := V (1)

� ; D� := CQ�(V�);
G� := G�=CG�(Z�);
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and
b := minfd(�; �) j �; � 2 � and Z� 6� Q�g:

For adjacent vertices � and � de�ne

G�
�� := Op0(G� \G�); Q�� := Op(G�

��); Z�� := ZG��� :

A pair (�; �0) of vertices is called critical if Z� 6� Q�0 and d(�; �0) = b.
If (�; �0) is a critical pair, then we �x a path of length b from � to �0 and
denote its vertices by

(�; �+ 1; :::; �+ b) or (�0 � b; ; :::; �0 � 1; �0);

so �+ i = �0 � (b� i).

The �rst lemma mostly phrases the hypothesis of Theorem 1 in terms of
this new setup and notation.

4.1 Let � and � be adjacent vertices in �. Then the following hold:

(a) G� is of characteristic p, and Sylp(G�
��) = Sylp(G�) \ Sylp(G�).

(b) No non-trivial subgroup of G�
�� is normal in both G� and G�.

(c) G� �= SL3(q�), Sp4(q�) or Sp4(2)0 (and q� = 2).

(d) Z� = [Y�; Op(G�)] is a natural module for G� and Z(G�) = 1.

(e) Z�� = Z� \ Z�, jZ��j = q2� = q2�, and O
p0(NG�(Z��)) = G�

��.

(f) q := q� = q�.

(g) CG�(Z�) = Q�, or p = q� = 2 and G�=Q� �= 3Sp4(2) or 3Sp4(2)0.

(h) NG�(Z��) is the unique maximal subgroup of G� containing G�
��.

Proof. The pair fG�; G�g is conjugate to fM1;M2g, so the hypothesis
of Theorem 1 applies to both G� and G�.

From 1.2 (c) we get that Z� = [Z�; Op(G�)]
1(Z(G�)) and Z� � Y�.
Now Hypothesis (4) of Theorem 1 yields Z(G�) = 1 and Z� = [Y�; Op(G�)].
In particular, CG�(Y�) � CG�(Z�), and the action of G� on [Y�; Op(G�)]
given in Hypothesis (4) of Theorem 1 shows that CG�(Y�) = CG�(Z�).

With these remarks in mind the statements (a), (b), (c), (d) and (g)
follow from the Hypotheses (1), (2), (3), (4) and (6) of Theorem 1.
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By Hypothesis (5) of Theorem 1 there exists a 2-dimensional singular
subspace W� � Z� with Op0(NG�(W�)) � G� \G�. By 2.1 (d) or 2.2 (d)
NG�(W�) acts irreducibly on W�, so

W� � Z�� � Z� \ Z�:

With a symmetric argument there also exists a 2-dimensional singular sub-
space W� � Z� such that Op0(NG� (W�)) � G� \G� and

W� � Z�� � Z� \ Z�:

Suppose that W� 6= Z� \ Z�. Let T 2 Sylp(G�
��). If G� �= SL3(q�),

then clearly CT (Z� \ Z�) = Q� since Z� is 3-dimensional. If G� �= Sp4(q�)
or Sp4(2)0, then CT (Z� \ Z�) = Q� follows from 2.2 (d). Thus CT (Z� \
Z�) = Q� holds in both cases. Now (b) implies that CT (Z� \ Z�) 6= Q�.
Consequently, the above argument shows that W� = Z� \ Z�. But now
the irreducibility of W� as a G�

��-module yields W� = W� = Z� \ Z�, a
contradiction.

We have shown that W� = Z� \ Z�. Then with a symmetric argument
also W� = Z� \ Z� and thus

W� = Z�� =W�;

in particular q� = q� and G�
�� � NG�(W�). Hence, (e), (f) and (h) hold. 2

In the following we use the parameter q as de�ned in 4.1 (f). Observe
that Q�Q� � Q��. Thus, because of 4.1 (c), (d), (e), properties of the
action of Q�Q� on Z� and Z� are given in 2.1 or 2.2, respectively. This fact
will be used frequently.

4.2 Let (�; �0) be a critical pair. Then

(a) [Z�; Z�0 ] � Z� \ Z�+1, and

(b) [Z�; Z�0 ] 6= 1; in particular (�0; �) is also a critical pair.

Proof. As Z�0 � Q�+1, claim (a) follows from 4.1 and 2.1 (b) or 2.2 (c),
respectively. Claim (b) is a consequence of 4.1 (g). 2

4.3 Let �; � 2 � be adjacent. Then Q�Q� = Q��, or

(�) q = 2; jQ��=Q�Q�j = 2; and G� �= Sp4(2) for every � 2 �.
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Proof. Set A := Q�Q�. Since A is a normal p-subgroup of G�
�� we have

A � Q��. By 4.1 (b) A 6� Q� or A 6� Q�, and we choose our notation such
that A 6� Q�.

Assume that A 6= Q��. Then 2.1 (d) shows that G� 6�= SL3(q), and 2.2
(e) implies that either

q = 2 and jQ��=Aj = 2; or p = 2 and jQ��=Aj = q2:

In the �rst case computing jQ��=Aj in G� shows (�).
Hence, we may assume that we are in the second case. Then either

(I) G� �= Sp4(q) and jA=Q�j = q, or

(II) G� �= SL3(q) and Q� � A = Q�.

From 2.2 (d) and jQ��=Aj = q2 we get J(A) � Q�. Similarly, (I) and
(II) both imply J(A) � Q�. Thus J(Q�) = J(A) = J(Q�), a contradiction.

2

4.4 Let �; � 2 � be adjacent. Suppose that X � G� such that X 6�
NG�(Z��) and A � Z� such that A 6� Y�. Then [A;X] 6� Y�.

Proof. Assume that [A;X] � Y�. Then X normalizes AY� and thus
also [AY�; Q�] = [A;Q�]. Now 4.3, 2.1 (b) and 2.2 (c) and (e) show that
[A;Q�] = Z�� and X � NG�(Z��), a contradiction. 2

4.5 Let �; � 2 � be adjacent such that G� �= G� �= SL3(q), and let x 2 Q�
be such that [x;G�] = Z�. Suppose that V� 6� Q�. Then x 2 Z(Q�).

Proof. Assume that x 62 Z(Q�). We set Y := [Q�; G�
��]CQ�(x) and

eQ� := Q�=CQ�(x). Note that CQ�(x) = CQ�(xZ�), so CQ�(x) is normal in
G�. The mapping

eQ� ! Z� such that yCQ�(x) 7! [y; x]

shows:

(1) Z� and eQ� are isomorphic GF (p)G�-modules, in particular

(2) eY is contained in every non-trivial G�
��-invariant subgroup of eQ�.
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On the other hand, G� �= SL3(q) and thus by 4.3 and 2.1 (d) Q� = Y . It
follows that Q� = (Q�\Q�)Y . On the other hand, by (1) Q�\Q� 6� CQ�(x)
since jQ�=Q� \ Q�j � q2, so (2) implies that Q� = (Q� \ Q�)CQ�(x). In
particular

(3) [Q�; V�] � [Q�; V�]CQ�(x).

Again, as G� �= SL3(q), we get that Z�=Z�� is a G�
��-invariant subgroup

of order q. But Q��=Q� is an irreducible G�
��-module of order q2, so Z� �

Q�, and (2) yields Z� � CQ�(x).
In particular Z� � Q� and thus V� � Q�. By 2.1 (b) [Z�; Q�] � Z�� �

Z�, so [V�; Q�] � Z� � CQ�(x). Now (3) shows that V� centralizes eQ�.
Since V� 6� Q� we conclude that G� = hV G�

� i, and eQ� is a central G�-
module. This contradicts (1). 2

4.6 Suppose that � 2 � with G� �= SL3(q). Then G� acts transitively on
set of pairs (�; ) with �;  2 �(�) and Z�� 6= Z�.

Proof. It is easy to see that G�
�� acts transitively on the 2-dimensional

subspaces of Z� that are distinct from Z��. Now let ; 0 2 �(�) be such
that Z� = Z0� 6= Z��. By 4.1 (h) there exists x 2 NG�(Z�) such that
x = 0. On the other hand

NG�(Z�) = (G�
�� \NG�(Z�))G

�
0�;

so this x can be chosen in G�
��, and the result follows. 2

5 The Discussion of the Amalgam Problem.

In this section we adopt the hypothesis and notation of Section 4. Moreover,
(�; �0) is always a critical pair, and

�(�; �0) := f� 2 �(�) j Z�0 6� NG�(Z��)g:

5.1 The following hold:

(a) �(�; �0) 6= ;.

(b) hZ�0 ; G���i = G� for every � 2 �(�; �0).

Proof. By 4.2 (b) Z�0 6� Q�, so Z�0 does not stabilize every 2-dimensional
subspace of Z�. Hence, 4.1 (e) gives (a).

Claim (b) follows from 4.1 (h). 2
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5.2 Suppose that � � 1 2 �(�; �0) with Z��1 \ Q�0�1 6= Z��1�. Then the
following hold:

(a) G�0 �= SL3(q).

(b) j[Z�; Z�0 ]j = q.

(c) Z�0�0�1 6� Z� and Z�0�0�1 � V�.

(d) If Z��1 � Q�0�1, then G��1 �= SL3(q).

Proof. Set A := Z��1\Q�0�1. Since A 6� Z���1 and Z�0 6� NG�(Z���1),
4.4 implies [A;Z�0 ] 6� Z�, in particular [Z�; Z�0 ] < [AZ�; Z�0 ]. As AZ� �
Q�0�1 � Q�0�1�0 , we get from 2.1 (b) and 2.2 (c) that [AZ�; Z�0 ] � Z�0�1�0 .
Since Z�0�1�0 is a 2-dimensional subspace of Z�0 this implies:

Z�0�0�1 = [AZ�; Z�0 ]; j[Z�; Z�0 ]j = q and Z�0�0�1 6� Z�:

This gives (b) and the �rst part of (c). As AZ� � V� and V� is normal in
G�, we get Z�0�0�1 = [AZ�; Z�0 ] � V� and the second part of (c).

Suppose now that G�0 �= Sp4(q) or Sp4(2)0. Let X := Z�0 \ Q� =
CZ�0 (Z�). Since j[Z�; Z�0 ]j = q we conclude from 2.4 that jZ�0=Xj = q and
jCAZ�(X)Q�0=Q�0 j � q. As jZ�Q�0=Q�0 j = q and A 6� Z�Q�0 , this shows
that [A;X] 6= 1. Note that [A;X] � Z��1� � Z�.

If [A;X] 6� [Z�; Z�0 ] then

Z�0�0�1 = [AZ�; Z�0 ] = [A;X][Z�; Z�0 ] � Z�;

a contradiction. Thus [Z�; Z�0 ] = [A;X] � Z��1� and so Z�0 normalizes
Z��1�, again a contradiction. This shows that G�0 �= SL3(q), and (a) holds.

Set Y := A \ (Z�Q�0). Then by 2.1 (d) jA=Y j � q. Since [Y;Z�0 ] � Z�,
4.4 implies Y = Z��1� and thus jA=Z��1�j � q. This rules out the case
A = Z��1 and G��1 �= Sp4(q); Sp4(2)0, so (d) holds. 2

5.3 Suppose that G� �= Sp4(q) or Sp4(2)0 for some � 2 �. Then b = 1.

Proof. We say that G� is of symplectic type if G� �= Sp4(q) or Sp4(2)0.
First we will show that there exists a critical pair (�; �0) such that

(�) G� is of symplectic type, and either G�0 is of symplectic type or
j[Z�; Z�0 ]j = q2.
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Let �� 1 2 �(�; �0). Suppose �rst that b is even. Then G� is conjugate
to G�0 , so (�) holds if G� is of symplectic type. Assume that G� �= SL3(q).
Then by our hypothesis G��1 is of symplectic type, and by 5.2 (��1; �0�1)
is critical. Hence (�� 1; �0 � 1) satis�es (�).

Suppose now that b is odd. Since also (�0; �) is critical we may assume
that G�0 is of symplectic type. Thus by 5.2 Z��1 \ Q�0�1 = Z��1�, in
particular (� � 1; �0 � 1) is critical. Since b is odd, we get that G��1 is
conjugate to G�0 , so G��1 is of symplectic type and jZ��1=Z��1�j = q2. It
follows that jZ��1Q�0�1=Q�0�1j = q2 and either G�0�1 is of symplectic type
or j[Z�0�1; Z��1]j = q2, so (�� 1; �0 � 1) satis�es (�).

Choose a critical pair (�; �0) that satis�es (�). Let D be a three di-
mensional subspace of Z� containing Z� \ Q�0 , and let � be the set of
1-dimensional subspaces E of D with E 6� Z��+1. For E 2 � pick a 2-
dimensional singular subspace WE of Z� with WE \ D = E. Note that
Z� =WE � Z��+1.

By 2.2 (f) Z�0 does not normalizeWE . Pick �E 2 �(�) with Z��E =WE .
Then �E 2 �(�; �0), so by (�) and 5.2 (�E ; �0 � 1) is critical.

Assume that b > 1. Then [Z�E ; Z�0�1] � Z�0�1 � Q�0 , and

[Z�E ; Z�0�1] � Z��E \Q�0 � Z��E \D = E:

Hence E = [Z�E ; Z�0�1] � Z�0�2�0�1.
Since this is true for all E 2 � we get that D = h�i � Z�0�2�0�1. But

D has order q3 while Z�0�2�0�1 has only order q2. This contradiction shows
that b = 1. 2

5.4 b � 2.

Proof. Suppose b � 3. Then by 5.3 G� �= SL3(q) for all � 2 �. We will
�rst show that there exists a critical pair (�; �0) such that

(�) Z�0�1�0 � V�:

Let ��1 2 �(�; �0). If (��1; �0�1) is not critical, then 5.2 (c) implies (�) for
(�; �0). Suppose that (�� 1; �0� 1) is critical. Since [Z��1; Z�0�1] � Z��1�
and Z�0 does not normalize Z��1� we have [Z�; Z�0 ] 6� [Z��1; Z�0�1]. Thus
A := [Z�; Z�0 ][Z��1; Z�0�1] � Z� has order at least q2. Moreover A �
Z�0�1Z�0 � V�0 , and Z�0 centralizes A since b > 1. Thus A � CZ�(Z�0) =
Z��+1, and since Z��+1 has order q2 we get Z��+1 = A � V�0 , so (�) holds
for (�0; �).
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Now choose a critical pair (�; �0) satisfying (�). Suppose �rst that b > 3.
Then [V (2)� ; V�] = 1, so (�) implies [V (2)� ; Z�0�0�1] = 1. Thus 4.4 with

(�0 � 2; �0 � 1; Z�0�0�1; V (2)� ) in place of (�; �;A;X)

gives Z�0�0�1 = Z�0�1�0�2 or V
(2)� � NG�0�2(Z�0�1�0�2). Evidently the �rst

case implies the second one. Thus we have in both cases V (2)� � G�0�1
by 4.1 (e). Hence V (2)� � CG�0�1(Z�0�0�1) = Q�0�0�1 and [V (2)� ; Z�0 ] �
Z�0�0�1 � V�. This shows that Z�0 and G����1 normalize V��1V�. Since
��1 2 �(�; �0) we conclude from 5.1 (b) that V��1V� is normal in G�. The
transitivity of G� on �(�) gives V (2)� = V�V� for all � 2 �(�). Conjugation
to G�+2 yields V

(2)
�+2 = V�+2V�+3, in particular

Z� � V�+2V�+3 � Q�0 ;

a contradiction.

We have shown that b = 3. Let (�; �0) be any critical pair. Suppose that
Z�+1�+2 = Z�0�+2. Then V� � CG�+2(Z�0�+2) � Q�0�+2 and thus

[Z�0 ; V�] � Z�0�+2 = Z�+1�+2 � Z�+1:

Let � � 1 2 �(�; �0). Then 4.4, with (�; � � 1; Z�0 ; Z��1) in place of
(�; �;X;A), implies that [Z��1; Z�0 ] 6� Z�. In particular [V�; Z�0 ] 6� Z�
and thus [Z�0 ; V�] > [Z�0 ; Z�]. Since Z�0 is a natural SL3(q)-module for G�0
we get that

[Z�0 ; V�] = Z�0�+2 and j[Z�0 ; Z�]j = q:

From 4.1 (e), applied to the vertices in �(�), we get [V�; Q�] = Z�. Hence,
as [V�; Z�0 ] 6� Z�,

[V�; Q�Z�0 ] = Z�[V�; Z�0 ] = Z�Z�+1:

Moreover, j[Z�0 ; Z�]j = q together with 2.4 shows that Z� is a 1-dimensional
subspace of Q�+1. As G

�
��+1 is transitive on these 1-dimensional subspaces

and NG�(Z�0Q�) � NG�(Z��+1), we get with the Frattini argument

NG�(Z��+1) = G���+1NG�(Z�0Q�):

Since [V�; Q�Z�0 ] is normalized by NG�(Z�0Q�) while Z�Z�+1 is normalized
by G���+1, we conclude that NG�(Z��+1) normalizes Z�Z�+1. Since Z�Z��1
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is not normal in G� and NG�(Z��+1) is a maximal subgroup of G�, this
shows that

NG�(Z��+1) = NG�(Z�Z�+1):

Hence, edge-transitivity also gives

NG�+2(Z�0Z�+2) = NG�+2(Z�0�+2) = NG�+2(Z�+1�+2) = NG�+2(Z�+1Z�+2);

and the transitivity of G�+2 on �(�+ 2) yields

Z�0 � Z�0Z�+2 = Z�+2Z�+1 � Q�;

a contradiction.
This contradiction shows that Z�+1�+2 6= Z�0�+2 for all critical pairs

(�; �0); in particular

(��) Z�+1�+2 6= Z�0�+2 and Z��+1 6= Z�+2�+1:

But then Z�+2 = Z�+1�+2Z�0�+2, and (�) implies that Z�+2 � V�. On
the other hand, by (��) and 4.6 there exists an element in G�+1 that maps
(�; �+ 2) to (�+ 2; �), so also Z� � V�+2. Since b > 2 we get that V�+2 is
abelian and Z� and Z�0 centralize each other. This contradicts 4.2. 2

5.5 Suppose that b > 1. Let � 2 � and ; 0 2 �(�). Then the following
hold:

(a) D� = Z�.

(b) (; 0) is critical if and only if Z� 6= Z0�.

Proof. From 5.3 and 5.4 we get that b = 2 and G�=Q� �= SL3(q) for
every � 2 �. Let � = �+ 1.

Since G� = hZG�
�0 iQ� we get from 4.4, with (Z�; Op(G�)) in place of

(A;X), that [Z�; hZG�
�0 i] � Y�. Hence

(1) [V�; Z�0 ] 6� Y�.

Assume next that Z�� = Z�0�. Then V� � CG� (Z�0�) � Q�0� and so

[V�; Z�0 ] � Z�0� = Z�� � Z�:

This contradicts (1). Thus

(2) Z�� 6= Z�0�.
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From 4.6 we conclude that (b) holds for all � 2 �G.
Assume that D� = Z�. Then there exists � � 1 2 �(�) such that

(��1; �) is a critical pair. By a symmetric argument (b) now also holds for
all � 2 �G and thus for all � 2 �. It remains to show that D� = Z�. So we
assume:

(3) D� 6= Z�.

Note that D� � Q� \ Q� � Q�0�, so by 2.1 (d) and 4.1 (e) �(D�) � Q�0 .
It follows that [�(D�); hZG�

�0 i] = 1. As G� = hZG�
�0 iQ� and by 4.1 (d)

Z(G�) = 1, we get that �(D�) \ Z(Q�) = 1 and thus �(D�) = 1; i.e.,

(4) D� is elementary abelian.

Let N be the largest normal subgroup of G� in D� such that N � Z�Q�0 .
Then [N;Z�0 ] � Z� and thus also [N;Op(G�)] = Z�. Hence 4.5 shows that

N � 
1(Z(Q�)) = Y�:

Since jN=CN (Z�0)j = q we get from 2.1 (f) N = Z� � CN (G�). Thus, 4.1
(d) implies that N = Z�. In particular, by (3) D� 6� N . Hence, 2.1 (b)
gives [Z�0 ; D�] = Z�0�. From (2) we get

Z�[D�; Z�0 ] = Z�Z�0� = Z�Z� � D�;

so

(5) V� � D�; in particular, V� is abelian and V� � Q�.

Let � � 1 2 �(�; �0). Then 4.4, with (�; � � 1; Z�0 ; Z��1) in place of
(�; �;X;A), implies that Z��1\(Z�Q�0) = Z���1 and thus V�Q�0 = Q�Q�0 .
By symmetry in � and �0,

(6) V�Q�0 = D�Q�0 = Q�Q�0 and Q�Q� = D�0Q� = V�0Q�.

Set eQ� := Q�=D�. We apply 2.1 (d). Then Q��=Q� is a natural module
for G�

��=Q��, so �(Q�) � Q�, and eQ� is elementary abelian. Similarly
CQ��=Q� (G

�
��) = 1 and thus C eQ�(G�) = 1. Moreover, by 2.3 jQ�=Q� \

G�0 j = q, so [Q� \ G�0 ; Z�0 ] � Z� � D� yields j eQ�=C eQ�(Z�0)j � q. Hence
2.5 and 2.1 (f) imply:

(7) eQ� is a G�-module dual to Z�.
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From (7) we get jQ�=D�j = q3 and [x;Q�]D�=D� = (Q�\Q�)=D� for every
x 2 Q� nQ�. Hence (6) gives

Q� \Q� = [Q� \G�0 ; D�0 ]D� = (D�0 \Q�)D� and Q� = D�D�0 :

In particular

�(Q�) � D� \D�0
(4)
� 
1(Z(Q�))

1:2= Y� � D� \D�0 :

Thus, we get

(8) D� \D�0 = Y�, �(Q�) � Y� and jQ�=Y�j = q6.

Note that jD�=D� \ (Z�Q�0)j � q and [D� \ (Z�Q�0); Z�0 ] � Z�. Thus
Z�0 centralizes a subgroup of index q in W := D�=Z�. From 2.1 (f) we get
that W=CW (G�) is a natural SL3(q)-module for G�. Since G�

�� normalizes
Z�Z�=Z�, this module is dual to Z�.

Let U be the inverse image of CW (G�) in D�. By 4.5 and (4)

U � 
1(Z(Q�)) = Y�:

On the other hand, Y� � D� since b > 1, so (1) and (6) imply that Y� �
Z�Q�0 . Since Z(G�) = 1, again 2.1 (f) yields Y� = Z�. We have shown:

(9) D�=Z� is a G�-module dual to Z�; in particular Y� = Z� and jQ�j =
jQ�j = q9.

By (9) [D�; Q�] = Z�. Pick x 2 Q� \ Q�, so [x;G�
��] � D� by (7). Then

[Q�; x]Z� is G�
��-invariant and j[Q�; x]Z�=Z�j < q3. Hence (9) shows that

[Q�; x] � Z�Z�. It follows that [x;Q�; G�
��] � Z� and [G�

��; x;Q�] � Z�.
Thus, also [Q�; G�

��; x] � Z�. Since [Q�; G�
��]D� = Q� by (7), we conclude

that

(10) Q�=Z� is abelian.

From (6) and (10) we get CQ�=Z�(D�0) = CQ�=Z�(Q��), so (7) and (9) imply
jCQ�=Z�(Q��)j�q2. On the other hand, by (9) jD�j = jD�0 j = q6, so by (6)
jD�0 \Q�j = q4 and j(D�0 \Q�)Z�=Z�j = q2. Hence (4) implies

(11) CQ�=Z�(Q��) = CQ�=Z�(D�0) = (D�0 \Q�)Z�=Z�.

Set A := (D�0 \Q�)Z�. Recall from the above considerations that jAj = q5
and j(D�0 \ Q�)=Z�j = q. Let � � �(�) be such that � 2 � and for each
2-dimensional subspaceW of Z� there exists a unique � 2 � with Z�� =W .
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Then j�j = q2+ q+1, and by (2) and 4.6 any distinct pair of elements in �
is critical. Let � 2 � be with � 6= �. Then by (11), applied to � in place of
�0, we get

(D� \Q�)Z� = A:
We conclude that for all � 2 �, D� \ Q� is a subgroup of index q in A.
On the other hand, by (8) and (9) the groups (D� \Q�)=Z� have pairwise
trivial intersection, so jA=Z�j > q2 + q + 1, a contradiction as jA=Z�j = q2.

2

5.6 Suppose that b > 1. Then b = 2, and for every � 2 � the following
hold:

(a) G� �= SL3(q), p = 3 or q = 5.

(b) Q� = V�,

(c) V�=Z� is a natural SL3(q)-module dual to Z�.

Proof. From 5.3, 5.4 and 5.5 we get the following information for every
� 2 �:

(1) b = 2.

(2) G�=Q� �= SL3(q) and Z� = D�.

(3) Let ; 0 2 �(�). Then (; 0) is critical if and only if Z� 6= Z0�.

We �x a critical pair (�; �0) and set � := �+ 1. If j[Z�; Z�0 ]j = q2, then
Z�� = [Z�; Z�0 ] = Z�0� which contradicts (3). Thus j[Z�; Z�0 ]j = q, and by
2.1 (g)

(4) Z�0Q�=Q� is the center of a Sylow p-subgroup of G�=Q� for every
critical pair (�; �0).

According to (3) it su�ces to show (a) { (c) for � = �0.
By (4) and 2.3 there exists � � 1 2 �(�) such that Z�0 � G��1 but

Z�0 6� Q���1. In particular R := [Z���1; Z�0 ] 6= 1, so Z���1 6= Z��, and by
(3) (�� 1; �) is critical.

The action of G����1 on Z��1�, see 2.1 (d), gives

R = Z���1 \ Z�� = [Z��1; Z�]:

Hence, since j[Z�; Z�0 ]j = q, we get

R = [Z��1; Z�] = [Z�; Z�0 ] � Z� \ Z�0

and thus
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(5) Z��1 � G�0 .

Again by 2.3 we have Z��1 6� Q��0 since (�� 1; �) is critical. As Z�Q�0 =
Z��1�Q�0 we conclude that jZ��1Q�0=Q�0 j = q2 and thus jZ��1 \Q�0 j = q.
We have shown:

(6) jZ��1Q�0=Q�0 j = q2 and Z��1 \Q�0 = R � Z�0 .

Let A := V�0\G�. There are q+1 2-dimensional subspaces of Z� containing
R. Since A �xes Z�� we get that jZA���1j � q, so jA=A\G��1j � q. By 2.3,
applied to G�, also jV�0=V�0 \G�j � q, so we get

(7) jV�0=V�0 \G��1j � q2.

On the other hand, (5) and (6) imply that [Z��1; V�0\G��1] � Z��1\Q�0 �
Z�0 . Thus (6) yields

jeV�0=CeV�0 (Z��1)j � q2 = jZ��1Q�0=Q�0 j;

where eQ�0 := Q�0=Z�0 .
Clearly, �(Q�0) � D�0 = Z�0 , so V 0

�0 6= 1 shows that �(Q�0) = �(V�0) =
Z�0 . Hence, we are able to apply 2.6 with M := G�0 , D := V�0 , Y := Z�,
and V1 := Z�0 , and get that eV�0 is a natural G�0=Q�0-module dual to Z�0 .
Thus (c) holds.

Note that G� acts transitively on (V�=Z�)#. So every element in V� has
order p. Since V� is not abelian we conclude that p 6= 2.

By (3) Q�0 = (Q�0 \Q�)V�0 and

[Q�0 \Q�; Z�] � Z� \ Z� � Z�;

so (c) gives [ ~V�0 ; Z�] � eZ�. It follows that j[ eQ�0 ; Z�]j = j eZ�j = q.
Let U be the parabolic subgroup of G�0 �xing eZ�. Then Z� � Op(U),

and since p 6= 2 there exists K � U of order q� 1 such that [ eZ�;K] = 1 and
[Z�;K] = Z�. In addition, since eQ�0=eV�0 is central

eQ�0 = eV�0 eC; where eC = C eQ�0 (K):

It follows that
[ eC;K;Z�] = 1 = [Z�; eC;K];

and thus also [K;Z�; eC] = [Z�; eC] = 1. As eV�0 is a natural module, (4)
implies that j eQ�0=C eQ�0 (Z�)j = q. Hence, 2.1 (f) yields eQ�0 = eV�0C eQ�0 (G�0),
and 4.5 gives V�0 = Q�0 . Thus, also (b) holds.
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Now let L := G�
�0�, D := Q�0�, V := Z�0� and Y := Z�Z�0 . From (b)

and (c) we get that Y = Q� \ Q�0 , jY j = q4 and [Y;L] = V . Moreover,
L=D �= SL2(q), and D=Y = Q�=Y �Q�0=Y is the direct sum of the natural
L=D-modules.

Let � 2 f�0; �g. Then CD(Z�) = Q� and so CD(Z�)0 = Z�. Thus
D0 = Z�0Z� = Y . Hence, the hypotheses of 2.7 are satis�ed, and (a) follows.

2

5.7 Suppose that b = 1. Then G�=Q� �= Sp4(2) or Sp4(2)0, Q� = Y�, and
jY�j = 24 or 25 for all � 2 �.

Proof. As �0 2 �(�) we get from 4.1 together with 2.1 (d) or 2.2 (b)
that Q��0=Q�0 is elementary abelian and

[Z�; Z�0 ] = Z� \Q�0 = Z��0 :

In particular �(Q�) � Q�\Q�0 since b = 1, so �(Q�) � D� and [D�; Z�0 ] =
1. Since G� = hZG�

�0 iQ�, we conclude that

[Q�; Op(G�)] � Z� and [D�; Op(G�)] = 1:

Now Z(G�) = 1 (4.1 (d)) implies �(Q�) = 1 and thus Q� = Y�.
Suppose that G� �= SL3(q). Then by 4.1 (d) and (e) [Q�; Op(G�

��0)] �
Z��0 � Q�0 and so by 4.3 [Q��0=Q�0 ; Op(G�

��0)] = 1, which contradicts 2.1
(d).

By 4.2 (b) and a symmetric argument Y� = Q� and G� �= Sp4(q) or
Sp4(2)0 for all � 2 �. Hence Z�Q�0=Q�0 is a normal subgroup of order q2 in
G�
��0=Q�0 , so 2.2 (e) implies q = 2. In particular

(1) O2(O2(G�
��0)) � Q�Q�0 :

It remains to prove that jQ�j = 24 or 25.
From 2.2 (d) we get that CZ�(G�

��0) = 1. In particular, by 4.1 (a),
C
1(Z(T ))(G

�
��0) = 1 for T 2 Syl2(G�

��0). It follows that also

(2) CQ�(O2(G�
��0)) = 1:

Let D := Q� \Q�0 . Then Q�Q�0 centralizes D and

[D;O2(G�
��0)] � Z� \Q�0 � Z� \ Z�0 = Z��0 :

Moreover, by (1) O2(G�
��0) acts as a cyclic group of order 3 on D. Thus

D = Z��0CD(O2(G�
��0))

(2)= Z��0 ;

and jQ�=Z��0 j � 23 for � = �; �0. As jZ��0 j = 4, the edge-transitivity of G
on � gives jQ�j = 24 or 25 for every � 2 �. 2
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6 The Proof of Theorem 1 and the eP !-Theorem

Theorem 1 follows from 5.7 and 5.6.

The proof of the eP !-Theorem: Suppose that there exists eP1 2 PH(S)
such that eP1 6� NH(P �) and h eP1; P i 2 LH(P ). Set M1 := h eP1; P i�CS(YP ).
Then we are allowed to apply the Local eP -Theorem 3.5 with M1 in place of
U�. Observe (with the notation from 3.5) that U� = U0, and also U� = U�

or U� �= Sp4(2)0 and U
� �= Sp4(2). Hence 3.5 gives (a1) and (a2) for M1.

Suppose now, in addition, that there exists eP2 2 P(S) such that eP1 6= eP2,
eP2 6� NH(P �) and h eP2; P i 2 LH(P ). Set

Mi := h ePi; P i�CS(YP ) and Vi := [YMi ; O
p(Mi)]; i = 1; 2

According to 3.6 G = hM1;M2i satis�es the hypothesis of Theorem 1 with
respect to M1 and M2.

Assume �rst that we are in case (a) of Theorem 1. Then p = 2 and
YM2 6� YM1 , and P \M1 stabilizes a 2-dimensional singular subspace of V1.
Moreover, by 2.4 YM2 does not centralize a hyperplane in V1. It follows that

jV2=V1 \ V2j = jV1 \ V2j = 4:

Pick 1 6= x 2 Z(S) \ V1 \ V2. Then 2.2 (g) implies that V2 6� O2(CMi(x)).
On the other hand, Q-uniqueness gives CH(x) � eC. Hence, also V2 6� Q,
but this contradicts the hypothesis of the eP !-Theorem.

Assume now that case (b) of Theorem 1 holds. Let L := P �CP (YP ) and
observe that CH(L=Op(L))=Op(L) is a p0-group since P contains a Sylow
p-subgroup of H. Then L satis�es the hypothesis of 2.7, and H, L, M1 and
M2 the hypothesis of 2.9. Hence, q = 3 or 5 follows.
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