# On the generic groups of $p$-type 

U. Meierfrankenfeld<br>B. Stellmacher<br>Draft of<br>May 23, 2002

## Contents

1 Random Observations 2
2 Preliminaries 5
3 CS generated modules 13
4 Groups with $m_{2^{\prime}}(G) \leq 3 \quad 15$
5 Subnormal Subgroups 23
6 Nice Modules 23
7 An interesting choice of an amalgam for generic p-type groups 47
8 Some general amalgam results 48
9 Amalgams involving uniqueness groups 61
10 Connected parabolics not normalizing $Z \quad 70$
11 The case $b=1$ with $G_{\alpha}$ connected and $G_{\beta}$ minimal 75
12 Elementary results on $p$-connected groups 77
13 Establishing Geometries 79
14 Large Alternating Groups 84
15 Tits Chamber Systems 87

Definition 0.1 Let $G$ be a finite group, $p$ a prime dividing. the order of $G$ and $S \in \operatorname{Syl}_{p}(G)$. Then $G$ is of generic $p$-type provided that
(a) If $L$ is a p-local subgroup of $G$ with $S \leq L$, then $F^{*}(L)=O_{p}(L)$.
(b) $G$ is generated by the p-locals containing $S$.
(c) all p-locals of $G$ are $\mathcal{K}$-groups.

Definition 0.2 1. A quasisimple group $K$ is called a $C_{2}$ - group if and only if $K$ is a quasisimple group of Lie type in characteristic 2 or $K=P S L(2, q)$ for $q$ a Fermat or Mersenne prime or $q=9$
or $K=P S L(3,3), \operatorname{PSL}(4,3), \operatorname{PSU}(4,3), 2 U(4,3)$ or $G_{2}(3)$
or $K / Z(K)=M_{11}, M_{12}, M_{22}, M_{23}, M_{24}, J_{2}, J_{3}, J_{4}, H S, S u z, R u, C o_{1}, C o_{2}, F i_{22}, F i_{23}$, $F i_{24}^{\prime}, F_{3}, F_{2}$, or $F_{1}$
except $2 A_{8}, S p(4,3)$ and $[X] L_{3}(4)$ for exp $X=4$ are not $C_{2}$ groups.
2. $L_{2}(G)=\left\{K\right.$ : for some involution $x$ of $G, K$ is a component of $\left.C_{G}(x) / O_{2^{\prime}}\left(C_{G}(x)\right)\right\}$
3. $G$ is of even type if and only if the following conditions hold:
(a) Every element of $L_{2}(G)$ is a $C_{2}$ - group
(b) $O_{2^{\prime}}\left(C_{G}(x)\right)=1$ for every involution $x$ of $G$; and
(c) $m_{2}(G) \geq 3$.
4. Let $G$ be of even type and let $S$ be a Sylow $2-$ subgroup of $G$. Then $\sigma(G)=\left\{p: p\right.$ is an odd prime and $m_{p}(M) \geq 4$ for some maximal 2-local $M$ of $G$ with $|S: S \cap M| \leq 2\}$.
5. $G$ is of quasithin type if $G$ is a simple group of even type with $\sigma(G)$ empty.

Definition 0.3 $\operatorname{Head}(P) \stackrel{\text { def }}{=} O^{p}(P) O_{p}(P) / O_{p}(P)$.

## 1 Random Observations

Let $G$ be a finite group, $S$ the Sylow 2-subgroup of $G$ and $B$ the intersection of the maximal 2-locals containing $M$.

Lemma 1.1 Let $G$ be a finite group such that $F^{*}(G)$ is the direct product of simple groups of simple groups of Lie type in characteristic 2 . Suppose that all the 2 -locals of $G$ containing $S$ are of characteristic 2-type. Then $S$ acts transitive on the set of components of $G$, $B=N_{G}\left(S \cap F^{*}(G)\right)$ and $B F^{*}(G)=G$.

Remark: False for $D_{4}(q) .3$ and $D_{4}(q) \cdot \operatorname{Sym}(3)$

Proof: Let $E_{1}, \ldots, E_{n}$ be the components of $G, E=F^{*}(G)=E_{1} E_{2} \ldots E_{n}$ and $T=$ $E \cap S$. Suppose that $S$ does not act transitively on the set of components of $G$. Then $\left\langle E_{1}, S\right\rangle$ is contained in a 2-local which is not of 2-type, a contradiction.

Let $M$ be any maximal 2-local of $G$ containing $S$. As $M$ is of 2-type and $C_{E}\left(O_{2}(M)\right) \neq 1$ we conclude $O_{2}(M) \cap E \neq 1$.

Let $Q_{i}$ be the projection of $O_{2}(M) \cap E$ onto $E_{i}$ and $Q=Q_{1} \cdot Q_{2} \cdot \ldots \cdot Q_{n}$. Then $Q$ is a 2 group normalized by $M$ and so $O_{2}(M) \leq Q \leq O_{2}(M), Q=O_{2}(M)$ and $M=N_{G}(Q)$.

Suppose now that $n=1$.
Let $M_{i}=N_{M}\left(E_{i}\right)$ and $M_{i}^{*}$ a maximal 2-local subgroup of $E_{i}$ containing $M \cap E_{i}$. Then $\left\langle M_{i}^{* M}\right\rangle \cap E_{i}=M_{i}$ and so $\left\langle M_{i}^{*}, M\right\rangle$ is contained in a 2-local of $G$. Thus $M_{i}^{*}=M \cap E_{i}$.

TO BE CONTINUED
Remark 1.2 It seems that in groups of charateristic 2-type, B-irreducible subgroups actually have $B$ as a maximal subgroup. For example if $G$ has a parabolic $P$ with $P / O_{2}(P) \cong$ Sym(5) then the the inverse image of the Sym(4) seems always to be in the Borel group.

Lemma 1.3 For $L \in \mathcal{L}\left(=\mathcal{L}(S)\right.$ put $Z_{L}=\left\langle\Omega_{1}(Z(S))^{L}, C_{L}=C_{L}\left(Z_{L}\right)\right.$ and $L^{*}=N_{L}(S \cap$ $\left.C_{L}\right)$. Let $\mathcal{R} \subseteq \mathcal{L}$ put $R=\left\langle L^{*} \mid L \in \mathcal{R}\right\rangle$.
(a) $L=L^{*} C_{L}$ for all $L \in \mathcal{L}$.
(b) Let $L \in \mathcal{L}$ and $P \in \operatorname{cal} N(L, S)$. Then $P \leq L^{*}$ or $O^{2}(P) \leq C_{L}$.
(c) Let $L \in$ calL. Then $O_{2}\left(L^{*}\right)=S \cap C_{L}$
(d) If $R \in \mathcal{L}$, then $C_{R}$ is 2-closed and $R=R^{*}$.
(e) Let $\mathcal{R}=\mathcal{L}$
e.1. Suppose $R \in \mathcal{L}$. Then for all $L \in \mathcal{L}, L=(R \cap L)(C \cap L)$.
e.2. Suppose that $R \notin \mathcal{L}$. Then there exists $\mathcal{R}_{i} \subseteq \mathcal{L}, i=1,2$ so that $R_{i} \in \mathcal{L}$ but $O_{2}\left(\left\langle R_{1}, R_{2}\right\rangle\right)=1$.

Proof: (a) follows by the Frattini argument.
To prove (b) let $L \in \mathcal{R}$. Then $L^{*} \leq R, Z_{L} \leq Z_{R}$, and $S \cap C_{R} \leq C_{L}$. Thus $S \cap C_{R}=$ $\left(S \cap C_{L}\right) \cap C_{R}$ and $S \cap C_{R}$ is normalized by $L^{*}$. As $R$ is generated by the $L^{*}$ 's, $L \in \mathcal{R}$, $S \cap C_{R}$ is normal in $R$ and so also in $C_{R}$. Thus $C_{R}$ is 2 -closed and $R=R^{*}$.
(c) and (d) are obviuos.
(e.1) follows since from (a) as $L^{*} \leq R \cap L$ and $C_{L} \leq L \cap C$.

For (e.2) let for $\mathcal{R}_{1}$ be maximal in $\mathcal{L}$ with $R_{1} \in \mathcal{L}$ and let $\mathcal{R}_{2}=\{L\}$ for some $L \in \mathcal{L} \backslash \mathcal{R}_{1}$.
Lemma 1.4 Let $R=R_{\mathcal{L}}$ and suppose that $R \in \mathcal{L}$.
(a) $N_{G}\left(Z_{L}\right)$ is the unique maximal 2-local of $G$ containing $R$.
(b) Let $L \in \mathcal{N}(R, S)$ with $O^{2}(L) \unlhd \unlhd R$ and $P \in \mathcal{N}(S)$ with $P \not \leq R$. If $\langle P, L\rangle \in \mathcal{L}$, then $O^{2}(P) \cap S \leq O_{2}(L)$.
(c) Let $P \in \operatorname{calN}(S)$ so that $P$ does not normalize $Z_{R}$. Then there exists $L \in \mathcal{N}(R, S)$ with $O^{2}(L) \unlhd \unlhd R$ and $\langle L, P\rangle \notin$ calL.

Proof: (a) Let $R \leq M \in \mathcal{L}$. Then $M^{*} \leq R$ and so $R=M^{*}$ and $Z_{M}=Z_{M^{*}}=Z_{R}$. Thus $M \leq N_{G}\left(Z_{R}\right)$.
(b) Let $M=\langle P, L\rangle$. As $P \not \leq R, O^{2}(P) \leq C_{M}$. By $3.6[Z, L] \neq 1$ and so $S \cap O^{2}(P) \leq$ $S \cap C_{M} \leq O_{2}(L)$.
(c) As $O_{2}(R)$ is the intersection of the $O_{2}(L)$ 's, $L$ as in the statement of (c) we conclude that $O^{2}(P) \cap S \leq O_{2}(R)$. Hence $O_{2}(R)$ is a Sylow 2-subgroup of $O^{2}(P) O_{2}(R)$. By (a) $\langle P, R\rangle$ is not a 2-local and we conclude that $\left\langle\Omega_{1}\left(O_{2}(R)_{2}^{O}(P)\right\rangle\right.$ is an FF-module for $O^{2}(P) O_{2}(R)$. But this contradicts $[Z, P]=1$.

Lemma 1.5 Let $\mathcal{N}^{+}(S)=\{L \in \mathcal{N}(S) \mid[Z, L] \neq 1\}$ and for $L \in \mathcal{L}$ put $L^{+}=\left\langle\mathcal{N}^{+}(L, S)\right\rangle$. Then
(a) $O_{2}\left(L^{+}\right)=S \cap C_{L}=O_{2}\left(L^{*}\right)$
(b) $L=L^{+}(L \cap C)$.
(c) $Z_{L}=Z_{L^{+}}$.

Proof: Put $T=S \cap C_{L}$ and $R=N_{L}(T)$. Then by $3.6 F_{2}^{*}(R) \leq R^{+}$an so $O_{2}\left(L^{+}\right)=$ $O_{2}\left(F_{2}^{*}(R)\right.$. As $O_{2}\left(L / C_{L}\right)=1, O_{2}\left(F_{2}^{*}\right)=T$. So (a) holds.

For (b) suppose first that $C_{L} \neq O_{2}(L)$. By the Frattini argument, $L=R C_{L}$ and by induction $R=R^{+}(R \cap C)$. Hence $L=R^{+} C_{L}(R \cap C)=L^{+}(L \cap C)$.

So suppose that $C_{L}=O_{2}(L)$.Then $R=L$. Let $E=S \cap F_{2}^{*}(L)$ and $H=N_{L}(T)$. By the Frattini argument, $L=F_{2}^{*}(L) H$ and by induction, $H=H^{+}(H \cap C)$. Hence $L=F_{2}^{*}(L) H^{+}(H \cap C)=L^{+}(L \cap C)$.
(c) follows directly from (b)

Rgomi
Lemma 1.6 Let $\mathcal{N}^{+}(S)=\{L \in \mathcal{N}(S) \mid[Z, L] \neq 1\}$ and $D=\bigcap\left\{O_{2}\left(L^{*}\right) \mid L \in \mathcal{L}\right\}$.
(a) Let $P \in \mathcal{N}^{+}(S)$ with $P \not \leq N_{G}(D)$. Then there exists $L \in \mathcal{N}^{+}(S)$ so that $\langle P, L\rangle \notin \mathcal{L}$.
(b) Let $\left.R^{+}=\mathcal{N}^{+}(S)\right\rangle$ and suppose that $R^{+} \in \mathcal{L}$.
(b.a) For all $L \in \mathcal{L}, L=\left(L \cap R^{+}\right)(L \cap C)$.
(b.b) Suppose that $R^{+} \leq L \in \mathcal{L}$. Then $R^{+}=L^{+}, Z_{L}=Z+R^{+}$and $O_{2}\left(R^{+}\right)=C_{L} \cap S$.
(b.c) $O_{2}(R)=D$.
(b.d) $N_{G}\left(Z_{R^{+}}\right)$is the unique maximal 2-local of $G$ containing $R^{+}$.

Proof: Suppose (a) is false. Let $L \in \operatorname{cal} N^{+}(S)$ and put $M=\langle L, S\rangle$. By assumption $M \in c a l L$ and so by $1.3 \mathrm{~b}, M=M^{*}$. Let $Y \in \mathcal{N}(M)$ with $O^{2}(Y) \unlhd \unlhd M$. Then by 3.6, $[Z, Y] \neq 1$ and so $Y \in \mathcal{N}^{+}(S)$. Hence the Gomi argument implies that $P$ normalizes $D$.
(b.a) follows directly from 1.5 b

Since

$$
\mathcal{N}^{+}(S) \subseteq \mathcal{N}^{+}\left(R^{+}, S\right) \subseteq \mathcal{N}^{+}(L, S) \mathcal{N}^{+}(S)
$$

$R^{+}=L^{+}$. Thus by 1.5a, $O_{2}(R)=C_{L} \cap S$. Furthermore, by 1.5 c, $Z_{L}=Z_{L^{+}}=Z_{R^{+}}$ (b.c) follows from 1.5a.
(b.d) follows directly from (b.b)
dpred
Definition 1.7 Let $L \in \mathcal{L}(S)$. Then a p-reduced normal subgroup of $L$ is a elementary abelian normal p-subgroup $Y$ of $L$ so that $O_{p}\left(L / C_{L}(Y)\right)=1$, (i.e all normal subgroups of $L$ which act unipotently on $Y$ already centralize $Y$.

Lemma 1.8 Let $L \leq \mathcal{L}(S)$.
(a) There exists a unique maximal p-reduced normal subgroup $Y_{L}$ of $L$.
(b) Let $R \in(L, S)$ and $X$ a p-reduced normal subgroup of $R$. Then $\left\langle X^{L}\right\rangle$ is a p-reduced normal subgroup of $L$. In particular, $Y_{R} \leq Y_{L}$.
(c) Let $S_{L}=C_{S}\left(Y_{L}\right)$ and $L^{f}=N_{G}\left(S_{L}\right)$. Then $S_{L}=O_{p}\left(L^{f}\right)$ and $Y_{L}=\Omega_{1} Z\left(S_{L}\right)$.

Proof: (a) Let $Y_{L}$ be the subgroup generated by the $p$-reduced normal subgroups of $L$. Let $N$ be a normal subgroup acting unipotently on $Y_{L}$. Then $N$ also acts unipotently on all the generators of $Y_{L}$. Hence $N$ centralizes all the generators of $Y_{L}$ and so $Y_{L}$. Thus $Y_{L}$ is $p$-reduced.
(c) Let $Y=\left\langle X^{L}\right\rangle$ and $C=C_{L}(Y)$. Let $N / C=O_{p}(L / C)$. Then $N=(N \cap S) C$ and in particular, $N=(N \cap L) C$. As $X$ is $p$ reduced, $N \cap L$ centralizes $X$. The same is true for $C$ and so also for $N$. Since $N$ is normal in $L$ and $Y=\left\langle X^{L}\right\rangle, N$ centralizes $Y$. Thus $N=C$ and $Y$ is $p$-reduced.
(b) Put $C=C_{L}\left(Y_{L}\right)$. By Frattini, $L=L^{f} C$. Since $O_{p}(L / C)=1$ we conclude $O_{p}\left(L_{f}\right) \leq$ $C$ Hence $O_{p}\left(L_{f}\right) \leq C \cap S=S_{L}$ and so $\left.O_{p}\left(L_{f}\right)=S_{L}\right)$. Let $X=\Omega_{1}\left(Z\left(S_{L}\right)\right)$. Then clearly $Y_{L} \leq X$ and $L_{f}$ normalizes $Y$. Put $Y=\left\langle Y^{L}\right\rangle=\left\langle Y^{C}\right\rangle$. Clearly $X$ is $p$-reduced for $S_{L}$ and so by (b) applied to $C, Y$ is $p$-reduced for $C$. Let $N$ be a normal subgroup of $L$ acting unipotently on $Y$. Since $Y_{L} \leq Y$ and $Y_{L}$ is $p$-reduced for $L, N \leq C$. As $Y$ is $p$-reduced for $C, N$ centralizes $C$ and so $Y$ is $p$-reduced for $L$. By maximality of $Y_{L}$ we get $Y \leq Y_{L}$. But $Y_{L} \leq X \leq Y$ and so $Y_{L}=X=Y$.

## 2 Preliminaries

Lemma 2.1 Let $r$ and $s$ be positive real numbers and put $e=\frac{r s^{2}-r-s}{s^{2}}$.
(a) Suppose that $s>1$. Then $e>O$ if and only if $r>\frac{s}{s^{2}-1}$. In particular $e>0$ if $r \geq 2$ and $s \geq 1.3$.
(b) $e \leq 1$ if and only if $(r-1)(s-1) \leq 1$.

Proof: (a) is easily computed and for (b) note that the following are equivalent:
$e \leq 1, r s^{2}-r-s-s^{2} \leq 0,(r s-r-s)(s+1) \leq 0, r s-r-s \leq 0,(r s-r-s)+1 \leq 1$ and $(r-1)(s-1) \leq 1$.

$$
G=Q t
$$

Lemma 2.2 Let $P \in \mathcal{P}(S)$ be of weak $L_{2}(2)^{k}$ type. Put $\Delta=\left\{L_{i} \mid 1 \leq i \leq k\right\}$ and let $Q \unlhd S$ such that
(i) $\left|Z_{P} / C_{Z_{P}}(A)\right|<\left|A / C_{A}\left(Z_{P}\right)\right|^{2}$ for some $A \leq Q$ with $\left[Z_{P}, A\right] \neq 1$.
(ii) $Q$ contains an involution $t$ acting fixed point freely on Delta.

Then $O^{2}(P) \leq\left\langle C_{Q}(\Delta)^{e}, t\right\rangle$ for some $e \in P$.
Proof: Let $\Delta\left\{L_{i} \mid 1 \leq i \leq k\right\}$. Choose $A$ as in (i) with $|A|$ minimal. Then it easy to see that $A$ acts trivially on $\Delta$. Next let $T$ be maximal in $C_{Q}(\Delta)$ so that $T$ fullfills $\left|Z_{P} / C_{Z_{P}(T)}\right|<\left|T / C_{T}\left(Z_{P}\right)\right|^{2}$. By [CD] $T$ is unique and so $T \unlhd S$. Let $E=O^{2}(P) C_{P} / C_{P}$. Then $S$ acts irreducible on $E$ and $E=E_{1} \times \ldots \times E_{k}$ with $\left|\left[Z_{p}, E_{i}\right]\right|=4$. We claim that each of the $E_{i}$ is a Wedderburn component for $T$ on $E$. Indeed, let $E^{*}$ be a Wedderburn component for $T$ on $E$ and suppose that $E^{*}=E_{1} \ldots E_{t}$. Then $k=l t$ for some integer $l$, $C_{T}\left(E^{*}\right)=C_{T}\left(E_{1}\right),\left|T / C_{T}\left(E^{*}\right)\right|=2$ and $\left|T / C_{T}\left(Z_{P}\right)\right|=\left|T / C_{T}(E)\right| \leq 2^{l}$. On the otherhand $Z_{P} / C_{Z_{P}}(T)=2^{k}$. Thus $k<2 l$ and as $l$ divides $k, l=k$.

We conclude that:
(1) Each $T$ invariant subspace in $E$ is a sum of some of the $E_{i}$ 's.

As $t$ acts fixed point freely on $\Delta, t$ inverts an element $e \in O^{2}(P)$ with projects nontivially on each of the $E_{i}$ 's. Thus (1) implies
(2) $E=\left\langle\bar{e}^{T}\right\rangle$.

Let $L=\left\langle T^{e}, t\right\rangle$. Then $T^{e^{-1}}=\left(T^{e}\right)^{t} \leq L$ and so also $[T, e] \in L$. Since $C_{E}(T)=1$, $\bar{e} \in[T, \bar{e}]$ and (2) implies that $E \leq \bar{L}$. Hence $P=L S$ and $O^{2}(P) \leq\left\langle T^{P}\right\rangle=\left\langle T^{L}\right\rangle \leq L$. As $T \leq C_{Q}(\Delta)$ the lemma is proved.

Lemma 2.3 Let $H$ be a group, $V, B$ and $Z_{i} \in I$ subgroups of $H$ and $s$ a positve real number. Supppose that
(i) $V=\left\langle Z_{i} \mid i \in I\right\rangle$ and for all $i \in I, Z_{i} \unlhd V$.
(ii) For all $i$ in $I$ and $D \leq B, B$ normalizes $Z_{i}$ and $\left|D / C_{D}\left(Z_{i}\right)\right|^{s} \leq\left|Z_{i} / C_{Z_{i}}\right|$.

Then $\left|B / C_{B}(V)\right|^{s} \leq\left|V / C_{V}(B)\right|$.
Proof: Without loss $I-\{1, \ldots, n\}$. Let $B_{1}=B$ and $B_{i+1}=C_{B_{i}}\left(Z_{i}\right)$. Then $B_{n+1}=$ $C_{B}(V)$. Moreover, by (ii) applied to $D=B_{i}$,

$$
\begin{equation*}
\left|B_{i} / B_{i+1}\right|^{s} \leq\left|Z_{i} / C_{Z_{i}}\left(B_{i}\right)\right| \tag{1}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left|B / C_{B}(V)\right|^{s} \leq \prod_{i=1}^{n}\left|Z_{i} / C_{Z_{i}}\left(B_{i}\right)\right| \tag{2}
\end{equation*}
$$

As by defintion $B_{i+1}$ centralizes $Z_{i}$ we get

$$
\begin{equation*}
\left|Z_{i} / C_{Z_{i}}\left(B_{i}\right)\right|=\left|Z_{i} C_{V}\left(B_{i}\right) / C_{V}\left(B_{i}\right) \leq\right| C_{V}\left(B_{i+1} / C_{V}\left(B_{i}\right) \mid\right. \tag{3}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\prod_{i=1}^{n}\left|Z_{i} / C_{Z_{i}}\left(B_{i}\right)\right| \leq\left|C_{V}\left(B_{i+1}\right) / C_{V}\left(B_{i}\right)\right|=\left|V / C_{V}(B)\right| \tag{4}
\end{equation*}
$$

The lemma now follows from (2) and (4).
Lemma 2.4 Let $V=\left\langle W_{i} \mid i \in I\right\rangle$, where $W_{i}$ is a normal subgroup of $V$ for all $i \in I$. Let $B$ be a subgroup of $A$ normalizing all the $W_{i}$ 's. If $A \neq B$ define $r$ by $|A / B|^{r}=\left|V / C_{V}(A)\right|$ and $t$ by $\left|V / C_{V}(A)\right|^{t}=\left|A / C_{A}(V)\right|$. Let $I=\{1,2, \ldots n\}$ and define $A_{0}=B$ and inductively $A_{i}=C_{A_{i-1}}\left(V_{i}\right)$. Choose notation so that $B=A_{0}>A_{1}>\ldots>A_{k}=C_{A}(V)$. Define $s_{i}$ by $\left|A_{i-1} / A_{i}\right|^{s_{i}}=\left|W_{i} / C_{W_{i}}\left(A_{i-1}\right)\right|$ and $s=\min _{i=1}^{k} s_{i}$. Then
(a) $\left|B / C_{B}(V)\right|^{s} \leq\left|V / C_{V}(B)\right|$.
(b) If $A \neq B$, then $\operatorname{tr} s \leq r+s$.
(c) Suppose that $A \neq B$ and equality holds in (b). Then
(c.a) $s_{i}=s$ for all $1 \leq i \leq k$.
(c.b) $C_{V}(B)=C_{V}(A)$.
(c.c) $\left|B / V_{B}(V)\right|^{s}=\left|V / C_{V}(B)\right|$.

Proof: (a) follows from 2.3.
Note that $|A / B|^{r t}=\left|V / C_{V}(A)\right|^{t}=\left|A / C_{A}(V)\right|=\left|A / B \| B / C_{B}(V)\right|$ and therefore $\left|B / C_{B}(V)\right|=|A / B|^{r t-1}$. Suppose that $A \neq B$. By (a) we conclude

$$
|A / B|^{r}=\left|V / C_{V}(A)\right| \leq\left|V / C_{V}(B)\right| \leq\left|B / C_{B}(V)\right|^{s}=|A / B|^{(r t-1) s}
$$

and so $(r t-1) s \leq r$ and $r t s \leq r+s$.
(c) follows by investigating the places where " $<$ " was used.

Lemma 2.5 Let $H$ be a finite group, $P$ a p-subgroup of $H$ and suppose that $P$ is subnormal in all proper subgroups of $H$ containing $P$, but is not subnormal in $H$. Then $A$ is contained in a unique maximal subgoup of $H$.

Proof: Suppose that $A$ is contained in two distinct maximal subgroups $M_{1}$ and $M_{2}$. Choose the $M_{i}$ 's so that $M_{1}$ contains a Sylow $p$-subgroup of $H$ and so that $\left|M_{1} \cap M_{2}\right|_{p}$ is maximal. Let $D$ be a Sylow $p$-subgroup of $M_{1} \cap M_{2}$ and put $B_{i}=\left\langle A^{h} \mid h \in H, A^{h} \leq M_{i}\right\rangle$. Then by asumption $B_{i} \leq O_{p}\left(M_{i}\right) \leq M_{j}$.

Suppose that $D$ is not a Sylow $p$-subgroup of $M_{2}$. Then $M_{M_{2}}(D) \notin M_{1}$ and $\mid N_{M_{2}}(D) \cap$ $\left.M_{1}\right|_{2}>|D|$, a contradiction. Thus $D$ is a Sylow $p$-subgroup of $M_{2}$ and so $B_{2} \leq D$ and $N_{G}(D)$ normalizes $B_{2}$. Thus $N_{G}(D) \leq M_{2}$ and so $D$ is also a Sylow $p$-subgroup of $M_{1}$. Hence $B_{1} \leq D$ and $B_{1}=B_{2}$, a contradiction.

Lemma 2.6 Let $H$ be a finite group, $p$ a prime, $S$ a Sylow $p$-subgroup of $H$ and suppose that $S$ lies in a unique maximal subgroup $M$ of $H$. Let $P \leq S$ and suppose that $P \not \leq O_{p}(H)$. Then there exist a subgroup $L$ of $H$ and $h \in H$ so that
(a) $P \leq L$ and $P \not \leq O_{p}(L)$
(b) $M^{h} \cap L$ is the unique maximal subgroup of $L$ containing $P$.
(c) $S^{h} \cap L$ is a Sylow p-subgroup of $L$.

Proof: If $M$ is the unique maximal subgroup of $H$ containg $P$, then the lemma holds with $L=H$ and $h=1$. Hence there exists a proper subgroup $K$ of $H$ such that $P \leq K$ and $K \nsubseteq M$. Choose $K$ so that $|M \cap S|_{p}$ is maximal and then with $K$ minimal. Let $T=M \cap K$ and $R=\left\langle P^{G} \cap T\right\rangle$. Let $S^{*} \in \operatorname{Syl}_{p}(M)$ with $T \leq S^{*}$. Then $M$ is the unique maximal subgroup of $H$ containing $S^{*}$ and so $T \neq S^{*}$. Thus $T<N_{S^{*}}(T) \leq N_{H}(R)$ and $|M \cap K|_{p}<\left|M \cap N_{H}(R)\right|_{p}$. Thus by the choice of $K, N_{H}(R) \leq M$. In particular, $N_{K}(R) \leq K \cap M$ and so $T$ is a Sylow $p$-subgroup of $K$. Hence $O_{p}(L) \leq T \leq M$. If $R \leq O_{p}(K)$, then $R \unlhd K$, contradiction. $P^{*} \in P^{H} \cap T$ with $P^{*} \notin O_{p}(K)$. By the minimal choice of $|K|, M \cap K$ is the unique maximal subgroup of $K$ containing $T$ and so we can apply induction. Thus there exists $L^{*} \leq K$ with $P^{*} \leq L^{*}, P^{*} \not \leq O_{p}\left(L^{*}\right)$ and $h^{*} \in K$ so that $(M \cap K)^{h^{*}} \cap L^{*}$ is the unique maximal subgroup of $L^{*}$ containing $P^{*}$. Let $x \in H$ with $P^{* x}=P$ and put $h=h^{*} x$ and $L=L^{*} x$. The clearly (a) and (b) hold.

Lemma 2.7 Remark: Quadratic groous normalize components
Lemma 2.8 Let $A \leq H$ and $V$ a faithful $G F(p) H$-module. Suppose that
(i) $A$ is contained in a unique maximal subgroup of $H$.
(ii) $[V, A, A]=1$.
(iii) $A \not \subset O_{p}(H)$
(iv) One of the following holds:

1. $V=\left\langle Z^{H}\right\rangle$ for some $Z \leq V$ with $[Z, A]=1$.
2. $V=C_{V}(A)[V, H]$.

Let $t \in A \backslash O_{p}(H)$. Then each of the following holds:
(a) Then $C_{V}(t)=C_{V}(A)$.
(b) $\left|V / C_{V}(A)\right| \geq\left|A / A \cap O_{p}(H)\right|^{c}$, where $c$ is the number of non-trivial chief-factors for $H$ on $V$.
(c) $[V, t] \cap C_{V}(H)=1$ and $\left|[V, t]^{2}\right|=\mid V / C_{V}(H)$.
(d) Suppose that (iv)1 holds and $O_{p}(L)$ normalizes $Z$. Then one of the follwing holds:

> 1. $\left[V, A \cap O_{p}(H)\right] \leq C_{V}(H)$.
> $\quad$ NI2 $p=2, H / O_{p}(H) \cong \operatorname{Dih}\left(2 r^{k}\right), r$ an odd prime $C_{H}\left(\left[V, A \cap O_{p}(H)\right]\right) \not \leq O_{p}(H)$.
(e) $[V, H] \cap C_{V}(H) \leq[V, A]$
(f) $W=C_{W}(H)[W, H]$ for each $H$-section on $V$. In particular, $H$ has no central chieffactor on $V / C_{V}(H)$.

Proof: Note first that (iv)1. implies (iv)2. So we assume from now on that (iv)2. holds. Let $M$ be the unique maximal subgroup of $H$ containg $A$ and $N=\operatorname{Core}_{M}(G)$. By a Frattini argument, $N$ is $p$-closed with $O_{p}(H)$ as the Sylow $p$-subgroup. Hence $t \notin N$ and so there exists $h \in H$ with $t \notin M^{h}$. Put $B=A^{h}$. Then $H=\langle t, B\rangle$ and so $[V, H]=[V, t][V, B]$. By (iv)2. we conclude and (ii) we conclude

$$
V=C_{V}(A)[V, B]=C_{V}(t)[V, B]
$$

Thus

$$
C_{V}(B)=[V, B]\left(C_{V}(A) \cap C_{V}(A)=[V, B] C_{V}(H)\right.
$$

Hence also

$$
C_{V}(A)=[V, A] C_{V}(H)
$$

and so by (iv)2.,

$$
V=C_{V}(H)[V, H]
$$

That is (f) holds for $W=V$. Moreover, $C_{V}(t)=C_{V}(A)\left(C_{V}([V, B]) \cap C_{V}(t)\right)=C_{V}(A)$ and so (a) holds. Let $Y=[V, A] \cap C_{V}(H)=[V, B] \cap C_{V}(H)=[V, A] \cap[V, B]$. Then $[V, A]=[V, H] \cap[V, A]=[V, t]([V, A] \cap[V, B]$ and so $[V, A]=[V, t] Y$. On the otherhand,

$$
|[V, t]|=|[V, B, t]|=\left|[V, B] /\left([V, B] \cap C_{V}(t)\right)=|[V, B] / Y|=|[V, A] / Y|\right.
$$

and so $[V, A]=[V, t] \oplus Y$. In particular $[V, t] \cap C_{V}(H)=1$. Moreover $|[V, H]|=\left|[V, t]^{2}\right| Y \mid$. $C_{[V, H]}(A)=[V, A]$ and so $C_{[V, H]}(H)=Y$. Thus (c) and (e) hold. Let $W$ be an nontrivial chief-factor for $H$ on $V$. Since $H=A\left\langle t^{H}\right\rangle, A / O_{p}(H) / O_{p}(H)$ acts faithfully on $W$. Also $W=[W, A] \oplus[W, B]$ and so $\left|W / C_{W}(A)\right|=|[W, A]|$. Let $x \in W \backslash C_{W}(A)$. By (a) $\left|A O_{p}(H) / O_{p}(H)\right|=|[x, A]| \leq|[W, A]|=\left|W / C_{W}(A)\right|$. Thus (b) holds. Clearly (iv) 2 is inherited by quotients of $V$ so it is enough to verify (f) for $H$-submodules $W$ of $V$. By (d) applied to $V /[W, H], W \leq[V, A][W, H]$ and so $W=([V, A] \cap W)[W, H]$ fulfills (iv)2. Thus (f) holds.

It remains to prove (d). Let $h \in H \backslash M$. As $A$ is quadratic, $A$ centralizes [ $\left.Z^{h}, A \cap O_{p}(H)\right]$. As $O_{p}(H)$ normalizes $Z^{h}$, also $A^{h}$ centralizes $\left[Z^{h}, A \cap O_{p}(H)\right.$. Since $M \neq M^{h}, H=\left\langle A, A^{h}\right\rangle$ and $\left[Z^{h}, A \cap O_{p}(H) \leq C_{V}(H)\right.$.

$$
Y=\left\langle Z^{h} \mid h \in H \backslash M\right\rangle
$$

Then $\left[Y, A \cap O_{p}(H)\right] \leq C_{V}(H)$.
Suppose first that $\mid A O_{p}(H) / O_{p}(H) \geq 3$. We claim then that $B$ normalizes $Y$. For this let $h \in H \backslash M$ and $b \in B$. We need to show that $Z^{h b} \leq Y$. If $h b \notin M$, this is true by definition of $Y$. So suppose that $h b \in M$. Since $\mid A O_{p}(H) / O_{p}(H) \geq 3$ there exists $c \in B$ with $c \notin O_{p}(H) \cup O_{p}(H) b$. If $h c \in M$, then $b^{-1} c \in B \cap M$. But by $2.9(10), b^{-1} c \in$ $O_{p}(H)$, a contradcition. Thus $h c \notin M$. Similarly $h b c \notin M$. Thus $Z^{h} Z^{h b c} Z^{h c} \leq Y$. Since $Z^{h} Z^{h b c} Z^{h c}=Z^{h}\left[Z^{h}, b c\right]\left[Z^{h}, c\right]$, the quadratic action of $B$ implies that $\langle b c, c\rangle$ normalizes $Z^{h} Z^{h b c} Z^{h c}$. Hence $Z^{h b} \leq Y$ as claimed.

Suppose next that $\left|A O_{p}(H) / O_{p}(H)\right|=2$. Then $p=2$ and $H / O_{2}(H) \cong \operatorname{Dih}\left(2 r^{k}\right)$. If $k=1$, then $M=A O_{p}(H)$ normalizes $Z$ and so $V=Z Y$ and again d1 and as a matter of fact also d2 holds. So suppose $k>1$ and define $L$ as in d2. Then $L \leq M$. Also let $H^{*}$ be minimal with $A \leq H^{*}$ and $H^{*} O_{p}(H)=M$. Let $V^{*}=\left\langle Z^{H^{*}}=Z^{M}\right.$. Then $V=V^{*} Y$. Also $A \cap O_{p}(H) \leq O_{p}\left(H^{*}\right)$ and so by induction $R \stackrel{\text { def }}{=} C_{H^{*}}\left(\left[V^{*}, A \cap O_{p}(H)\right] O_{p}\left(H^{*}\right)\right.$. Since $\left[V, A \cap O_{p}(H)\right]=\left[V^{*}, A \cap O_{p}(H)\right]\left[Y, A \cap O_{p}(H]\right.$ we have $\left[V, A \cap O_{p}(H), R\right]=0$. Since $R \not \leq O_{p}(H), \mathrm{d} 2$ holds in this case.

Lemma 2.9 Let $H$ be a finite group, $p$ a prime, $A$ a p-subgroup of $H$ and $V$ a faithful $G F(p) H$-module. Suppose that $A \notin O_{p}(H)$, that $A$ acts quadratically on $V$ and that $A$ lies in a unique maximal subgroup of $H$. Then one of the following holds for $\bar{H}=H / O_{p}(H)$ :

1. $\bar{H} \cong S L_{2}\left(p^{k}\right)$.
2. $p=2$ and $\bar{H} \cong S z\left(2^{k}\right)$.
3. $p=2$ and $\bar{H} \cong \operatorname{Dih}\left(r^{k}\right), r$ an odd prime.

Proof: Let $M$ the the unique maximal subgroupp of $H$ containing $A$ and $D=$ $\bigcap_{h \in H} M^{h}$. Note that $M$ contains a Sylow $p$-subgroup $S$ of $H$ and so $O_{p}(H) \leq D$. Replacing $V$ by the direct sum of the $H$-composition factors on $V$ and $H$ by $\bar{H}$ we may assume that $O_{p}(H)=1$. Moreover, if $|A|=2$, 3 . holds so we may assume $|A|>2$.

Let $T$ be an $A$ invariant Sylow $p$-subgroup of $D$. Then $H=D N_{H}(T)$. If $H=N_{H}(T)$ we get $N_{H}(T) \leq M$ and so $H=D M \leq M$, a contradiction. Hence $T \unlhd H$ and so $T \leq O_{p}(H)=1$. Thus $D$ is a $p^{\prime}$-group. Let $R$ be a maximal subgroup of $H$ and suppose that $D \not \leq R$. Then $H=D R$ and so $R$ contains a Sylow $p$-subgroup of $H$. Hence $A \leq R^{h}$ for some $h \in H$ and thus $R^{h} \leq M$. But then $H=D R=D R^{h} \leq M$, a contradiction. Thus $D \leq R$. It follows that
(1) $D \leq \Phi(H)$ and $D$ is a nilpotent $p^{\prime}$ group.

Let $N$ be a normal subgroup of $H$. If $H \neq N A$ then $N A \leq M$ and so $N \leq D$. Put $L=O^{p}(H)$ and suppose that $L \leq D$. Then $H=D S \leq M$, a contradiction. Thus $L \not 又 D$, $H=L A$. Hence:
(2) Each normal subgroup of $H$ is either contained in $D$ or contains $L$. In particular, $L / D$ is characteristicly simple.

Since $H$ acts faithfully on $\left[V, O^{p}(H)\right]$ and on $V / C_{V}\left(O^{p}(H)\right)$ we may assume that
(3) $V=[V, H]$ and $C_{V}(H)=0$.

Let $1 \neq a \in A$ and pick $g \in H$ with $a \not \leq M^{g}$. Then $H=\left\langle a, A^{g}\right\rangle$ and so by (3) $V=[V, a]+\left[V, A^{g}\right]$ and $C_{V}(a) \cap C_{V}\left(A^{g}\right)$. Since $A$ is quadratically on $V$ we also have

$$
[V, a] \leq[V, A] \leq C_{V}(A) \leq C_{V}(a)
$$

We conclude that
(4) $[V, a]=[V, A]=C_{V}(A)=C_{V}(a)$ and $|V|=|[V, A]|^{2}$

With a similar argument:
(5) $C_{V}(b)=[V, b]$ for each non-trivial quadratic element $b$ in $H$.

We may assume without loss that $A$ is a maximal quadratic subgroup of $H$ and so
(6) $A=C_{H}([V, A]) \cap C_{H}(V /[V, A])$

From (4) and (6) we conclude that
(7) $C_{H}(a) \leq N_{H}(A)$ and $A \cap A^{h}=1$ for all $h \in H \backslash N_{H}(A)$.
$m q-1$
$m q-2$
$m q-3$

Let $h \in H$ with $A \cap M^{h} \neq 1$ and let $b \in A \cap M^{h}$. Choose $k \in M^{h}$ so that $\left\langle b, A^{h k}\right\rangle$ is a $p$-group. Then $C_{V}(b) \cap C_{V}\left(A^{h k}\right) \neq 0$ and so also $\left.V_{V}(A) \cap C_{V}\left(A^{h k}\right) \neq\right)$. Thus $\left.H \neq A, A^{h k}\right\rangle$ and so $M=M^{h k}=M^{h}$. We proved
(8) Let $h \in H$. Then $h \in M$ or $A \cap M^{h}=1$.

If $p$ is odd, then by (5)

$$
\operatorname{dim}[V, A]=\min \{\operatorname{dim}[V, b] \mid 1 \neq b \in H,[V, b, b]=0\}
$$

Hence by the work of Thompson and Ho, $H \cong S L_{2}\left(p^{k}\right)$ or $p=3$ and $H \cong 2 \cdot A l t(5)$. But in latter case, $A$ lies in more than one maximal subgroup of $H$, a contradiction.

Thus we may assume from now on that
(9) $p=2$ and $|A| \geq 4$.

In particular, by (7)

$$
O_{p^{\prime}}(H)=\left\langle C_{O_{p^{\prime}}(H)}(a) \mid 1 \neq 1 \in A\right\rangle \leq C_{H}(A) .
$$

and we conclude:
(10) $D=Z(H)$ and $L=E(L)=E(H)$.

Note that the exceptionell case in 2.7 is not possible and so $A$ normalizes the components of $L$ and thus
(11) $L$ is quasisimple.

None of the groups in ?? is a minimal parabolic and so $L$ is an alternating group or a Lie type in characteristic 2 . Since $S$ lies in a unique maximal subgroup of $H$ we get $L \cong \operatorname{Alt}\left(2^{k}+1\right), L_{2}\left(2^{k}\right), S U_{3}\left(2^{k}\right), S z\left(2^{k}\right), S L_{3}\left(2^{k}\right)$ or $S p_{4}\left(2^{k}\right)$. In the last two cases $A$ has to induce a graph automorphism on $L$, which contradicts the quadratic action of $A$ on $V$. If $L \cong \operatorname{Alt}\left(2^{k}+1\right), A$ either is contained just has one non-trivial orbit and that one has lenght four or all orbits of $A$ have length at most 2 . Since $A$ lies in a unique maximal subgroup of $H$ we conclude that $L=H \cong \operatorname{Alt}(5) \cong S L_{2}(4)$. If $L \cong S U_{3}\left(2^{k}\right)$, $A$ lies in the normalizer of a Sylow 2 -subgroup and in a $S L_{2}\left(2^{k}\right)$, a contradiction, which completes the proof of the lemma.

Lemma 2.10 Let $G$ be a finite group, $M \leq G$, $p$ a prime with $F^{*}(M)=O_{p}(M)$ and $T \in \operatorname{Syl}_{p}(M)$. Let $Z_{M}=\left\langle\Omega_{1}(Z(T))^{M}\right\rangle, C_{M}=C_{M}\left(Z_{M}\right)$ and $J(M)=\left\langle J(T)^{M}\right\rangle$.
(a) $C_{M} \leq N_{G}\left(Z_{T}\right)$
(b) $Z_{M}$ is a faithful $J(M) C_{M} / C_{M}$-module and $\left.J(M) C_{M} / C_{M}=\mathrm{P}^{*}\left(J(M) C_{M} / C_{M}\right), Z_{M}\right)$.
(c) $M / J(M) \cong N_{M}\left(J(T) / N_{J(M)}(J(T)\right.$
(d) Suppose that $T$ is normal in a Sylow p-subgroup $S$ of $G$. Then $N_{G}(Z(T)) \in \mathcal{L}(S)$ and $N_{G}(J(T)) \in \mathcal{L}(S)$.

Proof: Obvious.
vqnhg
Lemma 2.11 Let $G$ be a finite group, $N \unlhd H \leq G$, $p$ a prime, $S \in \operatorname{Syl}_{p}(H)$, $V$ an elementary abelian normal p-subgroup of $H$, and $C_{S}(V) \leq Q \leq S \cap N$ Suppose that $\mathcal{A}(Q)^{G} \cap \nsubseteq N$, then there exists an elementary abelian subgroup $A$ of $S$ with $H \notin N,[V, A] \neq 1$ and $\left|V / C_{V}(A)\right| \leq\left|A / C_{A}(V)\right|$.

Proof: Let $D \in \mathcal{A}(Q)$ and $g \in G$ with $D^{g} \leq H$ and $D^{g} \not \leq N$. As $S$ is a Sylow p-subgroup of $H$ there exists $h \in H$ with $D^{g h} \leq S$. Put $A=D^{g h}$. As $N$ is normal in $H, A \not \leq N$. Since $C_{N}(V) \leq Q \leq N,[V, A] \neq 1$. Moreover, $V C_{A}(V) \leq Q$ and so $\left|V C_{A}(V)\right| \leq|A|$.

Lemma 2.12 Let L be an alternating group or simple group of Lie-type in characteristic 2. Let $H \leq L$ with $|L|_{2} /|H|_{2} \leq 2$. Then all non abelian composition factors of $H$ are alternating or a simple groups of Lie type.

Proof: Let $T \leq \operatorname{Syl}_{2}(H)$, and $S \leq \operatorname{Syl}_{2}(L)$ with $T \leq S$. Then $S^{\prime} \leq T$.
Suppose first that $L=\operatorname{Alt}(\Omega)$. If $H$ is intransitive or imprimitive we are done by induction. So suppose that $H$ is primitive. If $H$ has a non-trivial abelian normal subgroup $A$, then $H=H_{i} A$ for any $i \in \Omega$. Thus $T_{i}$ has index two in a Sylow 2-subgroup of $L_{i}$ and again we are done by induction.

Hence we may assume that $H$ has no non-trivial solvable normal subgroup. Since $|S / T| \leq 2, T$ contains an element $x$ of cycle type (2,2). Since $x \notin O_{2}(H), 1 \neq x \cdot x^{h}$ has odd order for some $h \in H$. Its is now straight forward to verify the lemma.

So suppose $L$ is a group of Lie type. and not an alternating group. If $O_{2}(H) \neq 1$, then $H$ is contained in a parabolic subgroup of $L$ and the lemma follows by induction. Hence we may assume that $O_{2}(H)=1$.

If $S$ is abelian, $L \cong L_{2}(q)$ and the result is readily verified in this case.
So we may assume that $S$ is not abelian. In particular, $S^{\prime}$ and so also $H$ contains a long root group $R$ with $R \leq Z(S)$. As $R \not \leq O_{2}(H)$, there exists $h \in H$ with $X \stackrel{\text { def }}{=}\left\langle R, R^{h}\right\rangle \cong$ $S L_{2}(q)$, where $q=|R|$. Let $r$ be the highest ling root in the root system associate to $L$. Without loss $\omega_{r} \in X \leq H$. It is now easy to verify that $L=\left\langle S^{\prime} \omega_{r}\right\rangle$ and so $L \leq H$, a contradiction.

Remark: this is rather scetchy

## $3 \quad C S$ generated modules

In this section $G$ is a finite group, $p$ a prime and $V$ a (finite dimensional) $G F(p)$ G-module.

Definition $3.1 \quad$ (a) ${ }_{G} V=\left\langle C_{V}(S) \mid S \in \operatorname{Syl}_{p}(G)\right\rangle$.
(b) $V$ is called $C S$-generated provided that $V={ }_{G} V$.

Lemma 3.2 Let $L \triangleleft \triangleleft G$. Then ${ }_{G} V \leq_{L}(V)$.
Proof: Let $S \in \operatorname{Syl}_{p}(G)$. Then $S \cap L \leq \operatorname{Syl}_{p}(L)$ and $C_{V}(S) \leq C_{V}(S \cap L)$.
Lemma 3.3 Let $p$ be a prime, $G$ a finite group, $L$ a normal subgroup of $G, S \in \operatorname{Syl}_{2}(G)$. Then $S$ normalizes a complement to $C_{V}(L)$ in $C_{V}(S \cap L)$.

Proof: Remark: This is a standard result in cohomology, the map $\pi$ below is called the corestriction map, a reference should be included

Let $T=S \cap L, \mathcal{X}$ a set of right coset representatives for $T$ in $L$ and define

$$
\begin{array}{rlcc}
\pi: C_{V}(T) & \rightarrow & V \\
v & \rightarrow \sum_{x \in \mathcal{X}} v^{T x}
\end{array}
$$

Then clearly $\pi(v)=\pi\left(v^{l}\right)$ for al $l \in L$ and so $\pi\left(C_{V}(T) \leq C_{V}(L)\right.$. On the otherhand $\pi$ restricted to $C_{V}(L)$ is just multiplication by $L / T$. Thus $\left.\pi\right|_{C_{V}(L)}$ is an isomorphism and $C_{V}(T)=C_{V}(L) \oplus \operatorname{ker} \pi$. Moreover, it follows immediately from the definition of $\pi$ that for all $v \in C_{V}(T)$ and $s \in S, \pi\left(v^{s}\right)=\pi(v)^{s}$. Thus $S$ normalizes ker $\pi$.

Lemma 3.4 Let $L \triangleleft \triangleleft G$ with $\left[C_{V}(S), L\right]=1$, then $\left[C_{V}(L \cap S), L\right]=1$.
Proof: Clearly we may assume that $L \unlhd G$. By 3.3 there exists an $S$ invariant complement $D$ to $C_{V}(L)$ in $C_{V}(S \cap L)$. Moreover, $C_{D}(S) \leq C_{V}(S) \leq C_{V}(G) \leq C_{V}(L)$ and so $C_{D}(S)=0$. This implies $D=0$ and $C_{V}(S \cap L)=C_{V}(L)$

Lemma 3.5 Let $L$ be subnormal subgroup of $G$. If $\left[C_{V}(S), L\right]=1$ then $\left[{ }_{G} V, L\right]=1$.
Proof: By $3.4 C_{V}(S \cap L) \leq C_{V}(L)$. So $L$ centralizes ${ }_{L} V$ and hence the lemma follows from 3.2.

Lemma 3.6 Let $L \triangleleft \triangleleft G$. Then $L \cap C_{G}\left({ }_{G} V\right)=C_{L}\left({ }_{L} V\right)$.
Proof: Let $L^{*}=C_{L}\left({ }_{L} V\right.$ and $L_{*}=C_{G}\left({ }_{G} V\right)$. By 3.2 $L^{*} \leq L_{*}$. Moreover, $L_{*}$ is subnormal in $G$ and centralizes $C_{V}(S)$. Thus by $3.4 L_{*}$ centralizes $C_{V}\left(L_{*} \cap S\right)$. By $3.2{ }_{L} V \leq{ }_{L^{*}} V=$ $C_{V}\left(L_{*} \cap S\right)$ and so $L_{*} \leq L^{*}$.

Lemma 3.7 Let $L \unlhd G$ with $G=L C_{G}(L)$. If $V$ is $C S$-generated then $[V, L]$ is a $C S$ generated $G$-module and $V=[V, L]_{G} C_{V}(L)$

Proof: Let $S \in \operatorname{Syl}_{p}(G), T=S \cap L, R=S \cap C_{G}(L)$ and put $W={ }_{L} C_{V}(R)$. Then by Gaschütz theorem $W=[W, L] C_{W}(L)$. Moreover, $C_{W}(T)=C_{[W, L}(T) C_{W}(L)$. It follows that $[V, L]=\left\langle C_{[W, T}(T)^{G}\right\rangle$ and $[V, L]$ is a $C S$ geneated $G$-module. Moreover, $V=\left\langle W^{G}\right\rangle=$ $[V, L]\left\langle C_{W}(L)^{G}\right\rangle$ and so $V=[V, L]_{G} C_{V}(L)$.

Lemma 3.8 Suppose that $G=\Pi_{i \in I} L_{i}$ for some subgroups $L_{i} \leq G$ such that $\left[L_{i}, L_{j}\right]=1$ whenever $i, j \in I, i \neq j$. For $\Delta \subseteq I$ let $L_{\delta}=\left\langle L_{i}\right| i \in \Delta$ and

$$
V_{\delta}=\left[{ }_{G} C_{V}\left(L_{I \backslash \Delta}, L_{i_{1}}, L_{i_{2}}, \ldots L_{i_{r}}\right]\right.
$$

where $r=|\Delta|$ and $\Delta=\left\{i_{1}, \ldots l_{r}\right\}$. (Note that by the Three Subgroup Lemma this defintion is independent form the order in which the $i_{j}$ 's are chosen). Also put $V_{\emptyset}=C_{V}(G)$.

Suppose that $V$ is a $C S$-generated $G F(p) G$-modules. Then

```
*
\[
V=\sum_{\Delta \subseteq I} V_{\Delta} .
\]
```

Moreover, each of the $V_{\Delta}$ 's is CS-generated as $G$-module.
Proof: By 3.7 The $V_{\delta}^{s}$ are $C S$-generated as $G$-module and it remains tp prove (*). For this we may assume without loss that $V$ is not the direct sum of two proper $C S$-generated $G$-submodules. Let $\Delta=\left\{i \in I \mid\left[V, L_{i}\right] \neq O\right.$ and let $i \in \Delta .3 .7$ implies $V=\left[V, L_{i}\right]_{G} C_{V}\left(L_{i}\right)$ with both summands $C S$ generated. Hence $V=\left[V, L_{i}\right]$ and $V=V_{\delta}$.

## 4 Groups with $m_{2^{\prime}}(G) \leq 3$

Lemma $_{Q T}$ 4.1 Let $p$ be an odd prime, $P$ a $p$ group of exponent $p$, class at most two and rank at most three. Then $P \cong E_{p^{i}}, i \leq 3, E x\left(p^{1+2 i}\right), i \leq 2$ or $C_{p} \times E x\left(p^{1+2}\right)$.

Proof: [As, 3.1,3.2]
$\operatorname{Lemma}_{Q T} 4.2$ Let $p$ be an odd prime, $G$ a irreducible subgroup of $G L_{3}(p)$ and $\Lambda=$ $Z\left(G L_{3}(p)\right)$ Then there exists an irreducible normal subgroup $H$ of $G$ so that one of following holds.

1. $H=S L(V) \cong S L_{3}(p)$.
2. $H=\Omega(V, q)$ for some non degenerate quadratic form $q$ on $V$.
3. $H \cong \operatorname{Alt}(5), p^{2} \equiv 1 \bmod 10$ and $G \leq \Lambda \times H$.
4. $H \cong L_{3}(2), p^{3} \equiv 1 \bmod 7$ and $G \leq \Lambda \times H$.
5. $H \cong 3 \cdot \operatorname{Alt}(6), p \equiv 1,19 \bmod 30$ and $G \leq \Lambda H$.
6. $H$ is cyclic of order dividing $p^{3}-1$ but not $p-1$ and $H=G$ or $|G / H| \cong C_{3}$.
7. $H \cong E x\left(3^{1+2}\right)$ and $G \Lambda / H \Lambda \leq S L_{2}(3)$.
8. $G$ is monomial

Proof: [As, 3.12]
Lemma $_{Q T}$ 4.3 Let $p$ be an odd prime, $V$ a four dimensional non-degenerate symplectic space over $G F(p)$ and $G$ a maximal subgroup of $S p(V)$. Then one of the following holds.
(a) $G$ is the normalizer of a singular 1-space in $V$ and $G \sim \operatorname{Ext}\left(p^{1+2}\right):\left(C_{p-1} \times S L_{2}(p)\right)$.
(b) $G$ is the normalizer of a singular 2-space in $V$ and $G \sim E_{p^{3}}: G L_{2}(p)$
(c) $G \sim S L_{2}\left(p^{2}\right) .2$ and $G^{\prime}$ fixes a non-degenerated 2-dimensional sympectic form over $G F\left(p^{2}\right)$ on $V$.
(d) $G \cong S L_{2}(p)$ 乙 $C_{2}$ and $G$ fixes a decompostion of $V$ into the orthorgonal sum of two non-degenerated 2-dimensional subspaces.
(e) $G \sim G L_{2}(p) .2$ and $G$ fixes a decomposition of $V$ into the direct sum of two singular 2-spaces.
(f) $G \sim G U_{2}(p) .2 \sim\left(C_{p+1} \cdot S L_{2}(p)\right) .2$ and the subgroup of index 2 fixes a non-degenerate 2-dimensional unitary form over $G F\left(p^{2}\right)$ on $V$.
(g) $G \cong S L_{2}(p)$ and $V$ is the third symmetric power of the natural module for $G$.
(h) $G \sim E x t_{-}\left(2^{1+4}\right) \cdot \operatorname{Alt}(5)(.2)$.
(i) $G \sim 2 \cdot \operatorname{Alt}(6)(.2)$ and $V$ is the half-spin module for $G$
(j) $p=7, G \sim 2 \cdot \operatorname{Alt}(7)$ and $V$ is the half-spinmodule for $G$

Proof: See [Mi, Theorem 10]. We remark that this list can be easily checked if one is only interested in $K$-groups. Namely let $W$ be the natural $\Omega_{5}(p)$ module for $P S_{4}(p)$, $H=S p_{4}(p)$ and $\bar{H}=H / Z(H)$. We may assume that $G$ acts irreducible on $W$.

If $\operatorname{Sol}() \neq 1$ let $A$ be a minimal solvable normal subgroup of $\bar{G}$. If $A$ is cyclic, $|A|$ divides $p^{5}-1$ and $|H|$. Hence $|A|$ divides $p-1$ and $A$ acts as a scalar on $W$, a contradiction. So $A$ is not cyclic and it is now easy to see that (h) holds.

If $\operatorname{Sol}(\bar{G})=1$, let $E$ be a component of $G$. Since $O_{2}^{ \pm}(p)$ is solvable, $[W, E] C_{W}(E) / C_{W}(E)$ is at least three dimensional. It follows that $C_{H}(G)$ is solvable and so $E Z(H)=F^{*}(G)$ and $E$ acts irreducibly on $W$. If $Z(H) \notin E, m_{2}(Z(H) E) \geq 3$, a contradiction to $m_{2}(Z(H))=2$. Thus $Z(E)=Z(H)$. Let $V$ be the natural $S p_{4}(p)$ module for $H$. If $E$ does not act irreducible on $V$ then since $V \bigwedge V=W \oplus G F(p), E$ is not irreducible on $W$. So $E$ acts irreducible on $W$. Using the list of finite simple groups its now easy to verify that one of (g),(i) or (j) holds or that $E \cong 2 \cdot \operatorname{Alt}(5)$. But in the latter case, $G$ is contained in a subgroup of type (i) or (j).

Lemma $_{Q T}$ 4.4 Let $p$ be an odd prime, $V$ a four dimensional non-degenerate symplectic space over $G F(p)$ and $G \leq S p(V)$ with $O_{p}(G)=1$.
(a) If $G=O^{p^{\prime}}(G) \neq 1$, then one of the following holds:

1. $G \cong S p_{4}(p), S L_{2}\left(p^{2}\right), S L_{2}(p) \times S L_{2}(p)$ or $S L_{2}(p)$
2. $p=7$ and $G \cong 2 \cdot \operatorname{Alt}(7)$.
3. $p=5$ and $G \sim 2 \cdot \operatorname{Alt}(5), E x t_{-}\left(2^{1+4}\right) \cdot \operatorname{Alt}(5), \operatorname{Ext}\left(2^{1+4}\right) \cdot C_{5}$.
4. $p=3$ and $G \sim 2 \cdot \operatorname{Alt}(5), E x t_{-}\left(2^{1+4}\right) \cdot \operatorname{Alt}(5), \operatorname{Ext}\left(2^{1+4}\right) \cdot C_{3}$.
(b) If $G$ is quasisimple then one of the following holds:
5. $G \cong S p_{4}(p), S L_{2}\left(p^{2}\right)$ or $S L_{2}(p)$.
6. $G \cong 2 \cdot \operatorname{Alt}(5)$ or $2 \cdot \operatorname{Alt}(6)$.
7. $G \cong 2 \cdot \operatorname{Alt}(7)$ and $p=7$.

Proof: [As, 3.13]
$m p 3 Q$
$\operatorname{Lemma}_{Q T} 4.5$ Let $p$ be an odd prime, $G$ a group with $F^{*}(G)=O_{p}(G) \stackrel{\text { def }}{=} Q, m(Q) \leq 3$ and $G^{*}=G / Q$.
(a) If $G=O^{p^{\prime}}(G) \neq Q$, then one of the following holds:

1. $G^{*} \cong S L_{2}(p)$ or $S L_{3}(p)$.
2. $G^{*} \cong S L_{2}(p) \times S L_{2}(p), S L_{2}\left(p^{2}\right)$, or $S p_{4}(q)$ and $m_{p}(G)>3$.
3. $p=7$ and $G^{*} \cong 2 \cdot \operatorname{Alt}(7)$.
4. $p=5$ and $G \sim S L_{2}(5), E x t_{-}\left(2^{1+4}\right)$. $\operatorname{Alt}(5)$ or $E_{x t}\left(2^{1+4}\right) \cdot C_{5}$.
5. $p=3, G \sim 2 \cdot \operatorname{Alt}(5)$ or Ext_ $\left(2^{1+4} . \operatorname{Alt}(5)\right.$ and $m_{3}(G)>3$.
6. $p=3$ and $G \sim \operatorname{Ext}\left(2^{1+4}\right) . C_{3}$
(b) If $G^{*}$ is quasisimple then one of the following holds:
7. $G^{*} \cong S p_{4}(p)$, or $S L_{2}\left(p^{2}\right)$ and $m_{p}(G)>3$.
8. $G^{*} \cong L_{2}(p), S L_{2}(p) o r S L_{3}(p)$

Remark: $S L_{3}(p)$ also should have $m_{p}(G)>3$
3. $G^{*} \cong \operatorname{Alt}(5), 2 \cdot \operatorname{Alt}(5)$ or $2 \cdot \operatorname{Alt}(6)$. Moreover, if $p=3$ then $m_{3}(G)>3$.
4. $G^{*} \cong L_{3}(2)$ and $p^{3} \equiv 1 \bmod 7$
5. $G^{*} \cong 3 \cdot \operatorname{Alt}(6)$ and $p \equiv 1,19 \bmod 30$
6. $G \cong 2 \cdot \operatorname{Alt}(7)$ and $p=7$.

Proof: By [As, 3.13] we only need to show that $m_{p}(G)>3$ in a.5, b. 1 and for $p=3$ in b.3. As in Aschbacher's proof let $G$ be a minimal counterexample and $D$ a critical subgroup of $Q$. As $G^{*}=O^{p}\left(G^{*}\right), G=O^{3}(G)$.

Let $t$ be an involution in $G$ with $t^{*} \in Z\left(G^{*}\right)$. By minimality $G=D C_{G}(t)$ and without loss $D=[D, t]$. It follows that $D \cong \operatorname{Ext}\left(p^{1+4}\right)$. In particular, as $m(Q) \leq 3, \Omega_{1}\left(C_{Q}(D)\right)=$ $Z(D)$. As $G$ acts irreducible on $D / Z(D), Q=D C_{Q}(D)$. Since $G$ centralizes $\Omega_{1}\left(C_{Q}(D)\right)$, $G=O^{3}(G)$ centralizes $C_{Q}(D)$.

Considering the $p$-part of the Schur multiplier of $G^{*}$ we see that $C_{G}(t)^{\prime} \cong G^{*}$ or $p=3$ and $C_{G}(t)^{\prime} \cong 3 \cdot S L_{2}\left(3^{2}\right)$. In any case there exists $X \leq C_{G}(t)^{\prime}$ so that $X$ is an elementary abelian $p$-group and $X D^{\prime} / D^{\prime} \cong C_{p}$. Moreover $[D, X, X, X] \leq D^{\prime}$ and so $[Y, X] \leq D^{\prime}$ for some $Y \leq D$ with $Y \cong E_{p^{3}}$. Since $Y=[Y, t] \times D^{\prime}$ we have $[Y, X]=1$ and so $Y X \cong E_{p^{4}}$.

Definition 4.6 Let $p$ be an odd prime, $Q$ a p-group and $H$ a group acting on $Q$.
(a) $\mathcal{C R}_{Q}(H)$ is the set of maximal, $H$-invariant, class 2 and exponent $p$, normal subgroups of $Q$.
(b) We say that $Q$ is $H$-homogeneous of rank $n$ provide that there exists $A \in \mathcal{C R}_{H}(Q)$ so that $A \cong E_{p^{n}}$ and $H$ acts irreducible on $A$.

Lemma 4.7 Let $p$ be an odd prime, $Q$ a p-group, $H$ a group acting on $Q$. Let $D \in$ $\mathcal{C} \mathcal{R}_{Q}(H)$ and $T=C_{Q}(D)$. Then $\mathcal{C R}_{T}(H)=\{Z(D)\}$. For $i \geq 0$ put $T_{i}=\Omega_{i}(T)$. Then $T_{i+1} / T_{i}=\Omega_{1}\left(\left(T / T_{i}\right)=\Omega_{1}\left(Z\left(T / T_{i}\right)\right) \in \mathcal{C R} T / T_{i}(H)\right.$ and if $i \geq 1, T_{i+1} / T_{i}$ is isomorphic $t o$ $H Q$-submodule $T_{i+1}^{p} T_{i-1} / T_{i-1}$ of $T_{i} / T_{i-1}$.

Proof: Let $A=Z(D)$. Clearly $A \leq \Omega_{1}(Z(T))$. Let $A^{*} \in \mathcal{C R}_{T}(H)$. Then $D A^{*}$ has class two und exponent $p$ and so by maximality of $D, A^{*} \leq D \cap T \leq A$. By maximality of $A^{*}$, $A \leq A^{*}$ and so $A=A^{*}$ and $\mathcal{C R}_{T}(H)=\{A\}$. Let $C / A \in \mathcal{C} \mathcal{R}_{Q / A}(H)$ and $B / A=Z(C / A)$. Then $B$ is of class two and $\Omega_{1}(B)=A$ by maximality of $A$. As $p$ is odd the map

$$
\begin{aligned}
\phi: B / A & \rightarrow A \\
b A & \rightarrow b^{p}
\end{aligned}
$$

is a $H Q$-homomorphism. As $\Omega_{1}(B)=A, \phi$ is one to one thus $B / A \cong B^{p}$ as $H Q$-module. Let $c, e \in C$ The $c^{p} \in A \leq Z(T)$ and so $c^{p}=\left(c^{p}\right)^{e}=\left(c^{e}\right)^{p}$ Put $d=c c^{-e}$. As $c^{e} \in c B,\langle c\rangle B$ has class two and $p$ is odd, $d^{p}=c^{p}\left(c^{e}\right)^{-p}=1$. It follows that $d \in \Omega_{1}(B)=A$. Hence $c A=c^{e} A$ for all $e \in C$ and so $c A \in Z(C / A)=B$. Thus $C=B$ and $B / A \in \mathcal{C R}_{Q / A}(H)$. Since $T$ centralizes $B^{p} \leq A, T / A$ centralizes $B / A$. The lemma now follows by induction on $|T|$.

[^0]Corollary 4.8 Let $p$ be an odd prime, $Q$ a p-group, $H$ a group acting on $Q$ and $D \in$ $\mathcal{C} \mathcal{R}_{Q}(H)$. Then $C_{H}(D) / C_{H}(Q)$ is p-group.

Proof: Note first that $C_{H}(D)$ centralizes $Q / C_{Q}(D)$ and $Z(D)$. Let $T$ and $T_{i}$ be as 4.7. Then by 4.7, $C_{H}(D)$ centralises all factors of the normal series

$$
1=T_{0} \leq T_{1} \leq T_{2} \cdot T_{k}=T \leq Q .
$$

Thus $C_{H}(D) / C_{H}(Q)$ is a $p$-group.
Lemma 4.9 Let $p$ be a prime with $p \geq 5, A \cong C_{p^{2}} \times C_{p^{2}}$ and $t \in \operatorname{Aut}(A)$ with $t^{p}=1$. Then $t$ centralizes $\Omega_{1}(A)$. In particular, Aut $(A)$ has no subgroup isomorphic to $S L_{2}(p)$.

Proof: Identify $t$ which its image in the ring $\operatorname{End}(A)$. Since $|A|=p^{4}$ we have $(t-1)^{4}=0$ and since $p \leq 4$ we get
(1) $(t-1)^{p}=0$

Since $\left|A^{p}\right|=p^{2}$ we have
(2) $p(t-1)^{2}=0$

Since $t^{p}=1$ we have
(3) $t^{p}-1=0$

Consider the polyomial $f(x)=x^{p-1}+x^{p-2}+\ldots+x+1 \in Z[x]$. Since $f(x) \equiv(x-$ $1)^{p-1} \bmod p, f(x)=(x-1)^{p-1}+p \cdot g(x)$ for some $g(x) \in Z[x]$. Write $g(x)=h(x)(x-1)+d$ for some $h(x) \in Z[x], d \in Z$. Then $p=f(1)=p \cdot d$ and so $d=1$ and $f(x)=(x-1)^{p-1}+$ $p \cdot h(x)(x-1)+p$. Since $f(x)(x-1)=x^{p}-1$ we obtain
(4) $x^{p}-1=(x-1)^{p}+h(x) p(x-1)^{2}+p(x-1)$

Substituting $t$ for $x$ in (4) and using (1) to (3) we obtain
(5) $0=p(t-1)$

Hence $t$ centralizes $A^{p}=\Omega_{1}(A)$.
Lemma $_{Q T}$ 4.10 Let $G$ be a finite, perfect $\mathcal{K}$-group with $O_{2}(G)=1$ and $m_{2^{\prime}}(G) \leq 3$.
(a) $G$ is the central product of its Sol-components.
(b) If $G$ is a Sol-component of $G$ then one the following holds:
(b1) $G$ is quasisimple and if $G / Z(G)$ is a group of Lie type in characteristic 2 or an alternating group then $G / Z(G)$ is one of the following:
$\operatorname{Alt}(n), 5 \leq n \leq 11$;
$L_{n}(q), n \leq 4$;
$L_{n}(2), n \leq 7$;
$S p_{2 n}(q), n \leq 3 ;$
$G_{2}(q)$;
$U_{n}(q), n \leq 4 ;$
$S z(q)$;
$\Omega_{8}^{-}(q)$;
${ }^{3} D_{4}(q)$;
${ }^{2} F_{4}(q)$.
(b2) $F^{*}(G)=F(G)$. Let $p$ be a prime dividing $|[F(G), G]|$ and put $Q=\left[O_{p}(G), G\right]$. Then one of the following holds:

1. $G / F(G) \cong 2 \cdot \operatorname{Alt}(5)$ or $S L_{2}(p)$, and $Q \cong \operatorname{Ext}\left(p^{1+2}\right)$ or $Q$ is of $G$ homogenous of rank 2.
2. $G / F(G) \cong S L_{3}(p) ; L_{3}(2)\left(p^{3} \equiv 1 \bmod 7\right) ; L_{2}(p) ;(2 \cdot) \operatorname{Alt}(5) ;$ or $(2 \cdot) 3 \cdot \operatorname{Alt}(6)$ ( $p \equiv 1,19 \bmod 30$ and $Q$ is $G$-homogenous of rank 3.
3. $G / F(G) \cong S L_{2}(p), 2 \cdot \operatorname{Alt}(5),(3 \cdot) 2 \cdot \operatorname{Alt}(6)$ or $2 \cdot \operatorname{Alt}(7)($ and $p=7)$ and $Q \cong$ $\operatorname{Ext}\left(p^{1+4}\right)$.
(c) Let $E$ be quasisimple so that $E / Z(E)$ is alternating or a group of Lie type in characteristic 2. Suppose that $G$ is a central product of $r$ copies of $E$ with $r \geq 2$. Then $r \leq 3$ and one of the following holds:
(b1) $E / Z(E) \cong L_{2}(q), L_{3}(2)$ or $S z(q)$.
(b2) $E \cong 3 \cdot \operatorname{Alt}(6)$ or $S L_{3}(4), r=2$ and $|Z(G)|=3$.
Proof: (a) Let $L$ be a Sol-component of $G$.
Suppose first that $L$ does centralize all its distinct conjugates under $G$. Then $\left|L^{G}\right| \leq 3$ and as $\operatorname{Sym}(3)$ is solvable, $G$ normalizes $L$. As $L$ is a $\mathcal{K}$-group, $\operatorname{Out}(L / \operatorname{Sol}(L))$ is solvable and so $G=L C_{G}(L / \operatorname{Sol}(L))$. Bu induction $C_{G}\left(L / S o l(L)^{\infty}\right.$ is the central product of its Sol-components.

Hence we may in any case assume that there exist distinct Sol-components $L_{1}$ and $L_{2}$ of $G$ with $\left[L_{1}, L_{2}\right] \neq 1$. Note that $\left[L_{1}, L_{2}\right] \leq \operatorname{Sol}(G)$ and by induction $G=L_{1} L_{2}$. Moreover, $L_{i}$ is normal in $G$. If $\left[F(G), L_{1}, L_{2}\right]=1$ and $\left[F(G), L_{2}, L_{1}\right]=1$ we get $\left[L_{1}, L_{2}\right] \leq$ $C_{G}\left(F^{*}(G) \leq F(G)\right.$ and so $\left[L_{1}, L_{2}\right]=\left[L_{1}, L_{2}, L_{2}\right]=\left[L_{1}, L_{2}, L_{1}, L_{2}\right] \leq\left[F(G), L_{1}, L_{2}\right]=1$, a contradiction. Hence we may assume that $\left[O_{p}(G), L_{1}, L_{2}\right] \neq 1$ for some odd prime $p$. Put $Q=O_{p}(G)$ and $D \in \mathcal{C} \mathcal{R}_{Q}(G)$. Then $\left[D, L_{1}\right] \neq 1 \neq\left[D, L_{2}\right]$. We conclude that $D \cong \operatorname{Ext}\left(p^{1+4}\right)$ and $\left[D, L_{1}, L_{2}\right]=1$. Moreover, $[D, Q] \leq D^{\prime}, Q=C_{Q}(D) D, C_{Q}(D)$ is cyclic and so $\left[C_{Q}(D), G\right]=1$. Thus $\left[Q, L_{1}, L_{2}\right]=\left[D, L_{1}, L_{2}\right]=1$, a contradiction.
(b) If $E(G) \neq 1$, then $G$ is clearly a component of $G$ and it is now easy to verify that (b1) holds.

So suppose that $E(G)=1$. Then by definition $F^{*}(G)=F(G)$. Let $p$ and $Q$ be as in (b2). Let $D \in \mathcal{C} \mathcal{R}_{Q}(G), D^{*}=D / D^{\prime}$ and $\bar{G}=G / C_{G}\left(D^{*}\right)$. Let $R$ be minimal in $G$ with respect to $D \leq R$ and $G=R C_{G}(D)$. Then $C_{R}(D) D / D$ is nilpotent and so $C_{R}(D)$ is nilpotent. In particular, $F^{*}\left(R / O_{p^{\prime}}(R)\right)$ is a $p$-group.

Assume that $\operatorname{Sol}(\bar{G}) \neq O_{p}(\bar{G}) Z(\bar{G})$. Then its easy to see that $D \cong \operatorname{Ext}\left(p^{1+4}\right)$ and $\bar{G} \sim E x t_{-}\left(2^{1+4}\right) . \operatorname{Alt}(5)$. Moreover, by 4.55, applied to $R / O_{p^{\prime}}(R), p>3$.

Assume that $O_{p}\left(\bar{G} \neq 1\right.$. Then $D \cong E_{p^{3}}, C_{p} \times \operatorname{Ext}\left(p^{1}+2\right)$ or $\operatorname{Ext}\left(p^{1+4}\right.$. Mostly without loss,(TO BE CONTINUED) $G=R$ and $O_{p^{\prime}}(G)=1$.

Suppose that $D \cong \operatorname{Ext}\left(p^{1+4}\right)$ and let $A / D^{\prime}$ be a minimal $G$ invariant subgroup of $D / D^{\prime}$. If $\left|A / D^{\prime}\right|=p$ we get conclude that $\left[A, G^{\prime}\right]=1$ and so $[A, G]=1$ and $[A, D]=1$, a contradiction. Hence $\mid A / D^{p}$ rime $\mid=p^{2}$ and $\bar{G} \sim p^{3} S L_{2}(p)$ or $p^{3} 2 \cdot \operatorname{Alt}(5)$. Let $t$ be an involution in which inverts $A / D^{\prime}$. Then $C_{G}(t) \sim p^{1+3} S L_{2}(p)$ or $p^{1+3} 2 \cdot \operatorname{Alt}(5)$ and so contains a normal $E_{p^{4}}$, a contradiction.

Suppose that $D \cong C_{p} \times \operatorname{Ext}\left(p^{1+2}\right)$. Then $G=G^{\prime}$ centralizes $Z(D)$ and $Z(D) / D^{\prime}$ and so $Z(D) \leq Z(G)$. By 4.7 we conclude that $G$ also centralizes $C_{Q}(D)$ and so $C_{Q}(D)=C_{Q}(G)$. Let $t$ be an involution in $G$ inverting $D / Z(D)$. Then $Q / C_{Q}(D)$ has order $p^{4}$ and is inverted by $t$. Thus $Q / C_{Q}(D)$ is abelian and $Q^{\prime} \leq Z(G)$. In particular $Q$ has class two and so $\Omega_{1}(Q)=D$. Let $x, y \in Q$ so that $t$ inverts $x$ and $y$ and $Q=C_{Q}(D) D\langle x, y\rangle$. Since $t$ inverts $x^{p}, x^{p} \in D$ and since $x^{p} \neq 1$, we conlude that $D=\left\langle x^{p}, y^{p}\right\rangle Z(D)$ and so $Q=C_{Q}(D)\langle x, y\rangle$. Hence $Q^{\prime}=\langle[x, y]\rangle$ is cyclic and so $Q^{\prime} \cap D=D^{\prime}$. Thus $[Q, D] \leq D^{\prime}$ and $\left[D^{*}, Q\right]=1$, a contradiction.

Thus $D \cong E_{p^{3}}$ and so $Q / C_{Q}(D) \cong E_{p^{2}}$. We will use 4.7 without further reference. In particular we are done if $G$ normalizes a hyperplane in $Q$. So suppose $\left|C_{D}(G)\right|=p$. Let $T$ and $T_{i}$ be as in 4.7. Let $t$ be an involution in $G$ inverting $D / C_{D}(G)$. Assume first that $T=D$. The $t$ inverts $Q / C_{D}(G)$ and thus $Z(Q)=Q^{\prime}=C_{D}(G)$. It follows that $Q$ is extra special, a contradiction to $D \in \mathcal{C R}_{Q}(G)$. Thus $T \neq D$. Let $A / D=C_{T / D}(G)$. Note that $C_{Q}(t)=C_{T}(t)$ is cyclic and $A=C_{A}(t) D$. Thus $t$ inverts $Q / C_{Q}(A)$. It is now easy to see in $\operatorname{Aut}(A)$ that $C_{Q}(A)=T$ and $A=C_{A}(G) D$. If $T_{2} \neq A$ put $B=T_{2}$ otherwise let $B=Q$. Note that since $G$ is perfect, $Q=[Q, t]$ and $T=[T, t] Q^{\prime}$. But $\mid Q^{\prime}[T, t] /[T, t] \leq p$ and so if $A=T_{2}, A=T$. Hence in any case $|B / A|=p^{2},[B, Q] D=A$ and $t$ inverts $B / C_{A}(G)$. In particular, $B^{\prime} \leq C_{A}(G)$. Since $t$ centralizes $\operatorname{Hom}\left(B / A, A / C_{A}(G)\right),[B, Q] \leq C_{A}(G)$. If $Q / C_{Q}(B)$ has exponent $p$ we conclude that $[B, Q]$ has exponent $p$ and $[B, Q] \leq D$, a contradiction. Thus $Q / C_{Q}(B) \cong C_{p^{2}} \times C_{p^{2}}$ and hence $Q^{p}=T$. Hence $[B, T]=C_{D}(G)$,

Assume that $\operatorname{Sol}(\bar{G}=Z(\bar{G}$. Then as $G$ is a Sol-component, $\bar{G}$ is quasisimple.
Remark: Lots of case with $L / F(G) \cong 2 \cdot \operatorname{Alt}(5)$ or $\operatorname{Ext}_{-}\left(2^{1+4}\right.$ need to be worked into the statement of the theorem, 4.9 has to be used to exclude smilar cases for $S L_{2}(p)$ TO BE CONTINUED

Lemma 4.11 Let $G \cong \operatorname{Sym}(\Omega)$ or $\operatorname{Alt}(\Omega),|\Omega|=n$ finite, and $H$ a maximal subgroup of $G$ such that $|G / H|$ is odd.
(a) For an integer $k$ let $b_{2}(k)=\left\{2^{i} \mid a_{i} \neq 0\right\}$ where $k=\sum_{i=1}^{n} a_{i} 2^{i}$ with $a_{i} \in\{0,1\}$. Then one of the following holds.

1. $H=N_{G}(\Lambda)$ where $\Lambda \subset \Omega$ and $b_{2}(|\Lambda|) \subseteq b_{2}(\Omega)$
2. $H=N_{G}(\Pi)$, where $\Pi$ is a partition of $\Omega$ into $m$ parts of size $l$ and $l$ is a power of 2 dividing $n$.
3. $G=\operatorname{Alt}(7)$ and $H \cong L_{3}(2)$.
4. $G=\operatorname{Alt}(8)$ and $H \sim 2^{3}: L_{3}(2)$.
(b) If $G=\operatorname{Alt}(7)$, then $H=L_{3}(2), \operatorname{Alt}(6), \operatorname{Sym}(5)$ or $\operatorname{Sym}(3) \wedge \operatorname{Sym}(4)$.
(c) If $G=\operatorname{Sym}(7)$, then $H=\operatorname{Sym}(6), \operatorname{Sym}(5) \times C_{2}$ or $\operatorname{Sym}(3) \times \operatorname{Sym}(4)$.
(d) If $G=\operatorname{Sym}(9)$ then $H=\operatorname{Sym}(8)$.
(e) If $G=\operatorname{Sym}(10)$, then $H=\operatorname{Sym}(8) \times C_{2}$ or $C_{2}$ 2 $\operatorname{Sym}(5)$.
(f) If $G=\operatorname{Sym}(11)$, then $H=\operatorname{Sym}(8) \times \operatorname{Sym}(3), \operatorname{Sym}(9) \times C_{2}$ or $\operatorname{Sym}(10)$.
(g) If $G=\operatorname{Alt}(n), n \geq 9$, then $H=H^{*} \cap \operatorname{Alt(n)}$ for some maximal subgroup $H^{*}$ of $\operatorname{Sym}(n)$ which contains a Sylow 2-subgroup of Sym(n).

## Proof: Remark: Maybe we should find a reference, below is a the sketch of aproof

If $G=\operatorname{Sym}(\Omega)$, this easliy follows since the subgroup of $H$ generated by the 2 -cycles in $H$ is a direct product of natural embedded symmetric groups. So we may assume that $G=\operatorname{Alt}(\Omega)$ and $N_{S y m(\Omega)}(H) \leq \operatorname{Alt}(\Omega)$. Moreover, we may assume that $H$ acts primitively on $\Omega$. Let $X \subset \Omega$ with $|X|=4$ and $A_{X} \stackrel{\text { def }}{=} O_{2}(\operatorname{Alt}(X)) \leq H$. Let $h \in H$.

If $\left|X \cap X^{h}\right|=3$, then $\left\langle A_{X}, A_{X}^{h}\right\rangle=\operatorname{Alt}\left(X \cup X^{h}\right)$ and so $H=G$, a contradiction. If $\left|X \cap X^{h}\right|=1$, then $\left|X \cap X^{a}\right|=3$ for all $a \in A_{X}^{h}$, a contradiction to by previuos case.

Thus $\left|X \cap X^{h}\right| \in\{0,2,4\}$ for all $h \in H$.
Let $V$ be the power set of $\Omega$ viewed as a vector space over $G F(2)$ and endowed with the natural symmetric form. It follows that $U \stackrel{\text { def }}{=}\left\langle X^{H}\right\rangle$ is a singular subspace of $V$ and all sets in $U$ have size divisible by 4 . Moreover if $\left|X \cap X^{h}\right|=2$, then $X+X^{h}$ is in $\left\langle A_{X}, A_{X}^{h}\right\rangle$ conjugate to $X$ and $X^{h}$. Since $X \cap X^{h}$ is not a set of imprimitivety, there exists $l \in H$ with $\left|X \cap X^{h} \cap X^{l} \cap X^{h l}\right|=1$ It follows that $\mid X \cap X^{h} \cap Y=1$ or some $Y \in\left\{X^{l}, X^{h l}\right.$. Let $Z=X \cup X^{h} \cup Y$. Since $|X \cap Y|=\left|X^{h} \cup Y\right|=2$ we get $|Z|=7$. Put $L=\left\langle A_{X}, A_{X}^{h}, A_{Y}\right\rangle$ then $L \cong L_{3}(2)$. If $n \leq 7$ we are done. If $n \geq 8$, there must exists $k \in H$ with $Z \cap X^{k} \neq \emptyset$ and $X^{k} \not \subset Z$. Since $X^{k}$ is perpendicular to $\left\langle X^{L}\right\rangle$ we get that $\left|Z \cap X^{k}\right|=3$ ( and indeed $Z \cap X^{k}=Z \backslash X^{r}$ for some $r \in L$. Let $W=Z \cup X^{k}$ and $K=\left\langle L, A_{X}^{k}\right.$. Then $K \cong 2^{3}: L_{3}(2)$. We $n=8$ then $K=H$ an we are done. If $n \geq 9$ then there exists $s \in H$ with $W \cap X^{s} \neq \emptyset$ and $X^{s} \not \subset W$. Since $K$ acts transitively on $W$, we conclude that $X^{s}$ intersects each subset of sixe seven in $W$ in $O$ or 3 elements, a contradiction, which completes the proof of the lemma.

## 5 Subnormal Subgroups

Lemma 5.1 Let $G$ be a finite group, $L$ a subnormal subgroup of $G, Q$ a normal $q$-subgroup of $G$ and $R$ a subgroup of $G$ which centralizes $L$ and $N_{Q}(L)$. Then $O^{q}(R)$ centralizes $Q$.

Proof: Without loss $R=O^{q}(R)$. Suppose the lemma is false and let $X$ be minimal in $Q$ such that $L$ and $R$ normalize $X$, and $R$ does not centralize $X$. Then $[X, R, R] \neq 1$ and so $X=[X, R]$. As $O^{q}(L)$ is subnormal in $Q^{q}(L) X$ and $X$ is a $q$-group we conclude that $\left[X, O^{q}(L)\right] \leq L$. Thus $R$ centralizes $\left[X, O^{q}(L)\right]$ and hence $\left[X, Q^{q}(L)\right] \neq X$. But this implies $[X, L] \neq X$ and so by minimal choice of $X,[X, L, R]=1$. The three subgroup lemma implies $[X, R, L]=1$ and thus $[X, L]=1$ and $X \leq N_{Q}(L)$. We conclude that $[X, R]=1$ and the lemma is established.

Lemma 5.2 Let $G$ be a finite group, $\pi$ a set of primes and $L$ a subnormal subgroup of $G$ such that $L=O^{\pi}(L)$. Then $E_{\pi}\left(N_{G}(L)\right)=E_{\pi}(G)$.

Proof: Note first that $N_{G}(L)=N_{G}\left(L O_{\pi}((G))\right), E_{\pi}\left(G / O_{p}(G)\right)=E_{\pi}(G) / O_{\pi}(G)$ and $E_{\pi}\left(N_{G}(L) / O_{\pi}(G)\right)=E_{\pi}\left(N_{G}(L) / O_{p}(G)\right.$. Thus we may assume that $O_{\pi}(G)=1$.

Put $H=N_{G}(L)$. Since $E(G)$ normalizes $L$ we have $E(G) \leq E(H)$. Let $R$ be the group generated by $O_{\pi}(H)$ and the $\pi$-components of $H$ which are not contained in $E(G)$. Then $R$ centralizes $E(G)$ and $F(G) \cap H$. By the previous lemma applied with $Q$ a Sylow subgroup of $F(G)$ we conclude that $R$ centralizes $F(G)$ and $F^{*}(G)$. Thus $R \leq F^{*}(G)$ and since $E_{\pi}(H)=E(G) R, E_{\pi}(H)=E_{\pi}(G)=E(G)$.

Corollary 5.3 Let $G$ be a finite group, p, q distinct primes and $L$ a subnormal subgroup of $G$ such that $L=O^{p}(L)$ and $L / O_{p}(L)$ is a q-group. Then $O^{q}\left(F_{p}^{*}\left(N_{G}(L)\right)=O^{q}\left(F_{p}^{*}(G)\right)\right.$.

Proof: Apply the previous lemma with $\pi=q^{\prime}$.
Lemma 5.4 Let $G$ be a finite group and $L$ a subgroup of $G$ such that $L=O^{p}(L), O_{p}(L) \neq 1$ and $L / O_{p}(L)$ is either quasi-simple or a q-group. Then $L$ is subnormal in at most one maximal p-local subgroup of $G$ containing $N_{G}(L)$.

Proof: Let $M_{1}$ and $M_{2}$ be maximal p-locals of $G$ containing $N_{G}(L)$. By the previous lemma $E_{p}\left(M_{1}\right)=E_{p}\left(N_{G}(L)=E_{p}\left(M_{2}\right)\right.$. As $O_{p}(L) \neq 1, O_{p}\left(E_{p}\left(N_{G}(L)\right) \neq 1\right.$ and so $N_{G}\left(E_{p}\left(N_{G}(L)\right)\right)$ is a $p$-local containing $M_{1}$ and $M_{2}$. Thus $M_{1}=M_{2}$.

## 6 Nice Modules

Definition 6.1 Let $H$ be group and $V$ a faithful $G F(p) H$-module. Then

1. $a_{V}(H)$ is defined by $\left|V / C_{V}(H)\right|^{a_{V}(H)}=|H|$.
2. $\left.q a_{V}(H)=\min \left\{a_{V}(A) \mid 1 \neq A \leq H,[V, A, A]=1\right]\right\}$, where $q a_{V}(H)=\infty$ if $H$ has no nontrivial quadratic subgroups.
3. $r a_{V}(H)$ is the minimum of the $q a_{W}(H)$, where $W$ runs through the non-trivial composition factor for $H$ on $V$
4. Let $a$ be a positive real number. Then $V$ is called an $F a$ module if $q a_{V}(H) \leq a$ and an $F^{*} a$ module if $q a_{V}(H)<a$.
5. An FF-module is an F1-module.

Lemma 6.2 Let $G$ be a finite group, $p$ an odd prime, $S \in \operatorname{Syl}_{2}(G)$ and $V$ a faithful $G F(2)$ module. Suppose that
(i) $G=O_{p}(G) S$.
(ii) $[V, S, S]=0$.

The there exists a set of hyperplanes $\mathcal{H}$ of $S$ and $G$-submodules $V_{H}, H \in \mathcal{H}$ so that
(a) $V=C_{V}([O(G), S]) \oplus$ oplus $_{H \in \mathcal{H}} V_{H}$
(b) For all $H$ in $\mathcal{H}, H$ centralizes $V_{H}$.

Proof: We may assume without loss that $V$ is not the direct sum of two proper $G$ submodules. Put $P=O_{p}(G)$ and $Q=[P, S]$. If $Q=1$ we are done. So suppose $Q \neq 1$ and let $E$ be a normal subgroup of $G$ in $Q$ minimal with respect to $[E, Q] \neq 1$. Let $F=C_{E}(Q S)$. Then by minimality of $E, G$ acts irreducibly on $E / F$. In particular, $[E, P] \leq F, S$ inverts $E / F$ and $|E / F|=p$. Since $F \leq Z(Q) \cap E \leq Z(E), E$ is abelian. Then also $\left[\Omega_{1}(E), S\right] \neq 1$ and hence $E$ is elementary abelian. Let $T=C_{S}(E)$. Then $|S / T|=2$.

Suppose first that $F=1$. Then $E=[E, S] \leq\left\langle S^{E}\right\rangle \leq C_{G}([V, T])$. Since $C_{V}(E)=0$, $T=1$ and the lemma holds.

Suppose next that $F \neq 1$ and ley $\mathcal{D}$ be the set of all hyperplanes $D$ in $E$ with $\left.C_{V}(D) \neq\right)$. Then

$$
V=\oplus_{D \in \mathcal{D}} C_{V}(D)
$$

As $V$ is indecomposable, $G$ acts transitively on $\mathcal{D}$. Moreover, $T$ is a Sylow 2 subgroup of $C_{G}(E)$ and so $G=N_{G}(T) C_{G}(E)$. In particular, $N_{G}(T)$ acts transitively on $\mathcal{D}$. We may assume that $\left[C_{V}(D), T\right] \neq 0$ for some $D \in \mathcal{D}$ and so $\left[C_{V}(D), T\right] \neq 1$ for all $D \in \mathcal{D}$. As $\left[C_{V}(D), T, S\right]=0, S$ normalizes $C_{V}(D)$ and $D$. Since $F \neq 1$ and $F \unlhd G, F \notin \mathcal{D}$. Hence $E=F D$ and $[E, S]=[D, S] \leq D$. It follows that $[E, S] \leq \bigcap_{D \in \text { cal } D} D$, contradicting the minimal choice of $E$.

Lemma 6.3 Let $H$ be finite group such that the Sylow subgroup is contained in a unique maximal subgroup of $H$. Let $V$ be a faithful $G F(2) F F$-module for $H$. Then $H$ has a normal subgroup $L=L_{1} \times L_{2} \times \ldots \times L_{k}$ such that
(a) $L_{i} \cong S L_{2}(q)$ or $\operatorname{Sym}(q+1), q$ power of 2 .
(b) Put $\bar{V}=V / C_{V}(L)$ and $V_{i}=\left[V, L_{i}\right]$. Then $\bar{V}=\overline{V_{1}} \oplus \overline{V_{2}} \oplus \ldots \oplus \overline{V_{k}}$ and $\overline{V_{i}}$ is a natural $S L_{2}(q)$-module for $\overline{L_{i}}$.
(c) $H=L S$ and $S$ transitively permutes the $L_{i}$ 's.

Lemma 6.4 Let $H$ be finite simple group such that the Sylow subgroup is contained in a unique maximal subgroup of $H$. Let $V$ be a faithful faithful $G F(2) F^{*} 2$-module for $H$. Then either $V$ is an FF-module or $H$ has a normal subgroup $L=L_{1} \times L_{2} \times \ldots \times L_{k}$ such that Remark: maybe we should do all F2 modules, even the non-quadratic ones
(a) $L_{i} \cong \operatorname{Alt}(q+1), S L_{3}(q)$ or $O_{4}^{ \pm}(q), q$ a power of two.
(b) Put $\bar{V}=V / C_{V}(L)$ and $V_{i}=\left[V, L_{i}\right]$. Then $\bar{V}=\overline{V_{1}} \oplus \overline{V_{2}} \oplus \ldots \oplus \overline{V_{k}}$ and either $L_{i} \cong \operatorname{Alt}(q+1)$ and $\left|\overline{V_{i}}\right|$ is natural module or $L_{i} \cong S L_{3}(q)$ and $\overline{V_{i}}$ is the direct sum of a natural module and its dual.
(c) $H=L S$ and $S$ transitively permutes the $L_{i}$ 's.
(d) If $L_{i} \cong S L_{3}(q)$, then some element of $N_{H}\left(L_{i}\right)$ induces a graph automorphism on $L_{i}$.

Definition 6.5 Let $K$ be a field, $H$ a group and $V$ a $K H$-module. Then a tensor decomposition of $V$ for $H$ is a tuple $\left(F, V_{i}, i \in I\right)$ such that
(a) $F \leq \operatorname{End}_{K}(V)$ is a field with $K \leq F$.
(b) $H$ acts $F$-semilinear on $V$.
(c) Put $E=C_{H}(F)$ (the largest subgroup of $H$ acting $F$-linear on $V$ ). Then $V_{i}$ is an $F E$-promodule.
(d) As $F E$-modules, $V$ and $\bigotimes_{F}\left\{V_{i} \in I\right\}$ are isomorphic.

Lemma 6.6 Let $Q$ be a group with $|Q| \geq 3.1 \neq Z \leq Z(Q), K$ a field with char $K=p, p$ a prime, $V$ a faithful $K Q$-module with $[V, Z, Q]=0$ and $\left(F, V_{i}, i \in I\right)$ a tensor decomposition of $V$ for $Q$. Then $Q$ acts $F$-linear and one of the follwing holds:

1. There exists $i \in I$ so that $\left[V_{i}, Z, Q\right]=0$ and $Q$ acts trivially on all other $V_{j}$ 's.
2. $p=2, Q$ is $F$-linear and there exist $i, j \in I, a_{k} \in \operatorname{End}_{F}\left(V_{k}\right)$ with $a_{k}^{2}=0(k=i, j)$ and $a$ monomorphism $\lambda: Q \rightarrow(F,+)$ so for $q \in Q$,
(a) For $k=i, j, q$ acts on $V_{k}$ as $1+\lambda(q) a_{i}$.
(b) $Q$ centralizes all $V_{s}$ 's with $s \neq i, j$.

Proof: Note first that as $Z$ acts quadratically on $V, Z$ is an elementary abelian $p$-group. Also $[V, Z, Q]=0$ and $[Q, Z]=1$. So the three subgroup lemma implies that $[V, Q, Z]=1$.

Suppose that $Q$ does not act $F$-linear. Note thet $z$ induces some field automorphism $\sigma$ on $F$. Let $F_{\sigma}$ be the fixed field of $\sigma$ in $F$. As $z$ is quadratic on $V, f-f^{\sigma} \in F_{\sigma}$ for all $f \in F$. It easy to see that this implies $F=F_{\sigma}$ or $p=2$ and $F_{\sigma}$ has inded two in $F$. Moreover, $[V, z]$ is an $F_{\sigma}$-subspace centralized by $Q$. So $Q$ is $F_{\sigma}$ and $F_{\sigma} \neq F$. Since $\left[V, C_{Q}(F)\right]$ is an $F$-spave centralizes by $z, C_{Q}(F)=1$. Thus $|Q|=2$ in contradcition to the assumptions.

Suppose from now on the $Q$ is $F$-linear. Since $Z$ is a $p$-group, we mau assume that the $V_{i}$ 's are actually $F Z$-modules and not only promodules. If $Q$ acts trivially on some $V_{k}, V$ is a direct sum of copies of the $F Q$-module $\otimes_{F}\left\{V_{i} \mid i \in I-k\right\}$. So the latter has the same properties as $V$. Thus we may assume fom now on that $Q$ acts non-trivially on each $V_{i}$. If $|I|=1$, then 1 . holds

Suppose next that $|I|=2$ and say $I=\{1,2\}$. Note that

$$
\left[C_{V_{1}}(Z) \otimes V_{2}, Z\right]=C_{V_{1}} \otimes\left[V_{2}, Q\right] .
$$

$Q$ acts as scalars on $\left[V_{2}, Z\right]$ and $\left[V_{1}, Z\right]$. Hence we may choose the promodules $V_{1}$ and $V_{2}$ so that $\left[V_{i}, Z, Q\right]=0$ for $i=1,2$. For $q \in Q$ let $q_{i}$ be the endomorposim $q-1$ of $V_{i}$. Then $z_{i} q_{i}=0$. Moreover, in $\operatorname{End}_{F}\left(V_{1} \otimes V\right)$,

$$
z-1=\left(1+z_{1}\right) \otimes\left(1+z_{2}\right)-1 \otimes=z_{1} \otimes 1+1 \otimes z_{2}+z_{1} \otimes z_{2}
$$

Thus $[V, z, q]=0$ implies

$$
z_{1} \otimes q_{2}=-q_{1} \otimes z_{2}
$$

If $z_{1}=0$ then as $V$ is faithful, $z_{2} \neq 0$. Thus the previuos equation implies $q_{2}=0$ for $q$, a contradcition to the assumption that $Q$ does not centalize $V_{2}$. Hence both $z_{1}$ and $z_{2}$ are not zero. Choosing $q=z$ we see that $p=2$. Hence for arbitray $q, q_{1}=\lambda(q) z_{1}$ and $q_{2}=\lambda(q) z_{2}$ for some $\lambda(q) \in F$. Thus 2 . holds in this case.

Suppose now that $|I| \geq 3$. Say $1,2 \in I$ and but $W=\bigotimes_{F}\left\{V_{i} \mid i \in I \backslash\{1,2\}\right.$. Then $V \cong\left(V_{1} \otimes V_{2}\right) \times W$. Then by the prviuos case $Q$ acts faithfully on $V_{1} \otimes V_{2} z-1$ and $q-1$ are linear dependent on $V_{1} \otimes V_{2}$. Let $\lambda=\lambda(q)$ be as above. Then on $v_{1} \otimes v_{2}$
$q-1=\left(1+\lambda z_{1}\right) \otimes\left(1+\lambda z_{2}\right)-1 \otimes 1=\lambda\left(z_{1} \otimes 1+1 \otimes z_{2}+\lambda z_{1} \otimes z_{2}\right)$.
On the otherhand $z-1=z_{1} \otimes 1+1 \times z_{2}+z_{1} \otimes z_{2}$ and we conclude that $\lambda=0,1$ and so $|Q|=2$, a contradiction.

Definition 6.7 Let $H$ be a finite group, $F$ a finite field, $V$ a finite dimensional $F H$-module and $s$ a postive real number.
(a)

$$
\mathrm{P}_{s}(H, V)=\left\{A \leq\left. H| | A\right|^{s}\left|C_{V}(A)\right| \geq|B|^{s}\left|C_{V}(B)\right| \text { for all } B \leq A\right\}
$$

(b)

$$
\mathrm{P}_{s}^{*}(H, V)=\left\{\left.A \in \mathrm{P}_{s}(H, V)| | A\right|^{s}\left|C_{V}(A)\right|>|B|^{s}\left|C_{V}(B)\right| \text { for all } C_{A}(V)<B<A\right\}
$$

(c) $\mathrm{PQ}_{s}(H, V)=\left\{A \in \mathrm{P}_{s}(H, V) \mid[V, A, A]=0\right.$
(d) $\mathrm{PQ}_{s}^{*}(H, V)=\left\{A \in \mathrm{P}_{s}^{*}(H, V) \mid[V, A, A]=0\right.$

## bpgv

Lemma 6.8 Let $H$ be a finite group, $F$ a finite field, $V$ a finite dimensional $F H$-module, $s$ a postive real number and $A \leq H$.
(a) $A \leq \mathrm{P}_{s}(H, V)$ if and only if $\left|W / C_{W}(A)\right| \leq\left|A / C_{A}(W)\right|^{s}$ for all $W \leq V$.
(b) $A \in \mathrm{P}_{s}^{*}(H, V)$ if and only if $\left|V / C_{V}(A)\right| \leq|A|^{s}$ and for each $W \leq A$ one of the following holds:

1. $[W, A]=0$.
2. $C_{A}(W)=C_{A}(V)$.
3. $\left|W / C_{W}(A)\right|<\left|A / C_{A}(W)\right|^{s}$.
(c) Let $A \in P_{s}(H, V)$ and $W$ an $F A$-submodule in $V$. Then $A \in \mathrm{P}_{s}\left(N_{H}(W), W\right)$.
(d) Let $A \in P_{s}^{*}(H, V)$ and $W$ an $F A$-submodule in $V$. Then $A \in \mathrm{P}_{s}^{*}\left(N_{H}(W), W\right)$.

Proof: (a) Suppose first that $A \in \mathrm{P}_{s}(H, V)$ and let $W$ be a $F$-subspace of $V$. Let $B=C_{A}(W)$. Then $W \leq C_{V}(B)$. Since $A \in P_{s}(H, V)$ we have $\left|C_{V}(B) / C_{V}(A)\right| \leq|A / B|^{s}$ and thus

$$
\begin{equation*}
\left|W / C_{W}(A)\right| \leq\left|C_{V}(B) / C_{V}(A)\right| \leq|A / B|^{s}=\left|A / C_{A}(W)\right|^{s} \tag{1}
\end{equation*}
$$

Suppose next that $\left|W / C_{W}(A)\right| \leq\left|A / C_{A}(W)\right|^{s}$ for all $W \leq V$ and let $B \leq A$. Put $W=C_{V}(B)$. Then $B \leq C_{A}(W)$ and

$$
\begin{equation*}
\left|C_{V}(B) / C_{V}(A)\right| \leq|W| /\left|C_{W}(A)\right| \leq\left|A / C_{A}(W)\right|^{s} \leq|A / B|^{s} . \tag{2}
\end{equation*}
$$

(b) Suppose first that $A \in \mathrm{P}_{s}^{*}(H, V)$ and let $W$ be a $F$-subspace of $V$. Let $B=C_{A}(W)$ Then $W \leq C_{V}(B)$. If $A=B$, then 1 . holds. If $B=C_{A}(V)$, then 2 . holds. So assume $C_{A}(V)<B<A$. Then by minimalty of $|A|$ the middle " $\leq$ " in (2) becomes a " $<$ " and so 3.holds.

Suppose next that $\left|V / C_{V}(A) \leq\left|A / C_{A}(V)\right|^{s}\right.$ and that $1 ., 2$. or 3 . holds for each $W \leq V$. Let $B<A$. Put $W=C_{V}(B)$. If 1. holds then, $C_{V}(A)=C_{V}(B)$ and so clearly $|A|^{s}\left|C_{V}(A)\right|>|B|^{s}\left|C_{V}(B)\right|$. If 2 . holds then $B \leq C_{A}(V)$ and so $|A|^{s}\left|C_{V}(A)\right| \geq$ $|V|\left|C_{A}(V)\right|^{s} \geq\left|C_{V}(B) \| B\right|^{s}$. If 3 . holds then the middle " $\leq$ " in ?? becomes a " $<$ " and (b) is proved.

Finally (c) follows from (a), and (d) from (c) and (b).
Lemma 6.9 Let $H$ be a finite group, $F$ a finite field $V$ a finite dimensional $F H$-module and $s$ a postive real number with $s \leq 2$. Let $A \in \mathrm{PQ}_{s}(G, V)$
(a) Suppose that $\Delta$ is a System of imprimitivity for $A$ on $V$ and $U \in \Delta$.
(a.a) One of the following holds:

1. A normalizes $U$.
2. $|F|=2=|U|$ and $s \geq 1$.
3. $|F| \in\{2,4\},|U|=4$ and $s=2$.
(a.b) If in addition $A \in \mathrm{P} *(H, V)$ and either (a.a.2) with $s=1$ or (a.a.3) holds, then $|A|=2$ and $A$ centralizes $\left.\angle \Delta \backslash U^{A}\right\rangle$.
(b) Suppose that $V=\otimes_{i=1}^{n} V_{i}$ for some FH-module $V_{i}, 1 \leq i \leq n$ and that $\left[V_{1}, A\right] \neq 0 \neq$ $\left[V_{2}, A\right]$ and $\operatorname{dim}_{F} V_{i}>1$. Then $n=2, s=2, \operatorname{dim}_{F} V_{1}=2=\operatorname{dim}_{F} V_{2}, C_{A}\left(V_{1}\right)=$ $C_{A}\left(V_{2}\right)=C_{A}(V)$ and $\left|A / C_{A}(V)\right|=q$.

Proof: (a) Let $W=\left\langle U^{A}\right\rangle$ and suppose that $A$ does not normalize $U$. Since $A$ acts on $W$, we get char $F=2,\left[U, N_{A}(U)\right]=0$ and $\left|U^{A}\right|=2$. Thus $\left|A / C_{A}(W)\right|=2$. Hence by 6.8 c , $W / C_{W}(A) \leq 2^{s}$. Since $U \cap C_{W}(A)=0$ we get $|U| \leq 2^{s}$ and so 2 . or 3 . holds. Suppose that $A \in \mathrm{P} *(G, V)$ and either 2 . with $s=1$ or 3 . holds. Then $\left|W / C_{W}(A)\right|=\left|A / C_{A}(W)\right|^{s}$. Thus by $6.8 \mathrm{~b}, C_{A}(V)=C_{A}(W)$. Since $\left|V / C_{V}(A)\right| \leq\left|A / C_{A}(W)\right|^{s}$ we conclude $V=W C_{V}(A)$ and so (a) is proved.
(b) If $|A| \geq 3$, this follows this is an easy consequence of 6.6. If $|A|=2$ we get $\left|V / C_{V}(A)\right| \leq 2^{s} \leq 4$ and again (b) is easily verified.

Lemma $6.10 F$ a finite field, $A$ a finite group, $V$ a $n$-dimensional $F A$-module with $[V, A] \neq 0=[V, A]$ and $s$ defined by $\left|V / C_{V}(A)\right|=\left|A / C_{V}(A)\right|^{s}$. Then $s \geq \frac{1}{\operatorname{dim}_{F}[V, A]} \leq \frac{1}{n-1}$.

Proof: We may assume that $A$ acts faithfully on $V$. Let $m=\operatorname{dim}_{F} V / C_{V}(A)$ and $k=\operatorname{dim}[V, A]$. Then $A \leq|F|^{k m}$ and so

$$
\left|V / C_{V}(A)\right|=|F|^{m} \leq|A|^{s} \leq \mid F^{k m s}
$$

Thus $m \leq k m s$ and $s \leq \frac{1}{k} \leq \frac{1}{n-1}$.

Lemma 6.11 Let $H$ be a finite group, $p$ a prime and $V$ an irreducible, faithful $G F(p) H$ module. Let $s$ be a positive integer with $s \leq 2$ and $L=\left\langle\mathrm{PQ}_{s}^{*}(H, V)\right\rangle$. Suppose that $L \neq 1$ and that $L$ acts irreducible on $V$. Let $A \in \mathrm{PQ}_{s}^{*}(H, V)$ and $F=\operatorname{End}_{L}(V)$, then one of the following holds:

1. $p=2,3, L \cong S L_{2}(p),|A|=p,|F|=p, \operatorname{dim}_{F} V=2$ and $s \geq 1$.
2. $p=2, L \cong \operatorname{Dih}\left(D_{10},|A|=2,|F|=4, \operatorname{dim}_{F} V=2\right.$ and $s=2$.
3. $p=2, L \cong S U_{3}(2)^{\prime},|A|=2,|F|=4, \operatorname{dim}_{F} V=3$ and $s=2$.
4. $p=2,3, L \cong S L_{2}(p) * S L_{2}(p),|A|=p,|F|=p, \operatorname{dim}_{F} V=4$ and $s=2$.
5. $p=2, L \cong S L_{2}(F) \times S L_{2}(F),|A|=|F|,|F| \geq 4, \operatorname{dim}_{F} V=4$ and $s=2$.
6. $p=2, L \cong O_{+}^{4}(F),|A| \leq 2|F|,\left|V / C_{V}(A)\right|=|F|^{2},|F| \geq 4, \operatorname{dim}_{F} V=4$ and $s \geq \frac{4}{3}$.
7. $p=3, L \sim \operatorname{Ext}_{-}\left(2^{1+4}\right) . \operatorname{Alt}(5),|A|=3,|F|=3, \operatorname{dim}_{F} V=4$ and $s=2$.
8. $p=2, L \cong \operatorname{Sym}(5)$ or $\operatorname{Sym}(3) \wedge \operatorname{Sym}(5),|A|=2$ or $A \leq L^{\prime}, F \mid=2, \operatorname{dim}_{F} V=4$, $s=2$ and $\left|\operatorname{End}_{L^{\prime}}(V)\right|=4$.
9. $p=2, s=2, F \leq 4$. There exists a system of imprimitivity $\Delta$ for $L$ on $V$ with $L / C_{L}(\Delta)=\operatorname{Sym}(\Delta)$. Let $U \in \Delta$, then $|U|=4$. If $A \leq C_{L}(\Delta)$ then $|A|=2 . C_{L}(\Delta)$ is a $\operatorname{Sym}(\Delta)$ invariant subgroup of $\operatorname{Sym}(3)^{\Delta}$. If $|F|=2$ then $C_{L}(\Delta)$ induces $\operatorname{Sym}(3)$ on $U$ and if $|F|=4$ then $C_{L}(\Delta)$ induces $C_{3}$ on $U$.
10. Let $K=E(L)$. Then $K$ is quasi simple, $K$ acts irreducible on $V, F=\operatorname{End}_{K}(V)$. Moreover, $L$ acts primitively and tensor indecomposable on $V$.
11. $s>1$. There exists a central extension $L^{*}$ so that $V \cong V_{1} \otimes V_{2}$ for some faithful $F L^{*}$ modules $V_{1}$ and $V_{2}$. Let $\{i, j\}=\{1,2\}, \mathrm{P}_{i}=\left\{A \in \mathrm{PQ}_{s}^{*}(H, V) \mid\left[V_{j}, A\right]=0\right\}$ and $L_{i}=\left\langle\mathrm{P}_{i}\right\rangle$. Then $\mathrm{PQ}_{s}^{*}(H, V)=P_{1} \cup P_{2}, L=L_{1} L_{2}$ and $\left[L_{1}, L_{2}\right]=1$. Let $K_{i}=E\left(L_{i}\right)$ Then $V_{i}$ is an irreducible $F K_{i}$ module module and $F=\operatorname{End}_{K_{i}}\left(V_{i}\right) . P_{i} \in \mathrm{PQ}_{\frac{x_{s}}{n_{j}}}\left(L_{i}, V_{i}\right)$. Let $A_{i} \in P_{i}, n_{i}=\operatorname{dim} F V_{i}$ and and let $s_{i}$ be defined by $\left|V_{i} / C_{V_{i}}\left(A_{i}\right)\right|=\left|A_{i}\right|^{s_{i}}$. Then $s_{i} \leq \frac{s^{2}}{n_{i}+s} \leq \frac{4}{n_{i}+2}$ and $\frac{n_{j}}{s}+1 \leq n_{i} \leq s\left(n_{j}-1\right)$.

## Proof:

We will first prove:
(1) Suppose $V$ can be regarded as a vector space over a field $F$ so that $L$ acts $F$-semilinear but not $F$-linear on $V$. Then $|A|=p=2,|F|=4$ or $16,|V|=4$ or 16 and $L$ is one of $\operatorname{Dih}(6), \operatorname{Dih}(10), \operatorname{Sym}(3) \times \operatorname{Sym}(3), \operatorname{Sym}(5)$ or $\operatorname{Sym}(3) \wedge \operatorname{Sym}(5)$. Moreover if $s \neq 2$, then $s \geq 1,|F|=|V|=4$ and $L \cong \operatorname{Sym}(3)$.

Choose $A \in \mathrm{PQ}^{*}(L, V)$ which does not act $F$-linear on $A$. Since $A$ acts quadratically on $V$ we conclude that $|A|=2$. Moreover, $|V|=\left|V / C_{V}(A)\right|^{2} \leq|A|^{2 s}=2^{2 s} \leq 16$. Thus $L \leq \Gamma G L_{2}(4)$. (1) now follows by inspecting the irreducible subgroups of $\Gamma G L_{2}(4) \cong$ $\operatorname{Sym}(3) \wedge \operatorname{Sym}(5)$ generated by involutions.
(2) Suppose there exist a central extension $L^{*}$ of $L$, a field $F$ and $F L^{*}$-moduln $V_{1}$ and $V_{2}$ so that $V \cong V_{1} \otimes_{F} V_{2}$ as $G F(p) L^{*}$ modules. Then one of the following holds:

1. $s=2, p=2, \operatorname{dim}_{F} V_{i}=2,|A|=|F|$ for all $A \in \mathrm{PQ}_{s}^{*}(L, V)$ and $L \cong S L_{2}(F) \times S L_{2}(F)$
2. $s>1$. Let $\{i, j\}=\{1,2\}, \mathrm{P}_{i}=\left\{A \in \mathrm{PQ}_{s}^{*}(H, V) \mid\left[V_{j}, A\right]=0\right\}$ and $L_{i}=\left\langle\mathrm{P}_{i}\right\rangle$. Then $\mathrm{PQ}_{s}^{*}(H, V)=P_{1} \cup P_{2}, L=L_{1} L_{2}$ and $\left[L_{1}, L_{2}\right]=1 . P_{i} \in \mathrm{PQ}_{\frac{s}{n_{j}}}^{*}\left(L_{i}, V_{i}\right)$. Let $A_{i} \in P_{i}, n_{i}=\operatorname{dim} F V_{i}$ and and let $s_{i}$ be defined by $\left|V_{i} / C_{V_{i}}\left(A_{i}\right)\right|=\left|A_{i}\right|^{s_{i}}$. Then $s_{i} \leq \frac{s^{2}}{n_{i}+s} \leq \frac{4}{n_{i}+2}$ and $\frac{n_{j}}{s}+1 \leq n_{i} \leq s\left(n_{j}-1\right)$.

Suppose first that there exists $A \in \mathrm{PQ}_{s}^{*}(H, V)$ with $\left[V_{1}, A\right] \neq 0 \neq\left[V_{2}, A\right]$. Using 6.9 b it is then easy to see that refs2-31. holds. So suppose that no such $A$ exists. Then clearly $\mathrm{PQ}_{s}^{*}(H, V)=P_{1} \cup P_{2}, L=L_{1} L_{2}$ and $\left[L_{1}, L_{2}\right]=1$.

Note that $V$ is as an $L_{i}$ module the direct sum of $n_{j}$ copies of $V_{i}$. Hence for all $B \leq L_{i}$, $\left|C_{V}(B)\right|=\left|C_{V_{1}}(B)\right|^{n_{j}}$ and so $\left(|B|^{\frac{s}{n_{j}}}\left|C_{V_{1}}(B)\right|\right)^{n_{j}}=|B|^{s}\left|C_{V}(B)\right|$. Thus $P_{i} \in \mathrm{PQ}_{\frac{s}{n_{j}}}^{*}\left(L_{i}, V_{i}\right)$. Moreover, we see that $s_{i} n_{j} \leq s$. Thus $s_{i} \leq \frac{s}{n_{j}}$. By 6.10 we have $s_{i}>\frac{1}{n_{i}-1}$ and so $\frac{s}{n_{j}} \geq s_{i} \geq$ $\frac{1}{n_{i}-1}$ and thus $n_{i} \geq \frac{n_{j}}{s}+1$. Hence also $n_{j} \geq \frac{n_{i}}{s}+1=\frac{n_{i}+s}{s}$. Therfore $s_{i}\left(\frac{n_{i}+s}{s}\right) \leq s_{i} n_{j} \leq s$ and $s_{i} \leq \frac{s^{2}}{n_{i}+s}$. Hence refs2-32 holds.
(3) If $V$ is tensor-decomposable as $L$-module, then $4 ., 5$. or 11 . holds.

In case (2)1, 4. or 5 . holds. So suppose (2)2. holds. Since $P_{i} \leq \mathrm{PQ}_{\frac{s}{n_{i}}}\left(L_{i}, V_{i}\right)$ can imply induction to $\left(L_{i}, V_{i}\right)$. Moreover, either $\frac{s}{n_{i}}<1$ or $\frac{s}{n_{i}}=1$ and $n_{i}=2$. If $n_{i}=2$, then $s_{i}=1$ and $s_{i} n_{j} \leq s$ implies $n_{j}=2$. It follows that 4 . or 11 holds in this case.

We may and do assume form now on that $V$ is tensor indecomopsable.
Suppose that $L$ acts irreducible but does not primitively on $V$ and let $\Delta$ be a system of imprimitivity for $L$ on $V$. Since $L$ acts irreducble on $V, L$ acts transitively on $\Delta$. Thus there exists $U \in \Delta$ and $1 \neq A \in \mathrm{PQ}_{s}^{*}(H, V)$ so that $A$ does not normalizes $U$. If $|U|=2$, $L$ centralizes the sum of the non-zero elements in $\bigcup \Delta$, a contradiction to the irreducible action of $L$. Hence by 6.9 a we conclude that $|U|=4, s=2,|A|=2$ and $A$ centralizes $\left\langle\Delta \backslash U^{A}\right.$. In particular, $A$ acts a 2-cycle on $\Delta$ and we conclude that $L / C_{L}(\Delta)=\operatorname{Sym}(\Delta)$.

Thus
(4) If $L$ acts irreducible but not primitively on $V$, then $p=2, s=2$ and $L$ is a subgroup of $S L_{2}(2)$ て $\operatorname{Sym}(n)$, where $n=\operatorname{dim} V / 2$.

Suppose next that $L$ acts irreducible and primitively on $V$.
Let $K$ be a normal subgroup of $L$ minimal with respect to $[K, L] \neq 1$. As $L$ acts primitively, $V$ is a as $K$-module isomorphic to the direct sum of isomorphix irreducible $G F(p) K$ modules. In particular $K C_{G L(V)}(K)$ acts irreducible on $V$ and so $F \stackrel{\text { def }}{=} \operatorname{End}_{K C_{G L(V)}(K)}(V)$ is a field. By (1) we may assume that $L$ acts $F$-linear on $V$. As $V$ is tensor indecoposable we conclude that $K$ acts irreducible on $V$. If $K$ is cyclic, we conclude that $V$ is 1-dimensional over $F$ and so $L$ is cyclic, a contradicion, since $O_{p}(H)=1$. Thus $K$ is not cyclic and we may assume that all cylic normal subgroup of $L$ are contained in $Z(L)$. In particular $C_{L}(K) \leq Z(L)$.

Assume that $K$ is a $q$-group for be a prime $q$. Then $q \neq p$. Pick $A \in \mathrm{PQ}^{*}(L, V)$ with $[K, A] \neq 1$. Then $p=2$ or 3 . Moreover, $[K, A] \not \leq Z(K)$ and so $1 \neq[A, K, K] \leq Z(L)$.

Suppose that $p=2$, then by 6.2 and the irreducible action of $K, A$ is cyclic. But then $|A|=2$ and so $|[V, A]|=\mid\left[V / C_{V}(A) \mid=2^{r} \leq 2^{s} \leq 4\right.$ for some integer $r \leq s \leq 2$. Hence there exist $1 \neq k \in[A, K, K]$ with $|V|=|[V, k]| \leq 2^{4 r}$. Also note that since $Z(K) \neq 1,|F| \geq 4$ and so $\operatorname{dim}_{F} V \leq 2 r$. Since $K$ is non-abelian and acts irreducible on $V$, we conclude that $r=2$ and

$$
\begin{equation*}
|A|=2=p, s=2, K \cong \operatorname{Ext}\left(3^{1+2}\right),|V|=2^{6}, \text { and } L=K A \cong S U_{3}(2)^{\prime} \tag{5}
\end{equation*}
$$

Suppose next that $p=3$. Then $q=2$ and $[K, A]$ is extraspecial. If $A$ is not cyclic we obtain a contradiction to 6.9 b applied to an irreducible submodule for $[K, A] A$ in $V$. Hence $A$ is cyclic and similarly $[K, A] \cong Q_{8}$. Moreover $\left|C_{V}(A)\right|^{2}=|V|$ and so $|V| \leq 3^{2 s} \leq 3^{4}$. As $L$ is irreducible and tensor indecomospable on $V$ one of the following holds:
(6) 1 . $|A|=p=3, s \geq 1,|V|=3^{2}$ and $L \cong S L_{2}(3)$.
2. $|A|=p=3, s=2,|V|=3^{4}$ and $L \sim \operatorname{Ext}_{-}\left(2^{1+4}\right) \cdot \operatorname{Alt}(5)$.

Suppose next that $K$ is not nilpotent. Then $K=E(K)$ and $L$ acts transitively on the components of $L$.

Assume that $K$ is not quasisimple. Then there exist a component $R$ of $K$ and $A \in$ $\mathrm{PQ}_{2}^{*}(L, V)$ so that $A$ does not normalize $R$. Since $A$ acts quadratically this implies $p=2$, $R \cong S L_{2}(F)$ and $\left|R^{A}\right|=2$. Moreover, using 6.9 b we get:
(7) Put $q=|F|$. Then $p=2, s \geq \frac{4}{3}, q>2,|A| \leq 2 q, \operatorname{dim}_{F} V=4,\left|V / C_{V}(A)\right|=q^{2}$, and $L \cong \Omega_{4}^{+}(F) \sim S L_{2}(F) \times S L_{2}(F): 2$.

Assume finally that $K$ is quasi simple. Then
(8) $K=E(L)$ is quasi simple, $C_{L}(K)=Z(L), L$ acts irreducibly, primitively, tensor indecompsable and $F$-linear on $V$.
$s 2-8$

Lieq

Lemma 6.12 F2-modules for groups of Lie type and maybe also the non-quadratic F2modules

Lemma 6.13 Let $\Omega$ be a finite set, $G=\operatorname{Sym}(\Omega)$, and $V(\Omega)=G F(2)[\Omega]$ the natural permutation module $G F(2) G$-permutaion module. Define $V_{O}($ Omega $)=[V(\Omega), G]$, $\overline{V(\Omega)}=V(\Omega) / C_{V(\Omega)}(G)$ and $\overline{V_{0}(\Omega)}=V_{0}(\Omega) / C_{V_{0}(\Omega)}(G)$. Let $V$ be one of the modules, $V(\Omega), V_{0}(\Omega), \overline{V(\Omega)}$ and $\overline{V_{O}(\Omega)}$.
(a) Let $A$ be a non-trivial elementary abelian subgroup of $G$ with $\left|V / C_{V}(A)\right| \geq|A|$. Then there exists commuting transpositions $t_{1}, t_{2}, \ldots t_{k}$ so that one of the following holds

1. $A=\left\langle t_{1}, t_{2}, \ldots, t_{k}\right\rangle$.
2. $|\Omega|=2 k, V=V_{0}(\Omega)$ or $\overline{V_{O}(\Omega)}$ and $A=\left\langle t_{1} t_{2}, t_{2} t_{3}, \ldots, t_{i-1} t_{i}, t_{i+1}, t_{i+2}, \ldots, t_{k}\right\rangle$, where $1 \leq i \leq k$.
3. $|\Omega|=2 k+4, V=V_{0}(\Omega)$ or $\overline{V_{O}(\Omega)}$ and $A=\left\langle t_{1}, t_{2}, \ldots, t_{k},(a b)(c d),(a c)(b d)\right\rangle$, where $a, b, c, d$ are the four common fixed points of $t_{1}, \ldots, t_{k}$.
4. $|\Omega|=4 \mid, V=\overline{V(\Omega)}$ and $A \leq \operatorname{Alt}(\Omega)$.
5. $|\Omega|=8, V=\overline{V_{O}(\Omega)},|A|=8$ and $A$ acts regularly on $\Omega$.
(b) Suppose $|\Omega| \neq 8$ and let $H \leq G$ with $H=\langle\mathrm{P}(H, V)$. Let $\Psi$ an orbit for $H$ on $\Omega$. Then one of the following holds:
6. $H / C_{H}(\Psi)=\operatorname{Sym}(\Psi)$.
7. $H / C_{H}(\Psi)=\operatorname{Alt}(\Psi)$.
8. $|\Psi|$ is even and $H / C_{H}(\Psi)=N_{\text {Sym }(\Psi)}(\Delta) \cong C_{2}$ 乙 Sym $(|P s i| / 2)$, where $\Delta$ is a partion of $\Psi$ into sets of size 2.
9. $|\Psi|=4$ and $H / C_{H}(\Psi) \cong E_{4}$.
10. $|\Psi|=6$ and $H / C_{H}(\Psi) \cong \operatorname{Alt}(5)$.
11. $|\Psi|=8$ and $H / C_{H}(\Psi) \sim 2^{3}: L_{3}(2)$.

Proof: (a) By induction on $|A|, V$ and $|\Omega|$. Suppose that $A \notin \mathrm{P}(G, V)$ and let $1 \neq$ $B \leq A$ with $B \in \mathrm{P}(A, V)$ with $|B|\left|C_{V}(B)\right|>|A|\left|C_{A}(V)\right| \leq|V|$. Then by induction $\Omega=2 k$ and $B=\left\langle t_{1}, t_{2}, \ldots, t_{k}\right\rangle$. But then $A \leq C_{G}(B)=B$ and so $A=B$, a contradiction.

Hence $A \in \mathrm{P}(G, V)$. Let $B=C_{V}([V, A])$. Then $1 \neq B \in \mathrm{P}(G, V)$. Suppose $B \neq A$ and apply (a) to $B$. In case (a3) $A \leq C_{G}(B) \leq A$, a contradiction. In case (a1) and (a2), $C_{G}(B)=\left\langle t_{1}, t_{2}, \ldots t_{k}\right\rangle \times \operatorname{Sym}\left(\Omega^{\prime}\right)$. If $|\Omega|=2 k$, then $C_{G}(B)$ acts quadratically on $V$, a contradiction to $A \neq B$. Thus $|\Omega| \neq 2 k$ and $A=B \times D$, where $D=B \cap \operatorname{Sym}\left(\Omega^{\prime}\right)$. We may view $V_{O}\left(\Omega^{\prime}\right)$ as a subspace of $V$. Then $A \leq \mathrm{P}\left(A, V_{O}\left(\Omega^{\prime}\right)\right.$ and so $D \in \mathrm{P}\left(\operatorname{Sym}\left(\Omega^{\prime}, V_{O}\left(\Omega_{1}\right)\right.\right.$. In particular we can apply (a) to $D$. Since $C_{D}([V, A])=1$ we get that $C_{D}\left(V\left(\Omega^{\prime}\right)=1\right.$. But this implies that (a3) with $k=0$ holds for $D$ on $V_{O}\left(\Omega^{\prime}\right)$. Thus also (a3) holds for $A$ on $V$.

So we may assume that $[V, A, A]=0$. Suppose that $A$ has an orbit of length larger then four on $\Omega$. If $|\Omega|=4$, (a3) or (a4) holds. So assume $|\Omega|>4$. If $A$ has an orbit of
lenght less then four on $\Omega$ then $\left[V_{\Omega}, A, A\right]$ has an element of lenght four, a contradiction to $[V, A, A]=0$. Thus all orbits of $A$ have length at least four. Moreover, $[V(\Omega), A, A]$ has an element of lenght four and $\left[V_{\Omega}, A, A\right]$ has an element of length eight. We conclude that $|\Omega|=8$ and $V=\overline{V_{0}(\Omega)}$. If $A$ has an orbit of lenght eigth on $\Omega$, (a5) holds. So suppose that $A$ has two orbits of length four. If $1 \neq a \in A$ acts trivially on on of the orbits of $A$ on $\Omega$, then $\left[V, a, A \neq 0\right.$. Thus $|A|=4$, but $\left|V / C_{V}(A)\right|=8$, a contradiction.

Hence we may assume that all the orbits of $A$ on $V$ have length at most 2. If $A$ has a fixed point on $\Omega$ we are done by induction. Hence we may assume that $A$ acts fixed point freely on $\Omega$. Suppose that there exists $v \in V(\Omega)$ with $0 \neq[v, A] \leq C_{V(\Omega)}(G)$. Then it os easy to see that $C_{A}(v)=1$ and so $|A|=2$ and $|\Omega|=2$. So we may assume that no such $v$ exists. Hence $\left|V / C_{V}(A)\right| \geq 2^{k-1}$, where $k=\Omega \mid / 2$ and thus $|A| \geq 2^{k-1}$ and (a2) holds.
(b) Let $A \in \mathrm{P}(H, V)$ so that $A$ does not act trivially on $\Psi$.

Suppose first that some element of $H$ induces a transposition on $\Psi$. If $H$ acts primitively on $\Psi$, (b1) holds. So suppose that $\Delta$ is a system of imprimitivity for $H$ on $\Psi$. Since $A$ is generated by elements of support less or equal to four, we conclude that elements of $\Delta$ have size two and $A$ on its action on $\Delta$ is generated by transopsition. As $H$ acts transitively on $\Delta, H / C_{H}(\Delta)=\operatorname{Sym}(\Delta)$. Moreover, all the transposition in $H$ act trivially on $\Delta$ and so $C_{S y m(\Psi)}(\Delta) \leq H / C_{H}(\Psi)$ and (b3) holds.

So suppose that no element of $H$ induces a transposition on $\Psi$.If $A$ fulfils (a3) or (a4) then $|\Psi|=4$ and (b4) holds.

So we may assume that $A$ fulfils (a2). Then $\Psi=\operatorname{Supp}\left(\left\langle t_{1}, t_{2}, \ldots t_{k}\right\rangle\right.$ and we may assume without loss that $\Psi=\Omega=\{1, \ldots, 2 k\}$ and $t_{i}=(2 i-1,2 i)$. It is easy to see that $k \geq 3$. Suppose that $\Delta$ is a system of imprimitivity for $H$ on $\Psi$ and without loss that $A$ acts non trivially on $\Delta$. Let $D \in \Delta$. Then $|D|=2$ and say $D=\{1,3\}$. Then $\left|D^{t_{1} t_{3}} \cap D\right|=1$, a contradiction.

Thus $A$ acts primitively in $\Psi$. Hence if $H$ contains a 3 -cycle, (b2) holds. So we may assume that $H$ contains no three cycle. Let $A^{*} \in \mathrm{P}(H, V)$ with $A \neq A^{*}$ and so that $A^{*}$ does not normalize $A$. Let $a \in A$ and $a \in A^{*}$ with $|\operatorname{Supp}(a)|=\left|\operatorname{Supp}\left(a^{*}\right)\right|=4$ and $A \neq A^{a^{*}}$. If $\left|\operatorname{Supp}(a) \cap \operatorname{Supp}\left(a^{*}\right)\right|=1$, then $\left(a a^{*}\right)^{2}$ is a three cycle, a contradiction. Hence $\left|\operatorname{Supp}(a) \cap \operatorname{Supp}\left(a^{*}\right)\right| \neq 3$, for all such $a$ and $a^{*}$.

Suppose $a^{*}=(1,2)(3,5)$. Then $(12)(34) a^{*}$ is a three cycles, a contradiction.
Suppose that $a^{*}=(1,3)(2,5)$. If $k \geq 4$ we obtain a contradiction by choosing $a=$ (34)(78). Thus $k=3, A^{*}=\langle(1,3)(2,5),(1,3)(4,6)\rangle$ and $\left\langle A, A^{*}\right\rangle \cong \operatorname{Alt}(5)$. It follows that $H=\left\langle A, A^{*}\right\rangle$ and (b5) holds.

Up to conjugation under $N_{\text {Sym }(\Psi)}(A)$ we now may assume that $a^{*}=(1,3)(5,7)$. If $n \leq 5$ we obtain a contradiction by choosing $a=(1,2)(9,10)$. Thus $k=4$. By the previous case neither (13)(26) nor (13)(28) can be in $A^{*}$ and we conclude that the orbits of $A^{*}$ on $\Psi$ are $13,24,57$ and 68 . In particular, $A$ and $A^{*}$ normalize $\{1,2,3,4\}$ and $\left\langle A, A^{*}\right\rangle \sim 2^{4} \operatorname{Sym}(3)$. It is now readily verified that (b6) holds.

Lemma 6.14 Let $G$ be a finite group with $F^{*}(G)$ quasisimple. Let $V$ be a faithful $G F(p) G$ module and $\mathcal{A}$ a $G$ invariant subset of $\mathrm{P}(G, V)$. Let $S \in \operatorname{Syl}_{p}(G)$ and put $J=J_{\mathcal{A}}(S)=$ $\rangle \mathcal{A} \cap S\left\langle. L \leq G\right.$ with $L=N_{G}\left(O_{p}(L)\right.$ and $J \leq L$ and suppose that $K$ is p-component
of $L$ so that $J$ does not normalize $K$. Then $p=2,\langle\mathcal{A}\rangle \cong \mathrm{O}_{2 n}^{+}\left(2^{k}\right), n \geq 3, k \geq 2$ and $K / O_{2}(K) \cong S L_{2}\left(2^{k}\right)$ all non-trivial composition factors for $\langle\mathcal{A}\rangle$ on $V$ are natural $\mathrm{O}_{2 n}^{+}\left(2^{k}\right)$ modules. In particular, if $n=3$, then $\mathrm{P}\left(O_{p}(L), V\right)=1$.

Remark: If $n>3$, then it can be shown that $K$ is not subnormal in $C_{G}\left(C_{V}(S)\right.$, where $S \in S y l_{p}(L)$.

Proof: Let $H=F^{*}(G)$. We may assume without loss that $H$ centralizes all proper $G$-submodules in $V$. That is $V=[V, H]$ and $G$ actss irreducible on $V / C_{V}(H)$. In particular by the Three Subgroup Lemma, $O_{p}(G)=1$.

If $p=2$ and $H / Z(H)$ is an alternating group we obtain a contradiction from 6.13. So we may assume that:
(1) $H$ is a group of Lie type in characteristic $p$.

We may assume without loss that $H$ centralizes all proper $G$-submodules in $V$. That is $V=[V, H]$ and $G$ acts irreducibly on $V / C_{V}(H)$. In particular by the Three Subgroup Lemma, $O_{p}(G)=1$.

If $O_{2}(L) \cap H=1$, then $\left[O_{2}(L), K\right]=1$ and so by the $P \times Q$-lemma, $\left[C_{V}\left(O_{2}(L), K\right] \neq 1\right.$. But $L \cap \mathcal{A} \subseteq \mathrm{P}\left(L, C_{V}\left(O_{2}(L)\right)\right.$ and $K$ maps onto a component of $L / C_{L}\left(C_{V}\left(O_{2}(L)\right)\right.$, a contradiction.

Hence $O_{2}(L) \cap H \neq 1$. Let $M=N_{G}\left(O_{2}(L) \cap H\right)$. Then $L \leq M$ and $N_{O_{2}(M)}\left(O_{2}(L)\right) \leq$ $O_{2}(L)$ and so $O_{2}(M) \leq O_{2}(L)$. Hence $O_{2}(M) \cap H=O_{2}(L) \cap H$ and $M \cap H$ is a parabolic subgroup of $H$. We have proved:
$L P G V-3$
(2) There exists a parabolic subgroup $M$ of $G$ with $L \leq M$ and $O_{2}(M) \cap H=O_{2}(L) \cap H$.

It follows immediately from (2) that
(3) $H$ has rank at least three.

Note that $C_{V}(H)=0$ unless $H \cong S p_{2 n}(q)$ and $V / C_{V}(H)$ is a natural $S p_{2 n}(q)$-module. In which case we have $C_{V}(X) C_{V}(H) / C_{V}(H)=C_{V / C_{V}(H)}(X)$ and so $\mathrm{P}(G, V) \subset \mathrm{P}\left(G, V / C_{V}(H)\right)$. Hence we may assume without loss that $C_{V}(H)=0$ and so $V$ is irreducible as $G$-module.
$L P G V-2$
(4) One of the following holds

1. $\langle\mathcal{A}\rangle=H$
2. $p=2,\langle\mathcal{A}\rangle=\cong \mathrm{O}_{2 n}^{ \pm}\left(2^{k}\right), n \geq 3$ and $V$ is a natural $\Omega_{2 n}^{ \pm}\left(2^{k}\right)$ module for $H$.

Let $P \in \cap P(G, S)$ so that $\left[C_{V}\left(O_{2}(P)\right), O^{2}(P)\right] \neq 1$. Then $J$ induces inner automorphisms on Head $(P)$ and (4) follows from the structure of $P$ and $V$.

Suppose that $O_{2}(M)=O_{2}(L)$. Then $L=M$ is a parabolic of $G$ and so the $p$-componets of $L$ are normal in $H \cap L$. Using (4), we conclude that the lemma holds. So we may assume that
(5) $O_{2}(M) \neq O_{2}(L)$ and $O_{2}(L) \not \leq H$.

Note that $\left[O_{2}(L), L \cap H\right] \leq O_{2}(L) \cap H \leq O_{2}(M)$ and so $L / O_{2}(M)=C_{M / O_{2}(M)}\left(O_{2}(L)\right)$. In particular, $\left[J \cap H, O_{2}(L) \leq O_{2}(M)\right.$. Without loss $S \leq M$ and $S \cap L \leq \operatorname{Syl}_{p}(L)$. Since $J \not \leq O_{2}(M)$ there exists $P \in \mathcal{P}(M, S)$ with $J \nexists P$. Then $J \not \leq O_{2}(P)$ and $\left[J \cap H, O_{2}(L) \leq\right.$ $O_{2}(P)$. Let $\bar{P}=P / O_{2}(P)$

Suppose that $J \leq H$. Then $N_{P}(S \cap H)$ normalizes $J$ and we conclude that $Z(\overline{S \cap P)} \leq \bar{J}$, or $p=2$ and $\bar{P} \cong \operatorname{Sym}(3)$ 亿 $C_{2}$. As $O_{2}(L)$ centralizes $\bar{J}$ and $O_{2}(L) \not \leq H$ one of the following has to hold
(6) 1. $p=2, H \cong S L_{n}(q), O_{2}(L)$ induces a graph automorphism on $H$ and $\overline{P \cap H} \cong$ $L_{2}(q)$ or $S L_{3}(q)$
2. $p=2 H \cong S U_{n}(q), O_{2}(L)$ induces a field automorphism of order two on $H$ and $\overline{P \cap H} \cong L_{2}(q)$ or $S U_{3}(q)$
3. $p=2$ and $O_{2}(L) H \cong \mathrm{O} 2 n^{ \pm}(q)$.
4. $p=2$ and $G=O_{2}(L) H=A u t\left(L_{n}(2)\right)$.

In case (6) 1 or (6)2, $P$ is uniquely determined. Let $R$ be the maximal parabolic of $M$ with $P \not \leq M$. Then we conclude that $J \unlhd R$ and so $\left[J,\left[R, O_{2}(L)\right] \leq O_{2}(M)\right.$. By the structure of $M$ this implies $J \leq O_{2}(M)$, a contradiction. In case (6)3 it is easy to see that $L$ is the normalizer of a non-singular isotropic space and so all $p$-components of $L$ are normal in $L$. In case (4), since $J$ does not normalize $K$ and $J \leq H, M$ most have parbolic $E$ with $E / O_{2}(E) \cong L_{3}(2) \imath C_{2}$ and $J \not \leq O_{2}(E)$. Let $T$ be a 2-componet of $E$. As $\left[J, O_{2}(L)\right] \leq O_{2}(E)$ and $O_{2}(E)$ does not normalizes $T, T \cap J \leq O_{2}(E)$. Hence $[T \cap S, J] \leq O_{2}(E)$ and $J$ i normal in both minimal parabilocs of $E$, a contradiction.

We have proved:
(7) $J \notin H, p=2$ and $J H \cong O_{2 n}^{ \pm}(q)$.

If $O_{2}(L) \leq J H$ we are done by the argument in (6)3 we are done. So suppose $O_{2}(L) \notin$ $J H$. Then $O_{2}(L)$ induces field automorphisms on $H$ and on $\operatorname{Head}(P)$. In particular $q \geq 2$. If $J \leq H O_{2}(P)$, we get that $\overline{S \cap P)}=\overline{J \cap H}$, a contradiction. Thus $J \not \leq H O_{2}(P)$ and so $P$ is uniquely determined. But now the argument in (6)1\&2 yields a contradiction.

Lemma 6.15 Let $H$ be a finite group such that $L=F^{*}(H)$ is quasi simple but neither a group of Lie type in charcateristic 2 nor an alternating group. Let $V$ be a faithful irreducible $G F(2) H$-module and $1 \neq A \leq G$ with $[V, A, A]=1$ and let $B$ be a maximal quadratic subgroup of $H$ containing $A$. Moreover assume that there exists at least one fours group in $H$ acting quadratically on $V$.
(a) One of the following holds.

## Remark: Information should be written down more clearly

1. $L \cong$ Mat $_{12}$ and $V$ is 10 -dimensional.
1.1. $|B|=4, A \leq L, N_{L}(A) \sim 2^{5} . \operatorname{Sym}(3) \sim N_{L}(B),[V, B]=C_{V}(B)$ is $5-$ dimensional and either
1.1.1. $A=B$
1.1.2. $|A|=2$ and $[V, A]$ is 4-dimensional.
1.2. $|B|=4, B \not \leq L, N_{L}(B) \sim C_{2} \times \operatorname{Sym}(5), C_{V}(B)=[V, B]$ is 5-dimensional and either
1.2.1. $A \not 又 L$ and $C_{V}(A)=C_{V}(B)=[V, B]=[V, A]$
1.2.2. $A=B \cap L$ and $[V, A]$ is 4-dimensional.
2. $L \cong 3 \cdot \mathrm{Mat}_{22}$ and $V$ is 12 -dimensional.
2.1. $|A|=2, A \leq L$ and $[V, A]$ is 4 -dimensional.
2.2. $|A|=|B|=2,|A| \not \subset L$ and $[V, A]=C_{V}(A)$ is 6-dimensional.
2.3. $|A| \geq 4,|B|=8, B \leq L, N_{L}(B) \sim C_{3} \times 2^{3} . L_{3}(2)$ and $C_{V}(A)=C_{V}(B)=$ $[V, B]=[V, A]$ is 6-dimensional.
2.4. $|A| \geq 4,|B|=16, B \leq L, N_{L}(B) \sim 2^{4}: 3 \cdot \operatorname{Alt}(6)$ and $C_{V}(A)=C_{V}(B)=$ $[V, B]=[V, A]$ is 6 -dimensional.
3. $L \cong M a t_{22}$ and $V$ is 10 dimensional.
3.1. $|A|=|B \cap L|=2$ and $[V, A]$ is 4-dimensional.
3.2. $|A|=2,|B|=4, A \not \leq L, C_{L}(A) \sim 2^{3} . L_{3}(2)$ and $[V, A]$ is 3-dimensional.
3.3. $|A|=|B|=4, A \not 又 L, N_{L}(A)=N_{L}(A \cap L)$ and $C_{V}(A)=C_{V}(B)=[V, B]=$ $[V, A]$ is 5 -dimensional.
4. $H \cong M a t_{24}$ and $V$ is 11-dimensional.
4.1. $|A|=2,|B|=4, N_{G}(A) \sim 2^{1+3+\overline{3}} . L_{3}(2)$ and $[V, A]$ is 4-dimensional.
4.2. $|A|=|B|=4, N_{G}(A) \sim 2^{8} .(\operatorname{Sym}(3) \times \operatorname{Sym}(3)) \leq 2^{6}:\left(\operatorname{Sym}(3) \times L_{3}(2)\right)$ and either
$V$ is the Golay code module and $C_{V}(A)=[V, A]$ is 6-dimensional or $V$ is the Todd module and $C_{V}(A)=[V, A]$ is 5 -dimensional
4.3. $|A| \leq 4,|B|=4, N_{L}(A) \leq N_{L}(B) \sim 2^{2+4}: 3: \operatorname{Sym}(5) \leq 2^{6}: 3 \cdot \operatorname{Sym}(6)$ and either
$V$ is the Golay code module and $C_{V}(A)=C_{V}(B)=[V, B]$ is 6-dimensional or
$V$ is the Todd module and $[V, A]=C_{V}(B)=[V, B]$ is 5 -dimensional
5. $L \cong 3 \cdot U_{4}(3), V$ is 12 -dimensional.
5.1. $|A|=2, A \leq L$ and $[V, A]$ is 4-dimensional.
5.2. $|A|=|B|=2, A$ inverts $Z(L)$ and $[V, A]=C_{V}(A)$ is 6-dimensional.
5.3. $|A|=2, A \not \leq L, C_{L}(A) \cong C_{3} \times U_{4}(2)$ and $|[V, A]|=4$.
5.4. $|A|=2, A \not \leq L,|B|=2^{5}$ and $C_{V}(A)=[V, A]=C_{V}(B)=[V, B]$ is 6dimensional and $C_{L}(A) \sim 2^{4}(\operatorname{Sym}(3) \times \operatorname{Sym}(3)$.
5.5. $|B \cap L|=16, N_{L}(B) \sim 2^{4}: 3 \cdot \operatorname{Alt}(6)$ and either
$C_{V}(A)=[V, A]=C_{V}(B)=[V, B]$ is 6-dimensional or $|A|=4,|A \cap L|=2$ and $[V, A]=[V, A \cap L]$ is 4 dimensional.
6. $L \cong J_{2}$ and $V$ is 12-dimensional.
6.1. $|A|=2,|B|=4, N_{L}(A) \sim 2^{1+4} \operatorname{Alt}(5)$ and $[V, A]$ is 4-dimensional.
6.2. $|A|=|B|=4, N_{L}(A) \sim 2^{6} . \operatorname{Sym}(3)$ and $[V, A]=C_{V}(A)$ is 6-dimensional.
6.3. $|B|=4, N_{L}(A) \leq N_{L}(B) \cong \operatorname{Alt}(4) \times \operatorname{Alt}(5)$ and $C_{V}(A)=[V, A]=C_{V}(B)=$ $[V, B]$ is 6 -dimensional.
6.4. $|A|=|B|=2, A \not \leq L$ and $[V, A]$ is 6 -dimensional.
7. $G \cong C o_{1}$ and $V$ is 24-dimensional.
7.1. $|A|=2,|B|=4, N_{L}(A) \sim 2^{1+8} \Omega_{8}(2)$ and $[V, A]$ is 8 -dimensional.
7.2. $|A|=|B|=4, N_{L}(A) \sim 2^{14} . \operatorname{Sym}(3) \times \operatorname{Alt}(8)$ and $[V, A]=C_{V}(A)$ is 12dimensional.
7.3. $|B|=4, N_{L}(A) \leq N_{L}(B) \sim\left(A l t(4) \times G_{2}(4)\right) .2$ and $C_{V}(A)=[V, A]=$ $C_{V}(B)=[V, B]$ is 12-dimensional.
7.4. $|A|=|B|=2, N_{L}(A) \sim 2^{11} \operatorname{Aut}\left(M_{12}\right)$, and $[V, A]$ is 12-dimensional.
8. $G \cong C o_{2}$ and $V$ is 22-dimensional.
8.1. $|A|=2,|B|=4, N_{L}(A) \sim 2^{1+8} S p p_{6}(2)$ and $[V, A]$ is 6 -dimensional.
8.2. $|A|=2,|B|=4, N_{L}(A) \sim 2^{1+4+6} \operatorname{Alt}(8)$ and $[V, A]$ is 8 -dimensional.
8.3. $|A|=|B|=4, N_{L}(A) \sim 2^{15} . L_{3}(2)$ and $[V, A]=C_{V}(A)$ is 11-dimensional.
8.4. $|A|=|B|=2, N_{L}(A) \sim 2^{10} \operatorname{Aut}(\operatorname{Alt}(6))$, and $[V, A]$ is 11-dimensional.
9. $L \cong 3: S z$ and $V$ is 24 -dimensional.
9.1. $|A|=2,|B|=4, N_{L}(A) \sim 2^{1+6} \Omega_{6}(2)$ and $[V, A]$ is 8 -dimensional.
9.2. $|A|=|B|=4, N_{L}(A) \sim 2^{14} . \operatorname{Sym}(3) \times \operatorname{Alt}(5)$ and $[V, A]=C_{V}(A)$ is 12dimensional.
9.3. $|B|=4, N_{L}(A) \leq N_{L}(B) \sim\left(A l t(4) \times L_{3}(4)\right) .2$ and $C_{V}(A)=[V, A]=$ $C_{V}(B)=[V, B]$ is 12-dimensional.
9.4. $|A|=|B|=2, A \not \leq L$ and $[V, A]$ is 12-dimensional.
(b) Suppose in addition that $q \leq 2$, where $|A|^{q}=\left|V / C_{V}(A)\right|$. Let $c$ be the case in (a) fulfilled by $A$ and $a=|A|$. Then $(c, a, q)$ is one of the following Remark: this doesn't look very nice
10. $(2.3,8,2)$.
11. $(2.4,8,2)$ or $\left(2.4,16, \frac{3}{2}\right)$.
12. $(5.3,2,2)$.
13. $(5.5 .1,8,2),\left(5.5 .1,16, \frac{3}{2}\right)$ or $\left(5.5 .1,32, \frac{6}{5}\right)$.
14. $(5.5 .2,4,2)$

Inparticular, $L \cong$ Mat $_{22}, 3 \cdot M$ at ${ }_{22}$ or $3 \cdot U_{4}(3)$; and $q \geq \frac{3}{2}$ unless $L \cong 3 \cdot U_{4}(3)$ and $|A|=32$.

Proof: This can be verified using [MS] and [At].
Definition 6.16 Let $H$ be a group and $F$ a field. Then an $F H$ promodule for $H$ is a pair $(\phi, V)$ there $V$ is a vector space over $F$ and $\phi: H \rightarrow G L_{K}(V)$ is a map so that the induced map $\phi^{*}: H \rightarrow P G L_{K}(V)$ is a homomorphism.

Lemma 6.17 Let p a prime and $H$ be a finite group p-connected group with $O_{p}(H)=1$. Let $S \in \operatorname{Syl}_{p}(H)$ and $Z$ and $Q$ non-trivial normal subgroups subgroups of $S$ with $Z \leq Z(Q)$ and $|Q| \geq 3$. Let $L=O^{p}(H)$.
(a) Suppose $p=2$ and $H$ is a transitive subgroup of $\operatorname{Sym}(\Omega)$ such that $Z$ acts trivially all $Q$ orbits of size larger than two. Then one of the following holds:

1. The exists a system of blocks $\mathcal{D}$ for $H$ on $\Omega$ such that
(a) If $\Delta \in \mathcal{D}$, then $Q$ normalizes $\Delta, Q=Z C_{Q}(\Delta)$ and $\left|Q / C_{Q}(\Delta)\right|=2$.
(b) For $\Delta \in \mathcal{D}$ let $L_{\Delta}=C_{L}(\cup \mathcal{D}-\Delta)$. Then $L=x_{\Delta \in \mathcal{D}} L_{\Delta}$.
2. $L \neq O(L)$. Let $\mathcal{D}$ be the set of orbits of $O(H)$ on $|\Omega|$. Then $H / O(H)$ acts faithfully on $H$. Let $\Delta$ be an orbit for $L$ on $\mathcal{D}$ and for $X \leq H$ let $X^{\Delta}=$ $N_{X}(\Delta) / C_{X}(\Delta)$.Then
(a) $Q$ normalizes $\Delta$.
(b) $L^{\Delta}=F^{*}\left(H^{\Delta}\right)$ is simple.
(c) $1 \neq Z^{\Delta} \leq Z\left(Q^{\Delta}\right), Z^{\Delta}$ and $Q^{\Delta}$ are normal in $S^{\Delta}$, $S^{\Delta}$ is a Sylow 2-subgroup of $H^{\Delta},\left|Q^{\Delta}\right| \geq 4$, and each orbit for $Q^{\Delta}$ on $\Delta$ is either centralized by $Z^{\Delta}$ or has size at most 2 .
(d) One of the following holds:
3. $H^{\Delta}=\operatorname{Alt}(\Delta)$ or $\operatorname{Sym}(\Delta)$.
4. $\Delta$ can be viewed as projective space over the field with two elements so that $H^{\Delta}=P G L(\Delta)$. Moreover if $K$ is a component of $L / O(L)$, then $N_{S}(K)$ induces only inner autmorphism on $K$.
5. $|\Delta|=6$ and $H^{\Delta} \cong \operatorname{Alt}(5)$ or $\operatorname{Sym}(5)$.
6. $|\Delta|=10$ and $H^{\Delta} \cong \operatorname{Sym}(6)$ or $\operatorname{Aut}(\operatorname{Alt}(6))$.
7. $|\Delta|=12$ and $H^{\Delta}=\operatorname{Mat}_{12}$ or $\Delta=24$ and $H^{\Delta} \cong \operatorname{Aut}\left(\operatorname{Mat}_{12}\right.$.
8. $|\Delta|=22$ and $H^{\Delta}=\mathrm{Mat}_{22}$ or $\operatorname{Aut}\left(\mathrm{Mat}_{22}\right.$.
9. $|\Delta|=24$ and $H^{\Delta}=$ Mat24. Remark: This needs careful checking
(b) Let $K$ be a field with char $K=p$ and suppose that $H$ is an irreducible subgroup of $G L_{K}(V)$ with $[V, Z, Q]=0$. Let $W$ a Wedderburn componet for $L$ on $V$. For $X \leq H$ let $X^{W}=N_{X}\left(W / C_{X}(W)\right.$. Then one of the following holds.
10. $p=2$ and there exists a system of blocks $\mathcal{D}$ for $H$ on $V$ such that
(a) If $U \in \mathcal{D}$, then $Q$ normalizes $U, Q=Z C_{Q}(U)$ and $\mid Q / C_{Q}(U \mid=2$.
(b) For $U \in \mathcal{D}$ let $L_{U}=C_{L}(\bigcup \mathcal{D}-U)$. Then $L=\times_{U \in \mathcal{D}} L_{U}$.
11. $p=2$ and there exists a system $\mathcal{D}$ of $H$-blocks on $V$ with $C_{H}(\mathcal{D})=O(H)$ and so that the action of $H / O(H)$ on $\mathcal{D}$ is described as in (a)2.
12. $L=E(L)$ and
(a) $Q$ normalizes $W$.
(b) $L$ acts irreducible on $W$.
(c) $1 \neq Z^{W} \leq Z\left(Q^{W}\right), Z^{W}$ and $Q^{W}$ are normal in $S^{W}, S^{W}$ is a Sylow 2subgroup of $H^{\Delta},\left|Q^{W}\right| \geq 3,[W, Z, Q]=0$ and $F^{*}\left(H^{W}\right)=L^{W}$.
(d) One of the follwing holds.
13. $L^{W}$ is quasi-simple.
14. $p=2, L^{W}=L_{1} L_{2}$, where $L_{1} L_{2}$ are the components of $L^{W}$. $Q$ normalizes $L_{1}$ and $L_{2}$ and as $L^{W} Q^{W}$ module $W=W_{1} \otimes_{F} W_{2}$ for some faithul $F L_{i} Q^{W}$ modules $W_{i}$. Moreover $Q^{W}$ acts linear dependently on $W_{i}$.
15. $p=2, L^{W} Q^{W} \cong L_{2}(q) \backslash C_{2}$ and $W$ is the natural $\Omega_{4}^{+}(q)$-module for $L^{W} Q^{W}$.
16. One of the following holds:
17. $p=2, L=O_{3}(L), L^{W} \cong \operatorname{Ext}\left(3^{1+2}\right), Z^{W} \cong C_{2}, Q^{W} \cong C_{4}$ or $Q_{8}$ and $|W|=2^{6}$.
18. $p=3, L=O_{2}(L), L^{W} \cong Q_{8}, Z^{W}=Q^{W} \cong C_{3}$ and $|W|=3^{2}$.
19. $p \in\{2,3\}$. Let $\{2,3\}=\{p, q\}$ and $M=O_{q}(H)^{W} / Z\left(O_{q}(H)^{W}\right.$. Then
(a) $O_{q}(L)^{W} \cong \operatorname{Ext}\left(q^{1+2 n}\right)$ or $C_{4} \circ \operatorname{Ext}\left(2^{1+2 n}\right), n \geq 2$
(b) $Z^{W} \cong C_{p}$ and $Q^{W} \cong C_{3}, C_{4}$ or $Q_{8}$.
(c) L acts irreducible on $M$.
(d) $|[M, Q]|=q^{2}$.
(e) $O_{q}(H)$ acts irreducible on $W$.
(f) Conjecture If $p=2$, then $L / C_{L}(M)=S p_{2 n}(3)$ and if $p=3$, then $L / C_{L}(M) \cong \Omega_{2 n}^{ \pm}(2), \operatorname{Alt}(2 n+1), \operatorname{Alt}(2 n+2), S p_{2 n}(2)$ or $S U_{n}\left(2^{2}\right)$. Also there are restricions on $n$ from the fact that $Q$ is normal in $S$.

Proof: (a) The proof is divided into a series of steps
(1) Let $\Delta$ be a block for $Q$ on $\Omega$.
(a) One of the following holds:

1. $Q$ normalizes $\Delta$.
2. $Z$ centralizes $\Delta$ and so also $\bigcup \Delta^{Q}$.
3. $\left|\Delta^{Z}\right|=\left|\Delta^{Q}\right|=2$ and $N_{Q}(\Delta)$ centralizes $\Delta$ and so also $\cup \Delta^{Q}$.
(b) One of the following holds:
4. $Q$ normalizes $\Delta$.
5. $N_{Z}(\Delta)$ centralizes $\Delta$ and so also $\bigcup \Delta^{Q}$.

Clearly (a) implies (b). For (a) suppose that $Z$ does not centralize $\Delta$. If $Z$ normalizes $\Delta$ then $Z$ has a non-trivial orbit on $\Delta$ and $Q$ has to normalize that orbit. Since $\Delta$ is a block, $Q$ normalizes $\Delta$ in this case. If $Z$ does not normalize $\Delta$, pick $z \in Z$ with $\Delta \neq \Delta^{z}$. Then $\Delta \cup \Delta^{z}$ is a union of non-trivial $z$ orbits and so $Q$ normalizes $\Delta \cup$ Delta $a^{z}$. Let $\omega \in \Delta$. Then $N_{Q}(\Delta)$ normalizes $\Delta \cap\left\{\omega, \omega^{z}\right\}=\{\omega\}$. Hence 3. holds in this case.
(2) Let $\Delta$ be an $L$-invariant $H$-block. Then
(a) $\Omega=\bigcup \Delta^{S}$.
(b) $Z$ does not centralize $\Delta$.
(c) If $Z$ normalizes $\Delta$ and $\left|Q / C_{Q}(\Delta)\right|=2$, then (a)1. in the lemma holds.
(d) If $Q$ does not normalize $\Delta$, then (a)1. in the lemma holds.

Since $H=L S$, (a) holds. Since $Z \unlhd S$, (a) implies (b). If the assumptions of (d) hold, then by (b) and (1)(a), also the assumptions of (c) are with $\Delta$ replaced by $\Delta^{Z}$. So it remains to prove (c). By (b) and (1)(a), $Q$ normalizes $\Delta$. Let $\mathcal{D}=\Delta^{H}, Q_{D}=C_{Q}(D)$ and note that $Q / Q_{D}=2$. Let $\Gamma$ be the union of the blocks in $\Delta^{H}$ centralized by $Q_{D}$. We claim thhat $\Gamma$ is a $H$-block. Otherwise there exists $s \in S$ with $Q_{D}^{s} \neq Q_{D}$ and a block in $\Delta^{H}$ centralized by $Q=Q_{D} Q_{D}^{s}$, a contradiction to (b). Hence $\Gamma$ is a block and replacing $\Delta$ by $\Gamma$ we may assume $\Gamma=\Delta$. Define $L_{\Delta}$ as in (a)1. of the lemma. Let $R=\left\langle L_{\Delta}\right| \Delta \in \mathcal{D}$. Then $R$ is a normal subgroup of $H$ and $R=\times_{\Delta \in \mathcal{D}} L_{\Delta}$. It remains to show that $R=L$. Let $\mathcal{D}=\left\{\Delta, \Delta_{1}, \Delta_{2}, \ldots\right.$, Delta $\left.a_{n}\right\}$. Put $L_{0}=L$ and inductively for $1 \leq i \leq n, L_{i}=\left[L_{i}, Q_{\Delta_{i}}\right]$. We claim that $L=L_{i} C_{L}(\Delta)$. This is obvious for $i=0$ Since $H$ is 2 connected, $L=[L, Q]$ and so by induction, $L=\left[L_{i-1}, Q\right] C_{L}(\Delta)$. Since $Q=Q_{\Delta} Q_{\Delta_{i}}$ and $Q_{\Delta} \leq C_{L}(\Delta)$ we conclude, $L=\left[L_{i-1}, Q_{\Delta_{i}}\right] C_{L}(\Delta)=L_{i} C_{L}(\Delta)$. Thus $L=L_{n} C_{L}(\Delta)$. But $L_{n} \leq L_{i}$ for all $i$ and $L_{i}$ centalizes $\Delta_{i}$. Thus $L_{n} \leq L_{\Delta}$ and so $L=L_{\Delta} C_{L}(\Delta)$ But this clearly implies $L=R$ completing the proof of (2).
(3) Let $F \leq Q$ with $|F / F \cap Z| \leq 2$. Then an orbit for $F$ on $\Omega$ has length at most for 2 . In particular, $F$ is elementary abelian.

Either $Z \cap F$ acts trivially on a given $F$-orbit or not. In both cases the orbit has size at most two.
(4) Let $P$ be a subgroup of odd order in $H$ normalizes by $Q$. Let $\Delta$ be an orbit for $P Q$ on $\Delta$ such that $P$ acts transitively and $Z$ non-trivially on $\Delta$. Then $\left|Q / C_{Q}(\Delta)\right|=2$.

By the Sylow theorem and the Frattini argument, $Q$ fixes a point $\omega \in \Delta$. Also $P=$ $[P, Q] C_{P}(Q)$ and replacing $P$ by $[P, Q]$ and $\Delta$ by $\omega^{[P, Q]}$ we may assume that $P=[P, Q]$. Let $R$ be a maximal $Q$ invariant normal subgroup of $P$. If $R$ is transitive on $\Omega$, then by induction on $|P|, Z$ centralizes $P$. Hence $Z / C_{Z}(\Delta)$ acts semiregulary on $\Delta$ and all orbits of $Z$ on $\Omega$ have size two. Also $Q$ and hence $[R, Q]$ normalizes all orbits of $Z$. Thus $[R, Q]$ centralizes $\Delta$. Since $P=[P, Q],\left[R, P\right.$ centalizes $\Delta$ and so $R / C_{R}(\Delta)$ acts regularly. But then $R$ centralizes $\Delta$, a contradition. So $R$ is not transitive. Let $\mathcal{D}$ be the set of orbits for $R$ on $\Delta$. Then the abelian group $M \stackrel{\text { def }}{=} P / R$ acts regularly on $\mathcal{D}$ and $\mathcal{D}$ and and $M$ are ismorphic as $Q$-sets. Suppose that $Z$ centralizes $M$, then $P=C_{P}(Z) R$ and $M$ acts non-trivially on each member of $\mathcal{D}$. But then $Q$ normalizes each member of $\mathcal{D}$. Thus $Z$ acts non-trivially on $M$ and $\mathcal{D}$. Similarly, if $C_{Q}(M)$, acts non-trivialy on $\Delta, Z$ is forced to act trivially on $\mathcal{D}$. Thus $Q / C_{Q}($ Delta $)$ acts faithfully on $M$ and $\mathcal{D}$. Let $z \in Z \backslash C_{Z}(M)$. Since $z \in Z(Q)$ and $Q$ acts irrducibly on $M, z$ inverts $M$. Let $m \in M^{\#}$. Then $Q$ normalize $\left\{m, m^{-1}\right.$ and as $Q$ is irreducible, $M=\langle m\rangle$ and $\left|Q / C_{Q}(M)=Q / C_{Q}(\Delta)\right|=2$.
(5) Suppose (a)1. does not hold and let $\mathcal{D}$ be the set of orbits for $O(H)$ on $\Omega$. Then $H / O(H)$ acts faithfully on $\mathcal{D}$.

Suppose not. Then since $H$ is 2 -connected, $L$ centralizes $\mathcal{D}$.Let $\Delta \in \mathcal{D}$. By (2), $Q$ normalizes $\Delta$. Also $Z$ acts non-trivially on $\Delta$ and $O(G)$ acts transitively. Thus by (4), $\left|Q / C_{Q}(\Delta)\right|=2$ and by (2) (a)1. holds.

We assume form now on that (a)1. does not hold. Replacing $\Omega$ by the set of orbits of $O(H)$ on $\Omega$ and $H$ by $H / O(H)$ we also may assume that $O(H)=1$. Thus $L=\times_{i=1}^{m} L_{i}$ for some non-abelian simple groups $L_{i}$. Let $\Delta$ be an orbit for $L$ on $\Omega$. We wish to whow that a2 holds. a2a and a2c follow from (2). Let $M=L^{\Delta}$. Then $M=\times_{i=1}^{n} E_{i}$, where $\left\{E_{1}, \ldots, E_{n}\right\}$ consists of whose $L_{i}^{\Delta}\left(\cong L_{i}\right)$ which act non-trivially on $\Delta$. Suppose for a contradiction that $n \geq 2$. Let $1 \neq z \in Z \cap Z(S)$. Then $z$ centralizes the Sylow 2-subgroup $M \cap S$ of $M$ and so $z$ normalizes all $L_{i}$ and $E_{i}$. If $Q$ does not normalize the componets of $M$, then $|[S \cap M, Q]| \geq\left|S \cap M_{i}\right| \geq 4$ and so $|M \cap Q| \geq 4$. So replacing $Q$ by $(M \cap Q) Z$ in this case, we may assume that $Q$ does normalize the components of $M$.

Let $E=E_{1}$ and $F=C_{M}\left(E_{1}\right)$. Since $z \in Z(S), E=[E, z]$. Suppose that $C_{Q}(E)^{\Delta} \neq 1$ and pick $t \in C_{Q}(E)^{\Delta}$ with $|t|=2$. Then $z$ normalises all the non-trivial orbits for $t$ on $\Omega$. Since $E$ centralizes $t$, the same is true for $E=[E, t]$. But the $E=E^{\prime}$ centralizes each non-trivial orbit of $t$, a contradiction. Thus $C_{Q}(E)^{\Delta}=1$.

Suppose that $E$ does not act transitively on $\Delta$. Since $M$ acts transitively, $M$ does not normalize any orbit of $E$. As $M=[M, z]$ there exists an orbit $\Gamma$ for $E$ on $\Delta$ with $\Gamma \neq \Gamma^{z}$.

Thus by $(1), P=C_{Q}(\Gamma)$ has index two in $Q$. But then $[E, P]$ centralizes $\Delta$ and so $[E, P]=1$ and $P^{\Delta} \leq C_{Q}(E)^{\Delta}=1$, a contradiction to $|Q / P|=2$.

Thus $E$ acts transitively on $\Delta$. By symmetry also $F$ is transitively on $\Delta$ and so $E$ is regular. Let $F$ be a group of order four in $Q^{\Delta}$ with $z^{\Delta} \in F$. Let $\omega \in \Delta$. Let $F=$ $\left\{1, f_{1}, f_{2}, f_{3}\right\}$ and $\omega^{f_{i}}=\omega^{e_{i}}$ for some $e_{i} \in E$. Let $E_{i}=\left\{e \in E \mid e^{f_{i}}=e_{i}^{-1}\right\}$. Note that $E_{i}$ is a coset of the proper subgroup $C_{E}\left(f_{i}\right)$ in $E$. Let $e \in E$. By (3), there exists $f_{i} \in F$ with $\omega^{e}=\omega^{e f_{i}}=\omega^{f_{i} e^{f_{i}}}=\omega^{e_{i} e^{f_{i}}}$. As $E$ is regular we get $e_{i} e^{f_{i}}=1$ and so $e \in E_{i}$. Thus $E=E_{1} \cup E_{2} \cup E_{3}$ is covered three proper cosets. But this implies that $E$ has a subgroup of index two or three, a contradiction as $E$ is non-abelian simple. Thus a2c holds.

To prove a2d we assume without loss that $\Delta=\Omega$ so $L=F^{*}(H)$ is simple. Let $V=G F(2) \Omega$ be the permutation module associate to $\Omega$. Then $[V, Z, Q]=0$ and so $V$ is a faithful $G F(2) H$-module with a quadratic fours group. Hence by $6.15, L$ is a group of Lie type in characteristic 2 , or $L=$ Mat12, Mat22, Mat24, $J_{2}, C O_{1}$ or $C o_{2}$. Let $1 \neq z \in Z$ and $R=\left\langle Q^{C_{H}(z)}\right.$. Then $R$ normalizes all non trivial orbits of $z$ on $\Omega$ and $[V, z, Q]=0$.

Suppose that $L$ is one of the sporadic groups. Then $H$ has a unique class of 2-central involution. If $L$ is $J_{2}, C 0_{1}$ or $C O_{2}$ we get that $O_{2}\left(C_{L}(z)\right) \leq R$ and so $\left.V, z, O_{2}\left(C_{L}(z)\right)\right]=1$, a contradcition. Hence $L=$ Mat12, Mat22 or Mat 24 . TO BE CONTINUED
(b) Again we divide the proof into a series of steps and use a similar strategy as in the proof of (a)
(6) Let $U$ be a block for $Q$ on $V$.
(a) One of the following holds:

1. $Q$ normalizes $U$.
2. $Z$ centralizes $U$ and so also $\sum U^{Q}$.
3. $p=2,\left|U^{Z}\right|=\left|U^{Q}\right|=2$ and $N_{Q}(U)$ centralizes $U$ and so also $\sum U^{Q}$.
(b) One of the following holds:
4. $Q$ normalizes $U$.
5. $p=2$ and $N_{Z}(U)$ centralizes $U$ and so also $\sum U^{Q}$.

Clearly (a) implies (b). For (a) suppose that $Z$ does not centralize $U$. If $Z$ normalizes $U$, then $0 \neq[U, Z] \leq U$ and $Q$ centralizes $[U, Q]$. Since $U$ is a block, $Q$ normalizes $U$ in this case. If $Z$ does not normalize $U$, pick $z \in Z$ with $U \neq U^{z}$. Since $z \in Z(Q), U+U^{z}$ is a block for $Q$.Also $Q$ centralizes $[U, z]$ and so normalizes $U+U^{z}$. As a $N_{Q}(U)$ module, $U \cong U+U^{z} / U^{z}=[U, z]+U^{z} / U^{z} \cong[U, z] /[U, z] \cap U^{z}$ and so $N_{Q}(U)$ centralizes $U$. Hence 3. holds in this case.
(7) Let $U$ be an $L$-invariant $H$-block. Then
(a) $V=\sum U^{S}$.
(b) $Z$ does not centralize $U$.
(c) If $Z$ normalizes $U$ and $\left|Q / C_{Q}(U)\right|=2$, then (b)1. in the lemma holds.
(d) If $Q$ does not normalize $U$, then (b)1. in the lemma holds.

The proof is essentially the same as the one for (2).

$$
V Z Q-13
$$

(8) Suppose exists an $H$-block which is not $L$-invariant, then (b1) or (b2) in the lemma holds.

Let calD be a block system for $H$ on $V$ with $L$ acting non-trivially on $\mathcal{D}$ and let $\mathcal{D}$ be maximal with this property. Then $p=2, C_{H}\left(\mathcal{D} \leq O(H)\right.$ and we can apply (a) to $H / C_{H}(\mathcal{D})$ and $\mathcal{D}$. In case (a)1., (b)1. holds. In case of (a). 2 the maximality of $\mathcal{D}$ implies that $O(H)$ acts trivially on $\mathcal{D}$. Thus (b) 2 . holds.

We assume from now on without loss that neither (b)1. nor (b)2. hold.
(9) Let $W$ be a Wedderburn component for $L$ on $V$. Then $Q$ normalizes $Q$ and $W$ is irreducible as $L$-module.

By (7)d, $Q$ normalizes $W$. As $V$ is irredicble for $H, W$ is irreucible for $N_{H}(L)$. As $W$ is $L$-homogenous and $N_{H}(L) / L$ is a $p$-group, $L$ is irreducible on $W$.
(10) Suppose that $L=E(L)$. Then (b3) holds.

If $Q / C_{Q}(W) \mid=2$, then (b1) holds. Hence ((b3a),(b3b) and (b3c) holds It remains to verify (b3d). Let $L_{1}, L_{2}, \ldots L_{n}$ be the components of $L / C_{L}(W)$. If $n=1$, (b3d1) holds. Put $F=\operatorname{End}_{K} L(W)$ and let $P$ the largest subgroup of $Q$ normalizing the components of $L^{W}$. As in part (a), $P^{W}$ has order at least three and $(Z \cap P)^{W} \neq 1$. Then $W$ has a tensor compostion $\left(F, W_{i}, 1 \leq i \leq n\right)$, where $W_{i}$ is an $C_{L P}(F)$ module centralized by all $L_{j}, j \neq i$. Then by $6.6, p=2, n=2$ and $P^{W}$ acts linearly dependently on $W_{1}$ and $W_{2}$. If $Q=P$, (b3d2) holds. So suppose that $|Q / P|=2$ and let $q \in Q \backslash P$. Note that $Q$ is $F$-linear. Let $1 \neq z \in P \mathcal{Z}$. Let $U$ be an irreducible $F U$ subspace in $W$ with $U \neq U^{z}$. Then $U=W_{1} \otimes a_{2}$ for some $a_{2} \in W_{2}$. Also $U^{q}$ is an irreducible $F L_{2} P$ subspace and so $U^{q}=a_{1} \otimes W_{1}$ for some $w_{1} \in W_{2}$. Similarly $U^{z}=b_{1} \otimes W_{2}$ and $U^{z q}=W_{2} \otimes W_{1}$. Thus $\left(U+U^{z}\right) \cap\left(U+U^{z}\right)^{q}=\left(F a_{1}+F b_{1}\right) \otimes\left(F a_{2} \otimes F b_{2}\right)$. On the otherhand, $q$ centralizes $[U, z] \leq U+U^{z}$ and we conclude that $\operatorname{dim}_{F} U=2$. We conclude that $W_{1}$ and $W_{2}$ are 2-dimensional and by say Dicksson's theorem, (b3d3) holds.
(11) Suppose that $W$ is tensor decomposable for $L Q$. Then (b3) holds.

By 6.6, $p=2$ and $Q$ is elementary abelian and $C_{L^{W}}(q)=C_{L^{W}}(Q$ for all $1 \neq q \in Q$. Thus $O(H)^{W} \leq Z\left(L^{W}\right)$ and so $L=E(L)$. So the claim follows from (10).

Suppose from now on that $W$ is tensor indecomposable. Let $M$ be a normal subgroup of $H$ minimal with respect to $[M, L] \neq 1$. Note that $M / C_{M}(L)$ is characteristicly simple. Hence either $M=E(M)$ or $M$ is a $q$-group for some prime $q$. If $M=E(M)$, it is easy to see that $M$ is not a $p^{\prime}$ group and so $M=L$ since $H$ is $p$-connected. So in view of (10) we may assume that $M$ is a $q$ - group.
(12) $M$ acts irreducible on $W$ and $M^{W} \cong \operatorname{Ext}\left(q^{1+2 n}\right)$ or $C_{4} \circ \operatorname{Ext}\left(2^{1+2 n}\right), n \geq 2$.

If $M$ is not homogenous on $W$. Then $L$ acts non-trivially on the Wedderburn components of $M$ on $V$, a contradiction to (8). Hence $M$ is homogenous. As $W$ is tensor indecoposable, this implies that $M$ is irreducible on $W$. Let $F=\operatorname{End}_{K M}(W)$. Then by 6.6, $Q$ and so also $L=[L, Q]$ is $F$-linear on $W$. Thus $\left[Z\left(M^{W}\right), L=1, C_{L}(M)=Z(L)\right.$ and $C_{M}(L)=Z(M)$. By a standard argument the structure of $M^{W}$ is as described.
(13) One of the following holds:

1. $p=2, q=3$ and $\left[M^{W}, Q\right] Q^{W} \cong S U_{3}(2)$ or $\operatorname{Ext}\left(3^{1+2}\right) C_{4}$
2. $p=3, q=2$ and $\left[M^{W}, Q\right] Q^{W} \cong S L_{2}(3)$.

Let $P=\left[M^{W}, Q\right], R=P Q^{W}$ and $Y$ and irreducible $R$-submodule in $W$. Then $P$ and so also $R$ acts faithfuly on $Y$. Then $P$ is extra-special. Let $1 \neq z \in Z^{W}$. Then as $z$ acts quadratically on $W$, Hall-Higmann implies $p=2$, or $p=3$ and $q=2$. Suppose that $P \neq[P, z]$. Then $[P, z]$ and $C_{P}(z)$ are normal in $R$ and $P=[P, z] \circ C_{P}(z)$. But then $Y$ is tensor decomposable for $R$. Then the argument in (11) gives a contradiction. Thus $P=[P, z]$. $A$ be a maximal abelian $z$-invariant normal subgroup of $P$. Let $\mathcal{A}=\{D \leq$ $A \mid A=Z(P) D, D \cap Z(P)=1\}$. Then $P$ acts transitively on $\mathcal{A}$ and $z$ fixes a unique member of $\mathcal{D}$, namely $[A, z]$. Also $Y \bigoplus_{D \in \mathcal{A}} C_{Y}(D)$. If $p=3$ we conclude that $|\mathcal{A}|=1$ and so $|P|=8$ and 2. holds. So suppose $p=2$. Let $|P|=q^{1+2 n}$. Then $|A|=q^{1+n},|\mathcal{A}|=q^{n}$ we conclude that $\operatorname{dim}_{F}[Y, z]=\frac{q^{n}-1}{2}, \operatorname{dim}_{F} C_{Y}(z)=\frac{q^{n}+1}{2}$ and $\operatorname{dim}_{F} C_{Y}(z) /[Y, z]=1$. Let $q \in Q^{W} \backslash\langle z\rangle$. If $|q|=2$, we may assume that $q$ normalizes $A$. But then $[Y, z, t]=0$ implies that $t$ normalizes all the orbits of $z$ on $\mathcal{A}$, a contradicition. Thus $|q|=4$ and we may assume $q^{2}=z$. Since $[Y, q, t]=0, \mid[Y, q]+[Y, z] /[Y, z]$ has dimension at most 1 over $F$. Hence there exists an $q$ invariant $F$-hyperplane $U$ in $Y$ with $[U, q] \leq[Y, t] \leq C_{U}(q)$. Thus $[U, q, q]=0$ and $\left[U, q^{2}\right]=1$. Thus $Y / C_{Y}(z)=1$ is 1 -dimensional. So $\frac{q^{n}-1}{2}=1$. $q^{n}=3$ and $|P|=3^{3}$. Hence 1. holds in this case.
(14) Either $L$ acts irreducible on $M^{W} / Z\left(M^{W}\right)$ or (b4) holds.

Let $Z\left(M^{W}\right)<P \leq M^{W}$ be minimal with respect to being $L$-invariant. Put $\bar{M}=$ $M^{W} / Z\left(M^{W}\right)$. If $Q$ does not normalize $P$, then by (13), $|\bar{U}| \leq q^{2}$. Thus $L / C_{L}(U)$ is a solvable $\{p, q\}$ group. Since $H$ is $p$-connected we conclude that $L / C_{L}(U)$ is a $p^{\prime}$ group and so a $q$-group. Since $L$ is irreducible on $U$ we conclude $[U, L]=1$. Since $H$ is irreducible on $M / Z(M)$ we conclude $[M, L] \leq Z(M)$. Thus $O^{q}(L) \leq C_{L}(W) \leq Z(L)$ and $L=O_{q}(L) Z(L)$. Since $[Z(L), Q]=1, p$-connectivity of $H$ implies, $L=O_{q}(L)$. Thus (b4) holds in this case.

So we may assume that $Q$ normalizes $U$. If $U$ is abelian, then by (13), $Q$ centralizes $U$ and so also $L$ centalizes $U$, a contradiction. Hence $U$ is not abelian and $M^{W}=P C_{M^{W}}(P)$. Thus 6.17-14 implies $P=M^{W}$.
(15) If $L$ acts irreducible on $M^{W} / Z\left(M^{W}\right)$ then (b5) holds.

This follows form (13).
$V Z Q m$
Lemma 6.18 Let $p$ be a group, $H$ a finite p-minimal group with $O_{p}(H)=1$. Let $S \in$ $\operatorname{Syl}_{p}(H)$ and $Z$ and $Q$ non-trivial normal subgrous of $S$ with $Z \leq Z(Q)$. Let $R$ be maximal in $Q$ with $[V, R] \leq[V, Z]$. Let $V$ be a faithful $G F(p) H$-module so that
(i) $[V, Z, Q]=0$.
(ii) $V=\left[V, O^{p}(H)\right]$.
(iii) $V / C_{V}\left(O^{p}(H)\right)$ is irreducible as $H$-module.

Then $|Q / R| \leq V / C_{V}(Z)$. Moreover if $T \unlhd S$ with $Z \leq T$. Then either $T \leq R$ or $[V, T]=[V, Q]$

Proof: Remark: Some parts of the proof are still very sketchy, also the proof is a lot longer than it should be and to much of a case by case analysis Let $Y=C_{V}(L)$ and $\bar{V}=V / Y$. Then $\bar{V}$ is irreducible as $H$-module.

Let $C=C_{H}(\bar{V})$.Then $\left.C \cap L\right]$ centralizes $U$ and $V / U$ and so $C \cap L$ is a $p$-group. Since $O_{p}(H)=1$ we conclude $C \cap L=1$. Thus $O^{p}(C)=1, C$ is $p$-group and $C=1$.

Hence $H$ acts faithfully on $\bar{V}$ and we can apply $6.17(\mathrm{~b})$ to $\bar{V}$.
Let $W$ be a $L Q$ submodule in $V$ minimal with respect to $[W, L] \neq 0$. Then $W=[W, L]$. For $X \in L Q$ let $X / C_{X}(W)$. Let $1 \neq z \in Z(S) \cap Z$.
(1) Suppose that $\left|Q^{W} / Z^{W}\right| \leq \bar{W} / C_{\bar{W}}(Z)$ and $[W, T] \in\{[W, Z],[W, Q]$. Then the lemma holds.

Since $\bar{V}$ is irreducible and $H=L S, \bar{V}=\left\langle\bar{W}^{S}\right\rangle$ Thus there exists $s_{i} \in S, 1 \leq i \leq k$ with $\bar{V}=\oplus_{i=1}^{k} \bar{W}^{s_{i}}$. Then $V=[V, L]=\left[\sum_{i=1}^{k} W^{s_{i}}, L\right]=\sum_{i=1}^{k} W^{s_{i}}$. Let $P=\bigcap_{i=1}^{k} Z C_{S}\left(W^{k}\right)$. Then $P \leq R$ and

$$
|Q / R| \leq|Q / P| \leq\left|Q^{W} / Z^{W}\right|^{k} \leq \bar{W} / C_{\bar{W}}(Z)^{k}=\mid \bar{V} / C_{\bar{V}}(Z) \leq V / C_{V}(Z)
$$

Also $[W, T]=[W, Z]$ implies $[V, T]=[V, Z]$, while $[W, T]=[W, Q]$ implies $[V, T]=[V, Q]$
VQZm-2
(2) $C_{L Q}(\bar{W})=C_{L Q}(W)$.

Let $B=C_{L Q}(\bar{W})$. Then $B \cap L$ centralizes $Y$ and $W+Y / Y$ and so acts as a $p$-group on $W$. Since no composition factor of $L$ on $L$ is a $p$-group, $B \cap L$ centralizes $W$. Thus $[B, L, W]=0$ and $[W, B, L]=0$. Thus by the three subgroup lemma $[W, L, B]=0$. As $W=[W, L]$ we conclude $[W, L]=0$ and so (2) holds.
(3) If $\left|Q^{\bar{W}}\right| \leq p^{2}$, the lemma holds.

By ??, $\left|Q^{W}\right| \leq p^{2}$.Also $Z^{W} \neq 1$ and $Z$ does not centralize $\bar{W}$. Thus (3) follows from ??.
VZQm-4
(4) If $O_{p^{\prime}}(L) \neq 1$, then $Y=0$.

By Mascke, $V=C_{V}\left(O_{p^{\prime}}(L)\right) \oplus\left[V, O_{p^{\prime}}(L)\right]$. Also $Y \leq C_{V}\left(O_{p^{\prime}}(L)\right)$ and as $\bar{V}$ is irreducible, $\left.V=Y+\left[V, O_{p^{\prime}}(L)\right)\right]$. Thus $\left.\left.V=[V, L]=\left[V, O_{p^{\prime}}(L)\right), L\right]\right]=\left[V, O_{p^{\prime}}(L)\right]$ and (4) holds.

Suppose first that 1 . in 6.17 (b) holds for $\bar{V}$. Then $\left|Q^{\bar{W}}\right|=2$ and we are done by (3).
Suppose next that 2. in 6.17)(b) holds. Let $D / Y \in \mathcal{D}$ and $\Delta=D^{L}$. Without loss $W \leq \sum \Delta$. Since $H$ is $p$-minimal we conclude from $6.17(\mathrm{a} 2)$ that $L^{\Delta} \cong \operatorname{Alt}(n)$ with $n=2^{k}+1, k \geq 2$ or $n=6$. If $n \leq 6$ it is easy to see that $Q^{\Delta} \leq 4$ and so also $\left|Q^{W}\right| \leq 4$. So we may assume that $m=2^{k}+1, k \geq 2$. Let $E \in \Delta$ with $E \neq E^{z}$. Then $N_{Q}(E)$ centralizes $E$. Let $M=N_{L Q}(E)$. Then $M^{\Delta} \cong \operatorname{Alt}\left(2^{n}\right)$ or $\operatorname{Sym}\left(2^{n}\right)$ and so $M^{E}=\left\langle N_{Q}(E)^{M}\right\rangle O(L)$. Hence $M=C_{M}(E) O(L)$. If $O(L)$ centralizes $E$. Then $\bar{V}$ is a permutation module for $L$, a contradiction to $C_{\bar{V}}(L)=0$. Thus $O(L) \neq 1$ and by (4), Y=0. It follows that $[D, Z]=[D, Q]$. Let $F$ be the unique fixed point for $z$ on $\Delta$. Since $F$ and $E$ are conjugate under $L$, all $p$-elements in $N_{L Q}(F)$ act trivially on $F$. So $[F, Q]=0$ and $[V, Z]=[V, Q]$.

Suppose that 3. in $6.17(\mathrm{~b})$ holds. By (3) we may assume that $\left|Q^{W}\right|>p^{2}$. Then $p$ minimality and quadratic action implies that the components for $L$ are one of $S L_{2}(q), S U_{3}(q), S z(q), \mathrm{Alt}(\mathrm{q}+1), S p$ or $L_{3}(q)$ Here $q$ is a power of $p, p=2$ in the last four cases, and a graph automorphism is induced on the components in the last two cases.

If 3 d 2 or 3 d 1 in $6.17(\mathrm{~b})$ holds then $Y=0$. Let $F=\operatorname{End}_{L}(W)$. Then $\left|Q^{W}\right| \leq 2 \cdot|F|$, $\left|W / C_{W}(Z)\right| \geq|F|^{2}$ and $[W, T]=[W, Q]$ if $\left|T^{W}\right| \geq 4$. Thus we are done by ??.

So suppose that $L^{W}$ is quasi simple. If $Q^{W}$ is not elementary abelain then $W$ is a strongly quadratic module in the sense of Stroth and so $\bar{W}$ is the natural module. Because of the graph automorphism, $L=S p_{4}(q)$ ) is impossible in this case. Thus $Y=0$ and the lemma is readily verifed in this case.

So suppose that $Q^{W}$ is elementary abelian. Then its is easy to check that $\left|C_{\bar{W}}(Z)\right|^{2}=\bar{W}$ and $\left|Q^{W}\right| \leq\left|\bar{W} / C_{\bar{W}}(Z)\right|$. In particular, $Q$ acts quadratically on $W$. Let $J \leq H^{W}$ minimal with $Q^{W} \leq J$ and $Q^{W} \not \leq O_{p}(J)$. Suppose first that $O_{p}(J)=1$. Then ( for example by 2.9), $J \cong S L_{2}(\tilde{q})$ or $\left.\left.S z\right) \tilde{q}\right)$. Thus there exists $j \in J$ with $J=\left\langle T^{W j}, T^{W}\right\rangle$. Thus $[W, J]=[W, T]^{j}+[W, T]$ and $[W, Q]=\left([W, T]^{j} \cap[W, Q]\right)+[W, T]$. But $[W, T]^{j} \cap[W, Q] \leq$ $C_{W}(J) \cap[W, T]^{j} \leq[W, T]$ and so $[W, Q] \leq W$. So we may assume that $O_{p}(J) \neq 1$ and $J$ is not generated by two conjugate of $T^{W}$ in $J$. In particular, $L^{W} \cong S p_{4}(q)$. We conclude that either $[W, T] \leq[W, Z]$ or $Y \cap W \leq[W, T]$. In the latter case, $[W, Q] \leq[W, T]$ and the lemma holds in this case.

Suppose finally that 4 . or 5 . in $6.17(\mathrm{~b})$. In view of (3) we may assume that $Q^{W} \cong Q_{8}$. So $p=2$ Also by (4), Y $=0$. Let $X=\left\langle Q^{O_{3}(L)}\right\rangle$. Then $X^{W} \cong S U_{3}(2)$ and $W$ is a direct sum of natural modules for $X^{W}$, Again it is easy to verify the assumptions of ?? and the lemma is proved.

## 7 An interesting choice of an amalgam for generic $p$-type groups

Hypothesis $7.1 p$ is a prime, $G$ is a finite groupe of generic p-type and $S \in \operatorname{Syl}_{p}(G)$. hgpt
Definition 7.2 (a) $\mathcal{W}$ is the set of sets $\left\{M_{1}, M_{2}\right\}$ such that
(a) $M_{i} \in \mathcal{L}(J(S)$
(b) $O_{p}\left(\left\langle M_{1}, M_{2}\right\rangle\right)=1$.
(b) Define an partial ordering " $\leq " l$ on $\mathcal{W}$ by defining $\left(H_{1}, H_{2}\right)<\left(M_{1}, M_{2}\right)$ if and only if one of the the follwing holds.

1. Some Sylow $p$ subgroup of $H_{1} \cap H_{2}$ is properly contained in a Sylow $p$-subgroup of $M_{1} \cap M_{2}$.
2. $H_{1} \cap H_{2}$ and $M_{1} \cap M_{2}$ have a common Sylow subgroup $T$ and $C_{H_{1} \cap H_{2}}\left(\Omega_{1}(Z(T))<\right.$ $C_{M_{1} \cap M_{2}}\left(\Omega_{1}(Z(T))\right.$
3. $H_{1} \cap H_{2}<M_{1} \cap M_{2}$.
4. $H_{1} \cap H_{2}=M_{1} \cap M_{2}$ and (possible after interchanging $M_{1}$ and $M_{2}$ and $H_{1}$ and $H_{2}, M_{1}<H_{1}$ and $M_{2} \leq H_{2}$.
$" \leq "$ is defined as $"<"$ or $"="$
(c) $\mathcal{W}^{*}$ is the set of maximal elements of $\mathcal{A}$ under the order defined in (b).

We leave it as an easy exercise to the reader to verify that $(\mathcal{W}, \leq)$ is a partially ordered set.

Lemma 7.3 Let $\left(M_{1}, M_{2}\right) \in \mathcal{W}^{*}, M_{12}=M_{1} \cap M_{2}, T \in \operatorname{Syl}_{p}\left(M_{12}\right)$ and put $\left.Z_{0}=\Omega_{1} Z(T)\right)$. Then
(a) For $i=1,2,\left|\mathcal{M}\left(M_{i}\right)\right|=1$.
(b) Suppose $R$ is a p-subgroup of $M_{1}$ with $T<R$. Then $\mathcal{M}(R)=\mathcal{M}\left(M_{1}\right)$ and $T \in$ $\operatorname{Syl}_{p}\left(M_{2}\right)$.
(c) Suppose that $T \notin \operatorname{Syl}_{p}(G)$. Then $C(G, T) \in \mathcal{L}, C(G, T)$ lies in a unique maximal p-local $M$ of $G,|\mathcal{M}(S)|=1$ and either $T$ is a Sylow p-subgroup in $M_{1}$ and $M_{2}$, or $M=M_{i}^{*}$ for some $i$.
(d) $M_{12}$ is a maximal subgroup of $M_{1}$ and of $M_{2}$.
(e) One of the following holds:

$$
\text { 1. } C_{M_{1}}\left(Z_{0}\right)=C_{M_{12}}\left(Z_{0}\right)=C_{M_{2}}\left(Z_{0}\right) \text {. }
$$

2. There exists $\{i, j\}=\{1,2\}$ so that
(a) $C_{M_{i}}\left(Z_{0}\right) \not \leq M_{j}, \mathcal{M}\left(M_{i}\right)=\mathcal{M}\left(C_{M_{i}}\left(Z_{0}\right)=\mathcal{M}\left(C_{G}\left(Z_{0}\right)\right)\right.$.
(b) $C_{M_{j}}\left(Z_{0}\right) \leq M_{i}$.

Proof: (a) Suppose $M_{1}$ is contained in two distinct maximal $p$-locals $L_{1}, L_{2}$. Then $M_{1} \cap$ $M_{2}<M_{1} \leq H_{1} \cap H_{2}$. But this contradicts the maximal choice of ( $M_{1}, M_{2}$ ).
(b) Let $M \in \mathcal{M}(R)$. Then $T$ is properly contained in a Sylow $M_{1} \cap M$ and so by that maximality of $\left(M_{1}, M_{2}\right), M_{1} \leq M$. If $T$ is not a Sylow $p$-subgroup of $M_{2}$, then we conclude $\mathcal{M}\left(M_{1}\right)=\mathcal{M}\left(N_{L}(T)\right)=\mathcal{M}\left(M_{2}\right)$, a contradcition. Thus (b) holds.
(c) Assume without loss that $T<S$. Then by maximality $N_{S}(T)$ lies in a unique $p$-local subgroup $M$ of $G$. Clearly $C(G, T) \leq M$ and it is easy to see that (c) holds.
(d) Let $M_{12}<L_{1} \leq M_{2}$ and put $M=\left\langle L_{1}, M_{2}\right\rangle$. If $M \in \mathcal{L}$, then $\left(M, M_{2}\right) \in \mathcal{W}$ and $M_{12}<L_{1} \leq M \cap M_{1}$, a contradiction to the maximality of $\left(M_{1}, M_{2}\right)$. Thus $O_{p}(M)=1$ and $\left(L_{1}, M_{2}\right) \in \mathcal{W}$. Also $L_{1} \cap M_{2}=M_{12}, L_{1} \leq M_{1}$ and $M_{2} \leq M_{2}$. So by maximality $L_{1}=M_{1}$.
(e) Suppose that $C_{M_{1}}\left(Z_{0}\right) \not \leq M_{2}$ and let $M \in \mathcal{M}\left(C_{M_{1}}\left(Z_{0}\right)\right.$. Suppose that $M_{1} \not \leq M$. Since $T \leq M_{1} \cap M$, maximality implies that $T$ is a Sylow $p$-subgroup of $M_{1} \cap M$. But then part 2. of the definition of " $i$ " gives a contradiction. Thus (ea) holds. Clearly (ea) implies (eb).

Lemma 7.4 Let $M \in \mathcal{L}(S)$ and $1 \neq x \in Z_{M} \cap Z J(S)$ Suppose that $Z_{M} \not \leq O_{p}\left(C_{G}(x) 0\right.$. Then TO BE CONTINUED

Proof: Assume without loss that $M$ is a maximal $p$-local. Put $Q=C_{S}\left(Z_{M}\right)$. Note that $C_{G}(x) \in \mathcal{L}\left(B(S)\right.$. Pick $L \in \mathcal{L}(Q)$ so that $Z_{M} \not \leq O_{p}(L),|L|_{p}$ is maximal and $|L|$ is minimal. Let $T$ be a Sylow $p$-subgroup of $|L|$ with $Q \leq T$. Let $R$ be an $T$ invariant subgroup of $L$ with $\left[R, Z_{M} \notin O_{p}(R)\right.$. Then by minimality of $L, L=R S$. In particular, $L \in \mathcal{N}(T)$. Also $Z_{M} \leq D=\stackrel{\text { def }}{=} \bigcap\left\{O_{p}(P) \mid P \in \mathcal{M}(L, T)\right\}$.

Case $1 T$ is not a Sylow $p$-subgroup of $G$.
Let $C$ be a non-trivial characteristic subgroup of $T$. Then $N_{G}(C)$ has a larger $p$-part then $L$ and so by choice of $L, Z_{M} \leq O_{p}\left(N_{G}(C)\right)$. In particular, $C$ is not normal in $L$. In particular, $\left[Z_{L}, Z_{M}\right] \neq 1$.

Suppose that $F^{*}(L)$ is not a $p$-group. Then no element of $O_{p}(L)$ is of $p$-type. Pick $E \in \mathcal{L}$ with $Q \leq L, F^{*}(E)$ is not a $p$-group, $|E|_{p}$ maximal and $|E|$ minimal. Then $Z_{M} \not \leq O_{p}(E)$. Let $R$ be a Sylow $p$-subgroup of $E$ containing $Q$ and $R \triangleleft R^{*}$ for some $p$-group $R^{*}$. Let $1 \neq r \in R \cap Z\left(R^{*}\right)$. Then $Q \leq C_{G}(r)$ and $C_{G}(r)$ has larger $p$-part then $E$. Thus $r$ is of $p$-type and so $r \not \leq O_{p}(E)$. Thus $\left[O_{p}(E), O^{p}(E)\right]=1$. TO BE CONTINUED

## 8 Some general amalgam results

geamre
amalgam
2. $p$ is a prime.
3. $G_{1}$ and $G_{2} b$ are finite subgroups of $G$.
4. $G=\left\langle G_{1}, G_{2}\right\rangle$
5. $S \leq G_{1} \cap G_{2}$ so that $S$ is a Sylow p-subgroup of $G_{1}$ and $G_{2}$
6. Both $F^{*}\left(G_{1}\right)$ and $F^{*}\left(G_{2}\right)$ are $p$-groups.

Let $O_{S}(G)$ be the largest subgroup of $S$ which is normal in $G$. Let $Z=\Omega_{1} Z(S)$. Let $\Gamma=\Gamma\left(G ; G_{1}, G_{2}\right)$ be the coset graph for $G$ with respect two $G_{1}, G_{2}$. In equal the vertices are the right cosets of $G_{1}$ and $G_{2}$ in $G$ and two cosets are adjacent if they are distinct and have non-empty intersection. For $\gamma \in \Gamma$, let $G_{\gamma}$ be the stabilizer of $\gamma \in G$, $Q_{\gamma}=O_{p}\left(G_{\gamma}\right)$, $Z_{\gamma}=\Omega_{1}(Z(T)) \mid T \in \operatorname{Syl}_{p}\left(G_{\gamma}\right), \Delta(\gamma)$ is the set of neighbors of $\gamma, G_{\gamma \delta}=G_{\gamma} \cap G_{\delta}$. $\left.G_{\gamma}^{(1)}=\bigcup_{\delta \in \Delta(\gamma)} G_{\gamma \delta}, V_{\gamma}=\left\langle Z_{\delta}\right| \delta \in \triangle(\gamma), C_{\gamma}=C_{G_{\gamma}}\left(Z_{\delta}\right), E_{\gamma}=O^{p}\left(G_{\gamma}\right), Q_{\gamma}^{*}=\left[Q_{\gamma}, E_{\gamma}\right)\right]$, $X_{\gamma}=\Omega_{1} Z\left(Q_{\gamma}\right), X_{\gamma}^{*}=C_{Q_{\gamma}}\left(Q_{\gamma}^{*}\right), Y_{\gamma}$ is the largest $p$-reduced normal subgroup of $G_{\gamma}$

For $\gamma \in \Gamma$ let $b_{\gamma}=\min \left\{d(\gamma, \delta) \mid Z_{\gamma} \not \leq G_{\delta}^{(1)}\right.$. Let $b=\min _{\gamma \in \Gamma} b_{\gamma}=\min \left\{b_{G_{1}}, b_{G_{2}}\right.$. Let $\alpha, \alpha^{\prime} \in \Gamma$ with $d\left(\alpha, \alpha^{\prime}\right)=b$ and $Z_{\alpha} \not \leq G_{\alpha^{\prime}}^{(1)}$. Let

$$
(\alpha, \alpha+1, \alpha+2, \ldots, \alpha+b)=\left(\alpha^{\prime}-b, \ldots, \alpha^{\prime}-1, \alpha^{\prime}\right)
$$

be a shortest path form $\alpha$ to $\alpha^{\prime}$. Put $\beta=\alpha+1$. Without loss $\left\{G_{\alpha}, G_{\beta}\right\}=\left\{G_{1}, G_{2}\right\}$.
Let $q_{\delta}=q a_{Z_{\delta}}\left(G_{\delta}\right), r_{\delta}=\min \left\{r| | A Q_{\beta} /\left.Q_{\beta}\right|^{r}=\mid V_{\beta} / C_{V_{\beta}}(A)\right\}$ for some $A \leq S$ with $A \not \leq Q_{\beta}$ and $\left[V_{\beta}, A, A\right]=1$. Let $c_{\beta}$ the number of non-trivial chief factors for $G_{\beta}$ on $V_{\beta}$.

Definition 8.2 Let $H$ be a group and $T$ a subgroup of $H$.

1. $H$ is connected with respect to $T$ if $T$ is not normal in $H$ and for each normal subgroup $N$ of $H$, either $N \cap T$ is normal in $H$ or $H=N T$.
2. $H$ is p-connected if $H$ is connected with respect to some Sylow p-subgroup of $H$.
3. $H$ is p-minimal with $H$ is not p-closed and a Sylow p-subgroup of $H$ lies in a unique maximal subgroup of $H$.

Lemma 8.3 If $G_{\beta}$ is connected then, $r_{\beta} \geq r a_{V_{\beta}} c_{b}$.
Proof: $A \leq G_{\beta}$ with $\left[V_{\beta}, A, A\right]=1$ and put $r=r a_{V_{\beta}}$. Let $U$ be a non-trivial chief factor for $G_{\beta}$ on $S$ Then as $G_{\beta} \in \mathcal{N}^{*}(S), C_{A}(U)=A \cap Q_{\beta}$. So by definition of $r a_{V_{\beta}}(S)$, $\left|A Q_{\beta} / Q_{b}\right|^{r} \leq\left|U / C_{U}(A)\right|$. Multiplying together these inequalities over all such $U$ in a chief series we obtain $\left|A Q_{\beta} / Q_{b}\right|^{\mid c_{\beta}} \leq\left|V / C_{V}(A)\right|$ and so $r_{b} \geq r c_{\beta}$.

Lemma 8.4 Suppose that $b \geq 2$ and allow for the case that $O_{S}(G) \neq 1$.
(a) Suppose that $q_{\alpha}>1$ and $\left[V_{\beta}, J(S) \neq 1\right.$. Then $b$ is odd or $\infty$ and $\left(q_{\alpha}-1\right)\left(r_{\beta}-1\right) \leq 1$.
(b) Suppose that $C_{\alpha} \cap Q_{\beta}$ is not normal in $G_{\alpha}$ and put $Q=\left\langle C_{\alpha} \cap Q_{b}^{G_{\beta}}\right\rangle$. Then $Q$ acts quadratically on $Z_{\alpha},\left|\left[Z_{\alpha}, Q\right]\right| \leq\left|Q / C_{Q}\left(Z_{\alpha}\right)\right|, Z_{\alpha}$ is an FF module and $\left[C_{Z_{\alpha}}(Q), E_{\beta}\right]=$ 1.

Proof: (a) If $b$ is even, 8.17 shows that $Z_{\alpha}$ or $Z_{\alpha^{\prime}}$ is $F F$, a contradiction to $q_{\alpha}>1$. Thus $b$ is odd or $\infty$. In particular, $b \geq 3$ and $V_{\beta}$ is abelian.

Since $\left[V_{\beta}, J(S) \neq 1\right.$, there exists $A \in \mathcal{A}(S)$ with $\left[V_{\beta}, A\right] \neq 1$. By the Thompson replacement lemma we may assume that $\left[V_{\beta}, A, A\right]=1$. Suppose $A \leq Q_{\beta}$ and let $\delta \in \triangle(\beta)$. Then $q_{\delta}>1$ implies $\left[Z_{\delta}, A\right]=1$ and $\left[V_{\beta}, A\right]=1$, a contradiction. Thus $A \not \leq Q_{\beta}$. Put $B=A \cap Q_{\beta}$. We will apply 2.4 with $I=\triangle(\beta)$ and $W_{i}=Z_{i}$ for $i \in I$. Define $r, t$ and $s$ as in the 2.4. Since $A \in \mathcal{A}(S),\left|V_{\beta} / C_{V_{\beta}}(A)\right| \leq \mid A / C_{A}\left(V_{\beta}\right)$ and so $t \geq 1$. Also $s \geq q_{a}>1$ and $r \geq r_{\beta}$. By 2.4b to obtain trs $\leq r+s, r s \leq r+s,(s-1)(r-1) \leq 1$ and $\left(q_{\alpha}-1\right)\left(r_{\beta}-1\right) \leq 1$.
(b) Let $D=C_{Z_{\alpha}}\left(E_{\alpha}\right)$. If $D=Z_{\alpha}$, then $Z_{\alpha}$ and $Q=C_{\alpha} \cap Q_{\beta}$ are normal in $G_{b}$ in contrast to our assumptions. Thus $Z_{\alpha} \neq D$ and we can choose $D \leq E \leq Z_{\alpha}$ with $E \unlhd S$ and $|E / D|=p$. Let $W=\left\langle E_{\beta}^{G}\right\rangle$. Note that $[E, Q] \leq D$ and so is centralized by $E_{b}$ and normalized by $S$. Thus $[E, Q] \unlhd G_{\beta},[E, Q]=[W, Q]$ Since $\left[W, E_{\beta}\right] \neq 1$ and $c_{\beta}=1,\left[V_{\beta}, E_{b}\right] \leq W$ and so $V_{\beta}=Z_{\alpha} W$. Hence $\left[V_{\beta}, C_{Q_{\beta}}\left(Z_{a}\right)\right] \leq\left[W, Q\right.$ and so $\left[Z_{a}, Q\right] \leq\left[V_{\beta}, Q\right]=[W, Q]=[E, Q] \leq Z_{\alpha}$. $\left[C_{\alpha} \cap Q_{\beta}\right.$ centralizes $D, Q$ centralizes $D$ and $[E, Q]$. Hence $[E, Q]=\{[e, q] \mid q \in Q\}$, where $e \in E \backslash D$. Thus $|[E, Q]|=\left|Q / C_{Q}(e) \leq\left|Q / C_{Q}\left(Z_{\alpha}\right)\right|\right.$. If $C_{Z_{\alpha}}(Q) \neq D$, we can choose [ $E, Q]=1$ and we get $\left[Z_{\alpha}, Q\right]=1$ and so $Q=C_{\alpha} \cap Q_{\beta}$ is normal in $G_{\beta}$, a contradiction.

Lemma 8.5 Suppose that $b$ is odd, $b \geq 3$ and $L \leq G_{\alpha^{\prime}}$ with
(i) $L=\left(G_{\alpha^{\prime}-1} \cap L\right) O^{p}(L)$.
(ii) $G_{\alpha^{\prime}}=\left\langle G_{\alpha^{\prime}-1}, L\right\rangle$.
(iii) L has at most one non-central composition factor on $\left\langle Z_{a p-1}^{L}\right\rangle$.

Then one of the following holds

1. $\left[Z_{a p-1},\left[Q_{\alpha^{\prime}}, O^{p}(L)\right] \neq 1\right.$ and $Z_{\alpha}$ is an FF-module for $G_{\alpha} / C_{\alpha}$.
2. $\left[Z_{a p-1},\left[Q_{\alpha^{\prime}}, O^{p}(L)\right]=1\right.$ and
(a) $V_{\beta}=Z_{\alpha} C_{V_{b}}\left(Q_{b}\right)$.
(b) $C_{a} \cap Q_{\beta} \unlhd G_{\beta}$.
(c) $C_{V_{b}}\left(Q_{b}\right)$ is an FF module for $\left\langle\mathrm{Q}_{a}^{G_{\beta}}\right\rangle$.

Proof: Let $V=\left\langle Z_{a p-1}^{L}\right\rangle$ and $Q=\left[Q_{\alpha^{\prime}}, O^{p}(L)\right.$. Then by (i), $V=\left\langle Z_{a p-1}^{O^{p}(L)}\right\rangle$ and we may assume without loss that $L=O^{p}(L)$. Note also that $Q_{\alpha^{\prime}}$ normalizes $Z_{\alpha^{\prime}}$ and $V$.

Suppose first that $\left[Z_{\alpha^{\prime}-1}, Q\right] \neq 1$. If $[V, Q, L] \neq 1$, then by (iii), $V=Z_{\alpha^{\prime}-1}[V, Q]$ and so $V=Z_{\alpha^{\prime}-1}$, a contradiction to (ii). Thus $[V, Q, L]=1$ and by [St1] (1) holds.

So we may assume that $Q$ centralizes $Z_{\alpha^{\prime}-1}$ and $V$. Hence (iii) implies that $\left[V, Q_{a p}, L\right]=$ 1 and $\left[V, L, Q_{a p}\right]=1$. Thus $V=Z_{\alpha^{\prime}-1} C_{V}\left(Q_{\alpha^{\prime}}\right)$ and so $L$ normalizes $Z_{a p-1} C_{V_{\alpha^{\prime}}}\left(Q_{\alpha^{\prime}}\right)$.

Therefore (ii) implies that $G_{\alpha^{\prime}}$ normalizes $Z_{a p-1} C_{V_{\alpha^{\prime}}}\left(Q_{\alpha^{\prime}}\right)$ and so $V_{\alpha^{\prime}}=Z_{a p-1} C_{V_{\alpha^{\prime}}}\left(Q_{\alpha^{\prime}}\right)$. Thus $C_{Q_{\alpha^{\prime}}}\left(V_{a p}\right)=C_{\alpha^{\prime}-1} \cap Q_{\alpha^{\prime}}$ and (a) and (b) are proved. Moreover we get $\left[V_{\beta} \cap Q_{\alpha^{\prime}}, V_{\alpha^{\prime}}\right]=$ 1 and $\left[V_{\alpha^{\prime}} \cap Q_{\beta}, V_{\beta}=1\right.$. Hence (c) follows from 8.17.

Lemma 8.6 Suppose that $G_{\beta}$ is a mimimal parabolic and allow for the case that $O_{S}(G) \neq 1$. Then one of the following holds:

1. $S$ centralises $Z_{\alpha}$.
2. $Z_{\alpha} \not \leq Q_{\beta}$.
3. $q_{a} \leq 2$
4. $Z_{\alpha}$ is the dual of an FF-module
5. There exists a non-tivial characteristic subgroup $C$ of $B(S)$ with $C \unlhd G_{\beta}$ and $G_{\alpha}=$ $N_{G_{\alpha}}(C) C_{\alpha}$. Moreover, either $C=J(S)$ or $Q_{b}^{*} \leq B(S) \leq C_{\alpha}$.
6. Put $G_{\beta}^{*}=B(S) O^{2}\left(G_{\beta}\right)$. $T O_{2}\left(G_{\beta}^{*}\right) \leq B(S) \leq C_{\alpha}$ and non-trivial characteristic subgroup of $B(S)$ is normal in $G_{\beta}^{*}$. Moreover, $Z \unlhd G_{\beta}$.
7. $Z$ and $Z_{\alpha}$ are normal in $G_{\beta}$ and centralized by $E_{\beta}$. Futhermore, $S \cap C_{\alpha}$ is a Sylow p-subgroup of $C_{G_{\beta}}\left(Z_{a}\right)$.

Proof: Without loss $Z_{a} \leq Q_{b}$. If $\left[J(S), Z_{\alpha}\right] \neq 1, r\left(S, Z_{1}\right) \leq 1$. So we may assume that $J(S) \leq C_{\alpha}$. Thus $Z_{\alpha} \leq C_{S}(J(S))$ and $B(S) \leq C_{\alpha}$. Hence
(1) $G_{\alpha}=N_{G_{\alpha}}(B(S)) C_{a}=N_{G_{\alpha}}(C) C_{a}$ for any characteristic subgroup $C$ of $B(S)$.

If $E_{\beta}$ centralizes $V_{\beta}$, then 7 . holds. So suppose $\left[V_{\beta}, E_{\beta}\right] \neq 1$. If $J(S) \unlhd G_{\beta}, 5$. holds. Hence we may assume that $J(S) \not \leq G_{\beta}$. in particular, $\left[V_{\beta}, J(S)\right] \neq 1$. By $6.3, r_{V_{b}}\left(G_{\beta}\right) \geq 1$. If $c_{\beta} \geq 2$, then 8.3 implies $r_{\beta} \geq 2$. By refQRCa, $\left(q_{\alpha}-1\right)\left(r_{b}-1\right) \leq 1$ and so 3 . holds. If $c_{\beta}=1$, then 8.4 b implies that 4 . holds or $C_{\alpha} c a p Q_{\beta}$ is normal in $G_{\beta}$. So suppose the latter.

Since $J(S) \leq C_{\alpha}, J(S)$ centralizes $Q_{\beta} / Q_{\beta} \cap C_{\alpha}$. Since $J(S) \not \leq Q_{\beta}, E_{\beta} \leq\left\langle J(S)_{\beta}^{G}\right\rangle$ and so $E_{\beta}$ centralizes $Q_{\beta} / Q_{\beta} \cap C_{\alpha}$. Thus $Q_{\beta}^{*} \leq C_{\alpha} \cap Q_{\beta}$ and $\left[V_{\beta}, Q_{b}^{*}\right]=1$. Thus $\left[C_{Q_{\beta}}\left(Q_{\beta}^{*}\right), E_{\beta}\right] \neq 1$ and by Thompson's $P \times Q$-lemma, $\left[X_{\beta}, E_{\beta}\right] \neq 1$. Thus by 8.10 ( and the remark following 8.10), $O_{p}\left(E_{b}\right) \leq B(S)$. Now either there exists a non-trivial charcteristic subgroup of $B(S)$ which is normal in $G_{\beta}^{*}$ or there does not. In the first case (1) implies that 5 . holds and in the second 6. holds.

Lemma 8.7 Suppose $b>1, s_{Z_{\alpha}}(S) \geq 1, C_{G_{\beta}}\left(V_{b}\right)$ is p-closed and $\left[V_{\beta} \cap Q_{\alpha^{\prime}}, V_{\alpha^{\prime}} \cap Q_{\beta}\right]=1$. Then $V_{\beta}$ is $F 2$ for $G_{\beta}$.

Proof: We may assume without loss that $V_{\beta} Q_{\alpha^{\prime}} / Q_{\alpha^{\prime}} \geq V_{\alpha^{\prime}} Q_{\beta} / Q_{a} p$. Since $s_{Z_{\alpha}}(S) \geq 1$ we can apply 2.3 with $s=1, V=V_{\beta}$ and $B=V_{\alpha^{\prime}} \cap Q_{\beta}$ and conclude

$$
\left|B / C_{B}\left(V_{b}\right)\right| \leq\left|V_{b} / C_{V_{b}}(B)\right|
$$

By assumption $V_{\beta} \cap Q_{\alpha^{\prime}} \leq C_{V_{b}}(B)$ and so

$$
\left|V_{\alpha^{\prime}} / C_{V_{\alpha^{\prime}}}\left(V_{b}\right)\right| \leq\left|V_{\alpha^{\prime}} / B \| B / C_{B}\left(V_{\beta}\right) \leq\left|V_{\alpha^{\prime}} Q_{\beta} / Q_{b}\right| \cdot\right| V_{\beta} / V_{b} \cap Q_{\alpha^{\prime}}\left|\leq\left|V_{\beta} Q_{\alpha^{\prime}} / Q_{\alpha^{\prime}}\right|^{2} .\right.
$$

Hence $V_{\beta}$ is $F^{2}$.
Lemma 8.8 Let $\left(P_{0}, P_{1}, P_{2}\right)$ be an amalgam over $S$. Let $Z_{0}=\left\langle Z^{P_{0}}\right\rangle$. For $i=1,2 p u t$ $L_{i}=\left\langle P_{0}, P_{i}\right\rangle$ and $Z_{i}=\left\langle Z^{L_{i}}\right\rangle$. Suppose that
(i) $P_{1}$ and $P_{2}$ are in $\mathcal{P}(S)$.
(ii) For $\{i, j\}=\{1,2\}, O^{2}\left(P_{i}\right) \not \leq O_{2}\left(P_{j}\right)$.
(iii) For $i=1,2, Z \leq O_{S}\left(L_{i}\right)$

The one of the following holds for some $i \in\{1,2\}$

1. $J(S) \unlhd P_{0}$.
2. $J(S) \unlhd P_{i},\left[Z_{0}, O^{2}\left(P_{i}\right)\right] \neq 1$ and $r\left(S, Z_{i}\right) \leq 1$.
3. $Z_{i} \not \subset Q_{j}$
4. $r\left(S, Z_{j}\right) \leq 2$ or $r^{*}\left(S, Z_{j}\right) \leq 2$

Proof: Without loss $J(S) \triangleleft P_{O}$ and since $J(S)$ is not normal in all the $P_{i}$ 's we may assume that $J(S) \unlhd P_{1}$. If $\left[Z_{0}, O^{2}\left(P_{1}\right)\right] \neq 1$ we conclude that $\left[Z_{1}, J(S)\right] \neq 1$ and 2 . holds. So we also may assume that $\left[Z_{0}, O^{2}\left(P_{1}\right)\right]=1$. Then $Z_{0}$ is not normal in $P_{2}$ and hence $\left[Z_{0}, O^{2}\left(P_{2}\right)\right] \neq 1$. We apply 8.6 to $G_{\alpha}=L_{2}$ and $G_{\beta}=P_{1}$. As $J(S) \unlhd P_{1}=G_{\beta}$ we conclude that either 3. holds or 4. holds or $\left[Z_{2}, Q_{1}^{*}\right]=1$. In the latter case $Q_{1}^{*} \not \leq O_{2}\left(P_{2}\right)$ implies $\left[Z_{2}, O^{2}\left(P_{2}\right)=1\right.$, a contradiction to $\left[Z_{0}, O^{2}\left(P_{2}\right)\right] \neq 1$.

Lemma 8.9 Let $L$ be a subgroup of $G_{\beta}$ which acts transitively on $\triangle(\beta)$. Put $D_{\beta}=$ $\bigcap_{\delta \in \triangle(\beta)} Z_{\delta}$ and $l$ minimal with $\left[Z_{\alpha}, Q_{\beta}, l\right] \leq D_{\beta}$. Suppose that $V_{\beta} \leq Q_{\beta}$. Then for all $0 \leq i<l, L$ acts non-trivially on $\left[V_{\beta}, Q_{\beta}, i\right] /\left[V_{\beta}, Q_{\beta}, i+1\right]$.

Proof: Put $Z_{i}=\left[Z_{\alpha}, Q_{\beta}, i\right]$ and $V_{i}=\left[V_{\beta}, Q_{\beta}, i\right]$. As $L$ acts transitively on $\triangle(\beta)$, $V_{i}=\left\langle Z_{i}^{L}\right\rangle$. Let $i$ be so that $L$ acts trivially on $V_{i} / V_{i+1}$. Then $V_{i}=Z_{i} V_{i+1}$ and so $V_{i} / Z_{i}=$ $\left[V_{i} / Z_{i}, Q_{\beta}\right]$. Hence $V_{i}=Z_{i}$ and $Z_{i} \leq D_{\beta}$. Thus $i \geq l$.

Lemma 8.10 Let $G$ be a finite group, $p$ a prime, p-subgroup of $G, V=\left\langle\Omega_{1}\left(Z\left(O_{p}(G)\right)\right.\right.$, $B(S)=C_{S}\left(\Omega_{1}\left(Z(J(S)), J(G)=\left\langle J(S)^{G}\right\rangle, B(G)=\left\langle B(S)^{G}\right\rangle, \bar{G}=G / C_{G}(V)\right.\right.$, and $\widetilde{V}=$ $V / C_{V}\left(O^{p}(B(G))\right.$ and suppose that each of the following holds:
(i) $C_{G}(V)$ is $p$-closed.
(ii) If $A \in \mathrm{P}(\bar{G}, V)$ then $\left|\tilde{V} / C_{\tilde{V}}(A)\right| \geq|A|$.
(iii) If $U$ is an FF-module for $G / O_{p}(G)$ module with $\tilde{V} \leq U$ and $U=C_{U}(B(S)) \tilde{V}$, then $U=C_{U}\left(O^{p}(J(G))\right) \tilde{V}$.

Then $O_{p}(B(G)) \leq B(S)$.
Proof: and $Y=\Omega_{1} Z J(S)$. Let $A \in \mathcal{A}(S)$. Then $\bar{A} \in \mathrm{P}(\bar{G}, V)$ and so by (ii), $\left|\tilde{V} / C_{\tilde{V}}(A)\right| \geq$ $|\bar{A}|$. By (i), $|\bar{A}|=|A / A \cap Q|$ and so $V(A \cap Q) \in \mathcal{A}(S)$. Thus $Y \leq V(A \cap Q) \leq Q$. Put $W=\left\langle Y^{G}\right\rangle V$. We conclude that $W \leq \Omega_{1} Z J(Q)$ and so $W$ is elementary abelian and $(A \cap Q) V$ centralizes $W$. Hence $W \leq(A \cap Q) V$ and $W=V(A \cap W)=V C_{W}(A)$. It follows that $A$ centralizes $W / V$. Since $A$ was arbitray in $\mathcal{A}(S), J(G)$ centralizes $W / V$. As $Y=$ $\Omega_{1} Z J(S \cap J(G))$, Sylow's theorem implies that $J(G)$ acts transitively on $Y^{G}$. Thus $W=Y V$ and so $[W, Q]=[Y, Q] \leq Y$. Hence $[W, Q] \leq C_{W}(B(G))$. Let $D=C_{W}\left(O^{p}(B(G))\right.$ and $U=$ $W / D$. Then $O_{p}(G)$ centralizes $U$. Since $V \cong V D / D$ and $U=Y V / D$, we can apply (iii) to conclude that $W=D V$ and $U \cong \widetilde{V}$. Since $\underset{\widetilde{V}}{A} \in \mathcal{A}(S),|W / W \cap A| \leq\left|A / C_{A}(W)\right|=|A / A \cap Q|$. One the otherhand by (i), $|A / A \cap Q| \leq\left|\widetilde{V} / C_{\widetilde{V}}(A)\right|=\left|U / C_{U}(A)\right| \leq\left|W / C_{W}(A) D\right|$. Thus $\left|W / C_{W}(A)\right| \leq\left|W / C_{W}(A) D\right|$ and $D \leq C_{W}(A)$. Hence $[D, A]=1, D \leq Y$ and $[D, B(G)]=$ 1. Therefore $\left[W, O_{p}(B(G)] \leq[D, B(G)][V, Q]=1\right.$ and so $O_{p}(B(G)) \leq C_{S}(Y)=B(S)$.

Remark 8.11 Assume (i) in 8.10. Then (ii) and (iii) hold as well unless $\overline{J(G)}$ has a component $K$ with $K \cong \operatorname{Alt}(2 n), n \geq 3 ; S L_{n}(q), n \geq 3 ; S U_{n}(q), n \geq 6 ; S p_{2 n}(q), n \geq 2$; $\Omega_{2 n}^{+}(q), n \geq 3$; or $\Omega_{2 n}^{-}(q), n \geq 4$; and some compostion factor for $K$ on $V$ is a natural module.
pump
pusym
trpu
qaniqb
znnab1

Lemma 8.16 Suppose that each of the follwing holds:
(i) $\alpha, \beta=\{\gamma, \delta\}$.
(ii) $G_{\gamma}$ is p-minimal and $\left[X_{\gamma}, E_{\gamma}\right] \neq 1$.
(iii) $G_{\delta}$ is p-connected or $C_{S}\left(X_{\delta}\right)=Q_{\delta}$.

Then one of the following holds.
(a) $\left[X_{\delta}^{*}, E_{\delta}\right]=1$ and $Z \unlhd G_{\delta}$.
(b) $J(S) \not \leq Q_{\delta}$ and $X_{\delta}$ is an FF-module for $G_{\delta}$.
(c) (a) $J(S) \unlhd G_{\delta}$.
(b) $O_{p}\left(B\left(G_{\gamma}\right)\right) \leq B(S)=B\left(Q_{\delta}\right)$.
(c) $E_{\gamma}$ is a $S L_{2}\left(p^{r}\right)^{k}$-block, Alt $\left(2^{r}+1\right)^{k}$-block or $S L_{2}\left(3^{r}\right)^{k}$ - double block.
(d) If $G$ is finite and $S \in \operatorname{Syl}_{p}(G)$, then $G$ contains a p-local $R$ with $B(S) \leq R$ and $C_{R}\left(O_{p}(R)\right) \notin O_{p}(R)$.

Proof: We may assume that $\left[X_{\delta}^{*}, E_{\delta}\right] \neq 1$. Then by Thompsons's $A \times B$-lemma, $\left[X_{\delta}, E_{\delta}\right] \neq$ 1. Hence if $G_{\delta}$ is $p$-connected, $C_{S}\left(X_{\delta}\right)=Q_{\delta}$. Thus by (ii) $C_{S}\left(X_{\delta}\right)=Q_{\delta}$.

If $J(S) \not \leq Q_{\delta}$, then (b) holds.
So suppose $J(S) \leq Q_{\delta}$. Then $X_{\delta} \leq Z J(S)$ and so $B(S) \leq C_{S}\left(X_{\delta}\right) \leq Q_{\delta}$ and $B(S)=$ $B\left(Q_{\delta}\right)$. By 8.10, $O_{p}\left(B\left(G_{\gamma}\right)\right) \leq B(S)$. Thus (ca) and (cb) hold in this case.

Since $G_{\gamma}$ is $p$-minimal, $G_{\gamma}=B\left(G_{\gamma}\right) S$. Let $R$ be normal subgroup of $B\left(G_{\gamma}\right)$. Let $U$ be unique maximal subgroup of $G_{\gamma}$ containing $S$. Let $C$ be a non-trivial characteristic subgroup of $B(S)$. Then $C$ is normal in $G_{\delta}$ and so $C$ is not normal in $G_{\gamma}$. Since $S \leq N_{G_{\gamma}}$, this implies $N_{G_{\gamma}} \leq U$. Let $\left.W=W_{\gamma}=\right\rangle \Omega_{1} Z(J(S))^{G_{\gamma}}$. Then $W$ is an $F F$-modules for $B\left(G_{\gamma}\right)$ and $O_{p}\left(B\left(G_{\gamma}\right)\right)$ centralizes $V$. Hence $W / C_{W}\left(E_{\gamma}\right)$ is a natural $S L_{2}\left(p^{r}\right)^{k}$ or $\operatorname{Sym}\left(2^{r}+1\right)^{k}$ module for $B\left(G_{\gamma}\right)$. Let $E$ be minimal with $B(S) \leq E$, and $O^{p}(E)$ maps onto on normal $S L_{2}(q)^{\prime}$ 's or $\operatorname{Alt}(q+1)$ 's. Then $E \not \approx U$ and so $C \nexists E$. Hence by $8.12 O^{p}(E)$ is an $L_{2}\left(p^{r}\right)$ block, $\operatorname{Alt}\left(2^{r}+1\right)$ block or $S L_{2}(q)$-double block. It is now easy to see that $O^{p}(E)$ is normal in $E_{\gamma}$ and that (cc) holds.

Suppose now that $G$ is finite and $S \in S y l_{p}(G)$. Assume first that $E_{\gamma}$ is a $S L_{2}\left(p^{r}\right)^{k}$ - or $\operatorname{Alt}\left(2^{r}+1\right)^{k}$-block. Then there exists $\lambda \in \triangle(\delta)$ with $\left[W_{\gamma}, W_{\lambda}\right] \neq 1$. Then $W_{\lambda} \leq B\left(Q_{\delta}\right)=$ $B(S) \leq B\left(G_{\gamma}\right)$ ). Suppose that $\left[X_{\delta}, Q_{\gamma}\right] \neq 1$ TO BE CONTINUED

Lemma 8.17 Let $\lambda, \mu \in \Gamma$ and $F_{\lambda}, F_{\mu}$ normal p-subgroups of $G_{\lambda}$ and $G_{\mu}$, respectively. Suppose that
(i) $F_{\lambda} \leq G_{\mu}$ and $F_{\mu} \leq G_{\lambda}$.
(ii) $\left[F_{\lambda}, F_{\mu}\right] \neq 1$.
(iii) For $\rho \in\{\lambda, \mu\}, C_{G_{\rho}}\left(F_{\rho}\right)$ is p-closed
(iv) $\left[F_{\lambda}, F^{\mu} \cap Q_{\lambda}\right]=1$ and $\left.F_{\mu}, F_{\lambda} \cap Q_{\mu}\right]=1$.

## Then one of the follwing holds

1. $F_{\lambda}$ is an $F^{*} 1$ module for $G_{\lambda}$.
2. $F_{\mu}$ is an $F^{*} 1$ module for $G_{\mu}$.
3. Both $F_{\lambda}$ and $F_{\mu}$ are $F F$-modules.

Proof: By (iii) and (iv) $F_{\lambda} \cap Q_{\mu}=C_{F_{\lambda}}\left(F_{\mu}\right)$ and $F_{\mu} \cap Q_{\lambda}=C_{F_{\mu}}\left(F_{\lambda}\right) .\left|F_{\lambda} / F_{\lambda} \cap Q_{\mu}\right|$ is either less, larger or equal to $F_{\mu} / F_{\mu} \cap Q_{\lambda}$. In the first case $\left|F_{\lambda} / C_{F_{\lambda}}\left(F_{\mu}\right)\right|<F_{\mu} Q_{\lambda} / Q_{\lambda} \mid$ and 1. holds. Similarly the second case implies 2 . and the third 3.
vbvap
Lemma 8.18 Supposse that $b \geq 3, b$ is odd and $r_{\alpha} \geq 1$.
(a) $\left(r_{a}-1\right)\left(r_{b} 1\right) \leq 1$.
(b) Suppose that equality holds in (b). Then
(b.a) $\left|V_{\alpha^{\prime}} Q_{\beta} / Q_{a}\right|=V_{\beta} Q_{\alpha^{\prime}} / Q_{\alpha^{\prime}} \mid$
(b.b) $C_{V_{\alpha^{\prime}}}\left(V_{\beta} \cap Q_{\alpha^{\prime}}\right)=C_{V_{\alpha^{\prime}}}\left(V_{\beta}\right)$.
(c.b) Let $\delta \in \triangle(\beta)$ with $\left[Z_{\delta}, V_{\alpha^{\prime}}\right] \neq 1$. Then $V_{\alpha^{\prime}} \cap Q_{\beta} \not \leq Q_{\delta}$ and $\left|\left(V_{\alpha^{\prime}} \cap Q_{b}\right) Q_{\alpha} / Q_{a}\right|^{s}=$ $\left|Z_{\delta} / C_{Z_{\delta}}\left(V_{\alpha^{\prime}}\right)\right|$.
(c.d) $\left|V_{\beta} Q_{\alpha^{\prime}} / Q_{\alpha^{\prime}}\right|^{r}=\left|V_{\alpha^{\prime}} / C_{V_{\alpha^{\prime}}}\left(V_{\beta}\right)\right|$.

Proof: By 2.4 we have
(1) $\left|V_{\alpha^{\prime}} \cap Q_{\beta} / C_{V_{\alpha^{\prime}}}\left(V_{\beta}\right)\right|^{r_{\alpha}} \leq\left|V_{\beta} / C_{V_{\beta}}\left(V_{\alpha^{\prime}} \cap Q_{\beta}\right)\right|$.
and
(2) $\left|V_{\beta} \cap Q_{\alpha^{\prime}} / C_{V_{\beta}}\left(V_{\alpha^{\prime}}\right)\right|^{r_{\alpha}} \leq\left|V_{\alpha^{\prime}} / C_{V_{\alpha^{\prime}}}\left(V_{\beta} \cap Q_{\alpha^{\prime}}\right)\right|$.

Suppose first that $V_{\alpha^{\prime}} \leq Q_{\beta}$. Since $r_{\alpha} \geq$, (1) implies $\left|V_{\alpha^{\prime}} / C_{V_{\alpha^{\prime}}}\left(V_{\beta}\right)\right| \leq\left|V_{\beta} / C_{V_{\beta}}\left(V_{\alpha^{\prime}}\right)\right|$. If $V_{\alpha^{\prime}} Q_{\beta}$ the situation is symmetric in $\alpha^{\prime}$ and $\beta$ and we may assume in any case that
vbvap 1
vbvap 2
vbvap 3
(3) $\left|V_{\alpha^{\prime}} / C_{V_{\alpha^{\prime}}}\left(V_{\beta}\right)\right| \leq\left|V_{\beta} / C_{V_{\beta}}\left(V_{\alpha^{\prime}}\right)\right|$

## TO BE CONTINUED

Lemma 8.19 Suppose that $r_{\beta} \geq 1, s_{\alpha} \geq \frac{3}{2}$ and $s_{\alpha}^{*}>1$. Then
(a) $\frac{3}{2} \leq s_{\alpha} \leq 2$.
(b) $1 \leq r_{\beta} \leq \frac{3}{2}$.
(c) $c=2$ or 3 .
(d) If $c=3$, then $s_{\alpha}=\frac{3}{2}$ and $r_{\beta}=1$.
(e) If $r_{\beta}=\frac{3}{2}$, then $c=2, s_{\alpha}=\frac{3}{2}$ and $\left(s_{\alpha}-1\right)\left(r_{\beta} c_{\beta}-1\right)=1$.
(f) If $s_{\alpha}=2$, then $c=2, r_{\beta}=1$ and $\left(s_{\alpha}-1\right)\left(r_{\beta} c_{\beta}-1\right)=1$.
(g) $\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right]=1$.

Proof: As $s_{\alpha}^{*}>1,2.4$ implies $c_{\beta} \geq 2$. All but the last statement are now an immediate consequece of 8.4. The last statement follows from 8.17.

Lemma 8.20 Suppose that $b$ is odd and $\beta^{+}, \beta^{-} \in \Gamma_{2}$ with $d\left(\beta^{+}, \beta^{-}\right)=b-1$ For $\epsilon \in\{+,-\}$ let $\Lambda^{\epsilon} \subseteq \triangle\left(\beta^{\epsilon}\right)$. Define $V^{\epsilon}=\left\langle Z_{\lambda} \mid \lambda \in \Lambda^{\epsilon}\right\rangle$ and $B=V^{\epsilon} \cap \bigcap_{\lambda \in \Lambda^{-\epsilon}} G_{\lambda}$. Finally, let s be a postive real number so that for all $\epsilon \in\{+,-\}$, all $\lambda \in \Lambda^{-\epsilon}$, and all $A \leq B^{\epsilon},\left|Z_{\lambda} / C_{Z_{\lambda}}(A)\right|^{s} \leq$ $\left|A / C_{A}\left(Z_{\lambda}\right)\right|$. Then
(a) (aa) $\left|B^{+} / C_{B^{+}}\left(V^{-}\right)\right| \leq\left|V^{-} / V_{V^{-}}\left(B^{+}\right)\right|^{\frac{1}{s}} \leq\left|V^{-} / C_{V^{-}}\left(B^{+}\right)\right|^{\frac{1}{s}}$
(ab) $\left|V^{+} / C_{V^{+}}\left(V^{-}\right)\right| \leq\left|V^{+} / B^{+}\right|\left|B^{+} / C_{B^{+}}\left(V^{-}\right)\right|$
(ac) $\left|V^{+} / C_{V^{+}}\left(V^{-}\right) \leq\left|V^{+} / B^{+} \| V^{-} / C_{V^{-}}\left(V^{+}\right)\right|^{\frac{1}{s}}\right.$.
(b) (b.a) $\left|V^{+} / C_{V^{+}}\left(V^{-}\right)\right|^{\frac{s^{2}-1}{s^{2}}} \leq\left|V^{+} / B^{+}\right|\left|V^{-} / B^{-}\right|^{\frac{1}{s}}$.
(b.b) $\left|B^{+} / C_{B^{+}}\left(V^{-}\right)\right|^{\frac{s}{2}^{2}-1} s\left|V^{+} / B^{+}\right|^{\frac{1}{s}}\left|V^{-} / B^{-}\right|$.
(c) Suppose $s>1$ and $V^{+}=B^{+}$, then $\left|V^{+} / C_{V^{+}}\left(V^{-}\right)\right| \leq\left|V^{-} / B^{-}\right|^{\frac{s}{s^{2}-1}}$.
(d) Suppose $s>1$ and that $r$ is a positive real number with $\left|V^{-} / B^{-}\right|^{r} \leq\left|V^{+} / C_{V^{+}}\left(V^{-}\right)\right|$. Put $e=\frac{r s^{2}-r-s}{s^{2}}$.
(d.a) $\left|V^{-} / B^{-}\right|^{e} \leq\left|V^{+} / B^{+}\right|$.
(d.b) $\left|B^{-} / C_{B^{-}}\left(V^{+}\right)\right| \geq \frac{\left|V^{-} / B^{-}\right|^{r}}{\left|V^{+} / B^{+}\right|}$
(d.c) If $e>0$, then $\left|B^{+} / C_{B^{+}}\left(V^{-}\right)\right| \leq \left\lvert\, V^{+} / B^{+} \frac{r r}{r s^{2}-r-s}\right.$
(e) Suppose $s>1$ and $r$ is a positive integer so that for $\epsilon \in\{+,-\},\left|V^{\epsilon} / B^{\epsilon}\right|^{r} \leq$ $\left|V^{-\epsilon} / C_{V^{-\epsilon}}\left(V^{\epsilon}\right)\right|$. Put $e=\frac{r s^{2}-r-s}{s^{2}}$ and suppose that $e>0$.
(e.a) $\left|V^{-} / B^{-}\right|^{e} \leq\left|V^{+} / B^{+}\right|\left|V^{-} / B^{-}\right|^{\frac{1}{e}}$
(e.b) If $V^{-} \neq B^{-}$, then $V^{+} \neq B^{+}$and $e \leq 1$.

Proof: The first inequa lityin (aa) follows from 2.3 while the second is obvious. (ab) is obviuos and (ac) follows from (aa) and (ab).

Interchanging " + " and " - " in (ac) and substituting the result into (ac) we obtain

$$
\left|V^{+} / C_{V^{+}}\left(V^{-}\right)\right| \leq\left|V^{+} / B^{+}\right|\left|V^{-} / B^{-}\right| \frac{1}{s}\left|V^{+} / C_{V^{+}}\left(V^{-}\right)\right|^{\frac{1}{s^{2}}} .
$$

Thus (b.a) holds. Simimalrly interchanging " +" and " - " in (ac) and substituting the result into (ab) one obtains (bb).
(c) follows easily from (b.a). (ea) follows from (da) and using symmetry in " + " and $"$ - ". (eb) follows from (eb). So it remains to prove (d). By assumption $\left|V^{-} / B^{-}\right|^{r} \leq$ $\left|V^{+} / C_{V^{+}}\left(V^{-}\right)\right|$. As $s>1$ we can raise this inequality to the $\frac{s^{2}-1}{s^{2}}$ power and obtain

$$
\left|V^{-} / B^{-}\right|^{\frac{r\left(s^{2}-1\right)}{s^{2}}} \leq\left|V^{+} / C_{V^{+}}\left(V^{-}\right)\right|^{\frac{s^{2}-1}{s^{2}}} .
$$

Thus (da) follows from (ba). For (db) note that

$$
\left|V^{-} / B^{-}\right|^{r} \leq\left|V^{+} / C_{V^{+}}\left(V^{-}\right)\right| \leq\left|V^{+} / B^{+}\right| \mid B^{+} / V_{V^{+}}\left(V^{-}\right) .
$$

Finally (d.c) follows from (d.a), (b.b) and a simple computation.
Lemma 8.21 Suppose $b>1$ and $G_{\beta}$ is p-minimal. Let $M_{\alpha \beta}$ be the unique maximal subgroup of $G_{\beta}$ containing $G_{\alpha \beta}$. Put $\beta^{+}=\beta, \beta^{-}=\alpha^{\prime}$. Then one of the follwing holds

1. For each $\epsilon \in\{+,-\}$ there exists $L^{\epsilon} \leq G_{\beta^{\epsilon}}$ and $\mu^{\epsilon} \in \triangle\left(\beta^{\epsilon}\right)$ so that for $V^{\epsilon}=\left\langle Z_{\mu^{\epsilon}}^{L^{\epsilon}}\right.$ each of the following holds.
(a) $V^{-\epsilon} \not \leq 0_{p}\left(L_{\epsilon}\right)$.
(b) $V^{-\epsilon} \leq G_{\mu^{\epsilon}}$ and $G_{\beta^{\epsilon} \mu^{\epsilon}}$ contains a Sylow p-subgroup of $L^{\epsilon}$
(c) $L^{\epsilon} \cap M_{\beta^{\epsilon} \mu^{\epsilon}}$ is the unique maximal subgroup of $L^{\epsilon}$ containg $V^{-\epsilon}$.
(d) $\left[V^{-\epsilon}, Z_{\mu^{\epsilon}}\right]=1$.
2. There exists $\epsilon \in\{+,-\}, L^{\epsilon} \leq G_{\beta^{\epsilon}}, \mu^{\epsilon} \in \triangle\left(\beta^{\epsilon}\right.$ and $\mu \in \triangle\left(\beta^{- \text {epsilon }}\right)$ so that with $V^{\epsilon}=\left\langle Z_{\mu^{\epsilon}}^{L^{\epsilon}}\right.$ each of the follwing holds.
(a) $V_{\epsilon} \leq G_{\mu}, Z_{\mu} \leq L^{\epsilon}$ and $Z_{\mu} \not \leq 0_{p}\left(L_{\epsilon}\right)$.
(b) $Z_{\mu} \leq G_{\mu^{\epsilon}}$ and $G_{\beta^{\epsilon} \mu^{\epsilon}}$ contains a Sylow p-subgroup of $L^{\epsilon}$
(c) $L^{\epsilon} \cap M_{\beta^{\epsilon} \mu^{\epsilon}}$ is the unique maximal subgroup of $L^{\epsilon}$ containg $Z_{\mu}$.
(d) $\left[Z_{\mu}, Z_{\mu^{\epsilon}}\right]=1$.
3. There exist $\mu^{+} \in \triangle\left(\beta^{+}\right)$and $\mu^{-} \in \triangle\left(\beta^{-}\right)$so that $Z_{\mu^{+}} \leq G_{\mu^{-}}, Z_{\mu^{-}} \leq G_{\mu^{+}}$and $\left[Z_{\mu^{+}}, Z_{m u^{-}}\right] \neq 1$.

Proof: Suppose that 3. does not hold. For $\epsilon \in\{+,-\}$ choose $L^{\epsilon} \leq G_{\beta^{\epsilon}}$ and $\mu^{\epsilon} \in \triangle\left(\beta^{\epsilon}\right)$ so that $\left|L^{+} \| L^{-}\right|$is minimal with respect to
(i) For all $\epsilon, V^{-\epsilon} \leq L^{\epsilon} \cap G_{\beta^{\epsilon} \mu^{\epsilon}}$.
(ii) For all $\epsilon, G_{\beta^{\epsilon} \mu^{\epsilon}} \cap L^{\epsilon}$ contains a Sylow $p$-subgroup of $L^{\epsilon}$ and $M_{\beta^{\epsilon} \mu^{\epsilon}} \cap L^{\epsilon}$ the unique maximal subgroups of $L^{\epsilon}$ containg that Sylow $p$-subgroup.
(iii) For at least one $\epsilon, V^{-\epsilon} \not \leq O_{p}\left(L^{\epsilon}\right)$.

Note that (i),(ii) and (iii) are fulfilled with $L^{\epsilon}=G_{\beta^{\epsilon}}, \mu^{+}=\alpha+2$ and $\mu^{-}=\alpha^{\prime}-1$ and so we can make such a minimal choice.

Case 1 For some $\epsilon \in\{+,-\}$ and some $\mu \in \mu^{\epsilon L^{\epsilon}},\left[V^{-\epsilon}, Z_{\mu}\right] \neq 1$ and $V^{-\epsilon} \leq G_{\mu}$.
For ease of notation we assume without loss that $\epsilon=-$.
(1) In case $1, Z_{\mu} \not \leq O_{p}\left(L^{+}\right)$and $\left[Z_{\mu^{+}}, Z_{\mu}\right]=1$.

Suppose $Z_{\mu} \leq O_{p}\left(L^{+}\right)$and pick $\rho \in \mu^{+L^{+}}$with $\left[Z_{\rho}, Z_{\mu}\right] \neq 1$. Then $Z_{\mu} \leq G_{\rho}, Z_{\rho} \leq G_{\mu}$ and so 3 . holds, contrary to our assumption. As $Z_{\mu} \leq G_{\mu^{+}}$, the same argument shows $\left[Z_{\mu^{+}}, Z_{\mu}\right]=1$.
(2) In case 1, 2. holds.

By 2.6 there exists $L \leq L^{+}$and $h \in L^{+}$such that $Z_{\mu} \leq L, Z_{\mu} \not \leq O_{p}(L),\left(G_{\beta^{+} \mu^{+} \cap L^{+}}\right)^{h} \cap L$ contains a Sylow $p$-subgroup of $L$, and $\left(M_{\beta^{+} \mu^{+}} \cap L^{+}\right)^{h} \cap L$ is the unique maximal subgroup of $L$ containing $Z_{\mu}$. Thus 2. holds with $\epsilon=+, L$ in place of $L^{\epsilon}$.

Case 2 Case 1 does not hold.
(3) In case 2, for all $\epsilon, V^{-\epsilon} \not \leq O_{p}\left(L^{\epsilon}\right)$ and $\left[V^{-\epsilon}, Z_{\mu^{\epsilon}}\right]=1$.

If the first statement is false pick $\mu \in \mu^{\epsilon L^{\epsilon}}$ with $\left[Z_{\mu}, V^{-\epsilon}\right] \neq 1$, if the second statement is false put $\mu=\mu^{\epsilon}$. Then in any case $V^{-\epsilon} \leq G_{\mu}$ and the assumption of Case 1 are fulfilled.
(4) In case 2. 1. holds.

We prove is basicly the same as for (2). By 2.6 there exists $L \leq L^{\epsilon}$ and $h \in L^{\epsilon}$ such that $V^{-\epsilon} \leq L, V^{\epsilon} \not \leq O_{p}(L),\left(G_{\beta^{\epsilon} \mu^{\epsilon} \cap} \cap L_{\epsilon}\right)^{h}$ contains a Sylow $p$-subgroup of $L$, and $\left(M_{\beta^{\epsilon} \mu^{\epsilon}} \cap L_{\epsilon}\right)^{h} \cap L$ is the unique maximal subgroup of $L$ containing $V^{\epsilon}$. Hence (i), (ii) and (iii) are still fulfilled if we replace $L^{\epsilon}$ be $L, \mu^{\epsilon}$ by $\mu^{\epsilon h}$ and leave $L^{-\epsilon}$ and $\mu^{-\epsilon}$ as they are. Thus the minimal choice of $\left|L^{+}\right|\left|L^{-}\right|$implies $L=L^{\epsilon}$ and so 1 . holds holds.

Lemma 8.22 Assume that each of the following holds for each $\{\gamma, \delta\}=\{\alpha, \beta\}$ and each critical pair ( $\alpha, \alpha^{\prime}$ )
(I) $Z_{\alpha \beta} \notin G_{\gamma}$.
(ii) If $N \triangleleft G_{\gamma}$ with $N \cap O_{p}\left(G_{\alpha} \beta\right) \not \leq Q_{\gamma}$ then $G_{\gamma}=N G_{\alpha \beta}$.
(iii) Let $\mathcal{O}=\mathcal{O}_{\gamma \delta}=\left\{A \leq Q_{\delta}| | Z_{\gamma} / C_{Z_{\gamma}}(A) \leq\left|A Q_{\gamma} / Q_{\gamma}\right| \neq 1,\left[Z_{\gamma}, A, A\right]=1\right\}$. Then $Z_{\gamma} / C_{Z_{\gamma}}(A)=\left|A Q_{\gamma} / Q_{\gamma}\right|$ for all $A \in \mathcal{O}$.
(iv) Either $\mathcal{O}=\emptyset$ or $A_{\gamma \delta} \stackrel{\text { def }}{=} \bigcap_{A \in \mathcal{O}}\left[Z_{\gamma}, A\right] \neq 1$.
(v) $Z_{\beta} Z_{\alpha} \wedge G_{\alpha}$
(vi) One of the following holds
(vi.1) If $\alpha-1 \in \triangle(\alpha)$ such $Z_{\alpha^{\prime}}$ does normalize $Z_{\alpha-1} Z_{\alpha}$, then $Z_{\alpha-1} \not \leq Q_{\alpha^{\prime}-1}$.
(vi.2) There exists $\alpha-1 \in \triangle(\alpha)$ with $G_{\alpha}=\left\langle G_{\alpha \alpha-1}\right.$ and $Z_{\alpha-1} \not \leq Q_{\alpha^{\prime}-1}$.

Then
(a) $\mathcal{O}_{\alpha \beta} \neq \emptyset \neq \mathcal{O}_{\alpha \beta}$.
(b) If $b \geq 2$, then $A_{\beta \alpha} \unlhd G_{\alpha}$.
(c) $b \leq 2$.

Proof: By (iii), $Z_{\alpha^{\prime}} \in \mathcal{O}_{\alpha \beta}$. By (ii) and (vi), there exists $\alpha-1 \in \triangle(\alpha)$ so that $Z_{\alpha^{\prime}}$ does not normalize $Z_{\alpha-1} Z_{\alpha}$. Hence by (vi) we may choose $\alpha-1$ so that $Z_{\alpha-1} \notin Q_{\alpha^{\prime}-1}$. In particular,
(1) $Z_{\alpha^{\prime}-1} \in \mathcal{O}_{\alpha-1 \alpha}$

Thus (a) holds.
Let $\left.\left.H=N_{( } G_{\alpha}\right)\left(Z_{\alpha} Z_{\alpha}-1\right)\right), \mathcal{G}=\left\{g \in G_{\alpha} \mid Z_{\alpha^{\prime}}^{g} H H\right\}$ and $T=\left\langle Z_{\alpha^{\prime} g} \mid g \in \mathcal{G}\right\rangle$. Let $g \in G$. Then $g \in \mathcal{G}$ or $Z_{\alpha^{\prime}}^{g} \leq H$. Hence $\left.\langle H, T\rangle \geq G_{\alpha-1 \alpha} Z_{\alpha^{\prime}}^{G_{\alpha}}\right\rangle=G_{\alpha}$, where the last euality follows from (ii). Since both $H$ and $T$ normalize $T$, we conclude that $T=\left\langle Z_{\alpha^{\prime}}^{G_{\alpha}}\right\rangle$ and inparticular
(2) $\left.G_{\alpha}=G_{\alpha-1 \alpha}\left\langle Z_{\alpha^{\prime} g}\right| g \in \mathcal{G}\right\}$.

Suppose now that $b>1$ and $A_{\beta \alpha} \nless G_{\alpha}$. Then by (2) we may assume that $Z_{\alpha^{\prime}}$ does not normalize $A_{\alpha-1 \alpha}$. But (1) and the definition of $A_{\alpha-1 \alpha}$ imply $A_{\alpha-1 \alpha} \leq\left[Z_{\alpha-1}, Z_{\alpha^{\prime}-1}\right]$. Hence $A_{\alpha-1 \alpha} \leq Z_{\alpha^{\prime}-1}$ and $b>1$ provides the contradiction, $\left[A_{\alpha-1 \alpha}, Z_{\alpha^{\prime}}\right]=1$. Thus (b) holds.

Suppose now that $b>2$. Then by (b) applied to $\left(\alpha-1, \alpha^{\prime}-1\right)$ in place of $\left(\alpha, \alpha^{\prime}\right)$, $A_{\alpha \alpha-1} \unlhd G_{\alpha-1}$. Hence by (2) we may now assume that $Z_{\alpha^{\prime}}$ does not normalize $A_{\alpha \alpha-1}$. On the otherhand by (1) there exist $\alpha-2 \in \triangle(\alpha-1)$ so that $Z_{\alpha^{\prime}-2} \in \mathcal{O}_{\alpha-2 \alpha-1}$ Hence

$$
A_{\alpha \alpha-1}=A_{\alpha-2 \alpha-1} \leq\left[Z_{\alpha}-2, Z_{\alpha^{\prime}}-2\right] \leq Z_{\alpha^{\prime}-2} .
$$

Since $b>2$ we conclude $\left[A_{\alpha \alpha-1}, Z_{\alpha^{\prime}}\right]=1$, a contradiction and so also (c) is established.
Lemma 8.23 Suppose that (i) to (v) in 8.22 holds. Suppose in addition that
(a) If $A \in \mathcal{Q}$ and $B$ is an elementary abelian subgroup of $Q_{\delta}$ with $\left[Z_{\gamma}, A, B\right]=1$ and $A \leq B$. Then $\left[Z_{\gamma}, B\right] \leq\left[Z_{\gamma}, A\right]\left[C_{Z_{\gamma}}(A), B\right]$
(b) If $A \in \mathcal{Q}$ then there exists $\lambda \in \triangle(\gamma)$ with $G_{\gamma}=\left\langle G_{\lambda \gamma}, A\right\rangle$.

Then (vi.2) in 8.22 and so also the conclusions of 8.22 hold.

Proof: By (b) there exists $\alpha-1 \in \triangle(a)$ with $G_{\alpha}=\left\langle G_{\alpha-1 \alpha}, Z_{\alpha}\right\rangle$. Suppose that $Z_{\alpha-1} \leq Q_{\alpha^{\prime}-1}$. Then by (a) applied with $\gamma=\alpha^{\prime}, A=Z_{\alpha}$ and $B=Z_{\alpha-1} Z_{\alpha}$, we conclude that

$$
\left[Z_{\alpha^{\prime}}, Z_{\alpha-1} Z_{\alpha}\right] \leq\left[Z_{\alpha^{\prime}}, Z_{\alpha}\right]\left[Z_{\alpha^{\prime}} \cap Q_{\alpha}, Z_{\alpha-1}\right] \leq Z_{\alpha-1} Z_{\alpha}
$$

Thus $Z_{\alpha-1} Z_{\alpha}$ is normalized by $\left\langle G_{\alpha-1 \alpha}, Z_{\alpha}\right\rangle=G \alpha$, a contradiction to (v).
Lemma 8.24 Suppose that (i) to (v) in 8.22 holds. In addition assume that for each $A \in \mathcal{Q}$ and each elementary abelian subgroup $B$ each $Q_{\delta}$ with $\left[Z_{\gamma}, A, B\right]=1$ and $A \leq B$ the following statements hold
(a) $\mid B / C_{B}\left(C_{Z_{\gamma}}(A) \leq \mid C_{Z_{\gamma}}(A) / C_{Z_{\gamma}}(B)\right.$.
(b) If $\left[C_{Z_{\gamma}}(A), B\right]=1$ then $\left[Z_{\gamma}, B\right] \leq\left[Z_{\gamma}, A\right]$.
(c) Suppose that $\left[C_{Z_{\gamma}}(A), B\right] \neq 1$. Then for elementary abelian subgroup $C$ of $Q_{\delta}$ with $B \leq C$ and $\left[Z_{\gamma}, B, C\right]=1,\left[C_{Z_{\gamma}}(A), C\right] \leq\left[C_{Z_{\gamma}}(A), B\right]$
(d) There exists $\lambda \in \triangle(\gamma)$ with $L_{\gamma}=\left\langle O_{p}\left(G_{\lambda \gamma}\right), A\right\rangle$.

Then the conclusions of 8.22 hold.
Proof: We may assume that (vi.2) in 8.22 does not hold. Thus by (d) we can choose a critical pair $\left(\alpha, \alpha^{\prime}\right)$ and $\alpha-1 \in \triangle(a)$ with $\left.G_{\alpha}=\left\langle G_{\alpha-1 \alpha}\right) Z_{\alpha}\right\rangle$ and $Z_{\alpha-1} \leq Q_{\alpha^{\prime}-1}$. If $\left[Z_{\alpha^{\prime}}, Z_{\alpha-1} Z_{\alpha}\right] \leq\left[Z_{\alpha^{\prime}}, Z_{\alpha}\right]$ we get that $Z_{\alpha-1} Z_{\alpha}$ is normalized by $\left\langle G_{\alpha-1}, Z_{\alpha^{\prime}}\right\rangle=G_{\alpha}$, a contradiction to (v). Then by (b) we may assume that $\left[Z_{\alpha^{\prime}} \cap Q_{\alpha}, Z_{a-1}\right] \neq 1$. Put $X=$ $Z_{\alpha^{\prime}} \cap Q_{\alpha}$. Then by (a) $\left[X \in \mathcal{Q}_{\alpha-1 \alpha}\right.$ and so 8.22 (a) holds.

Moreover, $A_{\alpha-1 \alpha} \leq\left[Z_{\alpha}-1, X\right] \leq Z_{\alpha^{\prime}}$ and so $A_{\alpha-1 \alpha}$ is normalized by $G_{\alpha-1} \alpha$ and $Z_{\alpha^{\prime}}$ and so 8.22 b holds.

Suppose that $b>2$. By (d) there exists $\alpha-2 \in \triangle(\alpha-1)$ with $G_{\alpha-1}=\left\langle G_{\alpha-2 \alpha-1}, X\right\rangle$. If $Z_{\alpha-2} \not \leq Q_{\alpha^{\prime}-2}$, then $A_{\alpha-2 \alpha-1} \leq\left[Z_{\alpha}-2, Z_{\alpha^{\prime}}-2\right] \leq Z_{\alpha^{\prime}}-2$. As $b>2$ we get that $G_{\alpha \alpha-2}$, $X$ and $Z_{\alpha^{\prime}}$ normalize $A_{\alpha-2 \alpha-1}$. But then $A_{\alpha-2 \alpha-1}$ is normal in $G_{\alpha-1}$ and $G_{\alpha}$.

Hence $Z_{a-2} \leq Q_{\alpha^{\prime}-2}$. If $Z_{\alpha-2} \not \leq Q_{\alpha^{\prime}-1}$, then since also $Z_{\alpha^{\prime}-1} \leq Q_{\alpha-1}$ we conclude from 8.22 (iii) that $Z_{\alpha^{\prime}}-1 \leq \operatorname{cal} Q_{\alpha^{\prime}-2 \alpha^{\prime}-1}$. But then $A_{\alpha-2 \alpha-1} \leq\left[Z_{\alpha}-2, Z_{\alpha^{\prime}}-1\right]$ a we get the same contradiction to the previous paragaph.

Thus $Z_{\alpha-2} \leq Q_{\alpha^{\prime}-1}$ and so by (c) applied with $C=Z_{\alpha-2}$ and $\gamma=\alpha^{\prime}$ we conclude that $\left[Z_{\alpha-2}, X\right] \leq\left[Z_{\alpha-1}, X\right] \leq Z_{\alpha-1}$. Hence $Z_{\alpha-2} Z_{\alpha-1}$ is normalized by $G_{\alpha-2 \alpha-1}$ and $X$, a contradiction to $8.22(\mathrm{v})$.
znnabmp
Lemma 8.25 Suppose that $G_{\alpha}$ and $G_{\beta}$ are minimal parabolics and $Z \nsubseteq G_{\alpha}$ and $Z \nsubseteq G_{\beta}$. Then $b \leq 2$ or $Z_{\alpha} Z_{\beta} \unlhd G_{\alpha}$

Proof: We assume without loss that $G_{\alpha \beta}$ is Sylow 2-subgroup of $G_{\alpha}$ and $G_{\beta}$. Put $T_{\alpha \beta}=\left\langle Z_{\alpha^{\prime}}^{G_{\alpha \beta}}\right\rangle Q_{a}$ and $Z_{\alpha \beta}=C_{Z_{\alpha}}\left(T_{\alpha \beta}\right.$. Note that $T_{\alpha \beta}$ only depends on $\alpha$ and $\beta$ but not on $Z_{\alpha^{\prime}}$. Let $\alpha-1 \in \triangle(a)$ with $Z_{\alpha \beta} \cap Z_{\alpha \alpha-1} \leq D_{\alpha}$. For $O \leq i \leq b$, put $W_{i}=\left\langle Z_{\alpha^{\prime}-i}^{G_{\alpha \beta}}\right\rangle$. Then $W_{b}=Z_{\alpha}$ and $W_{0} Q_{\alpha}=T_{\alpha \beta}$. Put $T=T_{\alpha-1 \alpha}$ and supose that $W_{1} Q_{\alpha-1} \neq T$. Then there exists a $U \unlhd T$ so that $Z_{\alpha}=\left\langle U^{G_{\alpha \alpha-1}}\right\rangle$ and $\left[W_{1}, U\right]=1$. Hence $U \leq Q_{\alpha^{\prime}-1}$. It is now easy to see that $Z_{\alpha^{\prime}} \cap Q_{\alpha} \leq T_{\alpha-1 \alpha}$ and so $\left[U, Z_{\alpha^{\prime}}\right] \leq\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right]\left[U, Z_{\alpha^{\prime}} \cap Q_{\alpha}\right] \leq Z_{\alpha}[U, T]$. Hence $\left[U, W_{0}\right] \leq Z_{\alpha}[U, T]$ and $W_{O}$. Let $L=\left\langle T, W_{O}\right.$. Then $O^{2}(L)$ centralizes $U Z_{\alpha} / Z_{\alpha}$. As $Z_{\beta}=\left\langle U^{G_{\alpha-1 \alpha}}\right\rangle$ we conclude that $G_{\alpha}$ normalizes $Z_{\beta} Z_{\alpha}$. Remark: It is easy to see that $V_{\alpha} / Z_{\alpha}$ is an FF-module. This will kill any problem $O_{2 \Phi}$ might cause, also this shows that basicly $T_{\alpha \beta}=T_{\beta \alpha}$

Hence $W_{1} Q_{\alpha-1}=T$. Choose $\alpha-i-1 \in \triangle(\alpha-i)$ with $Z_{\alpha-i-1 \alpha-i} \cap Z_{\alpha-i+1 \alpha-i} \leq Z\left(G_{\alpha-i}\right.$. Then a similar argument shows inductively that $W_{i} Q_{\alpha-i}=T_{\alpha-i \alpha-i+1}$. Hence $Z_{\alpha} Q_{\alpha-b}=$ $T_{\alpha-b \alpha-b+1}$. Therfore we may assume that $Z_{\alpha^{\prime}} Q_{a}=T_{\alpha \beta}$. The above argument now shows that $Z_{\alpha^{\prime}-1} Q_{\alpha-1}=T$ and we conclude that if $b>1$, then $\left[Z_{\alpha-1}, T\right]=\left[Z_{\alpha-1}, Z_{\alpha-1}\right] \leq D_{\alpha}$. Moreover, if $b>2,\left[Z_{\alpha}-2, Z_{\alpha^{\prime}}-2\right] \leq D_{\alpha}-1 \cap D_{\alpha}$, a contradiction and the lemma is proved.

Lemma 8.26 Let $M_{i} \in \operatorname{calL}(S), 1 \leq i \leq 3$ and suppose that that
(i) For $i=2,3, O^{2}\left(M 1 i \cap S \leq Q_{23}\right.$
(ii) $O^{2}\left(M_{1}\right) \cap S=\left(O^{2}(M 12 \cap S)\left(O^{2}(M 13 \cap S)\right.\right.$.

Then $Q_{23}$ is a Sylow 2-subgroup of $O^{2}\left(M_{1}\right) Q_{23}$ and $Q_{1} \cap Q_{23}=O_{2}\left(O^{2}\left(M_{1}\right) Q_{23}\right)$ is normal in $M_{1}$

Proof: Let $L=O^{2}\left(M_{1}\right) Q_{23}$. Then by (ii) and (i)

$$
Q_{23} \leq L \cap S=\left(O^{2}\left(M_{1}\right) \cap S\right) Q_{23}=\left(O ^ { 2 } ( M 1 2 \cap S ) \left(O^{2}(M 13 \cap S) Q_{23}=Q_{23}\right.\right.
$$

. Since $L \unlhd L S=M_{1}, O_{2}(L) \leq Q_{1}$.
Hence $O_{2}(L)=Q_{1} \cap L=Q_{1} \cap Q_{23}$.

## 9 Amalgams involving uniqueness groups

## Hypothesis 9.1 (i) Hypothesis 8.1 holds with $G$ finite.

(ii) $G_{\alpha}$ is a minimal parabolic.
(iii) $E_{\beta} B(S)$ lies in a unique maximal $p$-local $M_{\beta}$ of $G$.
(iv) $Q_{\beta}^{*} \leq O_{p}\left(M_{b}\right)$.
(v) $G_{\beta}=E_{\beta} G_{\alpha \beta}$
(vi) $M_{\alpha \beta}=\stackrel{\text { def }}{=} M_{\beta} \cap G_{\alpha}$ is the unique maximal subgroup of $G_{\alpha}$ containing $S$.
(vii) $G_{\beta} \in \mathcal{C} \mathcal{L}(S)$.

Put $Q_{\alpha \beta}=O_{2}\left(M_{\alpha \beta}\right), X_{b}=\Omega_{1}\left(Z\left(Q_{b}\right)\right)$ and $X_{\beta}^{*}=\Omega_{1}\left(C_{Q_{\beta}}\left(Q_{b}^{*}\right)\right)$
Put $D_{\beta}=\bigcap_{\delta \in \Delta(\beta)} Z_{\delta}$ and $R=\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right]$.
The next two lemmas reveal how the assumptions on $E_{\beta}$ can be used
Lemma 9.2 (a) $Q_{\beta}^{*} \leq O_{2}\left(M_{\beta}\right) \leq Q_{\alpha \beta}$.
(b) Let $\gamma \in \triangle(\beta)$ and $R_{\alpha}$ be a normal subgroup of $G_{\alpha}$. Then

$$
R_{\gamma} \cap Q_{\beta} \leq\left(R_{\alpha} \cap Q_{\beta}\right) Q_{\beta}^{*} \leq\left(R_{\alpha} \cap Q_{\beta}\right) Q_{\alpha \beta} \leq\left(R_{\alpha} \cap Q_{\beta}\right) O_{2}\left(M_{\beta}\right) \leq R_{\alpha} Q_{\alpha \beta}
$$

(c) Let $\gamma \in \triangle(\beta)$. Then $Q_{\gamma} \cap Q_{\beta} \leq Q_{\alpha} O_{2}\left(M_{\beta}\right) \leq Q_{\alpha \beta}$.
(d) Let $R_{\alpha \beta}$ be a normal subgroup of $G_{\alpha \beta}$ contained in $Q_{\beta}$. Then for all $\gamma \in \triangle \beta$,

$$
R_{\alpha \beta} \leq\left\langle R_{\alpha \beta}^{G_{\beta}}\right\rangle \leq O_{2}\left(M_{\beta}\right) R_{\gamma \alpha} .
$$

Proof: By hypothesis, $Q_{\beta}^{*} \leq O_{2}\left(M_{\beta}\right)$. As $G_{\alpha \beta}$ contains a Sylow 2-subgroup of $M_{\beta}$, $O_{2}\left(M_{\beta}\right) \leq G_{\alpha \beta}$ and (a) holds.

Since $E_{\beta}$ acts transitively on $\triangle(\beta)$ we have $R_{\gamma} \cap Q_{\beta} \leq\left(R_{\alpha} \cap Q_{\beta}\right)\left[Q_{\beta}, E_{\beta}\right]$ and so (b) follows from (a).

Since $Q_{\alpha} \leq Q_{\alpha \beta}$, (c) follows from (b) applied to $R_{\alpha}=Q_{\alpha}$.
As $R_{\alpha \beta} \leq\left\langle R_{\gamma \beta}^{E_{\beta}}\right\rangle \leq\left[Q_{\beta}, E_{\beta}\right] R_{\gamma \alpha} \leq O_{p}(M) R_{\gamma \alpha}$, (d) holds.
Lemma 9.3 Suppose $1 \neq D \leq Z J(S)$ and $\left.E_{\beta}\right] \leq N_{G}(D)$. Then
(a) $N_{G_{\alpha}}(D) \leq M_{\alpha \beta}$
(b) Let $\delta \in \Gamma$ such that $d(\beta, \delta)=b-i$ with $1 \leq i<b$. Suppose that $N_{G_{\delta}}(D)$ normalizes no non-trivial 2-subgroup of $G_{\delta} / Q_{\delta}$. Then
(ba) $V_{\beta}^{(i+1)} \cap G_{\delta} \leq Q_{\delta}$
(bb) $V_{\beta}^{(i)} \leq Q_{\delta}$.
(bc) If $N_{G_{\delta}}(D)$ contains a Sylow $p$-subgroup of $G_{\delta}$, then $V_{\beta}^{(i+1)} \leq Q_{\delta}$.
(c) If $b$ is odd and $b \geq 3$, then $E_{\alpha^{\prime}}$ does not normalize $D$.
(d) Suppose that $b$ is even, $b \geq 3$ and $E_{\alpha^{\prime}-1}$ normalizes $D$, then
(da) $V_{\beta}^{(3)} \cap G_{\alpha^{\prime}-1} \leq Q_{\alpha^{\prime}-1} \leq G_{\alpha^{\prime}}$.
(db) If $G_{\alpha^{\prime}-1}$ normalizes $D$, then $V_{\beta}^{(3)} \leq Q_{\alpha^{\prime}-1} \leq G_{\alpha^{\prime}}$.

Proof: As $B(S)$ and $E_{\beta}$ normalize $D, N_{G}(D) \leq M_{\beta}$. Thus (a) holds.
For (b) let $\gamma \in \triangle(\beta)$ with $d(\gamma, \delta)=b-i-1$. Then by $9.2(\mathrm{~d}) V_{\beta}^{(i+1)} \leq V_{\gamma}^{(i-1)} O_{2}\left(M_{\beta}\right)$. By minimality of $b, V_{\gamma}^{(i)} \leq Q_{\delta}$. Since $N_{G_{\delta}}(D) \leq M_{\beta}, N_{G_{\delta}}(D)$ normalizes the 2-group $G_{\delta} \cap$ $O_{2}\left(M_{\beta}\right)$. Thus by assumption, $G_{\delta} \cap O_{2}\left(M_{\beta}\right) \leq Q_{\delta}$. Hence $V_{\beta}^{(i+1)} \cap G_{\delta} \leq V_{\gamma}^{(i-1)}\left(O_{2}\left(M_{\beta}\right) \cap\right.$ $\left.G_{\delta}\right) \leq Q_{\delta}$. So (ba) holds. Clearly (ba) implies (bb). In case (bc) $O_{2}\left(M_{\beta}\right) \leq G_{\delta}$ and so $V_{b}^{(i+1)} \leq G_{\delta}$.

Suppose $b$ is odd and $E_{\alpha^{\prime}}$ centralizes $D$. Then by (bb) applied with $\delta=\alpha^{\prime}$ and $i=1$, $V_{\beta} \leq Q_{\alpha^{\prime}}$, a contradiction.
(d) follows from (ba) and (bc) applied with $\delta=\alpha^{\prime}-1$ and $i=2$.

Lemma 9.4 Suppose that $\left[Z, E_{\beta}\right] \neq 1$. Then $Z_{\beta}$ is an FF-module.
Proof: 8.16
Lemma 9.5 Suppose that $\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right] \neq 1$ and $\left[Z, E_{\beta}\right]=1$.
(a) Let $L_{\alpha}=\left\langle Z_{\alpha^{\prime}}^{G_{\alpha}}\right\rangle Q_{\alpha}$. Then $L_{\alpha} / C_{\alpha} \cong S L_{2}(q)^{k}$, where $k$ is a postive integer and $q$ a power of 2 .
(b) $Z_{\alpha}$ is a natural module for $L_{\alpha} / C_{a}$.
(c) $Z_{\alpha^{\prime}} Q_{\alpha}$ is a Sylow p-subgroup of $\left\langle Z_{\alpha^{\prime}}^{L_{\alpha}}\right\rangle Q_{\alpha}$.

Proof: As $\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right] \neq 1$ we may assume that $Z_{\alpha^{\prime}}$ acts as an offending subgroup on $Z_{\alpha}$. Since $\left[Z, E_{\beta}\right]=1, C_{Z_{\alpha}}\left(L_{\alpha}\right)=1$.Moreover, by $9.2 \mathrm{c} Z_{\alpha^{\prime}} \leq Q_{\alpha \beta}$, which excludes the possibilty that $Z_{\alpha}$ is a a natural $\operatorname{Sym}(q+1)^{k}$-modules for $q \geq 4$. Thus the lemma follows from 6.3.

Define $Z_{\alpha \beta}=C_{Z_{a}}\left(S \cap L_{\alpha}\right)$ and $Z_{\beta}^{*}=\left\langle Z_{\alpha \beta}^{G_{\beta}}\right\rangle$. In the next two lemmas we will assume $\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right] \neq 1$. Let $V$ be an irreducible $L_{\alpha}$ submodule in $Z_{\alpha}$ not centralized by $Z_{\alpha^{\prime}}$ and similarly choose $V^{\prime} \leq Z_{\alpha^{\prime}}$. Put $R=\left[V, V^{\prime}\right]$.

Lemma 9.6 Suppose that $\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right] \neq 1$ and $\left[Z, E_{\beta}\right]=1$. Then one of the following holds:

1. $Z_{\alpha \beta}$ is normal in $G_{\beta}$.
2. $Z_{\alpha \beta} \leq X_{\beta}^{*}$ and $\left[X_{\beta}^{*}, E_{\beta}\right] \neq 1$.
3. $q=2$ and $k \geq 2$. Moreover, if $U_{\alpha \beta}$ be maximal in $Z_{\alpha \beta}$ with $\left[U_{\alpha \beta}, G_{\alpha \beta}\right] \leq Z_{\beta}$ and $U_{\beta}=\left\langle U_{\alpha \beta}^{G_{\beta}}\right\rangle$, Then $U_{\beta} / Z_{\beta}$ is an FF-module for $G_{\beta} / Q_{\beta}$

Proof: We may assume that $Z_{\alpha \beta}$ is not normal $G_{\beta}$ and so is not centralized by $E_{\beta}$.
Suppose first that $q>2$ or $k=1$. Then $Q_{\beta}^{*} \leq Q_{\alpha \beta} \leq L_{\alpha}$ and so $Z_{\alpha \beta} \leq X_{\beta}^{*}$. Thus $\left[X_{\beta}^{*}, E_{\beta}\right] \neq 1$ and the $P \times Q$ lemma implies $\left[X_{\beta}, E_{\beta}\right] \neq 1$.

So suppose now that $q=2$ and $k>1$. Let $\alpha-1 \in \triangle(\alpha)$ with $\left\langle G_{\alpha \alpha-1}, V^{\prime}\right\rangle=G_{\alpha}$. By $9.5 \mathrm{c},\left[Z_{\alpha \beta}, Z_{\alpha^{\prime}}\right]=1$ and so
(1) (a) $Z_{\beta}^{*} \leq Q_{\delta}$ for all $\delta \in \Gamma$ with $d(\beta, \delta)<b$.
(b) $\left[Z_{\alpha^{\prime}-1}^{*}, V^{\prime}\right]=1$, even if $b=2$.

In particular, $\left[Z_{\beta}^{*}, Z_{\alpha^{\prime}}\right]=1$ and as $S$ acts transitively on the $L_{\alpha}^{(i)}$ and normalizes $C_{Q_{\beta}}\left(Z_{b}^{*}\right)$ we conclude
(2) (a) $S \cap L_{\alpha}=C_{Q_{\beta}}\left(Z_{\beta}^{*}\right) Q_{\alpha}$.
(b) $Z_{\beta}^{*} \cap Z_{\alpha}=Z_{\alpha \beta}$.

By definition of $U_{\alpha \beta}$ we have $\left[U_{\alpha \beta}, Q_{\beta}\right] \leq Z_{\beta}$ and thus
(3) $\left[U_{\beta}, Q_{\beta}\right] \leq Z_{\beta}$.

In particular, $D \stackrel{\text { def }}{=}\left[U_{\alpha-1}, U_{\alpha^{\prime}-1} \cap Q_{\alpha-1}\right] \leq Z_{\alpha-1}$. On the otherhand, by (1)a, $U_{\alpha-1} \leq$ $Z_{\alpha-1}^{*} \leq Q_{\alpha^{\prime}-2} \leq G_{a p-1}$ and so $D \leq U_{\alpha^{\prime}-1} \leq Z_{a p-1}^{*}$ and so by (1)c, $\left[D, V^{\prime}\right]=1$. Hence by choice of $\alpha-1, D$ is centralized by $G_{\alpha}$ and $G_{\alpha-1}$. Thus

## (4) $\left[U_{\alpha-1}, Z_{\alpha^{\prime}-1}^{*} \cap Q_{\alpha-1}\right]=1$.

Suppose that $U_{\alpha-1} \leq Q_{\alpha^{\prime}-1}$. As $\left[R, U_{\alpha-1}\right]=1$ we conclude that $\left[U_{\alpha-1}, V^{\prime}\right] \leq R \leq Z_{\alpha}$. Thus

$$
U_{\alpha-1} Z_{\alpha} \unlhd\left\langle G_{\alpha-1 \alpha}, V^{\prime}\right\rangle=G_{\alpha} .
$$

Hence also $\left[U_{\alpha-1}, Q_{\alpha}\right] \unlhd G_{\alpha}$. By (4), $Z_{\alpha} \not \leq U_{\alpha-1}$ and since $Z_{\alpha}$ is the unique minimal normal subgroup of $G_{\alpha}$ in $Q_{\alpha}$ we conclude that $\left[U_{\alpha-1}, Q_{\alpha}\right]=1$. Thus $\left[U_{\beta}, Q_{\alpha}\right]=1$. Since $E_{\beta} \leq\left\langle Q_{\alpha}^{G_{\beta}}\right\rangle T$ we get $\left[U_{\beta}, E_{\beta}\right]=1$. Note also that $\left[U_{\alpha \beta} \leq Z J(S)\right.$ and that there exists $1 \neq D \leq U_{\alpha \beta}$ with $C_{G_{\alpha}}(D) \not \leq M_{\alpha \beta}$. Hence we obtain a contradiction to 9 a. We proved
(5) (a) $\left[U_{\beta}, E_{\beta}\right] \neq 1$.
(b) $U_{\alpha-1} \not \subset Q_{\alpha^{\prime}-1}$.

If $\left[U_{\alpha-1} \cap Q_{\alpha^{\prime}-1}, U_{\alpha^{\prime}-1}\right]=1$, then 8.17 and (4) imply that 3 . holds. Thus we may assume:
(6) $Z_{\alpha^{\prime}-1}=\left[U_{\alpha-1} \cap Q_{\alpha^{\prime}-1}, U_{\alpha^{\prime}-1}\right] \leq U_{\alpha-1}$

Suppose that $b=2$. Then by (6) and (2)b, $Z_{\beta}=Z_{\alpha^{\prime}-1} \leq U_{\alpha-1} \cap Z_{\alpha} \leq Z_{\alpha-1}^{*} \cap Z_{\alpha}=$ $Z_{\alpha \alpha-1}$. But this contradicts the choice of $\alpha-1$. Hence
(7) $b \geq 4$.

By (6), there exists $\lambda \in \triangle\left(\alpha^{\prime}-1\right)$ and $t \in U_{\alpha-1} \cap Q_{\alpha^{\prime}-1}$ with $\left[t, U_{\alpha^{\prime}-1 \lambda}\right]=Z_{\alpha^{\prime}-1}$.
Suppose $t$ normalizes one of the $Z_{\lambda}^{(i)}$ and let $X$ be the sum of the $Z_{\lambda}^{(j)}, j \neq i$. Then $U_{\alpha^{\prime}-1 \lambda}=U_{\alpha^{\prime}-1 \lambda} \cap Z_{\lambda}^{(i)} \oplus U_{\alpha^{\prime}-1 \lambda} \cap X, t$ centralise $U_{\alpha^{\prime}-1 \lambda} \cap Z_{\lambda}^{i}$ and so $Z_{\alpha^{\prime}-1}=\left[U_{\alpha^{\prime}-1 \lambda}, t\right] \leq$ $[X, t] \leq X$, a contradiction.
(8) $t$ acts fixed-point freely on $\left\{L_{\lambda}^{(i)} \mid 1 \leq i \leq k\right\}$.

Thus by 2.2 and (2)a there exists $\mu \in \triangle(\lambda)$ with $O^{2}\left(G_{\lambda}\right) \leq\left\langle C_{\left.Q_{\mu}\right)}\left(Z_{\mu}^{*}\right), t\right\rangle$. As $t$ centralizes $Z_{\alpha}$, (8) implies that $Z_{\alpha} \leq Q_{\lambda}$. Moreover, $U_{\mu} \leq Q_{\alpha+2} \leq G_{\beta}$ and so $\left[V_{\beta}, U_{\mu}\right] \leq U_{\mu} \cap V_{\beta}$. Since $b \geq 4$, we conclude from (1)a that $U_{\alpha-1}$ and so also $t$ centralizes $\left[V_{\beta}, U_{\mu}\right.$ ]. Since $C_{Q_{\lambda}}\left(O^{2}\left(G_{\lambda}\right)\right)=1$ the choice of $\mu$ implies $\left[V_{\beta}, U_{\mu}\right]=1$ and so
(9) $U_{\mu} \leq Q_{\beta} \cap Q_{\alpha} \leq G_{\alpha-1}$.

Since $d\left(\mu, \alpha^{\prime}\right)=3<b,(2)$ implies $\left[\left\langle U_{\mu}^{G_{\lambda}}\right\rangle, V^{\prime}=1\right.$. Thus $\left[t, U_{\mu} \cap Q_{\alpha-1}\right] \leq Z_{\alpha-1}\left(V^{\prime}\right)=1$. From $C_{U_{\mu}}(t) \leq C_{Q_{\lambda}}\left(O^{2}\left(G_{\lambda}\right)\right)=1$ we get
(10) $U_{\mu} \cap Q_{\alpha-1}=1$

Thus

$$
\left|U_{\alpha-1} / C_{U_{\alpha-1}}\left(U_{\mu}\right)\right| \leq\left|U_{\alpha-1}\right|=\left|U_{\mu}\right|=\left|U_{\mu} Q_{\alpha-1} / Q_{\alpha-1}\right|
$$

and 3. holds.
pred
Lemma 9.7 Suppose that $\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right] \neq 1$ and $Z_{\alpha \beta}$ is normal in $G_{\beta}$. Then $b=2, E_{\beta}$ centralizes $Z_{\alpha \beta}$ and $G_{a}$ is of $L_{2}$-type.

Proof: By8.15 $Q_{\alpha} \not \leq Q_{\beta}$. As $Q_{\alpha}$ centralizes $Z_{\alpha \beta}$ and $E_{\beta} \leq\left\langle Q_{\alpha}^{G_{\beta}}\right\rangle$ we conclude that $E_{\beta}$ centralizes $Z_{\alpha \beta}$. Note that $V \cap Z_{\alpha \beta} \neq 1$ and so by $9, C_{G_{\alpha}}\left(V \cap Z_{\alpha \beta} \leq M_{\alpha \beta}\right.$. Thus $k=1$ and $G_{\alpha}$ is of $L_{2}$-type. It remains to show that $b=2$.

Suppose that $b>2$. Let $\alpha-1 \in \triangle(\alpha)$ with $\left\langle G_{\alpha-1 \alpha}, V\right\rangle=G_{\alpha}$ and note that $R=$ $Z_{\beta}^{*}=Z_{\alpha^{\prime}-1}^{*}$ is normalized by $G_{\beta}$ and $G_{\alpha^{\prime}-1}$. Hence $9(\mathrm{~d})$ implies that $V_{\alpha-1} \leq G_{\alpha^{\prime}}$. As $V_{\alpha-1}$ centralizes $R$ we conclude that $\left[V_{\alpha-1}, Z_{\alpha^{\prime}}\right] \leq R$ and $G_{\alpha}$ normalizes $V_{\alpha-1}$, again a contradiction.

Lemma 9.8 Suppose that $\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right]=1, b>1$ and $r_{\beta}>1$. Then there exists a normal subgroups $L_{\alpha}$ of $G_{\alpha}$ and normal subgroups $L_{\alpha}^{(i}, 1 \leq i \leq k$ of $L_{\alpha}$ such that
(a) $C_{\alpha} \leq L_{\alpha}$ and $C_{\alpha} \leq L_{\alpha}^{(i)}$
(b) $\overline{O^{2}\left(L_{\alpha}\right)}=\overline{L_{\alpha}^{(1)}} \times \ldots \times \overline{L_{\alpha}^{(k)}}$
(c) $G_{\alpha}=L_{\alpha} S, S$ transitively permutes the $L_{\alpha}^{(i)}$,s and $L_{\alpha}$ is the largest subgroup of $G_{\alpha}$ normalizing all the $L_{\alpha}^{(i)}$ 's.
(d) Put $Z_{\alpha}^{(i)}=\left[Z_{\alpha}, L_{\alpha}^{(i)}\right]$. Then $Z_{\alpha}=Z_{\alpha}^{(1)} \oplus \ldots \oplus Z_{\alpha}^{(k)}$.
(e) One of the following holds

1. $\overline{L_{\alpha}^{(i)}} \cong S L_{2}(q), q$ a power of 2 and $Z_{\alpha}^{(i)}$ is a natural $S L_{2}(q)$-module for $L_{\alpha}^{(i)}$.
2. $\overline{L_{\alpha}^{(i)}} \cong C_{3},\left|Z_{\alpha}^{(i)}\right|=4$ and $s_{Z_{\alpha}}\left(O_{2}\left(M_{\beta}\right)\right)<2$.
3. $\overline{L_{\alpha}^{(i)}} \cong S L_{3}(q), q$ a power of $2 ; Z_{\alpha}^{(i)}$ is direct sum of a natural $S L_{3}(q)$-module for $L_{\alpha}^{(i)}$ with its dual; some element of $S$ induces a graph automorphism on $\overline{L_{a}^{(i)}}$ and $c_{\beta}=2$

Proof: Suppose first that $c_{\beta}=1$. Then the lemma holds by 8.4 and 6.3 , where the $\operatorname{Sym}(q+1)$ case is excluded as in 9.5.

So suppose that $c_{\beta} \geq 2$. Then $r_{\beta} c_{\beta}-1>1$ and so by $2.4 \mathrm{a}, r_{\alpha}<2$. Thus we can apply 6.4 with the $\operatorname{Sym}(q+1)$-case excluded as usual. Note that in case (e3) we actually have $r_{a}=\frac{3}{2}$. As $r_{\beta}>1,2.4$ implies $c_{\beta}=2$ and all parts of the lemma are proved.

Put $Z_{\alpha \beta}=C_{Z_{\alpha}}\left(L_{\alpha} \cap S\right)$ and $Z_{\beta}^{*}=\left\langle Z_{\alpha \beta}^{G_{\beta}}\right\rangle$.
Lemma 9.9 Suppose that $\left[Z_{\alpha}, Z_{\alpha^{\prime}-1}\right]=1, b>1$ and the conclusions of 9.8 hold for case e3 hold. Then $Q_{\beta} Q_{\alpha} / Q_{\alpha} \leq Z\left(S \cap L_{\alpha} / Q_{\alpha}\right),\left[X_{\beta}, E_{\beta}\right] \neq 1$ and $X_{\beta}$ is an FF-module.

Proof: Suppose that $E_{\beta}$ centralizes $Z_{\alpha \beta}$ and let $D$ be the intersection of $Z_{\alpha \beta}$ with one of the irreducible $L_{\alpha}$ submodule in $Z_{\alpha}$. Then $D \neq 1, N_{G_{\alpha}}(D) \not \approx M_{\alpha \beta}$ and $E_{\beta} B(S)$ centralizes $D$, a contradiction to 9 a.

Thus $E_{\beta}$ does not centralize $Z_{\alpha \beta}$.
Recall that $c_{\beta}=2$ in case 9.8 e 3 . Thus 8.9 applied to $L=E_{b}$ shows that $\left[Z_{\alpha}, Q_{\beta}, 2\right] \leq D_{\beta}$. By $8.15 Q_{\alpha} \not Q_{\beta}$. Hence $E_{\beta} \leq\left\langle Q_{a}^{G_{\beta}}\right\rangle$ and so $\left[D_{\beta}, E_{\beta}\right]=1$. In particular $Z_{\alpha \beta} \not \leq D_{\beta}$ and so $Z_{\alpha \beta} \not \leq\left[Z_{\alpha}, Q_{\beta}, 2\right]$. As $S$ normalizes $\left[Z_{\alpha}, Q_{\beta}, 2\right]$ we conclude from the action of $S$ on $Z_{\alpha}$ that $\left[Z_{\alpha}, Q_{\beta}, 2\right]<Z_{\alpha \beta}$. Since $Q_{\beta}$ is normal in $S$ this implies that $Q_{\beta} \leq L_{\alpha}$ and then that $Q_{\beta}$ acts quadratically on each of the irreducible $L_{\alpha}$ submodules in $Z_{\alpha}$. As $S$ normalizes $Q_{\beta}$ and induces a graph automorphism on the $L_{\alpha}^{(1)}$ we get $Q_{\beta} Q_{\alpha} / Q_{a} \leq Z\left(S \cap L_{\alpha} / Q_{\alpha}\right)$ and $Z_{\alpha \beta} \leq X_{\beta}$. Hence $\left[X_{\beta}, E_{\beta}\right] \neq 1$ and so by ?? $X_{\beta}$ is an $F F$-module.

Lemma 9.10 Suppose that $\left[Z_{\alpha}, Z_{\alpha^{\prime}-1}\right]=1, b>1$ and the conclusions of 9.8 hold for case $e 1$ or $e 2$ hold. Then one of the following is true:

1. $k=1,\left[Z_{\alpha \beta}, E_{\beta}\right]=1$ and $V_{\beta}$ is an FF-module for $G_{\beta}$
2. $k=1, b=3$ and $V_{\beta}$ is an F2-module.
3. $\left[Z_{\alpha \beta}, E_{\beta}\right] \neq 1$ and $X_{\beta}$ is an FF-module.
4. $q=2, k \geq 2$ and $\left[Z_{\alpha \beta}, E_{\beta}\right] \neq 1$. Let $U_{\alpha \beta}$ be maximal in $Z_{\alpha \beta}$ with $\left[U_{\alpha \beta}, Q_{\beta}\right] \leq Z_{\beta}$ and put $U_{\beta}=\left\langle U_{\alpha \beta}^{G_{\beta}}\right\rangle$. Then $U_{\beta}$ is an FF-module for $G_{\beta}$.

Proof: By 9a, $\left[Z_{\alpha \beta}, E_{\beta}\right]=1$ implies, $k=1$.
Suppose that $q>2$ or $k=1$. Then $Q_{\beta}^{*} \leq O_{2}\left(M_{\beta}\right) \leq Q_{\alpha \beta} \leq L_{\alpha}$ and so $Z_{\alpha \beta} \leq X_{\beta}^{*}$. So if in addition $\left[Z_{\alpha \beta}, E_{\beta}\right] \neq 1$, then ?? implies that 3 . holds. Hence we may assume from now on that
(1) One of the following holds:
(Case 1) $k=1$ and $\left[Z_{a \beta}, E_{\beta}\right]=1$.
(Case 2) $q=2, k \geq 2$ and $\left[Z_{\alpha \beta}, E_{\beta}\right] \neq 1$.
Put $D_{\beta}^{*}=Z_{\alpha \beta} \cap D_{\beta}$ and note that in case Case $1, D_{\beta}^{*}=Z_{\alpha \beta}$ while in case Case 29 a implies $D_{\beta}^{*}=Z_{\beta}$. In Case 1 let $U_{\alpha \beta}=Z_{\alpha}$ and in Case 2 let $U_{\alpha \beta}$ be maximal in $Z_{\alpha \beta}$ with $\left[U_{\alpha \beta}, Q_{\beta}\right] \leq D_{\beta}^{*}$. Put $U_{\beta}=\left\langle U_{\alpha \beta}^{G_{\beta}}\right\rangle$. It follows easily from the definitions and 9.2c that:
(2) (a) $\left[U_{\alpha \beta}, E_{\beta}\right] \neq 1$
(b) $\left[U_{\beta}, Q_{\beta}^{*}\right] \leq\left[V_{\beta}, O_{2}\left(M_{\beta}\right)\right] \leq D_{\beta}^{*} \leq Z_{\alpha}$
(c) $\left[U_{\beta}, Q_{\beta} \cap Q_{\alpha+2}\right] \leq D_{\beta}^{*}$.

By 9 d applied with $D=D_{\beta}^{*} \cap D_{\alpha^{\prime}-1}^{*}$ we get
(3) $D_{\beta}^{*} \cap D_{\alpha^{\prime}-1}^{*}=1$

By (2)c, $\left[U_{\beta} \cap Q_{\alpha^{\prime}}, U_{\alpha^{\prime}} \cap Q_{\beta}\right] \leq D_{\beta}^{*} \cap D_{\alpha^{\prime}-1}^{*}=1$ and so
(4) $\left[U_{\beta} \cap Q_{\alpha^{\prime}}, U_{\alpha^{\prime}} \cap Q_{\beta}\right]=1$

We may and do assume from now on that $U_{\beta}$ is not an $F F$-module and and will show that 2. holds.

Suppose that $U_{\alpha^{\prime}} \leq Q_{\beta}$. As $b \geq 3, U_{\alpha^{\prime}}$ acts quadratically on $Z_{\alpha}$. Let $V$ be an irreducible $L_{\alpha}$ submodule in $Z_{\alpha}$ with $V \not \leq Q_{\alpha^{\prime}}$. Assume first that $U_{\alpha^{\prime}}$ normalizes $V$. Then

$$
\left|V / C_{V}\left(U_{\alpha^{\prime}}\right)=q \geq\left|U_{\alpha^{\prime}} / C_{U_{\alpha^{\prime}}}(V)\right| .\right.
$$

If $q=2$, this clearly implies that $U_{\alpha^{\prime}}$ is an $F F$-module. If $q>2$ we are in Case 2 and so $V \leq U_{\beta}$ and by (4), $U_{\beta} \cap Q_{\alpha^{\prime}} \leq C_{V}\left(U_{\alpha^{\prime}}\right)$. Hence $\left|V Q_{\alpha^{\prime}} / Q_{\alpha^{\prime}}\right| \geq q$. Again $U_{\alpha^{\prime}}$ is an $F F$-module, a contradiction.

Thus $U_{\alpha^{\prime}}$ does not normalizes $V$ and quadratic action implies $\left|U_{\alpha^{\prime}} / C_{U_{\alpha^{\prime}}}(V)\right| \leq 2$, again a contradiction. Thus
(5) $U_{\alpha^{\prime}} \not \leq Q_{\beta}$ and the situation is symmetric in $\beta$ and $\alpha^{\prime}$.

Suppose that $\left[U_{\beta}, U_{\alpha^{\prime}} \cap Q_{\beta}\right]=1=\left[U_{\alpha^{\prime}}, U_{\beta} \cap Q_{\alpha^{\prime}}\right]$. Then by 8.17 we get that $U_{\beta}$ is an $F F$-module. Thus
vvqa
(6) $D_{\beta}=\left[U_{\beta}, U_{\alpha^{\prime}} \cap Q_{\beta}\right] \leq U_{\alpha^{\prime}}$ or $D_{\alpha^{\prime}} \leq\left[U_{\alpha^{\prime}}, U_{\beta} \cap Q_{\alpha^{\prime}}\right] \leq U_{\beta}$

Hence we may assume $\left[U_{\beta}, U_{\alpha^{\prime}} \cap Q_{\beta}\right] \neq 1$ and so
(7) $D_{\beta}^{*}=\left[U_{\beta}, U_{\alpha^{\prime}} \cap Q_{\beta}\right] \leq U_{\alpha^{\prime}}$.

Pick $\mu \in \triangle(\beta)$ and $t \in U_{\alpha^{\prime}} \cap Q_{\beta}$ with $\left[U_{\mu \beta}, t\right] \neq 1$. Then by (4), $Z_{\mu} \not \leq Q_{\alpha^{\prime}}$ and we may assume that $\mu=\alpha$. Hence
(8) There exists $t \in U_{\alpha^{\prime}} \cap Q_{\beta}$ with $\left[U_{\alpha \beta}, t\right] \neq 1$. In particular, $t \notin Q_{\alpha}$

In particular, by $9.2 \mathrm{c}, O_{2}\left(M_{\beta}\right) \not \leq Q_{\alpha}$, as $O_{2}\left(M_{\beta}\right)$ is normal in $M_{\alpha \beta}$ we conclude ( compare also (8) in 9.6).
(9) (a) In case $1, O_{2}\left(M_{\beta}\right) Q_{a}=S \cap L_{\alpha}$.
(b) In Case $2, t$ acts fixed point freely on $\left\{L_{\alpha}^{(i)} \mid 1 \leq i \leq k\right\}$.

In particular, ( also use 2.2 in Case 2) there exists $\alpha-1 \in \triangle(\alpha)$ with

## $Q M b Q S$

(10) $E_{\alpha} \leq\left\langle O_{2}\left(M_{\alpha-1}\right) \cap L \alpha, t\right\rangle$.

By (4) and (8) we have $\left|U_{\beta} Q_{\alpha^{\prime}} / Q_{\alpha^{\prime}}\right| \geq\left|U_{\alpha \beta} Q_{\alpha^{\prime}} / Q_{\alpha^{\prime}}\right|=\left|U_{\alpha \beta} / C_{U_{\alpha \beta}}(t)\right| \geq q$. We record
(11) $\left|U_{\beta} Q_{\alpha^{\prime}} / Q_{\alpha^{\prime}}\right| \geq q$.

Define $Y_{\alpha}=\bigcap_{\delta \in \Delta(\alpha)} U_{\delta} Z_{\alpha}$.
Suppose now that $\left[U_{\alpha-1}, V_{\alpha^{\prime}-2}\right]=1$. Then $U_{\alpha-1} \leq Q_{\alpha^{\prime}-2} \cap Q_{\alpha^{\prime}-1}$. Put $A=U_{\alpha-1} \cap$ $\left(U_{\beta} Q_{\alpha^{\prime}}\right)$. Then $A \leq U_{\beta}\left(U_{\beta} U_{\alpha-1} \cap Q_{\alpha^{\prime}}\right) \leq U_{\beta}\left(Q_{\alpha^{\prime}-1} \cap Q_{\alpha^{\prime}}\right)$. Thus by (2)

$$
[A, t] \leq\left[U_{\beta}, t\right]\left[Q_{\alpha^{\prime}-1} \cap Q_{\alpha^{\prime}}, t\right] \leq D_{\beta}^{*} D_{\alpha^{\prime}}^{*}
$$

Let $X$ be maximal in $A$ with $[X, t] \leq D_{\beta}^{*}$. As $\left|D_{\alpha^{\prime}}^{*}\right|=q$ we have $|A / X| \leq q$. Since $D_{\beta}^{*} \leq X, t$ normalizes $X$. By (2), $O_{2}\left(M_{\alpha-1}\right)$ also normalizes $X Z_{\alpha}$. As $E_{\alpha}$ is transitive on $\triangle(\alpha)$ we conclude from (10) that $X Z_{\alpha} \leq Y_{\alpha}$. Put $a=\left|U_{\alpha-1} / A\right|$. Then $\left|U_{\alpha-1} Y_{a} / Y_{a}\right| \leq$ $\left|U_{\alpha-1} / A\right||A / X| \leq a q$. Hence

$$
\left|U_{\beta} Y_{a} / Y_{\alpha}\right| \leq a q .
$$

Note that $U_{\alpha-1} \leq Q_{\alpha^{\prime}-2} \cap Q_{\alpha^{\prime}-1} \leq G_{\alpha^{\prime}}$. Since $Y_{\alpha^{\prime}-1} \leq V_{\alpha^{\prime}-2}$ we conclude from $\left|U_{\beta} Y_{a} / Y_{\alpha}\right| \leq q a$ and edge-transitivity that

$$
\left|U_{\alpha^{\prime}} / C_{U_{\alpha^{\prime}}}\left(U_{\alpha-1} U_{\beta}\right)\right| \leq\left|U_{\alpha^{\prime}} Y_{\alpha^{\prime}-1} / Y_{\alpha^{\prime}-1}\right|=\left|u_{\beta} Y_{a} / Y_{\alpha}\right| \leq a q .
$$

On the otherhand by definition of $a$, an isomorphism theorem and (11)

$$
\left|U_{\alpha-1} U_{\beta} Q_{\alpha^{\prime}} / Q_{\alpha^{\prime}}\right|=\left|U_{\alpha-1} U_{\beta} Q_{\alpha^{\prime}} / U_{\beta} Q_{\alpha^{\prime}}\right|\left|U_{\beta} Q_{\alpha^{\prime}} / Q_{\alpha^{\prime}}\right| \geq a q .
$$

By the last two equations, $U_{\alpha^{\prime}}$ is an $F F$-module, a contradiction. Hence

$$
v a-1 v a-2
$$

(12) $\left[U_{\alpha-1}, V_{\alpha^{\prime}-2}\right] \neq 1$

Suppose that $V_{\alpha^{\prime}-2} \leq Q_{a-1}$. Then by (5), $V_{\alpha-1} \leq Q_{\alpha^{\prime}-2}$. Note that by (10), $C_{D_{\alpha-1}^{*}}(t)=$ 1. Thus

$$
1 \neq\left[U_{\alpha-1}, V_{\alpha^{\prime}-2}\right] \leq D_{\alpha-1}^{*} \cap D_{\alpha^{\prime}-2}^{*} \leq C_{D_{\alpha-1}^{*}}(t)=1
$$

a contradiction to (12). Thus
(13) $V_{\alpha^{\prime}-2} \not \leq Q_{\alpha-1}$

In particular, $\left(\alpha^{\prime}-2, \alpha-1\right)$ has the same properties as $\left(\beta, \alpha^{\prime}\right)$ and we conclude from (5) that
(14) $U_{\alpha-1} \not \leq Q_{\alpha^{\prime}-2}$

Suppose that $1 \neq x \leq D_{\alpha^{\prime}-2}^{*} \cap U_{\alpha-1}$. As $t$ centralizes $x, x \in X \leq Y_{\alpha}$ and so $E_{\alpha}$ normalizes $x Z_{\alpha}$.

Suppose first that $\left[x, Q_{\alpha}\right] \neq 1$. Since $E_{\alpha}$ normalizes $\left[x, Q_{a}\right], Z_{\alpha}^{(i)} \leq\left[x, Q_{a}\right]$ for some i. Put $L=O^{p}\left(L_{\alpha}^{(i)}\right)$ and $Q=\left[Q_{\alpha}, L\right]$. Then $\left[x, Q_{\alpha}, L\right]=Z_{\alpha}^{(i)}$ and $\left[x, L, Q_{\alpha}\right]=1$. Thus be the three subgroup lemma, $[x, Q]=Z_{\alpha}^{(i)}=[x, L]$. Since $[x, Q, Q]=1$ we colcude that $x Q=x^{Q}=x^{L}$ and so by the Frattini argument, $L=C_{L}(x) Q$. Since $x \leq D_{\alpha^{\prime}-2}, x$ is centralised by $E_{\alpha^{\prime}-2}$ and the Thompson subgroup of $G_{\alpha^{\prime}-1 \alpha^{\prime}-2}$. By the proof of (ba), $t \in V_{\alpha^{\prime}} \cap G_{\alpha} \leq V_{\alpha^{\prime}-2}^{(3)} \cap G_{\alpha} \leq Q_{p}\left(M_{a p-2} \cap G_{\alpha}\right.$. As $C_{L}(x)$ normalizes $Q_{p}\left(M_{a p-2} \cap G_{\alpha}\right.$ we get $[t, L] \leq Q_{\alpha}$. In case 1 this is impossible since $t \notin Q_{a}$ and in Case 2 this contradicts ??b.

Suppose next that $\left[x, Q_{\alpha}\right]=1$, but $x \notin Z_{\alpha}$. Then its is easy to see that $q>2$ and $C_{E_{a}}(x) Q_{\alpha} / Q_{\alpha}$ is ismorphic to $D_{2 \cdot q \pm 1}$ and again $C_{E_{a}}(x)$ normalizes no non-trivial 2-subgroup in $G_{a} / Q_{a}$ and we get the same contradiction as above.

Hence $x \in Z_{\alpha}$ and so $D_{\alpha^{\prime}-2}^{*} \leq Z_{\alpha}$. Note that $t$ centralizes $D_{\alpha^{\prime}-2}^{*}$. In Case 2 we have $\mathrm{n} x \in$ $Z_{\alpha},\left[x, O_{2}\left(M_{\alpha-1} \cap L_{\alpha}\right)\right] \leq Z_{\alpha-1}$ and $s_{Z_{\alpha}}\left(O_{2}\left(M_{\alpha-1} \cap L_{\alpha}\right)<2\right.$ implies, $\left[x, O_{2}\left(M_{\alpha-1} \cap L_{\alpha}\right)\right]=1$. Hence by (10), $\left[x, E_{\alpha}\right]=1$ a contradiction to $C_{Q_{\alpha}}\left(E_{\alpha}\right)=1$.

In case Case 1 we conclude that $D_{\alpha^{\prime}-2}^{*}=D_{\beta}^{*}$. If $b>3,9 \mathrm{bb}$ implies that $V_{\alpha-1} \leq V_{\beta}^{(3)} \leq$ $Q_{\alpha^{\prime}-2}$, a contradiction. We have proved

Mtrick
$Q_{\alpha-2}$, a contradiction. We have prow
$d c u$
(15) If $D_{\alpha^{\prime}-2}^{*} \cap U_{\alpha-1} \neq 1$, then $b=3$ and Case 1 holds.

Assume that $b>3$. Then $t$ centralizes $\left[U_{\alpha^{\prime}-2} \cap Q_{\alpha-1}, U_{\alpha-1}\right]$ and as by (10) $C_{D_{\alpha-1}^{*}}(t)=1$ we get $\left[U_{\alpha^{\prime}}-2 \cap Q_{\alpha-1} U_{\alpha-1}\right]=1$. Thus by ( 6 ) and ?? that $D_{\alpha^{\prime}-2}^{*}=\left[U_{\alpha-1} \cap Q_{\alpha^{\prime}-2}, U_{\alpha^{\prime}-1}\right] \leq$ $U_{\alpha-1}$ a contradiction to (15). Thus
(16) $b=3$.

Suppose that $k>1$. By (6) applied to $(\alpha-1, \beta)$ in place of $\left(\beta, \alpha^{\prime}\right)$ we get $Z_{\alpha-1}=$ $D_{\alpha-1}^{*} \leq U_{\beta}$ or $Z_{\beta}=D_{b}^{*} \leq U_{\alpha^{\prime}-1}$. In the first case $\left[Z_{\alpha-1}, O_{2}\left(M_{\beta}\right) \leq Z_{\beta}\right.$ and as above so $\left[Z_{\alpha-1}, O_{2}\left(M_{\beta} \cap L_{\alpha}\right)=1\right.$. But this implies $Z_{\alpha-1} \leq Z_{\alpha \beta}$ and $Z_{\alpha \alpha-1}=Z_{\alpha \beta}$ a contradiction to (10). The second case yields the same contradicion.

Thus $k=1$ and so $V_{\beta}=U_{\beta}$. By (4) and ??, $V_{\beta}$ is $F 2$ and so 2 . holds.
We remark that an example for case 2 of the previous theorem occurs in ${ }^{2} F_{4}(q)$. In that example $V_{\beta}$ is exactly $F 2$ ( that is not $F^{*} 2$ )

## 10 Connected parabolics not normalizing $Z$

Hypothesis 10.1 (a) Hypothesis 8.1 holds.

Lemma $10.4 Q_{\beta}^{*} \not \leq Q_{\alpha}$ and $Q_{\alpha} \not \leq Q_{\beta}$.
Proof: Suppose that $Q_{\beta}^{*} \leq Q_{\alpha}$. Then $\left[V_{\beta}, Q_{\beta}^{*}\right]=1$ and so by Thompson's $P \times Q$ Lemma, $\left[X_{\beta} \cap V_{\beta}, L_{\beta}\right] \neq 1$, a contradiction to 10.3. The second statement holds since

$$
Z_{\alpha} \leq Q_{\alpha^{\prime}-2} \cap Q_{\alpha^{\prime}-1} \leq Q_{\alpha^{\prime}-1}^{*} Q_{\alpha^{\prime} . \square}
$$

Lemma $10.5 \quad$ (a) $r_{V_{\beta}}\left(G_{\beta}\right) \leq 1$.
(b) $c_{\beta} \geq 2$.
(c) $q_{\alpha} \leq 2$.

Proof: (a) holds since $G_{\beta}$ is $p$-minimal. Since $Q_{\alpha} \not \leq Q_{\beta}$ and $Q_{\beta}^{*} \not \leq Q_{\alpha}, Q_{\alpha} \cap Q_{b}$ is not normal in $G_{\beta}$. Thus by 8.4b, (b) holds. Hence by 8.4a also c. is true.

Lemma 10.6 Suppose that $b>1$.
(a) 8.21.1 or 8.21.2 holds.
(b) For each $\epsilon$ in 8.211. or 2., $L^{\epsilon}$ has at least two non trivial chief-factors on $V^{\epsilon}$.
(c) In case ?? $q_{\alpha}<\frac{1+\sqrt{17}}{4}$.
(a) Suppose that 8.21 .3 holds. Then by 8.17 one of $Z_{\mu^{+}}$and $Z_{\mu^{-}}$is $F F$. But then $Z_{\alpha}$ is $F F$, a contradiction.
(b) Suppose $L^{\epsilon}$ has at most one non-central chief factor on $V^{\epsilon}$. Since $L^{\epsilon}$ and $G_{\beta^{\epsilon}}$ are $p$ minimal, 2. implies $L^{\epsilon}=O^{p}\left(L^{\epsilon}\right)\left(G_{\beta^{\epsilon} \mu^{\epsilon}} \cap L^{\epsilon}\right)$ and $G_{\beta^{\epsilon}}=\left\langle G_{\beta^{\epsilon} \mu^{\epsilon}}, L^{\epsilon}\right\rangle$. Thus we can apply 8.5 to ( $\mu^{\epsilon}, \beta^{\epsilon}$ in place of $(\alpha, \beta)$. Since by assumption $\alpha$ is not a dual FF- module we conclude that $V_{\beta} \leq Z_{\alpha} X_{\beta}$. But then $\left[V_{\beta}, Q_{\alpha}\right] \leq X_{\beta}$ and so $\left[V_{\beta}, E_{\beta}\right] \leq X_{\beta}$ and $\left[V_{\beta}, E_{\beta}\right]=1$, a contradiction.
(c) Suppose that $q_{a} \geq \frac{1+\sqrt{17}}{4}$. Put $\Lambda^{+}=\mu^{+L^{+}}$and $\Lambda^{-}=\{\mu\}$. Abusing notation define $V^{+}, V^{-}, B^{+}$and $B^{-}$as in that lemma. Note that $V^{+}$is the same $V^{+}$as defined before, but $V^{-}$now is $Z_{\mu}$. Also $B^{+}=V^{+}$and $B^{-}=Z_{\mu} \cap O_{p}\left(L^{+}\right)$. In particular, $V^{-} \neq B^{-}$ and $V^{+}=B^{+}$. We wish to apply 8.20 e with $r=2$ and $s=q_{\alpha}$. By ?? and since $L^{+}$is $p$-minimial, $\left|Z_{\mu} / B^{-}\right|^{2} \leq\left|V^{+} / C_{V^{+}}\left(Z_{\mu}\right)\right|$. Also $\left|V^{+} / B^{+}\right|^{2}=1 \leq\left|Z_{\mu} / C_{Z_{\mu}}\left(V^{+}\right)\right|$and so the asumptions of 8.20 e are indeed fullfiled for this choice of $r$ and $s$. Also $e>0$ by 2.1a. Thus 8.20 e gives the contradiction $V^{+} \neq B^{+}$.

Proposition 10.7 There exists $1 \neq x \in Z_{\alpha}$ and $\lambda \in \Gamma$ with $d(\alpha, \lambda)=b$ and $Z_{\alpha} \notin$ $O_{p}\left(C_{G_{\lambda}}\right)(x)$.

Proof: Suppose the lemma is false. Then by $10.3 b>1$ and we can apply 8.21. In case 8.21 .1 we assume without loss that $\alpha \in \mu^{+L^{+}}$with $Z_{\alpha} \notin O_{p}\left(L^{-}\right)$. Put $Q=O_{p}\left(L^{+}\right)$.

In case 8.21.2 we assume $\epsilon=-$ and $\alpha=\mu$. Put $Q=G_{\alpha}$ and $V^{+}=Z_{\alpha}$.
In each case note that by 8.21 the assumptions of 2.8 with $H=L^{-}, V=V^{-}, A=Z_{\alpha}$ and $Z=Z_{\mu^{-}}$are fulfilled.

## (1) $V^{-} \cap Q \leq G_{\alpha}$ and $C_{V^{-}}\left(Z_{\alpha}\right)=C_{V^{-}}\left(V^{+}\right) \leq V^{-} \cap Q$

In case 8.21 .2 there is nothing to prove. So suppose 8.21 .1 holds. Then $O_{p}\left(L^{+}\right) \leq G_{\alpha}$ and so the first statement holds. The second follows from 2.8a.
(2) $\left[Z_{\alpha} \cap O_{p}\left(L^{-}\right), V^{-} \cap Q\right]=1$

Suppose $1 \neq x \in\left[Z_{\alpha} \cap O_{p}\left(L^{-}\right), V^{-} \cap Q\right]$. Then $x \in Z_{\alpha}$. Thus by 2.8d, $Z_{\alpha} \not \leq O_{p}\left(C_{L}(x)\right)$ and so also $Z_{\alpha} \not \leq O_{p}\left(C_{G_{\alpha^{\prime}}}(x)\right.$, a contradiction.

Since $L^{-}$has at least two non-central chief-factors on $V^{-}$and as $Z_{\alpha}$ is not $F F$ we now compute

$$
\begin{equation*}
\left|V^{-} / V^{-} \cap Q\right|\left|\left|V^{-} \cap Q / C_{V^{-}}\left(V^{+}\right)\right|=\left|V^{-} / C_{V^{-}}\left(V^{+}\right)\right|=\left|V^{-} / C_{V^{-}}\left(Z_{\alpha}\right)\right| \geq\left|Z_{\alpha} / Z_{\alpha} \cap O_{p}\left(L^{-}\right)\right|^{2} \geq\left|Z_{\alpha} / C_{Z_{\alpha}}\left(V^{-} \cap Q\right)\right|^{2}\right. \tag{1}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left|V^{-} / V^{-} \cap Q\right| \geq\left|V^{-} \cap Q / C_{V^{-}}\left(V^{+}\right)\right| . \tag{2}
\end{equation*}
$$

In case of 8.21.2 we conclude $V^{-}=V_{V^{-}}\left(Z_{\alpha}\right)$, a contradiction. Thus
(3) 8.21 .1 holds.

In particular, the sitution is symmetric in + and - and $Q=O_{p}\left(L^{+}\right)$. Since by 8.21.1, $L^{+}$has two non-central chief factor on $V^{+}$,

$$
\left|V^{+} / C_{V^{+}}\left(V^{-}\right)\right| \geq\left|V^{-} Q / Q\right|^{2}=\left|V^{-} / V^{-} \cap Q\right|\left|V^{-} / V^{-} \cap Q\right|
$$

and so by (2)

$$
\left|V^{+} / C_{V^{+}}\left(V^{-}\right)\right| \geq\left|V^{-} / V^{-} \cap Q\right|\left|V^{-} \cap Q / C_{V^{-}}\left(V^{+}\right)\right|=\left|V^{-} / C_{V^{-}}\left(V^{+}\right)\right|
$$

But the same inequality holds with the roles of + and - are interchanged. Hence equality holds here and also in (1). But has $Z_{\alpha}$ is not $F F$ this is only posibble if $V^{-} \cap Q$ centralizes $Z_{\alpha}$. But then all the numbers compared in (1) are equal to 1 and so $V^{-}=C_{V^{-}}\left(V^{+}\right)$, a contradiction which completes the proof of ??.

Theorem 10.8 Suppose $G$ is of generic p-type, $S \in \operatorname{Syl}_{p}(G)$ and $V$ is a maximal member of $\left\{Y_{L} \mid L \in \mathcal{L}(S)\right.$. Then either $V$ is an $F F$-or dual $F F$-module for $S$ or $V \npreceq O_{p}\left(C_{G}(Z)\right)$.

Proof: Let $M=N_{G}(V)$ and $L=N_{G}\left(C_{S}(V)\right)$. Then $M$ is the unique maximal $p$-local of $G$ containing $L$. Let $G_{\alpha}=L$ and $H$ a $p$-minimal member of $\mathcal{L}(S)$ not contained in $M$. Suppose that $V$ is neither $F F$ nor dual $F F$ for $S$. Then the assumptions of this section are fulfilled. Hence by ?? there exists a $p$-local subgroup $H$ with $O_{p}(L) \leq H$ and $V \not \leq O_{p}(H)$. Choose such an $H$ with $|H \cap M|_{p}$ maximal and then $|H|$-minimal. Let $R$ be a Sylow $p$-subgroup of $H \cap M$ with $O_{p}(L) \leq R$. Since $O_{p}(L)$ is a Sylow $p$ subgroup of $C_{G}(V)$, $O_{p}(L)=C_{R}(V) \unlhd R$ and so $R \leq L$. Without loss $R \leq S$.

Since $O_{p}(L) \leq R$ and $V$ is not $F F, J(R) \leq O_{p}(L)$. Hence $L \leq N_{G}(J(R))$ and so $N_{G}(J(R)) \leq M$. Thus $N_{H}(J(R)) \leq M$ and in particular, $N_{H}(R) \leq M$. Thus $R$ is a Sylow p-subgroup of $H$.

Let $W=Z_{H}$ and suppose that $[W, V] \neq 1$. Since $W \leq O_{p}(H) \leq R \leq S, \mid V / C_{V}(W)>$ $\mid W / C_{W}(V)$. Thus $V$ is $F * 1$ on $W$. By the minimality of $H, V \leq O_{p}(P)$ for all $P \in \mathcal{L}(H, S)$ with $P \neq H$ and contradiction to ??

Hence $V$ centralizes $W$ By minimiality of $H, H=\left\langle V^{H}\right\rangle R$ and so $\Omega_{1}(Z(R))=W \leq$ $Z(H)$. Thus $V \not \leq O_{p}\left(N_{G}(W)\right.$. By maximaliy if $|H \cap M|, R$ is a Sylow $p$-subgroup of $M \cap N_{G}(W)$. Thus $N_{S}(R) \leq N_{S}(W) \leq R, R=S$ and $W=Z$. Thus the theorem is proved

Lemma 10.9 There exists 1
$n e q A \leq S C_{\alpha} / C_{\alpha}$ with
(a) $\left[Z_{\alpha}, A, A\right]=1$
(b) $\left|Z_{\alpha} / C_{Z_{\alpha}}(A)\right| \leq\left|A^{2}\right|$.
(c) $\left\langle C_{Z_{\alpha}}(a) \mid a \in A^{\#}\right\rangle \neq Z_{\alpha}$.
(d) If 8.212 holds, then $\left|Z_{\alpha} / C_{Z_{\alpha}}(A)\right|<\left|A^{\frac{3}{2}}\right|$.

## Remark: We proof contains more information than stated in the lemma Proof:

 Let $L^{\epsilon}, \mu^{\epsilon}$ and $\mu$ as in 8.21.In case of 8.211. may assume without loss that $\left|V^{+} / C_{V^{+}}\left(V^{-}\right)\right| \leq\left|V^{-} / C_{V^{-}}\left(V^{+}\right)\right|$.Pick $\mu \in \mu^{+L^{+}}$with $Z_{\mu} \not \leq O_{p}\left(L^{-}\right)$and put $B^{-}=V^{-} \cap O_{p}\left(L^{+}\right)$

In case of 8.212 we assume without loss $\epsilon=-$. Put $V^{+}=Z_{\mu}$ and $B^{+}=Z_{\mu} \cap O_{p}\left(L^{-}\right)$.
In general pick $t \in Z_{\mu} \backslash O_{p}\left(L^{-}\right)$. By 8.21 the assumptions for 2.8 are fulfilled with $H=L^{-}, A=V^{+}, V=V^{-}$and $Z=Z_{\mu^{-}}$. We conclude that $C_{V^{-}}(t)=C_{V^{-}}\left(V^{+}\right)$. Thus

$$
\left\langle C_{Z_{\mu}}(a)\right| a \in B^{-} \backslash C_{\mu}\left\langle\leq Z_{\mu} \cap O_{p}\left(L^{-}\right)\right.
$$

Suppose now that 8.211. holds and define $s$ by $\left|B^{-} / C_{B^{-}}\left(Z_{\mu}\right)\right|^{s}=\left|Z_{\mu} / C_{Z_{\mu}}\left(B^{-}\right)\right|$. Note that that $C_{B^{-}}\left(Z_{\mu}\right) \leq C_{B^{-}}(t) \leq C_{B^{-}}\left(V^{+}\right)$. Let $c$ be the number of non-central chief-factors for $L^{+}$on $V^{+}$. By $2.8\left|V^{-} / B^{-}\right|^{c} \leq \mid V_{+} / C_{V^{+}}\left(V^{-}\right)$. Then by 2.4 b , (with $A=V^{-}, V=$ $V^{+}, " s=s ", t \geq 1, r \geq c \geq 2$ ) we get that $s \geq 2$. Thus the lemma holds in this case with $A=B^{-} C_{\mu} / C_{\mu}($ and $\mu$ in place of $\alpha)$.

Suppose next that 8.212 holds. As $L^{-}$has at least two non-trivial chief-factors on $V^{-}$, we conclude from ?? that

$$
\left|Z_{\mu} / B^{+}\right|^{2} \leq \mid V^{-} / C_{V}^{-}\left(Z_{\mu}\right)
$$

On the otherhand has $Z_{\alpha}$ is not $F F, 2.4$ a implies

$$
\left|B^{+} / C_{B^{+}}\left(V^{-}\right)\right|<\left|V^{-} / V_{V^{-}}\left(B^{+}\right)\right| \leq\left(V^{-} / C_{V^{-}}\left(Z_{\mu}\right) .\right.
$$

Combining the last two inequalites we get $\left|Z_{\mu} / C_{Z_{\mu}}\left(V^{-}\right)\right| \leq\left|V^{-} / C_{V^{-}}\left(Z_{\mu}\right)\right|^{\frac{3}{2}}$. Hence the lamma holds also in this case with $A=V^{-} C_{\mu} / C_{\mu}$.

Lemma 10.10 Either $Z_{\alpha}$ is irreducible as $G_{\alpha}$ module or some non-trivial chief-factor for $G_{\alpha}$ on $Z_{\alpha}$ is $F F$.

Proof: $\quad$ Since $\left[Z, E_{\beta}\right]=1, C_{Z_{\alpha}}\left(E_{\alpha}\right)$. Since $Z_{\alpha}$ is $C S$-generated, we conclude $Z_{\alpha}=\left[Z_{\alpha}, E_{\alpha}\right]$. So if $G_{\alpha}$ a unique non-central chief-factor, $Z_{\alpha}$ is irreducible. If $Z_{\alpha}$ has more than one noncentral chief-factor, then as $Z_{\alpha}$ is $F 2$ and $G_{\alpha}$ is $p$-connected, at least one chief-factor is $F F$.

Proposition 10.11 Let $U$ be a non-trivial chief-factor for $E_{\alpha}$ on $Z_{\alpha}$. Let $E=E_{\alpha} / C_{E_{a}}(U)$. Then one of the following holds:

1. E is solvable and one of the following holds:
1.1. $p=2, E \cong C_{3}$ and $|U|=2^{2}$.
1.2. $p=3, E \cong Q_{8}$ and $|U|=3^{2}$.
1.3. $p=2, E \cong C_{5}$ and $|U|=2^{4}$.
1.4. $p=2, E \cong \operatorname{Ext}\left(3^{1+2}\right)$ and $|U|=2^{6}$.
1.5. $p=3, E \cong \operatorname{Ext}\left(2_{+}^{1+4}\right)$ and $|U|=3^{4}$.
2. $E$ is perfect but $\operatorname{Sol}(E) \nsubseteq Z(E)$ and one of the folloing holds.
2.1. $p=2, E=\left(C_{3} \text { 乙 Alt }(n)\right)^{\prime}, n \geq 5$ and $|U|=2^{2 n}$.
2.2. $p=3, E=\operatorname{Ext}\left(2_{-}^{1+4}\right) . A l t(5)$ and $|U|=3^{4}$.
3. $E$ is quasisimple and one of the following holds.
3.1. $E$ is group of Lie type in charcateristic $p$.
3.2. $p=2$ and $E / Z(E)$ is an alternating group.
3.3. $p=2, E \cong 3 \cdot U_{4}(3)$ and $|U|=2^{12}$.
4. $E=E_{1} E_{2}$ for some components $E_{1}, E_{2}$ of $E, E_{1}$ and $E_{2}$ are isomorphic groups of Lie type in charactaristic $p, U=U_{1} \otimes U_{2}$ for some $U_{i}$ module $E_{i}$ such that $\left(E_{1}, U_{1}\right)$ and $\left(E_{2}, U_{2}\right)$ isomorphic. Moreover, if $n$ is the dimension of $U_{i}$ over $\operatorname{End}_{E_{i}}\left(U_{i}\right)$ then $U_{i}$ is a quadratic $F \frac{2}{n}$-module for $E_{i}$.

Proof: Let $W$ be a non-trivial chief-factor for $G_{\alpha}$ on $Z_{\alpha}$. By $10.9 Z_{\alpha}$ is quadratic $F 2$ and since $G_{\alpha}$ is $p$-connected, $W$ is quadratic $F_{2}$. Let Let $H=G_{\alpha} / C_{G_{\alpha}}(W)$ and $L=$ $\left\langle\mathrm{PQ}_{2}^{*}\left(G_{\alpha} / C_{G_{\alpha}}(V), V\right)\right.$. As $p$-connected $O^{p}(H) \leq L$. Let $V$ be a Wedderburn component for $H$ on $W$. Since $N_{H}(V)$ is irreducible on $V$ and $N_{H}(V) / L$ is a $p$-group, $V$ is irreducible for $L$. Hence we can apply 6.11 to $\bar{L}=L / C_{L}(V)$. In particular we see that ( except in case 6.114 with $p=2) O^{p}(L)$ is irreducible on $V$ and clearly any chiefactor for $E_{\alpha}$ on $Z_{\alpha}$ arises in such a way. Moreover, since $G_{\alpha}$ is $p$-connected, Case 8 of 6.11 does not arise and in case $9, C_{L}(\Delta)$ is a 3-group. Thus it remains to show that in cases 10,11 the componets of $L$ are groups of Lie type or $E(L) / Z(E(L))$ is an alternating group. But this is clear in case 11 and so we may assume that $E(L)$ is quasi simple and neither an alternating group, a group of Lietype in characteristic $p$ nor $3 \cdot U_{4}(3)$

Then $G_{\alpha}$ has no $F F$-module and so $W$ is the unique non-trivial composition factor for $G_{\alpha}$ on $Z_{\alpha}$ and as $Z \unlhd G_{\beta}$ we get that $Z_{\alpha}$ is irreducible. We conclude that $E_{\alpha} C_{\alpha} / C_{a}$ the central product of its components $L^{(i)}, 1 \leq 1 \leq n$ and $Z_{\alpha}$ the the direct sum of the $\left.Z_{\alpha}^{i}=\left[Z_{\alpha}, L^{( } i\right)\right]$. By 6.15b $L^{(i)}$ is isomorphic to $3 \cdot . M a t_{22}$

Let $A$ be as in 10.9 and put $X=\left\langle C_{Z_{\alpha}}(a) \mid a \in A^{\#}\right\rangle \neq Z_{\alpha}$. Pick $\left.V=Z_{\alpha}^{( } i\right)$ so that $V \not \leq X$ and pick $t \in V \backslash X$. Then $C_{A}(t)=1$ and so $A$ acts faithfully, quadratic and $F 2$ on $V$. Thus by $6.15 \mathrm{~b}, A \geq 2^{3}$ and 6.152 .3 or 2.4 hold. Let $a \in A^{\#}$. Then $C_{V}(a) \neq C_{V}(A)$ and so $C_{V}(A)<X \cap V<V$. Since $X \cap V$ is invariant under $N_{G_{\alpha}}(A)$ we conclude that case 2.4 with $|A|=2^{3}$ holds. Note that $V$ is actually a 6 -dimensional space $G F(4)$. Each $a \in A^{\#}$ $C_{V}(a) / C_{V}(a)$ is 1-dimensional over $G F(4)$ and differnt $a$ 's give different 1-spaces. Hence $X / C_{V}(A)$ contains 7 different $G F(4)-1$-spaces and so $X=V$, a contradiction.

## 11 The case $b=1$ with $G_{\alpha}$ connected and $G_{\beta}$ minimal

Hypothesis 11.1 (a) Hypothesis 8.1 holds, except for the $S \leq G_{\alpha} \cap G_{\beta}$ we only assume $Q_{\alpha} \leq S$ and $S \in \operatorname{Syl}_{p}\left(G_{\beta}\right)$.
(b) $G_{\alpha}$ is p-connected.
(c) $b=1$, that is $Z_{\alpha} \not \leq Q_{\beta}$.

Definition 11.2 (a) $V$ is a normal subgroup of $G_{\beta}$ minimal with respect to $\left[V, E_{\beta}\right] \neq 1$.
(b) $M_{\alpha \beta}$ is the unique maximal subgroup of $G_{\beta}$ containing $S$.

Lemma 11.3 Suppose that $G_{\beta}$ is p-minimal. Then either $\left[Q_{\alpha}, E_{\alpha}\right] \leq Z_{\alpha}$ or $Q_{a} / Z_{a}$ has a unique non-central chief-factor and that chief-factor is FF.

Proof: Let $D=\left[V, Q_{\beta}\right]$. Then $\left[D, E_{\beta}\right]=1$. Also note that $V=\left[V, E_{\beta}\right]$ and since $E_{\beta} \leq\left\langle Z_{\alpha}^{G_{\beta}}\right\rangle$ we conclude that $V=\left\langle\left[V, Z_{\alpha}\right]^{G_{\beta}}\right\rangle$. Thus $D=\left\langle\left[V, Z_{\alpha}, Q_{\beta}\right]^{G_{\beta}}\right\rangle$. Since $\left[V, Z_{\alpha}, Q_{\beta}\right]$ is normalized by $S E_{\beta}=G_{\beta}$ we conclude that $D=\left[V, Z_{\alpha}, Q_{\beta}\right] \leq Z_{\alpha}$. Let $\bar{V}=V / D$. Then $\left[V, Z_{\alpha}, Q_{\alpha}\right] \leq\left[Z_{\alpha}, Q_{\alpha}\right]=1$. So let $R$ be maximal in $Q_{\alpha}$ with $[\bar{V}, R] \leq\left[\bar{V}, Z_{\alpha}\right]$. Then by 6.18,

$$
\left|Q_{\alpha} / R\right| \leq\left|\bar{V} / C_{\bar{V}}\left(Z_{\alpha}\right)\right| \leq\left|V / C_{V}\left(Z_{\alpha}\right)=\left|V Q_{\alpha} / Q_{\alpha}\right|\right.
$$

Also $[R, V] \leq\left[V, Z_{\alpha}\right] D \leq Z_{\alpha}$. Let $\tilde{Q}_{\alpha}=Q_{\alpha} / Z_{\alpha}$, we conclude

$$
\left|\tilde{Q}_{\alpha} / C_{\tilde{Q}_{\alpha}}(V)\right| \leq\left|V Q_{\alpha} / Q_{\alpha}\right| .
$$

Futhermore, $\left[V, Z_{\alpha}\right] \neq 1$ and so $V \nsubseteq Q_{\alpha}$. It remains to show that $G_{\alpha}$ has at most one non-central chief-factor on $\tilde{Q}_{\alpha}$. So suppose $\left[\tilde{Q} \alpha, E_{\alpha}\right] \neq 1$ and let $P$ be a normal subgroup of $G_{\alpha}$ minimal with respect to $\left[P, E_{\alpha}\right] \not \leq Z_{\alpha}$. Then $\left.[P, V] \not \leq Z_{\alpha}\right]$ and so $P \nsubseteq R$. By 6.18, we conclude $[\bar{V}, P]=\left[\bar{V}, Q_{\alpha}\right]$ and so $\left[Q_{\alpha}, V\right] \leq\left[P, V_{\alpha}\right] \leq P$. Hence $\left[Q_{\alpha}, E_{\alpha}\right] \leq P$ and the lemma is proved.

Lemma $11.4 Z_{\alpha}$ is a cubic F2-module for $G_{\alpha}$.
$b 1 c$
$d V M a b$
$q m z f f$

Proof: Remark: 1. There should be a much nicer proof which does not go through the list of finite simple groups
2. The structure of $L$ has determined in proof should be recorded as an independent lemma

Assume that $Z_{\alpha}$ is not $F F$ and let $L$ be minimal such that
(i) $Z_{\alpha} \leq L$.
(ii) $Z_{\alpha} \not \leq O_{p}(L)$.
(iii) $G_{\alpha} \cap L$ contains a Sylow $p$-subgroup $T$ of $L$.
(iv) $C_{L}\left(O_{p}(L)\right) \leq O_{p}(L)$.

By minimality of $L, L=\left\langle Z_{\alpha}^{L}\right\rangle$. Let $R$ be a normal subgroup of $L$ with $L \neq R Z_{\alpha}$. Then again by minimality $Z_{\alpha} \leq O_{p}\left(R Z_{0}\right)$. Thus $\left[R, Z_{\alpha}\right] \leq O_{p}(R) \leq O_{p}(L)$ and $[R, L] \leq O_{p}(L)$. In particular $L$ is $p$-connected. Let $V$ be a non-central chief-factor for $L$ on $O_{p}(L)$. Since $O_{p}(L) \leq T \leq G_{\alpha}, Z_{\alpha}$ acts quadratically on $O_{p}(L)$ and so also on $W$. Let $\tilde{L}=L / C_{L}(W)$. If $\left|\tilde{Z}_{\alpha}\right|=2$, then $L / O_{2}(L)$ is a dihedral group. If $\left|\tilde{Z}_{\alpha}\right| \geq 3$, we can apply 6.17 to $\tilde{L}$ and $W$. So in any case we conclude that one of the following holds ( where we used the minimalty of $L$ to rule out some of the cases)

1. $p=2$ and $\tilde{L} \cong \operatorname{Dih}(2 r), r$ and odd prime.
2. $F^{*}(\tilde{L})$ is quasisimple.
3. $p=3$ and $\tilde{L} \cong S L_{2}(3)$.

Suppose first that $Z_{\alpha}$ lies in a unique maximal subgroup $M$ of $L$. Put
Put $A=Z_{\alpha}, B=A \cap O_{p}(L)$ and $Q=\left\langle B^{L}\right.$. Let $l \in L \backslash M$. Then $L=\left\langle A, A^{l}\right\rangle$ and so as $[Q, A] \leq B, Q=B B^{l}$. Moreover, $B \cap B^{l}=C_{B^{l}}(L)=C_{B^{l}}(A)$. And so

$$
B^{l} / C_{B}^{l}(A)=B^{l} / B \cap B^{l}=|Q / B|=\left|Q / C_{Q}(A)\right| \geq|A Q / Q|=|A / B|
$$

where the last inequality holds has $L$ is $F * 1$-modules.
Now $\left|B / C_{B}\left(B^{l}\right)\right| \leq\left|B / C_{B}\left(A^{l}\right)\right|=\left|B / B \cap B^{l}=\right| B^{l} / C_{B^{l}}(A)$.
Hence $B^{l}$ is $F 2$ on $A$. Since $\left[A, B^{l}\right] \leq Q$ and $B^{l}$ is quadratic on $Q, B^{l}$ is cubic on $A$. Thus the lemma holds in this case.

So we may assume form now on that $A$ lies in more one one maximal subgroup of $L$. In particular, $K=F^{*}(\tilde{L})$ is quasi simple. Let $T \leq M<L$. Then by minimality of $L$, $A \leq O_{p}(M) \leq T$. Put $Q_{M}=\left\langle A^{M}\right\rangle$. If $Q_{M}$ is not abelian, then $\left[A, A^{m}\right] \neq 1$ for some $m \in M$. But then $A$ is $F F$ on $A^{l}$ or $A^{l}$ is $F F$ on $A$, a contradiction. Hence $Q_{M}$ is abelain for all such $M$ and so acts quadratically on $Q$. Let $1 \neq \tilde{a} \in \tilde{A} \cap Z(\tilde{T})$. We conclude
(1) $\tilde{A}$ lies in an abelian normal subgroup of $C_{\tilde{L}}(\tilde{a})$ which acts quadratically on $Q$.

Suppose next $K$ is not a group of Lie type in characteristic $p$. Then $p=2$ or 3 . If $p=3$, then $|\tilde{A}|=3$ and $\tilde{A}$ lies subgroup of $L$ is morphic to $S L_{2}(3)$, a contradiction to the minimality of $L$. So $p=2$. Since $|\tilde{A}| \geq 2,6.15$ and (1) apply $\tilde{L} \cong 3 \cdot \operatorname{Mat}_{22}$, $\operatorname{Aut}(\operatorname{Mat}(22))$ or Mat ${ }_{24}$. But in each of these cases there exists a overgroup of $\tilde{M}$ which does not have a non trivial quadratic normal subgroup.

We conclude
(2) $L$ is a group of Lie type in characteristic $p$ of rank at least two.

Suppose that $\tilde{A}$ is contained in a root group $X$ if $\tilde{A}$. Then $X \leq T$ and $X$ the Sylow subgroup of some $(S) L_{2}(q)$ in $\tilde{L}$. But this contradcits the minimal choice of $L$. Hence $\tilde{A}$ is not contained in a root group. By (1) and as $A$ is contained in $O_{p}(M)$ for all $T \leq M \leq L$ we conclude that $p=2, L \cong S p_{2 n}(q)$ or $F_{4}(q)$ and $A \leq Z(T)$. The minimality of $L$ implies $L \cong S p_{4}(q)$. But $S p_{4}(q)$ has no module on which the $O_{p}$ 's of both parabolic acts quadratically.

## 12 Elementary results on p-connected groups

Definition $12.1 \mathcal{N}(S)$ is the set of all p-connected $L \in \mathcal{L}(S)$ wh

## Remark: change this to $\mathcal{N}^{*}$ and use $\mathcal{N}$ for $\mathcal{P} \cup \mathcal{E}$

Lemma 12.2 Let $L \in \mathcal{L}(S)$. Put $E=O^{2}(L)$. Then $L$ is in $\mathcal{N}(S)$ if and only if one of the following holds:

1. $L$ is solvable, $E / O_{2}(E)$ has odd order and for all maximal $S$ invariant normal subgroups $N$ of $E, C_{S}(E / N)=O_{2}(L)$.
2. $E$ is perfect, and $E / O_{2,2^{\prime}}(E)$ is the direct product of simple groups which are transitively permuted by $S$.

Proof: It is trivial to verify that (1) and also (2) imply $L \in \mathcal{N}(S)$. So assume now that $L \in \mathcal{N}(S)$ and let $K$ be the unique maximal normal subgroup of $E$ with $K / O_{2}(K)$ of odd order. Note that $O_{2}(E) \leq K$ and by the odd order theorem, $K$ is solvable .

Suppose first that $K=E$. Let and let $N$ be a maximal $S$ invariant normal subgroup of $E$. Then $N C_{S}(E / N)$ is normalized by $E S=L$. Since $E N C_{S}(E / N)$ we conclude that $C_{S}(N) \leq O_{2}(L)$. Thus (1) holds in this case.

Suppose next that $E \neq K$ and let $E^{*} / K$ be a minimal $L$ invariant subgroup of $E / K$. Then $E^{*} / K$ does not have odd order, $S \cap E^{*} \not \leq K, S \cap E^{*} \not \leq O_{2}(L)$ and so $E \leq E^{*}$ and $E=E^{*}$. As $E=O^{2}(E), E / K$ is not a 2 -group and so $E / K$ is not solvable. Thus $E / K$ is the direct product of simple groups transitively permuted by $S$. Since $E^{\prime} \cap S \notin O_{2}(L)$, $E=E^{\prime}$.

The following is an extended version of a lemma from [St2] which describes the structure of rank 2 groups.

Lemma 12.3 Let $P_{1}, P_{2} \in \mathcal{N}(S)$. Put $L=\left\langle P_{1}, P_{2}\right\rangle$. Let $L_{0}$ be a normal subgroup of $L$ maximal with respect to $O^{2}\left(P_{i}\right) \not \leq L_{0}$ for $i=1$ and $i=2$. Let $L_{1} / L_{0}$ be a minimal normal subgroup of $L / L_{0}$. Then Remark: change $L_{1}, L_{0}$ notation
(a) $S \cap N=O_{2}(L)$ and $L_{0} / O_{2}(L)$ has odd order.
(b) Let $O^{2}\left(P_{i}\right) \leq L_{1}$ for at least one $i \in\{1,2\}$.
(c) If $O^{2}\left(P_{j}\right) \not \leq L_{1}$, then $P_{j} \leq N_{L}\left(L_{1} \cap S\right)$ and $O_{2}\left(O^{2}\left(P_{i}\right)\right) \leq O_{2}\left(P_{j}\right)$.
(d) Suppose that $L_{1} / L_{0}=E_{1} \times E_{2} \times \ldots \times E_{r}$ is the direct product of alternating groups or simple groups of Lie type in characteristic 2 . Then $P_{j}$ acts transitively on the $E_{l}$ 's and one of the following holds:
(d.1) $O^{2}\left(P_{j}\right) \not \leq L_{1}$ and $O^{2}\left(P_{i}\right) L_{0} / L_{0}$ is the product of some of the $E_{l}$ 's.
(d.2) $O^{2}\left(P_{j}\right) \not \leq L_{1}, E_{1} \cong D_{4}(q)$ and some element on $P_{j}$ induces a graph automorphism of order 3 on $E_{1}$ $O^{2}\left(P_{j}\right) \leq L_{1}, j=1,2, L=L_{1} S=\left\langle E_{1}^{S}\right\rangle S$ and $E_{1}=\left\langle E_{1} \cap P_{1}, E_{1} \cap P_{2}\right\rangle .($ modulo $L_{0}$ )

Proof: As $O_{2}(L) L_{0} \cap P_{i}=O_{2}(L)\left(L_{0} \cap P_{i}\right) \leq O_{2}\left(P_{i}\right)$ the maximality of $L_{0}$ implies $O_{2}(L) \leq L_{0}$. Let $N$ be a normal subgroup of $L$ and $k \in\{1,2\}$.

We next prove that
(1) Suppose that $S \cap N \leq O_{2}\left(P_{k}\right)$. Then $P_{k}$ normalizes $S \cap N$.

Indeed this is clear as $S \cap N=O_{2}\left(P_{k}\right) \cap N$ in this case.
(2) If $O^{2}\left(P_{k}\right) \not \leq N$, then $P_{k}$ normalizes $S \cap N$

As $O^{2}\left(P_{k}\right) \not \leq N$ we have $S \cap N \leq O_{2}\left(P_{k}\right)$ and so (2) follows from (1).
By definition of $\mathcal{N}(S)$ and $O^{2}\left(P_{i}\right) \not \leq L_{0}$ we have $S \cap L_{0} \leq O_{2}\left(P_{i}\right)$. By (1) applied to $N=L_{0}$ and $k=1,2$ we conclude that $L_{0} \cap S$ is normal in $L=\left\langle P_{1}, P_{2}\right\rangle$ and so (a) holds. (b) follws from the maximal choice of $L_{0}$. The first part of (c) follows from (2) while the second follows from the first.

To prove (d) we assume without loss that $L_{0}=1$. Note that $P_{i} \cap L_{1}$ is a parabolic subgroup of $L_{1}$ and $P_{i}=\left(P_{i} \cap L_{1}\right) S$. Thus either $P_{i}$ normalizes $S \cap L_{1}$ or we may choose notation so that $P_{i}=\left(\left(P_{i} \cap E_{1}\right) \times \ldots\left(P_{i} \cap E_{l}\right)\right) S$, where $P_{i} \cap E_{1}$ is a parabolic of $E_{1}$ with $O^{2^{\prime}}\left(P_{i} \cap E_{1}\right)=P_{i} \cap E_{1}$.

Suppose now that $O^{2}\left(P_{j}\right) \not \leq L_{1}$. Pick $E_{1}$ so that $S \cap N_{L}\left(E_{1}\right)$ is a Sylow 2-subgroup of $N_{L}\left(E_{1}\right)$. Then as $L_{1} \cap S$ is not normal in $L$, (c) implies that $P_{i}$ does not normalise $L \cap S$. If $E_{1} \leq P_{i}$, (d.1) holds. So we may assume that $P_{i} \cap E_{1}$ is a proper parabolic subgroup of $E_{1}$. Suppose that (d.2) does not hold and that $E_{1}$ is a group of Lie type in characteristic two.

Then no element of odd order in $N_{P_{j}}\left(E_{1}\right)$ induces a non-trivial graph automorphism on $E_{1}$ and so $O^{2}\left(N_{G}\left(P_{j}\right)\right)$ normalizes $P_{i} \cap S$. Hence $N_{G}\left(P_{j}\right)=O^{2}\left(N_{G}\left(P_{j}\right)\right)\left(N_{S}\left(E_{1}\right)\right)$ normalizes $P_{i} \cap E_{1}$ and so $L \neq\left\langle\left(P_{i} \cap E_{1}\right)^{P_{j}} P_{j}=\left\langle P_{1}, P_{2}\right\rangle\right.$, a contradiction. If $E_{1}$ is an alternating of degree at least six, then $N_{\operatorname{Aut}\left(E_{1}\right)}\left(S \cap E_{1}\right)$ is a 2-group and we obtain a similar contradiction.

So assume now that $O^{2}\left(P_{j}\right) \leq L_{1}$ for $j=1,2$. Then it is easy to verify that (d.3) holds.

## 13 Establishing Geometries

Throughout this section we assume
(i) $U_{0}, U_{1} \in \mathcal{N}(S)$

Remark: redefine $\mathcal{N}$ as $\mathcal{P} \cup \mathcal{E}$ ?
(ii) all non-abelian composition factors of elements of $\mathcal{L}(S)$ are alternating groups, rank one group of Lie type over $G F(q), G_{2}(q)$ 's or classical groups over $G F(q)$, where $q$ is a power of two.
(ii) $U_{0} \not \leq U_{1}$ and $U_{1} \not \leq U_{0}$.

Lemma 13.1 Let $H \leq G$ with $F^{*}(H)=O_{2}(H)$ and $|S / S \cap H| \leq 2$. Then all non-abelian composition factors of elements of $\mathcal{L}(S)$ are alternating groups, rank one group of Lie type over $G F(q), G_{2}(q)$ 's or classical groups over $G F(q)$, where $q$ is a power of two.

Proof: By 2.10 we may assume that $H \leq L^{*} \in \mathcal{L}(S)$. Hence the claim follows from 2.12.
Lemma $_{Q T}$ 13.2 Put $L=\left\langle U_{1}, U_{2}\right\rangle$ and suppose that $L \in \mathcal{L}(S)$. Then the $L_{0}$ and $L_{1}$ in 12.3 and $\{i, j\}=\{0,1\}$ can be chosen so that one of the following holds

1. $\left[O^{2}\left(U_{0}\right), O^{2}\left(U_{1}\right) \leq Q\right.$.
2. $L$ is not solvable and $L \in \mathcal{N}(S)$.
3. $O^{2}(L) O_{2}(L) / O_{2}(L)$ is a p-group for some prime odd $p$.
4. $L_{i}$ is a $\{2, p\}$-group for some prime $p, O^{2}\left(P_{i}\right) \leq L_{1}$ and $L_{1} / L_{0}$ is an elementary abelian p-group. Moreover, there exists an odd prime $q \neq p$ so that the image of $O^{2}\left(P_{j}\right)$ in $\operatorname{Aut}\left(L_{1} / L_{0}\right)$ has one of the following shapes: cyclic $q$ group with $q \mid p^{4}-1$; homocyclic $q$ group of rank 2 with $q \mid p-1$; Ext $\left(3^{1+2}\right)$ with $p \neq 3$; Ext_ $\left(2^{1+4}\right) .5$; Ext- $\left(2^{1+4}\right) \cdot \operatorname{Alt}(5) ; \operatorname{Alt}(4), 2 \cdot \operatorname{Alt}(n), n=4,5 ; 2 \cdot \operatorname{Alt}(4) \times 2 \cdot \operatorname{Alt}(4) ; 2 \cdot \operatorname{Alt}(5) \times 2 \cdot \operatorname{Alt}(5)$, $p \equiv 0,1,4(5) ; 2 \cdot \operatorname{Alt}(6) ; 2 \cdot \operatorname{Alt}(7) \quad($ with $p=7) ; \operatorname{Alt}(5) ; L_{3}(2)$ or $3 \cdot \operatorname{Alt}(6)$.
5. $U_{i}$ induces $\operatorname{Sym}(3)$ on the set of components of $L_{1} / L_{0}, U_{j}$ is the product of one or two 2-components of $L_{1}$ and $U_{i} / O_{2}\left(U_{i}\right) \cong \operatorname{Dih}_{2 \cdot 3^{l}}$.
6. $O^{2}\left(U_{i}\right)$ acts trivially on the set of components of $L_{1} / L_{0}, U_{i} / O_{2}\left(P_{i}\right)$ is a dihedral group, $U_{i}$ normalizes $O^{2}\left(U_{j}\right)$, and $O^{2}\left(U_{j}\right)=E_{2}\left(L_{1}\right)$. Moreover, $O_{2}\left(U_{j}\right)=O_{2}(L)$.

Remark: The case that $O^{2}\left(U_{i}\right) \leq L_{1}$ for $i=0$ and 1 and $L_{1} / L_{0}$ is a direct product of perfect simple groups still needs some attention: one needs to show that $L_{1} / L_{O}$ is "central" ( and this should be possible) and also things $L / O_{2}(L) \cong$ $C_{3} \times \operatorname{Alt}(5) .2$ arise here, this is covered by case 6. But $O^{2}\left(U_{i}\right)$ induces inner automorphism on $O^{2}\left(U_{j}\right)$. So this probably should be listed as a seperate case, but it is also kind of the same as 1 .

Proof: Remark: numbering and notation needs to be updated
We use the results and notation of 12.3. As $m_{2^{\prime}}(L) \leq 3$, case d. 2 in 12.3 is not possible. Put $D=C_{L}\left(L_{1} / L_{0}\right)$.

Suppose first that $L_{1} / L_{0}$ is not solvable. Then $O^{2}(U) \leq L_{1}$. If $D \neq L_{0}$ we get $D \cap L_{1}=$ $L_{0}$ and by maximality $L_{O}, O^{2}(P) \leq D$. Thus $O^{2}(U), O^{2}(P) \leq L_{O}$. In this case we replace $L_{1}$ by $O^{2}(P) L_{O}$. So we may assume that $D=L_{0}$. As $m_{2^{\prime}}(L) \leq 3, r \leq 3$

Assume in addition that $O^{2}(P) \leq L_{1}$. As $P$ is solvable, d. 1 is impossible. Thus d. 3 holds. Moreover, $L=L_{1} S$ and so $O^{2}(L) \leq L_{1}$ thus 4. holds in this case.

So assume that $O^{2}(P) \not \leq L_{1}$.
If $O^{2}(P)$ does not act trivially on the set of components of $L_{1} / L_{0}$ we conclude that $r=3$ and $P$ induces $\operatorname{Sym}(3)$ on the set of components of $L_{1} / L_{0}$. As $e(G) \leq 3$ and $L_{1} / L_{0}$ has three components, $\left.\left[L_{1}^{\infty}, L_{0}\right] \leq O_{2}(L)\right]$. Thus 5 . holds.

So suppose that $O^{2}(P)$ acts trivially on the set of components of $L_{1} / L_{0}$. The $S$ acts transitively thereon and $r \leq 2$. If $r=2$, then $O^{2}(U)=E_{2}\left(L_{1}\right)$. Since $e(G) \leq 3$ we have $E_{1}$ is $L_{2}(q), S z(q), L_{3}(4), L_{3}(2), \operatorname{Alt}(6), \operatorname{Alt}(7)$. But in the last three cases Out $\left(E_{1}\right.$ is a 2-group, a contradiction. In the first two cases, $\operatorname{Out}\left(E_{1}\right)$ is cyclic and so $P L_{1} / L_{1}$ is a dihedral group. If $E_{1} \cong L_{3}(4)$, then $O^{2}(U) O_{2}(L) / O_{2}(L) \cong S L_{3}(4) * S L_{3}(4)$. Since the action of $\operatorname{Aut}\left(L_{1} / L_{O}\right)$ on $\operatorname{Out}\left(L_{1} / L_{0}\right)$ on the 3-part of the Schur multiplier respectively the outer automorphisms of $L_{1} / L_{O}$ are isomorphic we conclude that $S$ does not act irreducibly on $O_{3}\left(\operatorname{Out}\left(L_{1} / L_{0}\right)\right.$ and so $O^{2}(P) L_{1} / L_{1} \cong C_{3}$ and so again $P / O_{2}(L)$ is a dihedral group. Thus 6. holds

If $r=1$ we conclude that $P L_{1} / L_{1}$ is isomorphic to a subgroup of $\operatorname{Out}\left(E_{1}\right)$ and so $\operatorname{Out}\left(E_{1}\right)$ is not abelian. Hence $E_{1} \cong U_{3}(q), U_{4}(q), L_{3}(q)$ and $P / O_{2}(P)$ is a dihedral group and 6 . holds.

Assume now that $L_{1}$ is solvable.
Suppose that $L_{2} / L_{O}$ is a minimal normal subgroup of $L / L_{0}$ different from $L_{1} / L_{O}$. Then we may choose notation so that $O^{2}(P) \leq L_{1}$ and $O^{2}(U) \leq L_{2}$. Then $\left[O^{2}(P), O^{2}(U)\right] \leq L_{0}$, $L_{1}=O^{2}(P) L_{O}$ and $L_{2}=O^{2}(U) L_{0}$.

Suppose that $O^{2}(U) \leq L_{1}$. Then by assumption $L_{1} / L_{O}$ is an elementary abelian 3group.

## TO BE CONTINUED

Corollary 13.3 Assume that
(i) $U_{0} \in \mathcal{P}(S)$
(ii) If $U_{1} \in \mathcal{P}(S)$ and $U_{1}$ is solvable then $U_{1}$ is a $\{2,3\}$-group.
(iii) $L \stackrel{\text { def }}{=}\left\langle U_{0}, U_{1}\right\rangle \in \mathcal{L}(S)$.

Then one of the following holds

## TO BE CONTINUED

Lemma $_{Q T}$ 13.4 Suppose that
(i) $E \in \mathcal{E}(S) \backslash \mathcal{P}(S)$.
(ii) $O_{2}\left(\left\langle U_{1}, E\right\rangle\right)=1$.
(iii) For all $U^{*} \in \mathcal{N}(E, S)$ with $U^{*} \neq E,\left\langle U_{1}, U^{*}\right\rangle \in \mathcal{L}(S)$
(iv) There exists a maximal element $U_{1} \in \mathcal{N}(E, S)$ so that one of the cases 3-6 in 13.2 holds.

Then one of the following holds for $L(1)=\left\langle U_{0}, U_{1}\right\rangle$.

1. $U_{1}$ is solvable.
2. $\operatorname{Head}\left(U_{1}\right) \cong L_{2}(q)^{r}, r \leq 2, q \geq 4 ; U_{O} / O_{2}\left(U_{O}\right) \cong D_{2 \cdot 3^{k}}, \operatorname{Head}\left(L_{1}(1) \cong L_{2}(q)^{3}\right.$ and $O^{2}\left(U_{O}\right)$ transitively permutes the three 2-components of $L(1)$
3. $O^{2}\left(U_{1}\right) / O_{2}\left(U_{1}\right) \cong \operatorname{Alt}(5), \operatorname{Head}(E) \cong U_{4}(2)$ and $O^{2}\left(U_{0}\right) \leq O_{2, p}(L(1))$, p a prime with $p>3$. Moreover, if TO BE CONTINUED
4. Put $R_{1}=O^{2}\left(U_{1}\right) O_{2}\left(U_{1}\right)$. Then
(a) $U_{O}$ normalizes $R_{1}$ and no non-trivial characteristic subgroup of $R_{1}$ is normal in $E$.
(b) One of the following holds
5. $\operatorname{Head}(E) \cong U_{4}(2), U_{O} / O_{2}\left(U_{O}\right) \cong D_{2 \cdot 3^{k}}$ and $\operatorname{Head}\left(U_{1}\right) \cong \operatorname{Alt}(5)$.
6. There exists a maximal element $U_{2}$ of $\mathcal{N}(E, S)$ which fulfils 3. with $U_{2}$ in place of $U_{1}$.

Remark: Case 4b1 is impossible by a trivial pushing up argument (or by quoting pushing up)

Proof: Let $\mathcal{N}$ be the set of proper maximal elements $U^{*} \in \mathcal{N}(E, S)$. We assume without loss that $U_{1}$ is not solvable.

By 8.2 there exists $U_{2}$ in $\mathcal{N}$ so that $\left\langle U_{1}, U_{2}\right\rangle=E$. Under all these $U_{2}$ 's with pick one which ( possibly trivial) 2-component $K$ with $K / O_{2}(K) \mid$ maximal.

In particular $O^{2}(E)=\left\langle O^{2}\left(U_{1}\right), O^{2}\left(U_{2}\right)\right\rangle$. For $i=1,2$ let $L(t)=\left\langle U_{O}, U_{i}\right.$. We will apply 13.2 to $L(1)$ and $L(2)$. We write Case $\mathrm{t}(\mathrm{i})$ if Case t in 13.2 holds for $L(1)$. For $i=0,1,2$ put $Q_{i}^{*}=\left[O_{2}\left(U_{i}\right), O^{2}\left(U_{i}\right)\right]$. The next two statement follow immediately from 13.2 applied to $L(1)$.
(1) $U_{O}$ is solvable and $O^{2}\left(U_{1}\right) / O_{2}\left(O^{2}\left(U_{1}\right)\right) \not \not 二 \operatorname{Alt}(n)$ for $8 \leq n \leq 11$.
(2) One of the following holds:

- Case $4(1)$ with $(i, j)=(O, 1)$ and $\operatorname{Head}\left(U_{1}\right) \cong \operatorname{Alt}(5), \operatorname{Alt}(6), 3 \cdot \operatorname{Alt}(6), \operatorname{Alt}(7)$ or $L_{3}(2)$
- Case 5(1) with $(i, j)=(O, 1)$ and $\operatorname{Head}\left(U_{1}\right) \cong L_{2}(k)^{r}$ or $L_{3}(2)^{r}$, with $r \leq 2$.
- Case 6(1) with $(i, j)=(O, 1)$

By 8.2, the second statement in (1) and as $U_{1}$ is not solvable we can choose $U_{2}$ so that $U_{1} \cap U_{2}$ is a maximal parabolic of $U_{1}$.

Remark: this needs to be proved very carefully for the the symmetric groups

Next we prove
(3) In Case 1(2), 5(1) holds.

As we are in case $1(2),\left[O^{2}\left(U_{O}\right), O^{2}\left(U_{2}\right)\right]$ is a 2-group. Hence also $\left[O^{2}\left(U_{O}\right), U_{1} \cap O^{2}\left(U_{2}\right)\right]$ is a 2 -group. On the other hand in case $4(1), U_{1} \cap O^{2}\left(U_{2}\right)$ acts fixed point freely on $L_{1}(1) / L_{0}(1)$, a contradiction. In case $6(1) O^{2}\left(U_{0}\right)$ normalizes $O^{2}\left(U_{1}\right)$ and $O^{2}\left(U_{2}\right)$, again a contradiction. Thus case 5(1) holds.
(4) In Case 4(1), Case 4(2) holds.

By (3) we may assume that Case $2(2), 3(2), 5(2)$ or $6(2)$ holds. As $P_{O}$ is solvable, we get in case $2(2), 3(2)$ and $5(2)$ that $P_{0}$ is a 2,3 -group a contradiction. Hence Case 6(2) holds, Head $\left(U_{O}\right)$ is cyclic and $O^{2}\left(P_{0}\right)$ induces field or diagonal automorphism of odd order larger than 3 on $O^{2}\left(U_{2}\right) / O_{2}\left(O^{2}\left(U_{2}\right)\right.$. But this contradicts the structure of $U_{1}$ and $E$.
$O 2 L 1-5$
(5) If Case 4(1) and Case 4(2) holds, 3. holds

Considering the action of $Q_{2}^{*}$ on $L_{1}(1) / L_{0}(1)$ we see that $\left[O^{2}\left(U_{O}\right), Q_{2}^{*}\right]=O^{2}\left(U_{0}\right)$ Remark: more details please. Hence $O^{2}\left(U_{2}\right) \not \leq L_{1}(2)$ and so $O^{2}\left(U_{O}\right) \leq L_{1}(2)$. Moreover, $Q_{2}^{*} \not \leq O_{2}\left(L(2)\right.$. Hence either $U_{2}$ is solvable or acts as $E x t 2^{1+4} \cdot A_{5}$ on $L_{1}(2) / L_{0}(2)$. In the latter we get $L_{1}(2) \leq P_{0} \leq L(2)$ and then $L_{1}(1)=L_{2}(1)$, a contradiction. Thus $U_{2}$ is solvable and so $U_{2} / O_{2}\left(U_{2}\right) \cong \operatorname{Sym}(3)$ or $\operatorname{Sym}(3)$ ¿ $C_{2}$.

In the latter case, $\left[L_{1}(2) / L_{0}(2), Q_{2}^{*} \neq 1\right.$ implies that $S$ acts irreducible on $\left[L_{1}(2) / L_{0}(2)\right]$. But then $L_{1}(2) \leq P_{0} \leq L_{1}(1)$, a contradcition.

Thus $U_{2} / O_{2}\left(U_{2}\right) \cong \operatorname{Sym}(3)$ and as $U_{1}$ is not solvable we conclude that $\operatorname{Head}(E) \cong U_{4}(2)$. Hence 3. holds.
(6) In case 5(1), 2.holds.

We may assume that $\operatorname{Head}\left(U_{1}\right) \cong L_{3}(2)^{r}, r=1$, 2. If $r=1$ and $U_{1}$ induces no graph automorphism on $\operatorname{Head}\left(U_{1}\right)$, then $\operatorname{Head}(E) \cong L_{4}(2), S p_{6}(2), \Omega_{8}^{-}(2)$ or $(3 \cdot) A l t(7)$. If $r=1$ and $U_{1}$ induces a graph automorphism on $\operatorname{Head}\left(U_{1}\right)$, then $\operatorname{Head}(E) \cong L_{5}(2)$. If $r=2$ then now element of $U_{1}$ induces a graph automorphism on $\operatorname{Head}\left(U_{1}\right)$ and $\operatorname{Head}(E) \cong L_{6}(2), L_{7}(2)$ or $3 \cdot\left(\operatorname{Alt}(7) \times \operatorname{Alt}(7)\right.$. Let $K$ be the normaliser in $U_{1}$ of some 2 -component of $U_{1}$ and $P \in \mathcal{P}(K, S \cap T)$. Then $|S / S \cap P| \leq 2$. Let $H_{O}=N_{L(1)}\left(O^{2}(P), H_{1}=N_{E}\left(O^{2}(P)\right)\right.$ and $H=\left\langle H_{1}, H_{2}\right.$. Then $\operatorname{Head}\left(H_{O} / O^{2}(P)\right) \cong L_{3}(2) \times L_{3}(2)$. Moreover we can and do choose $P$ so that $H_{1} \not \leq L(1)$ and so $H \neq H_{1}$. As $m_{3}(H) \leq 3$ and $O^{2}(P) O_{2}(H) / O_{2}(H)$ is a normal subgroup of order three in $H$. By 4.10 we conclude that $H^{\infty} / O_{2,2^{\prime}}\left(H^{\infty}\right) \cong L_{3}(2) \times L_{3}(2)$ or $L_{3}(2) \times \operatorname{Alt}(7)$. In the first case each minimal parabolics of $H$ is either contained in $H_{0}$ or is solvable and not a $\{2,3\}$-group, a contradition to $H_{1} / H_{O}$. In the second case $H$ has a 2 -component $R$ with $\operatorname{Head}(R) \cong 3 \cdot \operatorname{Alt}(7), O_{2,3}(R) \leq P$ and $\operatorname{Head}\left(R \cap H_{1}\right) \cong C_{3} \times L_{3}(2)$. It follows that $P \cap K$ induces a group of automorphisms on $3 \cdot \operatorname{Alt}(7)(=\operatorname{Head}(R))$ which inverts the central three but centralizes an $L_{3}(2)$ subgroup, a contradiction.
(7) In case 6(1),4. holds.

By case $6(1) O_{2}\left(U_{1}\right)=O_{2}(L(1))$ and $U_{0}$ normalizes $O^{2}\left(U_{1}\right)$. Thus the first statement in 4. holds. As $U_{1}$ induces diagonal or field automorphism of odd order on $\operatorname{Head}\left(U_{1}\right), E$ is not a group of Lie type in over the field of 2-elements, except maybe $U_{4}(2)$.

Suppose first that $U_{2}$ is solvable. Then $\operatorname{Head}(E) \cong U_{4}(2), \operatorname{Head}\left(U_{1}\right) \cong \operatorname{Alt}(5)$ and so 4b1 holds.

Suppose next that $U_{2}$ is not solvable.In case $1(2)$ or $6(2), P_{O}$ normalizes $O^{2}\left(U_{2}\right)$, a contradiction as $P_{0}$ already normalizes $O^{2}\left(U_{1}\right)$. Suppose Case 2(2) holds. As $U_{O}$ is solvable, we conclude that $\operatorname{Head}\left(L_{1}(2)\right) \cong U_{4}(2)$. Let $Q=O_{2}\left(U_{2}\right)$. In $E$ we see that $Q$ induces inner automorphism on $\operatorname{Head}\left(U_{1}\right)$, in $L(2)$ we see that $Q$ inverts $\operatorname{Head}\left(U_{0}\right)$ and in $L(1)$ we see that every element that inverts Head $\left(U_{0}\right)$ induces an outer automorphism on $\operatorname{Head}\left(U_{1}\right)$, a contradiction.

Hence we may assume that one of $4(2)$ or $5(2)$ holds. In particular, $U_{2}$ in place of $U_{1}$ fulfils the assumption of this lemma and so by (4) and (6) applied with $U_{1}$ and $U_{2}$ interchanged $5(2)$ we get that case $5(2)$ holds and $\operatorname{Head}\left(U_{2}\right) \cong L_{2}(q)^{r}, r \leq 2$. Thus 4 b 2 holds. Remark: I forget to think about $3 \cdot \operatorname{Alt}(6)$ for $\operatorname{Head}\left(U_{1}\right)$. This might arrise for $\operatorname{Head}(E)=3 \cdot \operatorname{Alt}(7)$

Lemma $_{Q T} 13.5$ Retain the assumptions of 13.4 and assume that 13.4.2 holds. Then one of the following holds:
a. troet

## Proof:

(1) (a) If $r=1$, then $\operatorname{Head}(H) \cong(3 \cdot) \operatorname{Alt}(7)$ ( with $q=4$ ); $\operatorname{Alt}(10)$ (with $q=4$ ); $(S) L_{3}(q) ; S p_{4}(q) ; G_{2}(q) ; U_{4}(q) ; U_{4}(\sqrt{q})$; or $L_{4}(q)$ ( with $S$ inducing a graph automorphismus).
(b) If $r=2$ then $\operatorname{Head}(H) \cong 3 \cdot\left(L_{3}(4) \times L_{3}(4)\right)($ with $q=4), 3 \cdot(\operatorname{Alt}(7) \times \operatorname{Alt}(7)$ with $q=4)$ or $L_{4}(q)$ ( with $S$ inducing a graph automorphism).
(c) Let $H \in \mathcal{L}(S)$ with $L_{1}(1) S \leq H$. Then $\operatorname{Head}\left(H^{\infty}\right)=H_{1} \cdot H_{2} \cdot H_{3}$, where $S$ normalizes $H_{1}$ and interchanges $H_{2}$ and $H_{3}$, for $1 \leq i \leq 2, H_{i} / O\left(H_{i}\right) \cong(2 \cdot) \operatorname{Alt}(5)$ and $O\left(H_{0}\right)$ and $O\left(H_{1}\right)$ have coprime order.

This follows easily from 4.10
Let $K_{1}, K_{2}, K_{3}$ be three different 2-components of $L(1)$ with $K_{1} \leq U_{1}$. Put $K=$ $K_{1} K_{2} K_{3}$. Let $\{i, j, k\}=\{1,2,3\}$. Put $H^{i}=N_{G}\left(K_{i}\right)$ and $K_{j}^{i}=\left\langle K_{j}^{H^{i \infty}}\right.$. As $L(1) \leq H^{i}$ and $H^{i}$ contains a Sylow 2-subgroup of $G$ we can apply (1)c and conclude that $K_{k}^{i}$ normalizes $K_{j}^{i}$ and $K_{j}$ ). Hence $K_{k}^{i} \leq H^{j}$ and $K_{k}^{i} \leq K_{k}^{j}$. By symmetry $K_{k}^{j} \leq K_{k}^{i}$ and so $K_{k}^{*} d \overline{\bar{e}} f K_{k}^{j}=K_{k}^{i}$. In particular $K_{i}^{*}$ normalizes $K_{j}^{*}$ and the $K_{j}^{*}$ 's are pairwise isomorphic. By (1)c applied to $K_{1}^{*} K_{2}^{*} K_{2}^{*} S$ we conclude that $O_{2} 2^{\prime}\left(K_{i}^{*}\right)=O_{2}\left(K_{i}\right)$ and so $K_{i}^{*}=K_{i}$. It follows that
(2) Put $L=N_{G}(K)$. Then $L$ is the unique maximal 2-local of $G$ containg $K S$. Moreover, $C_{L}\left(K / O_{2}(K) / O_{2}(L)\right.$ is coprime to $\left|L_{2}(q)\right|$

Remark: the same argument works for any group with three 2-componets which are conjugate in $G$ so we should make an extra lemma and use it in the $L_{3}(2)$ 亿 Sym (3) case

Suppose that $\operatorname{Head}(E) \cong \operatorname{Alt}(7) \operatorname{or} \operatorname{Alt}(10)$. Then $\operatorname{Head}\left(U_{2}\right) \cong \operatorname{Alt}(6)$ or $\operatorname{Alt}(8)$ respectively and $U_{1} \cap U_{2} / O_{2}\left(U_{1} \cap U_{2}\right) \cong \operatorname{Sym}(3)$. Hence we see in $L(1)$ that $U_{0}$ does not normalize $U_{1} \cap U_{2}$ and $\operatorname{Head}\left(\left\langle U_{O}, U_{1} \cap U_{2}\right\rangle \cong C_{3} \backslash C_{3}\right.$. Hence $U_{O}$ does not normalize $U_{2}$. It follows that case 2(2) holds and $\operatorname{Head}(L(2)) \cong \operatorname{Alt}(7), \operatorname{Sp}_{6}(2), L_{6}(2), \operatorname{Alt}(9), \operatorname{Alt}(10)$ or $\operatorname{Alt}(11)$. But this contadicts the stucture of $\left\langle U_{O}, U_{1} \cap U_{2}\right\rangle$.

Suppose that $q=4$ and $\operatorname{Head}(E) \cong \cdot\left(L_{3}(4) \times L_{3}(4)\right)$ or $3 \cdot\left(\operatorname{Alt}(7) \times \operatorname{Alt}(7)\right.$ and let $K_{1}$ be a 2-component of $U_{1}$. Then $N_{G}\left(K_{1}\right)$ involves $L_{3}(4)$ respectively $\operatorname{Alt}(7)$, a contradiction to (1).

Let $L=K O_{2}\left(L(1), T=L \cap S\right.$ and $B=N_{L}(T)$. Note that $B$ normalizes $K_{1}$. Let $F=\langle B, E\rangle$.

Suppose that $F \notin \mathcal{L}(S)$. TO BE CONTINUED

## 14 Large Alternating Groups

In this section we assume that $G$ is a quasi thin group, and that there exists an amalgam $(P, E)$ so that $P \in \mathcal{P}(S), E \in \mathcal{E}(S), \operatorname{Head}(E) \cong \operatorname{Alt}(n), n=10,11$ Remark: we should at least also allow $E / O_{2}(E) \cong \operatorname{Sym}(9)$
$\operatorname{Lemma}_{Q T}$ 14.1 Suppose $n=11$ and let $U \leq \operatorname{calL}(E, S)$ with $\operatorname{Head}(U) \cong \operatorname{Alt}(10)$. Then $(P, U)$ is an amalgam.

Proof: Let $L=\langle P, U\rangle$ and suppose that $L \in \mathcal{L}(S)$. Then by $13.2,\left[O^{2}(P), O^{2}(U)\right]$ is a 2 -group or $L \in \mathcal{N}(S)$. In the second case we get that $\operatorname{Head}(L) \cong \operatorname{Alt}(11)$ and so $O_{2}(L)=$ $O_{2}(U)=O_{2}(E)$ a contradiction. Thus $\left[O^{2}(P), O^{2}(U)\right]$ is a 2-group. As $m_{3}\left(O^{2}(U)\right)=3$ we conclude that $P$ is a $3^{\prime}$ group. Let $T$ be a Sylow 2 -subgroup of $O^{2}(P)$. Then clearly $U$ normalizes $T$ and so $T \leq O_{2}(U)$ and $O_{2}(U)$ is a Sylow 2-subgroup of $O_{2}(U) O^{2}(P)$. As $O_{2}(U)=O_{2}(E)$, no non-trivial characteristic subgroup of $O_{2}(U)$ is normal in $O_{2}(U) O^{2}(P)$. Hence $O_{2}(U) O^{2}(P)$ has a non-trivial irreducible $F F$-module and so is not a $3^{\prime}$ group, a contradiction.
$\operatorname{not} A 10$
$\operatorname{Lemma}_{Q T}$ 14.2 Suppose $E / O_{2}(U) \cong \operatorname{Sym}(9)$, $\operatorname{Alt}(10)$ or $\operatorname{Sym}(10)$ and let $U \leq \operatorname{calL}(E, S)$ with $U / O_{2}(U) \cong \operatorname{Sym}(8)$. Then $(P, U)$ is an amalgam.

Proof: Let $L=\langle P, U\rangle$ and suppose that $L \in \mathcal{L}(S)$. Then by 13.2, [ $\left.O^{2}(P), O^{2}(U)\right]$ is a 2-group or $L \in \mathcal{N}(S)$.

Suppose that $O_{2}(E) \leq O_{2}(L)$. Then $O_{2}(U) \neq O_{2}(E)$ and $E / O_{2}(E) \cong \operatorname{Sym}(10)$. Let $R \leq E$ with $O_{2}(L) \in \operatorname{Syl}_{2}(R)$ and $R / O_{2}(E) \cong \operatorname{Sym}(3)$. Let $C$ be a characteristics subgroup of $O_{2}(L)$ normal in $R$. Then $C$ is normal in $L$ and in $\langle U, R\rangle=E$. Hence $C=1$ and so by $8.12 O^{2}(P)$ normalizes $\Omega_{1}\left(Z\left(O_{2}(E)\right)\right.$, a contradiction.
(1) $O_{2}(E) \not \leq O_{2}(L)$.

Let $U^{*} \in \mathcal{L}(U, S)$ with $U^{*} / O_{2}\left(U^{*}\right) \cong \operatorname{Sym}(3)$ and Let $Q / O_{2}(U)$ be the unique elementary abelian, normal subgroup of order 16 in $U^{*} / O_{2}(U)$. Then $N_{E}(Q) / Q \cong \operatorname{Sym}(5)$. Let $C$ be a characteristic subgroup of $Q$ normal in $L$. Then $C$ is normal in $\left\langle U, N_{E}(U)\right\rangle=E$ and so $C=1$. We proved
(2) $O_{2}(L)<Q$ and no non trivial characteristic subgroup of $Q$ is normal in $L$.

Remark: (2) and its set up makes no sense for the $\operatorname{Sym}(9)$ case, some fixing necessary

Suppose that $L \in \operatorname{calN}(S)$. Then $\operatorname{Head}(L) \cong \operatorname{Alt}(m), 9 \leq m \leq 11$ or $L / O_{2}(L) \sim$ $L_{6}(2) .2$.

If $\operatorname{Head}(L) \cong \operatorname{Alt}(m), m=9$ or $11, L$ cannot be generated by $U$ and a minimal parabolic unless $m=9$ and $P=L$. We conclude $P / O_{2}(P) \cong S y m(9)$ and $O_{2}(E) \leq O_{2}(U) \leq O_{2}(L)$, a contradiction

If $\operatorname{Head}(L) \cong A l t(10)$, the situation is symmetric in $E$ and $L . L(1)=\left\langle N_{E}(Q), N_{L}(Q)\right.$. Then $Q=O_{2}(L(1))$ and 13.4 provides a contradiction. Remark: One has to make sure that the possibility of two different complements $S y m(5)$ to a group of odd order was really ruled out

If $L / O_{2}(L) \cong L_{6}(2) .2$,

$$
O_{2}(U)=\left[O_{2}(U), U\right] O_{2}(L) \leq O_{2}(E) O_{2}(L) \leq O_{2}(U)
$$

and so $O_{2}(U)=O_{2}(E) O_{2}(L)$. If $E / O_{2}(E) \cong \operatorname{Sym}(9)$ or $\operatorname{Alt}(10)$, then $O_{2}(L) \leq O_{2}(U)$. Hence no non-trivial characteristic subgroup of $O_{2}(U)$ is normal in $L$ and we conclude
that $\left[J(U),\left\langle\Omega_{1}\left(Z\left(O_{2}(U)\right)^{L}\right\rangle=1\right.\right.$ ，a contradiction．Thus $E / O_{2}(E) \cong \operatorname{Sym}(10)$ ．Let $V=$ $\Omega_{1}\left(Z\left(O_{2}(L)\right)\right.$ ．Then by $(2), C_{S}(V)=O_{2}(L)$ ．On the otherhand，$L / O_{2}(L)$ has no faithful module with respect to it $O_{2}(U) / O_{2}(L)$ contains an offending subgroup．Hence $J\left(O_{2}(U) \leq\right.$ $O_{2}(L)$ and so $J\left(O_{2}(U) \notin O_{2}(E)\right.$ ．It follows that there exists a conjugate of $J\left(O_{2}(U)\right)$ under $E$ which is contained in $U$ but not in $U^{\prime} O_{2}(U)$ ．Hence by 2.11 there exists an offender for $L$ on $V$ which is not contained in $L^{\prime} O_{2}(L)$ ，a contradiction．

We have proved that $\left[O^{2}(U), O^{2}(P)\right] \leq O_{2}(U)$ ．Put $P^{0}=O^{2}(P) Q$ ．As $O^{2}(P) \cap S \leq$ $O_{2}(U) \leq Q, S \cap P^{0}=Q$ ．Put $U_{1}=N_{E}(Q)$ and $L(1) \stackrel{\text { def }}{=}\left\langle P, U_{1}\right\rangle$ By 8.12 we conclude that
（3）$\left[O_{2}(P), O^{2}(P)\right] \leq O_{2}(L(1))$ ．
By a similar argument $O_{2}(L)=O_{2}(U)$ leads to a contradiction and so $O_{2}(L) \neq O_{2}(U)$ ． In particular，$E / O_{2}(E) \cong \operatorname{Sym}(10)$ ．As $U$ normalizes $O^{2}(P), U_{1}$ does not．So by 13．4， $L(1) \in \mathcal{N}(S)$ ．By（3），the compoents of $\operatorname{Head}(L(1))$ cannot be groups of Lie type in characteristic 2 and thus are alternating groups．Furthermore，as $m_{3}(L) \leq 3$ and $m_{3}(U)=2$ ， $m_{3}(P) \leq 1$ ．This leads to $\operatorname{Head}\left(L(1) \cong(3 \cdot) \operatorname{Alt}(7)\right.$ or $\operatorname{Alt}(11)$ ．In particular $P / O_{2}(P) \cong$ $\operatorname{Sym}(3)$ ．In the second case $N_{(L(1)}\left(O^{2}(P)\right)$ involves $\operatorname{Sym}(8)$ and we obtain a contradiction by considering $\left\langle N_{(L(1)}\left(O^{2}(P)\right), U\right\rangle$（note here that $U \not \leq L(1)$ as already $U_{1} \leq L(1)$ ．Thus $\operatorname{Head}(L(1)) \cong(3 \cdot) \operatorname{Alt}(7)$ ．By（1），$O_{2}(E)$ inverts $\operatorname{Head}(P)$ ．Thus $L / O_{2}(L) \cong \operatorname{Sym}(3) \times$ $\operatorname{Sym}(8)$ ．As $U^{*} \leq U_{1} \leq L(1)$ we get $L(1) / O_{2}(L(1)) \cong(3 \cdot) \operatorname{Sym}(7)$ ．The $3 \cdot \operatorname{Sym}(7)$ case is exclude by considering $N_{G}\left(O^{2}(P)\right)$ ．Thus $L(1) / O_{2}(L(1)) \cong \operatorname{Sym}(7)$ ．

In $L$ we see that $O_{2}(L)=O_{2}(U) \cap O_{2}(P)$ ，in $L(1)$ that $O_{2}(L(1))=O_{2}\left(U_{1}\right) \cap O_{2}(P)$ and in $E$ that $O_{2}(U) \leq O_{2}\left(U_{1}\right)$ ．Hence $O_{2}(L) \leq O_{2}(L(1))$ ．Moreover，in $L$ we see that $\left|O_{2}(E) O_{2}(L) / O_{2}(L)\right|=2$ and in $L(1)$ that $\left|O_{2}(E) O_{2}(L(1)) / O_{2}(L(1))\right|=2$ ．It follows that $F=\stackrel{\text { def }}{=} O_{2}(E) \cap O_{2}(L)=O_{2}(E) \cap O_{2}(L(1))$ ．Thus $F$ is normalized $U$ and $U_{1}$ and so $F$ is normal in $E$ ．Note that $O^{2}(U) \cap O_{2}(E) \leq O_{2}\left(O^{2}(U)\right) \leq O_{2}(L)$ and so $O^{2}(U) \cap O_{2}(E) \leq F$ ． Hence by the＂Satz von Gaschütz，$O^{2}(E) \cap O_{2}(E) \leq F$ ．Put $E^{*}=O^{2}(E) O_{2}(L)$ ．Since $O_{2}(L) \cap O^{2}(E) O_{2}(E)=F$ we conclude that $O_{2}\left(E^{*}\right)=F \leq O_{2}(L)$ ．Now the same argument as in the proof of（1）gives a contradiction，which completes the proof of the lemma．

We remark that $\operatorname{Sym}(14)$ has parabolics $C_{2}$ 亿 $\operatorname{Sym}(7), \operatorname{Sym}(8) \times C_{2}$ 亿 $\operatorname{Sym}(3)$ and $\operatorname{Sym}(10) \times C_{2}$ 亿 $C_{2}$ ，intersecting in the same way has the groups in the last case we ruled out．But of course these parabolics in $\operatorname{Sym}(14)$ are not of 2 －type and so do not furnish a counter example．
not Alt 9
Lemma $_{Q T} 14.3$ Suppose $E / O_{2}(E) \cong \operatorname{Alt}(9)$ and let $U \leq \operatorname{calL}(E, S)$ with $U / O_{2}(U) \cong$ Alt（10）．Then one of the following holds

1．$(P, U)$ is an amalgam．
2．Let $L=\langle P, U\rangle$ ．Then $L / O_{2}(L) \cong L_{5}(2),\left[O_{2}(L), O^{2}(L)\right.$ is a natural module and $[Z, E]=1$ ．

Proof：We may assume that $L \in \mathcal{L}(S)$ ．As above $\left[O^{2}(U), O^{2}(P)\right.$ is not a 2－group and $L / O_{2}(L) \nsubseteq \operatorname{Alt}(9)$ ．This leaves the possiblity $L / O_{2}(L) \cong L_{5}(2)$ ．Note that $O_{2}(L) \leq O_{2}(E)$
and so no non-trivial characteristic subgroup of $O_{2}(E)$ is normal in $L$. Let $Z_{1}=\Omega_{1}(Z) O_{2}(L)$ and $Z_{2}=\Omega_{1}\left(O_{2}(E)\right.$ and note that $Z_{2}=C_{Z_{1}}\left(O_{2}(E)\right)$. Suppose that $\left[Z_{2}, E\right] \neq 1$. Then $\left[Z_{2}, E\right] \neq 1$. As $Z_{1}$ is an FF-module, all non-trivial composition non-trivial factors of $L$ in $Z_{1}$ are isomorphic natural modules. Hence $Z_{2}$ is as $U$ module the direct sum of isomorphic natural modules and trivial modules. Let $d$ be an element of order three in $U$ acting fixed point freely on the natural module for $U$, then it is easu to see that $C_{Z_{2}}(d)=$ $C_{Z_{2}}(U)=C_{Z_{1}}(E)$ and so $d$ acts fixed point freely on $Z_{2} / C_{Z_{2}}(E)$. It follows that $Z_{2}$ involves a spinmodule for $E$ and so also two non-isomorphic natural modules for $U$, a contradiction.
Remark: u se the easier alt 7 argument
Hence $\left[Z_{2}, E\right]=1$. It follows that $Z_{1}$ is a natural module for $L$ and so by 8.14 and as $C_{Z_{1}}(E)$ we get $\left[O_{2}(E), O^{2}(E)=Z_{1}\right.$ and so (2) holds

## 15 Tits Chamber Systems

In this section we us the following assumptions and notations:
(i) $I$ is a finite set with $|I| \geq 3$,
(ii) For $i \in I, P_{i} \in \mathcal{P}(S)$.
(iii) For $J \subset I$ put $J^{\prime}=I \backslash J, P_{J}=\left\langle P_{j} \mid j \in J\right\rangle$ and $M_{J}=P_{I^{\prime}}$
(iv) Define a graph on $I$ by considering $i$ and $j$ to be adjacent if and only if $\left[O^{2}\left(P_{i}\right), O^{2}\left(P_{j}\right)\right]$ is not a 2-group.
(v) If $J \subset I$ is connected with $|J| \geq 2$, then $P_{J} \in \mathcal{E}(S)$ and for all $j \in J, S \cap P_{J}^{\prime} \not P_{j}$.
(vi) Let $i \in I$. Then Head $(M) i$ is a central extension of a groups of Lie type in characteristic two.
(vii) Let $J$ be a proper subset of $J . Q_{J}=O_{2}\left(P_{J}\right)$ and $Z_{J}=\left\langle Z^{P_{J}}\right.$. Then $\left.C_{P_{J}}\left(Q_{J}\right) \leq Q_{J}\right)$.
(viii) $\left\langle P_{i}\right| \in I \not \leq \mathcal{L}(S)$.

Lemma 15.1 Suppose there exists two distinct $i, j$ in $I$ with $Z \nsubseteq P_{i}$ and $Z \nsubseteq P_{j}$. Then one of the following holds: TO BE CONTINUED

Proof: Suppose first that there exists $k \in I \backslash\{i, j\}$ so that $k^{\prime}$ is connected. Apply 8.6 with to $G_{\alpha}=M_{k}$ and $G_{\beta}=P_{k}$. As $P_{i}$ does not centralize $Z, 8.61$ does not hold. By the stucture of $M_{k}, 8.61$ implies $C \unlhd M_{k}$ and $P_{k}$, a contradiction.

In case (6) 8.12 implies that $\left[Q_{k} . O^{2}\left(P_{k}\right)\right] \leq Z_{k}$. let $k \neq r$ so that $r$ is connected. Then $\left[Q_{k}, O^{2}\left(P_{k}\right)\right] \leq Z_{k} \leq Z_{r^{\prime}} \leq Q_{r^{\prime}}$ a contradiction to (v) and (vi).

Hence we mau assume that $q\left(M_{k}, Z_{k^{\prime}} \leq 2\right.$. As two parabolics of $M_{k}$ act non-trivially on $Z$ we get from 6.12 that $M_{k}$ is of type $L_{n}(q), k^{\prime}$ is a string with $i$ and $j$ as endpoints and $M_{k}$ has exactly two non-central composition factors on $Z_{k^{\prime}}$. Moreover these composition factors
are natural modules dual to each other. Is is easy to see that $Z \unlhd P_{k}$. Let $J=I \backslash\{i, j, k\}$. Assume that $k$ is adjacent to some element of $J$. Then we can apply 8.22 to $G_{\alpha}=M_{i}$, $G_{\beta}=M_{j}$ and $G_{\alpha \beta}=M_{i j}$. Thus TO BE CONTINUEDAssume that $k$ is not adjacent to an element of $J$ and without loss that $k$ is adjacent to $i$. Then we can apply 8.22 to $G_{\alpha}=M_{i}, G_{b}=M_{k}$ and $G_{\alpha \beta}$ and we conclude that $J=\emptyset$. Thus TO BE CONTINUED

Remark: the effect of graph automorphisms needs to be worked in, $Z_{\alpha} Z_{\beta} \unlhd G_{\beta}$ needs to be ruled out

Suppose next that no such $k$ exists. Then clearly $I$ is a string with $i$ and $j$ as the end notes. Then we can apply 8.22 to $G_{\alpha}=M_{i}, G_{\beta}=M_{j}$ and $G_{\alpha \beta}=M_{i j}$. Thus TO BE CONTINUED

## References

[As] M. Aschbacher, Finite Groups of Rank 3.I., Invent. Math.63, (1981), 357-402.
[At] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. 1985.n, The Atlas of Finite Group, Oxford University Press, London,(1985)
[Bl] D. Bloom, The subgroups of $P S L_{3}(q)$, for $q$ odd. Trans.Amer.Math.Soc. 127,(1967), 150-178.
[CD] A. Chermak, A. Delgado, A measuring argument for finite groups, Proc. Amer. Math. Soc.107,(1989) 907-914.
[MS] U. Meierfrankenfeld and G. Stroth, Quadratic GF(2)-modules for sporadic simple groups and alternating groups, Com. Alg. 18(7) (1990),2099-2139.
[Me] U. Meierfrankenfeld, Quadratic pairs in odd charctaristic, Preprint, East Lansing, (1986).
[Mi] H. Mitchell, The subgroups of the quaternary abelian groups. Trans.Amer.Math.Soc. 15, 379-396(1914).
[St1] B. Stellmacher, On the 2-local structure of finite groups, in Groups, Combinatorics, and Geometry, M. Liebeck and J.Saxl (eds), Cambridge University Press, (1992),495506.
[St2] B. Stellmacher, An application of the amalgam method: the 2-local structure of N groups of characteristic 2-type, preprint, Kiel (1995).

Department of Mathematics
Michigan State University
East Lansing, Michigan 48824
meier@math.msu.edu

Mathematisches Seminar Universität Kiel
Ludewig-Meyn Str. 4 24118 Kiel


[^0]:    $c c r$

