Nearly Quadratic Modules
 Work in progress
 joint with
 Bernd Stellmacher

Definitions

Let A be an abelian group, \mathbb{F} a field and V an $\mathbb{F} A$ module.

The module V is a
quadratic $\mathbb{F} A$-module if $[V, A, A]=0$,
cubic $\mathbb{F} A$-module if $[V, A, A, A]=0$,
nearly quadratic $\mathbb{F} A$-module if V is a cubic $\mathbb{F} A$ module and

$$
[V, A]+C_{V}(A)=[\mathbb{F} v, A]+C_{V}(A)
$$

for every $v \in V \backslash[V, A]+C_{V}(A)$.
In the corresponding cases we also say that A is quadratic, cubic and nearly quadratic on V.
$\mathrm{Q}_{V}(A)$ is the largest quadratic $\mathbb{F} A$-submodule of V.

Motivation

Let G be a finite group, p a prime and V an elementary abelian p-subgroup of G. Suppose that
(i) $\mathrm{C}_{G}\left(\mathrm{O}_{p}(G)\right) \leq \mathrm{O}_{p}(G)$
(ii) $V \notin \mathrm{O}_{p}(G)$.
(iii) V is weakly closed in G.

Choose $V \leq L \leq G$ minimal with $V \not \approx \mathrm{O}_{p}(L)$.
Put $A:=\left\langle\left(V \cap \mathrm{O}_{p}(L)\right)^{L}\right\rangle$. Then $[V, A] \neq 1$ and A is nearly quadratic on V

Lemma 1 Let V be a nearly quadratic $\mathbb{F} A$-module and W be an $\mathbb{F} A$-submodule of V. Then
(a) Either

$$
W \leq[V, A]+C_{V}(A)
$$

or

$$
[V, A] \leq[W, A]+C_{V}(A)
$$

(b) One of the following holds:

1. A acts quadratically on $V, Q_{V}(A)=V$ and

$$
[V, A]+C_{V}(A)=C_{V}(A)
$$

2. A does not act quadratically and

$$
Q_{V}(A)=[V, A]+C_{V}(A)
$$

(c) Both W and V / W are nearly quadratic $\mathbb{F} A$ modules.
(d) A acts quadratically on W or on V / W.

Lemma 2 Let V be a nearly quadratic, but not quadratic $\mathbb{F} A$-module. Let X and Y be $\mathbb{F} A$-submodules of V such that

$$
V=X \oplus Y
$$

Then A centralizes X or Y.

Lemma 3 Let V be a faithful, nearly quadratic, but not quadratic $\mathbb{F} A$-module, and let Δ be a system of imprimitivity for A on V. Suppose that A acts nontrivially on Δ.

Then exists a unique A-orbit $W^{A} \subseteq \Delta$ with $[W, A] \neq$ 0. Moreover $C_{A}(W)=1, B:=N_{A}(W)$ acts quadratically on V, and one of the following holds:

1. char $\mathbb{F}=2,\left|W^{A}\right|=4, \operatorname{dim}_{\mathbb{F}} W=1, B=1$ and $A \cong C_{2} \times C_{2}$.
2. char $\mathbb{F}=3,\left|W^{A}\right|=3, \operatorname{dim}_{\mathbb{F}} W=1, B=1$, and $A \cong C_{3}$.
3. char $\mathbb{F}=2,\left|W^{A}\right|=2$, and

$$
[W, B]=C_{W}(B)
$$

is an \mathbb{F}-hyperplane of W.

Lemma 4 Let \mathbb{K} be a field, A a group and V_{1} and V_{2} be nilpotent $\mathbb{K} A$-modules and

$$
V=V_{1} \otimes_{\mathbb{K}} V_{2}
$$

Suppose that there exists a subfield $\mathbb{F} \leq \mathbb{K}$ such that V is a nearly quadratic, but not quadratic $\mathbb{F} A$ module. Then for $j=1,2$

$$
\left[V_{j}, A\right]=C_{V_{j}}(A)
$$

is a \mathbb{K}-hyperplane of V_{j}.

Lemma 5 Let V be faithful, nearly quadratic, not quadratic $\mathbb{F} A$-module. Suppose that there exists a field \mathbb{K} with $\mathbb{F} \leq \mathbb{K}$ such that V is a semi-linear, but not linear, $\mathbb{K} A$-module. Put $A_{\mathbb{K}}=C_{A}(\mathbb{K})$. Then $p:=$ char $\mathbb{K} \in\{2,3\}, A$ is a elementary abelian p group, $\operatorname{dim}_{\mathbb{F}} \mathbb{K}=\left|A / A_{\mathbb{K}}\right|$ and one of the following holds:

1. $A \cong C_{3}, A_{\mathbb{K}}=1$ and $\operatorname{dim}_{\mathbb{K}} V=1$.
2. $A \cong C_{2} \times C_{2}, A_{\mathbb{K}}=1$ and $\operatorname{dim}_{\mathbb{K}} V=1$.
3. $\left|A / A_{\mathbb{K}}\right|=2$ and $\left[V, A_{\mathbb{K}}\right]=C_{V}\left(A_{\mathbb{K}}\right)$ is a \mathbb{K}-hyperplane of V.

Theorem 6 Let \mathbb{F} be field, H a group and V be a faithful semisimple $\mathbb{F} H$-module. Let \mathcal{Q} be the set of nearly quadratic, but not quadratic subgroups of H. Suppose that $H=\langle\mathcal{Q}\rangle$. Then there exists a partition $\left(\mathcal{Q}_{i}\right)_{i \in I}$ of \mathcal{Q} such that
(a) $H=\bigoplus_{i \in I} H_{i}$, where $H_{i}=\left\langle\mathcal{Q}_{i}\right\rangle$.
(b) $V=C_{V}(H) \oplus \bigoplus_{i \in I}\left[V, H_{i}\right]$.
(c) For each $i \in I,\left[V, H_{i}\right]$ is a simple $\mathbb{F} H_{i}$-module.

Theorem 7 * Let H be a finite group, and V a faithful simple $\mathbb{F}_{p} H$-module. Suppose that H is generated by elementary abelian, nearly quadratic, but not quadratic subgroups of H.
Let W a simple $\mathbb{F}_{p} \mathrm{~F}^{*}(H)$-submodule of V and

$$
\mathbb{K}=\operatorname{End}_{\mathrm{F}^{*}(H)}(W)
$$

Then H, V, W, \mathbb{K} and $H / C_{H}(\mathbb{K})$ are as in the following table:

H	V	W	\mathbb{K}	$H / C_{H}(\mathbb{K})$
$\left(C_{2} \text { 乙Sym }(n)\right)^{\prime}$	\mathbb{F}_{3}^{n}	\mathbb{F}_{3}	\mathbb{F}_{3}	-
$\mathrm{SL}_{n}\left(\mathbb{F}_{2}\right)$ \ C_{2}	$\mathbb{F}_{2}^{n} \oplus \mathbb{F}_{2}^{n}$	\mathbb{F}_{2}^{n}	\mathbb{F}_{2}	-
$\mathrm{SL}_{2}\left(\mathbb{F}_{2}\right) \times \mathrm{SL}_{2}\left(\mathbb{F}_{2}\right)$	$\mathbb{F}_{2}^{2} \otimes \mathbb{F}_{2}^{2}$	\mathbb{F}_{4}	\mathbb{F}_{4}	-
Frob(39)	\mathbb{F}_{27}	V	\mathbb{F}_{27}	C_{3}
$\Gamma \mathrm{GL}_{n}\left(\mathbb{F}_{4}\right)$	\mathbb{F}_{4}^{n}	V	\mathbb{F}_{4}	C_{2}
$\Gamma \mathrm{SL}_{n}\left(\mathbb{F}_{4}\right)$	\mathbb{F}_{4}	V	\mathbb{F}_{4}	C_{2}
3. Sym(6)	\mathbb{F}_{4}^{3}	V	\mathbb{F}_{4}	C_{2}
$S L_{n}(\mathbb{K}) \circ S L_{m}(\mathbb{K})$	$\mathbb{K}^{n} \otimes \mathbb{K}^{m}$	V	any	1
$\left(C_{2}\right.$ 乙Sym(4)) ${ }^{\prime}$	\mathbb{F}_{3}^{4}	V	\mathbb{F}_{3}	1
$\mathrm{F}^{*}(H)$ quasisimple	?	V	?	1

* In the cases where $\left|H / C_{H}(\mathbb{K})\right|=2$ we currently use the FF-module Theorem (and so a \mathcal{K}-group assumption) to identify H

Some examples for the last case (under stronger assumptions, including 2 F and \mathcal{K}-group, these are all the examples.)

H	V	\mathbb{K}
$\mathrm{SL}_{n}(\mathbb{K})$	\mathbb{K}^{n}	any
$\mathrm{Sp}_{2 n}(\mathbb{K})$	$\mathbb{K}^{2 n}$	any
$\Omega_{n}^{\epsilon}(\mathbb{K})$	\mathbb{K}^{n}	any
$\mathrm{SL}_{n}(\mathbb{K})$	$\bigwedge^{2} \mathbb{K}^{n}$	any
$\mathrm{SL}_{n}(\mathbb{K})$	$\mathrm{S}^{2} \mathbb{K}^{n}$	char \mathbb{K} odd
$\operatorname{Spin}_{10}^{+}(\mathbb{K})$	\mathbb{K}^{16}, spin	any
$\mathrm{E}_{6}(\mathbb{K})$	\mathbb{K}^{27}	any
Mat_{22},	\mathbb{F}_{2}^{10}	\mathbb{F}_{2}
Mat_{24}	\mathbb{F}_{2}^{11}	\mathbb{F}_{2}
Mat_{11}	\mathbb{F}_{3}^{5}	\mathbb{F}_{3}
$2 \cdot \mathrm{Mat}_{12}$	\mathbb{F}_{3}^{6}	\mathbb{F}_{3}

