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G is a finite Kp-group, and p a fixed prime.

G has characteristic p if CG(Op(G)) ≤ Op(G).

p-local subgroup: Normalizer of a non-

trivial p-subgroup.

G has local characteristic p if all p-local

subgroups of G have characteristic p.

Object of the talk: Describe the current

status of the project to understand and

classify the finite groups of local charac-

teristic p with Op(G) = 1.

Disclaimer: For p odd we do not expect

to be able to achieve a complete classifica-

tion. Some groups with a relatively small

p-local structure will remain unclassified. In

particular, we currently have no idea how

to treat the case where G has a strongly

p-embedded subgroup.

2



Motivation

1. We are trying to understand why the p-
local subgroups of the finite simple groups
look the way they do.

2. We hope that the classification of the
groups of local characteristic 2 will serve
as the first step in a third generation proof
for the classification of the finite simple
groups.

Future plans

1. Understand and classify all groups of
parabolic characteristic p.

(Here a parabolic subgroup of G is a sub-
group which contains a Sylow p-subgroup.
And G is of parabolic characteritic p if all p-
local, parabolic subgroups of G have char-
acteristic p.)

2. Classify all finite simple groups which
are not of parabolic characteristic 2.
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Characteristics of the simple groups

Groups of Lie-Type

Let G be a finite simple group of Lie type
defined over a field of characteristic r.

If p = r, then G is of local characteristic p.

If p 6= r and a Sylow p-subgroup of G is not
cyclic, then G is usually not of parabolic
characteristic p.

Some exceptions:

U3(3) ∼= G2(2)′ , Sp4(2)′ ∼= L2(9), PΩ5(3) ∼=
Ω−6 (2), L3(4) and U4(3) all have local char-
acteristics 2 and 3.

L4(3) has parabolic characteristics 2 and 3.

Alternating groups

The alternating groups usually have no lo-
cal characteristic. But Alt(pn+ε),ε ≤ 2 has
parabolic characteristic p.
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Characteristics of the sporadics

Group local char. parabolic char.
M11 3 3
M12 2,3
J1

M22 2 2
J2 2
M23 2 2
HS 2
J3 2 2
M24 2 2
McL 3 3
He 2
Ru 2,5
Suz 2
ON 7 7
Co3 3,5
Co2 2 3,5
Fi22 2 2
HN 2,3,5
Ly 5 5
Th 2,5 2,3,5
Fi23 3
Co1 2,3,5
J4 2,11 2,11
Fi′24 2,3,7
B 2,3,5
M 2,3,5,7,13

Here we only listed cases with non-cyclic Sylow p-
subgroup.
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Notation

G is a group of local characteristic p with
Op(G) = 1.

L = LG = {L ≤ G | CG(Op(L)) ≤ Op(L)}

Note that L contains all the p-local sub-
groups of G.

M is the set of maximal members of L ( by
inclusion), i.e., the set of maximal p-local
subgroups of G.

If T is a set of subgroups of G and A ≤ G,
then

T (A) = {T ∈ T | A ≤ T} and

TA = {T ∈ T | T ≤ A}.

S is a Sylow p-subgroup of G.

Z = Ω1Z(S).

p-core of G with respect to S: 〈M(S)〉.
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The Pushing Up Theorem

Let H be a finite group and T ∈ Sylp(H). The group

PH(T ) := Op′(CH(Ω1Z(T )))

is called the point-stabilizer of H with respect to
T .

Theorem Let T be a p-group and let Σ be a set of
groups such that for all L ∈ Σ

i) L is of characteristic p.

ii) T ≤ L and T = Op(NL(T )).

iii) NL(T ) contains a point stabilizer of L.

Suppose that no non-trivial subgroup of T is normal
in all L ∈ Σ. Then there exist L ∈ Σ and H ≤ L
with B(T ) ≤ H such Op(H) has one of the following
structures

qnSLn(q)′;

q2nSp2n(q)′, p odd;

q1+2nSp2n(q)′, p = 2;

26G2(2)′, p = 2;

q1+6+8Sp6(q), p = 2;

21+4+6L4(2), p = 2; or

q1+2+2SL2(q)′, p = 3.

(where q is a power of p)
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Strongly p-embedded subgroups

We say that H is a strongly p-embedded

subgroup of G if H 6= G and H ∩ Hg is a

p′-group for all g ∈ G \H.

An elementary argument shows that G has

a strongly p-embedded subgroup if and only

if 〈NG(T ) | 1 6= T ≤ S〉 is a proper subgroup

of G.

Bender classified all groups with a strongly

2-embedded subgroup.

For p 6= 2 no such theorem exists ( inde-

pendent from the CFSG).

The Open “Strongly p-embedded”-Problem

Determine all groups (of local characteris-

tic p) with a strongly p-embedded subgroup

and non-cyclic Sylow p-groups.
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Proper p-core

Suppose now that G has no strongly p-

embedded subgroup but the p-core H :=

〈M(S)〉 = 〈NG(T ) | 1 6= T E S〉 is a proper

subgroup of G.

Choose L ∈ L such that, in consecutive

order, L 6≤ H, |L ∩ H|p maximal, and L

is minimal. An application of the Push-

ing Up Theorem gives us that Op(L) ∼
qεq2SL2(q)′, ε ∈ {0,1}.

For p = 2, Andreas Hirn is currently trying

to obtain a contradiction in this situation.
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The case G = 〈M(S)〉
From now on we assume that G is equal to its p-
core.

The basic idea here is to determine the structure of
sufficiently many members L of L(S) to be able to
identify a geometry on which G acts.

Let H and Ĥ be finite groups and T and T̂ Sylow
p-subgroups of H and Ĥ, respectively. We say that
H has residual parabolic type Ĥ if there exists a
subset Λ of LH(T ) with H = 〈Λ〉 and an inclusion

preserving bijection L
Ĥ

(T̂ )→ Λ, L̂ 7→ L such that for

all L̂ ∈ L
Ĥ

(T ), L/Op(L) ∼= L̂/Op(L̂).

Often the residual parabolic type of a group is enough
to identify it. So one of our main tasks is to de-
rive information about L/Op(L) for at least some
members of L(S). Our favorite method for this is
to study the action of L on p-reduced normal sub-
groups, i.e. elementary abelian normal p-subgroups
Y of L with

Op(L/CL(Y )) = 1.

YL is the largest p-reduced subgroup of L.
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Modules

Let H be a finite group, V a p-reduced
FpH-module and A an elementary abelian
p-subgroup of V with [V,A] 6= 1.

If |V/CV (A)| ≤ |A/CA(V )|, then A is an of-
fender on V , and V is a FF-module for
G.

If (i) A is an offender on CV (a), for all a ∈
A \ CA(V ) (ii) [V,A,A,A] = 1 and (iii)
|V/CV (A)| ≤ |A/CA(V )|2, then A is near
offender on V , and V is a near FF-module
for G.

If [V,A,A] = 1, then A is quadratic on V ,
and V is a quadratic module for G.

Note that FF- and near FF-modules are
special cases of 2F-modules (|V/CV (A)| ≤
|A/CA(V )|2). So a list of FF-modules and
near 2F-modules for quasi-simple groups
can be easily obtained once the work of
Guralnick and Malle on 2F-modules is com-
plete.
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Unfortunately the action of L on YL does

not yield any information about CL(YL).

An elementary argument shows that Z :=

Ω1Z(S) ≤ YL and so CL(YL) ≤ CG(Z).

So to make up for this misfortune we also

study the group NG(Z). For this we pick

C̃ ∈M with NG(Z) ≤ C̃.

For a group H, define F ∗p (H) by

F ∗p (H)/Op(H) = F ∗(H/Op(H)).

To work with a group which is a little bit

more manageable than C̃ we define

E := Op(F ∗p (C
C̃

(Y
C̃

))).

We now distinguish two cases:

E-uniqueness (E!): M(E) = {C̃}

and

non E-uniqueness (¬E!): |M(E)| ≥ 2.
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¬E!, an example

Here is an example for the ¬E! case which

illustrates why we look at overgroups of

E despite the fact that these overgroups

might not contain a Sylow p-subgroup.

Let p = 2 and G = F4(q).2, where the 2

induces a graph automorphism. We would

like to identify G via the F4-building

◦ ◦ ◦ ◦

But due to the graph automorphisms, not

all of the parabolics of F4(q) are contained

in parabolics of G. Now E ≤ F4(q), namely

E is the ◦ ◦-parabolic. So E is con-

tained in two different maximal parabolics

M1 and M4 of F4(q).

Let Σ = {M1,M4} and R = O2(M1 ∩M4).

Then it is not too difficult to see that R

and Σ fulfill the assumption of the Pushing

Up Theorem.
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¬E!, a second example

Consider G = E8(q)oSym(pk). Here E helps

us to detect that G is not of local charac-

teristic p.

Let H be the normalizer of a root subgroup

in E8(q), i.e. the E7-parabolic. Then C̃ is

H oSym(pk), and E is a direct product of pk

copies of H. Hence, E is contained in the

p-local subgroup L which is a direct product

of pk − 1 copies of H and E8(q).

14



¬E!

The general idea of the ¬E! case is to find a
subgroup R of G and Σ ⊆ L(RE) such that
we can apply the Pushing Up Theorem to
R and Σ.

For this we make the following choices:

X is a point-stabilizer of some subnormal
subgroup of C̃, such that X is maximal with
respect to M(EX) 6= {C̃}.

Next choose L such that in consecutive or-
der:

L ∈ L(EX) with L 6≤ C̃.

|C̃ ∩ L|p is maximal.

S
C̃

(L) is maximal, here S
C̃

(L) is the largest

subnormal subgroup of C̃ contained in L.

C̃ ∩ L is maximal.

L is minimal.
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Define R = Op(L ∩ C̃). The following two

situations need to be treated differently:

(PU-L): N
C̃

(R) 6= L ∩ C̃.

(¬ PU-L) : N
C̃

(R) = L ∩ C̃.

In the (PU-L)-Case put H = N
C̃

(R) and

Σ = LH. A short and elementary argument

shows that we can apply the Pushing Up

Theorem.

The (¬ PU-L)-Case is more difficult. Here

we choose an C̃ ∩ L invariant subnormal

subgroup N of C̃ minimal with respect to

N 6≤ L. Put H = N(C̃ ∩L) and Σ = (H,L).

If YH ≤ Op(L) a rather lengthy amalgam

type argument shows that the Pushing Up

Theorem∗ can be applied. This leaves us

with
∗Actually one needs a stronger (not yet finished)
version of the Pushing Up Theorem than stated
above
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The Open “¬E!, b = 1”-Problem

In the ¬E! and (¬ PU-L) Case, determine

the structure of H and L if YH 6≤ Op(L).
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E!

We usually apply E! through an interme-

diate property we call Q-uniqueness. Let

Q = Op(C̃).

(Q!) CG(x) ≤ C̃ for all 1 6= x ∈ CG(Q).

An application of Thompson’s P×Q-Lemma

shows that [x,E] = 1 for all x ∈ Ω1Z(Q).

Hence E ≤ CG(x) and so E! implies CG(x) ≤
C̃. Thus

E! implies Q!
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Elementary consequences of Q!

For L ∈ L define L◦ = 〈Qg | g ∈ G,Qg ≤ L〉.

Lemma Suppose Q!.

(a) C̃◦ = Q, in particular, any p-subgroup of G con-
tains at most one conjugate of Q.

(b) If L ∈ L with Q ≤ Op(L), then L ≤ C̃. In partic-

ular, if 1 6= X ≤ Z(Q) then NG(X) ≤ C̃.

(c) If Q1, Q2 ∈ QG with Z(Q1) ∩ Z(Q2) 6= 1, then
Q1 = Q2.

(d) Let L ∈ L with Q ≤ L. Then

(a) L◦ = 〈QL◦〉

(b) L = L◦(L ∩ C̃).

(c) [CL(YL), L◦] ≤ Op(L).

(d) If L acts transitively on Y ]
L, then L◦ = NG(YL)◦.

(e) If L◦ 6= Q, then CYL(L
◦) = 1.
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To state our first Structure Theorem we

need a few more definitions.

A finite group L is p-minimal if a Sylow

p-subgroup of L is contained in a unique

maximal subgroup of L but is not normal

in L.

P ∈ L is a minimal parabolic subgroup if

P is parabolic and p-minimal.

P denotes the set of minimal parabolics of

G.

For T ⊆ L let T ◦ = {T ∈ T | Op(T ) ≤ T ◦}.

It is an easy consequence of the definitions

that if P ∈ P(S), then P ∈ P◦ if and only if

P 6≤ C̃.

Let P ∈ P◦(S). We say that gb(P ) > 1 if

YM ≤ Q for all M ∈ L(P ). Otherwise we

say gb(P ) = 1.
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The Structure Theorem for YM ≤ Q

Theorem Suppose that Q! holds and that

P ∈ P◦(S) with gb(P ) > 1. Let M ∈ L(P )

with M◦ maximal. Then one of the follow-

ing two cases holds for M := M/CM(YM)

and M0 := M◦CS(YM):

1.

(a) M0
∼= SLn(pk) or Sp2n(pk) and C

M
(M0)

∼= Cr, r|pk − 1, or M ∼= Sp4(2) and

M0
∼= Sp4(2)′ (and p = 2),

(b) [YM ,M0] is the corresponding natural

module for M0,

(c) CM0
(YM) = Op(M0), or p = 2 and

M0/O2(M0) ∼= 3Sp4(2)′.
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2.

(a) P = M0S, YM = YP , and there exists a

unique normal subgroup P ∗ of P con-

taining Op(P ) such that

(b) P ∗ = K1×· · ·×Kr, Ki ∼= SL2(pk), YM =

V1 × · · · × Vr, where Vi := [YM ,Ki] is a

natural Ki-module,

(c) Q permutes the subgroups Ki of (b)

transitively,

(d) Op(P ) = Op(P ∗) = Op(M0), and

P ∗CM(YP ) is normal in M ,

(e) either CM◦(YP ) = Op(M0), or p = 2,

r > 1, Ki
∼= SL2(2), and CM0

(YP )/O2(M0)

= Z(M0/O2(M0)) is a 3-group.

22



The Structure Theorem for YM 6≤ Q.

Theorem Let M ∈ L(S) with M◦ maximal. Assume
that YM 6≤ Q. Set K = F ∗(M◦S/CM ◦S(YM)). Then
one of the following holds:

1. K is quasisimple and isomorphic to SL(n, q),
Sp(2n, q)′, Ω±(n, q), or E6(q), q a power of p. In
case of K ∼= SLn(q) or E6(q) no element in M◦S
induces diagram automorphisms.

2. K ∼= SLn(q)′ ∗ SLm(q)′, q a power of p. Further
YM is the tensor product module.

3. p = 2 and K ∼= 3A6, M22 or M24.

4. p = 3 and K ∼= M11 or 2M12.

5. M◦S is a minimal parabolic.

Further YM is a near FF -module, and except for case
5, YM contains a M◦S submodule V as described on
the next slide.
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K prime module example
SLn(q) p ext. square Ω2n(q)
SLn(q) p sym. square Sp2n(q)
SLn(q2) p V (λ1)⊗ V (λσ1) SU2n(q)
A6 2 natural Suz

3A6 2 6-dim M24
Sp8(2) 2 8-dim B

Ω±n (q) p natural Ω±n+2(q)

Ω±10(q) 2 half spin E6(q)
E6(q) p V (λ1) E7(q)
M11 3 5-dim Co3

2M12 3 6-dim Co2
M22 2 10-dim M(22)
M24 2 11-dim M(24)
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The P !-Theorems

The P!-Theorem,I Suppose that Q! holds and
〈P◦(S)〉 /∈ L. Then

(a) p is odd.

(b) Q = B(S), C̃ = NG(B(S)) and Q has order q3,
q a power of p.

(c) P ◦ ∼ q2SL2(q) for all P ∈ P◦(S).

We say that P -Uniqueness (P !) holds in G provided
that:

(P!-1) There exists a unique P ∈ P◦(S).

(P!-2) P ◦/Op(P ◦) ∼= SL2(q), q a power of p.

(P!-3) YP is a natural module for P ◦.

(P!-4) CYP(S ∩ P ◦) is normal in C̃.

The P!-Theorem,II Suppose that

(i) Q! holds.

(ii) There exists P ∈ P◦(S) with gb(P ) > 1.

(iii) M := 〈P◦(S)〉 ∈ L

Then P ! holds in G.
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The P̃ ! Theorem

Suppose Q! and P ! and let P be the unique member
of P◦(S). We say that P̃ ! holds in G provided that

(P̃ !-1) There exists at most one P̃ ∈ P(S) such that
P̃ does not normalize P ◦ and M := 〈P, P̃ 〉 ∈ L.

(P̃ !-2) If such a P̃ exists then,

(a) M ∈ L◦.

(b) M◦/CM ◦(YM) ∼= SL3(q), Sp4(q) or Sp4(2)′

(c) YM is a corresponding natural module.

The P̃ ! Theorem Suppose Q! and that gb(P ) > 1
for some P ∈ P◦(S). Then one of the following is
true:

1. G fulfills P̃ !.

2. Let P̃ ∈ P(S) with P̃ 6≤ NG(P ◦) and M := 〈P, P̃ 〉 ∈
L. Then

(a) p = 3 or 5.

(b) M/Op(M) ∼= SL3(p).

(c) Op(M)/Z(Op(M)) and Z(Op(M)) are natural
SL3(p)-modules for M/Op(M), dual to each
other.
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Define the rank of G to be the minimal

size of a non-empty subset Σ of P(S) with

〈Σ〉 /∈ L. If no such subset exists we define

the rank to be 1. Note that rankG = 1 if

and only if |M(S)| = 1, which is impossi-

ble under our current assumption that G is

equal to its p-core.
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Elementary consequences of P ! and P̃ !

Lemma Suppose E!, P !, P̃ ! and that G has
rank at least three. Let L = NG(P ◦) and
H = (L ∩ C̃)E. Then

(a) There exists a unique P̃ ∈ PH(S) with
P̃ 6≤ L. Moreover, P̃ ≤ ES.

(b) P̃ /Op(P̃ ) ∼ SL2(q).pk.

(c) H has a unique p-component K.

(d) H = K(L ∩ H), L ∩ H is a maximal
subgroup of H and Op(H ∩ L) 6= Op(H).

(e) Let D = CH(K/Op(K)). Then D/Op(H)
is isomorphic to a section of the Borel sub-
group of Aut(SL2(q)).

(f) Let Z0 = CYP (S ∩ P ◦) and V = 〈Y HP 〉.
Then Z0 E V and V ≤ Q ≤ Op(H).

(g) Let V = V/Z0. Then H ∩ L contains a
point-stabilizer for H on V .

(h) 〈H,L〉 /∈ L.
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The Small World Theorem

Suppose Q! and let P ∈ P◦(S). We say that

gb(P ) = 2 if gb(P ) > 1 and 〈(YP )E〉 is not

abelian.

The Small World Theorem Suppose E!

and let P ∈ P◦(S). Then one of the follow-

ing holds:

1. G has rank 1 or 2.

2. gb(P ) = 1 or gb(P ) = 2.

3. Neither 1. nor 2. hold and

(a) There exists a unique M ∈ M(S)

with C̃ 6= M 6= NG(P ◦).

(b) M◦/CM◦(YM) ∼= SL3(q) or Sp4(q).

(c) C̃ has a unique p-component K and

K/Op(K) ∼= SL3(q), Sp4(q) or G2(q).
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The Open Rank 3 Problem

Rule out Case 3 of the Small World Theo-

rem.
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The rank 2 Case

Rank 2 Theorem, I Suppose E!, P !, P̃ ! and that
G has rank 2. Choose P̃ ∈ P(S) such that

(i) 〈P, P̃ 〉 /∈ L.

(ii) H := 〈P ∩ C̃, P̃ 〉 is minimal with respect to (i).

(iii) P̃ is minimal with respect to (??) and (??)

Then one of the following holds:

1. YP 6≤ Op(P̃ ).

2. (P ◦NH(P ◦), H) is a weak BN-pair.

3. The structure of P and P̃ is as in one of the
following groups.

1. For p = 2: U4(3).2e, G2(3).2e, D4(3).2e, HS.2e,
F3, F5.2e or Ru.

2. For p = 3: D4(3n).3e, Fi23, F2.

3. For p = 5: F2.

4. For p = 7: F1.

In Case 2. one can apply the Delgado-Stellmacher
Weak-BN Pair paper. Which leave us in the rank 2
Case with
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The Open “rank 2, gb(P)=1” Problem

Suppose E! holds and there exist P ∈ P◦(S)

and P̃ ∈ P(S) such that 〈P, P̃ 〉 /∈ L and

gb(P ) = 1 . Determine the structure of P

and P̃ .
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gb(P)=2

The Open “gb(P)=2” Problem

Suppose E!, P !, P̃ ! and that 〈Y EP 〉 is not

abelian. Determine the structure of P and

E.

The “gb(P ) = 2”-Problem is actually just

a special case of the symplectic amalgams

treated by Parker and Rowley. But since

the assumptions of the “gb(P ) = 2”-Problem

are stronger than for symplectic amalgams,

we believe that a significantly shorter proof

should be possible.
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gb(P)=1

The H-Structure Theorem ( for p=2)

Supppose E!, rankG ≥ 3 and that there ex-

ists M ∈M(S) with M◦ maximal and YM 6≤
Q. If p = 2, then there exists M◦S ≤ H ≤ G
with Op(H) = 1 such that H is of parabolic

type H∗ where H∗ is one of the following

groups:

1. A group of Lie-Type in characteristic p

with Lie-rank at least three.

2. M24, He, Co2, M(22).2e, Co1, J4, M(24)′.2e,
Suz, F2 or F1.

3. U4(3).2e.

Moreover, M◦S has the same structure as

its corresponding group in H∗.
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