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Definition 0.1 Let G be a finite group, p a prime dividing. the order of G and S € Syl,(G). dgpty
Then G is of generic p-type provided that

(a) If L is a p-local subgroup of G with S < L, then F*(L) = Op(L).
(b) G is generated by the p-locals containing S.

(¢) all p-locals of G are K-groups.

dqt

Definition 0.2 1. A quasisimple group K is called a Cy - group if and only if

K is a quasisimple group of Lie type in characteristic 2 or

K = PSL(2,q) for q a Fermat or Mersenne prime or ¢ =9

or K = PSL(3,3),PSL(4,3),PSU(4,3),2U(4,3) or G2(3)

or K/Z(K) = M1, M2, Maz, Moz, Maa, J2, J3,Js, HS, Suz, Ru, Co1,Coz, Fisy, Figs,
Fi124,F3, FQ, or F1

except 2Ag, Sp(4,3) and [X]L3(4) for exp X = 4 are not Cy groups.

2. Ly(G) = {K : for some involution = of G, K is a component of Cqa(z)/O2(Ca(z))}

3. G is of even type if and only if the following conditions hold:

(a) Every element of La(G) is a Co - group

(b) O (Cq(x)) =1 for every involution = of G; and

(c) m2(G) > 3.

4. Let G be of even type and let S be a Sylow 2—subgroup of G. Then

o(G) ={p : p is an odd prime and my(M) > 4 for some mazximal 2-local M of G with
|S:SNM| <2}

5. G is of quasithin type if G is a simple group of even type with o(G) empty.

. dhead
Definition 0.3 Head(P) < 07(P)0,(P)/0,(P).
1 Random Observations
Let G be a finite group, S the Sylow 2-subgroup of G and B the intersection of the maximal
2-locals containing M.
Borel

Lemma 1.1 Let G be a finite group such that F*(QG) is the direct product of simple groups of
simple groups of Lie type in characteristic 2. Suppose that all the 2-locals of G containing
S are of characteristic 2-type. Then S acts transitive on the set of components of G,
B = Ng(SNF*(G)) and BF*(G) =G.

Remark: False for D4(q).3 and Dy(q).Sym(3)



Proof: Let Ey,...,E, be the components of G, E = F*(G) = E1Fy...E, and T =
ENS. Suppose that S does not act transitively on the set of components of G. Then
(E1,S) is contained in a 2-local which is not of 2-type, a contradiction.

Let M be any maximal 2-local of G containing S. As M is of 2-type and Cg(O2(M)) # 1
we conclude Oz (M) N E # 1.

Let @; be the projection of Oz(M)NE onto E; and Q@ = Q1 - Q2 ... - Qn. Then Q is a
2 group normalized by M and so O2(M) < Q < O2(M), Q@ = O2(M) and M = Ng(Q).

Suppose now that n = 1.

Let M; = Ny(E;) and M} a maximal 2-local subgroup of E; containing M N E;. Then
(MMy N E; = M; and so (M}, M) is contained in a 2-local of G. Thus M} = M N E;.

TO BE CONTINUED

Remark 1.2 [t seems that in groups of charateristic 2-type, B-irreducible subgroups actu-
ally have B as a maximal subgroup. For example if G has a parabolic P with P/O2(P) =
Sym(5) then the the inverse image of the Sym(4) seems always to be in the Borel group.

2closed
Lemma 1.3 For L € L(= L£(S) put Z;, = (0 (Z(S))*, Cp = C(Z1) and L* = Np(S N
Cr). Lete RC Lput R=(L* | L €R).
(a) L=L*Cy, forall L € L.
(b) Let L € £ and P € calN(L,S). Then P < L* or O*(P) < Cf..
(c) Let L € calL. Then Oz2(L*) =SNCy,
(d) If R € L, then Cr is 2-closed and R = R*.
(e) Let R=L
e.l. Suppose R € L. Then forallLe L, L=(RNL)(CNL).
e.2. Suppose that R & L. Then there exists R; C L, i = 1,2 so that R; € L but
Proof: (a) follows by the Frattini argument.
To prove (b) let L € R. Then L* < R, Z;, < Zr, and SN Cr < Cr. Thus SNCgr =
(SNCL)NCgr and SN Cp is normalized by L*. As R is generated by the L*’s, L € R,
S N Cgris normal in R and so also in C'g. Thus Cg is 2-closed and R = R*.
(c) and (d) are obviuos.
(e.1) follows since from (a) as L* < RN L and C, < LNC.
For (e.2) let for Ry be maximal in £ with Ry € £ and let R = {L} for some L € L\R;.
*gomi

Lemma 1.4 Let R = Ry and suppose that R € L.

(a) Ng(Zp) is the unique mazximal 2-local of G containing R.



(b) Let L € N(R,S) with O*(L) < <R and P € N(S) with P £ R. If (P,L) € L, then
O?(P)N S < Oo(L).

(c) Let P € calN(S) so that P does not normalize Zg. Then there exists L € N (R, S)
with O*(L) < <R and (L, P) & calL.

Proof: (a) Let R< M € L. Then M* < R and so R = M* and Zy; = Zy~ = Zp.
Thus M < Ng(Zg).

(b) Let M = (P,L). As P £ R, O*(P) < Cy. By 3.6 [Z,L] # 1 and so S N O?*(P) <
SNCuy < Oy(L).

(c) As O2(R) is the intersection of the O(L)’s, L as in the statement of (c¢) we conclude
that O?(P)NS < Oz(R). Hence O2(R) is a Sylow 2-subgroup of O?(P)O2(R). By (a) (P, R)
is not a 2-local and we conclude that (©;(O2(R)S(P)) is an FF-module for O?(P)Os(R).
But this contradicts [Z, P] = 1.

L+
Lemma 1.5 Let N*(S) ={L e N(S) | [Z,L] # 1} and for L € L put Lt = (NT(L,9)).
Then
(a) Oo(LT)=8NCL=0y(L*)
(b) L=L"(LNCO).
(C) ZL = ZL+.
Proof: Put T'=SNCL and R = Ni(T). Then by 3.6 F5(R) < R™ an so Oy(L") =
O2(F5(R). As O2(L/Cr) =1, O2(F5) =T. So (a) holds.
For (b) suppose first that C, # O2(L). By the Frattini argument, L = RC, and by
induction R = RT(RNC). Hence L = RTCL(RNC) = LT (LNC).
So suppose that Cr, = O2(L).Then R = L. Let E = SN F;(L) and H = Np(T).
By the Frattini argument, L = Fj(L)H and by induction, H = HY(H N C). Hence
L=F}L)H"(HNC) =LY (LNC).
(c) follows directly from (b)
Rgomi

Lemma 1.6 Let NT(S)={L e N(S)|[Z,L] # 1} and D ={O2(L*) | L € L}.
(a) Let P € N*(S) with P £ Ng(D). Then there exists L € NT(S) so that (P,L) & L.
(b) Let Rt = N*(S)) and suppose that Rt € L.

(b.a) ForallLe L, L=(LNRY)(LNC).

(b.b) Suppose that Rt < L € L. Then RT = L%, Z, = Z+R" and O2(R™) = CNS.
(b.c) O2(R) = D.

(b.d) Ng(Zg+) is the unique mazimal 2-local of G containing RT.



Proof: Suppose (a) is false. Let L € calNT(S) and put M = (L, S). By assumption
M € calL and so by 1.3b, M = M*. Let Y € N(M) with O*(Y) < <M. Then by 3.6,
[Z,Y] # 1 and so Y € Nt(S). Hence the Gomi argument implies that P normalizes D.

(b.a) follows directly from 1.5b

Since

NT(S) CNT(RT,S) CNT(L,S)NT(S),

R*™ = L*. Thus by 1.5a, O3(R) = C, N S. Furthermore, by 1.5¢, Z;, = Z;+ = Zp+
(b.c) follows from 1.5a.
(b.d) follows directly from (b.b) O

Definition 1.7 Let L € L(S). Then a p-reduced normal subgroup of L is a elementary
abelian normal p-subgroup Y of L so that Op(L/CL(Y)) = 1,( i.e all normal subgroups of
L which act unipotently on'Y already centralize Y .

Lemma 1.8 Let L < L(S).
(a) There exists a unique mazximal p-reduced normal subgroup Y, of L.

(b) Let R € (L,S) and X a p-reduced normal subgroup of R. Then (X*) is a p-reduced
normal subgroup of L. In particular, Yr < Y.

(c) Let Sy = Cs(Yy) and LY = Ng(Sy). Then Si, = O,(LY) and Y1, = Q1 Z(SL).

Proof: (a) Let Y7 be the subgroup generated by the p-reduced normal subgroups of L.
Let N be a normal subgroup acting unipotently on Y7. Then N also acts unipotently on
all the generators of Y7,. Hence N centralizes all the generators of Y, and so Y. Thus Y7,
is p-reduced.

(c) Let Y = (XL} and C = CL(Y). Let N/C = O,(L/C). Then N = (N N S)C and in
particular, N = (N N L)C. As X is p reduced, N N L centralizes X. The same is true for
C and so also for N. Since N is normal in L and Y = (X), N centralizes Y. Thus N = C
and Y is p-reduced.

(b) Put C = Cp(Yy). By Frattini, L = L/C. Since O,(L/C) = 1 we conclude Op (L) <
C Hence Oy(Ly) < CNS =S and so Oy(Ly) = Sp). Let X = Q1(Z(SL)). Then clearly
Y, < X and Ly normalizes Y. Put Y = (Y1) = (Y©). Clearly X is p-reduced for Sy, and
so by (b) applied to C, Y is p-reduced for C. Let N be a normal subgroup of L acting
unipotently on Y. Since Y7, <Y and Y7, is p-reduced for L, N < C. As Y is p-reduced for
C, N centralizes C and so Y is p-reduced for L. By maximality of Y7, we get Y < Yy. But
Y <X <YandsoY,=X=Y. O

2 Preliminaries

Lemma 2.1 Let r and s be positive real numbers and put e = %

dpred

bpred



(a) Suppose that s > 1. Then e > O if and only if r > %°. In particular e > 0 if r > 2
and s > 1.3.

(b) e <1 ifand only if (r—1)(s—1) < 1.

Proof: (a) is easily computed and for (b) note that the following are equivalent:
e<1l,r8?—r—s5—-52<0,(rs—r—s)(s+1)<0,rs—r—s5<0,(rs—r—s)+1<1
and (r—1)(s—1) <1.

Lemma 2.2 Let P € P(S) be of weak Ly(2)F type. Put A ={L;|1<i <k} andlet QS
such that

(i) |Zp/Cz,(A)| < |A)Ca(Zp)|* for some A < Q with [Zp, A] # 1.
(ii) @ contains an involution t acting fized point freely on Delta.

Then O?(P) < (Co(A)¢,t) for some e € P.

Proof: Let A{L; | 1 < i < k}. Choose A as in (i) with |A| minimal. Then it easy
to see that A acts trivially on A. Next let 7" be maximal in Cg(A) so that T fullfills
|Zp/Czp(ry| < |T/Cr(Zp)[?. By [CD] T is unique and so T'< S. Let E = O*(P)Cp/Cp.
Then S acts irreducible on E and E = E; x ... x Ej, with |[Z,, E;]| = 4. We claim that
each of the FE; is a Wedderburn component for 7" on E. Indeed, let £* be a Wedderburn
component for 7' on F and suppose that E* = Fy ... F;. Then k = It for some integer [,
Cr(E*) = Cr(Ey), |T/Cr(E*)| =2 and |T/Cr(Zp)| = |T/Cr(E)| < 2!. On the otherhand
Zp/Cyz,(T) = 2%. Thus k < 21 and as [ divides k, | = k.

We conclude that:

(1) Each T invariant subspace in E is a sum of some of the E;’s.

As t acts fixed point freely on A, t inverts an element e € O?(P) with projects non-
tivially on each of the E;’s. Thus (1) implies

(2) E = (&7).

Let L = (T¢,t). Then T¢ ' = (T°)! < L and so also [T,e] € L. Since Cg(T) = 1,
€ € [T,e] and (2) implies that £ < L. Hence P = LS and O*(P) < (T*) = (T*) < L. As
T < Cg(A) the lemma is proved.

Lemma 2.3 Let H be a group, V, B and Z; € I subgroups of H and s a positve real number.
Supppose that

(1) V=(Ziliel) and forallic I, Z; V.

(ii) For alli in I and D < B, B normalizes Z; and |D/Cp(Z;)|* < |Z;/Cz,].



Then | B/Cp(V)|* < |V/Cy(B)|.

Proof: Without loss I — {1,... ,n}. Let By = B and B;+1 = Cp,(Z;). Then B4 =
Cp(V). Moreover, by (ii) applied to D = By,

|Bi/Biy1|® < |Zi/Cz,(Bi)| (1).
Thus
1B/Ca(V)|* < []12:/Cz(B)] (2).
=1

As by defintion B;41 centralizes Z; we get

1Zi/Cz,(Bi)| = 1Z:iCv(B;)/Cv(B;) < |Cv(Bit1/Cv(B)| (3).
Thus
[112:/C2.(B:)| < |Cv(Bis1)/Cv(B:)| = [V/Cy(B)|. (4).
=1

The lemma now follows from (2) and (4).

Lemma 2.4 Let V = (W; | i € I), where W; is a normal subgroup of V' for alli € I. Let
B be a subgroup of A normalizing all the W;’s. If A # B define r by |A/B|" = |V/Cy(A4)|
and t by |V/Cy(A)|* = |A/Ca(V)]. Let I ={1,2,...n} and define Ag = B and inductively
A; = Cya, ,(Vi). Choose notation so that B = Ay > Ay > ... > A, = Ca(V). Define s; by
‘Ai_l/Ai’Si = ‘WZ/CWZ(A’L—l)‘ and s = minle s;. Then

(a) |B/Cp(V)|* <|V/Cv(B)|.
(b) If A# B, then trs <r +s.
(c) Suppose that A # B and equality holds in (b). Then

(ca) si=sforall 1 <i<k.
(c.b) Cv(B) = Cv(A).
(c.c) [B/VB(V)|* = |[V/Cv(B)|.
Proof: (a) follows from 2.3.

Note that |A/B|"" = |V/Cy(A)|'! = |A/Cs(V)| = |A/B||B/Cp(V)| and therefore
|B/Cp(V)| = |A/B|"*1. Suppose that A # B. By (a) we conclude

|A/B|" = |V/Cy(A)| < [V/Cy(B)| < |B/Cp(V)|* = |A/B|"*" 1)

and so (rt —1)s <r and rts < r + s.
(c) follows by investigating the places where ” < ” was used.

7
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Lemma 2.5 Let H be a finite group, P a p-subgroup of H and suppose that P is subnormal
in all proper subgroups of H containing P, but is not subnormal in H. Then A is contained
in a unique maximal subgoup of H.

Proof: Suppose that A is contained in two distinct maximal subgroups M; and M.
Choose the M;’s so that M; contains a Sylow p-subgroup of H and so that |M; N Ma|, is
maximal. Let D be a Sylow p-subgroup of My N M and put B; = (A" | h € H, A" < M;).
Then by asumption B; < Op(M;) < M;.

Suppose that D is not a Sylow p-subgroup of My. Then My, (D) £ My and [Ny, (D) N
M;i|y > |D|, a contradiction. Thus D is a Sylow p-subgroup of My and so By < D and
N¢(D) normalizes By. Thus Ng(D) < My and so D is also a Sylow p-subgroup of M;.
Hence B; < D and B; = By, a contradiction.

Lemma 2.6 Let H be a finite group, p a prime, S a Sylow p-subgroup of H and suppose
that S lies in a unique mazimal subgroup M of H. Let P < S and suppose that P £ O,(H).
Then there exist a subgroup L of H and h € H so that

(a) P<L and P £ O,(L)
(b) M"N L is the unique mazimal subgroup of L containing P.
(c) S"N L is a Sylow p-subgroup of L.

Proof: If M is the unique maximal subgroup of H containg P, then the lemma holds
with L = H and h = 1. Hence there exists a proper subgroup K of H such that P < K
and K £ M. Choose K so that [M N S|, is maximal and then with K minimal. Let
T=MnNK and R = (P“NT). Let S* € Syl,(M) with T < S*. Then M is the unique
maximal subgroup of H containing S* and so T' # S*. Thus T < Ng-(T) < Ng(R)
and |M N K|, < |[M N Nyg(R)|p. Thus by the choice of K, Ng(R) < M. In particular,
Nig(R) < KN M and so T is a Sylow p-subgroup of K. Hence Oy(L) < T < M. If
R < Oy(K), then R < K, contradiction. P* € PH¥ NT with P* £ O,(K). By the minimal
choice of |K|, M N K is the unique maximal subgroup of K containing 7" and so we can
apply induction. Thus there exists L* < K with P* < L*, P* £ Op(L*) and h* € K so
that (M N K)" N L* is the unique maximal subgroup of L* containing P*. Let x € H with
P** = P and put h = h*z and L = L*x. The clearly (a) and (b) hold. O

Lemma 2.7 Remark: Quadratic groous normalize components
Lemma 2.8 Let A< H and V a faithful GF (p)H-module. Suppose that
(i) A is contained in a unique mazimal subgroup of H.
(i) [V, A, Al =1.
(iti) A £ Op(H)

msn
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(iv) One of the following holds:

1. V= (Z") for some Z <V with [Z, A] = 1.
2. V=Cy(A)|V, H].

Lett € A\ O,(H). Then each of the following holds:
(a) Then Cy(t) = Cy(A).

(b) |V/Cv(A)| > |AJANOp(H)|®, where ¢ is the number of non-trivial chief-factors for
HonV.

(c) VN Cy(H) =1 and |[V,1]*| = [V/Cy (H).
(d) Suppose that (iv)1 holds and O,(L) normalizes Z. Then one of the follwing holds:

1. [V,ANO,(H)] < Cy(H).
NI2p =2, H/O,(H) = Dih(2r*), v an odd prime Cy ([V, ANO,(H)]) £ Op(H).

(e) [V;H]NCv(H) <[V, A]
(f) W = Cw(H)[W, H| for each H-section on V. In particular, H has no central chief-
factor on V/Cy (H).

Proof: Note first that (iv)1l. implies (iv)2. So we assume from now on that (iv)2. holds.
Let M be the unique maximal subgroup of H containg A and N = Corey,(G). By a Frattini
argument, N is p-closed with O,(H) as the Sylow p-subgroup. Hence t ¢ N and so there
exists h € H with t ¢ M". Put B = A". Then H = (t, B) and so [V, H] = [V, ][V, B]. By
(iv)2. we conclude and (ii) we conclude
V =Cv(A)V,B] = Cv(H)[V, B].
Thus

Cv(B) = [V,B](Cv(A)NCv(A) = [V, B|Cv(H).
Hence also
Cv(A4) =[V,A]Cv(H)
and so by (iv)2.,

V =Cy(H)[V, H].

That is (f) holds for W = V. Moreover, Cy (t) = Cy(A)(Cy([V,B]) N Cy(t)) = Cv(A)
and so (a) holds. Let Y = [V;A|NCy(H) = [V,B]|NnCy(H) = [V,A]N[V,B]. Then
V.Al = [V.H|N[V,A] = [V,t]([V, AN [V, B] and so [V, A] = [V,t]Y. On the otherhand,



(V4 = [V, B, #]| = [[V, B]/([V, BN Cv (1)) = [[V, B]/Y| = [[V, A] /Y|

and so [V, A] = [V,t] @ Y. In particular [V,¢] N Cy(H) = 1. Moreover |[V, H]| = |[V,t]?|Y].
Cv,m)(A) = [V,A] and so Clyg(H) = Y. Thus (c) and (e) hold. Let W be an non-
trivial chief-factor for H on V. Since H = A(t"), A/O,(H)/O,(H) acts faithfully on W.
Also W = [W, Al & [W, B] and so |W/Cw(A)| = |[W,A]|. Let z € W\ Cw(A). By (a)
|AO,(H)/Op(H)| = |z, A]| < |[W,A]| = [W/Cw(A)|. Thus (b) holds. Clearly (iv)2 is
inherited by quotients of V' so it is enough to verify (f) for H-submodules W of V. By (d)
applied to V/[W, H], W < [V, A][W, H| and so W = ([V, A] N W)[W, H] fulfills (iv)2. Thus
(f) holds.

It remains to prove (d). Let h € H\ M. As A is quadratic, A centralizes [Z", ANO,(H)).
As O,(H) normalizes Z", also A" centralizes [Z", ANO,(H). Since M # M", H = (A, A")
and [Z", ANO,(H) < Cy(H).

Y = (Z" | he H\ M).

Then [Y,ANO,(H)] < Cy(H).

Suppose first that |AO,(H)/Op(H) > 3. We claim then that B normalizes Y. For this
let h € H\ M and b € B. We need to show that Z"* < Y. If hb ¢ M, this is true by
definition of Y. So suppose that hb € M. Since |[AO,(H)/O,(H) > 3 there exists ¢ € B
with ¢ € O,(H) U O,(H)b. If he € M, then b='c € BN M. But by 2.9 (10), b~ lc €
Op(H), a contradcition. Thus he ¢ M. Similarly hbe ¢ M. Thus ZhZhbezhe <y, Since
Zhzhbe zhe — Zh1 70 be][Z7, c], the quadratic action of B implies that (bc,c) normalizes
Zh zhbe zhe  Hence Z" < Y as claimed.

Suppose next that |AO,(H)/O,(H)| = 2. Then p = 2 and H/Oy(H) = Dih(2r%). If
k =1, then M = AO,(H) normalizes Z and so V = ZY and again d1 and as a matter of
fact also d2 holds. So suppose k£ > 1 and define L as in d2. Then L < M. Also let H*
be minimal with A < H* and H*O,(H) = M. Let V* = (ZH" = ZM_ Then V = V*Y.
Also ANO,(H) < O,(H*) and so by induction R def Cu-([V*,ANO,(H)] Op(H*). Since
V,ANOp(H)|] = [V*, AN O,(H)|[Y,AN Oy(H] we have [V,AN Oy,(H),R] = 0. Since
R £ O,(H), d2 holds in this case.

Lemma 2.9 Let H be a finite group, p a prime, A a p-subgroup of H and V a faithful
GF(p)H-module. Suppose that A £ Op(H), that A acts quadratically on 'V and that A lies
in a unique mazimal subgroup of H. Then one of the following holds for H = H/O,(H):

1. Fg SL2(pk)
2. p=2 and H = Sz(2").

3. p=2 and H = Dih(r*), r an odd prime.

10
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Proof: Let M the the unique maximal subgroupp of H containing A and D =
MNher M". Note that M contains a Sylow p-subgroup S of H and so O,(H) < D. Re-
placing V by the direct sum of the H-composition factors on V and H by H we may
assume that O,(H) = 1. Moreover, if |A| = 2, 3. holds so we may assume |A| > 2.

Let T' be an A invariant Sylow p-subgroup of D. Then H = DNy (T). If H = Ny (T)
we get Ng(T) < M and so H = DM < M, a contradiction. Hence T'< H and so
T < Op(H) = 1. Thus D is a p’-group. Let R be a maximal subgroup of H and suppose
that D £ R. Then H = DR and so R contains a Sylow p-subgroup of H. Hence A < R"
for some h € H and thus R" < M. But then H = DR = DR" < M, a contradiction. Thus
D < R. It follows that

(1) D < ®(H) and D is a nilpotent p’ group.

Let N be a normal subgroup of H. If H # NA then NA < M and so N < D. Put
L = OP(H) and suppose that L < D. Then H = DS < M, a contradiction. Thus L £ D,
H = LA. Hence:

(2) Each normal subgroup of H is either contained in D or contains L. In particular, L/D
is characteristicly simple.

Since H acts faithfully on [V,OP(H)| and on V/Cy(OP(H)) we may assume that
(3) V=I[V,H] and Cy(H) = 0.

Let 1 # a € A and pick ¢ € H with a £ M9. Then H = (a,AY) and so by (3)
V =[V,a] + [V, A9] and Cy(a) N Cy(A9). Since A is quadratically on V' we also have

[V,a] < [V,A] < Cy(A) < Cy(a).
We conclude that

(4) [Via] = [V, A] = Oy (A) = Cy(a) and V] = [[V, 4]

With a similar argument:
(5) Cy(b) = [V,] for each non-trivial quadratic element b in H.

We may assume without loss that A is a maximal quadratic subgroup of H and so
(6) A=Cu([V,A)nCu(V/[V,A])

From (4) and (6) we conclude that

(7) Cy(a) < Ng(A) and An AP =1 for all h € H\ Ny (A).
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Let h € H with AN M" # 1 and let b € AN M". Choose k € M" so that (b, A") is a
p-group. Then Cy (b) N Cy (A") 2 0 and so also Vi (A) N Oy (A"¥) #). Thus H # A, A™F)
and so M = M" = M". We proved

(8) Let h€ H. Then h € M or ANM" =1.
If p is odd, then by (5)

dim[V, A] = min{dim[V,b] | 1 # b € H,[V,b,b] =0}

Hence by the work of Thompson and Ho, H = SLo(p*) or p = 3 and H = 2- Alt(5). But
in latter case, A lies in more than one maximal subgroup of H, a contradiction.
Thus we may assume from now on that

(9) p=2and |A| > 4.
In particular, by (7)
Op(H) = (Co (@) | 1#1 € 4) < Cr(A).
and we conclude:
(10) D=Z(H) and L = E(L) = E(H).

Note that the exceptionell case in 2.7 is not possible and so A normalizes the components
of L and thus

(11) L is quasisimple.

None of the groups in 7?7 is a minimal parabolic and so L is an alternating group or
a Lie type in characteristic 2. Since S lies in a unique maximal subgroup of H we get
L= Alt(2% +1), Ly (2F), SU3(2%), Sz(2F), SL3(2%) or Sps(2¥). In the last two cases A has to
induce a graph automorphism on L, which contradicts the quadratic action of A on V. If
L = Alt(2¥ +1), A either is contained just has one non-trivial orbit and that one has lenght
four or all orbits of A have length at most 2. Since A lies in a unique maximal subgroup of
H we conclude that L = H = Alt(5) = SLy(4). If L = SU3(2%), A lies in the normalizer
of a Sylow 2-subgroup and in a SL5(2*), a contradiction, which completes the proof of the
lemma.

Lemma 2.10 Let G be a finite group, M < G, p a prime with F*(M) = O,(M) and
T € Syl,(M). Let Zy = (Qu(Z(T))M), Ot = Cri(Zyr) and J(M) = (J(T)M).

(a) Cnm < Ng(Z7)

(b) Zas is a faithful J(M)Chur/Chrr-module and J(M)Char/Crr = P*(J(M)Cri/Cri), Znr).
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(¢) M/J(M) = Ny (J(T) /Ny (J(T)

(d) Suppose that T is normal in a Sylow p-subgroup S of G. Then Ng(Z(T)) € L(S) and
Na(J(T)) € L(S).

Proof: Obvious.

Lemma 2.11 Let G be a finite group, N JH < G, p a prime, S € Syl,(H) , V an elemen-
tary abelian normal p-subgroup of H, and Cs(V) < Q < SNN Suppose that A(Q)°NZ N,
then there exists an elementary abelian subgroup A of S with H £ N, [V,A] # 1 and
[V/Cv(A)| < |A/Ca(V)].

Proof: Let D € A(Q) and g € G with D9 < H and DY £ N. As S is a Sylow
p-subgroup of H there exists h € H with D9 < §. Put A = D9 . As N is normal
in HL A £ N. Since Cy(V) < Q < N, [V,A] # 1. Moreover, VC4(V) < @ and so
[VCA(V) <Al

Lemma 2.12 Let L be an alternating group or simple group of Lie-type in characteristic
2. Let H < L with |L|3/|H|as < 2. Then all non abelian composition factors of H are
alternating or a simple groups of Lie type.

Proof: Let T < Syly(H), and S < Syly(L) with T < S. Then S’ < T.

Suppose first that L = Alt(Q). If H is intransitive or imprimitive we are done by
induction. So suppose that H is primitive. If H has a non-trivial abelian normal subgroup
A, then H = H; A for any i € Q. Thus 7T; has index two in a Sylow 2-subgroup of L; and
again we are done by induction.

Hence we may assume that H has no non-trivial solvable normal subgroup. Since
|S/T| < 2, T contains an element x of cycle type (2,2). Since x € Oz(H), 1 # x - 2" has
odd order for some h € H. Its is now straight forward to verify the lemma.

So suppose L is a group of Lie type. and not an alternating group. If Oy(H) # 1, then
H is contained in a parabolic subgroup of L and the lemma follows by induction. Hence we
may assume that Oy(H) = 1.

If S is abelian, L = Ly(q) and the result is readily verified in this case.

So we may assume that S is not abelian. In particular, S’ and so also H contains a long
root group R with R < Z(S). As R £ Os(H), there exists h € H with X et (R, R =~
SLs(q), where ¢ = |R|. Let r be the highest ling root in the root system associate to L.
Without loss w, € X < H. It is now easy to verify that L = (S'w,) and so L < H, a
contradiction.

Remark: this is rather scetchy

3 (S generated modules

In this section G is a finite group, p a prime and V a ( finite dimensional) GF(p)G-module.
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Definition 3.1 (a) ¢V = (Cv(9) | S € Syl,(G)).
(b) V is called C'S-generated provided that V = gV'.
Lemma 3.2 Let L < <G. Then ¢V < (V).
Proof: Let S € Syl (G). Then SN L < Syl,(L) and Cy(S) < Cy (SN L).

Lemma 3.3 Let p be a prime, G a finite group, L a normal subgroup of G, S € Syla(G).
Then S normalizes a complement to Cy (L) in Cy(SNL).

Proof: Remark: This is a standard result in cohomology, the map 7 below
is called the corestriction map, a reference should be included
Let T =S5SNL, X aset of right coset representatives for T' in L and define

m: Cy(T) — Vv
v - ZCEEXU
Then clearly 7(v) = n(v!) for al I € L and so 7(Cy(T) < Cy(L). On the otherhand
7 restricted to Cy (L) is just multiplication by L/T. Thus 7 |¢y, () is an isomorphism and

Cy(T) = Cy(L) @ ker m. Moreover, it follows immediately from the definition of = that for
all v € Cy(T) and s € S, 7(v®) = w(v)®. Thus S normalizes ker 7.

Tx

Lemma 3.4 Let L < <G with [Cy(S), L] =1, then [Cy(LNS),L] = 1.

Proof: Clearly we may assume that L < G. By 3.3 there exists an .S invariant com-
plement D to Cy (L) in Cy (S N L). Moreover, Cp(S) < Cy(S) < Cy(G) < Cy (L) and so
Cp(S) =0. This implies D =0 and Cy (SN L) = Cy(L)

Lemma 3.5 Let L be subnormal subgroup of G. If [Cy(S), L] =1 then [¢V,L] = 1.

Proof: By 3.4 Cy(SNL) < Cy(L). So L centralizes 1V and hence the lemma follows
from 3.2.

Lemma 3.6 Let L < <G. Then LN Cq(agV) = CL(LV).

Proof: Let L* = Cr(LV and L, = Cg(gV). By 3.2 L* < L,. Moreover, L, is subnormal
in G and centralizes Cy(S). Thus by 3.4 L, centralizes Cy (L, N S). By 3.2 [V < 1«V =
Cy(L.NS) and so L, < L*.

Lemma 3.7 Let L < G with G = LCq(L). If V is CS-generated then [V,L] is a CS-
generated G-module and V = [V, L|aCy (L)
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Proof: Let S € Syl,(G), T =SNL, R=SNCg(L) and put W = Cy(R). Then
by Gaschiitz theorem W = [W, L]|Cw (L). Moreover, Cyw (T) = Cpyy,.(T)Cw (L). It follows
that [V, L] = (Cwr(T)%) and [V, L] is a C'S geneated G-module. Moreover, V = (W¢) =
[V, L{Cw (L)) and so V = [V, L]gCy (L).

gaschuetz
Lemma 3.8 Suppose that G = Il;crL; for some subgroups L; < G such that [L;, L;] =1
whenever i,j € I,i #j. For AC I let Ls = (L; | i € A and
Vs = [cCv(Lna, Liy, Liy, - - - Li,]
where r = |A| and A = {iy,...1l,}. (Note that by the Three Subgroup Lemma this defintion
is independent form the order in which the i;’s are chosen). Also put Vy = Cy(G).
Suppose that V is a CS-generated GF (p)G-modules. Then
* V= Z Va.
ACT
Moreover, each of the VA'’s is CS-generated as G-module.
Proof: By 3.7 The Vj® are C'S-generated as G-module and it remains tp prove (*). For
this we may assume without loss that V' is not the direct sum of two proper C'S-generated
G-submodules. Let A ={i € I | [V, L;] # O and let i € A. 3.7 implies V = [V, L;]¢Cv (L;)
with both summands C'S generated. Hence V = [V, L;] and V = V.
4 Groups with my(G) <3
guwm3
Lemmagr 4.1 Let p be an odd prime, P a p group of exponent p, class at most two and epc2r3
rank at most three. Then P = Ei i < 3, Ex(p't),i <2 or Cp, x Ex(p'*?).
Proof: [As, 3.1,3.2]
13p

Lemmagr 4.2 Let p be an odd prime, G a irreducible subgroup of GL3(p) and A =
Z(GLs(p)) Then there exists an irreducible normal subgroup H of G so that one of fol-
lowing holds.

1. H=SL(V) = SL3(p).

2. H=Q(V,q) for some non degenerate quadratic form q on V.
3. H = Alt(5), p? = lmod10 and G < A x H.

4. H = L3(2), p® = 1mod7 and G < A x H.

5. H =3 Alt(6), p=1,19mod30 and G < AH.

15



6. H is cyclic of order dividing p*> — 1 but not p—1 and H = G or |G/H| = Cs.
7. H= Ex(3'2) and GA/HA < SLy(3).

8. G is monomial

Proof: [As, 3.12]

Lemmagr 4.3 Let p be an odd prime, V' a four dimensional non-degenerate symplectic
space over GF(p) and G a mazximal subgroup of Sp(V'). Then one of the following holds.

(a) G is the normalizer of a singular 1-space in V and G ~ Ext(p'*?) : (Cp—1 x SLa(p)).
(b) G is the normalizer of a singular 2-space in V and G ~ E,3 : GLa(p)

(c) G ~ SLy(p?).2 and G’ fizes a non-degenerated 2-dimensional sympectic form over
GF(p?) on V.

(d) G = SLy(p) 1 Cy and G fizes a decompostion of V' into the orthorgonal sum of two
non-degenerated 2-dimensional subspaces.

(e) G ~ GLy(p).2 and G fizes a decomposition of V into the direct sum of two singular
2-spaces.

(f) G ~ GUz(p).2 ~ (Cps1-SLa(p)).2 and the subgroup of index 2 fires a non-degenerate
2-dimensional unitary form over GF(p?) on V.

(g) G = SLa(p) and V is the third symmetric power of the natural module for G.
(h) G ~ Ext_(2'4). Alt(5)(.2).

(i) G ~2Alt(6)(.2) and V is the half-spin module for G

(G) p=17, G~2Alt(7) and V is the half-spinmodule for G

Proof: See [Mi, Theorem 10]. We remark that this list can be easily checked if one is
only interested in K-groups. Namely let W be the natural Q5(p) module for PSp4(p),
H = Spy(p) and H = H/Z(H). We may assume that G acts irreducible on W.

If Sol() # 1 let A be a minimal solvable normal subgroup of G. If A is cyclic, |A| divides
p° — 1 and |H|. Hence |A| divides p — 1 and A acts as a scalar on W, a contradiction. So
A is not cyclic and it is now easy to see that (h) holds.

If Sol(G) = 1, let E be a component of G. Since O3 (p) is solvable, [W, E]Cyw (E)/Cw (E)
is at least three dimensional. It follows that C(G) is solvable and so EZ(H) = F*(G) and
E acts irreducibly on W. If Z(H) £ E, mo(Z(H)E) > 3, a contradiction to mo(Z(H)) = 2.
Thus Z(E) = Z(H). Let V be the natural Sps(p) module for H. If E does not act
irreducible on V' then since VAV = W @ GF(p), E is not irreducible on W. So E acts
irreducible on W. Using the list of finite simple groups its now easy to verify that one of
(g),(i) or (j) holds or that E = 2- Alt(5). But in the latter case, G is contained in a subgroup

of type (i) or (j).
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sp4p
Lemmagr 4.4 Let p be an odd prime, V a four dimensional non-degenerate symplectic

space over GF(p) and G < Sp(V) with Oy(G) = 1.
(a) If G = OPI(G) # 1, then one of the following holds:

1. G = Spy(p), SLa(p?), SLa(p) x SLa(p) or SLa(p)

2. p="7and G = 2 Alt(7).

3. p=5 and G ~ 2 Alt(5), Ext_(2'74). Alt(5), Ext2'14).C5.
4. p=3 and G ~ 2 Alt(5), Bxt_(2'14). Alt(5), Eat2'4).Cs.

(b) If G is quasisimple then one of the following holds:

1. G = Spy(p), SLa(p?) or SLa(p).
2. G=2Alt(5) or 2-Alt(6).
3. G=2Alt(7) and p=1T.

Proof: [As, 3.13]

mp3Q
Lemmagr 4.5 Let p be an odd prime, G a group with F*(G) = O,(G) =l Q, m(Q) <3

and G* = G/Q.
(a) If G = OPI(G) # @, then one of the following holds:

G* = SLy(p) or SL3(p).

G* = SLy(p) x SLa(p), SLa(p?), or Spa(q) and m,(G) > 3.
p="T and G* = 2" Alt(7).

p=5 and G ~ SLy(5), Ext_(2'74). Alt(5) or Ext_(2'74).Cs.
p=3, G~ 2 Alt(5) or Ext_(2"*1. Alt(5) and m3(G) > 3.
p=3and G ~ Ext2'T).C3

S T W

(b) If G* is quasisimple then one of the following holds:

1. G* = Spa(p), or SLa(p*) and m,(G) > 3.

G* = Ly(p), SL2(p)orSLs(p)
Remark: SL3(p) also should have m,(G) > 3

G* = Alt(5),2  Alt(5) or 2-Alt(6). Moreover, if p =3 then m3(G) > 3.
G* = L3(2) and p® = 1mod7

G* = 3 Alt(6) and p = 1,19mod30

G =2 A7) andp=T.

N

A
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Proof: By [As, 3.13] we only need to show that m,(G) > 3 in a.5, b.1 and for p = 3 in
b.3. Asin Aschbacher’s proof let G be a minimal counterexample and D a critical subgroup
of Q. As G* = OP(G*), G = O3(G).

Let ¢ be an involution in G with t* € Z(G*). By minimality G = DCg(t) and without
loss D = [D, t]. It follows that D & Ext(p!*4). In particular, as m(Q) < 3, 21(Cq(D)) =
Z(D). As G acts irreducible on D/Z (D), Q = DCq(D). Since G centralizes Q;(Cq(D)),
G = 03(G) centralizes Cg(D).

Considering the p-part of the Schur multiplier of G* we see that Cg(t) = G* or p = 3
and Cg(t)’ = 3:SLy(3?). In any case there exists X < Cg(t)’ so that X is an elementary
abelian p-group and XD'/D’" = C,. Moreover [D, X, X, X] < D" and so [Y,X]| < D’ for
some Y < D with Y = E 5. Since Y = [Y,t] x D" we have [Y, X] =1 and so YX = E ..

Definition 4.6 Let p be an odd prime, QQ a p-group and H a group acting on Q).

(a) CRq(H) is the set of mazimal, H-invariant, class 2 and exponent p, normal subgroups

of Q.

(b) We say that Q is H-homogeneous of rank n provide that there exists A € CRi(Q) so
that A= Epn and H acts irreducible on A.

Lemma 4.7 Let p be an odd prime, QQ a p-group, H a group acting on Q. Let D €
CRo(H) and T = Cg(D). Then CRr(H) = {Z(D)}. Fori > 0 put T; = Q;(T). Then
Tiv1/T; = U((T)T;) = U(Z(T)T;)) € CRT/T;(H) and if i > 1, Tix1/T; is isomorphic to
HQ-submodule Tﬁ_lﬂ_l/ﬂ_l of T;/Ti—1.

Proof: Let A = Z(D). Clearly A < Q1(Z(T)). Let A* € CRp(H). Then DA* has
class two und exponent p and so by maximality of D, A* < DNT < A. By maximality of A*,
A < A% and so A = A" and CRy(H) = {A}. Let C/A € CRg/a(H) and B/A = Z(C/A).
Then B is of class two and ;(B) = A by maximality of A. As p is odd the map

¢:B/A— A
bA — bP

is a HQ@-homomorphism. As Q;(B) = A, ¢ is one to one thus B/A = BP as HQ@-module.
Let c,e € C The & € A < Z(T) and so ¢ = (P)¢ = (c*)P Put d = cc™¢. As ¢ € ¢B,(c)B
has class two and p is odd, dP = P(c?)"P = 1. It follows that d € Q;(B) = A. Hence
cA=c?Aforalle € C andso cA € Z(C/A) = B. Thus C = B and B/A € CRg/a(H).
Since T' centralizes BP < A, T'/Acentralizes B/A. The lemma now follows by induction on
|T|.

Corollary 4.8 Let p be an odd prime, Q a p-group, H a group acting on QQ and D €
CRo(H). Then Cy(D)/Cu(Q) is p-group.
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Proof: Note first that Cy (D) centralizes Q/Cq(D) and Z(D). Let T and T; be as
4.7. Then by 4.7, Cy (D) centralises all factors of the normal series

1=To<Th <Tp- T, =T < Q.
Thus Cy(D)/CH(Q) is a p-group.

Lemma 4.9 Let p be a prime with p > 5, A = Cp2 x C2 and t € Aut(A) with tP = 1.
Then t centralizes Q1 (A). In particular, Aut(A) has no subgroup isomorphic to SLa(p).

Proof: Identify ¢ which its image in the ring End(A). Since |A| = p* we have (t—1)* =0
and since p < 4 we get

(1) t-1)P=0
Since |AP| = p? we have
(2) p(t—1)* =0
Since t? =1 we have
3)t?—-1=0
Consider the polyomial f(z) = 2P~ + 2P~2 + ...+ + 1 € Z[z]. Since f(z) = (z —
1P~ tmodp, f(z) = (z —1)P~L +p- g(z) for some g(z) € Z[z]. Write g(z) = h(z)(z —1)+d
for some h(x) € Z[x],d € Z. Thenp= f(1) =p-dandsod =1 and f(z) = (x —1)P~1 +
p-h(z)(z — 1)+ p. Since f(x)(x —1) = 2P — 1 we obtain
(4) 27 — 1= (z — 1P+ h(z)p(x — 1)2 + p(x — 1)
Substituting ¢ for x in (4) and using (1) to (3) we obtain
(5) 0=p(t— 1)
Hence t centralizes AP = Q;(A).
Lemmagr 4.10 Let G be a finite, perfect K-group with O2(G) =1 and my (G) < 3.
(a) G is the central product of its Sol-components.

(b) If G is a Sol-component of G then one the following holds:
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(bl) G is quasisimple and if G/Z(QG) is a group of Lie type in characteristic 2 or an
alternating group then G/Z(QG) is one of the following:
Alt(n),5 <n < 11;

Ln(q),n < 4;
L,(2),n <7;
Spon(q),n < 3;
GQ(Q);
Un(q),n < 4;
5z(q);
Q5 ()
*Da(q);
2Fi(q).
(b2) F*(G) = F(G). Let p be a prime dividing |[F(G),G]| and put Q = [Op(G), G].

Then one of the following holds:
1. G/F(G) = 2-Alt(5) or SLa(p), and Q = Ext(p**2) or Q is of G homogenous
of rank 2.
2. G/F(G) = SL3(p); L3(2) ( p* = 1modT); La(p); (2:)Alt(5); or (2-)3- Alt(6)
( p=1,19mo0d30 and Q is G-homogenous of rank 3.
3. G/F(G) = SLy(p),2 Alt(5), (3')2- Alt(6) or 2-Alt(7) (andp =T7) and Q =
Ext(p'™).

(¢) Let E be quasisimple so that E/Z(E) is alternating or a group of Lie type in char-
acteristic 2. Suppose that G is a central product of r copies of E with r > 2. Then
r < 3 and one of the following holds:

(b1) E/Z(E) = La(q),L3(2) or Sz(q).
(b2) E =3-Alt(6) or SL3(4), r =2 and |Z(G)| = 3.

Proof: (a) Let L be a Sol-component of G.

Suppose first that L does centralize all its distinct conjugates under G. Then |LY| < 3
and as Sym(3) is solvable, G normalizes L. As L is a K-group, Out(L/Sol(L)) is solvable
and so G = LCq(L/Sol(L)). Bu induction Cg(L/Sol(L)*> is the central product of its
Sol-components.

Hence we may in any case assume that there exist distinct Sol-components L; and
L2 of G with [Ll,LQ} 7£ 1. Note that [Ll,LQ] < SOl(G) and by induction G = LlLQ.
Moreover, L; is normal in G. If [F(G), L1, Lo] = 1 and [F(G), Lo, L1] = 1 we get [L1, Lo] <
Cg(F*(G) < F(G) and so [Ll,Lz] == [Ll,Lg,Lg] = [Ll,Lg,Ll,LQ] < [F(G),Ll,LQ] = 1,
a contradiction. Hence we may assume that [Op(G), L1, La] # 1 for some odd prime p.
Put @ = Oy(G) and D € CRg(G). Then [D,Li] # 1 # [D,Ly]. We conclude that
D = Ext(p'™) and [D, Ly, Lo] = 1. Moreover, [D,Q] < D', Q = Cq(D)D, Cg(D) is cyclic
and so [Co(D),G] = 1. Thus [Q, L1, L] = [D, Ly, L] = 1, a contradiction.
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(b) If E(G) # 1, then G is clearly a component of G and it is now easy to verify that
(b1) holds.

So suppose that E(G) = 1. Then by definition F*(G) = F(G). Let p and @ be as
in (b2). Let D € CRg(G), D* = D/D" and G = G/Cg(D*). Let R be minimal in G
with respect to D < R and G = RCg(D). Then Cr(D)D/D is nilpotent and so Cr(D) is
nilpotent. In particular, F*(R/O,(R)) is a p-group.

Assume that Sol(G) # O,(G)Z(G). Then its easy to see that D = Ext(p'*t?) and
G ~ Ext_(2"74). Alt(5). Moreover, by 4.55, applied to R/O,(R), p > 3.

Assume that Op(G # 1. Then D = E3, C, x Ext(p' 4 2) or Ext(p't*. Mostly without
loss,(TO BE CONTINUED) G = R and O, (G) = 1.

Suppose that D = Ext(p'**) and let A/D’ be a minimal G invariant subgroup of
D/D’'. 1f |A/D'| = p we get conclude that [A,G'] =1 and so [A,G] =1 and [A, D] = 1,
a contradiction. Hence |A/DPrime| = p?> and G ~ p3SLy(p) or p*2-Alt(5). Let t be an
involution in which inverts A/D’. Then Cg(t) ~ p*3SLy(p) or pt+32- Alt(5) and so contains
a normal E., a contradiction.

Suppose that D 22 C,, x Ext(p**?2). Then G = G’ centralizes Z(D) and Z(D)/D' and so
Z(D) < Z(G). By 4.7 we conclude that G also centralizes Cg(D) and so Co(D) = Co(G).
Let ¢ be an involution in G inverting D/Z(D). Then Q/Cg(D) has order p* and is inverted
by t. Thus Q/Cqg(D)is abelian and Q" < Z(G). In particular @ has class two and so
M (Q) =D. Let z,y € @ so that ¢ inverts z and y and Q = Cqo(D)D(z,y). Since t inverts
aP, 2P € D and since aP # 1, we conlude that D = (2P, y?)Z(D) and so Q = Cq(D)(x,y).
Hence Q' = ([x,y]) is cyclic and so @/ N D = D'. Thus [Q,D] < D' and [D*,Q] = 1, a
contradiction.

Thus D = E,3 and so Q/Cq(D) = E,2. We will use 4.7 without further reference. In
particular we are done if G normalizes a hyperplane in (. So suppose |Cp(G)| = p. Let
T and T; be as in 4.7. Let t be an involution in G inverting D/Cp(G). Assume first that
T = D. The t inverts Q/Cp(G) and thus Z(Q) = Q' = Cp(G). Tt follows that @ is extra
special, a contradiction to D € CRq(G). Thus T'# D. Let A/D = Cr/p(G). Note that
Cq(t) = Crp(t) is cyclic and A = Cx(t)D. Thus t inverts Q/Cg(A). It is now easy to see
in Aut(A) that Cg(A) =T and A = Cxs(G)D. If T5 # A put B =T} otherwise let B = Q.
Note that since G is perfect, Q = [@,t] and T = [T,t]Q". But |Q'[T,t]/[T,t] < p and so
if A=1Ty, A =T. Hence in any case |B/A| = p?, [B,Q]D = A and t inverts B/Ca(G).
In particular, B’ < C4(G). Since t centralizes Hom(B/A, A/Ca(Q)), [B,Q] < Ca(QG).
If Q/Cq(B) has exponent p we conclude that [B, Q] has exponent p and [B,Q] < D, a
contradiction. Thus Q/Cq(B) = Cy2 x Cp2 and hence QP =T'. Hence [B,T] = Cp(G),

Assume that Sol(G = Z(G. Then as G is a Sol-component, G is quasisimple.

Remark: Lots of case with L/F(G) =2 2-Alt(5) or Ext_(2'™* need to be worked
into the statement of the theorem,4.9 has to be used to exclude smilar cases for
SLy(p) TO BE CONTINUED

Lemma 4.11 Let G = Sym(Q2) or Alt(Q2), |Q] = n finite, and H a maximal subgroup of G
such that |G/H| is odd.
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(a) For an integer k let ba(k) = {2 | a; # 0} where k =Y« | ;2" with a; € {0,1}. Then
one of the following holds.

1. H = Ng(A) where A C Q and ba(JA]) C b2(2)

2. H = Ng(IT), where 11 is a partition of 2 into m parts of size | and 1 is a power
of 2 dividing n.

3. G=Alt(7) and H = L3(2).

4. G = Alt(8) and H ~ 23 : L3(2).

If G = Alt(7), then H = L3(2), Alt(6), Sym(5) or Sym(3) ASym(4).
If G = Sym(7), then H = Sym(6), Sym(5) x Ca or Sym(3) x Sym(4).
If G = Sym(9) then H = Sym(8).

)
) (
) (
(e) If G = Sym(10), then H = Sym(8) x Cz or Cz1 Sym(5).
(f) If G = Sym(11), then H = Sym(8) x Sym(3), Sym(9) x Cs or Sym(10).
)

If G = Alt(n), n > 9, then H = H* N Alt(n) for some mazimal subgroup H* of
Sym(n) which contains a Sylow 2-subgroup of Sym(n).

Proof: Remark: Maybe we should find a reference, below is a the sketch of
aproof

If G = Sym(R), this easliy follows since the subgroup of H generated by the 2-cycles
in H is a direct product of natural embedded symmetric groups. So we may assume that
G = Alt(Q) and Ngym)(H) < Alt($2). Moreover, we may assume that H acts primitively

on . Let X  Q with | X| =4 and Ay "¢ O5(Alt(X)) < H. Let h € H.
If | X N X" =3, then (Ax, A%) = Alt(X U X") and so H = G, a contradiction. If
|X N X" =1, then | X N X% = 3 for all @ € A% a contradiction to by previuos case.
Thus | X N X"| € {0,2,4} for all h € H.

Let V be the power set of Q viewed as a vector space over GF'(2) and endowed with

the natural symmetric form. It follows that U =l (X*H) is a singular subspace of V and all

sets in U have size divisible by 4. Moreover if |[X N X"| = 2, then X + X" is in (Ax, A%)
conjugate to X and X". Since X N X" is not a set of imprimitivety, there exists [ € H
with | X N X" N X' N XM =11t follows that [X N X"NY =1 or some Y € {X! X" Let
Z=XUX"UY. Since [ X NY|=|X"UY|=2weget |Z]| =7. Put L = (Ax, A%, Ay)
then L = L3(2). If n < 7 we are done. If n > 8, there must exists k € H with Z N X* # ()
and X* ¢ Z. Since X* is perpendicular to (X) we get that |Z N X*| = 3 (and indeed
ZNXF=Z\X"forsomer € L. Let W = ZUX* and K = (L, A%. Then K =23 : L3(2).
We n = 8 then K = H an we are done. If n > 9 then there exists s € H with W N X3 # ()
and X*® ¢ W. Since K acts transitively on W, we conclude that X* intersects each subset
of sixe seven in W in O or 3 elements, a contradiction, which completes the proof of the
lemma.
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5 Subnormal Subgroups

Lemma 5.1 Let G be a finite group, L a subnormal subgroup of G, @ a normal q-subgroup
of G and R a subgroup of G which centralizes L and Ng(L). Then O(R) centralizes Q.

Proof: Without loss R = O9(R). Suppose the lemma is false and let X be minimal in
@ such that L and R normalize X, and R does not centralize X. Then [X, R, R] # 1 and
so X = [X,R]. As O%(L) is subnormal in Q4(L)X and X is a g-group we conclude that
[X,09(L)] < L. Thus R centralizes [X,0%(L)] and hence [X,Q9(L)] # X. But this implies
[X,L] # X and so by minimal choice of X, [X,L,R] = 1. The three subgroup lemma
implies [X, R, L] = 1 and thus [X,L] =1 and X < Ng(L). We conclude that [X,R] =1
and the lemma is established.

Lemma 5.2 Let G be a finite group, ™ a set of primes and L a subnormal subgroup of G
such that L = O™(L). Then Ex(Ng(L)) = Ez(G).

Proof: Note ﬁrst that Ng(L) = No(LO=((Q))), Ex(G/Oy(G)) = Ex(G)/O=(G) and
Er(Ng(L)/Ox(G)) = Ex(Ng(L)/O,(G). Thus we may assume that O, (G) = 1.

Put H = Ng(L). Since E(G) normalizes L we have E(G) < E(H). Let R be the
group generated by Or(H) and the m-components of H which are not contained in E(G).
Then R centralizes E(G) and F(G) N H. By the previous lemma applied with @ a Sylow
subgroup of F(G) we conclude that R centralizes F'(G) and F*(G). Thus R < F*(G) and
since Ex(H) = E(G)R, Ex(H) = E:(G) = E(G).

Corollary 5.3 Let G be a finite group, p,q distinct primes and L a subnormal subgroup of
G such that L = OP(L) and L/Oy(L) is a q-group. Then OY(F,;(Ng(L)) = O(F;(G)).

Proof: Apply the previous lemma with 7 = ¢'.

Lemma 5.4 Let G be a finite group and L a subgroup of G such that L = OP(L), O,(L) # 1
and L,Op(L) is either quasi-simple or a q-group. Then L is subnormal in at most one
mazximal p-local subgroup of G containing Ng(L).

Proof: Let M; and M be maximal p-locals of G containing Ng(L). By the previ-
ous lemma E,(M;) = E,(Ng(L) = E,(M2). As Op(L) # 1, Op(E,(Ng(L)) # 1 and so
Ng(Ep(Ng(L))) is a p-local containing My and Ms. Thus M; = M.

6 Nice Modules
Definition 6.1 Let H be group and V a faithful GF(p)H-module. Then
1. ay(H) is defined by |V/Cy(H)|*vH) = |H|.

2. gay(H) = min{ay(A) |1 # A< H,[V, A, A] = 1]}, where qay(H) = oo if H has no
nontrivial quadratic subgroups.
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3. ray(H) is the minimum of the qaw (H), where W runs through the non-trivial com-
position factor for H on 'V

4. Let a be a positive real number. Then V is called an Fa module if gay(H) < a and
an F*a module if gay (H) < a.

5. An FF-module is an F1-module.

Lemma 6.2 Let G be a finite group, p an odd prime, S € Syla(G) and V' a faithful GF(2)-
module. Suppose that

(i) G =0,(G)S.
(i) [V,S,S]=0.

The there exists a set of hyperplanes H of S and G-submodules Vi, H € H so that
(a) V =Cv([0(G),S]) © oplusren Ve

(b) For all H in H, H centralizes V.

Proof: We may assume without loss that V' is not the direct sum of two proper G-
submodules. Put P = O,(G) and Q = [P, S]. If Q =1 we are done. So suppose @ # 1 and
let E be a normal subgroup of G in @) minimal with respect to [F, Q] # 1. Let F' = Cg(QS).
Then by minimality of E, G acts irreducibly on E/F. In particular, [E, P] < F, S inverts
E/F and |E/F| =p. Since F < Z(Q)NE < Z(E), E is abelian. Then also [Q;(E),S] # 1
and hence E is elementary abelian. Let T = Cg(E). Then |S/T| = 2.

Suppose first that F' = 1. Then E = [E,S] < (SF) < Cq([V,T]). Since Cy(E) = 0,
T =1 and the lemma holds.

Suppose next that F' # 1 and ley D be the set of all hyperplanes D in E with Cy (D) #).
Then

V = @®pepCy (D).

As V is indecomposable, G acts transitively on D. Moreover, T is a Sylow 2 subgroup
of Cq(F) and so G = Ng(T)Cq(E). In particular, Ng(T') acts transitively on D. We may
assume that [Cy(D),T] # 0 for some D € D and so [Cy(D),T] # 1 for all D € D. As
[Cv(D),T,S] =0, S normalizes Cy (D) and D. Since F # 1 and F' <G, F ¢ D. Hence
E = FD and [E,S] = [D,S] < D. It follows that [E,S] < (\pc.up D, contradicting the
minimal choice of E.

Lemma 6.3 Let H be finite group such that the Sylow subgroup is contained in a unique
mazximal subgroup of H. Let V' be a faithful GF(2) FF-module for H. Then H has a normal
subgroup L = L1 x Lo X ... X Ly such that

(a) L; = SLy(q) or Sym(q+ 1), ¢ power of 2.

24

oqu

FFMP



(b) Put V=V/Cy(L) and V; = [V,L;]. Then V =V1®Voa @& ...® V) and V; is a natural
SLy(q)-module for L;.

(¢) H=LS and S transitively permutes the L;’s.

Lemma 6.4 Let H be finite simple group such that the Sylow subgroup is contained in a
unique mazximal subgroup of H. Let V' be a faithful faithful GF(2) F*2-module for H. Then
either V' is an F'F-module or H has a normal subgroup L = L1 X Lo X ... X Ly such that
Remark: maybe we should do all F2 modules, even the non-quadratic ones

(a) L; 2 Alt(q+ 1), SLs(q) or Off(q), q a power of two.

(b) Put V.= V/COy(L) and V; = [V,L;]. Then V = Vi @ Vo @& ... ® Vi and either
L; = Alt(q¢+ 1) and |V;| is natural module or L; = SL3(q) and V; is the direct sum of
a natural module and its dual.

(¢) H=LS and S transitively permutes the L;’s.

(d) If L; = SL3(q), then some element of Ny (L;) induces a graph automorphism on L.

Definition 6.5 Let K be a field, H a group and V o KH-module. Then a tensor decom-
position of V' for H is a tuple (F,V;,i € I) such that

(a) FF <Endg(V) is a field with K < F.
(b) H acts F-semilinear on V.

(¢) Put E = Cy(F) ( the largest subgroup of H acting F-linear on V). Then V; is an
F E-promodule.

(d) As FE-modules, V and Qp{Vi € I} are isomorphic.

Lemma 6.6 Let Q be a group with |Q| >3. 1# Z < Z(Q), K a field with charK =p, p a
prime, V' a faithful KQ-module with [V, Z,Q] =0 and (F,V;,i € I) a tensor decomposition
of V for Q. Then Q acts F-linear and one of the follwing holds:

1. There exists i € I so that [V;, Z,Q] =0 and Q acts trivially on all other V;'s.

2. p=2, Q is F-linear and there exist i,j € I, ay, € Endp (Vi) with a2 =0 (k=i,j)and a
monomorphism X : Q — (F,+) so for ¢ € Q,

(a) Fork=1,7, q acts on Vi, as 1+ A(q)a;.
(b) @ centralizes all Vs’s with s # 1, j.
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Proof: Note first that as Z acts quadratically on V, Z is an elementary abelian p-group.
Also [V, Z,Q] =0 and [Q, Z] = 1. So the three subgroup lemma implies that [V, Q, Z] = 1.

Suppose that ) does not act F-linear. Note thet z induces some field automorphism o
on F'. Let F, be the fixed field of o in F. As z is quadraticon V, f — f7 € F, for all f € F.
It easy to see that this implies F' = F, or p = 2 and F, has inded two in F'. Moreover,
[V, 2] is an F,-subspace centralized by Q. So Q is F, and F, # F. Since [V,Cq(F)] is an
F-spave centralizes by z, Cg(F) = 1. Thus |Q| = 2 in contradcition to the assumptions.

Suppose from now on the ) is F-linear. Since Z is a p-group, we mau assume that the
Vi’s are actually F'Z-modules and not only promodules. If Q) acts trivially on some Vi, V
is a direct sum of copies of the F'Q-module @ {V; | i € I — k}. So the latter has the same
properties as V. Thus we may assume fom now on that ) acts non-trivially on each V;. If
|I| = 1, then 1. holds

Suppose next that |I| = 2 and say I = {1,2}. Note that

[Cvi(Z2) ® Vo, Z] = Cy, @ [V, Q).

@ acts as scalars on [Va, Z] and [V4, Z]. Hence we may choose the promodules V; and
Vo so that [V;,Z,Q] = 0 for i = 1,2. For ¢ € Q let ¢; be the endomorposim ¢ — 1 of V;.
Then z;q; = 0. Moreover, in Endp(V; @ V),

2—1=(142)01+2)-19=21101+18 2 + 21 ® 2.
Thus [V, z, q] = 0 implies

2100 =—q1 & 2

If z1 = 0 then as V is faithful, zo # 0. Thus the previuos equation implies go = 0 for
g, a contradcition to the assumption that ) does not centalize V5. Hence both z; and zo
are not zero. Choosing ¢ = z we see that p = 2. Hence for arbitray ¢, ¢1 = A\(¢)z1 and
g2 = A(q)z2 for some A\(q) € F. Thus 2. holds in this case.

Suppose now that |I| > 3. Say 1,2 € I and but W = @ {V; | i € I\ {1,2}. Then
V = (V1 ® Vo) x W. Then by the prviuos case @ acts faithfully on V; @ Vo z — 1 and ¢ — 1
are linear dependent on Vi ® V. Let A = A\(q) be as above. Then on v; ® v

G—1=(1+X21)@14+X22) —1R@1=A21®14+1® 23 + A\z1 ® 29).

On the otherhand z — 1 =21 ® 1 + 1 X 20 + 21 ® 29 and we conclude that A = 0,1 and
so |@| = 2, a contradiction. O

Definition 6.7 Let H be a finite group, F a finite field, V a finite dimensional F H-module
and s a postive real number.

(a)
PL(H,V) = {A < H | |AP|Cy(A)| > |BI|Cy(B)| for all B < A}
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(b)
Pi(H,V)={A€P,(H,V)||AF|Cy(A)| > |BI¥|Cv(B)| for all C4(V) < B < A}

(¢) PQ,(H,V)={A€P,(H,V)|[V,A A =0
(d) PQ;(H,V)={AeP;(HV)|[V,A,A =0

bpgv
Lemma 6.8 Let H be a finite group, ' a finite field, V a finite dimensional F'H-module,

s a postive real number and A < H.

(a) A<P (H,V) if and only if |[W/Cw(A)| < |A/Ca(W)|® for al W < V.

(b) A € P:(H,V) if and only if |V/Cv(A)| < |A|® and for each W < A one of the
following holds:

1. [W,A]=0.
2. Cyu(W) =Ca(V).
3. [W/Cw(A)| < |A/Ca(W)°.
(¢) Let A€ Ps(H,V) and W an F A-submodule in V.. Then A € Ps(Ny(W), W).

(d) Let A€ P}(H,V) and W an FA-submodule in V. Then A € Py(Ng(W),W).
Proof: (a) Suppose first that A € Ps(H,V) and let W be a F-subspace of V. Let

B = Cy4(W) . Then W < Cy(B). Since A € Ps(H,V') we have |Cy(B)/Cy(A)| < |A/BJ*
and thus

(1)

bpgv — 1

(W/Cw(A)| < |Cv(B)/Cv(A)| < |A/B[" = [A/Ca(W)[".

Suppose next that |[W/Cw(A)| < |A/Ca(W)|® for all W < V and let B < A. Put
W = Cy(B). Then B < C4(W) and

bpgv — 1
(2)

[Cv(B)/Cv(A)] < [W|/|Cw(A)] < [A/Ca(W)]* < [A/B.

(b) Suppose first that A € P5(H,V) and let W be a F-subspace of V. Let B = C4(W)
Then W < Cy(B). If A = B, then 1. holds. If B = C4(V), then 2. holds. So assume
Ca(V) < B < A. Then by minimalty of |A| the middle ”<” in (2) becomes a ”<” and so
3.holds.
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Suppose next that |V/Cy(A) < |A/Ca(V)|® and that 1.,2. or 3. holds for each
W < V. Let B < A. Put W = Cy(B). If 1. holds then, Cy(A) = Cy(B) and so
clearly |A]*|Cy(A)| > |B|*|Cy(B)|. If 2. holds then B < Cy4(V) and so |A]*|Cy(A)| >
[V|Ca(V)|? > |Cv(B)||B|®. If 3. holds then the middle ”<” in ?? becomes a ”<” and (b)
is proved.

Finally (c) follows from (a), and (d) from (c) and (b).

Lemma 6.9 Let H be a finite group, F' a finite field V' a finite dimensional F'H-module
and s a postive real number with s < 2. Let A € PQ (G, V)

(a) Suppose that A is a System of imprimitivity for A on V and U € A.

(a.a) One of the following holds:

1. A normalizes U.
2. |F|=2=1U| and s > 1.
3. |F|le{2,4}, |U| =4 and s = 2.
(a.b) Ifin addition A € P« (H,V) and either (a.a.2) with s =1 or (a.a.3) holds, then
|A| = 2 and A centralizes ZA\ UA).

(b) Suppose that V- = @} | V; for some F'H-module V;,1 < i
Vo, A] and dimpV; > 1. Then n = 2, s = 2, dimp Vj
Ca(Va) =Ca(V) and |A/CA(V)| = q.

n and that [V1,A] # 0 #
2 = dimp Va, Cy(Vh) =

[l IA

Proof: (a) Let W = (U%) and suppose that A does not normalize U. Since A acts on
W, we get char F=2, [U,N4(U)] = 0 and |U#| = 2. Thus |A/C4(W)| = 2. Hence by 6.8c,
W/Cw(A) < 2°. Since UNCyw(A) =0 we get |U| < 2% and so 2. or 3. holds. Suppose that
A € Px(G,V) and either 2. with s = 1 or 3. holds. Then |W/Cw(A)| = |A/Ca(W)|*. Thus
by 6.8b, Cx(V) = C4(W). Since |V/Cy(A)| < |A/Ca(W)|* we conclude V. = WCy (A)
and so (a) is proved.

(b) If |A] > 3, this follows this is an easy consequence of 6.6. If |A| = 2 we get
|[V/Cy(A)| <2° <4 and again (b) is easily verified.

Lemma 6.10 F' a finite field , A a finite group, V a n-dimensional FA-module with
[V, A] # 0 = [V, A] and s defined by |V/Cy(A)| = |A/Cyv(A)|*. Then s> dimpl[v,A] <L

Proof: We may assume that A acts faithfully on V. Let m = dimp V/Cy(A) and
k = dim[V, A]. Then A < |F|*™ and so

V/Cy(A) = |F|™ < |A]* < [FEme

Thusmgk:msandsgégﬁ.
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Lemma 6.11 Let H be a finite group, p a prime and V an irreducible, faithful GF(p)H -
module. Let s be a positive integer with s < 2 and L = (PQ:(H,V)). Suppose that L # 1
and that L acts irreducible on V. Let A € PQs(H,V) and F = End(V), then one of the
following holds:

1. p=2,3, L= SLy(p), |A| =p, |F| =p, dimpV =2 and s > 1.

2. p=2, L= Dih(Dio, |A| =2, |F| = 4, dimpV =2 and s = 2.

3. p=2, L= SU32), |A| =2, |F|=4,dimpV =3 and s = 2.

4. p=2,3, L= SLy(p)  SLa(p), Al =p, |[F| =p, dimpV =4 and s = 2.

5. p=2, L2 SLy(F) x SLy(F), |A| = |F|, |F| >4, dimpV =4 and s = 2.

6. p=2, L2 OL(F), |A| < 2|F|, [V/Cv(A)| = |F]* |F| >4, dimpV =4 and s > 3.
7. p=3, L ~Ext_(2%4).Alt(5), |A| =3, |F| =3, dimp V =4 and s = 2.

8. p=2, L= Sym(5) or Sym(3) ASym(5), |[A| =2 or A< L', F| =2, dimpV = 4,
s =2 and |[Endp (V)| = 4.

9.p=2,s =2, F <4. There exists a system of imprimitivity A for L on V with
L/CL(A) = Sym(A). Let U € A, then |U| =4. If A< CL(A) then |A] =2. CL(A)
is a Sym(A) invariant subgroup of Sym(3)2. If |F| = 2 then CL(A) induces Sym(3)
on U and if |F| =4 then CL(A) induces C3 on U.

10. Let K = E(L). Then K is quasi simple, K acts irreducible on V, F = Endg (V).
Moreover, L acts primitively and tensor indecomposable on V.

11. s > 1. There exists a central extension L* so that V = Vi ® Va for some faithful FL*
modules Vi and Va. Let {i,j} = {1,2}, P, = {4 € PQ(H,V) | [V;,A] = 0} and
Li = <P1> Then PQ:(H, V) = P1 U PQ, L= L1L2 and [Ll,LQ] =1. Let Ki = E(L,)
Then V; is an irreducible F K; module module and F' = Endg, (V;). P; € PQ* (L;, V).

Let A; € P;, n; = dim F'V; and and let s; be defined by |V;/Cv,(4;)| = |AZ|JSZ Then

) s2 4 nj . .
szgni+5§mandf—i—lgnzgs(n]—l).

Proof:
We will first prove:
52 —2
(1) Suppose V can be regarded as a vector space over a field F' so that L acts F-semilinear
but not F-linear on V. Then |A| =p =2, |F| =4 or 16, |V| = 4 or 16 and L is one of
Dih(6), Dih(10), Sym(3) x Sym(3), Sym(5) or Sym(3) ASym(5). Moreover if s # 2, then
s>1,|F|=|V|=4and L= Sym(3).
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Choose A € PQ*(L, V') which does not act F-linear on A. Since A acts quadratically
on V we conclude that |A| = 2. Moreover, |V| = |[V/Cy(A)|? < |A|** = 225 < 16. Thus
L < TGLy(4). (1) now follows by inspecting the irreducible subgroups of I'GLg(4) =
Sym(3) ASym(5) generated by involutions.

(2) Suppose there exist a central extension L* of L, a field F' and F L*-moduln V; and V;
so that V 2 V] @ V4 as GF(p)L* modules. Then one of the following holds:

1. s=2,p=2,dimpV; =2, |A| = |F|forall A € PQ;(L,V)and L = SLa(F) x SLa(F)
2. s > 1. Let {i,j} = {1,2}, P; = {A € PQ;(H,V) | [V;,A] = 0} and L; = (P;).
Then PQ:(H, V) = P1 UPQ, L = L1L2 and [Ll,LQ] = 1. PZ S PQ*i(LZ,V;) Let
A; € P, nj = dim FV; and and let s; be defined by |V;/Cly;(4;)] :J|Ai|si. Then

. s> 4 nj . .
$i < 3 < wrs and -2 +1 <n; <s(n; —1).

Suppose first that there exists A € PQ3(H, V) with [Vi, A] # 0 # [V, A]. Using 6.9b
it is then easy to see that refs2-31. holds. So suppose that no such A exists. Then clearly
PQ:(H, V) =PUP,, L =L1Ls and [Ll,Lg] =1.

Note that V' is as an L; module the direct sum of n; copies of V;. Hence for all B < L;,
[Cv(B)] = [Cri(B)|" and so (|B]" |C;(B)|)" = |BI*|Cv(B)|. Thus P; € PQ% (L;, V;).

nj
Moreover, we see that s;n; < s. Thus s; < =. By 6.10 we have s; > ﬁ and so % > 5 >
L_ and thus n; > %J + 1. Hence also n; > % +1 = "'T‘FS Therfore si(”’:s) <sn; <'s

ni—l

and s; < #is Hence refs2-32 holds.

(3) If V is tensor-decomposable as L-module, then 4.,5. or 11. holds.

In case (2)1, 4. or 5. holds. So suppose (2)2. holds. Since P; < PQ_s (L;, V;) can imply

induction to (L;,V;). Moreover, either n% <1lor n% =landn; =2. If n; =2, thens; =1
and s;n; < s implies n; = 2. It follows that 4. or 11 holds in this case.

We may and do assume form now on that V' is tensor indecomopsable.

Suppose that L acts irreducible but does not primitively on V and let A be a system
of imprimitivity for L on V. Since L acts irreducble on V', L acts transitively on A. Thus
there exists U € A and 1 # A € PQ%(H,V) so that A does not normalizes U. If |U| = 2,
L centralizes the sum of the non-zero elements in (J A, a contradiction to the irreducible
action of L. Hence by 6.9a we conclude that |U| = 4, s = 2, |[A] = 2 and A centralizes
(A\ UA. In particular, A acts a 2-cycle on A and we conclude that L/Cr(A) = Sym(A).

Thus

(4) If L acts irreducible but not primitively on V', then p =2, s = 2 and L is a subgroup
of SLs(2) 1 Sym(n), where n = dim V//2.
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Suppose next that L acts irreducible and primitively on V.
Let K be a normal subgroup of L minimal with respect to [K, L] # 1. As L acts primi-
tively, V' is a as K-module isomorphic to the direct sum of isomorphix irreducible GF(p) K-

modules. In particular KCgp)(K) acts irreducible on V' and so F’ def EndKCGL(V)(K)(V)
is a field. By (1) we may assume that L acts F-linear on V. As V is tensor indecoposable we
conclude that K acts irreducible on V. If K is cyclic, we conclude that V is 1-dimensional
over F' and so L is cyclic, a contradicion, since O,(H) = 1. Thus K is not cyclic and
we may assume that all cylic normal subgroup of L are contained in Z(L). In particular
CL(K) < Z(L).

Assume that K is a g-group for be a prime ¢q. Then g # p. Pick A € PQ*(L, V) with
[K,A] # 1. Then p =2 or 3. Moreover, [K,A] £ Z(K) and so 1 # [A, K, K] < Z(L).

Suppose that p = 2, then by 6.2 and the irreducible action of K, A is cyclic. But then
|A] =2 and so |[[V, A]| = |[V/Cv(A)| = 2" < 2% < 4 for some integer r < s < 2. Hence there
exist 1 # k € [A, K, K] with [V| = |[V, k]| < 2%. Also note that since Z(K) # 1, |F| > 4
and so dimp V' < 2r. Since K is non-abelian and acts irreducible on V', we conclude that
r =2 and

(5) Al =2=p, s =2, K 2Ext(3'"2), [V| =2° and L = KA = SU;(2)’

Suppose next that p = 3. Then ¢ = 2 and [K, A] is extraspecial. If A is not cyclic we
obtain a contradiction to 6.9b applied to an irreducible submodule for [K, A]A in V. Hence
A is cyclic and similarly [K, A] 2 Qg. Moreover |Cy/(A)|? = |V| and so |V| < 3% < 3% As
L is irreducible and tensor indecomospable on V one of the following holds:

(6) 1. ]Al=p=3,s>1,|V|=3%and L= SLy(3).
2. |[Al=p=3,5=2,|V|=3%*and L ~ Ext_(2!*4)- Alt(5).

Suppose next that K is not nilpotent. Then K = E(K) and L acts transitively on the
components of L.

Assume that K is not quasisimple. Then there exist a component R of K and A €
PQ5(L,V) so that A does not normalize R. Since A acts quadratically this implies p = 2,
R = SLy(F) and |R4| = 2. Moreover, using 6.9b we get:

(7) Put ¢ = |F|. Then p =2, s > 1, ¢ > 2, |A| < 2¢, dimp V = 4, |[V/Cy(A)| = ¢*, and
L= (F)~ SLy(F) x SLy(F) : 2.

Assume finally that K is quasi simple. Then

(8) K = E(L) is quasi simple, Cr(K) = Z(L), L acts irreducibly, primitively, tensor
indecompsable and F-linear on V.

Lemma 6.12 F2-modules for groups of Lie type and maybe also the non-quadratic F2-
modules
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Lemma 6.13 Let Q be a finite set, G = Sym(R), and V() = GF(2)[] the natu-
ral permutation module GF(2)G-permutaion module. Define Vo(Omega) = [V(2),G],
V(Q) = V(Q)/Cy)(G) and Vo(Q2) = Vo(Q)/Cyy)(G). Let V' be one of the modules,
V(2),V(2),V(Q) and Vo(Q).

(a) Let A be a non-trivial elementary abelian subgroup of G with |V/Cy (A)| > |A|. Then
there exists commuting transpositions t1,ts, ...ty so that one of the following holds

1. A= (t1,ta,... ,tz).

2. |Q‘ = Qk, V= VO(Q) or Vo(ﬂ) and A = <t1t2,t2t3, cee 7ti—1ti7ti+17ti+27 e ,tk>,
where 1 <4 < k.

3. 19 =2k+4, V = V(Q) or Vo(Q) and A = (t1,ta,... ,tg, (ab)(cd), (ac)(bd)),
where a,b, c,d are the four common fized points of t1,... ,lg.

4. |19 =4|, V=V(Q) and A < Alt(2).
5. 19| =8,V=Vo(Q), |A| =8 and A acts regularly on 2.

(b) Suppose || # 8 and let H < G with H = (P(H,V). Let ¥ an orbit for H on €.
Then one of the following holds:

1. H/Cu(¥) = Sym(¥).

2. H/ICy (V) = Alt(¥).

3. |¥] is even and H/Cy(¥) = Ngymw)(A) = C20 Sym(|Psi|/2), where A is a
partion of W into sets of size 2.

4. |U| = 4 and H/Cy(V) = E.

5. |U| =6 and H/Cg (V) = Alt(5).

6. || =8 and H/Cy(¥) ~ 23 : Ly(2).

Proof: (a) By induction on |A|, V and |€2|. Suppose that A ¢ P(G,V) and let 1 #
B < A with B € P(A,V) with |B||Cy(B)| > |A||Ca(V)| < |V|. Then by induction 2 = 2k
and B = (t1,t9,...,t;). But then A < Cq(B) = B and so A = B, a contradiction.

Hence A € P(G,V). Let B = Cy([V,A]). Then 1 # B € P(G,V). Suppose B # A
and apply (a) to B. In case (a3) A < Cg(B) < A, a contradiction. In case (al) and (a2),
Cq(B) = (t1,ta,...tg) x Sym(Q). If |Q = 2k, then Cg(B) acts quadratically on V, a
contradiction to A # B. Thus [Q| # 2k and A = B x D, where D = BN Sym(Y). We may
view Vp (') as a subspace of V. Then A < P(4, Vo () and so D € P(Sym(Q, Vo ().
In particular we can apply (a) to D. Since Cp([V, A]) = 1 we get that Cp(V (') = 1. But
this implies that (a3) with k£ = 0 holds for D on Vp(£2). Thus also (a3) holds for A on V.

So we may assume that [V, A, A] = 0. Suppose that A has an orbit of length larger
then four on Q. If |Q = 4, (a3) or (a4) holds. So assume |2 > 4. If A has an orbit of
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lenght less then four on € then [V, A, A] has an element of lenght four, a contradiction to
[V,A,A] = 0. Thus all orbits of A have length at least four. Moreover, [V (), A, A] has
an element of lenght four and [V, A, A] has an element of length eight. We conclude that
|2 =8 and V = V;(Q2). If A has an orbit of lenght eigth on €2, (a5) holds. So suppose that
A has two orbits of length four. If 1 # a € A acts trivially on on of the orbits of A on €,
then [V, a, A # 0. Thus |A| =4, but |V/Cy(A)| = 8, a contradiction.

Hence we may assume that all the orbits of A on V have length at most 2. If A has a
fixed point on 2 we are done by induction. Hence we may assume that A acts fixed point
freely on €. Suppose that there exists v € V(§2) with 0 # [v, A] < Cy(q)(G). Then it os
easy to see that C'4(v) =1 and so |A| = 2 and |©2] = 2. So we may assume that no such v
exists. Hence |V/Cy (A)| > 21 where k = Q|/2 and thus |A| > 2¥~! and (a2) holds.

(b) Let A € P(H,V) so that A does not act trivially on V.

Suppose first that some element of H induces a transposition on W. If H acts primitively
on ¥, (bl) holds. So suppose that A is a system of imprimitivity for H on W. Since A is
generated by elements of support less or equal to four, we conclude that elements of A have
size two and A on its action on A is generated by transopsition. As H acts transitively on
A, H/Cg(A) = Sym(A). Moreover, all the transposition in H act trivially on A and so
Csym(w)(A) < H/Cy(¥) and (b3) holds.

So suppose that no element of H induces a transposition on W.If A fulfils (a3) or (a4)
then |¥| =4 and (b4) holds.

So we may assume that A fulfils (a2). Then ¥ = Supp((t1,t2,...tx) and we may assume
without loss that ¥ = Q = {1,...,2k} and ¢; = (2 — 1,2¢). It is easy to see that k > 3.
Suppose that A is a system of imprimitivity for H on ¥ and without loss that A acts non
trivially on A. Let D € A. Then |D| = 2 and say D = {1,3}. Then |D"* N D| =1, a
contradiction.

Thus A acts primitively in ¥. Hence if H contains a 3-cycle, (b2) holds. So we may
assume that H contains no three cycle. Let A* € P(H,V) with A # A* and so that
A* does not normalize A. Let a € A and a € A* with [Supp(a)| = |Supp(a*)| = 4 and
A # AY . If [Supp(a) N Supp(a*)| = 1, then (aa*)? is a three cycle, a contradiction. Hence
|Supp(a) N Supp(a*)| # 3, for all such a and a*.

Suppose a* = (1,2)(3,5). Then (12)(34)a* is a three cycles, a contradiction.

Suppose that a* = (1,3)(2,5). If & > 4 we obtain a contradiction by choosing a =
(34)(78). Thus k =3, A* = ((1,3)(2,5),(1,3)(4,6)) and (A, A*) = Alt(5). It follows that
H = (A, A*) and (b5) holds.

Up to conjugation under Ngy,(w)(A) we now may assume that a* = (1,3)(5,7). If n <5
we obtain a contradiction by choosing a = (1,2)(9,10). Thus & = 4. By the previous case
neither (13)(26) nor (13)(28) can be in A* and we conclude that the orbits of A* on ¥ are
13,24,57 and 68. In particular, A and A* normalize {1,2,3,4} and (A4, A*) ~ 2*Sym(3).
It is now readily verified that (b6) holds.

Lemma 6.14 Let G be a finite group with F*(G) quasisimple. Let V be a faithful GF(p)G-
module and A a G invariant subset of P(G, V). Let S € Syl,(G) and put J = Ja(S) =
JANS(. L < G with L = Ng(Op(L) and J < L and suppose that K is p-component
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of L so that J does not normalize K. Then p = 2, (A) = 0F (2¥),n > 3,k > 2 and
K/O9(K) =2 SLy(2%) all non-trivial composition factors for (A) on'V are natural O3 (2¥)-
modules. In particular, if n =3, then P(O,(L),V) =1 .

Remark: If n > 3, then it can be shown that K is not subnormal in C;(Cy (5),
where S € Syl,(L).

Proof: Let H = F*(G). We may assume without loss that H centralizes all proper
G-submodules in V. That is V = [V, H| and G actss irreducible on V/Cy (H). In particular
by the Three Subgroup Lemma, O,(G) = 1.

If p=2and H/Z(H) is an alternating group we obtain a contradiction from 6.13. So
we may assume that:

LPGV —1
(1) H is a group of Lie type in characteristic p.

We may assume without loss that H centralizes all proper G-submodules in V. That
is V = [V, H| and G acts irreducibly on V/Cy(H). In particular by the Three Subgroup
Lemma, O,(G) = 1.

If O2(L)NH =1, then [O2(L), K] = 1 and so by the P x Q-lemma, [Cy (O2(L), K] # 1.
But LN A C P(L,Cy(02(L)) and K maps onto a component of L/Cr(Cy(02(L)), a
contradiction.

Hence O2(L) N H # 1. Let M = Ng(O2(L) N H). Then L < M and No, () (02(L)) <
O2(L) and so O2(M) < Oy(L). Hence O2(M)NH = Oz(L) N H and M N H is a parabolic
subgroup of H. We have proved:

LPGV -3
(2) There exists a parabolic subgroup M of G with L < M and O2(M)NH = O2(L)NH.

It follows immediately from (2) that

LPGV —4
(3) H has rank at least three.

Note that Cy (H) = 0 unless H = Spay,(q) and V/Cy (H) is a natural Spa, (¢)-module. In
which case we have Cy (X)Cy (H)/Cy(H) = Cy/c, (g)(X) and so P(G, V) C P(G,V/Cy(H)).
Hence we may assume without loss that Cy(H) = 0 and so V is irreducible as G-module.

LPGV —2
(4) One of the following holds

1. (A)=H
2. p=2, (A) == 0%,(2%),n > 3 and V is a natural Q3 (2¥) module for H.

Let P € NP(G,S) so that [Cy(O2(P)),0%(P)] # 1. Then J induces inner automor-
phisms on Head(P) and (4) follows from the structure of P and V.

Suppose that Oz(M) = Oz(L). Then L = M is a parabolic of G and so the p—componets
of L are normal in H N L. Using (4),we conclude that the lemma holds. So we may assume
that
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(5) O2(M) # Oz(L) and Oz(L) £ H.

Note that [O2(L), L N H]
In particular, [J N H,O2(L)
J £ Oz(M) there exists P €
OQ(P) Let P = P/OQ(P)

Suppose that J < H. Then Np(SNH) normalizes J and we conclude that Z(S N P) < J,
or p=2and P = Sym(3)1Cy. As Oz(L) centralizes J and Oo(L) £ H one of the following
has to hold

S ( )QH < OQ(M) and so L/O2(M) = CM/OQ(M)(OQ(L))
< O2(M). Without loss S < M and SN L < Syl,(L). Since
P(M,S) with J 4 P. Then J £ O(P) and [J N H,Oz(L) <

SLy,(q), O2(L) induces a graph automorphism on H and PN H =

2. p =2 H = SU,(q), O2(L) induces a field automorphism of order two on H and
PN H = Ly(q) or SU3(q)

3. p=2and Oy(L)H = 02n™*(q).
4. p=2and G = Oz(L)H = Aut(L,(2)).

In case (6)1 or (6)2, P is uniquely determined. Let R be the maximal parabolic of
M with P £ M. Then we conclude that J < R and so [J,[R,O2(L)] < O2(M). By the
structure of M this implies J < Oa(M), a contradiction. In case (6)3 it is easy to see that L
is the normalizer of a non-singular isotropic space and so all p-components of L are normal
in L. In case (4), since J does not normalize K and J < H, M most have parbolic E with
E/O2(E) = L3(2)1Cy and J £ O2(E). Let T be a 2-componet of E. As [J,02(L)] < O2(E)
and Oz(E) does not normalizes T', TNJ < Oz(E). Hence [T'NS, J] < Oz(F) and J i normal
in both minimal parabilocs of F, a contradiction.

We have proved:

(7) J¢H,p=2and JH = 05 (q).

If O2(L) < JH we are done by the argument in (6)3 we are done. So suppose O2(L) £
JH. Then O2(L) induces field automorphisms on H and on Head(P). In particular ¢ > 2.
If J < HO3(P), we get that SN P) = J N H, a contradiction. Thus J £ HOy(P) and so
P is uniquely determined. But now the argument in (6)1&2 yields a contradiction.

Lemma 6.15 Let H be a finite group such that L = F*(H) is quasi simple but neither a
group of Lie type in charcateristic 2 nor an alternating group. Let V' be a faithful irreducible
GF(2)H-module and 1 # A < G with [V,A,A] = 1 and let B be a mazimal quadratic
subgroup of H containing A. Moreover assume that there exists at least one fours group in
H acting quadratically on V.
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(a) One of the following holds.

Remark: Information should be written down more clearly

1. L = Matis and V is 10-dimensional.
1.1. |B] = 4, A < L, N (A) ~ 2°.Sym(3) ~ Np(B), [V,B] = Cy(B) is 5-
dimensional and either
1.1.1. A=8B
1.1.2. |A| =2 and [V, A] is 4-dimensional.
1.2. |B| =4, B L L, N(B) ~ Cy x Sym(5), Cy(B) = [V, B] is 5-dimensional
and either
1.2.1. AL L and Cy(A) = Cy(B) = [V,B] = [V, 4]
1.2.2. A= BnNL and [V, A] is 4-dimensional.
2. L = 3 Matoy and V is 12-dimensional.
2.1. |A| =2, A< L and [V, A] is 4-dimensional.
22. |A|=1|B| =2, |A| £ L and [V, A] = Cy(A) is 6-dimensional.
23. |A| >4, |B| =8, B<L, N(B) ~ C3 x 23.L3(2) and Cy(A) = Cy(B) =
[V, B] = [V, A] is 6-dimensional.
2.4. |A] > 4, |B| =16, B < L, N(B) ~ 2% : 3-Alt(6) and Cy(A) = Cy(B) =
[V, B] = [V, A] is 6-dimensional.
3. L= Matsos and V is 10 dimensional.
3.1. |[A|=|BNL|=2 and [V, A] is 4-dimensional.
32. |Al=2,|B|=4, AL L, CL(A) ~23.L3(2) and [V, A] is 3-dimensional.
3.3. |A’ = |B‘ =4, ALL, NL(A) = NL(AQL) and C\/(A) = Cv(B) = [V, B] =
[V, A] is 5-dimensional.
4. H = Matoy and V s 11-dimensional.
4.1. |A| =2, |B| = 4, Ng(A) ~ 21343 L3(2) and [V, A] is 4-dimensional.
4.2. |A| = |B| = 4, Ng(A) ~ 28.(Sym(3) x Sym(3)) < 25 : (Sym(3) x L3(2))
and either

V is the Golay code module and Cy (A) = [V, A] is 6-dimensional or
V is the Todd module and Cy(A) = [V, A] is 5-dimensional

4.3. |A| <4, |B| =4, N(A) < Np(B) ~ 22T : 3 : Sym(5) < 29 : 3-Sym(6) and
either
V' is the Golay code module and Cy(A) = Cy(B) = [V, B] is 6-dimensional
or
V is the Todd module and [V, A] = Cy(B) = [V, B] is 5-dimensional

5. L= 3U4(3), V is 12-dimensional.

5.1. |A| =2, A< L and [V, A] is 4-dimensional.
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5.2. |A| = |B| =2, A inverts Z(L) and [V, A] = Cy(A) is 6-dimensional.
53. |A| =2, AL L, CL(A) = Cs x Uy(2) and |[V, 4]| = 4.
54. |Al =2, A £ L, |B| = 2° and Cy(A) = [V, A] = Cy(B) = [V, B] is 6-
dimensional and Cr(A) ~ 2*(Sym(3) x Sym(3).
5.5. |BNL| =16, N (B) ~ 2*:3-Alt(6) and either
Cy(A) = [V, A] = Cy(B) = [V, B] is 6-dimensional or
|A| =4, |ANL| =2 and [V,A] = [V,AN L] is 4 dimensional.
6. L= Jy and V is 12-dimensional.
6.1. |A| =2, |B| =4, N(A) ~ 21 Alt(5) and [V, A] is 4-dimensional.
6.2. |A| = |B| =4, Np(A) ~ 25.Sym(3) and [V, A] = Cy(A) is 6-dimensional.
6.3. |B| =4, NL(A) < Np(B) = Alt(4) x Alt(5) and Cy(A) = [V, A] = Cy(B) =
[V, B] is 6-dimensional.
6.4. |[A|=|B| =2, AL L and [V, A] is 6-dimensional.
7. G=Coy and V is 24-dimensional.
7.1. |A| =2, |B| =4, Np(A) ~ 2'78Q5(2) and [V, A] is 8-dimensional.
7.2. |Al = |B| = 4, Np(A) ~ 2".Sym(3) x Alt(8) and [V, A] = Cy(A) is 12-
dimensional.
7.3. |B| = 4, Np(A) < Np(B) ~ (Alt(4) x G2(4)).2 and Cy(A) = [V, A] =
Cy(B) = [V, B] is 12-dimensional.
7.4. |A| = |B| = 2, N(A) ~ 2" Aut(M2), and [V, A] is 12-dimensional.
8. G=Coy andV is 22-dimensional.
8.1. |A| =2, |B| =4, Np(A) ~ 2'%8Sps(2) and [V, A] is 6-dimensional.
8.2. |A| =2, |B| =4, Np(A) ~ 2146 A14(8) and [V, A] is 8-dimensional.
8.3. |A| = |B| =4, Np(A) ~ 21°.L3(2) and [V, A] = Cy(A) is 11-dimensional.
8.4. |A| = |B| =2, Np(A) ~ 210 Aut(Alt(6)), and [V, A] is 11-dimensional.
9. L=35z and V is 24-dimensional.
9.1. |A| =2, |B| =4, Np(A) ~ 2176Q4(2) and [V, A] is 8-dimensional.
9.2. |A| = |B| = 4, N(A) ~ 21.Sym(3) x Alt(5) and [V, A] = Cy(A) is 12-
dimensional.
9.3. |B‘ = 4, NL(A) < NL(B) ~ (Alt(4) X L3(4)).2 and Cv(A) = [V,A] =
Cy(B) = [V, B] is 12-dimensional.
9.4. |A| =|B| =2, AL L and [V, A] is 12-dimensional.
(b) Suppose in addition that ¢ < 2, where |A|? = |V/Cy(A)|. Let ¢ be the case in (a)
fulfilled by A and a = |A|. Then (c,a,q) is one of the following Remark: this

doesn’t look very nice

1. (2.3,8,2).
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2. (2.4,8,2) or (2.4,16,3).

3. (5.3,2,2).

4. (5.5.1,8,2), (5.5.1,16, 2) or (5.5.1,32, 2).
5. (5.5.2,4,2)

Inparticular, L = Matgg, 3 Mates or 3-Uy(3); and q > % unless L = 3:Uy(3) and
|A| = 32.

Proof: This can be verified using [MS] and [At].

Definition 6.16 Let H be a group and F' a field. Then an FH promodule for H is a pair
(¢, V) there V is a vector space over F and ¢ : H — GLg (V') is a map so that the induced
map ¢* : H — PGLk (V) is a homomorphism.

Lemma 6.17 Let p a prime and H be a finite group p-connected group with Op(H) = 1.
Let S € Syl,(H) and Z and Q non-trivial normal subgroups subgroups of S with Z < Z(Q)
and |Q| > 3. Let L = OP(H).

(a) Suppose p=2 and H is a transitive subgroup of Sym() such that Z acts trivially all
Q orbits of size larger than two. Then one of the following holds:

1. The exists a system of blocks D for H on € such that
(a) If A € D, then Q normalizes A, Q = ZCqo(A) and |Q/Cq(A)| = 2.

(b) For AeDlet Ln =Cr(IUD — A). Then L = xaepLa.

2. L # O(L). Let D be the set of orbits of O(H) on |Q2|. Then H/O(H) acts
faithfully on H. Let A be an orbit for L on D and for X < H let X® =
(a) @ normalizes A.

(b) LA = F*(H?) is simple.

(c) 1# Z5 < Z(Q%), Z» and Q™ are normal in S®, S® is a Sylow 2-subgroup
of H®, |Q®| > 4, and each orbit for Q® on A is either centralized by Z* or
has size at most 2.

(d) One of the following holds:

1. H? = Alt(A) or Sym(A).

2. A can be viewed as projective space over the field with two elements so
that H® = PGL(A). Moreover if K is a component of L/O(L), then
Ng(K) induces only inner autmorphism on K.
|A| = 6 and H® = Alt(5) or Sym(5).
|A| =10 and H> = Sym(6) or Aut(Alt(6)).
|A| =12 and HA = Matys or A = 24 and H® = Aut(Matqs.
|A| =22 and HA = Matos or Aut(Matgs.

S oUe W
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7. |A| = 24 and H® = Mat24. Remark: This needs careful checking

(b) Let K be a field with charK = p and suppose that H is an irreducible subgroup of
GLi (V) with [V, Z,Q] = 0. Let W a Wedderburn componet for L on' V. For X < H
let XW = Nx(W/Cx(W). Then one of the following holds.

1. p =2 and there exists a system of blocks D for H on V such that
(a) IfU € D, then Q normalizes U, Q = ZCgq(U) and |Q/Cq(U| = 2.
(b) ForU eDlet Ly =CL(UD —U). Then L = XyepLy.
2. p =2 and there exists a system D of H-blocks on V with Cy(D) = O(H) and so
that the action of H/O(H) on D is described as in (a)2.
3. L=F(L) and
(a) @ normalizes W.
(b) L acts irreducible on W.
(c) 1 £ zZW < Z(Q™), ZW and QW are normal in SV, SV is a Sylow 2-
subgroup of H®, |Q"| >3, [W,Z,Q] =0 and F*(HV) = L.
(d) One of the follwing holds.
1. LW is quasi-simple.
2. p=2, LW = L1 Ly, where L1 Ly are the components of LY. Q normal-
izes L1 and Lo and as LV QWY module W = W, @ Wo for some faithul
FL;QY modules W;. Moreover QW acts linear dependently on Wi.

3.p =2, LWQY = Ly(q) 1 Cy and W is the natural Q0 (q)-module for
LvQw.
4. One of the following holds:
1.p =2, L = O3(L), LW = Ext(3'%2),Z2W = C,, QW = C4 or Qg and
(W =25
2. p=3,L=0yL), L 2 Qs, ZV = Q" = C5 and |W| = 32
5. p€{2,3}. Let {2,3} = {p,q} and M = O,(H)V /Z(O4(H)W. Then
(a) Og(L)Y = Ext(q'™®") or Cy o Ext(2172"), n > 2
) ZW 2 C, and QW = C3,Cy or Qs.
(¢) L acts irreducible on M.
(@) 11M.Qll = .
) Oq(H) acts irreducible on W.
) Conjecture If p = 2, then L/C(M) = Sp2,(3) and if p = 3, then
L/CL(M) = QF (2), Alt(2n+1), Alt(2n+2), Span(2) or SU,(2%). Also there
are restricions on n from the fact that Q is normal in S.

Proof: (a) The proof is divided into a series of steps

VZQ -1
(1) Let A be a block for @ on .
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(a) One of the following holds:

1. @ normalizes A.
2. Z centralizes A and so also |J A%.
3. |A%| = |A%| = 2 and Ng(A) centralizes A and so also | J A%.

(b) One of the following holds:

1. @ normalizes A.
2. Nz(A) centralizes A and so also | JA®.

Clearly (a) implies (b). For (a) suppose that Z does not centralize A. If Z normalizes
A then Z has a non-trivial orbit on A and ) has to normalize that orbit. Since A is a
block, @ normalizes A in this case. If Z does not normalize A, pick z € Z with A # AZ*.
Then A U A? is a union of non-trivial z orbits and so ) normalizes A U Delta®. Let w € A.
Then Ng(A) normalizes A N {w,w?*} = {w}. Hence 3. holds in this case.

(2) Let A be an L-invariant H-block. Then
) Q=A%

(a
(b ) Z does not centralize A.

)
(c) If Z normalizes A and |Q/Cgo(A)| = 2, then (a)l. in the lemma holds.
)

(d) If @ does not normalize A, then (a)l. in the lemma holds.

Since H = LS,(a) holds. Since Z < S, (a) implies (b). If the assumptions of (d) hold,
then by (b) and (1)(a), also the assumptions of (c) are with A replaced by AZ. So it
remains to prove (c). By (b) and (1)(a), @ normalizes A. Let D = A Qp = Cq(D)
and note that Q/Qp = 2. Let I' be the union of the blocks in A centralized by Qp. We
claim thhat I" is a H-block. Otherwise there exists s € S with @}, # @p and a block in
AH centralized by Q = QpQ%,, a contradiction to (b). Hence I is a block and replacing A
by I' we may assume I' = A. Define La as in (a)l. of the lemma. Let R = (LA | A € D.
Then R is a normal subgroup of H and R = XaepLa. It remains to show that R = L. Let
D = {A,A1,Aq,...,Delta,}. Put Ly = L and inductively for 1 < i <mn, L; = [L;,Qa,].
We claim that L = L;CL(A). This is obvious for ¢ = 0 Since H is 2 connected, L = [L, Q)]
and so by induction, L = [L;—1,Q]CL(A). Since @ = QaQa, and Qa < CL(A) we
conclude, L = [L;—1,Qn,]CL(A) = L;Cr(A). Thus L = L,Cr(A). But L, < L; for all ¢
and L; centalizes A;. Thus L, < La and so L = LACL(A) But this clearly implies L = R
completing the proof of (2).

(3) Let FF < @ with |F/F N Z| <2. Then an orbit for F' on Q has length at most for 2.
In particular, F' is elementary abelian.
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Either Z N F acts trivially on a given F-orbit or not. In both cases the orbit has size at
most two.

(4) Let P be a subgroup of odd order in H normalizes by Q. Let A be an orbit for PQ
on A such that P acts transitively and Z non-trivially on A. Then [Q/Cg(A)| = 2.

By the Sylow theorem and the Frattini argument, () fixes a point w € A. Also P =
[P,Q]Cp(Q) and replacing P by [P, Q] and A by w!P?! we may assume that P = [P, Q).
Let R be a maximal @) invariant normal subgroup of P. If R is transitive on {2, then by
induction on |P|, Z centralizes P. Hence Z/Cyz(A) acts semiregulary on A and all orbits
of Z on Q have size two. Also @) and hence [R, Q)] normalizes all orbits of Z. Thus [R, Q)]
centralizes A. Since P = [P,Q)], [R, P centalizes A and so R/CRr(A) acts regularly. But
then R centralizes A, a contradition. So R is not transitive. Let D be the set of orbits

for R on A. Then the abelian group M = P/R acts regularly on D and D and and M
are ismorphic as @-sets. Suppose that Z centralizes M, then P = Cp(Z)R and M acts
non-trivially on each member of D. But then ) normalizes each member of D. Thus Z
acts non-trivially on M and D. Similarly, if Co(M), acts non-trivialy on A, Z is forced to
act trivially on D. Thus Q/Cq(Delta) acts faithfully on M and D. Let z € Z\ Cz(M).
Since z € Z(Q) and Q acts irrducibly on M, z inverts M. Let m € M#. Then @ normalize
{m,m~! and as @ is irreducible, M = (m) and |Q/Co(M) = Q/Co(A)| = 2.

(5) Suppose (a)l. does not hold and let D be the set of orbits for O(H) on Q. Then
H/O(H) acts faithfully on D.

Suppose not. Then since H is 2-connected, L centralizes D .Let A € D. By (2), @
normalizes A. Also Z acts non-trivially on A and O(G) acts transitively. Thus by (4),
|Q/Cq(A)| =2 and by (2) (a)l. holds.

We assume form now on that (a)l. does not hold. Replacing 2 by the set of orbits of
O(H) on Q and H by H/O(H) we also may assume that O(H) = 1. Thus L = x]*,L; for
some non-abelian simple groups L;. Let A be an orbit for L on 2. We wish to whow that a2
holds. a2a and a2c follow from (2). Let M = L”. Then M = x| E;, where {E1, ..., E,}
consists of whose LZ-A(% L;) which act non-trivially on A. Suppose for a contradiction that
n>2 Letl# z¢e ZNZ(S). Then z centralizes the Sylow 2-subgroup M NS of M
and so z normalizes all L; and F;. If ) does not normalize the componets of M, then
[[SNM,Q]| >SN M| >4andso |MNQ|>4. So replacing @ by (M N Q)Z in this case,
we may assume that ) does normalize the components of M.

Let E = Ey and F = Oy (Ey). Since z € Z(S), E = [E, z]. Suppose that Cqo(E)> # 1
and pick t € Cg(E)? with |t| = 2. Then z normalises all the non-trivial orbits for ¢ on
Q. Since E centralizes ¢, the same is true for E = [E,t]. But the E = E’ centralizes each
non-trivial orbit of ¢, a contradiction. Thus Cg(E)» = 1.

Suppose that F does not act transitively on A. Since M acts transitively, M does not
normalize any orbit of E. As M = [M, z] there exists an orbit I for £ on A with T" # I'%.
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Thus by (1), P = Cg(I') has index two in Q). But then [E, P] centralizes A and so [E, P] =1
and P® < Cg(E)? =1, a contradiction to |Q/P| = 2.

Thus FE acts transitively on A. By symmetry also F' is transitively on A and so F
is regular. Let F be a group of order four in Q® with 22 € F. Let w € A. Let F =
{1, f1, f2, f3} and wfi = w® for some ¢; € E. Let E; = {e € E | efi = ¢;'}. Note that
E; is a coset of the proper subgroup Cg(f;) in E. Let e € E. By (3), there exists f; € F
with w® = wi = wlie’ = weie’  As F is regular we get e;efi = 1 and so e € E;. Thus
E = E1 U Es U E3 is covered three proper cosets. But this implies that £ has a subgroup
of index two or three, a contradiction as F is non-abelian simple. Thus a2c holds.

To prove a2d we assume without loss that A = Q so L = F*(H) is simple. Let
V = GF(2)Q be the permutation module associate to 2. Then [V, Z,Q] =0 and so V is a
faithful GF(2)H-module with a quadratic fours group. Hence by 6.15, L is a group of Lie
type in characteristic 2, or L = Mat12, Mat22, Mat24, Jo, CO;1 or Cos. Let 1 # z € Z and
R = (Q®"). Then R normalizes all non trivial orbits of z on Q and [V, z, Q] = 0.

Suppose that L is one of the sporadic groups. Then H has a unique class of 2-central
involution. If L is J,C0; or CO2 we get that O2(CL(z)) < R and so V, z,02(CL(2))] = 1,
a contradcition. Hence L = Mat12, Mat22 or Matey. TO BE CONTINUED

(b) Again we divide the proof into a series of steps and use a similar strategy as in the
proof of (a)

(6) Let U be a block for @ on V.
(a) One of the following holds:

1. @ normalizes U.

2. 7 centralizes U and so also >, U%.

3. p=2,|U?| =|U% =2 and Ng(U) centralizes U and so also y_ U%.
(b) One of the following holds:

1. @ normalizes U.

2. p=2and Nz(U) centralizes U and so also >_ U%.

Clearly (a) implies (b). For (a) suppose that Z does not centralize U. If Z normalizes
U, then 0 # [U,Z] < U and @ centralizes [U,Q]. Since U is a block, @ normalizes U in
this case. If Z does not normalize U, pick z € Z with U # U?. Since z € Z(Q), U + U~
is a block for Q.Also @ centralizes [U, z] and so normalizes U + U?. As a Ng(U) module,
U=U+4+U?/U* =[U,z2+U?/U* = [U,z]/[U 2 NU* and so Ng(U) centralizes U. Hence
3. holds in this case.

(7) Let U be an L-invariant H-block. Then
(a) V=3US.
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(b ) Z does not centralize U.
(c) If Z normalizes U and |Q/Cq(U)| = 2, then (b)1. in the lemma holds.

(d) If @ does not normalize U, then (b)1. in the lemma holds.

The proof is essentially the same as the one for (2).

(8) Suppose exists an H-block which is not L-invariant, then (b1) or (b2) in the lemma
holds.

Let calD be a block system for H on V with L acting non-trivially on D and let D be
maximal with this property. Then p = 2, Cy(D < O(H) and we can apply (a) to H/Cy (D)
and D. In case (a)l., (b)1. holds. In case of (a).2 the maximality of D implies that O(H)
acts trivially on D. Thus (b)2. holds.

We assume from now on without loss that neither (b)1. nor (b)2. hold.

(9) Let W be a Wedderburn component for L on V. Then @ normalizes Q and W is
irreducible as L-module.

By (7)d, @ normalizes W. As V is irredicble for H, W is irreucible for Ny (L). As W
is L-homogenous and Ny (L)/L is a p-group, L is irreducible on W.

(10) Suppose that L = E(L). Then (b3) holds.

If Q/Co(W)| = 2, then (bl) holds. Hence ((b3a),(b3b) and (b3c) holds It remains to
verify (b3d). Let Li, Lo,...L, be the components of L/Cr(W). If n = 1, (b3d1) holds.
Put F' = EndgL(W) and let P the largest subgroup of () normalizing the components
of L. As in part (a), PV has order at least three and (Z N P)" # 1. Then W has a
tensor compostion (F,W;,1 < i < n), where W; is an Crp(F) module centralized by all
Lj, j # i. Then by 6.6,p = 2, n = 2 and PW acts linearly dependently on W; and Wh.
If @ = P, (b3d2) holds. So suppose that |Q/P| = 2 and let ¢ € @ \ P. Note that @ is
F-linear. Let 1 # z € PZ. Let U be an irreducible FU subspace in W with U # U?*.
Then U = W7 ® ag for some ay € Wy, Also U? is an irreducible F' Lo P subspace and so
U? = a1 ® Wj for some w; € Ws. Similarly U? = by ® Wy and U?? = Wy ® W7. Thus
(U+4+U?*)n(U+U?*? = (Fay + Fb;) ® (Fag ® Fby). On the otherhand , ¢ centralizes
[U,z] < U + U? and we conclude that dimp U = 2. We conclude that W; and Wy are
2-dimensional and by say Dicksson’s theorem, (b3d3) holds.

(11) Suppose that W is tensor decomposable for LQ. Then (b3) holds.
By 6.6, p = 2 and @ is elementary abelian and Cyw(q) = Crw(Q for all 1 # g € Q.
Thus O(H)W < Z(LW') and so L = E(L). So the claim follows from (10).
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Suppose from now on that W is tensor indecomposable. Let M be a normal subgroup
of H minimal with respect to [M, L] # 1. Note that M/Cys(L) is characteristicly simple.
Hence either M = E(M) or M is a g-group for some prime ¢. If M = E(M), it is easy to
see that M is not a p’ group and so M = L since H is p-connected. So in view of (10) we
may assume that M is a ¢- group.

(12) M acts irreducible on W and MW = Ext(¢'t2") or Cy o Ext(2'+2"), n > 2.

If M is not homogenous on W. Then L acts non-trivially on the Wedderburn components
of M on V, a contradiction to (8). Hence M is homogenous. As W is tensor indecoposable,
this implies that M is irreducible on W. Let F' = End g/ (W). Then by 6.6, @ and so also
L = [L,Q] is F-linear on W. Thus [Z(MWY),L =1, Cr,(M) = Z(L) and Cy(L) = Z(M).
By a standard argument the structure of M"W is as described.

(13) One of the following holds:
1. p=2,¢=3and [M"V,Q]Q" = SU;3(2) or Ext(3'+2)C,
2. p=3,qg=2and [M"Y, Q|QV = SLy(3).

Let P = [M"Y,Q], R = PQ" and Y and irreducible R-submodule in W. Then P
and so also R acts faithfuly on Y. Then P is extra-special. Let 1 # z € Z"W. Then as
z acts quadratically on W, Hall-Higmann implies p = 2, or p = 3 and ¢ = 2. Suppose
that P # [P, z]. Then [P, z] and Cp(z) are normal in R and P = [P, z] o Cp(z). But then
Y is tensor decomposable for R. Then the argument in (11) gives a contradiction. Thus
P = [P,z]. A be a maximal abelian z-invariant normal subgroup of P. Let A = {D <
A|A = Z(P)D,DNZ(P) = 1}. Then P acts transitively on .4 and z fixes a unique member
of D, namely [A,z]. Also Y @p.4Cy(D). If p = 3 we conclude that |A] = 1 and so
|P| = 8 and 2. holds. So suppose p = 2. Let |P| = ¢'*t2". Then |A4| = ¢'*", |A| = ¢"
we conclude that dimp[Y, 2] = L;l, dimp Cy (2) = anH and dimp Cy (2)/[Y, 2] = 1. Let
q € QW \ (2). If |q| = 2, we may assume that ¢ normalizes A. But then [Y, z,¢] = 0 implies
that ¢ normalizes all the orbits of z on A, a contradicition. Thus |¢| = 4 and we may assume
q® = z. Since [Y, q,t] = 0, |[Y, q] +[Y, 2]/[Y, z] has dimension at most 1 over F. Hence there
exists an ¢ invariant F-hyperplane U in Y with [U, q] < [Y,t] < Cy(q). Thus [U,q,q] =0
and [U,¢% = 1. Thus Y/Cy(z) = 1 is 1-dimensional. So o2 = 1. ¢" = 3 and |P| = 3.
Hence 1. holds in this case.

(14) Either L acts irreducible on MW /Z(M"W) or (b4) holds.

Let Z(MY) < P < MW be minimal with respect to being L-invariant. Put M =
MY /Z(MW). TIf Q does not normalize P, then by (13), |U| < ¢®. Thus L/CL(U) is a
solvable {p, ¢} group. Since H is p-connected we conclude that L/Cy(U) is a p’ group and
so a g-group. Since L is irreducible on U we conclude [U, L] = 1. Since H is irreducible on
M/Z(M) we conclude [M, L] < Z(M). Thus O%(L) < C1.(W) < Z(L) and L = O,(L)Z(L).
Since [Z(L), Q] = 1, p-connectivity of H implies, L = Og(L). Thus (b4) holds in this case.
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So we may assume that ) normalizes U. If U is abelian, then by (13), @ centralizes U
and so also L centalizes U, a contradiction. Hence U is not abelian and MW = PCw (P).
Thus 6.17-14 implies P = MW,

(15) If L acts irreducible on MW /Z(M™W) then (b5) holds.
This follows form (13). O

Lemma 6.18 Let p be a group, H a finite p-minimal group with Op(H) = 1. Let S €
Syl,(H) and Z and Q non-trivial normal subgrous of S with Z < Z(Q). Let R be mazimal
in Q with [V,R] < [V,Z]. Let V be a faithful GF (p)H -module so that

(i) [V, Z,Q] =0.
(il) V =[V,0P(H)].
(iii) V/Cy(OP(H)) is irreducible as H-module.

Then |Q/R| < V/Cy(Z). Moreover if TS with Z < T. Then either T < R or
V.71 =[v,Q]

Proof: Remark: Some parts of the proof are still very sketchy, also the proof
is a lot longer than it should be and to much of a case by case analysis Let
Y = Cy(L) and V = V/Y. Then V is irreducible as H-module.

Let C = Cy(V).Then C N L] centralizes U and V/U and so C' N L is a p-group. Since
Op(H) =1 we conclude C N L =1. Thus OP(C) =1, C is p-group and C' = 1.

Hence H acts faithfully on V and we can apply 6.17(b) to V.

Let W be a LQ submodule in V' minimal with respect to [W, L] # 0. Then W = [W, L].

For X € LQ let X/Cx(W). Let 1 #z€ Z(S)N Z.

(1) Suppose that |QW /ZW| < W/Cyw (Z) and [W,T] € {[W, Z],[W,Q]. Then the lemma
holds.

Since V is irreducible and H = LS, V = (W*) Thus there exists s; € S,1 < i < k with
V =@ W% Then V =[V,L] = [YF, W% L] = Y5 W%, Let P =i, ZCs(W").
Then P < R and

[Q/R| < 1Q/P| < |QW /2 |* < W /Oy (2)F = |V /Cy(Z) < V/Ov(2)
Also [W,T] = [W, Z] implies [V, T] = [V, Z], while [W,T] = [W, Q] implies [V, T] = [V, Q]

(2) CrLo(W) = Crq(W).

Let B = Crg(W). Then BN L centralizes Y and W + Y/Y and so acts as a p-group
on W. Since no composition factor of L on L is a p-group, B N L centralizes W. Thus
[B,L,W] = 0 and [W,B,L] = 0. Thus by the three subgroup lemma [W,L,B] = 0. As
W = [W, L] we conclude [W, L] = 0 and so (2) holds.
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_ VZQm —3
(3) If |Q"| < p?, the lemma holds.

By 7?7, |QY| < p?.Also ZW # 1 and Z does not centralize W. Thus (3) follows from ?7?.

VZQm —4
(4) If Oy(L) # 1, then Y = 0.

By Mascke, V = Cy (Oy (L)) ®[V, Oy (L)]. Also Y < Cy(Oy(L)) and as V is irreducible,
V=Y +[V,0y(L))]. Thus V = [V,L] = [V,0Op(L)),L]] = [V,Op(L)] and (4) holds.

Suppose first that 1. in 6.17(b) holds for V. Then |Q"| = 2 and we are done by (3).

Suppose next that 2. in 6.17)(b) holds. Let D/Y € D and A = D%, Without loss
W < STA. Since H is p-minimal we conclude from 6.17(a2) that L2 = Alt(n) with
n=24+1k>20rn=6.Ifn<6it is easy to see that QA < 4 and so also |QW] < 4. So
we may assume that m = 2F + 1,k > 2. Let £ € A with E # E*. Then Ng(E) centralizes
E. Let M = Npg(E). Then M? = Alt(2") or Sym(2") and so M¥ = (Ng(E)M)O(L).
Hence M = Cy(E)O(L). If O(L) centralizes E. Then V is a permutation module for
L, a contradiction to Cy (L) = 0. Thus O(L) # 1 and by (4), Y = 0. It follows that
[D, Z] = [D,Q)]. Let F be the unique fixed point for z on A. Since F' and E are conjugate
under L, all p-elements in Npq(F') act trivially on F. So [F,Q] =0 and [V, Z] = [V, Q)].

Suppose that 3. in 6.17(b) holds. By (3) we may assume that |Q"| > p?. Then p-
minimality and quadratic action implies that the components for L are one of SLs(q), SUs(q), Sz(q),Alt(q+1), St
or L3(q) Here q is a power of p, p = 2 in the last four cases, and a graph automorphism is
induced on the components in the last two cases.

If 3d2 or 3dlin 6.17(b) holds then Y = 0. Let F = Endy(W). Then |Q"| < 2-|F|,
|W/Cw(Z)| > |F|? and [W,T] = [W, Q] if |T"| > 4. Thus we are done by ?7?.

So suppose that LY is quasi simple. If Q" is not elementary abelain then W is a
strongly quadratic module in the sense of Stroth and so W is the natural module. Because
of the graph automorphism, L = Spy(q)/ is impossible in this case. Thus ¥ = 0 and the
lemma is readily verifed in this case.

So suppose that Q" is elementary abelian. Then its is easy to check that |Cy(Z)|> = W
and |QY| < |W/Cw (Z)|. In particular, @ acts quadratically on W. Let J < H" minimal
with QW < J and Q" £ O,(J). Suppose first that O,(J) = 1. Then ( for example
by 2.9), J = SLa(G) or Sz)§). Thus there exists j € J with J = (TW7, TW). Thus
(W, J] = [W,T) + [W,T] and [W,Q] = ([W,T} N [W,Q]) + [W,T]. But [W,T) N [W,Q] <
Cw(J)N[W,T) < [W,T] and so [W,Q] < W. So we may assume that O,(J) # 1 and J
is not generated by two conjugate of 7% in .J. In particular, L' 2= Sp,(q). We conclude
that either [W,T] < [W,Z] or Y N W < [W,T]. In the latter case, [W, Q] < [W,T] and the
lemma holds in this case.

Suppose finally that 4. or 5. in 6.17(b). In view of (3) we may assume that QW = Qs.
Sop =2 Also by (4), Y = 0. Let X = (Q9)). Then X" 2 SU3(2) and W is a direct
sum of natural modules for X", Again it is easy to verify the assumptions of ?? and the
lemma is proved. O

46



7 An interesting choice of an amalgam for generic p-type

groups
i . , , _ , gpt
Hypothesis 7.1 p is a prime, G is a finite groupe of generic p-type and S € Syl,(G). hgpt
dealw

Definition 7.2  (a) W is the set of sets {Mi, M2} such that
(a) M; € L(J(S5)
(b) Op((My, Ma)) = 1.

(b) Define an partial ordering” <7l on W by defining (Hy, Hz) < (Mi, M) if and only
if one of the the follwing holds.

1. Some Sylow p subgroup of Hy N Hy is properly contained in a Sylow p -subgroup
of My N M.

2. HiNHy and MyNMay have a common Sylow subgroup T and Cg,nm, (21 (Z(T)) <
Coannvz (21(Z(T))
3. HHNHy < My N Ms.

4. Hy N Hy = My N My and (possible after interchanging My and Ms and Hy and
HQ, M; < Hy and My < Hs.

7 <7 is defined as 7 <7 or” =7

(c) W* is the set of maximal elements of A under the order defined in (b).

We leave it as an easy exercise to the reader to verify that (W, <) is a partially ordered
set.

Lemma 7.3 Let (Ml,MQ) EW* Mio=MNMs, T € Sylp(M12) and put Zy = le(T))
Then

(a) Fori=1,2, |IM(M;)|=1.

(b) Suppose R is a p-subgroup of My with T < R. Then M(R) = M(M;) and T €
Sylp(Mg)

(c) Suppose that T' ¢ Syl,(G). Then C(G,T) € L, C(G,T) lies in a unique mazimal
p-local M of G, IM(S)| = 1 and either T is a Sylow p-subgroup in M; and My, or
M = M} for some i.

(d) Mg is a maximal subgroup of My and of M.
(e) One of the following holds:
L. Oy (Z0) = Cany(Z0) = Car(%0).
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2. There exists {i,j} = {1,2} so that
(a) Cn;(Z0) & Mj, M(M;) = M(Car, (%) = M(Ca(Zo))-
(b) Cn;(Zo) < M.

Proof: (a) Suppose M; is contained in two distinct maximal p-locals Li,Ls. Then M; N
My < My < Hy N Hy. But this contradicts the maximal choice of (M7, Ma).

(b) Let M € M(R). Then T is properly contained in a Sylow M; N M and so by that
maximality of (M, M), M; < M. If T is not a Sylow p-subgroup of My, then we conclude
M(My) = M(NL(T)) = M(Mz), a contradcition. Thus (b) holds.

(c) Assume without loss that 7' < S. Then by maximality Ng(7") lies in a unique p-local
subgroup M of G. Clearly C(G,T) < M and it is easy to see that (c) holds.

(d) Let M1y < Ly < My and put M = (L1, Ms). If M € L, then (M, M) € W and
My < Ly < M N M, a contradiction to the maximality of (M7, Ms). Thus Op(M) =1 and
(Ll,MQ) e W. Also L1 N M2 = M12, L1 S M1 and M2 S MQ. So by maximality L1 = Ml.

(e) Suppose that Chr, (Zo) £ Ms and let M € M(Chr,(Zy). Suppose that M; £ M.
Since T' < My N M, maximality implies that T is a Sylow p-subgroup of M; N M. But then
part 2. of the definition of ”}” gives a contradiction. Thus (ea) holds. Clearly (ea) implies
(eb). O

Lemma 7.4 Let M € L(S) and 1 # x € Zy N ZJ(S) Suppose that Zyr £ Op(Ca(x)0.
Then TO BE CONTINUED

Proof: Assume without loss that M is a maximal p-local. Put Q = Cs(Z)). Note that
Ca(x) € L(B(S). Pick L € £L(Q) so that Zy £ O,(L), |L|, is maximal and |L| is minimal.
Let T be a Sylow p-subgroup of |L| with @ < T. Let R be an T invariant subgroup of L
with [R, Zp £ Op(R). Then by minimality of L, L = RS. In particular, L € N (T). Also

Zy < D =" N{0,(P)| P € M(L,T)}.

Case 17T is not a Sylow p-subgroup of G.

Let C' be a non-trivial characteristic subgroup of 7. Then Ng(C) has a larger p-part
then L and so by choice of L, Zy; < Op(Ng(C)). In particular, C' is not normal in L. In
particular, [Zr, Zy] # 1.

Suppose that F*(L) is not a p-group. Then no element of O, (L) is of p-type. Pick E € £
with Q < L, F*(FE) is not a p-group, |E|, maximal and |E| minimal. Then Zy; £ O,(FE).
Let R be a Sylow p-subgroup of E containing  and R <1 R* for some p-group R*. Let
1#re RNZ(R*). Then Q < Cg(r) and Cg(r) has larger p-part then E. Thus r is of
p-type and so 7 £ O,(E). Thus [O,(E),OP(E)] = 1. TO BE CONTINUED

8 Some general amalgam results

Hypothesis 8.1 1. G is a group.

2. p s a prime.
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3. G1 and Gab are finite subgroups of G.
4. G = (G1,Go)
5. 8§ < G1 NGy so that S is a Sylow p-subgroup of G1 and Go

6. Both F*(G1) and F*(G2) are p-groups.

Let Og(G) be the largest subgroup of S which is normal in G. Let Z = Q;Z(S5). Let
I' = I'(G; G1,G2) be the coset graph for G with respect two G1,G2. In equal the vertices
are the right cosets of G; and G5 in G and two cosets are adjacent if they are distinct and
have non-empty intersection. For v € T', let G, be the stabilizer of v € G, Q, = O,(G,),
Zy = W(Z(T)) | T € Syl,(G,), A(y) is the set of neighbors of v, G,s = G, N Gs.

1 *
G’(Y) = U(SEA(’y) G'yt% V, = <Z5 | d € A(’}/)? Cy = OG'Y(Z(S)? E'7 = OP(G’Y)a Q'y = [Q’yaE’}/)L
Xy =MZ(Q,), X5 =Cq,(Q3), Yy is the largest p-reduced normal subgroup of G,

For v € T' let b, = min{d(v,9) | Zy £ Ggl). Let b = min,ecr by = min{bg,,bg,. Let
a,a’ € T with d(a, ') = b and Z, £ GS,). Let
(a,a+1,a+2,...,a+b) =(—b,...,d/ —1,d)

be a shortest path form « to /. Put 3 = a+ 1. Without loss {Gq,Gg} = {G1, G2}
Let ¢5 = qaz;(Gs), rs = min{r | |[AQp/Qs|" = ]Vg/CVB(A)} for some A < S with
A £ Qp and [V, A, A] = 1. Let cs the number of non-trivial chief factors for Gz on Vj.

Definition 8.2 Let H be a group and T a subgroup of H.

1. H is connected with respect to T if T is not normal in H and for each normal subgroup
N of H, either N NT is normal in H or H = NT.

2. H is p-connected if H is connected with respect to some Sylow p-subgroup of H.

3. H is p-minimal with H is not p-closed and a Sylow p-subgroup of H lies in a unique
maximal subgroup of H.

Lemma 8.3 If G is connected then, rg > ray,cy.

Proof: A < Gy with [V, A, A] = 1 and put r = ray,. Let U be a non-trivial chief
factor for Gg on S Then as Gg € N*(S), Ca(U) = AN Qp. So by definition of ray,(S),
|AQs/Qs|" < |U/Cy(A)|. Multiplying together these inequalities over all such U in a chief
series we obtain |AQz/Qp|"? < |V/Cy(A)| and so 1, > reg. O
Lemma 8.4 Suppose that b > 2 and allow for the case that Og(G) # 1.

(a) Suppose that go > 1 and [V, J(S) # 1. Then b is odd or co and (¢o —1)(rg—1) < 1.
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(b) Suppose that Co N Qp is not normal in G, and put Q = (Cy N QbG[’). Then Q acts
quadratically on Zy, |[Za, Q]| < |Q/Co(Za)|, Za is an FF module and [Cz, (Q), Eg) =
1.

Proof: (a) If b is even,8.17 shows that Z, or Z, is F'F, a contradiction to g, > 1.
Thus b is odd or oco. In particular, b > 3 and Vj is abelian.

Since [Vg, J(S) # 1, there exists A € A(S) with [V, A] # 1. By the Thompson replace-
ment lemma we may assume that [V, A, A] = 1. Suppose A < Qg and let § € A(). Then
¢s > 1 implies [Z5, A] = 1 and [Vj3, A] = 1, a contradiction. Thus A £ Qg. Put B = ANQg.
We will apply 2.4 with I = A(B) and W; = Z; for i € I. Define r,t and s as in the 2.4.
Since A € A(S), [V3/Cv,(A)| < [A/Ca(V) and so t > 1. Also s > g, > 1 and 7 > r5. By
2.4b to obtain trs <r+s,rs<r+s, (s —1)(r—1) <1land (go —1)(rg—1) < 1.

(b) Let D = Cz,(E,). If D = Z,, then Z, and Q = C, N Q3 are normal in Gy in
contrast to our assumptions. Thus Z, # D and we can choose D < E < Z, with £ <S and
|E/D| =p. Let W = <Eg> Note that [E, Q] < D and so is centralized by Ej, and normalized
by S. Thus [E, Q] <Gg, [E,Q] = [W, Q)] Since [W, Eg] # 1 and cg = 1, [V, Ep] < W and so
Vg = ZoW. Hence [Vj,Cq,(Za)] < [W,Q and so [Z,,Q] < [V, Q] = [W,Q] = [E,Q] < Z,.
[Ca N Qp centralizes D, Q centralizes D and [E, Q). Hence [E, Q] = {[e,q] | ¢ € Q}, where
e € E\D. Thus |[E,Q]| = |Q/Cqle) < |Q/Cq(Z,)|. If Cz,(Q) # D, we can choose
[E,Q] =1 and we get [Z,,Q] =1 and so Q = C, N Qg is normal in Gg,a contradiction. O

ocf
Lemma 8.5 Suppose that b is odd, b > 3 and L < G, with
() L= (Guors N L)OP(L).
(ii) G = (Gy—1,L).
(ili) L has at most one non-central composition factor on (ZaLp_l).
Then one of the following holds
1. [Zap—1,[Qu, OP(L)] # 1 and Z, is an FF-module for Go/C,.

2. [Zap-1,[Qu,OP(L)] =1 and

(a) Vg = ZaCy, (Qp)-
(b) CaN Qs <Gy

(c) Cv,(Qp) is an FF module for <QaGﬁ)

Proof: Let V = (ZL_,) and Q = [Qu,OP(L). Then by (i), V = (Zo,\)) and we
may assume without loss that L = OP(L). Note also that ), normalizes Z, and V.

Suppose first that [Z,_1,Q] # 1. If [V, Q, L] # 1, then by (iii), V = Zy 1]V, Q] and so
V = Z,_1, a contradiction to (ii). Thus [V,Q, L] =1 and by [St1] (1) holds.

So we may assume that ) centralizes Z, _; and V. Hence (iii) implies that [V, Qqp, L] =

Land [V,L,Qu] = 1. Thus V = Zy_10v(Qu) and so L normalizes Zup 1Cv, (Qu).
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Therefore (ii) implies that G normalizes Zu, 1Cv,(Qu) and so Vi = Zy, 10y, ,( o
Thus Cq_, (Vap) = Car—1NQ« and (a) and (b) are proved. Moreover we get [V3NQyr, Vo]
1 and [V N Qp, Vs = 1. Hence (c) follows from 8.17.

)

g <2
Lemma 8.6 Suppose that G is a mimimal parabolic and allow for the case that Og(G) # 1.
Then one of the following holds:
1. S centralises Z,,.
2. Zo £ Qp.
3. qa <2
4. Z, s the dual of an FF-module
5. There exists a non-tivial characteristic subgroup C of B(S) with C I Gg and Gy =
Ng,(C)Cq. Moreover, either C = J(S) or Q; < B(S) < C,.
6. Put G = B(S)0?*(Gg). T 02(Gj) < B(S) < Co and non-trivial characteristic
subgroup of B(S) is normal in Gj. Moreover, Z 4 Gpg.
7. Z and Z, are normal in Gg and centralized by Eg. Futhermore, SN C, is a Sylow
p-subgroup of Cc,(Za).
Proof: Without loss Z, < Q. If [J(5),Z4] # 1, r(S,Z1) < 1. So we may assume
that J(S) < Cy. Thus Z, < Cg(J(S)) and B(S) < C,. Hence
qg<2-—1

(1) G, = Ng,(B(S))Cy = Ng,, (C)C, for any characteristic subgroup C' of B(S).

If Eg centralizes Vg, then 7. holds. So suppose [V, Eg] # 1. If J(S) < Gg, 5. holds.
Hence we may assume that J(S) £ Gg. in particular, [Vg, J(S)] # 1. By 6.3, ry,(G) > 1.
If cg > 2, then 8.3 implies rz > 2. By refQRCa, (g — 1)(1, — 1) < 1 and so 3. holds. If
cg = 1, then 8.4b implies that 4. holds or C,capQs is normal in Gg. So suppose the latter.

Since J(S) < Cq, J(5) centralizes Qg/Q3NCy. Since J(S) £ Qp, Eg < <J(S)g> and so
Ejg centralizes Q/QpNCo. Thus Q5 < CaNQp and [V, Qj] = 1. Thus [Cq,(Qf), Es| # 1
and by Thompson’s P x Q-lemma, [Xg, Eg] # 1. Thus by 8.10 ( and the remark following
8.10), Op(Ey) < B(S). Now either there exists a non-trivial charcteristic subgroup of B(.S)
which is normal in G or there does not. In the first case (1) implies that 5. holds and in
the second 6. holds.

U

Lemma 8.7 Suppose b > 1, 57,(S) > 1, Cg,(Vp) is p-closed and [Vg N Qur, Vor N Q] = 1.
Then Vg is F'2 for Gg.
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Proof: We may assume without loss that V3Qn /Qq > Vi Qp/Qap. Since sz, (S) > 1 we
can apply 2.3 with s =1, V = Vg and B = V,y N (g and conclude
|B/CB(Vi)| < |[Vo/Cv, (B)
By assumption Vg N Qy < Cy,(B) and so

Var /Ov,,, (Vo)| < [V /BIIB/CB(V) < IV Qp/ Q| - [V5/Ve N Qur| < [V5Qur /Qur*-

Hence Vg is F 2, O

mqre
Lemma 8.8 Let (Py, P, P2) be an amalgam over S. Let Zg = (Z10). Fori = 1,2 put

Li = (Py, P) and Z; = (Z%). Suppose that
(i) P and Py are in P(S).
(i) For {i,j} = {1,2}, O*(P;) £ Oa(F;).
(ifi) Fori=1,2, Z < Og(L;)

The one of the following holds for some i € {1,2}

1. J(S) < P.
2. J(S)Q P, [Zo,0%(P)] # 1 and r(S, Z;) < 1.

3. Zi £ Qj
4. 1(S,Z;) <2 orr*(S,Z;) <2

Proof: Without loss J(S) < Po and since J(S) is not normal in all the P;’s we may
assume that J(S) < Py. If [Zy, O?(P;)] # 1 we conclude that [Z7,J(S)] # 1 and 2. holds.
So we also may assume that [Zy, O?(P;)] = 1. Then Z; is not normal in P, and hence
[Zo, O%(P,)] # 1.We apply 8.6 to Go = Ly and Gg = Pi. As J(S) < P; = G we conclude
that either 3. holds or 4. holds or [Z3,Qj] = 1. In the latter case Q7 £ O2(P2) implies
[Z2,0%(P;) = 1, a contradiction to [Zy, O%(P)] # 1.

cb

Lemma 8.9 Let L be a subgroup of Gg which acts transitively on A(B). Put Dg =
MNsen(p) Zs and I minimal with [Za,Qp,l] < Dg. Suppose that V3 < Qg. Then for all
0 <i <, L acts non-trivially on [V3,Qs,1]/[V3,Qgs,1 + 1.

Proof: Put Z; = [Z,,Qp,i] and V; = [V3,Qp,i]. As L acts transitively on A(f),

Vi = <ZZL) Let i be so that L acts trivially on V;/V;11. Then V; = Z;V;;1 and so V;/Z; =
Vi/Zi, Qp). Hence V; = Z; and Z; < Dg. Thus i > .
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Lemma 8.10 Let G be a finite group, p a prime, p-subgroup of G, V.= (1 (Z(0y(G)),
B(S) = Cs(u(Z(J(S)), J(G) = (J(5)Y), B(G) = (B(S)Y), G = G/Ca(V), and V =
V/Cy (OP(B(G)) and suppose that each of the following holds:

(i) Ca(V) is p-closed.
(ii) If A € P(G,V) then |V /Cy(A)| > |A|.

(iii) If U is an FF-module for G/Op(G) module with V <U and U = Cy(B(S))V, then
U = Cy(OP(J(G))V.

Then O,(B(G)) < B(S).

Proof: andY =Q,ZJ(S). Let A € A(S). Then A € P(G,V) and so by (ii), |V/C; (4)| >
|Al. By (i), |A] = |[A/JAN Q| and so V(ANQ) € A(S). Thus Y < V(ANQ) < Q. Put
W = (Y®)V. We conclude that W < Q;ZJ(Q) and so W is elementary abelian and
(ANQ)V centralizes W. Hence W < (ANQ)V and W = V(ANW) = VCwy(A). It follows
that A centralizes W/V. Since A was arbitray in A(S), J(G) centralizes W/V. As Y =
0 ZJ(SNJ(G)), Sylow’s theorem implies that J(G) acts transitively on Y&. Thus W = YV
and so [W, Q] =[Y,Q] <Y. Hence [W,Q] < Cw(B(G)). Let D = C(OP(B(G)) and U =
W/D. Then O,(G) centralizes U. Since V >VD/D and U =YV/D, we can apply (iii) to
conclude that W = DV and U 2 V. Since A € A(S), [W/WNA| < |A/CA(W)| = |A/ANQ).
One the otherhand by (i), [A/AN Q| < [V/Cg(A)| = |U/Cy(A)| < |W/Cw(A)D|. Thus
[W/Cw(A)| < |W/Cw(A)D| and D < Cw(A). Hence [D,A] =1, D <Y and [D, B(G)] =
1. Therefore [W,O,(B(G)] < [D,B(G)][V,Q] =1 and so O,(B(G)) < Cs(Y)=B(S). O
Remark 8.11 Assume (i) in 8.10. Then (ii) and (iii) hold as well unless J(G) has a
component K with K = Alt(2n),n > 3; SL,(q), n > 3; SU,(q),n > 6; Span(q),n > 2;
Q;n(q),n > 3; or Qy,(q),n > 4 ; and some compostion factor for K on V is a natural
module.

Lemma 8.12 pushing up minimal parabolics, odd elements
Lemma 8.13 pushing up sym(10) over ((12), (34), (56), (78), (9, 10))

Lemma 8.14 some trivial pushing up result, at least including Ls(2) over the Os of a point
stabilizer, saying that b = 4 and non trivial center; or b = 2 and O3 basicly a natural module

Lemma 8.15 Suppose that G, is a p-minimal. Then Qo £ @3-
Proof: This follows from 8.12Remark: This needs some thought O
Lemma 8.16 Suppose that each of the follwing holds:

(1) a,B= {77 5}
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(i) G, is p-minimal and [X., E] # 1.
(iii) Gy is p-connected or Cs(Xs) = Qs.
Then one of the following holds.
(a) [X5,Es5] =1 and Z 4 Gjs.
(b) J(S) £ Qs and X5 is an FF-module for Gs.

(¢) (a) J(5) < Gs.
(b) Op(B(G,)) < B(S) = B(Qs)-
(c) E, is a SLa(p")k-block, Alt(2" + 1)*-block or SLo(3")*- double block.
)

(d) If G is finite and S € Syl,(G), then G contains a p-local R with B(S) < R and
Cr(Op(R)) £ Op(R).

Proof: We may assume that [ X}, Es] # 1. Then by Thompsons’s Ax B-lemma, [ X5, E5] #
1. Hence if Gs is p-connected, Cs(Xs5) = Q5. Thus by (ii) Cs(Xs) = Q5.

If J(S) £ Qj, then (b) holds.

So suppose J(S5) < Qs. Then X5 < ZJ(S) and so B(S) < Cs(Xs) < Qs and B(S) =
B(Qs). By 8.10, O,(B(G5)) < B(S). Thus (ca) and (cb) hold in this case.

Since G is p-minimal, Gy = B(G,)S. Let R be normal subgroup of B(G,). Let U
be unique maximal subgroup of G, containing S. Let C' be a non-trivial characteristic
subgroup of B(S). Then C' is normal in G5 and so C' is not normal in G,. Since S < Ng._,
this implies N, < U. Let W = W, =), Z(J(S))%. Then W is an F F-modules for B(G.)
and O,(B(G,)) centralizes V. Hence W/Cy (E,) is a natural SLa(p")* or Sym(2" + 1)*
module for B(G,). Let E be minimal with B(S) < E, and OP(E) maps onto on normal
SLy(q)"s or Alt(q+1)’s. Then E £ U and so C' 4 E. Hence by 8.12 OP(E) is an Ly (p")-
block, Alt(2" + 1) block or SLy(q)-double block. It is now easy to see that OP(FE) is normal
in £, and that (cc) holds.

Suppose now that G is finite and S € Syl,(G). Assume first that E, is a SLa(p")*- or
Alt(2" + 1)*-block. Then there exists A € A(8) with [W,, W] # 1. Then Wy < B(Q;) =
B(S) < B(G5)). Suppose that [X;,Q,] # 1TO BE CONTINUED

Lemma 8.17 Let A\, € I' and F\, F), normal p-subgroups of G\ and G, respectively.
Suppose that

(i) F,\ < GM and FM < G)\.

(i) [P F # 1.

(iii) For p € {\, u}, Cg,(F)) is p-closed
(iv)

[F)\,FMQQ)\] =1 and FM,F/\QQIJ =1.
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Then one of the follwing holds
1. Fy is an F*1 module for Gy.
2. F, is an F*1 module for G,,.

3. Both F\ and F,, are F'F-modules.

Proof: By (iii) and (iv) FANQ, = Cg,(F,,) and F,NQx = Cg,(Fy). [FA\/FxNQ,] is
either less, larger or equal to F},/F,, N Qy. In the first case |F)\/CF, (F,,)| < F.Qx/Qx| and
1. holds. Similarly the second case implies 2. and the third 3. O

vbvap
Lemma 8.18 Supposse that b > 3, b is odd and ro > 1.

(a) (rq —1)(rpl) < 1.

(b) Suppose that equality holds in (b). Then

(b.a) [VwrQp/Qul = VaQuo /Qur|

(bb) Cv., (Vs 1 Qu) = Cy, (V).

(c.b) Let 6 € A(B) with [Zs, V] # 1. Then Vs Qg £ Qs and |(Var N Qp)Qu/Qal® =
1Z5/Czs (Vo)

(c.d) |V3Quo /Qu|" = [Var /C,, (V3.

Proof: By 2.4 we have

vbvapl
(1) Va0 Qp/Cv,, (V)™ < |V5/Cvyy (Var N Qp)I.

and
vbvap?2

(2) VN Qar/Cyy (Vo)™ < [V /Cy,, (V3 N Qur)|.

Suppose first that Vo < Qg. Since ro >, (1) implies [V, /Cyv, (Vp)| < [Vg/Cv, (V)| I
Vi [ the situation is symmetric in o’ and § and we may assume in any case that
vbvap3
(3) Var/Cv,, (V)| < [V/Cyy (V)

TO BE CONTINUED

rsc
Lemma 8.19 Suppose that rg > 1, 54 > % and s}, > 1. Then

(a) 3 <sq<2.
(b) 1<rs< 3.

(c) c=2or3.
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(d) Ifc=3, then sa = 3 and rg = 1.
(e) Ifrg = %, then c = 2, 54 = % and (sq — 1)(rgeg — 1) = 1.
(
(g

f) If sa =2, thenc=2, 13 =1 and (s — 1)(rcg — 1) = 1.

)
)
)
) [Za» Zor] = 1.

Proof: Ass}, > 1, 2.4 implies cg > 2. All but the last statement are now an immediate
consequece of 8.4. The last statement follows from 8.17.
p3/2
Lemma 8.20 Suppose that b is odd and 3+,3~ € Ty withd(87,37) =b—1 Fore € {+,—}
let A € A(B°). Define V¢ = (Zx|A € A°) and B = VN (\\cp—e Gr. Finally, let s be a
postive real number so that for alle € {+,—}, all\ € A™¢, and all A < B¢, |Z,/Cz, (A)]* <
|A/Ca(Z)y)|. Then
1 _ 1
(a) (aa) |BY/Cp+(V7)| < V7 /Vy—(BT)|s < V7 /Cy-(B™)|5
(ab) [VF/Cy+ (V)| < [VF/BT||B*/Cp+(V7)
(ac) [V*/Cys(V7) < [VE/BHV= /Oy (V)5

92—1

(b) (b.a) [VH/Cyr (V)5 < |VH/BHIV-/B 5.
(bb) |BY/Cpe (V)5 < [VH/BH 5|V /B

(c) Suppose s >1 and V't = BT, then |V /Cy+ (V)| < |V_/B_|ﬁ,

(d) Suppose s > 1 and that r is a positive real number with |V~ /B~|" < |[VT/Cy+ (V7).
2
Put e = =—==.

(da) [V7/B7|* < |[VT/BT].

(db) [B~/Cp- (V)| = gl

T8

(d.c) Ife > 0, then |B*/Cp+(V7)|| < |V /BT|rs?=r=s

(e) Suppose s > 1 and 7 is a positive integer so that for ¢ € {+,—}, |V¢/B" <
|[V=¢/Cy—c(VE)|. Pute= ”2;{_5 and suppose that e > 0.

(ea) [V7/BTI* < |VF/BH|V=/B7|:
(eb) If V= # B, then VT # BT and e < 1.
Proof: The first inequa lityin (aa) follows from 2.3 while the second is obvious. (ab)

is obviuos and (ac) follows from (aa) and (ab).
Interchanging ” +” and ” —” in (ac) and substituting the result into (ac) we obtain

w‘*“

V) Cye (VO < [VE/BH[V /B[ [V [Cye (V7).
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2

Thus (b.a) holds. Simimalrly interchanging ” +” and ” —” in (ac) and substituting the
result into (ab) one obtains (bb).

(c) follows easily from (b.a). (ea) follows from (da) and using symmetry in ” +” and
7 —7. (eb) follows from (eb). So it remains to prove (d). By assumption |V~ /B7|" <

|[VT/Cy+(V7)]. As s > 1 we can raise this inequality to the =5+ $>~1 power and obtain

2

2_1) " s
T
Thus (da) follows from (ba). For (db) note that

V=/B7|" < VT /Oy (V)| < [V /BY|| BT Vi (V7).

Finally (d.c) follows from (d.a), (b.b) and a simple computation. O

LLp
Lemma 8.21 Suppose b > 1 and Gg is p-minimal. Let M,g be the unique maximal sub-

group of G containing Gag. Put 37 = 3,6~ = o/. Then one of the follwing holds

1. For each € € {4, —} there exists L* < Gge and p° € A(3) so that for V= <Zlf: each
of the following holds.

(a) V7 £ 0p(Le).

(b) V7=¢ < Gue and Ggeye contains a Sylow p-subgroup of L*

(c)
)

Len Mﬁe e 1s the unique mazximal subgroup of L¢ containg V ~°.
(d) [V

Zy) = 1.
2. There exists € € {+,—}, Lt < Gge, p¢ € A(B° and p € A(B~P5U") 50 that with
Ve= <Z£’: each of the follwing holds.

(a) Ve <Gy, Z, < L and Z,, £ 0,(Le).

(b) Z,, < Gue and Ggeye contains a Sylow p-subgroup of L€

(¢) LN Mﬁe e is the unique maximal subgroup of L containg Z,,.

(d) [Zu, Zpe] = 1.

3. There exist p* € A(BY) and p= € A(B™) so that Z,+ < G-, Z,— < G+ and
(Zts Zpu~] # 1.

Proof: Suppose that 3. does not hold. For € € {4+, —} choose L® < Gge and p® € A(G°)
so that |L*||L~| is minimal with respect to

(i) For all €, V7€ < LN Ggeye

(ii) For all €, Ggeye N L€ contains a Sylow p-subgroup of L and Mgae,e N L€ the unique
maximal subgroups of L€ containg that Sylow p-subgroup.
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(ili) For at least one €, V7=¢ £ Op(LF).

Note that (i),(ii) and (iii) are fulfilled with L¢ = Gge, p7 = @+ 2 and p~ =/ — 1 and
so we can make such a minimal choice.
Case 1 For some € € {+,—} and some p € uL", [V=, Z,] #1 and V=¢ < G,,.

For ease of notation we assume without loss that € = —.
(1) Incase 1, Z,, £ Op(L*) and [Z,,+, Z,] = 1.

Suppose Z,, < Op(LT) and pick p € u*t" with [Z,, Z,] # 1. Then Z, < G,, Z, < G,
and so 3. holds, contrary to our assumption. As Z, < G+, the same argument shows

(Z+, Zu) = 1.

(2) In case 1, 2. holds.

By 2.6 there exists L < LT and h € L™ such that Z,, < L, Z,, £ Op(L), (Gg+,+NLT)"NL
contains a Sylow p-subgroup of L, and (Mpg+,+ N LT)"N L is the unique maximal subgroup
of L containing Z,,. Thus 2. holds with € = +, L in place of L¢.

Case 2 Case 1 does not hold.

(3) In case 2, for all e, V7 £ O,(L°) and [V, Z,c] = 1.

If the first statement is false pick pu € pt" with [Z,,, V™ # 1, if the second statement
is false put 4 = . Then in any case V¢ < G, and the assumption of Case 1 are fulfilled.

(4) In case 2. 1. holds.

We prove is basicly the same as for (2). By 2.6 there exists L < L€ and h € L€ such that
V=< L, VL Oy(L), (Ggepe NLe)" contains a Sylow p-subgroup of L, and (Mge,cNL)"NL
is the unique maximal subgroup of L containing V. Hence (i), (ii) and (iii) are still fulfilled
if we replace L€ be L, u¢ by u* and leave L™¢ and p~¢ as they are. Thus the minimal
choice of |LT||L~| implies L = L¢ and so 1. holds holds. O

Lemma 8.22 Assume that each of the following holds for each {v,0} = {«, 5} and each
critical pair (o, o)

(I) Zaﬁ ﬂ G’Y'
(i) If N <Gy with NN Op(Gaf) £ Q- then Gy = NGop.

(ili) Let O = Oy5 = {A < Qs | |Z4/Cz,(A) < |AQ,/Q4| # 1,121, A, A] = 1}. Then
Z,/Cz.,(A) = |AQy/Qy| for all A € O.

(iv) Bither O =0 or Ays & yeolZy Al # 1.
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(V) ZgZo RGy
(vi) One of the following holds

(vi.l) If « — 1 € A(«) such Zy does normalize Zo—1Z4, then Zo—1 € Qo/—1-
(vi.2) There exists « — 1 € A(a) with Go = (Gaa—1 and Zg—1 £ Qur—1-

Then
(a) Oap # 0 # Oap-
(b) Ifb > 2, then Agy < Ga.
(c) b<2.

Proof: By (iii), Zo € Oag. By (ii) and (vi), there exists @ — 1 € A(«) so that Z,
does not normalize Z,_1Z,. Hence by (vi) we may choose o — 1 so that Z,_1 £ Qn—1. In
particular,

(1) Za’—l € Oa—la

Thus (a) holds.

Let H = NGo)(ZaZa—1)),G={9€Ga|Z), H} and T = (Zys | g€ G). Let g € G.
Then g € G or Zg, < H. Hence (H,T) > Ga_laZOCj“) = (G, where the last euality follows
from (ii). Since both H and T normalize T', we conclude that T = (ZS,"‘> and inparticular

(2) Go = Ga—1a<Za'9 | g € g}

Suppose now that b > 1 and Ag, AG,. Then by (2) we may assume that Z, does not
normalize Ay—_14. But (1) and the definition of Ay—14 imply Aa—1a < [Za—1, Zar—1]. Hence
Ang—1a < Zy—1 and b > 1 provides the contradiction, [Ay—14, Zos] = 1. Thus (b) holds.

Suppose now that b > 2. Then by (b) applied to (o« — 1,&/ — 1) in place of (a, ),
Aaqa—1 I Gy—1. Hence by (2) we may now assume that Z,, does not normalize Ayq—1. On
the otherhand by (1) there exist &« —2 € A(a — 1) so that Z,_9 € Oq—24—1 Hence

Aca—1=Aag-24-1 < [Za =2, 20 — 2] < Zo 2.
Since b > 2 we conclude [Ayq—1, Zo] = 1, a contradiction and so also (c) is established.
Lemma 8.23 Suppose that (i) to (v) in 8.22 holds. Suppose in addition that

(a) If A € Q and B is an elementary abelian subgroup of Qs with [Z,,A,B] = 1 and
A< B. Then [Z,,B] < [Z,, Al[Cz,(A), B]

(b) If A € Q then there exists A € A(y) with Gy = (G, A).
Then (vi.2) in 8.22 and so also the conclusions of 8.22 hold.
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Proof: By (b) there exists « — 1 € A(a) with G, = (Ga—1a,Za). Suppose that
Za-1 < Qq—1- Then by (a) applied with v = o/, A = Z, and B = Z,_1Z,, we conclude
that

[Za’> ZafIZa] < [Zo/a Za”Zo/ N Qa’ Zafl] < ZafIZa-

Thus Zy—1Z4 is normalized by (Go—1a, Za) = Ga, a contradiction to (v).

Lemma 8.24 Suppose that (i) to (v) in 8.22 holds. In addition assume that for each
A € Q and each elementary abelian subgroup B each Qs with [Zy, A, B] =1 and A < B the
following statements hold

(a) [B/Cp(Cz,(A) <|Cz,(A)/Cz,(B).
(b) If [C,(A), Bl = 1 then [Z,, B] < [Z,, A].

(c) Suppose that [Cz, (A),B] # 1. Then for elementary abelian subgroup C' of Qs with
B <C and [Z’YaBaC] =1, {CZ,Y(A),C] < [CZW(A%B]

(d) There exists X € A(y) with Ly = (Op(Gyy), A).
Then the conclusions of 8.22 hold.

Proof: We may assume that (vi.2) in 8.22 does not hold. Thus by (d) we can choose
a critical pair (o,a’) and @ — 1 € A(a) with G4, = (Ga—10)Za) and Zo—1 < Qur—1.
If [Zo, Zoa-1Za] < [Zor, Za] we get that Z,_1Z, is normalized by (Go—1,Zy) = Ga, a
contradiction to (v). Then by (b) we may assume that [Zy N Qq4, Ze—1] # 1. Put X =
Zo NQq. Then by (a) [X € Qq—14 and so 8.22(a) holds.

Moreover, Ag—14 < [Zo — 1, X] < Z, and so Ay_14 is normalized by Go—1a and Zy
and so 8.22b holds.

Suppose that b > 2. By (d) there exists o — 2 € A(a — 1) with Go—1 = (Ga—24-1, X).
If Zo—o £ Qur—o, then Ay o041 < [Zo—2,Zy — 2] < Zy —2. As b > 2 we get that Gaa—2,
X and Z, normalize A,_9,—1. But then A,_924—1 is normal in G,_1 and G,.

Hence Z,_ 9 < Qu 9. If Z_9 £ Qn_1, then since also Z,_1 < Qq—1 we conclude from
8.22(iii) that Zy — 1 < cal@_9q/—1- But then Ay_o0—1 < [Z4 — 2, Zy — 1] a we get the
same contradiction to the previous paragaph.

Thus Z4—2 < Qu—1 and so by (c¢) applied with C' = Z,_5 and 7 = o we conclude
that [Zg—92, X| < [Za-1,X] < Zq—1. Hence Z,_2Z4—1 is normalized by G4—24—1 and X, a
contradiction to 8.22(v).

Lemma 8.25 Suppose that G, and Gg are minimal parabolics and Z 4 G, and Z 4 Gp.
Then b <2 or ZoZg 1 Gg
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Proof We assume without loss that G,g is Sylow 2-subgroup of G, and Gg. Put
Top = < VQq and Zapg = Cz,(Tap. Note that T,s only depends on o and 3 but not
on Z,. Let a—1¢€ Aa) with Zog N Zoa—1 < Do. For O < i < b, put W; = (Z SQB)

—1

Then Wy, = Z, and WyQ, = T,3. Put T = T,_1, and supose that W1Q.—1 # T. Then
there exists a U < T so that Z, = (U%«e-1) and [Wy,U] = 1. Hence U < Qu_;. It is
now easy to see that Zy N Qq < Th—14 and so [U, Zy/| < [Za, Zo U, Zoy N Qa) < Zo[U, T).
Hence [U, Wy] < Z,[U,T] and Wo. Let L = (T, Wgo. Then O?(L) centralizes UZ,/Z,. As
Zg = (U%-12) we conclude that G, normalizes Z3Z,. Remark: It is easy to see that
Vo/Zs is an FF-module. This will kill any problem Os3 might cause, also this
shows that basicly T3 = T3,

Hence W1Qqa—1 =T. Choose a—i—1 € A(a—i) with Zo—i—10-iNZa—it1a—i < Z(Go—i
Then a similar argument shows inductively that W;Qn—; = To—iq—i+1. Hence Z,Qn_p =
Tw—pa—p+1- Therfore we may assume that Z,/Q, = T,3. The above argument now shows
that Z,_1Qa—1 = T and we conclude that if b > 1, then [Z,—1,T] = [Za-1, Za—-1] < Da.
Moreover, if b > 2, [Z,—2, Zy —2] < Do, — 1N Dy, a contradiction and the lemma is proved.

Lemma 8.26 Let M; € calL(S), 1 < i < 3 and suppose that that
(i) Fori=2,3, O*(M1in S < Qo3
(i) O*)(My)NS = (0*(M12N S)(O*(M13N S).

Then Qa3 is a Sylow 2-subgroup of O?(M1)Qa3 and Q1 N Qa3 = O2(0*(M1)Q23) is
normal in M;

Proof: Let L = O?(M;)Q23. Then by (ii) and (i)
Qa3 < LNS = (0*M)NS)Qa3 = (0*(M12N S)(0*(M13N S)Qa3 = Qo3
. Since L < LS = Ml, OQ(L) < Q1.
Hence O2(L) = Q1 N L = Q1 N Qas.

9 Amalgams involving uniqueness groups

minparun
Hypothesis 9.1 (i) Hypothesis 8.1 holds with G finite.

(ii) G4 is a minimal parabolic.
(i) EgB(S) lies in a unique mazximal p-local Mg of G.
(iv) Qf < Op(Mp).

(v) Gp = EsGagp

(vi) Mag 4 Mg N G, is the unique mazimal subgroup of G containing S.
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(vil) G4 € CL(S).

Put Qap = 02(Mag), Xo = Q1(Z(Qs)) and X = 01 (Co,(Q5))
Put Dﬁ - naEA(ﬁ) Z& and R - [ZOM ZO/]'
The next two lemmas reveal how the assumptions on Eg can be used

Qab
Lemma 9.2 (a) Qf < O2(Mp) < Qagp-

(b) Let v € A(B) and Ry be a normal subgroup of Go. Then

R’y N Q,B < (Ra N Q,B)QE < (Ra N Qﬂ)Qaﬁ < (Ra N QB)OZ(MB) < RaQa,B‘

(c) Let v € A(B). Then QN Qg < QaO2(Mp) < Qqup.

(d) Let Rop be a normal subgroup of Gag contained in Qg. Then for all v € AS,
G
Rap < (R,3) < O2(Mp) Rya.

Proof: By hypothesis, @} < O2(Mp). As Gap contains a Sylow 2-subgroup of Mg,
02(Mp) < G,p and (a) holds.

Since Ej3 acts transitively on A(3) we have R, N Qs < (Ra N Qp)[Qs, Es] and so (b)
follows from (a).

Since Qo < Qqg, (c) follows from (b) applied to Ry = Q..

As Rag < (R3) < [Q, Eg] Rya < Op(M) Ry, (d) holds.

Mtrick
Lemma 9.3 Suppose 1 # D < ZJ(S) and Eg] < Ng(D). Then

(a) Neo (D) < Mag

(b) Let 6 € I' such that d(3,0) = b—i with 1 <i <b . Suppose that Ng,(D) normalizes
no non-trivial 2-subgroup of Gs/Qs. Then

(ba) Vg(iﬂ) NGs < Qs

(bb) ViV < Qs.

(be) If Ng,;(D) contains a Sylow p—subgroup of G5, then Vé”l) < Qs.
(¢) Ifbis odd and b > 3, then E, does not normalize D.

(d) Suppose that b is even, b > 3 and E,_1 normalizes D, then

(da) Vﬁ(g) NGy -1 < Qo/—l <Gy

(db) If Go/—1 normalizes D, then Vﬁ(g) < Qu-1 < Gy.
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Proof: As B(S) and Eg normalize D, Ng(D) < Mg. Thus (a) holds.

For (b) let v € A(8) with d(v,6) = b —i — 1. Then by 9.2(d) Vi < V" 0y (Mjp).
By minimality of b, Vw(i) < Q5. Since Ng, (D) < Mg, Ng;(D) normalizes the 2-group G5 N
O2(Mg). Thus by assumption, G5 N O2(Mpz) < Q5. Hence Vﬁ(iﬂ) NGs < Vr)gi_l)(OQ(Mﬁ) N
Gs5) < Qs. So (ba) holds. Clearly (ba) implies (bb). In case (bc) O2(Mg) < G5 and so
v < .

Suppose b is odd and E, centralizes D. Then by (bb) applied with § = o/ and i = 1,

Vs < Qu, a contradiction.
(d) follows from (ba) and (bc) applied with 6 = o/ — 1 and i = 2. O

Lemma 9.4 Suppose that [Z, Eg] # 1. Then Zg is an FF-module.
Proof: 8.16 O

Lemma 9.5 Suppose that [Z, Zy| # 1 and [Z, Eg] = 1.

(a) Let L, = <Z§,">Qa. Then Lo/Ca = SLa(q)*, where k is a postive integer and q a
power of 2.

(b) Z, is a natural module for Ly,/Cl.
(¢) ZuQq is a Sylow p-subgroup of <Z§,"‘)Qa.

Proof: As|[Z,,Zy] # 1 we may assume that Z, acts as an offending subgroup on Z,,.
Since [Z, Eg) = 1, Cyz,(Lq) = 1.Moreover, by 9.2¢ Z,» < Qa3, which excludes the possibilty
that Z, is a a natural Sym(q + 1)¥-modules for ¢ > 4. Thus the lemma follows from 6.3. 0

Define Z,3 = Cz,(S N Lq) and Zj = <ZS§> In the next two lemmas we will assume

[Zoy Zo] # 1. Let V be an irreducible L, submodule in Z, not centralized by Z, and
similarly choose V' < Z,/. Put R = [V, V’].

Lemma 9.6 Suppose that [Z, Zy| # 1 and [Z, Egl = 1. Then one of the following holds:
1. Z,g is normal in Gg.
2. Zug < X5 and [X3, Eg) # 1.

3. ¢ =2 and k > 2. Moreover, if Uyg be mazimal in Z,z with [Uag, Gagl < Zg and
Ug = (Ufﬂﬂ), Then Ug/Zg is an FF-module for Gg/Qg

Proof: We may assume that Z,z is not normal Gg and so is not centralized by Eg.

Suppose first that ¢ > 2 or kK = 1. Then QE < Qap < Ly and so Z,5 < XE. Thus
(X7, Eg| # 1 and the P x @ lemma implies [Xg, Eg| # 1.

So suppose now that ¢ =2 and k > 1. Let a — 1 € A(«a) with (Gaa—1,V’) = G4. By
9.5¢, [Zag, Zor] =1 and so
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(1) (a) Z5 < Qs for all § € T with d(3,4) < b.
(b) [Z5_,, V'] =1, even if b = 2.
In particular, [Z3, Z,/] = 1 and as S acts transitively on the LY and normalizes Cos(Zy)
we conclude

(2) (a) SNLy= CQ;; (Z;)Qa
(b) Z5N Za = Zap.
By definition of U,z we have [Uyg, Qg] < Z3 and thus

(3) [Us, Qp] < Zs.

In particular, D def [Ua—1,Up—1 N Qa-1] < Za—1. On the otherhand, by (1)a,Uy—1 <
Zp1 < Qa2 < Ggp1andso D < Uy_1 < Z;, 4 and so by (1)c, [D,V’] = 1. Hence by
choice of a — 1, D is centralized by G, and G,—1. Thus

(4) [Uafly Z;/,1 N Qafl] =1.

Suppose that Uy—1 < Qu—1. As [R,Us—1] = 1 we conclude that [Uy—1,V'] < R < Z,.
Thus

Ua—IZoz < <Ga—1a7 V/> = Ga‘

Hence also [Uy—1,Q4] < Go. By (4), Zo £ Us—1 and since Z, is the unique minimal
normal subgroup of G, in @, we conclude that [Uy—1,Qq] = 1. Thus [Ug, Q] = 1. Since

Ez < (QS@T we get [Ug, Eg] = 1. Note also that [U,s < ZJ(S) and that there exists
1 # D < U,p with Cg, (D) £ M,p. Hence we obtain a contradiction to 9a. We proved

(5) (a) [Us, Egl # 1.
(b) Us—1 £ Qur—1-

If [Uy—1 N Qu—1,Uy—1] = 1, then 8.17 and (4) imply that 3. holds. Thus we may
assume:

(6) Z -1 = [Uafl N Qo/—b Ua’—l] < Uafl

Suppose that b = 2. Then by (6) and (2)b, Zg = Zy—1 S Us-1 N Zy < Z%_ | N Zy =
Zoa—1. But this contradicts the choice of &« — 1. Hence

(7) b> 4.
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By (6), there exists A € A(o/ — 1) and t € Uy—1 N Qu—1 with [t, Uy —1)] = Za/—1.
Suppose t normalizes one of the Z /(\l) and let X be the sum of the Z; G ), j # i. Then

Uy_1x=Uy_12N Zi) @® Uy 1A N X, t centralise Uy _1x N Z4 and 5o Zy—1 = [Ug—12,t] <
[X,t] < X, a contradiction.

(8) t acts fixed-point freely on {L(;) |1 <i<k}.

Thus by 2.2 and (2)a there exists u € A(X) with O*(Gy) < (Cg,)(Z),t). As t central-
izes Zq, (8) implies that Z, < Q). Moreover, U, < Qa42 < G and so [V3,U,] < U, N Vj.
Since b > 4, we conclude from (1)a that U,—; and so also t centralizes [V3,U,]. Since
Cg,(0?(G,)) =1 the choice of p implies [Vj,U,] = 1 and so

(9) Uu < Qﬁ N Qa < Ga—l-

Since d(p, ) =3 < b, (2) implies [(UE*),V’ = 1. Thus [t,U, N Qa-1] < Za—1(V') =1.
From Cy, (t) < Cg, (0*(G))) = 1 we get

(10) Uy N Qoy =1

Thus
[Ua—1/Cu, 1 (Up)| < |Ua-1] = |Uu| = |UpQa—1/Qa—1]
and 3. holds. O

Lemma 9.7 Suppose that [Zn, Zy) # 1 and Z,p is normal in Gg. Then b = 2, Eg cen-
tralizes Zog and G is of La-type.

Proof: By8.15 Qn £ Q3. As Q. centralizes Z,3 and Eg < <Qa ) we conclude that Eg
centralizes Z,g. Note that VN Z,5 # 1 and so by 9, Cg, (VN Z,3 < Myg. Thus k=1 and
G is of La-type. It remains to show that b = 2.

Suppose that b > 2. Let a —1 € A(a) with (Ga—14,V) = G, and note that R =
2} = Zj,_, is normalized by G and Go—1. Hence 9(d) implies that Vo—1 < Gy. As
Va—1 centralizes R we conclude that [Vo—1,Zy] < R and G, normalizes V,_1, again a
contradiction. O

Lemma 9.8 Suppose that [Zy,Zy)] =1, b > 1 and rg > 1. Then there exists a normal
subgroups Lo of G and normal subgroups L(()f, 1<i<k of L, such that

(a) Co < Lo and Cy < LY

(b) O2(La) = LY x ... x 1P

(¢) Go = LoS, S transitively permutes the Lg) s and L, is the largest subgroup of G,
(i) 5

normalizing all the Ly’ ’s.
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(d) Put Z) = [Za, LY. Then Zo =2V @ ... 0 2P,
(e) One of the following holds

1. LY ~ SLs2(q), q a power of 2 and 7 is a natural SLa(q)-module for L.
2. LY = 0y, |28 = 4 and sz, (02(Mg)) < 2.

3. Lg) > SLs(q), q a power of 2; Z((j) is direct sum of a natural SL3(q)-module for
o)

Lg) with its dual; some element of S induces a graph automorphism on ij and

cg =2

Proof: Suppose first that cg = 1. Then the lemma holds by 8.4 and 6.3, where the
Sym(q + 1) case is excluded as in 9.5.

So suppose that cg > 2. Then rgcg — 1 > 1 and so by 2.4a, 7, < 2. Thus we can apply
6.4 with the Sym(q + 1)-case excluded as usual. Note that in case (e3) we actually have
Tq = % As rg > 1, 2.4 implies cg = 2 and all parts of the lemma are proved. O

Put Zag = Cz,(La N S) and Z5 = (Z5).

Lemma 9.9 Suppose that [Zy, Zo—1] = 1, b > 1 and the conclusions of 9.8 hold for case
e3 hold. Then Q3Qa/Qa < Z(SN La/Qu), [Xp, Eg]l # 1 and X3 is an FF-module.

Proof: Suppose that Eg centralizes Z,3 and let D be the intersection of Z,g with
one of the irreducible L, submodule in Z,. Then D # 1, Ng,(D) £ M,g and EgB(S)
centralizes D, a contradiction to 9a.

Thus Ej does not centralize Z,g.

Recall that cg = 2 in case 9.8e3. Thus 8.9 applied to L = Ej, shows that [Z,, Q3,2] < Dg.
By 8.15 Q. Qpg. Hence Eg < <QaG[3> and so [Dg, Eg] = 1. In particular Z,3 £ Dg and
80 Zop £ [Za,Qp,2]. As S normalizes [Z,, @), 2] we conclude from the action of S on Z,
that [Za,Qs,2] < Zag. Since Qg is normal in S this implies that Q3 < L, and then that
Qs acts quadratically on each of the irreducible L, submodules in Z,. As S normalizes

(@3 and induces a graph automorphism on the L((ll) we get Q3Qa/Qa < Z(SN La/Qn) and
Zap < Xp. Hence [X3, Eg] # 1 and so by 7?7 X is an F'F-module.

Lemma 9.10 Suppose that [Za, Zo—1] = 1, b > 1 and the conclusions of 9.8 hold for case
el or e2 hold. Then one of the following is true:

1. k=1, [Zap, Eg) = 1 and Vj is an FF-module for Gg
2. k=1,b=3 and V3 is an F2-module.

3. [Zap, Egl # 1 and Xg is an FF-module.
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4. q=2,k>2 and [Zyp, Eg) # 1. Let Uypg be mazimal in Zyz with [Uag, Qp) < Zg and
put Ug = (Ufg) Then Ug is an FF-module for Gg.

Proof: By 9a, [Z,3, Eg] = 1 implies, k = 1.

Suppose that ¢ > 2 or k = 1. Then Q} < O2(Mp) < Qup < Lo and so Z,g < X5 Soif
in addition [Z,g, E5] # 1, then 7?7 implies that 3. holds. Hence we may assume from now
on that

(1) One of the following holds:
(Case 1) k=1 and [Z,3, Eg| = 1.
(Case 2) ¢ =2,k >2and [Z,s, Eg] # 1.

Put DE = Zo3 N Dg and note that in case Case 1, DE = Zop while in case Case 2 9a
implies Dg = Zg. In Case 1 let U,p = Z, and in Case 2 let U,g be maximal in Z,3 with

[Uap: Qp) < Dj. Put Ug = <Ufﬁ5> It follows easily from the definitions and 9.2¢ that:
(2) (a) [Uag, Esl #1
(b) [Us, @3] < [V, 02(Mg)] < D < Za
(¢) [Us; Qs N Qa+2] < Dj.
By 9d applied with D = DN D7, ; we get
(3) DynD;, ;=1
By (2)c, [UsN Qo Uy NQp) < DN Dy, =1andso

(4) [UsNQu,Ux NQpl =1

We may and do assume from now on that Ug is not an F'F-module and and will show
that 2. holds.

Suppose that Uy < Qg. Asb > 3, Uy acts quadratically on Z,. Let V be an irreducible
L, submodule in Z, with V' £ Q4. Assume first that U, normalizes V. Then

|V/CV(UO/) =q2= |Ua’/CUa/(V)|'

If ¢ =2, this clearly implies that U, is an FF-module. If ¢ > 2 we are in Case 2 and
so V < Ug and by (4), Us N Qu < Cy(Uy). Hence |VQu/Qu| > q. Again U, is an
F F-module, a contradiction.

Thus U, does not normalizes V' and quadratic action implies Uy /Cy_, (V)| < 2, again
a contradiction. Thus

(5) Uy £ Qp and the situation is symmetric in 5 and «'.
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Suppose that [Ug, Uy NQg] =1 = [Uy, Uz N Qy]. Then by 8.17 we get that Ug is an
FF-module. Thus

vuga
(6) DB = [UﬁaUO/ N Qﬁ} S Uy or Dy < [Ua’aUﬁ N Qa’] < Uﬁ
Hence we may assume [Ug, Uy N Q] # 1 and so
vuq
(7) DE =[Us, Uy NQs| < Uy.
Pick € A(B) and t € Uy N Qg with [U,,t] # 1. Then by (4), Z, £ Qo and we may
assume that u = a. Hence
vbq
(8) There exists t € Uy N Qg with [Uag, t] # 1. In particular, t € Qq
In particular, by 9.2c, O2(Mpg) £ Qa, as Oz(Mp) is normal in M,z we conclude (
compare also (8) in 9.6).
QMbQS
(9) (a) Incase 1, O2(Mp)Q, = S N L.
(b) In Case 2, t acts fixed point freely on {L(()f) |1 <i<k}.
In particular, ( also use 2.2 in Case 2) there exists o — 1 € A(«a) with
02G
(10) Ea < <02(Ma71) N LO&,t>-
By (4) and (8) we have |UsQu//Qu/| > |UapQuar/Qu| = Uap/Cu,;(t)| = q. We record
vbqa

(11) ‘UBQO//QO/| >q.

Define Y, = ﬂéeA(a) UsZ,.

Suppose now that [Uy—1,Va—o]=1. Then Uy—1 < Qu—2NQu—1. Put A = Us_1 N
(UﬁQa/). Then A < Uﬁ(UgUOHl N Qa/) < Uﬁ(Qa/,1 N Qa/). Thus by (2)

[A,t] < [Uﬁ,t][Qa/_l NQu,t] < DED;/.

Let X be maximal in A with [X,t] < Dj. As |D},| = ¢q we have |[4/X[ < ¢. Since
DE < X, t normalizes X. By (2), O2(M,—_1) also normalizes X Z,. As E, is transitive on
A(a) we conclude from (10) that XZ, < Y,. Put a = |Us—1/A|. Then |Uy_1Y,/Ys| <
|Ua—1/A||A/X| < aq. Hence

|UgYa/Ya| < agq.

Note that Uy_1 < Qu—2 N Qu—1 < Gy . Since Y, _1 < V,_o we conclude from

|UgY,/Ya| < qa and edge-transitivity that
|UO//CUQ/(UO¢—1U,3)| < |Ua’Yo/—1/Y ’—1| = |uﬁYa/Ya| < aq.
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On the otherhand by definition of a, an isomorphism theorem and (11)

|Ua—1UﬁQa//Qa" = ’Ua—lUﬂQa//UﬁQa/HUBQQ’/QO/| > aq.

By the last two equations, U, is an F'F-module, a contradiction. Hence

(12) [Ua—1,Var—2] #1

Suppose that Vi3 < Qa—1. Then by (5), Vo1 < Qar—2. Note that by (10), Cp-_ (t) =
1. Thus
17&[ a—1, Vo 2]<Do¢ lmDa 2<CD* 1():1

a contradiction to (12). Thus

(13) Vo2 £ Qa1

/

In particular, (o/ — 2,a — 1) has the same properties as (3,a’) and we conclude from

(5) that

(14) Ua—l g QO/—Q

Suppose that 1 # x < D, _, N Uy—1. As t centralizes x, v € X < Y, and so E,
normalizes xZ,.

Suppose first that [z,Qs] # 1. Since E, normalizes [z, Qq], 70 < < [z, Q] for some
i. Put L = OP(LY) and Q = [Qa,L]. Then [z,Qa, L] = Z() and [z, L, Qu] = 1. Thus
be the three subgroup lemma, [z, Q] = Z0 = [z, L]. Since [z,Q,Q] = 1 we colcude that
rQ = 29 = z¥ and so by the Frattini argument, L = Cp(z)Q. Since z < Dy _o, T
is centralised by E, _9 and the Thompson subgroup of G,/_14—2. By the proof of (ba),
teVyunNGy < V(,)QQG < Qp(Map—2NGy. As Cr(x) normalizes Qp(Mqp—2 N Go we get
[t,L] < Qu. In case 1 this is impossible since t € @), and in Case 2 this contradicts ?7b.

Suppose next that [x,Q,] = 1, but x ¢ Z,. Then its is easy to see that ¢ > 2 and
CE,(2)Qa/Qq is ismorphic to Da.q+1 and again Cg, (x) normalizes no non-trivial 2-subgroup
in G,/Q, and we get the same contradiction as above.

Hence z € Z, and so D}, , < Z,. Note that ¢ centralizes D, _,. In Case 2 we haven z €
Za, [2,09(Mo—1NLy)] < Zo—1 and sz (O2(Ma—1NLy) < 21mphes [€,02(Mq—1NLy)] = 1.
Hence by (10), [z, E,] = 1 a contradiction to Cg, (E,) = 1.

In case Case 1 we conclude that D?, , = D:};. If b > 3, 9bb implies that V,_1 < Vﬁ(g) <
Q. —2, a contradiction. We have proved

(15) If DY, _, NUqy—1 # 1, then b = 3 and Case 1 holds.
Assume that b > 3. Then t centralizes [Uy 2N Qa—1,Ua-1] and as by (10) Cp= l( ) =1

we get [Uy —2NQa-1Uq—1] = 1. Thus by (6) and ?? that D*, , = [Us—1 NQu—2,Usr—1] <
Uqa—1 a contradiction to (15). Thus
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123
(16) b= 3.

Suppose that k& > 1. By (6) applied to (a — 1,3) in place of (5,a) we get Z,—1 =
D}, <Ugor Zg =Dy < Uy—1. In the first case [Z,—1,02(Mpg) < Z3 and as above so
[Za—1,02(Mg N Ly) = 1. But this implies Zo_1 < Z,g and Zaa—1 = Zap a contradiction
to (10). The second case yields the same contradicion.

Thus £ =1 and so Vg = Ug. By (4) and ??, Vg is F'2 and so 2. holds. O

We remark that an example for case 2 of the previous theorem occurs in 2Fy(q). In that
example Vj is exactly F'2 ( that is not F™*2)

10 Connected parabolics not normalizing 7

UIl
Hypothesis 10.1 (a) Hypothesis 8.1 holds. HUII
(b) Cq, (Ya) is p-closed.
(c) Gg is p-minimal.
(d) Y, is neither an F'F nor an dual F'F-modul.
Remark: ”b” in this section is defined with respect to Y, not Z,
dmab
Definition 10.2 Mg is the unique maximal subgroup of Gg containing S.
zc
Lemma 10.3 b is odd, Z < Gg and [Xg, Eg] = 1.
Proof: By 8.17 b is odd and as p-minimal groups have no F'1*-module, Z IGg. Since
Yo isnot FF, J(S) £ Qa. If [X3, Eg] # 1, we conclude that X3 is F'F'. As G is p-minimal
this gives the contradiction, Z 4 G. O
qbniqa
Lemma 10.4 Qj £ Qa and Qo £ Qp-
Proof: Suppose that Q3 < Qa. Then [V5,Qj] = 1 and so by Thompson’s P x Q-
Lemma, [X3N Vg, Lg] # 1, a contradiction to 10.3. The second statement holds since
Za S Qa’—2 N Qa’—l S QZ’_chx"D
sb
Lemma 10.5 (a) ry,(Gg) < 1.
(b) cg > 2.
(¢) qa < 2.

Proof: (a) holds since G is p-minimal. Since Q, £ Q3 and Qf £ Qa, Qa N Qp is not
normal in Gz. Thus by 8.4b, (b) holds. Hence by 8.4a also c. is true. O
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Lemma 10.6 Suppose that b > 1.
(a) 8.21.1 or 8.21.2 holds.

(b) For each € in 8.211. or 2., L has at least two non trivial chief-factors on V¢.
(¢) In case 77 qo < H#m.

(a) Suppose that 8.21.3 holds. Then by 8.17 one of Z,+ and Z,- is FF. But then Z, is
FF, a contradiction.

(b) Suppose L has at most one non-central chief factor on V¢. Since L and G- are p-
minimal, 2. implies L¢ = OP(L¢)(Ggeye N L) and Gge = (Ggepe, L), Thus we can apply 8.5
to (u€, B¢ in place of (a, 3). Since by assumption « is not a dual FF- module we conclude
that Vg < Z,X3. But then [V/g,Qa] < Xz and so [VB,EB] < Xz and [VB,EQ] =1, a
contradiction.

(c) Suppose that ¢, > H'T\/ﬁ. Put At = utE" and A~ = {u}. Abusing notation define
VT, V=,BT and B~ as in that lemma. Note that VT is the same VT as defined before,
but V™ now is Z,. Also Bt = VT and B~ = Z, N Oy(L"). In particular, V~ # B~
and VT = BT. We wish to apply 8.20e with r = 2 and s = ¢,. By ?? and since LV is
p-minimial, |Z,/B~|* < |V /Cy+(Z,)|. Also [VT/BT|? =1<(Z,/Cz,(V")| and so the
asumptions of 8.20e are indeed fullfiled for this choice of r and s. Also e > 0 by 2.1a. Thus
8.20e gives the contradiction V7 # BT,

Proposition 10.7 There exists 1 # x € Z, and A € T' with d(a, \) = b and Z, £
Op(Ca,) ().

Proof: Suppose the lemma is false. Then by 10.3 b > 1 and we can apply 8.21. In case
8.21.1 we assume without loss that o € p™" with Z, & Op(L7). Put Q = O,(L™).

In case 8.21.2 we assume € = — and a = p. Put Q = G, and V* = Z,,.

In each case note that by 8.21 the assumptions of 2.8 with H =L,V =V", A= Z,
and Z = Z,,- are fulfilled.

(1) V—n Q < Ga and Cvf (Za) = Cvf (VJr) < V—n Q

In case 8.21.2 there is nothing to prove. So suppose 8.21.1 holds. Then O,(LT) < G,
and so the first statement holds. The second follows from 2.8a.

(2) [ZaNOp(L7),V NQ=1

Suppose 1 # z € [Z,NOK(L™), V- NQ)]. Then z € Z, . Thus by 2.8d, Z, £ O,(Cr(z))
and so also Z, £ O,(Cg_, (), a contradiction.

Since L™ has at least two non-central chief-factors on V'~ and as Z, is not F'F' we now
compute
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V=/VTnQIIVTNQ/Cy- (V)| = [V /Cy- (V)| = V7 /Cy-(Za)| = IZoa/ZoﬂOp(L_)l(2 )2 |Za/Cz, (V- NQ)[
1

Hence
V=/VT NI = VT NQ/Cy- (V). (2)
In case of 8.21.2 we conclude V™~ = Vi,—(Z,), a contradiction. Thus
znl —3
(3) 8.21.1 holds.
In particular, the sitution is symmetric in + and — and @ = O,(L™). Since by 8.21.1,
L™ has two non-central chief factor on VT,
[V Cor (V) 2 V7 Q/QP = V= /V NQIVT/V™ nQ|
and so by (2)
VE/Cy (V) Z VT /VTNQIVT NQ/Cy- (V)| =V /Cy- (V)|
But the same inequality holds with the roles of + and — are interchanged. Hence equality
holds here and also in (1). But has Z, is not F'F' this is only posibble if V™ N Q centralizes
Z,. But then all the numbers compared in (1) are equal to 1 and so V~ = Cy—(V71), a
contradiction which completes the proof of ?77.
frol

Theorem 10.8 Suppose G is of generic p-type, S € Sylp(G) and V is a maximal member
of {Yr, | L € L(S). Then either V is an FF-or dual FF-module for S or V £ Op(Ca(Z)).

Proof: Let M = Ng(V) and L = Ng(Cg(V)). Then M is the unique maximal p-local
of G containing L. Let G, = L and H a p-minimal member of £(S) not contained in
M. Suppose that V is neither F'F' nor dual F'F for S. Then the assumptions of this
section are fulfilled. Hence by 77 there exists a p-local subgroup H with O,(L) < H and
V £ Op(H). Choose such an H with |H N M|, maximal and then |H|-minimal. Let R be a
Sylow p-subgroup of H N M with Op(L) < R. Since Op(L) is a Sylow psubgroup of Cg(V),
Op(L) = Cr(V) <R and so R < L. Without loss R < S.

Since Op(L) < R and V is not FF, J(R) < Op(L). Hence L < Ng(J(R)) and so
Ng(J(R)) < M. Thus Ng(J(R)) < M and in particular, Ny (R) < M. Thus R is a Sylow
p-subgroup of H.

Let W = Zp and suppose that [W,V] # 1. Since W < O,(H) < R < S, |V/Cy (W) >
|W/Cw (V). Thus V is Fx1 on W. By the minimality of H, V' < O,(P) for all P € L(H, S)
with P # H and contradiction to 77

Hence V centralizes W By minimiality of H, H = (VH#)R and so Q1(Z(R)) = W <
Z(H). Thus V£ Op(Ng(W). By maximaliy if |[H N M|, R is a Sylow p-subgroup of
M N Ng(W). Thus Ng(R) < Ng(W) < R, R= S and W = Z. Thus the theorem is proved
U
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Lemma 10.9 There exists 1

neqA < SCy/Cy with
(a) [Za, A, Al =1
(b) 1Za/Cz.(A)] < |47
(¢) (Cz.(a) | a€ AF) # Z,.
(d) If 8.212 holds,then | Zo/Cz, (A)| < |A3].

Remark: We proof contains more information than stated in the lemma Proof:
Let L€, u€ and p as in 8.21.

In case of 8.211. may assume without loss that |V /Cy+ (V™) < |V~ /Cy-(VT)].Pick
pe ptt" with Z, £ Op(L™) and put B~ =V~ N O,(L7)

In case of 8.212 we assume without loss e = —. Put V' = Z, and BT = Z, N O,(L7).

In general pick t € Z, \ Op(L™). By 8.21 the assumptions for 2.8 are fulfilled with
H=L",A=V*V =V~ and Z = Z,-. We conclude that Cy-(t) = Cy- (V™). Thus

(Cz,(a) |a€ B~ \Cu(< Z,NOp(L7).

Suppose now that 8.211. holds and define s by |B~/Cp-(Z,)|° = (Z,/Cz,(B~)|. Note
that that Cz-(Z,) < Cp-(t) < Cp- (V™). Let ¢ be the number of non-central chief-factors
for LT on V. By 2.8 |V~ /B7|¢ < |V, /Cy+(V™). Then by 2.4b, (with A = V~,V =
VT, 7’s=5s"t>1,r>c> 2) we get that s > 2. Thus the lemma holds in this case with
A=DB"C,/Cyu( and p in place of ).

Suppose next that 8.212 holds. As L™ has at least two non-trivial chief-factors on V',
we conclude from 77 that

|24/ BT < |V7/Cy(Zy).
On the otherhand has Z, is not F'F, 2.4a implies

BT /Cp (V) <IVT /Wy (BT)| < (V7 /Cy-(Zy).

Combining the last two inequalites we get |Z,/Cz, (V)| < [V~ /Cy - (Zu)|% Hence the
lamma holds also in this case with A =V~C,,/C,,. O
zair
Lemma 10.10 Fither Z, is irreducible as G, module or some non-trivial chief-factor for
Gy on Z, is FF.

Proof: Since [Z,Eg| =1, Cyz,(E,). Since Z, is C'S-generated, we conclude Z, = [Z,, E,).
So if G, a unique non-central chief-factor, Z,, is irreducible. If Z, has more than one non-
central chief-factor, then as Z, is F'2 and G, is p-connected, at least one chief-factor is F'F.
|
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Proposition 10.11 Let U be a non-trivial chief-factor for E, on Z,. Let E = E,/CE, (U).
Then one of the following holds:

1. E is solvable and one of the following holds:

1.1. p=2, E=C; and |U| = 22.
1.2. p=3, E~ Qs and |U| = 3%
1.3. p=2, E=C; and |U| = 2*.
1.4. p=2, E 2 Ext(3'*2) and |U| = 25.
L5. p=3, E = Ext(2!™) and |U| = 3.

2. E is perfect but Sol(E) £ Z(E) and one of the folloing holds.

2.1. p=2, E=(C31 Alt(n))', n > 5 and |U| = 2%".
2.2. p=3, E = Ext(2). Alt(5) and |U| = 3*.

3. E is quasisimple and one of the following holds.

3.1. E is group of Lie type in charcateristic p.
3.2. p=2 and E/Z(FE) is an alternating group.
3.3. p=2, E23:Uy(3) and |U| = 2'2.

4. E = E1FEs for some components Fv, Es of E, E1 and Es are isomorphic groups of Lie
type in charactaristic p, U = Uy @ Uy for some U; module E; such that (E1,U;) and
(Eq,Us) isomorphic. Moreover, if n is the dimension of U; over Endg, (U;) then U; is
a quadratic F%—module for E;.

Proof: Let W be a non-trivial chief-factor for G, on Z,. By 10.9 Z, is quadratic F2
and since G, is p-connected, W is quadratic F». Let Let H = G,/Cq, (W) and L =
(PQ3(Go/Cq,(V),V). As p-connected OP(H) < L. Let V be a Wedderburn component
for H on W. Since Ng (V) is irreducible on V' and Ng(V)/L is a p-group, V is irreducible
for L. Hence we can apply 6.11 to L = L/Cp (V). In particular we see that ( except in case
6.114 with p = 2) OP(L) is irreducible on V and clearly any chiefactor for F, on Z, arises
in such a way. Moreover, since GG, is p-connected, Case 8 of 6.11 does not arise and in case
9, CL(A) is a 3-group. Thus it remains to show that in cases 10, 11 the componets of L are
groups of Lie type or E(L)/Z(E(L)) is an alternating group. But this is clear in case 11
and so we may assume that E(L) is quasi simple and neither an alternating group, a group
of Lietype in characteristic p nor 3-Uy(3)

Then G, has no FF-module and so W is the unique non-trivial composition factor
for G, on Z, and as Z < G we get that Z, is irreducible. We conclude that E,C,/C,
the central product of its components L(i), 1 <1< n and Z, the the direct sum of the
7% = [Za, L'9)]. By 6.15b L) is isomorphic to 3'.Matas
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Let A be as in 10.9 and put X = (Cz_(a) | a € A#*) # Z,. Pick V = Z((Xz) so that
V £ X and pick t € V'\ X. Then C4(t) =1 and so A acts faithfully, quadratic and F2 on
V. Thus by 6.15b, A > 23 and 6.152.3 or 2.4 hold. Let a € A#. Then Cy (a) # Cy(A) and
so Cy(A) < XNV < V. Since X NV is invariant under N¢_ (A) we conclude that case 2.4
with |A| = 23 holds. Note that V is actually a 6-dimensional space GF(4). Each a € A%
Cy(a)/Cy(a) is 1-dimensional over GF'(4) and differnt a’s give different 1-spaces. Hence
X/Cy(A) contains 7 different GF(4)-1-spaces and so X =V, a contradiction. O

11  The case b =1 with G, connected and G5 minimal

Hypothesis 11.1  (a) Hypothesis 8.1 holds, except for the S < Go N Gg we only assume
Qo< S and S e Sylp(Gg).

(b) G, is p-connected.
(c) b=1, that is Zo £ Qp.

Definition 11.2 (a) V is a normal subgroup of Gz minimal with respect to [V, Eg| # 1.
(b) Mag is the unique maximal subgroup of Gg containing S.

Lemma 11.3 Suppose that Gg is p-minimal. Then either [Qqa, Eo] < Zo or Qu/Zy has a
unique non-central chief-factor and that chief-factor is FF.

Proof: Let D = [V,Qp]. Then [D,Eg] = 1. Also note that V' = [V, Eg] and since
Ej < (28°) we conclude that V = ([V, Z,]%%). Thus D = ([V, Za, Q4]%). Since [V, Za, Q]
is normalized by SE3 = G we conclude that D = [V, Z,,Qg] < Z,. Let V = V/D. Then
[V, Zo, Qo) < [Za,Qa] = 1. So let R be maximal in Q, with [V, R] < [V, Z,]. Then by
6.18,

|Qa/R| < |V/C3r(Za)|l < |V/Cy(Za) = [VQa/Qual

Also [R,V] <[V, Za]D < Z,. Let Qo = Qo/Zs , we conclude
|Qoz/CQa(V)’ < |VQa/Qa|'

Futhermore, [V, Z,] # 1 and so V £ Q,. It remains to show that G, has at most one
non-central chief-factor on Q. So suppose [Qa, E,] # 1 and let P be a normal subgroup
of G4 minimal with respect to [P, E,] € Z,. Then [P,V] £ Z,] and so P £ R. By 6.18,
we conclude [V, P] = [V, Q] and so [Qa, V] < [P, V4] < P. Hence [Qq, Eo] < P and the
lemma is proved. O

Lemma 11.4 Z, is a cubic F2-module for G,.
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Proof: Remark: 1. There should be a much nicer proof which does not go

through the list of finite simple groups
2. The structure of L has determined in proof should be recorded as an inde-

pendent lemma
Assume that Z, is not F'F and let L be minimal such that

(i) Zo < L.

)
(i) Zo £ Op(L).

(iii) Go N L contains a Sylow p-subgroup T of L.
(iv) CL(Op(L)) < Op(L).

By minimality of L, L = (ZL). Let R be a normal subgroup of L with L # RZ,. Then
again by minimality Z, < O,(RZp). Thus [R, Z,] < Op(R) < Op(L) and [R, L] < O,(L).
In particular L is p-connected. Let V' be a non-central chief-factor for L on O,(L). Since
Op(L) €T < Ga, Zo acts quadratically on O,(L) and so also on W. Let L = L/CL(W).
If | Z,| = 2, then L/Oy(L) is a dihedral group. If [Z,| > 3, we can apply 6.17 to L and W.
So in any case we conclude that one of the following holds ( where we used the minimalty
of L to rule out some of the cases)

1. p=2and L= Dih(2r), r and odd prime.
2. F*(L) is quasisimple.
3. p=3and L = SLy(3).

Suppose first that Z, lies in a unique maximal subgroup M of L. Put
Put A=Z,, B=ANO,(L) and Q = (BL. Let I € L\ M. Then L = (A, A!) and so as
[Q,A] < B, Q = BB'. Moreover, BN B! = Cpi(L) = Cgi(A). And so

B'/Cp(A) = B'/BNB' =|Q/B| = 1Q/Cq(A)| = |AQ/Q| = |A/B|

where the last inequality holds has L is F' * 1-modules.
Now |B/Cp(BY)| < |B/Cp(AY)| = |B/B N B! = |BY/Cpi(A).
Hence B! is F2 on A. Since [A, B'] < Q and B' is quadratic on @, B' is cubic on A.
Thus the lemma holds in this case.
So we may assume form now on that A lies in more one one maximal subgroup of L.
In particular, K = F *(f)) is quasi simple. Let T' < M < L. Then by minimality of L,
A < Op(M) <T. Put Qp = (AM). If Qs is not abelian, then [A4, A™] # 1 for some
m € M. But then A is FF on A or A'is FF on A4, a contradiction. Hence Q) is abelain
for all such M and so acts quadratically on Q. Let 1 # a € AnZ (T ) We conclude
zaf2 —1
(1) A lies in an abelian normal subgroup of C;(a) which acts quadratically on Q. d
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Suppose next K is not a group of Lie type in characteristic p. Then p = 2 or 3. If
p =3, then |A] = 3 and A lies subgroup of L is morphic to SLx(3), a contradiction to the
minimality of L. So p = 2. Since |A| > 2, 6.15 and (1) apply L = 3-Matgy, Aut(Mat(22))
or Matoy. But in each of these cases there exists a overgroup of M which does not have a
non trivial quadratic normal subgroup.

We conclude

(2) L is a group of Lie type in characteristic p of rank at least two.

Suppose that A is contained in a root group X if A. Then X < T and X the Sylow
subgroup of some (S)La(q) in L. But this contradcits the minimal choice of L. Hence A is
not contained in a root group. By (1) and as A is contained in Op(M) for all T < M < L
we conclude that p = 2, L = Spa,(q) or Fy(q) and A < Z(T). The minimality of L
implies L = Sp4(q). But Sps(¢g) has no module on which the O,’s of both parabolic acts
quadratically. O

12 Elementary results on p-connected groups

Definition 12.1 N (S) is the set of all p-connected L € L(S) wh
Remark: change this to A/* and use N for PU¢E

Lemma 12.2 Let L € £(S). Put E = O?(L). Then L is in N'(S) if and only if one of the
following holds:

1. L is solvable, E/O2(E) has odd order and for all maximal S invariant normal sub-
groups N of E, Cs(E/N) = Oz(L).

1. E is perfect, and E/O o (E) is the direct product of simple groups which are transi-
tively permuted by S.

Proof: It is trivial to verify that (1) and also (2) imply L € N(S). So assume now
that L € N(S) and let K be the unique maximal normal subgroup of E with K/Oy(K) of
odd order. Note that Oz(F) < K and by the odd order theorem, K is solvable .

Suppose first that K = E. Let and let NV be a maximal S invariant normal subgroup
of E. Then NCs(E/N) is normalized by ES = L. Since E /NCs(E/N) we conclude that
Cg(N) < O2(L). Thus (1) holds in this case.

Suppose next that £ # K and let E*/K be a minimal L invariant subgroup of E/K.
Then E*/K does not have odd order, SN E* £ K, SN E* £ O3(L) and so E < E* and
E = E*. As E = O*(E), E/K is not a 2-group and so E/K is not solvable. Thus E/K
is the direct product of simple groups transitively permuted by S. Since E' NS £ Oy(L),
E=F.

The following is an extended version of a lemma from [St2] which describes the structure
of rank 2 groups.
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Lemma 12.3 Let Py, P> € N(S). Put L = (P, P,). Let Ly be a normal subgroup of L
mazimal with respect to O*(P;) £ Lo fori=1 and i = 2. Let L1/Lo be a minimal normal
subgroup of L/Ly. Then Remark: change L, Ly notation

(a) SNN = O02(L) and Ly/Oz(L) has odd order.

(b) Let O*(P;) < Ly for at least one i € {1,2}.

(C) If OQ(PJ) £ L1, then P] < NL(L1 N S) and 02(02(]31)) < OQ(,P])
)

(d) Suppose that L1/Ly = E1 X Ey X ... X E, is the direct product of alternating groups
or simple groups of Lie type in characteristic 2. Then P; acts transitively on the E}’s
and one of the following holds:

(d.1) O*(Pj) £ Ly and O*(P;)Lo/Ly is the product of some of the E}’s.

(d.2) O*(P;) £ L1, Ey = Dy(q) and some element on Pj induces a graph automor-
phism of order 3 on E

(d.3) O*(P;) < L1, j=1,2, L =1,8 = (E}Y)S and Ey = (E1 N Py, E1 N Py).( modulo
Ly)

Proof: As Ox(L)Lo N P; = O2(L)(Lo N P;) < O2(P;) the maximality ofLy implies
O2(L) < Lg. Let N be a normal subgroup of L and k € {1,2}.
We next prove that

(1) Suppose that SN N < O2(Pg). Then Py normalizes SN N.
Indeed this is clear as S NN = O2(P;) N N in this case.
(2) If O*(P) £ N, then P, normalizes S N N
As O%*(P,) £ N we have SN N < Oy(Py) and so (2) follows from (1).

By definition of N'(S) and O?(P;) £ Lo we have SN Ly < O2(P;). By (1) applied to
N = Ly and k = 1,2 we conclude that Ly N S is normal in L = (P;, P») and so (a) holds.
(b) follws from the maximal choice of Ly. The first part of (c) follows from (2) while the
second follows from the first.

To prove (d) we assume without loss that Ly = 1. Note that P; N L; is a parabolic
subgroup of Ly and P; = (P; N L1)S. Thus either P; normalizes S N L1 or we may choose
notation so that P, = ((P, N E1) x ...(P;N Ey))S, where P, N E; is a parabolic of E; with
0% (P,NE)) = PN E.

Suppose now that OQ(P]-) £ Li. Pick Ej so that SN Np(Ey) is a Sylow 2-subgroup of
Np(E). Then as Ly NS is not normal in L, (¢) implies that P; does not normalise LN S. If
E; < P;, (d.1) holds. So we may assume that P; N Ej is a proper parabolic subgroup of Fj.
Suppose that (d.2) does not hold and that E; is a group of Lie type in characteristic two.
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Then no element of odd order in Np,(£) induces a non-trivial graph automorphism on FEy
and so O?(Ng(P;)) normalizes P, N S. Hence Ng(Pj) = O?(Ng(P;))(Ns(E1)) normalizes
P,NE; and so L # ((P; N Ey)i P; = (P, ), a contradiction. If Fy is an alternating of
degree at least six, then N 4,(g,) (SN E1) is a 2-group and we obtain a similar contradiction.

So assume now that O?(P;) < Ly for j = 1,2. Then it is easy to verify that (d.3) holds.

13 Establishing Geometries
Throughout this section we assume

(i) Uy, Uy € N(S)
Remark: redefine N as PUE ?
(ii) all non-abelian composition factors of elements of £(S) are alternating groups, rank

one group of Lie type over GF(q), G2(q)’s or classical groups over GF(q), where ¢ is
a power of two.

(11) Uo g U1 and U1 ﬁ Uo.

Lemma 13.1 Let H < G with F*(H) = O2(H) and |S/S N H| < 2. Then all non-abelian
composition factors of elements of L(S) are alternating groups, rank one group of Lie type
over GF(q), Ga(q)’s or classical groups over GF(q), where q is a power of two.

Proof: By 2.10 we may assume that H < L* € £(S). Hence the claim follows from 2.12.

Lemmagr 13.2 Put L = (Uy,Us) and suppose that L € L(S). Then the Ly and Ly in
12.8 and {i,5} = {0,1} can be chosen so that one of the following holds

1. [02(U0),02(U1) <Q.
2. L is not solvable and L € N(S).
3. O*(L)O(L)/O2(L) is a p-group for some prime odd p.

4. L; is a {2,p}-group for some prime p, O*(P;) < Ly and Li/Lq is an elementary
abelian p-group. Moreover, there exists an odd prime q # p so that the image of
O*(P;) in Aut(L1/Lo) has one of the following shapes: cyclic q group with q | p* —1;
homocyclic q group of rank 2 with q | p — 1; Ext(3'%2) with p # 3; Ext_(2'14).5;

Ext_(2Y4). Alt(5); Alt(4), 2-Alt(n),n = 4,5; 2- Alt(4) x 2- Alt(4); 2- Alt(5) x 2- Alt(5),

p=0,1,4(5); 2-Alt(6); 2" Alt(7) (with p="7); Alt(5); L3(2) or 3-Alt(6).

5. U; induces Sym(3) on the set of components of L1/Lg, U; is the product of one or
two 2-components of L1 and U;/O2(U;) = Dihg.g1.

6. O%(U;) acts trivially on the set of components of L1/ Lo, U;/O2(F;) is a dihedral group,
Ui normalizes O*(U;), and O*(U;) = E2(L1). Moreover, O2(U;) = Os(L).
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Remark: The case that O?(U;) < L; for i = 0 and 1 and L;/Lg is a direct
product of perfect simple groups still needs some attention: one needs to show
that L;/Lo is ”central” ( and this should be possible) and also things L/O3(L) =
Cs x Alt(5).2 arise here, this is covered by case 6. But O%*(U;) induces inner
automorphism on OQ(Uj). So this probably should be listed as a seperate case,
but it is also kind of the same as 1.

Proof: Remark: numbering and notation needs to be updated

We use the results and notation of 12.3. As my (L) < 3, case d.2 in 12.3 is not possible.
Put D = CL(Ll/LO)

Suppose first that L;/Lg is not solvable. Then O*(U) < Ly. If D # Lo we get DN Ly =
Lo and by maximality Lo, O*(P) < D. Thus O?(U), 0?(P) < Lo. In this case we replace
Ly by O*(P)Lo. So we may assume that D = Lg. As ma(L) < 3,7 <3

Assume in addition that O?(P) < Lj. As P is solvable, d.1 is impossible. Thus d.3
holds. Moreover, L = L1S and so O%(L) < L; thus 4. holds in this case.

So assume that O%(P) £ L.

If O?(P) does not act trivially on the set of components of Li/Lg we conclude that
r =3 and P induces Sym(3) on the set of components of Li/Lg. As e(G) < 3 and L;/Lg
has three components, [L$°, Ly] < O2(L)]. Thus 5. holds.

So suppose that O%(P) acts trivially on the set of components of L;/Lg. The S acts
transitively thereon and r < 2. If 7 = 2, then O?(U) = F3(L1). Since e(G) < 3 we have E;
is La(q), Sz(q), Ls(4), L3(2), Alt(6), Alt(7). But in the last three cases Out(E; is a 2-group,
a contradiction. In the first two cases, Out(E}) is cyclic and so PL;/L; is a dihedral group.
If By & L3(4), then O*(U)O2(L)/O2(L) = SL3(4)+SL3(4). Since the action of Aut(L1/Lo)
on Out(Li/Ly) on the 3-part of the Schur multiplier respectively the outer automorphisms
of L1/Lo are isomorphic we conclude that S does not act irreducibly on O3(Out(L1/Ly)
and so O?(P)L1/Ly = C3 and so again P/O5(L) is a dihedral group. Thus 6. holds

If r = 1 we conclude that PL;/L; is isomorphic to a subgroup of Out(E;) and so
Out(E7) is not abelian. Hence E) = Us(q),Us(q), L3(q) and P/O2(P) is a dihedral group
and 6. holds.

Assume now that L is solvable.

Suppose that Ly /Lo is a minimal normal subgroup of L/L different from Ly /Lo. Then
we may choose notation so that O?(P) < L; and O%(U) < Lo. Then [O%(P),0?(U)] < Lo,
L1 = O*(P)Lo and Ly = O?(U)Ly.

Suppose that O?(U) < Lj. Then by assumption L;/Lo is an elementary abelian 3-
group.

TO BE CONTINUED

Corollary 13.3 Assume that
(i) Uo € P(S)
(ii) If Uy € P(S) and Uy is solvable then Uy is a {2,3}-group.

(i) LY vy, h) € £(5).
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Then one of the following holds
TO BE CONTINUED
Lemmagr 13.4 Suppose that

(i) E€&(S)\P(S).
(ii) O2((U1,E)) = 1.

There exists a mazimal element Uy € N(E,S) so that one of the cases 3-6 in 13.2
holds.

)
)

(i) For all U* € N(E,S) with U* # E, (Uy,U*) € L(S)
)

(iv

Then one of the following holds for L(1) = (Up, Uy).

1. U; is solvable.

2. Head(Uy) = La(q)", r < 2,q > 4; Up/O2(Up) = Dy.gr, Head(L1(1) = La(q)® and
O%*(Up) transitively permutes the three 2-components of L(1)

3. O*(U1)/05(Uy) = Alt(5), Head(E) =2 Uy(2) and O*(Up) < Oa,(L(1)), p a prime with
p > 3. Moreover, if TO BE CONTINUED

4. Put Ry = O?(Uy)O2(Uy). Then

(a) Uo normalizes Ry and no non-trivial characteristic subgroup of Ry is normal in
E.

(b) One of the following holds
1. Head(FE) = U4(2), Up/O2(Up) = Dy.gr and Head(Uy) = Alt(5).
2. There exists a maximal element Uy of N(E,S) which fulfils 3. with Uy in
place of Uy .

Remark: Case 4bl is impossible by a trivial pushing up argument ( or by
quoting pushing up)

Proof: Let N be the set of proper maximal elements U* € N(E,S). We assume
without loss that U; is not solvable.

By 8.2 there exists Us in N so that (Uy,Us) = E. Under all these Uy’s with pick one
which ( possibly trivial) 2-component K with K/Oy(K)| maximal.

In particular O?(E) = (O?(Uy), 0%(Uy)). For i = 1,2 let L(t) = (Uo,U;. We will apply
13.2 to L(1) and L(2). We write Case t(i) if Case t in 13.2 holds for L(1). For i = 0,1,2
put QF = [O2(U;), 0%(U;)]. The next two statement follow immediately from 13.2 applied
to L(1).
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0201 -1
(1) Up is solvable and O%(Uy)/O2(0*(Uy)) 2 Alt(n) for 8 <n < 11.

0O2L1 -2
(2) One of the following holds:
e Case 4(1) with (i,5) = (O, 1) and Head(Uy) = Alt(5), Alt(6), 3- Alt(6), Alt(7) or L3(2)
e Case 5(1) with (z,7) = (O, 1) and Head(Uy) = La(k)" or L3(2)", with r < 2.
e Case 6(1) with (i,5) = (O, 1)
By 8.2, the second statement in (1) and as U; is not solvable we can choose Uz so that
U1 NU, is a maximal parabolic of U;.
Remark: this needs to be proved very carefully for the the symmetric
groups
Next we prove
O2L1 -3
(3) In Case 1(2), 5(1) holds.
As we are in case 1(2), [0%(Up), O%(Us)] is a 2-group. Hence also [0?(Up), Uy N O?(Uy)]
is a 2-group. On the other hand in case 4(1), Uy N O%(Us) acts fixed point freely on
L1(1)/Lo(1), a contradiction. In case 6(1) O%(Up) normalizes O%(U;) and O?(Uy), again a
contradiction. Thus case 5(1) holds.
O2L1 -4
(4) In Case 4(1), Case 4(2) holds.
By (3) we may assume that Case 2(2),3(2), 5(2) or 6(2) holds. As Pp is solvable, we get
in case 2(2), 3(2) and 5(2) that Py is a 2, 3-group a contradiction. Hence Case 6(2) holds,
Head(Up) is cyclic and O?(Fy) induces field or diagonal automorphism of odd order larger
than 3 on O?(Us)/02(0O?(Us). But this contradicts the structure of U; and E.
0O2L1 -5
(5) If Case 4(1) and Case 4(2) holds, 3. holds
Considering the action of Q4 on L1(1)/Lo(1) we see that [0?(Up), Q3] = O*(Usy) Re-
mark: more details please . Hence O?(Us) £ L1(2) and so O%*(Up) < L1(2). Moreover,
Q% £ Oo(L(2). Hence either U, is solvable or acts as Ext2174. A5 on L1(2)/Lo(2). In the
latter we get L1(2) < Py < L(2) and then Li(1) = Ls(1), a contradiction. Thus Us is
solvable and so Us/O3(Usz) = Sym(3) or Sym(3) 1 Cs.
In the latter case, [L1(2)/Lo(2), Q5 # 1 implies that S acts irreducible on [L1(2)/Lo(2)].
But then L;(2) < Py < L;i(1), a contradcition.
Thus Uz /02(Usz) = Sym(3) and as U; is not solvable we conclude that Head(E) = Uy(2).
Hence 3. holds.
0O2L1 -6

(6) In case 5(1), 2.holds.
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We may assume that Head(Uy) = L3(2)", r = 1,2. If r = 1 and U; induces no graph
automorphism on Head(U;), then Head(E) = L4(2), Spe(2), Qg (2) or (3")Al(7). If r =1
and U; induces a graph automorphism on Head(U;), then Head(E) = L5(2). If r = 2 then
now element of U; induces a graph automorphism on Head(U;) and Head(E) = Lg(2), L7(2)
or 3 (Alt(7) x Alt(7). Let K be the normaliser in U; of some 2-component of U; and
P e P(K,SNT). Then |S/SNP| <2 Let Ho = Np1y(O*(P), Hi = Ng(O?*(P)) and
H = (Hy, Hy. Then Head(Hp/O?(P)) = L3(2) x L3(2). Moreover we can and do choose P
so that Hy £ L(1) and so H # Hy. As m3(H) < 3 and O?(P)O2(H)/O2(H) is a normal
subgroup of order three in H. By 4.10 we conclude that H>/Oq o/ (H*) = L3(2) x L3(2)
or L3(2) x Alt(7). In the first case each minimal parabolics of H is either contained in Hy
or is solvable and not a {2, 3}-group, a contradition to H; Hp. In the second case H has
a 2-component R with Head(R) = 3- Alt(7), O23(R) < P and Head(RN Hy) = C3 x L3(2).
It follows that P N K induces a group of automorphisms on 3 Alt(7)(= Head(R)) which
inverts the central three but centralizes an L3(2) subgroup, a contradiction.

(7) In case 6(1),4. holds.

By case 6(1) O2(Uy) = O2(L(1)) and Uy normalizes O%(U;). Thus the first statement
in 4. holds. As U; induces diagonal or field automorphism of odd order on Head(U;), E is
not a group of Lie type in over the field of 2-elements, except maybe Uy(2).

Suppose first that Uy is solvable. Then Head(E) = Us(2), Head(U;) = Alt(5) and so
4b1 holds.

Suppose next that Us is not solvable.In case 1(2) or 6(2), Pop normalizes O?(Uz), a
contradiction as Py already normalizes O?(U;). Suppose Case 2(2) holds. As Up is solvable,
we conclude that Head(L1(2)) = Us(2). Let Q = O2(Usz). In E we see that ) induces inner
automorphism on Head(U;), in L(2) we see that @ inverts Head(Uy) and in L(1) we see
that every element that inverts Head(Uy) induces an outer automorphism on Head(U;), a
contradiction.

Hence we may assume that one of 4(2) or 5(2) holds. In particular, U, in place of
U, fulfils the assumption of this lemma and so by (4) and (6) applied with U; and Us
interchanged 5(2) we get that case 5(2) holds and Head(Us) = La(q)", » < 2. Thus 4b2
holds. Remark: I forget to think about 3-Ailt(6) for Head(U;). This might arrise
for Head(E) = 3- Alt(7)

Lemmagr 13.5 Retain the assumptions of 13.4 and assume that 13.4.2 holds. Then one
of the following holds:

a. troet
Proof:
(1) (a) If » = 1, then Head(H) = (3')Alt(7) ( with ¢ = 4); Alt(10) (with ¢ = 4);

(S)L3(q); Spa(q); G2(q); Us(q): Us(\/q); or Ly(q) ( with S inducing a graph automor-
phismus).
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(b) If » = 2 then Head(H) = 3-(L3(4) x L3(4)) (with ¢ = 4), 3-(Alt(7) x Alt(7) with
q =4) or Ly4(q)( with S inducing a graph automorphism).

(c) Let H € £(S) with L;(1)S < H. Then Head(H*°) = H; - Hy - H3, where S normalizes
H, and interchanges Hs and Hg, for 1 < i < 2, H;/O(H;) = (2")Alt(5) and O(Hp)
and O(H;) have coprime order.

This follows easily from 4.10

Let Ki, Ky, K3 be three different 2-components of L(1) with K1 < U;. Put K =
K1KyK3. Let {i,j,k} = {1,2,3}. Put H' = Ng(K;) and K} = (K/""™. As L(1) < H' and
H' contains a Sylow 2-subgroup of G we can apply (1)c and conclude that K ,ﬁ: normalizes sz

and K;). Hence K,i < HJ and K,i < K,‘Z, By symmetry K,]C < K,ﬁ; and so K dgf KI = K}C
In particular K; normalizes K and the K;’s are pairwise isomorphic. By (1)c applied to
K{K3K;S we conclude that O22'(K}) = O2(K;) and so K} = K;. It follows that

(2) Put L = Ng(K). Then L is the unique maximal 2-local of G containg K.S. Moreover,
CL(K/O2(K)/O2(L) is coprime to |La(g)|

Remark: the same argument works for any group with three 2-componets
which are conjugate in G so we should make an extra lemma and use it in the
L3(2) 1 Sym(3) case

Suppose that Head(F) = Alt(7)orAlt(10). Then Head(Us) = Alt(6) or Alt(8) respec-
tively and Uy NUs/O2(U1 NU2) =2 Sym(3). Hence we see in L(1) that Uy does not normalize
Uiy NUsz and Head((Up, Uy NUs) = C31C5. Hence Up does not normalize Us. It follows that
case 2(2) holds and Head(L(2)) = Alt(7), Sps(2), Le(2), Alt(9), Alt(10) or Alt(11). But this
contadicts the stucture of (Up, U; N Us).

Suppose that ¢ = 4 and Head(F) = *(L3(4) x L3(4)) or 3-(Alt(7) x Alt(7) and let K,
be a 2-component of U;. Then Ng(K7) involves L3(4) respectively Alt(7), a contradiction
to (1).

Let L = KO(L(1), T = LN S and B = Ni(T). Note that B normalizes K;. Let
F = (B,E).

Suppose that F' ¢ £(S). TO BE CONTINUED

14 Large Alternating Groups

In this section we assume that G is a quasi thin group, and that there exists an amalgam
(P, E) so that P € P(S), E € £(S), Head(F) = Alt(n), n = 10,11 Remark: we should
at least also allow E/Oz(E) = Sym(9)

Lemmagr 14.1 Suppose n = 11 and let U < calL(E,S) with Head(U) = Ailt(10). Then
(P,U) is an amalgam.
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Proof: Let L = (P,U) and suppose that L € £(S). Then by 13.2, [O?(P),0%(U)] is
a 2-group or L € N(S). In the second case we get that Head(L) = Alt(11) and so O2(L) =
O2(U) = O2(E) a contradiction. Thus [O?(P),0?(U)] is a 2-group. As m3(O?*(U)) = 3
we conclude that P is a 3’ group. Let T be a Sylow 2-subgroup of O?(P). Then clearly
U normalizes T' and so T < Oo(U) and O(U) is a Sylow 2-subgroup of Oo(U)O?(P). As
O2(U) = O2(E), no non-trivial characteristic subgroup of O3(U) is normal in Oz (U)O?(P).
Hence O2(U)O?(P) has a non-trivial irreducible FF-module and so is not a 3’ group, a
contradiction.

Lemmagr 14.2 Suppose E/O2(U) = Sym(9), Alt(10) or Sym(10) and let U < cal L(E, S)
with U/O2(U) = Sym(8). Then (P,U) is an amalgam.

Proof: Let L = (P,U) and suppose that L € £(S). Then by 13.2, [O?(P),0*(U)] is
a 2-group or L € N(S).

Suppose that O3(E) < O2(L). Then O2(U) # Oz(E) and E/O2(E) = Sym(10). Let
R < E with Oy(L) € Syl,(R) and R/O2(E) = Sym(3). Let C be a characteristics subgroup
of Oz(L) normal in R. Then C is normal in L and in (U, R) = E. Hence C' = 1 and so by
8.12 O%(P) normalizes Q1 (Z(0O2(E)), a contradiction.

(1) O2(E) £ O2(L).

Let U* € L(U,S) with U*/O2(U*) = Sym(3) and Let Q/O2(U) be the unique elemen-
tary abelian, normal subgroup of order 16 in U*/O3(U). Then Ng(Q)/Q = Sym(5). Let C
be a characteristic subgroup of @) normal in L. Then C' is normal in (U, Ng(U)) = E and
so C = 1. We proved

(2) O2(L) < @ and no non trivial characteristic subgroup of @ is normal in L.

Remark: (2) and its set up makes no sense for the Sym(9) case, some fixing
necessary

Suppose that L € calN(S). Then Head(L) = Alt(m),9 < m < 11 or L/Oy(L) ~
Le(2).2.

If Head(L) = Alt(m),m = 9 or 11, L cannot be generated by U and a minimal parabolic
unless m =9 and P = L. We conclude P/O2(P) = Sym(9) and Oy(E) < O2(U) < Oy(L),
a contradiction

If Head(L) = Alt(10), the situation is symmetric in £ and L. L(1) = (Ng(Q), NL(Q).
Then @ = O2(L(1)) and 13.4 provides a contradiction. Remark: One has to make sure
that the possibility of two different complements Sym(5) to a group of odd order
was really ruled out

If L/Os(L) 2 Lg(2).2,

02(U) = [02(U),U]O:(L) < O2(E)O2(L) < O2(U)

and so O3(U) = O2(E)O2(L). If E/O2(E) = Sym(9) or Alt(10), then Oz(L) < O2(U).
Hence no non-trivial characteristic subgroup of O2(U) is normal in L and we conclude

85

notA10
notA10 — 1
notA10 — 2



that [J(U), (Q1(Z(02(U))F) = 1, a contradiction. Thus E/Oy(FE) = Sym(10). Let V =
21(Z(02(L)). Then by (2), Cs(V) = Oz(L). On the otherhand, L/Oz(L) has no faithful
module with respect to it O2(U)/O2(L) contains an offending subgroup. Hence J(O2(U) <
O2(L) and so J(O2(U) £ Oz(E). It follows that there exists a conjugate of J(O2(U)) under
E which is contained in U but not in U’'O2(U). Hence by 2.11 there exists an offender for
L on V which is not contained in L'O3(L), a contradiction.

We have proved that [O?(U), 02( )] € Oo(U). Put P° = O*(P)Q. As O*(P)n S <

O2(U) < Q, SNP° = Q. Put Uy = Np(Q) and L(1) ¢ (P,U}) By 8.12 we conclude that

(3) [02(P),0%(P)] < Oz(L(1)).

By a similar argument Oy(L) = O2(U) leads to a contradiction and so Oz(L) # O2(U).
In particular, E/O(E) = Sym(10). As U normalizes O?(P), U; does not. So by 13.4,
L(1) € N(S). By (3), the compoents of Head(L(1)) cannot be groups of Lie type in
characteristic 2 and thus are alternating groups. Furthermore, as mgz(L) < 3 and m3(U) = 2,
m3(P) < 1. This leads to Head(L(1) = (3")Alt(7) or Alt(11). In particular P/Oy(P) =
Sym(3). In the second case N(11)(O?*(P)) involves Sym(8) and we obtain a contradiction
by considering (Nr1y(O?*(P)),U) (note here that U £ L(1) as already U; < L(1). Thus
Head(L(1)) = (3)Alt(7). By (1), O2(FE) inverts Head(P). Thus L/O2(L) = Sym(3) x
Sym(8). As U* < U; < L(1 ) we get L(1)/O2(L(1)) = (3')Sym(7). The 3-Sym(7) case is
exclude by considering Ng(O?(P )) Thus L(1)/O2(L(1)) = Sym(7).

In L we see that O2(L) = O2(U) N O2(P), in L(1) that O2(L(1)) = O2(Uy) N O2(P)
and in F that Oy(U) < O2(Uy). Hence Oy(L) < Oz(L(1)). Moreover, in L we see that

|O2(E)O2(L)/O2(L)| =2 and in L(1) that |O2(E)O2(L(1))/O2(L(1))| = 2. It follows that

F=" O2(E) N O2(L) = O2(E) N Oz(L(1)). Thus F is normalized U and U; and so F is

normal in E. Note that O?(U)NO2(E) < O2(0*(U)) < O2(L) and so O*(U)NOz(E) < F.
Hence by the ” Satz von Gaschiitz, O?(E) N Oz(E) < F. Put E* = O?(E)Oy(L). Since
O2(L)NO?(E)O2(E) = F we conclude that Oz(E*) = F < Oo(L). Now the same argument
as in the proof of (1) gives a contradiction, which completes the proof of the lemma.

We remark that Sym(14) has parabolics Co ! Sym(7), Sym(8) x Cs ! Sym(3) and
Sym(10) x Cy ¢ Cy, intersecting in the same way has the groups in the last case we ruled
out. But of course these parabolics in Sym(14) are not of 2-type and so do not furnish a
counter example.

\_/

Ahv

Lemmagr 14.3 Suppose E/Oo(E) = Alt(9) and let U < calL(E,S) with U/O2(U) =
Alt(10). Then one of the following holds

1. (P,U) is an amalgam.

2. Let L = (P,U). Then L/Oy(L) = L5(2), [O2(L),0%(L) is a natural module and
[Z,E] =1.

Proof: We may assume that L € £(S).As above [0%(U), O?(P) is not a 2-group and
L/Os(L) 2 Alt(9). This leaves the possiblity L/O2(L) = L5(2). Note that Oz(L) < O2(E)
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and so no non-trivial characteristic subgroup of Oz(FE) is normal in L. Let Z1 = Q1(Z(02(L)
and Zy = Q1(02(F) and note that Zy = Cz (02(E)). Suppose that [Z2, E] # 1. Then
[Z2,FE] # 1. As Z; is an FF-module, all non-trivial composition non-trivial factors of
L in Z; are isomorphic natural modules. Hence Z5 is as U module the direct sum of
isomorphic natural modules and trivial modules. Let d be an element of order three in U
acting fixed point freely on the natural module for U, then it is easu to see that Cgz,(d) =
Cz,(U) = Cgz (F) and so d acts fixed point freely on Z>/Cz,(E). It follows that Z5 involves
a spinmodule for E and so also two non-isomorphic natural modules for U, a contradiction.
Remark: u se the easier alt 7 argument

Hence [Z3, E] = 1. It follows that Z; is a natural module for L and so by 8.14 and as
Cz, (E) we get [O2(F),0?(E) = Z; and so (2) holds

15 Tits Chamber Systems

In this section we us the following assumptions and notations:

(i) I is a finite set with |I| > 3,

(ii

)

(ii) Fori e I, P, € P(S5).
) For JCIputJ =I\J,Py=(Pj|jeJ)and My= Pp
)

(iv) Define a graph on I by considering i and j to be adjacent if and only if [0%(F;), O?(P;)]

is not a 2-group.
(v) If J C I is connected with |J| > 2, then Py € £(S) and for all j € J, SN P, 4 P;.

(vi) Let i € I. Then Head(M)i is a central extension of a groups of Lie type in character-
istic two.

(vii) Let J be a proper subset of J. Q7 = O2(Py) and Z; = (Z"7. Then Cp,(Qy) <Qy).
(viii) (P;] € I £ L(S5).

Lemma 15.1 Suppose there exists two distinct i,j in I with Z 4 P; and Z 4 P;. Then
one of the following holds: TO BE CONTINUED

Proof: Suppose first that there exists k € T\ {i,j} so that k" is connected. Apply 8.6
with to Go = M}, and Gg = P;,. As P; does not centralize Z, 8.61 does not hold. By the
stucture of My, 8.61 implies C' < M}, and Py, a contradiction.

In case (6) 8.12 implies that [Qy.O%(Py)] < Zy. let k # r so that r is connected. Then
[Qr, O*(Py)] < Zy, < Zy < Q a contradiction to (v) and (vi).

Hence we mau assume that (M, Zp < 2. As two parabolics of M}, act non-trivially on
Z we get from 6.12 that My, is of type Ly, (q), k" is a string with 7 and j as endpoints and M},
has exactly two non-central composition factors on Zy/. Moreover these composition factors
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are natural modules dual to each other. Is is easy to see that Z < Py. Let J =1\ {i,j,k}.
Assume that k is adjacent to some element of J. Then we can apply 8.22 to G, = M;,
Gp = M; and Gog = M;;. Thus TO BE CONTINUEDAssume that £ is not adjacent
to an element of J and without loss that k is adjacent to i. Then we can apply 8.22 to
Go = M;, Gy, = M}, and G4 and we conclude that J = (). Thus TO BE CONTINUED

Remark: the effect of graph automorphisms needs to be worked in, Z,73<G3
needs to be ruled out

Suppose next that no such k exists. Then clearly I is a string with ¢ and j as the end
notes. Then we can apply 8.22 to G = M;, Gg = M; and G,3 = M;;. Thus TO BE
CONTINUED
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