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G is a finite Kp-group, and p a fixed prime.
G has characteristic p if C;(Op(G)) < Op(G).

p-local subgroup: Normalizer of a non-
trivial p-subgroup.

G has local characteristic p if all p-local
subgroups of G have characteristic p.

Object of the talk: Describe the current
status of the project to understand and
classify the finite groups of local charac-
teristic p with O,(G) = 1.

Disclaimer: For p odd we do not expect
to be able to achieve a complete classifica-
tion. Some groups with a relatively small
p-local structure will remain unclassified. In
particular, we currently have no idea how
to treat the case where G has a strongly
p-embedded subgroup.



Motivation

1. We are trying to understand why the p-
local subgroups of the finite simple groups
look the way they do.

2. We hope that the classification of the
groups of local characteristic 2 will serve
as the first step in a third generation proof
for the classification of the finite simple
groups.

Future plans

1. Understand and classify all groups of
parabolic characteristic p.

(Here a parabolic subgroup of G is a sub-
group which contains a Sylow p-subgroup.
And G is of parabolic characteritic p if all p-
local, parabolic subgroups of G have char-
acteristic p.)

2. Classify all finite simple groups which
are not of parabolic characteristic 2.



Characteristics of the simple groups

Groups of Lie-Type

Let G be a finite simple group of Lie type
defined over a field of characteristic r.

If p=1r, then G is of local characteristic p.

If p #=r and a Sylow p-subgroup of G is not
cyclic, then G is usually not of parabolic
characteristic p.

Some exceptions:

Uz(3) = G2(2)", Spa(2) = L2(9), PQ2s5(3) =
Qs (2), L3(4) and Ug(3) all have local char-
acteristics 2 and 3.

L4(3) has parabolic characteristics 2 and 3.

Alternating groups

The alternating groups usually have no lo-
cal characteristic. But Alt(p"+¢€),e < 2 has
parabolic characteristic p.



Characteristics of the sporadics

Group

local char.

parabolic char.
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Here we only listed cases with non-cyclic Sylow p-

subgroup.




Notation

G is a group of local characteristic p with

L=Lg={L<G|Ca(Op(L)) < Op(L)}

Note that £ contains all the p-local sub-
groups of G.

M is the set of maximal members of £ ( by
inclusion), i.e., the set of maximal p-local
subgroups of G.

If 7 is a set of subgroups of G and A < (G,
then

TA)={TeT|ALT} and
Tpo={T €T |T<A}.

S is a Sylow p-subgroup of G.
Z = 1Z(S).

p-core of G with respect to S: (M(S)).
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The Pushing Up Theorem
Let H be a finite group and T € Syl,(H). The group

Py(T) := O (Cu(€1Z(T)))

is called the point-stabilizer of H with respect to
T.

Theorem Let T be a p-group and let 3> be a set of
groups such that for all L € >

i) L is of characteristic p.
i) T <L and T = O,(N.(T)).
iii) Np(T) contains a point stabilizer of L.

Suppose that no non-trivial subgroup of T' is normal
inall L € >. Then there exist L € > and H < L
with B(T') < H such OP(H) has one of the following
structures

q"SLn(q);
q*"Sp2n(q)’, p 0dd;

g 2" Span(q), p = 2;
2°G2(2),p = 2;
q*T8Sps(q),p = 2;
21446 ,(2),p = 2; or
q'T212SLa(q) , p = 3.

(where q is a power of p)



Strongly p-embedded subgroups

We say that H is a strongly p-embedded
subgroup of G if H = G and HN HY is a
p’-group for all g€ G\ H.

An elementary argument shows that G has
a strongly p-embedded subgroup if and only
if (No(T)|1#T <S)isa proper subgroup
of G.

Bender classified all groups with a strongly
2-embedded subgroup.

For p = 2 no such theorem exists ( inde-
pendent from the CFSG).

The Open “Strongly p-embedded’” -Problem

Determine all groups (of local characteris-
tic p) with a strongly p-embedded subgroup
and non-cyclic Sylow p-groups.



Proper p-core

Suppose now that G has no strongly p-
embedded subgroup but the p-core H =
(M(S)) = (Na(T) | 1 #T <S) is a proper
subgroup of G.

Choose L € L such that, in consecutive
order, L £ H, |L N H|, maximal, and L
iIs minimal. An application of the Push-
ing Up Theorem gives us that OP(L) ~

¢°q°SL>(q), € € {0,1}.

For p = 2, Andreas Hirn is currently trying
to obtain a contradiction in this situation.



The case G = (M(S5))

From now on we assume that G is equal to its p-
core.

The basic idea here is to determine the structure of
sufficiently many members L of £(S) to be able to
identify a geometry on which G acts.

Let H and H be finite groups and 7' and T Sylow
p-subgroups of H and H, respectively. We say that

H has residual parabolic type H if there exists a
subset A of Lyx(T) with H = (A) and an inclusion

preserving bijection Lﬁ(f) — A, L — L such that for
all L € LA(T), L/Op(L) = L/Op(L).

Often the residual parabolic type of a group is enough
to identify it. So one of our main tasks is to de-
rive information about L/O,(L) for at least some
members of £(S). Our favorite method for this is
to study the action of L on p-reduced normal sub-
groups, i.e. elementary abelian normal p-subgroups
Y of L with
Op(L/CL(Y)) = 1.

Y; is the largest p-reduced subgroup of L.
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Modules

Let H be a finite group, V a p-reduced
FpH-module and A an elementary abelian
p-subgroup of V with [V, A] # 1.

If [V/Cy(A)| < |A/C4(V)], then A is an of-
fender on V, and V is a FF-module for
G.

If (i) Aisan offender on Cy(a), for all a €
A\ Cy(V) (ii) [V,A, A, A] = 1 and (iii)
V/Cy(A)| < |A/C4(V)|2, then A is near
offender on V, and V is a near FF-module
for G.

If [V,A, A] = 1, then A is quadratic on V,
and V is a quadratic module for G.

Note that FF- and near FF-modules are
special cases of 2F-modules (|V/Cy(A)| <
|A/C4(V)]?). So a list of FF-modules and
near 2F-modules for quasi-simple groups
can be easily obtained once the work of
Guralnick and Malle on 2F-modules is com-
plete.
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Unfortunately the action of L on Yj; does
not yield any information about Cp(Y7).
An elementary argument shows that Z =
R1Z(S) <Yp, and so Cp(Yy) < Cr(2).

So to make up for this misfortune we also
study the group Ng(Z). For this we pick

C € M with Ng(2) < C.

For a group H, define FZ;‘(H) by
Fy(H)/Op(H) = F*(H/Op(H)).

To work with a group which is a little bit
more manageable than C we define
—_ Y% >k N N
E =0 (Fp (CC(YC))).
We now distinguish two cases:
E-uniqueness (E!): M(E) = {C}

and

non FE-uniqueness (-E!): |([M(FE)| > 2.

12



- F!, an example

Here is an example for the —FE! case which
illustrates why we look at overgroups of
E despite the fact that these overgroups
might not contain a Sylow p-subgroup.

Let p = 2 and G = F4(q).2, where the 2
induces a graph automorphism. We would
like to identify G via the Fj4-building

Oo——C——0——0

But due to the graph automorphisms, not
all of the parabolics of F4(q) are contained
in parabolics of G. Now E < F4(g), namely
FE is the ———0-parabolic. So FE is con-
tained in two different maximal parabolics
My and My of F4(q).

Let = = {M1, M4} and R = Ox(M1 N My).
Then it is not too difficult to see that R
and 2 fulfill the assumption of the Pushing

Up Theorem.
13



- F! a second example

Consider G = Eg(q)1Sym(p*). Here E helps
us to detect that G is not of local charac-
teristic p.

Let H be the normalizer of a root subgroup
in Eg(q), i.e. the E-parabolic. Then C is
HSym(p*), and E is a direct product of p*
copies of H. Hence, E is contained in the
p-local subgroup L which is a direct product
of p¥ — 1 copies of H and Eg(q).

14



-l

The general idea of the —FE! case is to find a
subgroup R of G and > C L(RFE) such that
we can apply the Pushing Up Theorem to
R and 2.

For this we make the following choices:

X is a point:stabilizer of some subnormal
subgroup of C, such thaE X is maximal with
respect to M(EX) # {C}.

Next choose L such that in consecutive or-
der:

Le L(EX) with L £ C.
|IC N L], is maximal.

Sa(L) is maximal, here S(j,(L) is the largest
subnormal subgroup of C contained in L.

C' N L is maximal.

L is minimal.
15



Define R = O,(L N C). The following two
situations need to be treated differently:

(PU-L): Né(R);&Lﬁé.
(- PU-L): NzR)=LNC.

In the (PU-L)-Case put H = Né(R) and
> = LH, A short and elementary argument
shows that we can apply the Pushing Up
T heorem.

The (= PU-L)-Case is more difficult. Here
we choose an C N L invariant subnormal
subgroup N of C minimal with respect to
N £ L. Put H=N(CNL) and ¥ = (H,L).
If Yy < Op(L) a rather lengthy amalgam
type argument shows that the Pushing Up
Theorem™ can be applied. This leaves us
with

*Actually one needs a stronger (not yet finished)

version of the Pushing Up Theorem than stated
above

16



The Open “-E! b= 1"-Problem

In the —E! and (= PU-L) Case, determine
the structure of H and L if Yy £ Op(L).

17



E!

We usually apply E! through an interme-
diate property we call @Q-uniqueness. Let

Q= Op(é)-
(Q) Cpa(z) <C foralll1#zeCq(Q).

An application of Thompson’'s Px@Q-Lemma
shows that [z, FE] = 1 for all x € 21Z(Q).
Hence E < Cq(z) and so E! implies Cp(x) <

~

C'. Thus
E! implies Q!

18



Elementary consequences of Q!
For L € £ define L°=(Q9 | g€ G,Q7 < L).

Lemma Suppose Q!.

(a) C° = @, in particular, any p-subgroup of G con-
tains at most one conjugate of Q.

(b) If L € £ with Q < O,(L), then L < C. In partic-
ular, if 1 =2 X < Z(Q) then Ng(X) <C.

(o) If Q1,Q2 € QY with Z(Q1) N Z(Q2) # 1, then
Q1 = Q2.

(d) Let L € £L with Q < L. Then
(a) L°=«(Q")
(b) L=L°(LNCO).
(¢) [CL(YL),L°] < Op(L).
(d) If L acts transitively on Y7, then L° = Ng(Y7)e.
(e) If L° # Q, then Cy,(L°) = 1.
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To state our first Structure Theorem we
need a few more definitions.

A finite group L is p-minimal if a Sylow
p-subgroup of L is contained in a unique
maximal subgroup of L but is not normal
in L.

P € £ is a minimal parabolic subgroup if
P is parabolic and p-minimal.

P denotes the set of minimal parabolics of
G.

For 7 CLlet7T°={T €7 | OP(T) <T°}.

It is an easy consequence of the definitions
that if P € P(S), then P € P° if and only if
P<£C.

Let P € P°(S). We say that gb(P) > 1 if
Yy < Q for all M € L(P). Otherwise we
say gb(P) = 1.
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The Structure Theorem for Y;; < Q

Theorem Suppose that Q! holds and that
P € P°(S) with gb(P) > 1. Let M € L(P)
with M° maximal. Then one of the follow-
ing two cases holds for M := M/C;(Yy)
and Mg := M°Cq(Y):

(a) Mg £ SLn(p*) or Span(p*) and C7;(Mo)
> Cp rlpf — 1, or M = Spa(2) and
Mg = Spa(2)' (and p = 2),

(b) [Yys, Mp] is the corresponding natural
module for My,

(€) Criy(Yrr) = Op(Mp), or p=2 and
Mqg/O2(Mg) = 3Spa(2)’.
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(a) P= MyS, Yy = Yp, and there exists a
unique normal subgroup P* of P con-
taining O,(P) such that

(b) P*=Kjx---xKp, K; 2 SLy(p*), Yy =
Vi x---x V., where V; := [Y), K;] is a
natural K;-module,

(c) @ permutes the subgroups K; of (b)
transitively,

(d) OP(P) = OP(P*) = OP(Mp), and
P*Cp(Yp) is normal in M,

(e) either Cyo(Yp) = Op(Mg), or p = 2,
r>1, K; = SL>(2), and Cy,(Yp)/O2(Mp)
= Z(Mo/OQ(Mo)) IS a 3-group.
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The Structure Theorem for Y,; £ Q.
Theorem Let M € £(S) with M° maximal. Assume

that Yy £ Q. Set K = F*(M°S/Ches(Yar)). Then
one of the following holds:

1. K is quasisimple and isomorphic to SL(n,q),
Sp(2n,q)’, Q% (n,q), or Es(q), ¢ a power of p. In
case of K = SL,(q) or Es(q) no element in M°S
induces diagram automorphisms.

2. K £ SL,(q) « SLx(q)’, ¢ a power of p. Further
Y, is the tensor product module.

3. p = 2 and K = 3A6, Moo or Mog.
4. p = 3and K = Mi1 or 2M5.
5. M°S is a minimal parabolic.

Further Y, is a near FF-module, and except for case
5, Yy, contains a M°S submodule V as described on
the next slide.
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K prime module example
SLn(q) D ext. square 5,(q)
SLn(q) p sym. square | Spop(q)
SLn(g?) | p | V(M) QV(A]) | SUz,(q)

Ag 2 natural Suz

3A6 2 6-dim M24
Spg(2) 2 8-dim B
QE(q) p natural QL 5(q)
Qi—Lo(q) 2 half spin FEg(q)
Ee(q) p V(A1) E7(q)
My 3 5-dim Cos
2M1o 3 o-dim Coo
Moo 2 10-dim M(22)
Moy 2 11-dim M(24)
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The P!-Theorems

The P!-Theorem,I Suppose that Q! holds and
(P°(S)) ¢ L. Then

(a) pis odd.

(b) Q = B(S), C = Na(B(S)) and Q has order g3,
q a power of p.

(c) P° ~ g%SL>(q) for all P € P°(S).

We say that P-Uniqueness (P!) holds in G provided
that:

(P!'-1) There exists a unique P € P°(S).
(P1-2) P°/O,(P°) = SL2(q), g a power of p.
(P!-3) Yp is a natural module for P°.
(P!-4) Cy.(S N P°) is normal in C.
The P!-Theorem,II Suppose that
(i) Q! holds.
(i) There exists P € P°(S) with gb(P) > 1.
(iii) M = (P°(S)) e L
Then P! holds in G.

25



The P! Theorem

Suppose Q! and P! and INet P be the unique member
of P°(S). We say that P! holds in G provided that

(P!-1) There exists at most one P € P(S) such that
P does not normalize P° and M := (P, P) € L.

(P'-2) If such a P exists then,
(a) M e L°.
(b) M°/Cp-(Ya) = SLz(q), Spa(q) or Spa(2)’
(c) Yus is a corresponding natural module.
The P! Theorem Suppose Q! and that gb(P) > 1

for some P € P°(S). Then one of the following is
true:

1. G fulfills P!,

2. Let P € P(S) with P £ Ng(P°) and M := (P, P) €
L. Then
(a) p=3 or 5.
(b) M/Op(M) = SL3(p).

(€) Op,(M)/Z(Op(M)) and Z(O,(M)) are natural
SLz(p)-modules for M/O,(M), dual to each
other.

26



Define the rank of G to be the minimal
size of a non-empty subset > of P(S) with
() & L. If no such subset exists we define
the rank to be 1. Note that rankG =1 if
and only if |IM(S)| = 1, which is impossi-
ble under our current assumption that GG is
equal to its p-core.
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Elementary consequences of P! and P!

Lemma Suppose E!, P!, P! and that G has
rank at least three. Let L = Ng(P°) and
H=(LNC)E. Then

(a) There exists a unique P € Pg(S) with
P £ L. Moreover, P < ES.

(b) P/Op(P) ~ SLa(q).p*.
(c) H has a unique p-component K.

(d) H = K(LNnH), LNnH is a maximal
subgroup of H and Op,(H N L) # Op(H).

(e) Let D = Cy(K/Op(K)). Then D/Oy(H)
IS isomorphic to a section of the Borel sub-
group of Aut(SL»(q)).

(f) Let Zg = Cy, (SN P°) and V = (YA).
Then ZogdV and V < Q < Op(H).

(g) Let V =V/Zy. Then HN L contains a
point-stabilizer for H on V.

(h) (H,L) ¢ L.

28



T he Small World Theorem

Suppose Q! and let P € P°(S). We say that
gb(P) = 2 if gb(P) > 1 and ((Yp)¥) is not
abelian.

The Small World Theorem Suppose E!
and let P € P°(S). Then one of the follow-
ing holds:

1. &G has rank 1 or 2.

2. gb(P) =1 or gb(P) = 2.

3. Neither 1. nor 2. hold and

(a) There exists a unique M € M(S)
with C # M # Ng(P°).

(b) M°/Cpro(Yar) = SL3(q) or Spa(q).

(c) C has a unique p-component K and

K/Op(K) = SL3(q), Spa(q) or Ga(q).
29



The Open Rank 3 Problem

Rule out Case 3 of the Small World Theo-
rem.
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The rank 2 Case

Rank 2 Theorem, I Suppose E!, P!, P! and that
G has rank 2. Choose P ¢ P(S) such that

(i) (P,P)¢L.

(i) H := (PNC,P) is minimal with respect to (i).
(iii) P is minimal with respect to (??) and (?77?)
Then one of the following holds:

1. Yp £ O,(P).
2. (P°Ny(P°),H) is a weak BN-pair.

3. The structure of P and P is as in one of the
following groups.

1. Forp = 2: Us(3).2° G2(3).2° D4(3).2¢, HS.2°,
F3, F5.2° or Ru.

2. For p = 3: D4(3").3%, Finsz, F>.
3. For p=5:. F>.
4. For p=7:. F1.
In Case 2. one can apply the Delgado-Stellmacher

Weak-BN Pair paper. Which leave us in the rank 2
Case with
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The Open ‘“rank 2, gb(P)=1" Problem

Suppose E! holds and there exist P € P°(S)
and P € P(S) such that (P,P) ¢ £ and
gb(P) = 1 . Determine the structure of P
and P.
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gb(P)=2

The Open “gb(P)=2" Problem

Suppose E!, P!, P! and that (Y#) is not
abelian. Determine the structure of P and
E.

The “gb(P) = 2"-Problem is actually just
a special case of the symplectic amalgams
treated by Parker and Rowley. But since
the assumptions of the “gb(P) = 2" -Problem
are stronger than for symplectic amalgams,
we believe that a significantly shorter proof
should be possible.
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gb(P)=1

The H-Structure Theorem ( for p=2)
Supppose E!, rank G > 3 and that there ex-
ists M € M(S) with M° maximal and Y); £
Q. If p = 2, then there exists M°S < H < G
with Op(H) = 1 such that H is of parabolic
type H* where H™* is one of the following
groups:

1. A group of Lie-Type in characteristic p
with Lie-rank at least three.

2. Moy, He, Con, M(22).2¢, Coq, Ja, M(24).2¢,
Suz, F» or F1.

3. Uy(3).2¢.

Moreover, M°S has the same structure as
its corresponding group in H*.
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