Nearly Quadratic Modules

Work in progress

joint with

Bernd Stellmacher

Definitions

Let A be an abelian group, $\mathbb F$ a field and V an $\mathbb F A\text{-module}.$

The module V is a

quadratic $\mathbb{F}A$ -module if [V, A, A] = 0,

cubic $\mathbb{F}A$ -module if [V, A, A, A] = 0,

nearly quadratic $\mathbb{F}A$ -module if V is a cubic $\mathbb{F}A$ -module and

$$[V, A] + C_V(A) = [\mathbb{F}v, A] + C_V(A)$$

for every $v \in V \setminus [V, A] + C_V(A)$.

In the corresponding cases we also say that A is quadratic, cubic and nearly quadratic on V.

 $\mathbf{Q}_V(A)$ is the largest quadratic $\mathbb{F}A$ -submodule of V.

Motivation

Let G be a finite group, p a prime and V an elementary abelian p-subgroup of G. Suppose that

- (i) $C_G(O_p(G)) \leq O_p(G)$
- (ii) $V \not\leq O_p(G)$.
- (iii) V is weakly closed in G.

Choose $V \leq L \leq G$ minimal with $V \not\leq O_p(L)$.

Put $A := \langle (V \cap O_p(L))^L \rangle$. Then $[V, A] \neq 1$ and

 \boldsymbol{A} is nearly quadratic on \boldsymbol{V}

Lemma 1 Let V be a nearly quadratic $\mathbb{F}A$ -module and W be an $\mathbb{F}A$ -submodule of V. Then

(a) Either

$$W \le [V, A] + C_V(A)$$

or

$$[V,A] \le [W,A] + C_V(A).$$

(b) One of the following holds:

1. A acts quadratically on V, $Q_V(A) = V$ and

$$[V, A] + C_V(A) = C_V(A).$$

2. A does not act quadratically and

$$Q_V(A) = [V, A] + C_V(A).$$

- (c) Both W and V/W are nearly quadratic $\mathbb{F}A$ -modules.
- (d) A acts quadratically on W or on V/W.

Lemma 2 Let V be a nearly quadratic, but not quadratic $\mathbb{F}A$ -module. Let X and Y be $\mathbb{F}A$ -submodules of V such that

$$V = X \oplus Y$$

Then A centralizes X or Y.

Lemma 3 Let V be a faithful, nearly quadratic, but not quadratic $\mathbb{F}A$ -module, and let Δ be a system of imprimitivity for A on V. Suppose that A acts nontrivially on Δ .

Then exists a unique A-orbit $W^A \subseteq \Delta$ with $[W, A] \neq 0$. O. Moreover $C_A(W)=1$, $B := N_A(W)$ acts quadratically on V, and one of the following holds:

- 1. char $\mathbb{F} = 2$, $|W^A| = 4$, dim_{\mathbb{F}} W = 1, B = 1 and $A \cong C_2 \times C_2$.
- 2. char $\mathbb{F} = 3$, $|W^A| = 3$, dim_{\mathbb{F}} W = 1, B = 1, and $A \cong C_3$.
- 3. char $\mathbb{F} = 2$, $|W^A| = 2$, and

 $[W,B] = C_W(B)$

is an \mathbb{F} -hyperplane of W.

Lemma 4 Let \mathbb{K} be a field, A a group and V_1 and V_2 be nilpotent $\mathbb{K}A$ -modules and

 $V = V_1 \otimes_{\mathbb{K}} V_2.$

Suppose that there exists a subfield $\mathbb{F} \leq \mathbb{K}$ such that V is a nearly quadratic, but not quadratic $\mathbb{F}A$ -module. Then for j = 1, 2

$$[V_j, A] = C_{V_j}(A)$$

is a \mathbb{K} -hyperplane of V_j .

Lemma 5 Let *V* be faithful, nearly quadratic, not quadratic $\mathbb{F}A$ -module. Suppose that there exists a field \mathbb{K} with $\mathbb{F} \leq \mathbb{K}$ such that *V* is a semi-linear, but not linear, $\mathbb{K}A$ -module. Put $A_{\mathbb{K}} = C_A(\mathbb{K})$. Then $p := \operatorname{char} \mathbb{K} \in \{2,3\}, A$ is a elementary abelian pgroup, $\dim_{\mathbb{F}} \mathbb{K} = |A/A_{\mathbb{K}}|$ and one of the following holds:

- 1. $A \cong C_3$, $A_{\mathbb{K}} = 1$ and $\dim_{\mathbb{K}} V = 1$.
- 2. $A \cong C_2 \times C_2$, $A_{\mathbb{K}} = 1$ and $\dim_{\mathbb{K}} V = 1$.
- 3. $|A/A_{\mathbb{K}}| = 2$ and $[V, A_{\mathbb{K}}] = C_V(A_{\mathbb{K}})$ is a \mathbb{K} -hyperplane of V.

Theorem 6 Let \mathbb{F} be field, H a group and V be a faithful semisimple $\mathbb{F}H$ -module. Let \mathcal{Q} be the set of nearly quadratic, but not quadratic subgroups of H. Suppose that $H = \langle \mathcal{Q} \rangle$. Then there exists a partition $(\mathcal{Q}_i)_{i \in I}$ of \mathcal{Q} such that

(a) $H = \bigoplus_{i \in I} H_i$, where $H_i = \langle Q_i \rangle$.

(b) $V = C_V(H) \oplus \bigoplus_{i \in I} [V, H_i].$

(c) For each $i \in I$, $[V, H_i]$ is a simple $\mathbb{F}H_i$ -module.

Theorem 7 * Let H be a finite group, and V a faithful simple \mathbb{F}_pH -module. Suppose that H is generated by elementary abelian, nearly quadratic, but not quadratic subgroups of H.

Let W a simple $\mathbb{F}_p F^*(H)$ -submodule of V and

 $\mathbb{K} = \mathsf{End}_{\mathsf{F}^*(H)}(W).$

Then H, V, W, \mathbb{K} and $H/C_H(\mathbb{K})$ are as in the following table:

Н	V	W	K	$H/C_H(\mathbb{K})$
$(C_2 \wr \operatorname{Sym}(n))'$	\mathbb{F}_3^n	\mathbb{F}_3	\mathbb{F}_3	—
$SL_n(\mathbb{F}_2)\wr C_2$	$\mathbb{F}_2^n\oplus\mathbb{F}_2^n$	\mathbb{F}_2^n	\mathbb{F}_2	_
$SL_2(\mathbb{F}_2) imesSL_2(\mathbb{F}_2)$	$\mathbb{F}_2^2\otimes\mathbb{F}_2^2$	\mathbb{F}_4	\mathbb{F}_4	—
Frob(39)	\mathbb{F}_{27}	V	\mathbb{F}_{27}	C_3
$FGL_n(\mathbb{F}_4)$	\mathbb{F}_4^n	V	\mathbb{F}_4	C_2
$FSL_n(\mathbb{F}_4)$	\mathbb{F}_4^n	V	\mathbb{F}_4	C_2
3 [.] Sym(6)	\mathbb{F}_4^3	V	\mathbb{F}_4	C_2
$SL_n(\mathbb{K})\circSL_m(\mathbb{K})$	$\mathbb{K}^n\otimes\mathbb{K}^m$	V	any	1
(<i>C</i> ₂ ≀ Sym(4))′	\mathbb{F}_3^4	V	\mathbb{F}_3	1
F*(H) quasisimple	?	V	?	1

* In the cases where $|H/C_H(\mathbb{K})| = 2$ we currently use the FF-module Theorem (and so a \mathcal{K} -group assumption) to identify H **Some** examples for the last case (under stronger assumptions, including 2F and \mathcal{K} -group, these are all the examples.)

Н	V	K	
$SL_n(\mathbb{K})$	\mathbb{K}^n	any	
$Sp_{2n}(\mathbb{K})$	\mathbb{K}^{2n}	any	
$\Omega^\epsilon_n(\mathbb{K})$	\mathbb{K}^n	any	
$SL_n(\mathbb{K})$	$\bigwedge^2 \mathbb{K}^n$	any	
$SL_n(\mathbb{K})$	$S^2\mathbb{K}^n$	$char\mathbb{K}odd$	
$Spin_{10}^+(\mathbb{K})$	$\mathbb{K}^{16},$ spin	any	
$E_6(\mathbb{K})$	K ²⁷	any	
Mat ₂₂ ,	\mathbb{F}_2^{10}	\mathbb{F}_2	
Mat ₂₄	\mathbb{F}_2^{11}	\mathbb{F}_2	
Mat ₁₁	\mathbb{F}_3^5	\mathbb{F}_3	
$2 \cdot Mat_{12}$	\mathbb{F}_3^6	\mathbb{F}_3	