Groups of local characteristic p

Barbara Baumeister

Andy Chermak

Andreas Hirn

Mario Mainardis

Ulrich Meierfrankenfeld

Gemma Parmeggiani

Chris Parker

Peter Rowley

Bernd Stellmacher

Gernot Stroth

G is a finite \mathcal{K}_p -group, and p a fixed prime.

G has characteristic p if $C_G(O_p(G)) \leq O_p(G)$.

p-local subgroup: Normalizer of a non-trivial *p*-subgroup.

G has **local characteristic** p if all p-local subgroups of G have characteristic p.

Object of the talk: Describe the current status of the project to understand and classify the finite groups of local characteristic p with $O_p(G) = 1$.

Disclaimer: For p odd we do not expect to be able to achieve a complete classification. Some groups with a relatively small p-local structure will remain unclassified. In particular, we currently have no idea how to treat the case where G has a strongly p-embedded subgroup.

Motivation

1. We are trying to understand why the p-local subgroups of the finite simple groups look the way they do.

2. We hope that the classification of the groups of local characteristic 2 will serve as the first step in a third generation proof for the classification of the finite simple groups.

Future plans

1. Understand and classify all groups of parabolic characteristic p.

(Here a parabolic subgroup of G is a subgroup which contains a Sylow p-subgroup. And G is of parabolic characteritic p if all plocal, parabolic subgroups of G have characteristic p.)

2. Classify all finite simple groups which are not of parabolic characteristic 2.

Characteristics of the simple groups Groups of Lie-Type

Let G be a finite simple group of Lie type defined over a field of characteristic r.

If p = r, then G is of local characteristic p.

If $p \neq r$ and a Sylow *p*-subgroup of *G* is not cyclic, then *G* is usually not of parabolic characteristic *p*.

Some exceptions:

 $U_3(3) \cong G_2(2)'$, $Sp_4(2)' \cong L_2(9)$, $P\Omega_5(3) \cong \Omega_6^-(2)$, $L_3(4)$ and $U_4(3)$ all have local characteristics 2 and 3.

 $L_4(3)$ has parabolic characteristics 2 and 3.

Alternating groups

The alternating groups usually have no local characteristic. But $Alt(p^n + \epsilon), \epsilon \leq 2$ has parabolic characteristic p.

Characteristics of the sporadics

Group	local char.	parabolic char.	
M ₁₁	3	3	
M ₁₂		2,3	
J_1			
M ₂₂	2	2	
J_2		2	
M ₂₃	2	2	
HS		2	
J_3	2	2	
M ₂₄	2	2	
McL	3	3	
He		2	
Ru		2,5	
Suz	2		
ON	7	7 7	
Co ₃		3,5	
Co ₂	2	3,5	
<i>Fi</i> ₂₂	2	2	
HN		2,3,5	
Ly	5	5	
Th	2,5	2,3,5	
Fi ₂₃		3	
Co_1		2,3,5	
J_4	2,11	2,11	
Fi'_{24}		2,3,7	
В		2,3,5	
M		2, 3, 5, 7, 13	

Here we only listed cases with non-cyclic Sylow $p\mbox{-}$ subgroup.

Notation

G is a group of local characteristic p with $O_p(G) = 1$.

 $\mathcal{L} = \mathcal{L}_G = \{ L \le G \mid C_G(O_p(L)) \le O_p(L) \}$

Note that \mathcal{L} contains all the *p*-local subgroups of G.

 \mathcal{M} is the set of maximal members of \mathcal{L} (by inclusion), i.e., the set of maximal *p*-local subgroups of G.

If ${\mathcal T}$ is a set of subgroups of G and $A\leq G$, then

 $\mathcal{T}(A) = \{T \in \mathcal{T} \mid A \leq T\}$ and

 $\mathcal{T}_A = \{ T \in \mathcal{T} \mid T \le A \}.$

S is a Sylow p-subgroup of G.

 $Z = \Omega_1 \mathsf{Z}(S).$

p-core of G with respect to S: $\langle \mathcal{M}(S) \rangle$.

The Pushing Up Theorem

Let H be a finite group and $T \in Syl_p(H)$. The group

$$P_H(T) := O^{p'}(C_H(\Omega_1 \mathsf{Z}(T)))$$

is called the **point-stabilizer** of H with respect to T.

Theorem Let T be a p-group and let Σ be a set of groups such that for all $L \in \Sigma$

i) L is of characteristic p.

ii) $T \leq L$ and $T = O_p(N_L(T))$.

iii) $N_L(T)$ contains a point stabilizer of L.

Suppose that no non-trivial subgroup of T is normal in all $L \in \Sigma$. Then there exist $L \in \Sigma$ and $H \leq L$ with $B(T) \leq H$ such $O^p(H)$ has one of the following structures

 $q^{n}SL_{n}(q)';$ $q^{2n}Sp_{2n}(q)', p \text{ odd};$ $q^{1+2n}Sp_{2n}(q)', p = 2;$ $2^{6}G_{2}(2)', p = 2;$ $q^{1+6+8}Sp_{6}(q), p = 2;$ $2^{1+4+6}L_{4}(2), p = 2; \text{ or}$ $q^{1+2+2}SL_{2}(q)', p = 3.$ (where q is a power of p)

Strongly *p*-embedded subgroups

We say that H is a strongly p-embedded subgroup of G if $H \neq G$ and $H \cap H^g$ is a p'-group for all $g \in G \setminus H$.

An elementary argument shows that G has a strongly p-embedded subgroup if and only if $\langle N_G(T) | 1 \neq T \leq S \rangle$ is a proper subgroup of G.

Bender classified all groups with a strongly 2-embedded subgroup.

For $p \neq 2$ no such theorem exists (independent from the CFSG).

The Open "Strongly *p*-embedded"-Problem

Determine all groups (of local characteristic p) with a strongly p-embedded subgroup and non-cyclic Sylow p-groups.

Proper *p*-core

Suppose now that G has no strongly p-embedded subgroup but the p-core $H := \langle \mathcal{M}(S) \rangle = \langle N_G(T) \mid 1 \neq T \leq S \rangle$ is a proper subgroup of G.

Choose $L \in \mathcal{L}$ such that, in consecutive order, $L \not\leq H$, $|L \cap H|_p$ maximal, and Lis minimal. An application of the Pushing Up Theorem gives us that $O^p(L) \sim$ $q^{\epsilon}q^2SL_2(q)', \epsilon \in \{0,1\}.$

For p = 2, Andreas Hirn is currently trying to obtain a contradiction in this situation.

The case $G = \langle \mathcal{M}(S) \rangle$

From now on we assume that G is equal to its p-core.

The basic idea here is to determine the structure of sufficiently many members L of $\mathcal{L}(S)$ to be able to identify a geometry on which G acts.

Let H and \widehat{H} be finite groups and T and \widehat{T} Sylow p-subgroups of H and \widehat{H} , respectively. We say that H has residual parabolic type \widehat{H} if there exists a subset Λ of $\mathcal{L}_H(T)$ with $H = \langle \Lambda \rangle$ and an inclusion preserving bijection $\mathcal{L}_{\widehat{H}}(\widehat{T}) \to \Lambda, \widehat{L} \mapsto L$ such that for all $\widehat{L} \in \mathcal{L}_{\widehat{H}}(T), L/O_p(L) \cong \widehat{L}/O_p(\widehat{L}).$

Often the residual parabolic type of a group is enough to identify it. So one of our main tasks is to derive information about $L/O_p(L)$ for at least some members of $\mathcal{L}(S)$. Our favorite method for this is to study the action of L on p-reduced normal subgroups, i.e. elementary abelian normal p-subgroups Y of L with

$$O_p(L/C_L(Y)) = 1.$$

 Y_L is the largest *p*-reduced subgroup of *L*.

Modules

Let H be a finite group, V a p-reduced \mathbb{F}_pH -module and A an elementary abelian p-subgroup of V with $[V, A] \neq 1$.

If $|V/C_V(A)| \leq |A/C_A(V)|$, then A is an offender on V, and V is a **FF-module** for G.

If (i) *A* is an offender on $C_V(a)$, for all $a \in A \setminus C_A(V)$ (ii) [V, A, A, A] = 1 and (iii) $|V/C_V(A)| \leq |A/C_A(V)|^2$, then *A* is **near offender** on *V*, and *V* is a **near FF-module** for *G*.

If [V, A, A] = 1, then A is **quadratic** on V, and V is a **quadratic module** for G.

Note that FF- and near FF-modules are special cases of 2F-modules $(|V/C_V(A)| \le |A/C_A(V)|^2)$. So a list of FF-modules and near 2F-modules for quasi-simple groups can be easily obtained once the work of Guralnick and Malle on 2F-modules is complete.

Unfortunately the action of L on Y_L does not yield any information about $C_L(Y_L)$. An elementary argument shows that Z := $\Omega_1 Z(S) \leq Y_L$ and so $C_L(Y_L) \leq C_G(Z)$.

So to make up for this misfortune we also study the group $N_G(Z)$. For this we pick

 $\widetilde{C} \in \mathcal{M}$ with $N_G(Z) \leq \widetilde{C}$.

For a group H, define $F_p^*(H)$ by $F_p^*(H)/O_p(H) = F^*(H/O_p(H)).$

To work with a group which is a little bit more manageable than \tilde{C} we define $E := O^p(F_p^*(C_{\tilde{C}}(Y_{\tilde{C}}))).$

We now distinguish two cases:

E-uniqueness (*E*!): $\mathcal{M}(E) = \{\tilde{C}\}$

and

non *E*-uniqueness $(\neg E!)$: $|\mathcal{M}(E)| \ge 2$.

$\neg E!$, an example

Here is an example for the $\neg E!$ case which illustrates why we look at overgroups of E despite the fact that these overgroups might not contain a Sylow *p*-subgroup.

Let p = 2 and $G = F_4(q).2$, where the 2 induces a graph automorphism. We would like to identify G via the F_4 -building

But due to the graph automorphisms, not all of the parabolics of $F_4(q)$ are contained in parabolics of G. Now $E \leq F_4(q)$, namely E is the \longrightarrow o-parabolic. So E is contained in two different maximal parabolics M_1 and M_4 of $F_4(q)$.

Let $\Sigma = \{M_1, M_4\}$ and $R = O_2(M_1 \cap M_4)$. Then it is not too difficult to see that Rand Σ fulfill the assumption of the Pushing Up Theorem.

$\neg E!$, a second example

Consider $G = E_8(q) \wr \text{Sym}(p^k)$. Here *E* helps us to detect that *G* is not of local characteristic *p*.

Let H be the normalizer of a root subgroup in $E_8(q)$, i.e. the E_7 -parabolic. Then \tilde{C} is $H \wr \text{Sym}(p^k)$, and E is a direct product of p^k copies of H. Hence, E is contained in the p-local subgroup L which is a direct product of $p^k - 1$ copies of H and $E_8(q)$. The general idea of the $\neg E!$ case is to find a subgroup R of G and $\Sigma \subseteq \mathcal{L}(RE)$ such that we can apply the Pushing Up Theorem to R and Σ .

For this we make the following choices:

X is a point-stabilizer of some subnormal subgroup of \tilde{C} , such that X is maximal with respect to $\mathcal{M}(EX) \neq \{\tilde{C}\}$.

Next choose L such that in consecutive order:

 $L \in \mathcal{L}(EX)$ with $L \not\leq \widetilde{C}$.

 $|\tilde{C} \cap L|_p$ is maximal.

 $S_{\widetilde{C}}(L)$ is maximal, here $S_{\widetilde{C}}(L)$ is the largest subnormal subgroup of \widetilde{C} contained in L.

 $\widetilde{C} \cap L$ is maximal.

L is minimal.

Define $R = O_p(L \cap \tilde{C})$. The following two situations need to be treated differently:

(PU-L):
$$N_{\widetilde{C}}(R) \neq L \cap \widetilde{C}.$$

$$(\neg \mathsf{PU-L})$$
: $N_{\widetilde{C}}(R) = L \cap \widetilde{C}.$

In the (PU-L)-Case put $H = N_{\widetilde{C}}(R)$ and $\Sigma = L^{H}$. A short and elementary argument shows that we can apply the Pushing Up Theorem.

The (\neg PU-L)-Case is more difficult. Here we choose an $\tilde{C} \cap L$ invariant subnormal subgroup N of \tilde{C} minimal with respect to $N \not\leq L$. Put $H = N(\tilde{C} \cap L)$ and $\Sigma = (H, L)$. If $Y_H \leq O_p(L)$ a rather lengthy amalgam type argument shows that the Pushing Up Theorem^{*} can be applied. This leaves us with

*Actually one needs a stronger (not yet finished) version of the Pushing Up Theorem than stated above

The Open " $\neg E!, b = 1$ "-Problem

In the $\neg E!$ and $(\neg PU-L)$ Case, determine the structure of H and L if $Y_H \not\leq O_p(L)$.

E!

We usually apply E! through an intermediate property we call Q-uniqueness. Let $Q = O_p(\tilde{C})$.

$$(Q!) \quad C_G(x) \leq \tilde{C} \text{ for all } 1 \neq x \in C_G(Q).$$

An application of Thompson's $P \times Q$ -Lemma shows that [x, E] = 1 for all $x \in \Omega_1 Z(Q)$. Hence $E \leq C_G(x)$ and so E! implies $C_G(x) \leq \tilde{C}$. Thus

E! implies Q!

Elementary consequences of Q! For $L \in \mathcal{L}$ define $L^{\circ} = \langle Q^g \mid g \in G, Q^g \leq L \rangle$.

Lemma Suppose Q!.

- (a) $\widetilde{C}^{\circ} = Q$, in particular, any *p*-subgroup of *G* contains at most one conjugate of *Q*.
- (b) If $L \in \mathcal{L}$ with $Q \leq O_p(L)$, then $L \leq \widetilde{C}$. In particular, if $1 \neq X \leq Z(Q)$ then $N_G(X) \leq \widetilde{C}$.
- (c) If $Q_1, Q_2 \in Q^G$ with $Z(Q_1) \cap Z(Q_2) \neq 1$, then $Q_1 = Q_2$.
- (d) Let $L \in \mathcal{L}$ with $Q \leq L$. Then
 - (a) $L^{\circ} = \langle Q^{L^{\circ}} \rangle$
 - (b) $L = L^{\circ}(L \cap \widetilde{C}).$
 - (c) $[C_L(Y_L), L^\circ] \leq O_p(L).$
 - (d) If L acts transitively on Y_L^{\sharp} , then $L^{\circ} = N_G(Y_L)^{\circ}$.
 - (e) If $L^{\circ} \neq Q$, then $C_{Y_{L}}(L^{\circ}) = 1$.

To state our first Structure Theorem we need a few more definitions.

A finite group L is p-minimal if a Sylow p-subgroup of L is contained in a unique maximal subgroup of L but is not normal in L.

 $P \in \mathcal{L}$ is a **minimal parabolic subgroup** if P is parabolic and p-minimal.

 \mathcal{P} denotes the set of minimal parabolics of G.

For $\mathcal{T} \subseteq \mathcal{L}$ let $\mathcal{T}^{\circ} = \{T \in \mathcal{T} \mid O^p(T) \leq T^{\circ}\}.$

It is an easy consequence of the definitions that if $P \in \mathcal{P}(S)$, then $P \in \mathcal{P}^{\circ}$ if and only if $P \not\leq \tilde{C}$.

Let $P \in \mathcal{P}^{\circ}(S)$. We say that gb(P) > 1 if $Y_M \leq Q$ for all $M \in \mathcal{L}(P)$. Otherwise we say gb(P) = 1.

The Structure Theorem for $Y_M \leq Q$

Theorem Suppose that Q! holds and that $P \in \mathcal{P}^{\circ}(S)$ with gb(P) > 1. Let $M \in \mathcal{L}(P)$ with M° maximal. Then one of the following two cases holds for $\overline{M} := M/C_M(Y_M)$ and $M_0 := M^{\circ}C_S(Y_M)$:

1.

- (a) $\overline{M_0} \cong SL_n(p^k)$ or $Sp_{2n}(p^k)$ and $C_{\overline{M}}(\overline{M_0})$ $\cong C_r, \ r|p^k - 1, \text{ or } \overline{M} \cong Sp_4(2)$ and $\overline{M_0} \cong Sp_4(2)'$ (and p = 2),
- (b) $[Y_M, M_0]$ is the corresponding natural module for $\overline{M_0}$,
- (c) $C_{M_0}(Y_M) = O_p(M_0)$, or p = 2 and $M_0/O_2(M_0) \cong 3Sp_4(2)'$.

- (a) $P = M_0 S$, $Y_M = Y_P$, and there exists a unique normal subgroup P^* of P containing $O_p(P)$ such that
- (b) $\overline{P^*} = K_1 \times \cdots \times K_r$, $K_i \cong SL_2(p^k)$, $Y_M = V_1 \times \cdots \times V_r$, where $V_i := [Y_M, K_i]$ is a natural K_i -module,
- (c) Q permutes the subgroups K_i of (b) transitively,
- (d) $O^p(P) = O^p(P^*) = O^p(M_0)$, and $P^*C_M(Y_P)$ is normal in M,
- (e) either $C_{M^{\circ}}(Y_P) = O_p(M_0)$, or p = 2, r > 1, $K_i \cong SL_2(2)$, and $C_{M_0}(Y_P)/O_2(M_0)$ $= Z(M_0/O_2(M_0))$ is a 3-group.

The Structure Theorem for $Y_M \not\leq Q$.

Theorem Let $M \in \mathcal{L}(S)$ with M° maximal. Assume that $Y_M \not\leq Q$. Set $K = F^*(M^{\circ}S/C_{M^{\circ}S}(Y_M))$. Then one of the following holds:

- 1. *K* is quasisimple and isomorphic to SL(n,q), Sp(2n,q)', $\Omega^{\pm}(n,q)$, or $E_6(q)$, *q* a power of *p*. In case of $K \cong SL_n(q)$ or $E_6(q)$ no element in $M^{\circ}S$ induces diagram automorphisms.
- 2. $K \cong SL_n(q)' * SL_m(q)'$, q a power of p. Further Y_M is the tensor product module.
- 3. p = 2 and $K \cong 3A_6$, M_{22} or M_{24} .
- 4. p = 3 and $K \cong M_{11}$ or $2M_{12}$.
- 5. $M^{\circ}S$ is a minimal parabolic.

Further Y_M is a near FF-module, and except for case 5, Y_M contains a $M^\circ S$ submodule V as described on the next slide.

K	prime	module	example
$SL_n(q)$	p	ext. square	$\Omega_{2n}(q)$
$SL_n(q)$	p	sym. square	$Sp_{2n}(q)$
$SL_n(q^2)$	p	$V(\lambda_1)\otimes V(\lambda_1^\sigma)$	$SU_{2n}(q)$
A_{6}	2	natural	Suz
3A6	2	6-dim	M_{24}
<i>Sp</i> ₈ (2)	2	8-dim	B
$\Omega_n^\pm(q)$	p	natural	$\Omega_{n+2}^{\pm}(q)$
$\Omega^{\pm}_{10}(q)$	2	half spin	$E_6(q)$
$E_{6}(q)$	p	$V(\lambda_1)$	$E_7(q)$
M_{11}	3	5-dim	Co_3
$2M_{12}$	3	6-dim	Co_2
M_{22}	2	10-dim	M(22)
M_{24}	2	11-dim	<i>M</i> (24)

The *P*!-Theorems

The P!-Theorem,I Suppose that Q! holds and $\langle \mathcal{P}^{\circ}(S) \rangle \notin \mathcal{L}$. Then

(a) p is odd.

- (b) Q = B(S), $\tilde{C} = N_G(B(S))$ and Q has order q^3 , q a power of p.
- (c) $P^{\circ} \sim q^2 SL_2(q)$ for all $P \in \mathcal{P}^{\circ}(S)$.

We say that P-Uniqueness (P!) holds in G provided that:

(P!-1) There exists a unique
$$P \in \mathcal{P}^{\circ}(S)$$
.

- (P!-2) $P^{\circ}/O_p(P^{\circ}) \cong SL_2(q)$, q a power of p.
- (P!-3) Y_P is a natural module for P° .
- (P!-4) $C_{Y_P}(S \cap P^\circ)$ is normal in \widetilde{C} .

The P!-Theorem, II Suppose that

- (i) Q! holds.
- (ii) There exists $P \in \mathcal{P}^{\circ}(S)$ with gb(P) > 1.
- (iii) $M := \langle \mathcal{P}^{\circ}(S) \rangle \in \mathcal{L}$
- Then P! holds in G.

The \widetilde{P} ! Theorem

Suppose Q! and P! and let P be the unique member of $\mathcal{P}^{\circ}(S)$. We say that $\tilde{P}!$ holds in G provided that

- $(\widetilde{P}!-1)$ There exists at most one $\widetilde{P} \in \mathcal{P}(S)$ such that \widetilde{P} does not normalize P° and $M := \langle P, \widetilde{P} \rangle \in \mathcal{L}$.
- $(\widetilde{P}$!-2) If such a \widetilde{P} exists then,
 - (a) $M \in \mathcal{L}^{\circ}$.
 - (b) $M^{\circ}/C_{M^{\circ}}(Y_M) \cong SL_3(q), Sp_4(q) \text{ or } Sp_4(2)'$
 - (c) Y_M is a corresponding natural module.

The \widetilde{P} ! **Theorem** Suppose Q! and that gb(P) > 1 for some $P \in \mathcal{P}^{\circ}(S)$. Then one of the following is true:

- 1. *G* fulfills \tilde{P} !.
- 2. Let $\widetilde{P} \in \mathcal{P}(S)$ with $\widetilde{P} \not\leq N_G(P^\circ)$ and $M := \langle P, \widetilde{P} \rangle \in \mathcal{L}$. Then
 - (a) p = 3 or 5.
 - (b) $M/O_p(M) \cong SL_3(p)$.
 - (c) $O_p(M)/Z(O_p(M))$ and $Z(O_p(M))$ are natural $SL_3(p)$ -modules for $M/O_p(M)$, dual to each other.

Define the rank of G to be the minimal size of a non-empty subset Σ of $\mathcal{P}(S)$ with $\langle \Sigma \rangle \notin \mathcal{L}$. If no such subset exists we define the rank to be 1. Note that rank G = 1 if and only if $|\mathcal{M}(S)| = 1$, which is impossible under our current assumption that G is equal to its p-core.

Elementary consequences of P! and $\tilde{P}!$

Lemma Suppose E!, P!, $\tilde{P}!$ and that G has rank at least three. Let $L = N_G(P^\circ)$ and $H = (L \cap \tilde{C})E$. Then

(a) There exists a unique $\tilde{P} \in \mathcal{P}_H(S)$ with $\tilde{P} \not\leq L$. Moreover, $\tilde{P} \leq ES$.

(b) $\tilde{P}/O_p(\tilde{P}) \sim SL_2(q).p^k$.

(c) H has a unique p-component K.

(d) $H = K(L \cap H)$, $L \cap H$ is a maximal subgroup of H and $O_p(H \cap L) \neq O_p(H)$.

(e) Let $D = C_H(K/O_p(K))$. Then $D/O_p(H)$ is isomorphic to a section of the Borel subgroup of Aut $(SL_2(q))$.

(f) Let $Z_0 = C_{Y_P}(S \cap P^\circ)$ and $V = \langle Y_P^H \rangle$. Then $Z_0 \leq V$ and $V \leq Q \leq O_p(H)$.

(g) Let $\overline{V} = V/Z_0$. Then $H \cap L$ contains a point-stabilizer for H on \overline{V} .

(h) $\langle H,L\rangle \notin \mathcal{L}$.

The Small World Theorem

Suppose Q! and let $P \in \mathcal{P}^{\circ}(S)$. We say that gb(P) = 2 if gb(P) > 1 and $\langle (Y_P)^E \rangle$ is not abelian.

The Small World Theorem Suppose E!and let $P \in \mathcal{P}^{\circ}(S)$. Then one of the following holds:

- 1. G has rank 1 or 2.
- 2. gb(P) = 1 or gb(P) = 2.
- 3. Neither 1. nor 2. hold and

(a) There exists a unique $M \in \mathcal{M}(S)$ with $\tilde{C} \neq M \neq N_G(P^\circ)$.

(b)
$$M^{\circ}/C_{M^{\circ}}(Y_M) \cong SL_3(q)$$
 or $Sp_4(q)$.

(c) \tilde{C} has a unique p-component K and $K/O_p(K) \cong SL_3(q)$, $Sp_4(q)$ or $G_2(q)$.

The Open Rank 3 Problem

Rule out Case 3 of the Small World Theorem.

The rank 2 Case

Rank 2 Theorem, I Suppose E!, P!, $\tilde{P}!$ and that G has rank 2. Choose $\tilde{P} \in \mathcal{P}(S)$ such that

(i) $\langle P, \widetilde{P} \rangle \notin \mathcal{L}$.

(ii) $H := \langle P \cap \widetilde{C}, \widetilde{P} \rangle$ is minimal with respect to (i).

(iii) \tilde{P} is minimal with respect to (??) and (??)

Then one of the following holds:

1.
$$Y_P \not\leq O_p(\widetilde{P})$$
.

- 2. $(P^{\circ}N_H(P^{\circ}), H)$ is a weak BN-pair.
- 3. The structure of P and \tilde{P} is as in one of the following groups.
 - 1. For p = 2: $U_4(3).2^e$, $G_2(3).2^e$, $D_4(3).2^e$, $HS.2^e$, F_3 , $F_5.2^e$ or Ru.
 - 2. For p = 3: $D_4(3^n) \cdot 3^e$, F_{23} , F_2 .
 - 3. For p = 5: F_2 .
 - 4. For p = 7: F_1 .

In Case 2. one can apply the Delgado-Stellmacher Weak-BN Pair paper. Which leave us in the rank 2 Case with

The Open "rank 2, gb(P)=1" Problem

Suppose E! holds and there exist $P \in \mathcal{P}^{\circ}(S)$ and $\tilde{P} \in \mathcal{P}(S)$ such that $\langle P, \tilde{P} \rangle \notin \mathcal{L}$ and gb(P) = 1. Determine the structure of Pand \tilde{P} .

gb(P)=2

The Open "gb(P)=2" Problem

Suppose E!, P!, $\tilde{P}!$ and that $\langle Y_P^E \rangle$ is not abelian. Determine the structure of P and E.

The "gb(P) = 2"-Problem is actually just a special case of the symplectic amalgams treated by Parker and Rowley. But since the assumptions of the "gb(P) = 2"-Problem are stronger than for symplectic amalgams, we believe that a significantly shorter proof should be possible.

gb(P)=1

The *H*-Structure Theorem (for p=2) Suppose *E*!, rank $G \ge 3$ and that there exists $M \in \mathcal{M}(S)$ with M° maximal and $Y_M \not\leq Q$. If p = 2, then there exists $M^{\circ}S \le H \le G$ with $O_p(H) = 1$ such that *H* is of parabolic type H^* where H^* is one of the following groups:

- 1. A group of Lie-Type in characteristic p with Lie-rank at least three.
- 2. $M_{24}, He, Co_2, M(22).2^e, Co_1, J_4, M(24)'.2^e,$ Suz, F_2 or F_1 .

3. $U_4(3).2^e$.

Moreover, $M^{\circ}S$ has the same structure as its corresponding group in H^* .