The Structure Theorem and Its Spinoffs

work in progress
joint with
Bernd Stellmacher and Gernot Stroth

Groups of local characteristic p

Let G be finite group and p a prime.
Definition $1 G$ has characteristic p if

$$
C_{G}\left(O_{p}(G)\right) \leq O_{p}(G)
$$

H is a p-local subgroup of G if $H=N_{G}(P)$ for some non-trivial p-subgroup of G.
G has local characteristic p if all p-local subgroups of G have characteristic p.
G is a \mathcal{K}_{p}-group if the composition factors of the p locals subgroups of G are known finite simple groups.

Goals:

1. Understand the finite groups of local characteristic p.
2. Classify \mathcal{K}_{p}-groups of local characteristic p whose p-local structure is not too small.

The Structure Theorem

Definition 2 Let H be group, \mathbb{F} a field and V an $\mathbb{F} H$-module.
(a) H acts nilpotently on V if there exists an ascending series

$$
0=V_{0} \leq V_{1} \leq V_{2} \ldots, V_{n-1} \leq V_{n}
$$

of $\mathbb{F} H$-submodules of V such that H centralizes each of the factor V_{i+1} / V_{i}.
(b) V is H-reduced if $[V, N]=0$ whenever $N \unlhd H$ and N acts nilpotently on V.
(c) If H is finite, then the largest elementary abelian normal H-reduced p-subgroup of H is denoted by Y_{H}.

Definition 3 Let A and B be subgroups of G. The relation \ll on the subgroups of G is defined by
$A \ll B: \Longleftrightarrow A \subseteq C_{G}\left(Y_{A}\right) B$ and $Y_{A} \leq Y_{B}$.
Furthermore, we define

$$
\begin{gathered}
A^{\dagger}:=C_{G}\left(Y_{A}\right) A \\
\mathcal{S}^{\dagger}=\left\{L \leq G \mid L=L^{\dagger}\right\}=\left\{L \leq G \mid C_{G}\left(Y_{L}\right) \leq L\right\}
\end{gathered}
$$

Lemma 4 (a) For all $L \leq G, A \ll A^{\dagger}$ and $A^{\dagger} \in \mathcal{S}^{\dagger}$.
(b) \ll is reflexive and transitive.
(c) Restricted to $\mathcal{S}^{\dagger}, \ll$ is a partial ordering.

Definition $5 \mathcal{S}^{\dagger}(S)=\left\{L \in \mathcal{S}^{\dagger} \mid S \leq L\right\}$ and $\mathcal{F}(S)$ is the set of maximal elements of \ll in $\mathcal{S}^{\dagger}(S)$.

Definition 6 Let Q be a p-subgroup of a finite group G. We say that Q is large subgroup of G provided that $C_{G}(Q) \leq Q$ and

$$
Q \unlhd N_{G}(A)
$$

for all $1 \neq A \leq Z(Q)$.

Theorem 7 (Structure Theorem)

Let p be a prime, G be a finite \mathcal{K}_{p}-group of local characteristic p. Suppose that Q is a large p subgroup of G and $Q \leq S \in \operatorname{Syl}_{p}(G)$. Let $M \in \mathcal{F}(S)$ with $Q \nexists M$. Put $M^{\circ}=\left\langle Q^{M}\right\rangle, \bar{M}=M / C_{M}\left(Y_{M}\right)$ and $I=\left[Y_{M}, M^{\circ}\right]$.

Suppose that $Y_{M} \leq O_{p}\left(N_{G}(Q)\right)$. Then one the following holds.

1. $\overline{M^{\circ}} \cong S L_{n}(q), S p_{2 n}(q)$ or $S p_{4}(2)^{\prime}$ and I is the corresponding natural module.
2. There exists a normal subgroup K of \bar{M} such that
(a) $K=K_{1} \times \cdots \times K_{r}, K_{i} \cong S l_{2}(q)$ and

$$
Y_{M}=V_{1} \times \cdots \times V_{r}
$$

where $V_{i}:=\left[Y_{M}, K_{i}\right]$ is a natural K_{i}-module.
(b) Q permutes the K_{i} 's transitively.

Suppose that $Y_{M} \notin O_{p}\left(N_{G}(Q)\right)$. Then one of the following holds:
(a) There exists a normal subgroup K of \bar{M} such that $K=K_{1} \circ K_{2}$ with $K_{i} \cong S L_{m_{i}}(q), Y_{M} \cong$ $\underline{V_{1}} \otimes V_{2}$ where V_{i} is a natural module for K_{i} and $\overline{M^{\circ}}$ is one of K_{1}, K_{2} or $K_{1} \circ K_{2}$.
(b) $\left(\overline{M^{\circ}}, p, I\right)$ is as given in the following table:

$\overline{M^{\circ}}$	p	I
$\mathrm{SL}_{n}(q)$	p	natural
$\mathrm{SL}_{n}(q)$	p	Λ^{2} (natural)
$\mathrm{SL}_{n}(q)$	p	S^{2} (natural)
$\mathrm{SL}_{n}\left(q^{2}\right)$	p	natural \otimes natural ${ }^{q}$
3 Alt (6), 3 Sym(6),	2	2^{6}
$\Gamma \mathrm{SL}_{2}(4), \Gamma \mathrm{GL}_{2}(4)$	2	natural
$\mathrm{Sp}_{2 n}(q)$	2	natural
$\Omega_{n}^{ \pm}(q)$	p	natural
$\mathrm{O}_{4}^{+}(2)$	2	natural
$\Omega_{10}^{ \pm}(q)$	2	half-spin
$\mathrm{E}_{6}(q)$	p	q^{27}
Mat ${ }_{11}$	3	3^{5}
$2 \mathrm{Mat}_{12}$	3	3^{6}
Mat ${ }_{22}$	2	2^{10}
Mat 24	2	2^{11}

2F-stability

Definition 8 Let A be an elementary abelian p group and V a finite dimensional $G F(p) A$-module. Then A is
(a) quadratic on V if $[V, A, A]=0$,
(b) cubic on V if $[V, A, A, A]=0$,
(c) nearly quadratic on V if A is cubic and

$$
[V, A]+C_{V}(A)=[v, A]+C_{V}(A)
$$

for every $v \in V \backslash[V, A]+C_{V}(A)$,
(d) an offender on V if $\left|V / C_{V}(A)\right| \leq\left|A / C_{A}(V)\right|$,
(e) a $2 F$-offender if $\left|V / C_{V}(A)\right| \leq\left|A / C_{A}(V)\right|^{2}$,
(f) non-trivial on V if $[V, A] \neq 0$.

Let A be an elementary abelian p-subgroup A of G.
Then A is F-stable in G if none of the elementary abelian p-subgroups of $N_{G}(A) / C_{G}(A)$ are non-trivial offenders on A.

Similarly, A is $2 F$-stable in G if none of the elementary abelian p-subgroups of $N_{G}(A) / C_{G}(A)$ are non-trivial nearly quadratic $2 F$-offenders on A.

Let H be a finite group, p a prime and V an elementary abelian p-subgroup of H. Suppose that
(i) H is of characteristic p.
(ii) $V \nsubseteq \mathrm{O}_{p}(H)$.
(iii) V is weakly closed in H.

Choose $V \leq L \leq H$ minimal with $V \not \leq \mathrm{O}_{p}(L)$.
Put $A:=\left\langle\left(V \cap \mathrm{O}_{p}(L)\right)^{L}\right\rangle$. Then $[V, A] \neq 1$ and
A is a nearly quadratic $2 F$-offender on V

Definition 9 Let S be Sylow p-subgroup of G.

$$
B(S):=C_{S}\left(\Omega_{1} \mathrm{Z}(J(S))\right)
$$

$C^{*}(G, S):=\left\langle C_{G}\left(\Omega_{1} \mathrm{Z}(S)\right)\right), N_{G}(C) \mid 1 \neq C$ char $\left.B(S)\right\rangle$
Definition 10 Let G be a finite group and $H \leq G$.
(a) H is called a parabolic subgroup of G if H contains a Sylow p-subgroup of G.
(b) G has parabolic characteristic p if all p-local, parabolic subgroups of G have characteristic p.

Theorem 11 Let G be a finite group of parabolic characteristic p and $S \in \operatorname{Syl}_{p}(G)$. Suppose $M \in \mathcal{F}(S)$ such that Y_{M} is $2 F$-stable. Then
(a) $C^{*}(G, S) \leq M$.
(b) $C^{*}(H, T) \leq H \cap M<H$ for all $H \leq G$ with $B(S) \leq$ H and $H \not \leq N$, where $B(S) \leq T \in \operatorname{Syl}_{p}(H)$.
(c) If $N \in \mathcal{F}(S)$ with $N \neq M$, then Y_{N} is not F stable.

Corollary 12 Let G be a finite group of parabolic characteristic p and $S \in \operatorname{Syl}_{p}(G)$. If S is contained in at least two maximal p-local subgroups of G, then there exists $M \in \mathcal{F}(S)$ such that Y_{M} is not $2 F$-stable.

The Fitting Submodule

Let \mathbb{F} be a field, H a finite group and V a finite dimensional $\mathbb{F} H$-module.

Definition 13

(a) $\operatorname{rad}_{V}(H)$ is the intersection of the maximal $\mathbb{F} H-$ submodules of V
(b) Let W be an $\mathbb{F} H$ submodule of V and $N \unlhd H$. Then W is N-quasisimple if W is H-reduced, $W / \operatorname{rad}_{W}(H)$ is simple for $\mathbb{F} H, W=[W, N]$ and N acts nilpotently on $\operatorname{rad}_{W}(H)$.
(c) $\mathrm{S}_{V}(H)$ is the sum of all simple $\mathbb{F} H$-submodules of V.
(d) $\mathrm{E}_{H}(V):=\mathrm{C}_{\mathrm{F}^{*}(H)}\left(\mathrm{S}_{V}(H)\right)$.
(e) W is a component of V if either W is a simple $\mathbb{F} H$-submodule with $\left[W, \mathrm{~F}^{*}(H)\right] \neq 0$ or W is an $\mathrm{E}_{H}(V)$-quasisimple $\mathbb{F} H$-submodule.
(f) The Fitting submodule $\mathrm{F}_{V}(H)$ of V is the sum of all components of V.
(g) $\mathrm{R}_{V}(H):=\sum \operatorname{rad}_{W}(H)$, where the sum runs over all components W of V

Theorem 14 (a) The Fitting submodule $\mathrm{F}_{V}(H)$ is H-reduced.
(b) $\mathrm{R}_{V}(H)$ is a semisimple $\mathbb{F} \mathrm{F}^{*}(H)$-module.
(c) $\mathrm{R}_{V}(H)=\operatorname{rad}_{\mathrm{F}_{V}(H)}(H)$.
(d) $\mathrm{F}_{V}(H) / \mathrm{R}_{V}(H)$ is a semisimple $\mathbb{F} H$-module Theorem 15 Let V be faithful and H-reduced. Then also $\mathrm{F}_{V}(H)$ and $\mathrm{F}_{V}(H) / \mathrm{R}_{V}(H)$ are faithful and H reduced.

Definition 16 Let A be a subgroup of G such that $A / C_{A}(V)$ is an elementary abelian p-group. A is a best offender of G on V if $|B| \cdot\left|C_{V}(B)\right| \leq|A| \cdot\left|C_{V}(A)\right|$ for every $B \leq A$.

Definition 17 The normal subgroup of G generated by the best offenders of G on V is denoted by $J_{G}(V)$.

A $J_{G}(V)$-component is non-trivial subgroup K of $J_{G}(V)$ minimal with respect to $K=\left[K, J_{G}(V)\right]$.

Theorem 18 (The Other $\mathcal{P}(G, V)$-Theorem.)

Suppose that V is a faithful finite dimensional, reduced $\mathbb{F}_{p} G$-module. Then

$$
[E, K]=1 \text { and }[V, E, K]=0
$$

for any two distinct $J_{G}(V)$-components E and K.

Definition 19 A finite group is a $\mathcal{C K}$-group if all its compositions factors are known finite simple groups.

Theorem 20 (FF-Module Theorem, Guralnick-Malle)
Let M be a finite $\mathcal{C K}$ group with $F^{*}(M)$ be quasisimple and V a faithful simple $\mathbb{F}_{p} M$-module. Suppose that $M=J_{M}(V)$.

Then (M, p, V) is one of the following:

M	p	V
$\mathrm{SL}_{n}(q)$	p	natural
$\mathrm{Sp}_{2 n}(q)$	p	natural
$\mathrm{SU}_{n}(q)$	p	natural
$\Omega_{n}^{\epsilon}(q)$	p	natural
$\mathrm{O}_{2 n}^{\epsilon}(q)$	2	natural
$\mathrm{G}_{2}(q)$	2	q^{6}
$\operatorname{SL}_{n}(q)$	p	$\Lambda^{2}($ natural $)$
$\operatorname{Spin}_{7}(q)$	p	Spin
$\operatorname{Spin}_{10}^{+}(q)$	p	Spin
$3 \operatorname{Alt}^{(6)}$	2	2^{6}
$\operatorname{Alt}(7)$	2	2^{4}
$\operatorname{Sym}(n)$	2	natural
$\operatorname{Alt}(n)$	2	natural

Theorem 21 (J-Module Theorem) Let M be a finite $\mathcal{C} \mathcal{K}$-group, V a faithful, reduced $\mathbb{F}_{p} M$-module. Let $J=J_{V}(M)$. Let $\mathcal{J}=\mathcal{J}_{V}(M)$ be the set of J_{V}-components of V. Put $W=[V, \mathcal{J}] C_{V}(\mathcal{J}) / C_{V}(\mathcal{J})$ and let $K \in \mathcal{J}$.
(a) K is either quasisimple or $p=2$ or 3 and $K \cong$ $S L_{2}(p)^{\prime}$.
(b) $[V, K, L]=0$ for all $K \neq L \in \mathcal{J}$.
(c) $W=\bigoplus_{K \in \mathcal{J}}[W, K]$.
(d) $J^{p} J^{\prime}=0^{p}(J)=\mathrm{F}^{*}(J)=X \mathcal{J}$.
(e) W is a semisimple $\mathbb{F}_{p} J$-module.
(f) Let $J_{K}=J / C_{J}([W, K])$. Then $K \cong O^{p}\left(J_{K}\right)$ and one of the following holds:

1. [W, K] is a simple K-module and ($J_{K},[W, K]$) fullfills the assumptions and so also the conclusion of Theorem 20.
2. J_{k}, and $[W, K]$ are as follows (where N denotes a natural module and N^{*} its dual):

J_{K}	$[W, K]$	conditions
$\mathrm{SL}_{n}(q)$	$N^{r} \oplus N^{* s}$	$\sqrt{r}+\sqrt{s} \leq \sqrt{n}$
$\mathrm{Sp}_{2 n}(q)$	N^{r}	$r \leq n$
$\mathrm{SU}_{n}(q)$	N^{r}	$r \leq \frac{n}{4}$
$\Omega_{n}^{\epsilon}(q)$	N^{r}	$r \leq \frac{n-2}{4}$
$\mathrm{O}_{2 n}^{\epsilon}(q)$	N^{r}	$p=2, r \leq \frac{2 n-2}{4}$

Nearly Quadratic Modules

Lemma 22 Let V be a nearly quadratic, but not quadratic $\mathbb{F} A$-module. Let X and Y be $\mathbb{F} A$-submodules of V such that

$$
V=X \oplus Y
$$

Then A centralizes X or Y.
Theorem 23 Let \mathbb{F} be field, H a group and V be a faithful semisimple $\mathbb{F} H$-module. Let \mathcal{Q} be the set of nearly quadratic, but not quadratic subgroups of H. Suppose that $H=\langle\mathcal{Q}\rangle$. Then there exists a partition $\left(\mathcal{Q}_{i}\right)_{i \in I}$ of \mathcal{Q} such that
(a) $H=\bigoplus_{i \in I} H_{i}$, where $H_{i}=\left\langle\mathcal{Q}_{i}\right\rangle$.
(b) $V=C_{V}(H) \oplus \bigoplus_{i \in I}\left[V, H_{i}\right]$.
(c) For each $i \in I,\left[V, H_{i}\right]$ is a simple $\mathbb{F} H_{i}$-module.

Theorem 24 Let H be a finite group, and V a faithful simple $\mathbb{F}_{p} H$-module. Suppose that H is generated by elementary abelian, nearly quadratic, but not quadratic subgroups of H.

Let W a simple $\mathbb{F}_{p} \mathrm{~F}^{*}(H)$-submodule of V and

$$
\mathbb{K}=\operatorname{End}_{\mathrm{F}^{*}(H)}(W)
$$

Then H, V, W, \mathbb{K} and $H / C_{H}(\mathbb{K})$ as follows:

H	V	W	\mathbb{K}	$H / C_{H}(\mathbb{K})$
$\left(C_{2} \backslash \operatorname{Sym}(n)\right)^{\prime}$	\mathbb{F}_{3}^{n}	\mathbb{F}_{3}	\mathbb{F}_{3}	-
$\mathrm{SL}_{n}\left(\mathbb{F}_{2}\right) \backslash C_{2}$	$\mathbb{F}_{2}^{n} \oplus \mathbb{F}_{2}^{n}$	\mathbb{F}_{2}^{n}	\mathbb{F}_{2}	-
$\mathrm{SL}_{2}\left(\mathbb{F}_{2}\right) \times \mathrm{SL}_{2}\left(\mathbb{F}_{2}\right)$	$\mathbb{F}_{2}^{2} \otimes \mathbb{F}_{2}^{2}$	\mathbb{F}_{4}	\mathbb{F}_{4}	-
Frob(39)	\mathbb{F}_{27}	V	\mathbb{F}_{27}	C_{3}
$\left\ulcorner\mathrm{GL}_{n}\left(\mathbb{F}_{4}\right)\right.$	\mathbb{F}_{4}^{n}	V	\mathbb{F}_{4}	C_{2}
$\left\ulcorner\mathrm{SL}_{n}\left(\mathbb{F}_{4}\right)\right.$	\mathbb{F}_{4}^{n}	V	\mathbb{F}_{4}	C_{2}
3. Sym(6)	\mathbb{F}_{4}^{3}	V	\mathbb{F}_{4}	C_{2}
$\mathrm{SL}_{n}(\mathbb{K}) \circ \mathrm{SL}_{m}(\mathbb{K})$	$\mathbb{K}^{n} \otimes \mathbb{K}^{m}$	V	any	1
$\left(C_{2}\right.$ 乙 Sym(4)) ${ }^{\prime}$	\mathbb{F}_{3}^{4}	V	\mathbb{F}_{3}	1
$\mathrm{F}^{*}(H)$ quasisimple	?	V	?	1

