The Structure Theorem and Its Spinoffs

work in progress

joint with

Bernd Stellmacher and Gernot Stroth

Groups of local characteristic p

Let G be finite group and p a prime.

Definition 1 G has characteristic p if

 $C_G(O_p(G)) \leq O_p(G).$

H is a *p*-local subgroup of *G* if $H = N_G(P)$ for some non-trivial *p*-subgroup of *G*.

G has local characteristic p if all p-local subgroups of G have characteristic p.

G is a \mathcal{K}_p -group if the composition factors of the *p*-locals subgroups of *G* are known finite simple groups.

Goals:

- 1. Understand the finite groups of local characteristic p.
- 2. Classify \mathcal{K}_p -groups of local characteristic p whose p-local structure is not too small.

The Structure Theorem

Definition 2 Let H be group, \mathbb{F} a field and V an $\mathbb{F}H$ -module.

(a) *H* acts **nilpotently** on *V* if there exists an ascending series

 $0 = V_0 \leq V_1 \leq V_2 \dots, V_{n-1} \leq V_n$

of $\mathbb{F}H$ -submodules of V such that H centralizes each of the factor V_{i+1}/V_i .

- (b) V is H-reduced if [V, N] = 0 whenever $N \leq H$ and N acts nilpotently on V.
- (c) If H is finite, then the largest elementary abelian normal H-reduced p-subgroup of H is denoted by Y_H .

Definition 3 Let A and B be subgroups of G. The relation \ll on the subgroups of G is defined by

$$A \ll B : \iff A \subseteq C_G(Y_A)B$$
 and $Y_A \leq Y_B$.

Furthermore, we define

$$A^{\dagger} := C_G(Y_A)A$$
$$\mathcal{S}^{\dagger} = \{L \le G \mid L = L^{\dagger}\} = \{L \le G \mid C_G(Y_L) \le L\}$$

Lemma 4 (a) For all $L \leq G$, $A \ll A^{\dagger}$ and $A^{\dagger} \in S^{\dagger}$.

(b) \ll is reflexive and transitive.

(c) Restricted to S^{\dagger} , \ll is a partial ordering.

Definition 5 $S^{\dagger}(S) = \{L \in S^{\dagger} \mid S \leq L\}$ and $\mathcal{F}(S)$ is the set of maximal elements of \ll in $S^{\dagger}(S)$.

Definition 6 Let Q be a p-subgroup of a finite group G. We say that Q is **large subgroup** of G provided that $C_G(Q) \leq Q$ and

 $Q \leq N_G(A)$

for all $1 \neq A \leq Z(Q)$.

Theorem 7 (Structure Theorem)

Let p be a prime, G be a finite \mathcal{K}_p -group of local characteristic p. Suppose that Q is a large p-subgroup of G and $Q \leq S \in Syl_p(G)$. Let $M \in \mathcal{F}(S)$ with $Q \not \leq M$. Put $M^\circ = \langle Q^M \rangle$, $\overline{M} = M/C_M(Y_M)$ and $I = [Y_M, M^\circ]$.

Suppose that $Y_M \leq O_p(N_G(Q))$. Then one the following holds.

- 1. $\overline{M^{\circ}} \cong SL_n(q), Sp_{2n}(q)$ or $Sp_4(2)'$ and I is the corresponding natural module.
- 2. There exists a normal subgroup K of \overline{M} such that

(a) $K = K_1 \times \cdots \times K_r$, $K_i \cong Sl_2(q)$ and

 $Y_M = V_1 \times \cdots \times V_r$

where $V_i := [Y_M, K_i]$ is a natural K_i -module.

(b) Q permutes the K_i 's transitively.

Suppose that $Y_M \nleq O_p(N_G(Q))$. Then one of the following holds:

(a) There exists a normal subgroup K of \overline{M} such that $K = K_1 \circ K_2$ with $K_i \cong SL_{m_i}(q)$, $Y_M \cong V_1 \otimes V_2$ where V_i is a natural module for K_i and $\overline{M^\circ}$ is one of K_1, K_2 or $K_1 \circ K_2$.

$\overline{M^{\circ}}$	p	Ι		
$SL_n(q)$	p	natural		
$SL_n(q)$	p	\bigwedge^2 (natural)		
$SL_n(q)$	p	S ² (natural)		
$SL_n(q^2)$	p	$natural\otimesnatural^q$		
3Alt(6),3Sym(6),	2	2 ⁶		
$\Gamma SL_2(4), \Gamma GL_2(4)$	2	natural		
$Sp_{2n}(q)$	2	natural		
$\Omega^\pm_n(q)$	p	natural		
$O_{4}^{+}(2)$	2	2 natural		
$\Omega_{10}^{\pm}(q)$	2	half-spin		
$E_6(q)$	p	q^{27}		
Mat ₁₁	3	3 ⁵		
$2 Mat_{12}$	3	3 ⁶		
Mat ₂₂	2	2 ¹⁰		
Mat ₂₄	2	2^{11}		

(b) $(\overline{M^{\circ}}, p, I)$ is as given in the following table:

2F-stability

Definition 8 Let A be an elementary abelian pgroup and V a finite dimensional GF(p)A-module. Then A is

- (a) quadratic on V if [V, A, A] = 0,
- (b) **cubic** on V if [V, A, A, A] = 0,
- (c) nearly quadratic on V if A is cubic and

$$[V, A] + C_V(A) = [v, A] + C_V(A)$$

for every $v \in V \setminus [V, A] + C_V(A)$,

- (d) an offender on V if $|V/C_V(A)| \leq |A/C_A(V)|$,
- (e) a 2*F*-offender if $|V/C_V(A)| \le |A/C_A(V)|^2$,
- (f) non-trivial on V if $[V, A] \neq 0$.

Let A be an elementary abelian p-subgroup A of G. Then A is F-stable in G if none of the elementary abelian p-subgroups of $N_G(A)/C_G(A)$ are non-trivial offenders on A.

Similarly, A is 2F-stable in G if none of the elementary abelian p-subgroups of $N_G(A)/C_G(A)$ are non-trivial nearly quadratic 2F-offenders on A. Let H be a finite group, p a prime and V an elementary abelian p-subgroup of H. Suppose that

- (i) H is of characteristic p.
- (ii) $V \nleq O_p(H)$.
- (iii) V is weakly closed in H.

Choose $V \leq L \leq H$ minimal with $V \nleq O_p(L)$.

Put $A := \langle (V \cap O_p(L))^L \rangle$. Then $[V, A] \neq 1$ and

A is a nearly quadratic 2F-offender on V

Definition 9 Let S be Sylow p-subgroup of G.

 $B(S) := C_S(\Omega_1 Z(J(S)))$

 $C^*(G,S) := \langle C_G(\Omega_1 \mathsf{Z}(S))), N_G(C) \mid 1 \neq C \text{ char } B(S) \rangle$

Definition 10 Let G be a finite group and $H \leq G$.

- (a) H is called a **parabolic subgroup** of G if H contains a Sylow p-subgroup of G.
- (b) G has parabolic characteristic p if all p-local, parabolic subgroups of G have characteristic p.

Theorem 11 Let G be a finite group of parabolic characteristic p and $S \in Syl_p(G)$. Suppose $M \in \mathcal{F}(S)$ such that Y_M is 2F-stable. Then

- (a) $C^*(G,S) \leq M$.
- (b) $C^*(H,T) \leq H \cap M < H$ for all $H \leq G$ with $B(S) \leq H$ and $H \nleq N$, where $B(S) \leq T \in Syl_p(H)$.
- (c) If $N \in \mathcal{F}(S)$ with $N \neq M$, then Y_N is not *F*-stable.

Corollary 12 Let G be a finite group of parabolic characteristic p and $S \in Syl_p(G)$. If S is contained in at least two maximal p-local subgroups of G, then there exists $M \in \mathcal{F}(S)$ such that Y_M is not 2F-stable.

The Fitting Submodule

Let \mathbb{F} be a field, H a finite group and V a finite dimensional $\mathbb{F}H$ -module.

Definition 13

- (a) $\operatorname{rad}_V(H)$ is the intersection of the maximal $\mathbb{F}H$ -submodules of V
- (b) Let W be an $\mathbb{F}H$ submodule of V and $N \leq H$. Then W is N-quasisimple if W is H-reduced, $W/\operatorname{rad}_W(H)$ is simple for $\mathbb{F}H$, W = [W, N] and N acts nilpotently on $\operatorname{rad}_W(H)$.
- (c) $S_V(H)$ is the sum of all simple $\mathbb{F}H$ -submodules of V.
- (d) $\mathsf{E}_{H}(V) := \mathsf{C}_{\mathsf{F}^{*}(H)}(\mathsf{S}_{V}(H)).$
- (e) W is a **component** of V if either W is a simple $\mathbb{F}H$ -submodule with $[W, F^*(H)] \neq 0$ or W is an $\mathsf{E}_H(V)$ -quasisimple $\mathbb{F}H$ -submodule.
- (f) The **Fitting submodule** $F_V(H)$ of V is the sum of all components of V.
- (g) $\mathsf{R}_V(H) := \sum \operatorname{rad}_W(H)$, where the sum runs over all components W of V

- **Theorem 14** (a) The Fitting submodule $F_V(H)$ is *H*-reduced.
- (b) $\mathsf{R}_V(H)$ is a semisimple $\mathbb{F} \mathsf{F}^*(H)$ -module.
- (c) $\mathsf{R}_V(H) = \mathsf{rad}_{\mathsf{F}_V(H)}(H).$
- (d) $F_V(H)/R_V(H)$ is a semisimple $\mathbb{F}H$ -module

Theorem 15 Let V be faithful and H-reduced. Then also $F_V(H)$ and $F_V(H)/R_V(H)$ are faithful and H-reduced.

Definition 16 Let A be a subgroup of G such that $A/C_A(V)$ is an elementary abelian p-group. A is a **best offender** of G on V if $|B| \cdot |C_V(B)| \le |A| \cdot |C_V(A)|$ for every $B \le A$.

Definition 17 The normal subgroup of G generated by the best offenders of G on V is denoted by $J_G(V)$.

A $J_G(V)$ -component is non-trivial subgroup K of $J_G(V)$ minimal with respect to $K = [K, J_G(V)]$.

Theorem 18 (The Other $\mathcal{P}(G, V)$ -Theorem.)

Suppose that V is a faithful finite dimensional, reduced \mathbb{F}_pG -module. Then

[E, K] = 1 and [V, E, K] = 0

for any two distinct $J_G(V)$ -components E and K.

Definition 19 A finite group is a CK-group if all its compositions factors are known finite simple groups.

Theorem 20 (FF-Module Theorem, Guralnick-Malle) Let M be a finite CK group with $F^*(M)$ be quasisimple and V a faithful simple \mathbb{F}_pM -module. Suppose that $M = J_M(V)$.

Then (M, p, V) is one of the following:

M	p	V		
$SL_n(q)$	p	natural		
$Sp_{2n}(q)$	p	natural		
$SU_n(q)$	p	natural		
$\Omega^\epsilon_n(q)$	p	natural		
$O_{2n}^\epsilon(q)$	2	natural		
$G_2(q)$	2	q^{6}		
$SL_n(q)$	p	Λ^2 (natural)		
	ľ			
$\operatorname{Spin}_7(q)$	p	Spin		
Spin ₇ (q) Spin ₁₀ (q)	p p	Spin Spin		
$Spin_7(q)$ $Spin_{10}^+(q)$ 3. Alt(6)	р р 2	Spin Spin 2 ⁶		
Spin ₇ (q) Spin ₁₀ (q) 3. Alt(6) Alt(7)	р р 2 2	Spin Spin 2 ⁶ 2 ⁴		
$Spin_{7}(q)$ $Spin_{10}^{+}(q)$ $3. Alt(6)$ $Alt(7)$ $Sym(n)$	<pre>p p 2 2 2</pre>	Spin Spin 2 ⁶ 2 ⁴ natural		

Theorem 21 (J-Module Theorem) Let M be a finite $C\mathcal{K}$ -group, V a faithful, reduced \mathbb{F}_pM -module. Let $J = J_V(M)$. Let $\mathcal{J} = \mathcal{J}_V(M)$ be the set of J_V -components of V. Put $W = [V, \mathcal{J}]C_V(\mathcal{J})/C_V(\mathcal{J})$ and let $K \in \mathcal{J}$.

- (a) K is either quasisimple or p = 2 or 3 and $K \cong SL_2(p)'$.
- (b) [V, K, L] = 0 for all $K \neq L \in \mathcal{J}$.
- (c) $W = \bigoplus_{K \in \mathcal{J}} [W, K].$
- (d) $J^p J' = O^p(J) = F^*(J) = \not (\mathcal{J}.$
- (e) W is a semisimple $\mathbb{F}_p J$ -module.

(f) Let $J_K = J/C_J([W, K])$. Then $K \cong O^p(J_K)$ and one of the following holds:

- 1. [W, K] is a simple K-module and $(J_K, [W, K])$ fullfills the assumptions and so also the conclusion of Theorem 20.
- 2. J_k , and [W, K] are as follows (where N denotes a natural module and N^* its dual):

J_K	[W, K]	conditions
$SL_n(q)$	$N^r\oplus N^{*s}$	$\sqrt{r} + \sqrt{s} \le \sqrt{n}$
$Sp_{2n}(q)$	N^r	$r \leq n$
$SU_n(q)$	N^r	$r \leq rac{n}{4}$
$\Omega^\epsilon_n(q)$	N^r	$r \leq rac{n-2}{4}$
$O_{2n}^\epsilon(q)$	N^r	$p = 2, r \leq \frac{2n-2}{4}$

Nearly Quadratic Modules

Lemma 22 Let V be a nearly quadratic, but not quadratic $\mathbb{F}A$ -module. Let X and Y be $\mathbb{F}A$ -submodules of V such that

$$V = X \oplus Y$$

Then A centralizes X or Y.

Theorem 23 Let \mathbb{F} be field, H a group and V be a faithful semisimple $\mathbb{F}H$ -module. Let \mathcal{Q} be the set of nearly quadratic, but not quadratic subgroups of H. Suppose that $H = \langle \mathcal{Q} \rangle$. Then there exists a partition $(\mathcal{Q}_i)_{i \in I}$ of \mathcal{Q} such that

(a) $H = \bigoplus_{i \in I} H_i$, where $H_i = \langle Q_i \rangle$.

(b)
$$V = C_V(H) \oplus \bigoplus_{i \in I} [V, H_i].$$

(c) For each $i \in I$, $[V, H_i]$ is a simple $\mathbb{F}H_i$ -module.

Theorem 24 Let H be a finite group, and V a faithful simple \mathbb{F}_pH -module. Suppose that H is generated by elementary abelian, nearly quadratic, but not quadratic subgroups of H.

Let W a simple $\mathbb{F}_p F^*(H)$ -submodule of V and

$$\mathbb{K} = \mathsf{End}_{\mathsf{F}^*(H)}(W).$$

Then H, V, W, \mathbb{K} and $H/C_H(\mathbb{K})$ as follows:

Н	V	W	\mathbb{K}	$H/C_H(\mathbb{K})$
$(C_2 \wr \operatorname{Sym}(n))'$	\mathbb{F}_3^n	\mathbb{F}_3	\mathbb{F}_3	_
$SL_n(\mathbb{F}_2)\wr C_2$	$\mathbb{F}_2^n\oplus\mathbb{F}_2^n$	\mathbb{F}_2^n	\mathbb{F}_2	_
$SL_2(\mathbb{F}_2) imesSL_2(\mathbb{F}_2)$	$\mathbb{F}_2^2\otimes\mathbb{F}_2^2$	\mathbb{F}_4	\mathbb{F}_4	_
Frob(39)	\mathbb{F}_{27}	V	\mathbb{F}_{27}	C_3
$\GammaGL_n(\mathbb{F}_4)$	\mathbb{F}_4^n	V	\mathbb{F}_4	C_2
$FSL_n(\mathbb{F}_4)$	\mathbb{F}_{4}^n	V	\mathbb{F}_4	C_2
3 [.] Sym(6)	\mathbb{F}_4^3	V	\mathbb{F}_4	C_2
$SL_n(\mathbb{K})\circSL_m(\mathbb{K})$	$\mathbb{K}^n\otimes\mathbb{K}^m$	V	any	1
(<i>C</i> ₂ ≀ Sym(4))′	\mathbb{F}_3^4	V	\mathbb{F}_3	1
F*(H) quasisimple	?	V	?	1