Groups of local characteristic p

Barbara Baumeister

Andy Chermak

Andreas Hirn

Mario Mainardis

Ulrich Meierfrankenfeld

Gemma Parmeggiani

Chris Parker

Peter Rowley

Bernd Stellmacher

Gernot Stroth
G is a finite \mathcal{K}_{p}-group, and p a fixed prime.
G has characteristic p if $C_{G}\left(O_{p}(G)\right) \leq O_{p}(G)$.
p-local subgroup: Normalizer of a nontrivial p-subgroup.
G has local characteristic p if all p-local subgroups of G have characteristic p.

Object of the talk: Describe the current status of the project to understand and classify the finite groups of local characteristic p with $O_{p}(G)=1$.

Disclaimer: For p odd we do not expect to be able to achieve a complete classification. Some groups with a relatively small p-local structure will remain unclassified. In particular, we currently have no idea how to treat the case where G has a strongly p-embedded subgroup.

Motivation

1. We are trying to understand why the p local subgroups of the finite simple groups look the way they do.
2. We hope that the classification of the groups of local characteristic 2 will serve as the first step in a third generation proof for the classification of the finite simple groups.

Future plans

1. Understand and classify all groups of parabolic characteristic p.
(Here a parabolic subgroup of G is a subgroup which contains a Sylow p-subgroup. And G is of parabolic characteritic p if all p local, parabolic subgroups of G have characteristic p.)
2. Classify all finite simple groups which are not of parabolic characteristic 2.

Characteristics of the simple groups Groups of Lie-Type

Let G be a finite simple group of Lie type defined over a field of characteristic r.

If $p=r$, then G is of local characteristic p.
If $p \neq r$ and a Sylow p-subgroup of G is not cyclic, then G is usually not of parabolic characteristic p.

Some exceptions:

$U_{3}(3) \cong G_{2}(2)^{\prime}, S p_{4}(2)^{\prime} \cong L_{2}(9), P \Omega_{5}(3) \cong$ $\Omega_{6}^{-}(2), L_{3}(4)$ and $U_{4}(3)$ all have local characteristics 2 and 3 .
$L_{4}(3)$ has parabolic characteristics 2 and 3.

Alternating groups

The alternating groups usually have no local characteristic. But Alt $\left(p^{n}+\epsilon\right), \epsilon \leq 2$ has parabolic characteristic p.

Characteristics of the sporadics

Group	local char.	parabolic char.
M_{11}	3	3
M_{12}		2,3
J_{1}		
M_{22}	2	2
J_{2}		2
M_{23}	2	2
$H S$		2
J_{3}	2	2
M_{24}	2	2
$M c L$	3	3
$H e$		2
$R u$		2,5
$S u z$		2
$O N$	7	7
$C o_{3}$		3,5
$C o_{2}$	2	3,5
$F i_{22}$	2	2
$H N$		$2,3,5$
$L y$	5	5
$T h$	2,5	$2,3,5$
$F i_{23}$		3
$C o_{1}$		$2,3,5$
J_{4}	2,11	2,11
$F i_{24}^{\prime}$		$2,3,7$
B		$2,3,5$
M		$2,3,5,7,13$

Here we only listed cases with non-cyclic Sylow psubgroup.

Notation

G is a group of local characteristic p with $O_{p}(G)=1$.
$\mathcal{L}=\mathcal{L}_{G}=\left\{L \leq G \mid C_{G}\left(O_{p}(L)\right) \leq O_{p}(L)\right\}$
Note that \mathcal{L} contains all the p-local subgroups of G.
\mathcal{M} is the set of maximal members of \mathcal{L} (by inclusion), i.e., the set of maximal p-local subgroups of G.

If \mathcal{T} is a set of subgroups of G and $A \leq G$, then
$\mathcal{T}(A)=\{T \in \mathcal{T} \mid A \leq T\}$ and
$\mathcal{T}_{A}=\{T \in \mathcal{T} \mid T \leq A\}$.
S is a Sylow p-subgroup of G.
$Z=\Omega_{1} Z(S)$.
p-core of G with respect to $S:\langle\mathcal{M}(S)\rangle$.

The Pushing Up Theorem

Let H be a finite group and $T \in \operatorname{Syl}_{p}(H)$. The group

$$
P_{H}(T):=O^{p^{\prime}}\left(C_{H}\left(\Omega_{1} Z(T)\right)\right)
$$

is called the point-stabilizer of H with respect to T.

Theorem Let T be a p-group and let Σ be a set of groups such that for all $L \in \Sigma$
i) L is of characteristic p.
ii) $T \leq L$ and $T=O_{p}\left(N_{L}(T)\right)$.
iii) $N_{L}(T)$ contains a point stabilizer of L.

Suppose that no non-trivial subgroup of T is normal in all $L \in \Sigma$. Then there exist $L \in \Sigma$ and $H \leq L$ with $\mathrm{B}(T) \leq H$ such $O^{p}(H)$ has one of the following structures
$q^{n} S L_{n}(q)^{\prime} ;$
$q^{2 n} S p_{2 n}(q)^{\prime}, p$ odd;
$q^{1+2 n} S p_{2 n}(q)^{\prime}, p=2$;
$2^{6} G_{2}(2)^{\prime}, p=2 ;$
$q^{1+6+8} S p_{6}(q), p=2 ;$
$2^{1+4+6} L_{4}(2), p=2$; or
$q^{1+2+2} S L_{2}(q)^{\prime}, p=3$.
(where q is a power of p)

Strongly p-embedded subgroups

We say that H is a strongly p-embedded subgroup of G if $H \neq G$ and $H \cap H^{g}$ is a p^{\prime}-group for all $g \in G \backslash H$.

An elementary argument shows that G has a strongly p-embedded subgroup if and only if $\left\langle N_{G}(T) \mid 1 \neq T \leq S\right\rangle$ is a proper subgroup of G.

Bender classified all groups with a strongly 2-embedded subgroup.

For $p \neq 2$ no such theorem exists (independent from the CFSG).

The Open "Strongly p-embedded"-Problem

Determine all groups (of local characteristic p) with a strongly p-embedded subgroup and non-cyclic Sylow p-groups.

Proper p-core

Suppose now that G has no strongly p embedded subgroup but the p-core $H:=$ $\langle\mathcal{M}(S)\rangle=\left\langle N_{G}(T) \mid 1 \neq T \unlhd S\right\rangle$ is a proper subgroup of G.

Choose $L \in \mathcal{L}$ such that, in consecutive order, $L \notin H,|L \cap H|_{p}$ maximal, and L is minimal. An application of the Pushing Up Theorem gives us that $O^{p}(L) \sim$ $q^{\epsilon} q^{2} S L_{2}(q)^{\prime}, \epsilon \in\{0,1\}$.

For $p=2$, Andreas Hirn is currently trying to obtain a contradiction in this situation.

The case $G=\langle\mathcal{M}(S)\rangle$

From now on we assume that G is equal to its p core.

The basic idea here is to determine the structure of sufficiently many members L of $\mathcal{L}(S)$ to be able to identify a geometry on which G acts.

Let H and \widehat{H} be finite groups and T and \widehat{T} Sylow p-subgroups of H and \widehat{H}, respectively. We say that H has residual parabolic type \widehat{H} if there exists a subset \wedge of $\mathcal{L}_{H}(T)$ with $H=\langle\Lambda\rangle$ and an inclusion preserving bijection $\mathcal{L}_{\widehat{H}}(\widehat{T}) \rightarrow \Lambda, \widehat{L} \mapsto L$ such that for all $\widehat{L} \in \mathcal{L}_{\widehat{H}}(T), L / O_{p}(L) \cong \widehat{L} / O_{p}(\widehat{L})$.

Often the residual parabolic type of a group is enough to identify it. So one of our main tasks is to derive information about $L / O_{p}(L)$ for at least some members of $\mathcal{L}(S)$. Our favorite method for this is to study the action of L on p-reduced normal subgroups, i.e. elementary abelian normal p-subgroups Y of L with

$$
O_{p}\left(L / C_{L}(Y)\right)=1
$$

Y_{L} is the largest p-reduced subgroup of L.

Modules

Let H be a finite group, V a p-reduced $\mathbb{F}_{p} H$-module and A an elementary abelian p-subgroup of V with $[V, A] \neq 1$.

If $\left|V / C_{V}(A)\right| \leq\left|A / C_{A}(V)\right|$, then A is an offender on V, and V is a FF-module for G.

If (i) A is an offender on $C_{V}(a)$, for all $a \in$ $A \backslash C_{A}(V) \quad$ (ii) $[V, A, A, A]=1$ and (iii) $\left|V / C_{V}(A)\right| \leq\left|A / C_{A}(V)\right|^{2}$, then A is near offender on V, and V is a near FF-module for G.

If $[V, A, A]=1$, then A is quadratic on V, and V is a quadratic module for G.

Note that FF- and near FF-modules are special cases of 2 F-modules $\left(\left|V / C_{V}(A)\right| \leq\right.$ $\left.\left|A / C_{A}(V)\right|^{2}\right)$. So a list of FF-modules and near $2 F$-modules for quasi-simple groups can be easily obtained once the work of Guralnick and Malle on 2F-modules is complete.

Unfortunately the action of L on Y_{L} does not yield any information about $C_{L}\left(Y_{L}\right)$. An elementary argument shows that $Z:=$ $\Omega_{1} \mathrm{Z}(S) \leq Y_{L}$ and so $C_{L}\left(Y_{L}\right) \leq C_{G}(Z)$.

So to make up for this misfortune we also study the group $N_{G}(Z)$. For this we pick

$$
\widetilde{C} \in \mathcal{M} \text { with } N_{G}(Z) \leq \widetilde{C}
$$

For a group H, define $F_{p}^{*}(H)$ by

$$
F_{p}^{*}(H) / O_{p}(H)=F^{*}\left(H / O_{p}(H)\right) .
$$

To work with a group which is a little bit more manageable than \widetilde{C} we define

$$
E:=O^{p}\left(F_{p}^{*}\left(C_{\widetilde{C}}\left(Y_{\widetilde{C}}\right)\right)\right)
$$

We now distinguish two cases:
E-uniqueness $(E!): \mathcal{M}(E)=\{\widetilde{C}\}$
and
non E-uniqueness $(\neg E!):|\mathcal{M}(E)| \geq 2$.

$\neg E$!, an example

Here is an example for the $\neg E$! case which illustrates why we look at overgroups of E despite the fact that these overgroups might not contain a Sylow p-subgroup.

Let $p=2$ and $G=F_{4}(q) \cdot 2$, where the 2 induces a graph automorphism. We would like to identify G via the F_{4}-building

But due to the graph automorphisms, not all of the parabolics of $F_{4}(q)$ are contained in parabolics of G. Now $E \leq F_{4}(q)$, namely E is the \Longleftarrow-parabolic. So E is contained in two different maximal parabolics M_{1} and M_{4} of $F_{4}(q)$.

Let $\Sigma=\left\{M_{1}, M_{4}\right\}$ and $R=O_{2}\left(M_{1} \cap M_{4}\right)$. Then it is not too difficult to see that R and Σ fulfill the assumption of the Pushing Up Theorem.

$\neg E!$, a second example

Consider $G=E_{8}(q) \imath \operatorname{Sym}\left(p^{k}\right)$. Here E helps us to detect that G is not of local characteristic p.

Let H be the normalizer of a root subgroup in $E_{8}(q)$, i.e. the E_{7}-parabolic. Then \widetilde{C} is $H 2 \operatorname{Sym}\left(p^{k}\right)$, and E is a direct product of p^{k} copies of H. Hence, E is contained in the p-local subgroup L which is a direct product of $p^{k}-1$ copies of H and $E_{8}(q)$.

The general idea of the $\neg E$! case is to find a subgroup R of G and $\Sigma \subseteq \mathcal{L}(R E)$ such that we can apply the Pushing Up Theorem to R and Σ.

For this we make the following choices:
X is a point-stabilizer of some subnormal subgroup of \widetilde{C}, such that X is maximal with respect to $\mathcal{M}(E X) \neq\{\widetilde{C}\}$.

Next choose L such that in consecutive order:
$L \in \mathcal{L}(E X)$ with $L \notin \widetilde{C}$.
$|\widetilde{C} \cap L|_{p}$ is maximal.
$S_{\widetilde{C}}(L)$ is maximal, here $S_{\widetilde{C}}(L)$ is the largest subnormal subgroup of \widetilde{C} contained in L.
$\widetilde{C} \cap L$ is maximal.
L is minimal.

Define $R=O_{p}(L \cap \widetilde{C})$. The following two situations need to be treated differently:
$(\mathrm{PU}-\mathrm{L}): \quad N_{\widetilde{C}}(R) \neq L \cap \widetilde{C}$.
$(\neg \mathrm{PU}-\mathrm{L}): \quad N_{\widetilde{C}}(R)=L \cap \widetilde{C}$.
In the (PU-L)-Case put $H=N_{\widetilde{C}}(R)$ and $\Sigma=L^{H}$. A short and elementary argument shows that we can apply the Pushing Up Theorem.

The (\neg PU-L)-Case is more difficult. Here we choose an $\widetilde{C} \cap L$ invariant subnormal subgroup N of \widetilde{C} minimal with respect to $N \not \leq L$. Put $H=N(\widetilde{C} \cap L)$ and $\Sigma=(H, L)$. If $Y_{H} \leq O_{p}(L)$ a rather lengthy amalgam type argument shows that the Pushing Up Theorem* can be applied. This leaves us with
*Actually one needs a stronger (not yet finished) version of the Pushing Up Theorem than stated above

The Open " $\neg E!, b=1$ "-Problem

In the $\neg E$! and ($\neg \mathrm{PU}-\mathrm{L}$) Case, determine the structure of H and L if $Y_{H} \not 又 O_{p}(L)$.

$E!$

We usually apply E ! through an intermediate property we call Q-uniqueness. Let $Q=O_{p}(\widetilde{C})$.
(Q !) $\quad C_{G}(x) \leq \widetilde{C}$ for all $1 \neq x \in C_{G}(Q)$.

An application of Thompson's $P \times Q$-Lemma shows that $[x, E]=1$ for all $x \in \Omega_{1} Z(Q)$. Hence $E \leq C_{G}(x)$ and so E ! implies $C_{G}(x) \leq$ \widetilde{C}. Thus
E ! implies Q !

Elementary consequences of Q !

For $L \in \mathcal{L}$ define $L^{\circ}=\left\langle Q^{g} \mid g \in G, Q^{g} \leq L\right\rangle$.
Lemma Suppose Q !.
(a) $\widetilde{C}^{\circ}=Q$, in particular, any p-subgroup of G contains at most one conjugate of Q.
(b) If $L \in \mathcal{L}$ with $Q \leq O_{p}(L)$, then $L \leq \widetilde{C}$. In particular, if $1 \neq X \leq Z(Q)$ then $N_{G}(X) \leq \widetilde{C}$.
(c) If $Q_{1}, Q_{2} \in Q^{G}$ with $Z\left(Q_{1}\right) \cap Z\left(Q_{2}\right) \neq 1$, then $Q_{1}=Q_{2}$.
(d) Let $L \in \mathcal{L}$ with $Q \leq L$. Then
(a) $L^{\circ}=\left\langle Q^{L^{\circ}}\right\rangle$
(b) $L=L^{\circ}(L \cap \widetilde{C})$.
(c) $\left[C_{L}\left(Y_{L}\right), L^{\circ}\right] \leq O_{p}(L)$.
(d) If L acts transitively on Y_{L}^{\sharp}, then $L^{\circ}=N_{G}\left(Y_{L}\right)^{\circ}$.
(e) If $L^{\circ} \neq Q$, then $C_{Y_{L}}\left(L^{\circ}\right)=1$.

To state our first Structure Theorem we need a few more definitions.

A finite group L is p-minimal if a Sylow p-subgroup of L is contained in a unique maximal subgroup of L but is not normal in L.
$P \in \mathcal{L}$ is a minimal parabolic subgroup if P is parabolic and p-minimal.
\mathcal{P} denotes the set of minimal parabolics of G.

For $\mathcal{T} \subseteq \mathcal{L}$ let $\mathcal{T}^{\circ}=\left\{T \in \mathcal{T} \mid O^{p}(T) \leq T^{\circ}\right\}$.
It is an easy consequence of the definitions that if $P \in \mathcal{P}(S)$, then $P \in \mathcal{P}^{\circ}$ if and only if $P \notin \widetilde{C}$.

Let $P \in \mathcal{P}^{\circ}(S)$. We say that $g b(P)>1$ if $Y_{M} \leq Q$ for all $M \in \mathcal{L}(P)$. Otherwise we say $g b(P)=1$.

The Structure Theorem for $Y_{M} \leq Q$

Theorem Suppose that Q ! holds and that $P \in \mathcal{P}^{\circ}(S)$ with $g b(P)>1$. Let $M \in \mathcal{L}(P)$ with M° maximal. Then one of the following two cases holds for $\bar{M}:=M / C_{M}\left(Y_{M}\right)$ and $M_{0}:=M^{\circ} C_{S}\left(Y_{M}\right)$:
1.
(a) $\overline{M_{0}} \cong S L_{n}\left(p^{k}\right)$ or $S p_{2 n}\left(p^{k}\right)$ and $C_{\bar{M}}\left(\overline{M_{0}}\right)$ $\cong C_{r}, \quad r \mid p^{k}-1$, or $\bar{M} \cong S p_{4}(2)$ and $\overline{M_{0}} \cong S p_{4}(2)^{\prime}($ and $p=2)$,
(b) $\left[Y_{M}, M_{0}\right]$ is the corresponding natural module for $\overline{M_{0}}$,
(c) $C_{M_{0}}\left(Y_{M}\right)=O_{p}\left(M_{0}\right)$, or $p=2$ and $M_{0} / O_{2}\left(M_{0}\right) \cong 3 S p_{4}(2)^{\prime}$.
2.
(a) $P=M_{0} S, Y_{M}=Y_{P}$, and there exists a unique normal subgroup P^{*} of P containing $O_{p}(P)$ such that
(b) $\overline{P^{*}}=K_{1} \times \cdots \times K_{r}, K_{i} \cong S L_{2}\left(p^{k}\right), Y_{M}=$ $V_{1} \times \cdots \times V_{r}$, where $V_{i}:=\left[Y_{M}, K_{i}\right]$ is a natural K_{i}-module,
(c) Q permutes the subgroups K_{i} of (b) transitively,
(d) $O^{p}(P)=O^{p}\left(P^{*}\right)=O^{p}\left(M_{0}\right)$, and $P^{*} C_{M}\left(Y_{P}\right)$ is normal in M,
(e) either $C_{M^{\circ}}\left(Y_{P}\right)=O_{p}\left(M_{0}\right)$, or $p=2$, $r>1, K_{i} \cong S L_{2}(2)$, and $C_{M_{0}}\left(Y_{P}\right) / O_{2}\left(M_{0}\right)$
$=Z\left(M_{0} / O_{2}\left(M_{0}\right)\right)$ is a 3-group.

The Structure Theorem for $Y_{M} \notin Q$.

Theorem Let $M \in \mathcal{L}(S)$ with M° maximal. Assume that $Y_{M} \notin Q$. Set $K=F^{*}\left(M^{\circ} S / C_{M^{\circ} S}\left(Y_{M}\right)\right)$. Then one of the following holds:

1. K is quasisimple and isomorphic to $S L(n, q)$, $S p(2 n, q)^{\prime}, \Omega^{ \pm}(n, q)$, or $E_{6}(q), q$ a power of p. In case of $K \cong S L_{n}(q)$ or $E_{6}(q)$ no element in $M^{\circ} S$ induces diagram automorphisms.
2. $K \cong S L_{n}(q)^{\prime} * S L_{m}(q)^{\prime}, q$ a power of p. Further Y_{M} is the tensor product module.
3. $p=2$ and $K \cong 3 A_{6}, M_{22}$ or M_{24}.
4. $p=3$ and $K \cong M_{11}$ or $2 M_{12}$.
5. $M^{\circ} S$ is a minimal parabolic.

Further Y_{M} is a near $F F$-module, and except for case 5, Y_{M} contains a $M^{\circ} S$ submodule V as described on the next slide.

K	prime	module	example
$S L_{n}(q)$	p	ext. square	$\Omega_{2 n}(q)$
$S L_{n}(q)$	p	sym. square	$S p_{2 n}(q)$
$S L_{n}\left(q^{2}\right)$	p	$V\left(\lambda_{1}\right) \otimes V\left(\lambda_{1}^{\sigma}\right)$	$S U_{2 n}(q)$
A_{6}	2	natural	Suz
$3 A_{6}$	2	6-dim	M_{24}
$S p_{8}(2)$	2	8-dim	B
$\Omega_{n}^{ \pm}(q)$	p	natural	$\Omega_{n+2}^{ \pm}(q)$
$\Omega_{10}^{ \pm}(q)$	2	half spin	$E_{6}(q)$
$E_{6}(q)$	p	$V\left(\lambda_{1}\right)$	$E_{7}(q)$
M_{11}	3	5-dim	$C o_{3}$
$2 M_{12}$	3	6-dim	$C o_{2}$
M_{22}	2	10-dim	$M(22)$
M_{24}	2	11-dim	$M(24)$

The P !-Theorems

The P!-Theorem,I Suppose that Q ! holds and $\left\langle\mathcal{P}^{\circ}(S)\right\rangle \notin \mathcal{L}$. Then
(a) p is odd.
(b) $Q=\mathrm{B}(S), \widetilde{C}=N_{G}(\mathrm{~B}(S))$ and Q has order q^{3}, q a power of p.
(c) $P^{\circ} \sim q^{2} S L_{2}(q)$ for all $P \in \mathcal{P}^{\circ}(S)$.

We say that P-Uniqueness (P !) holds in G provided that:
(P!-1) There exists a unique $P \in \mathcal{P}^{\circ}(S)$.
(P!-2) $P^{\circ} / O_{p}\left(P^{\circ}\right) \cong S L_{2}(q), q$ a power of p.
(P!-3) Y_{P} is a natural module for P°.
(P!-4) $C_{Y_{P}}\left(S \cap P^{\circ}\right)$ is normal in \widetilde{C}.
The P!-Theorem,II Suppose that
(i) Q ! holds.
(ii) There exists $P \in \mathcal{P}^{\circ}(S)$ with $g b(P)>1$.
(iii) $M:=\left\langle\mathcal{P}^{\circ}(S)\right\rangle \in \mathcal{L}$

Then P ! holds in G.

The \widetilde{P} ! Theorem

Suppose Q ! and P ! and let P be the unique member of $\mathcal{P}^{\circ}(S)$. We say that \widetilde{P} ! holds in G provided that
($\widetilde{P}!-1$) There exists at most one $\widetilde{P} \in \mathcal{P}(S)$ such that \widetilde{P} does not normalize P° and $M:=\langle P, \widetilde{P}\rangle \in \mathcal{L}$.
($\widetilde{P}!-2)$ If such a \widetilde{P} exists then,
(a) $M \in \mathcal{L}^{\circ}$.
(b) $M^{\circ} / C_{M^{\circ}}\left(Y_{M}\right) \cong S L_{3}(q), S p_{4}(q)$ or $S p_{4}(2)^{\prime}$
(c) Y_{M} is a corresponding natural module.

The $\widetilde{P}!$ Theorem Suppose Q ! and that $g b(P)>1$ for some $P \in \mathcal{P}^{\circ}(S)$. Then one of the following is true:

1. G fulfills \widetilde{P} !.
2. Let $\widetilde{P} \in \mathcal{P}(S)$ with $\widetilde{P} \notin N_{G}\left(P^{\circ}\right)$ and $M:=\langle P, \widetilde{P}\rangle \in$ \mathcal{L}. Then
(a) $p=3$ or 5 .
(b) $M / O_{p}(M) \cong S L_{3}(p)$.
(c) $O_{p}(M) / Z\left(O_{p}(M)\right)$ and $Z\left(O_{p}(M)\right)$ are natural $S L_{3}(p)$-modules for $M / O_{p}(M)$, dual to each other.

Define the rank of G to be the minimal size of a non-empty subset Σ of $\mathcal{P}(S)$ with $\langle\Sigma\rangle \notin \mathcal{L}$. If no such subset exists we define the rank to be 1. Note that rank $G=1$ if and only if $|\mathcal{M}(S)|=1$, which is impossible under our current assumption that G is equal to its p-core.

Elementary consequences of P ! and \widetilde{P} !

Lemma Suppose $E!, P!, \widetilde{P}$! and that G has rank at least three. Let $L=N_{G}\left(P^{\circ}\right)$ and $H=(L \cap \widetilde{C}) E$. Then
(a) There exists a unique $\widetilde{P} \in \mathcal{P}_{H}(S)$ with $\widetilde{P} \notin L$. Moreover, $\widetilde{P} \leq E S$.
(b) $\widetilde{P} / O_{p}(\widetilde{P}) \sim S L_{2}(q) . p^{k}$.
(c) H has a unique p-component K.
(d) $H=K(L \cap H), L \cap H$ is a maximal subgroup of H and $O_{p}(H \cap L) \neq O_{p}(H)$.
(e) Let $D=C_{H}\left(K / O_{p}(K)\right)$. Then $D / O_{p}(H)$ is isomorphic to a section of the Borel subgroup of Aut $\left(S L_{2}(q)\right)$.
(f) Let $Z_{0}=C_{Y_{P}}\left(S \cap P^{\circ}\right)$ and $V=\left\langle Y_{P}^{H}\right\rangle$. Then $Z_{0} \unlhd V$ and $V \leq Q \leq O_{p}(H)$.
(g) Let $\bar{V}=V / Z_{0}$. Then $H \cap L$ contains a point-stabilizer for H on \bar{V}.
(h) $\langle H, L\rangle \notin \mathcal{L}$.

The Small World Theorem

Suppose Q ! and let $P \in \mathcal{P}^{\circ}(S)$. We say that $g b(P)=2$ if $g b(P)>1$ and $\left\langle\left(Y_{P}\right)^{E}\right\rangle$ is not abelian.

The Small World Theorem Suppose E! and let $P \in \mathcal{P}^{\circ}(S)$. Then one of the following holds:

1. G has rank 1 or 2 .
2. $g b(P)=1$ or $g b(P)=2$.
3. Neither 1. nor 2. hold and
(a) There exists a unique $M \in \mathcal{M}(S)$ with $\widetilde{C} \neq M \neq N_{G}\left(P^{\circ}\right)$.
(b) $M^{\circ} / C_{M^{\circ}}\left(Y_{M}\right) \cong S L_{3}(q)$ or $S p_{4}(q)$.
(c) \widetilde{C} has a unique p-component K and $K / O_{p}(K) \cong S L_{3}(q), S p_{4}(q)$ or $G_{2}(q)$.

The Open Rank 3 Problem

Rule out Case 3 of the Small World Theorem.

The rank 2 Case

Rank 2 Theorem, I Suppose $E!, P!, \widetilde{P}$! and that G has rank 2. Choose $\widetilde{P} \in \mathcal{P}(S)$ such that
(i) $\langle P, \widetilde{P}\rangle \notin \mathcal{L}$.
(ii) $H:=\langle P \cap \widetilde{C}, \widetilde{P}\rangle$ is minimal with respect to (i).
(iii) \widetilde{P} is minimal with respect to (??) and (??)

Then one of the following holds:

1. $Y_{P} \notin O_{p}(\widetilde{P})$.
2. $\left(P^{\circ} N_{H}\left(P^{\circ}\right), H\right)$ is a weak BN -pair.
3. The structure of P and \widetilde{P} is as in one of the following groups.
4. For $p=2: U_{4}(3) .2^{e}, G_{2}(3) .2^{e}, D_{4}(3) .2^{e}, H S .2^{e}$, $F_{3}, F_{5} .2^{e}$ or $R u$.
5. For $p=3: D_{4}\left(3^{n}\right) \cdot 3^{e}, F i_{23}, F_{2}$.
6. For $p=5: F_{2}$.
7. For $p=7: F_{1}$.

In Case 2. one can apply the Delgado-Stellmacher Weak-BN Pair paper. Which leave us in the rank 2 Case with

The Open "rank 2, gb(P)=1" Problem

Suppose E ! holds and there exist $P \in \mathcal{P}^{\circ}(S)$ and $\widetilde{P} \in \mathcal{P}(S)$ such that $\langle P, \widetilde{P}\rangle \notin \mathcal{L}$ and $g b(P)=1$. Determine the structure of P and \widetilde{P}.

$g b(P)=2$

The Open " $g b(P)=2 "$ Problem

Suppose $E!, P!, \widetilde{P}$! and that $\left\langle Y_{P}^{E}\right\rangle$ is not abelian. Determine the structure of P and E.

The " $g b(P)=2$ "-Problem is actually just a special case of the symplectic amalgams treated by Parker and Rowley. But since the assumptions of the " $g b(P)=2$ "-Problem are stronger than for symplectic amalgams, we believe that a significantly shorter proof should be possible.

$$
g b(P)=1
$$

The H-Structure Theorem (for $\mathbf{p}=2$) Supppose E !, rank $G \geq 3$ and that there exists $M \in \mathcal{M}(S)$ with M° maximal and $Y_{M} \not \leq$ Q. If $p=2$, then there exists $M^{\circ} S \leq H \leq G$ with $O_{p}(H)=1$ such that H is of parabolic type H^{*} where H^{*} is one of the following groups:

1. A group of Lie-Type in characteristic p with Lie-rank at least three.
2. $M_{24}, H e, C o_{2}, M(22) .2^{e}, C o_{1}, J_{4}, M(24)^{\prime} .2^{e}$, Suz, F_{2} or F_{1}.
3. $U_{4}(3) \cdot 2^{e}$.

Moreover, $M^{\circ} S$ has the same structure as its corresponding group in H^{*}.

