The Structure Theorem and Its Spinoffs

work in progress

joint with

Bernd Stellmacher and Gernot Stroth

Groups of local characteristic p

Let G be finite group and p a prime.

Definition 1 G has characteristic p if

$$C_G(O_p(G)) \leq O_p(G).$$

H is a p-local subgroup of G if $H = N_G(P)$ for some non-trivial p-subgroup of G.

G has **local characteristic** p if all p-local subgroups of G have characteristic p.

G is a \mathcal{K}_p -group if the simple sections of the p-locals subgroups of G are known finite simple groups.

Goals:

- 1. Understand the finite groups of local characteristic p.
- 2. Classify \mathcal{K}_p -groups of local characteristic p whose p-local structure is not too small.

The Structure Theorem

Definition 2 Let H be group, \mathbb{F} a field and V an $\mathbb{F}H$ -module.

(a) H acts **nilpotently** on V if there exists an ascending series

$$0 = V_0 < V_1 < V_2 \dots, V_{n-1} < V_n$$

of $\mathbb{F}H$ -submodules of V such that H centralizes each of the factor V_{i+1}/V_i .

- (b) V is H-reduced if [V, N] = 0 whenever $N \subseteq H$ and N acts nilpotently on V.
- (c) If H is finite, then the largest elementary abelian normal H-reduced p-subgroup of H is denoted by Y_H .

Definition 3 Let A and B be subgroups of G. The relation \ll on the subgroups of G is defined by

$$A \ll B : \iff A \subseteq C_G(Y_A)B$$
 and $Y_A \leq Y_B$.

Furthermore, we define

$$A^{\dagger} := C_G(Y_A)A$$

$$\mathcal{S}^{\dagger} = \{ L \le G \mid L = L^{\dagger} \} = \{ L \le G \mid C_G(Y_L) \le L \}$$

Lemma 4 (a) For all $L \leq G$, $A \ll A^{\dagger}$ and $A^{\dagger} \in \mathcal{S}^{\dagger}$.

- (b) \ll is reflexive and transitive.
- (c) Restricted to S^{\dagger} , \ll is a partial ordering.

Definition 5 $S^{\dagger}(S) = \{L \in S^{\dagger} \mid S \leq L\}$ and F(S) is the set of maximal elements of \ll in $S^{\dagger}(S)$.

Definition 6 Let Q be a p-subgroup of a finite group G. We say that Q is large subgroup of G provided that $C_G(Q) \leq Q$ and

$$Q \leq N_G(A)$$

for all $1 \neq A \leq Z(Q)$.

Theorem 7 (Structure Theorem)

Let p be a prime, G be a finite \mathcal{K}_p -group of local characteristic p. Suppose that Q is a large p-subgroup of G and $Q \leq S \in \text{Syl}_p(G)$. Let $M \in \mathcal{F}(S)$ with $Q \not \supseteq M$. Put $M^\circ = \langle Q^M \rangle$, $\overline{M} = M/C_M(Y_M)$ and $I = [Y_M, M^\circ]$.

Suppose that $Y_M \leq O_p(N_G(Q))$. Then one the following holds.

- 1. $\overline{M^{\circ}} \cong SL_n(q), Sp_{2n}(q)$ or $Sp_4(2)'$ and I is the corresponding natural module.
- 2. There exists a normal subgroup K of \overline{M} such that

(a)
$$K = K_1 \times \cdots \times K_r$$
, $K_i \cong Sl_2(q)$ and $Y_M = V_1 \times \cdots \times V_r$

where $V_i := [Y_M, K_i]$ is a natural K_i -module.

(b) Q permutes the K_i 's transitively.

Suppose that $Y_M \nleq O_p(N_G(Q))$. Then one of the following holds:

- (a) There exists a normal subgroup K of \overline{M} such that $K=K_1\circ K_2$ with $K_i\cong SL_{m_i}(q),\ Y_M\cong V_1\otimes V_2$ where V_i is a natural module for K_i and \overline{M}° is one of K_1,K_2 or $K_1\circ K_2$.
- (b) $(\overline{M}^{\circ}, p, I)$ is as given in the following table:

p	I		
p	natural		
p	\bigwedge^2 (natural)		
p	S ² (natural)		
p	$natural \otimes natural^q$		
2	2^{6}		
2	natural		
2	natural		
p	natural		
2	natural		
2	half-spin		
p	q^{27}		
3	3 ⁵		
3	3 ⁶		
2	2^{10}		
2	2^{11}		
	p p p p p p 2 2 p 2 p 2 p 3 3 2		

2F-stability

Definition 8 Let A be an elementary abelian p-group and V a finite dimensional GF(p)A-module. Then A is

- (a) quadratic on V if [V, A, A] = 0,
- (b) **cubic** on V if [V, A, A, A] = 0,
- (c) nearly quadratic on V if A is cubic and $[V,A]+C_V(A)=[v,A]+C_V(A)$ for every $v\in V\setminus [V,A]+C_V(A)$,
- (d) an offender on V if $|V/C_V(A)| \leq |A/C_A(V)|$,
- (e) a 2*F*-offender if $|V/C_V(A)| \le |A/C_A(V)|^2$,
- (f) non-trivial on V if $[V, A] \neq 0$.

Let A be an elementary abelian p-subgroup A of G. Then A is F-**stable** in G if none of the elementary abelian p-subgroups of $N_G(A)/C_G(A)$ are non-trivial offenders on A.

Similarly, A is 2F-**stable** in G if none of the elementary abelian p-subgroups of $N_G(A)/C_G(A)$ are non-trivial nearly quadratic 2F-offenders on A.

Let H be a finite group, p a prime and V an elementary abelian p-subgroup of H. Suppose that

- (i) H is of characteristic p.
- (ii) $V \nleq O_p(H)$.
- (iii) V is weakly closed in H.

Choose $V \leq L \leq H$ minimal with $V \nleq O_p(L)$.

Put $A := \langle (V \cap O_p(L))^L \rangle$. Then $[V, A] \neq 1$ and A is a nearly quadratic 2F-offender on V

Definition 9 Let S be Sylow p-subgroup of G.

$$B(S) := C_S(\Omega_1 \mathsf{Z}(J(S)))$$

$$C^*(G,S) := \langle C_G(\Omega_1 \mathsf{Z}(S)), N_G(C) \mid 1 \neq C \text{ char } B(S) \rangle$$

Definition 10 Let G be a finite group and $H \leq G$.

- (a) H is called a **parabolic subgroup** of G if H contains a Sylow p-subgroup of G.
- (b) G has parabolic characteristic p if all p-local, parabolic subgroups of G have characteristic p.

Theorem 11 Let G be a finite group of parabolic characteristic p and $S \in \text{Syl}_p(G)$. Suppose $M \in \mathcal{F}(S)$ such that Y_M is 2F-stable. Then

- (a) $C^*(G,S) \leq M$.
- (b) $C^*(H,T) \leq H \cap M < H$ for all $H \leq G$ with $B(S) \leq H$ and $H \nleq N$, where $B(S) \leq T \in \mathsf{Syl}_p(H)$.
- (c) If $N \in \mathcal{F}(S)$ with $N \neq M$, then Y_N is not F-stable.

Corollary 12 Let G be a finite group of parabolic characteristic p and $S \in \text{Syl}_p(G)$. If S is contained in at least two maximal p-local subgroups of G, then there exists $M \in \mathcal{F}(S)$ such that Y_M is not 2F-stable.

The Fitting Submodule

Let \mathbb{F} be a field, H a finite group and V a finite dimensional $\mathbb{F}H$ -module.

Definition 13

- (a) $\operatorname{rad}_V(H)$ is the intersection of the maximal $\mathbb{F}H$ submodules of V
- (b) Let W be an $\mathbb{F}H$ submodule of V and $N \leq H$. Then W is N-quasisimple if W is H-reduced, $W/\operatorname{rad}_W(H)$ is simple for $\mathbb{F}H$, W = [W, N] and N acts nilpotently on $\operatorname{rad}_W(H)$.
- (c) $S_V(H)$ is the sum of all simple $\mathbb{F}H$ -submodules of V.
- (d) $\mathsf{E}_H(V) := \mathsf{C}_{\mathsf{F}^*(H)}(\mathsf{S}_V(H)).$
- (e) W is a **component** of V if either W is a simple $\mathbb{F}H$ -submodule with $[W, F^*(H)] \neq 0$ or W is an $\mathsf{E}_H(V)$ -quasisimple $\mathbb{F}H$ -submodule.
- (f) The **Fitting submodule** $F_V(H)$ of V is the sum of all components of V.
- (g) $R_V(H) := \sum rad_W(H)$, where the sum runs over all components W of V

Theorem 14 (a) The Fitting submodule $F_V(H)$ is H-reduced.

- (b) $R_V(H)$ is a semisimple $\mathbb{F} F^*(H)$ -module.
- (c) $R_V(H) = \operatorname{rad}_{F_V(H)}(H)$.
- (d) $F_V(H)/R_V(H)$ is a semisimple $\mathbb{F}H$ -module

Theorem 15 Let V be faithful and H-reduced. Then also $F_V(H)$ and $F_V(H)/R_V(H)$ are faithful and H-reduced.

Definition 16 Let A be a subgroup of G such that $A/C_A(V)$ is an elementary abelian p-group. A is a **best offender** of G on V if $|B| \cdot |C_V(B)| \le |A| \cdot |C_V(A)|$ for every $B \le A$.

Definition 17 The normal subgroup of G generated by the best offenders of G on V is denoted by $J_G(V)$.

A $J_G(V)$ -component is non-trivial subgroup K of $J_G(V)$ minimal with respect to $K = [K, J_G(V)]$.

Theorem 18 (The Other $\mathcal{P}(G,V)$ -Theorem.)

Suppose that V is a faithful finite dimensional, reduced \mathbb{F}_pG -module. Then

$$[E, K] = 1$$
 and $[V, E, K] = 0$

for any two distinct $J_G(V)$ -components E and K.

Definition 19 A finite group is a CK-group if all its compositions factors are known finite simple groups.

Theorem 20 (FF-Module Theorem, Guralnick-Malle) Let M be a finite \mathcal{CK} group with $\mathsf{F}^*(M)$ quasisimple and V a faithful simple \mathbb{F}_pM -module. Suppose that $M = \mathsf{J}_M(V)$.

Then (M, p, V) is one of the following:

M	p	V		
$SL_n(q)$	p	natural		
$Sp_{2n}(q)$	p	natural		
$SU_n(q)$	p	natural		
$\Omega_n^\epsilon(q)$	p	natural		
$O^{\epsilon}_{2n}(q)$	2	natural		
$G_2(q)$	2	q^{6}		
$SL_n(q)$	p	\bigwedge^2 (natural)		
$Spin_7(q)$	p	Spin		
$Spin_{10}^+(q)$	p	Spin		
3. Alt(6)	2	2^{6}		
Alt(7)	2	2^{4}		
Sym(n)	2	natural		
Alt(n)	2	natural		

Theorem 21 (J-Module Theorem) Let M be a finite \mathcal{CK} -group, V a faithful, reduced \mathbb{F}_pM -module. Put $J = \mathsf{J}_V(M)$ and let $\mathcal{J} = \mathcal{J}_V(M)$ be the set of J_V -components of V. Put $W = [V, \mathcal{J}]C_V(\mathcal{J})/C_V(\mathcal{J})$ and let $K \in \mathcal{J}$.

- (a) K is either quasisimple or p=2 or 3 and $K\cong SL_2(p)'$.
- (b) [V, K, L] = 0 for all $K \neq L \in \mathcal{J}$.
- (c) $W = \bigoplus_{K \in \mathcal{J}} [W, K]$.
- (d) $J^p J' = 0^p (J) = F^*(J) = \chi \mathcal{J}$.
- (e) W is a semisimple $\mathbb{F}_p J$ -module.

- (f) Let $J_K = J/C_J([W,K])$. Then $K \cong O^p(J_K)$ and one of the following holds:
- 1. [W, K] is a simple K-module and $(J_K, [W, K])$ full-fills the assumptions and so also the conclusion of Theorem 20.
- 2. J_K and [W, K] are as follows (where N denotes a natural module and N^* its dual):

J_K	[W,K]	conditions		
$SL_n(q)$	$N^r \oplus N^{*s}$	$\sqrt{r} + \sqrt{s} \le \sqrt{n}$		
$Sp_{2n}(q)$	N^r	$r \leq n$		
$SU_n(q)$	N^r	$r \leq rac{n}{4}$		
$\Omega_n^\epsilon(q)$	N^r	$r \leq \frac{n-2}{4}$		
$O_{2n}^\epsilon(q)$	N^r	$p = 2, r \le \frac{2n-2}{4}$		

Nearly Quadratic Modules

Lemma 22 Let V be a nearly quadratic, but not quadratic $\mathbb{F}A$ -module. Let X and Y be $\mathbb{F}A$ -submodules of V such that

$$V = X \oplus Y$$

Then A centralizes X or Y.

Theorem 23 Let \mathbb{F} be field, H a group and V be a faithful semisimple $\mathbb{F}H$ -module. Let \mathcal{Q} be the set of nearly quadratic, but not quadratic subgroups of H. Suppose that $H = \langle \mathcal{Q} \rangle$. Then there exists a partition $(\mathcal{Q}_i)_{i \in I}$ of \mathcal{Q} such that

- (a) $H = \bigoplus_{i \in I} H_i$, where $H_i = \langle Q_i \rangle$.
- (b) $V = C_V(H) \oplus \bigoplus_{i \in I} [V, H_i].$
- (c) For each $i \in I$, $[V, H_i]$ is a simple $\mathbb{F}H_i$ -module.

Theorem 24 Let H be a finite group, and V a faithful simple \mathbb{F}_pH -module. Suppose that H is generated by nearly quadratic, but not quadratic subgroups of H.

Let W a Wedderburn-component for $\mathbb{F}_p \, \mathsf{F}^*(H)$ in V and $\mathbb{K} := \mathsf{Z}(\mathsf{End}_{\mathsf{F}^*(H)}(W))$. Then W is a simple $\mathbb{F}_p \mathbb{F}^*(H)$ -module and one of the following holds for H, V, W, \mathbb{K} and (if V = W) $H/C_H(\mathbb{K})$

Н	V	W	\mathbb{K}	$H/C_H(\mathbb{K})$	
$(C_2 \wr Sym(m))'$	\mathbb{F}_3^m	\mathbb{F}_3	\mathbb{F}_3	_	$m \ge 3, m \ne 4$
$SL_n(\mathbb{F}_2) \wr Sym(m)$	$(\mathbb{F}_2^n)^m$	\mathbb{F}_2^n	\mathbb{F}_2	_	$m \geq 2, n \geq 3$
$Wr(SL_2(\mathbb{F}_2),m)$	$(\mathbb{F}_2^n)^m$	\mathbb{F}_2^n	\mathbb{F}_4	_	$m \geq 2$
Frob(39)	\mathbb{F}_{27}		\mathbb{F}_{27}	C_3	
$\Gamma\operatorname{GL}_n(\mathbb{F}_4)$	\mathbb{F}_4^n	V	\mathbb{F}_4	C_2	$n \geq 2$
$\Gamma SL_n(\mathbb{F}_4)$	\mathbb{F}_4^n	V	\mathbb{F}_4	C_2	$n \geq 2$
$SL_2(\mathbb{F}_2) imes SL_n(\mathbb{F}_2)$	$\mathbb{F}_2^2\otimes \mathbb{F}_2^n$	V	\mathbb{F}_4	C_2	$n \geq 3$
3· Sym(6)	\mathbb{F}_4^3	V	\mathbb{F}_4	C_2	
$SL_n(\mathbb{K}) \circ SL_m(\mathbb{K})$	$\mathbb{K}^n\otimes\mathbb{K}^m$	V	any	1	$n,m \geq 3$
$SL_2(\mathbb{K}) \circ SL_m(\mathbb{K})$	$\mathbb{K}^2\otimes\mathbb{K}^m$	V	$\mathbb{K} \neq \mathbb{F}_2$	1	$m \geq 2$
$SL_n(\mathbb{F}_2) \wr C_2$	$\mathbb{F}_2^n\otimes \mathbb{F}_2^n$	V	\mathbb{F}_2	1	$n \geq 3$
$(C_2 \wr Sym(4))'$	\mathbb{F}_3^4		\mathbb{F}_3	1	
SU ₃ (2)'	\mathbb{F}_4^3	V	\mathbb{F}_4	1	
$F^*(H) = Z(H)K$?	V	?	1	
K quasisimple					

Moreover, in case $SU_3(2)$ case, H is not generated by abelian, nearly quadratic subgroups.

(Here Wr(L, m) is the normal closure of Sym(m) in $L \wr Sym(m)$)