On the generic groups of p-type

U.	М	eierfrankenfeld
	В.	Stellmacher

Draft of May 23, 2002

Contents

1	Random Observations	2	
2	Preliminaries	5	
3	CS generated modules	13	
4	Groups with $m_{2'}(G) \leq 3$	15	
5	Subnormal Subgroups	23	
6	Nice Modules	23	
7	An interesting choice of an amalgam for generic p -type groups	47	
8	Some general amalgam results	48	
9	Amalgams involving uniqueness groups	61	
10	Connected parabolics not normalizing Z	70	
11	The case $b = 1$ with G_{α} connected and G_{β} minimal	75	
12	Elementary results on <i>p</i> -connected groups	77	
13	Establishing Geometries	79	
14	14 Large Alternating Groups		
15	15 Tits Chamber Systems		

Definition 0.1 Let G be a finite group, p a prime dividing. the order of G and $S \in Syl_p(G)$. dgpty Then G is of generic p-type provided that

(a) If L is a p-local subgroup of G with $S \leq L$, then $F^*(L) = O_p(L)$.

- (b) G is generated by the p-locals containing S.
- (c) all p-locals of G are \mathcal{K} -groups.

dqtDefinition 0.2 1. A quasisimple group K is called a C₂ - group if and only if
K is a quasisimple group of Lie type in characteristic 2 or K = PSL(2,q) for q a Fermat or Mersenne prime or q = 9
or K = PSL(3,3), PSL(4,3), PSU(4,3), 2U(4,3) or G₂(3)
or $K/Z(K) = M_{11}, M_{12}, M_{22}, M_{23}, M_{24}, J_2, J_3, J_4, HS, Suz, Ru, Co_1, Co_2, Fi_{22}, Fi_{23},$ $Fi'_{24}, F_3, F_2, \text{ or } F_1$ except 2A₈, Sp(4,3) and $[X]L_3(4)$ for exp X = 4 are not C₂ groups.
2. $L_2(G) = \{K : \text{ for some involution } x \text{ of } G, K \text{ is a component of } C_G(x)/O_{2'}(C_G(x))\}$ 3. G is of even type if and only if the following conditions hold:
(a) Every element of $L_2(G)$ is a C₂ - group
(b) $O_{2'}(C_G(x)) = 1$ for every involution x of G; and
(c) $m_2(G) \ge 3$.
4. Let G be of even type and let S be a Sylow 2-subgroup of G. Then

 $\sigma(G) = \{p : p \text{ is an odd prime and } m_p(M) \ge 4 \text{ for some maximal 2-local } M \text{ of } G \text{ with } |S : S \cap M| \le 2\}.$

5. G is of quasithin type if G is a simple group of even type with $\sigma(G)$ empty.

Definition 0.3 Head $(P) \stackrel{def}{=} O^p(P)O_p(P)/O_p(P).$

1 Random Observations

Let G be a finite group, S the Sylow 2-subgroup of G and B the intersection of the maximal 2-locals containing M.

Borel

dhead

Lemma 1.1 Let G be a finite group such that $F^*(G)$ is the direct product of simple groups of simple groups of Lie type in characteristic 2. Suppose that all the 2-locals of G containing S are of characteristic 2-type. Then S acts transitive on the set of components of G, $B = N_G(S \cap F^*(G))$ and $BF^*(G) = G$.

Remark: False for $D_4(q).3$ and $D_4(q).Sym(3)$

Proof: Let E_1, \ldots, E_n be the components of G, $E = F^*(G) = E_1 E_2 \ldots E_n$ and $T = E \cap S$. Suppose that S does not act transitively on the set of components of G. Then $\langle E_1, S \rangle$ is contained in a 2-local which is not of 2-type, a contradiction.

Let M be any maximal 2-local of G containing S. As M is of 2-type and $C_E(O_2(M)) \neq 1$ we conclude $O_2(M) \cap E \neq 1$.

Let Q_i be the projection of $O_2(M) \cap E$ onto E_i and $Q = Q_1 \cdot Q_2 \cdot \ldots \cdot Q_n$. Then Q is a 2 group normalized by M and so $O_2(M) \leq Q \leq O_2(M)$, $Q = O_2(M)$ and $M = N_G(Q)$. Suppose now that n = 1.

Let $M_i = N_M(E_i)$ and M_i^* a maximal 2-local subgroup of E_i containing $M \cap E_i$. Then $\langle M_i^{*M} \rangle \cap E_i = M_i$ and so $\langle M_i^*, M \rangle$ is contained in a 2-local of G. Thus $M_i^* = M \cap E_i$. **TO BE CONTINUED**

Remark 1.2 It seems that in groups of characteristic 2-type, B-irreducible subgroups actually have B as a maximal subgroup. For example if G has a parabolic P with $P/O_2(P) \cong$ Sym(5) then the the inverse image of the Sym(4) seems always to be in the Borel group.

2closed

Lemma 1.3 For $L \in \mathcal{L}(=\mathcal{L}(S)$ put $Z_L = \langle \Omega_1(Z(S))^L, C_L = C_L(Z_L)$ and $L^* = N_L(S \cap C_L)$. Let $\mathcal{R} \subseteq \mathcal{L}$ put $R = \langle L^* | L \in \mathcal{R} \rangle$.

- (a) $L = L^* C_L$ for all $L \in \mathcal{L}$.
- (b) Let $L \in \mathcal{L}$ and $P \in calN(L, S)$. Then $P \leq L^*$ or $O^2(P) \leq C_L$.
- (c) Let $L \in calL$. Then $O_2(L^*) = S \cap C_L$
- (d) If $R \in \mathcal{L}$, then C_R is 2-closed and $R = R^*$.
- (e) Let $\mathcal{R} = \mathcal{L}$
 - e.1. Suppose $R \in \mathcal{L}$. Then for all $L \in \mathcal{L}$, $L = (R \cap L)(C \cap L)$.
 - e.2. Suppose that $R \notin \mathcal{L}$. Then there exists $\mathcal{R}_i \subseteq \mathcal{L}$, i = 1, 2 so that $R_i \in \mathcal{L}$ but $O_2(\langle R_1, R_2 \rangle) = 1$.

Proof: (a) follows by the Frattini argument.

To prove (b) let $L \in \mathcal{R}$. Then $L^* \leq R$, $Z_L \leq Z_R$, and $S \cap C_R \leq C_L$. Thus $S \cap C_R = (S \cap C_L) \cap C_R$ and $S \cap C_R$ is normalized by L^* . As R is generated by the L^* 's, $L \in \mathcal{R}$, $S \cap C_R$ is normal in R and so also in C_R . Thus C_R is 2-closed and $R = R^*$. (c) and (d) are obviuos.

(e.1) follows since from (a) as $L^* \leq R \cap L$ and $C_L \leq L \cap C$.

For (e.2) let for \mathcal{R}_1 be maximal in \mathcal{L} with $R_1 \in \mathcal{L}$ and let $\mathcal{R}_2 = \{L\}$ for some $L \in \mathcal{L} \setminus \mathcal{R}_1$.

Lemma 1.4 Let $R = R_{\mathcal{L}}$ and suppose that $R \in \mathcal{L}$.

(a) $N_G(Z_L)$ is the unique maximal 2-local of G containing R.

*gomi

- (b) Let $L \in \mathcal{N}(R,S)$ with $O^2(L) \leq \leq R$ and $P \in \mathcal{N}(S)$ with $P \not\leq R$. If $\langle P,L \rangle \in \mathcal{L}$, then $O^2(P) \cap S \leq O_2(L)$.
- (c) Let $P \in calN(S)$ so that P does not normalize Z_R . Then there exists $L \in \mathcal{N}(R, S)$ with $O^2(L) \leq \leq R$ and $\langle L, P \rangle \notin calL$.

Proof: (a) Let $R \leq M \in \mathcal{L}$. Then $M^* \leq R$ and so $R = M^*$ and $Z_M = Z_{M^*} = Z_R$. Thus $M \leq N_G(Z_R)$.

(b) Let $M = \langle P, L \rangle$. As $P \not\leq R$, $O^2(P) \leq C_M$. By 3.6 $[Z, L] \neq 1$ and so $S \cap O^2(P) \leq S \cap C_M \leq O_2(L)$.

(c) As $O_2(R)$ is the intersection of the $O_2(L)$'s, L as in the statement of (c) we conclude that $O^2(P) \cap S \leq O_2(R)$. Hence $O_2(R)$ is a Sylow 2-subgroup of $O^2(P)O_2(R)$. By (a) $\langle P, R \rangle$ is not a 2-local and we conclude that $\langle \Omega_1(O_2(R)_2^O(P)) \rangle$ is an FF-module for $O^2(P)O_2(R)$. But this contradicts [Z, P] = 1.

Lemma 1.5 Let $\mathcal{N}^+(S) = \{L \in \mathcal{N}(S) \mid [Z, L] \neq 1\}$ and for $L \in \mathcal{L}$ put $L^+ = \langle \mathcal{N}^+(L, S) \rangle$. Then

- (a) $O_2(L^+) = S \cap C_L = O_2(L^*)$
- (b) $L = L^+(L \cap C)$.
- (c) $Z_L = Z_{L^+}$.

Proof: Put $T = S \cap C_L$ and $R = N_L(T)$. Then by 3.6 $F_2^*(R) \le R^+$ and $O_2(L^+) = O_2(F_2^*(R))$. As $O_2(L/C_L) = 1$, $O_2(F_2^*) = T$. So (a) holds.

For (b) suppose first that $C_L \neq O_2(L)$. By the Frattini argument, $L = RC_L$ and by induction $R = R^+(R \cap C)$. Hence $L = R^+C_L(R \cap C) = L^+(L \cap C)$.

So suppose that $C_L = O_2(L)$. Then R = L. Let $E = S \cap F_2^*(L)$ and $H = N_L(T)$. By the Frattini argument, $L = F_2^*(L)H$ and by induction, $H = H^+(H \cap C)$. Hence $L = F_2^*(L)H^+(H \cap C) = L^+(L \cap C)$. (c) follows directly from (b)

Lemma 1.6 Let $\mathcal{N}^+(S) = \{L \in \mathcal{N}(S) \mid [Z, L] \neq 1\}$ and $D = \bigcap \{O_2(L^*) \mid L \in \mathcal{L}\}.$

(a) Let $P \in \mathcal{N}^+(S)$ with $P \not\leq N_G(D)$. Then there exists $L \in \mathcal{N}^+(S)$ so that $\langle P, L \rangle \notin \mathcal{L}$.

Rgomi

- (b) Let $R^+ = \mathcal{N}^+(S)$ and suppose that $R^+ \in \mathcal{L}$.
 - (b.a) For all $L \in \mathcal{L}$, $L = (L \cap R^+)(L \cap C)$.

(b.b) Suppose that $R^+ \leq L \in \mathcal{L}$. Then $R^+ = L^+$, $Z_L = Z + R^+$ and $O_2(R^+) = C_L \cap S$.

- (b.c) $O_2(R) = D$.
- (b.d) $N_G(Z_{R^+})$ is the unique maximal 2-local of G containing R^+ .

Proof: Suppose (a) is false. Let $L \in calN^+(S)$ and put $M = \langle L, S \rangle$. By assumption $M \in calL$ and so by 1.3b, $M = M^*$. Let $Y \in \mathcal{N}(M)$ with $O^2(Y) \leq \leq M$. Then by 3.6, $[Z, Y] \neq 1$ and so $Y \in \mathcal{N}^+(S)$. Hence the Gomi argument implies that P normalizes D.

(b.a) follows directly from 1.5b Since

$$\mathcal{N}^+(S) \subseteq \mathcal{N}^+(R^+, S) \subseteq \mathcal{N}^+(L, S)\mathcal{N}^+(S),$$

 $R^+ = L^+$. Thus by 1.5a, $O_2(R) = C_L \cap S$. Furthermore, by 1.5c, $Z_L = Z_{L^+} = Z_{R^+}$

(b.c) follows from 1.5a.

(b.d) follows directly from (b.b)

Definition 1.7 Let $L \in \mathcal{L}(S)$. Then a p-reduced normal subgroup of L is a elementary abelian normal p-subgroup Y of L so that $O_p(L/C_L(Y)) = 1$, (i.e all normal subgroups of L which act unipotently on Y already centralize Y.

Lemma 1.8 Let $L \leq \mathcal{L}(S)$.

- (a) There exists a unique maximal p-reduced normal subgroup Y_L of L.
- (b) Let $R \in (L, S)$ and X a p-reduced normal subgroup of R. Then $\langle X^L \rangle$ is a p-reduced normal subgroup of L. In particular, $Y_R \leq Y_L$.
- (c) Let $S_L = C_S(Y_L)$ and $L^f = N_G(S_L)$. Then $S_L = O_p(L^f)$ and $Y_L = \Omega_1 Z(S_L)$.

Proof: (a) Let Y_L be the subgroup generated by the *p*-reduced normal subgroups of *L*. Let *N* be a normal subgroup acting unipotently on Y_L . Then *N* also acts unipotently on all the generators of Y_L . Hence *N* centralizes all the generators of Y_L and so Y_L . Thus Y_L is *p*-reduced.

(c) Let $Y = \langle X^L \rangle$ and $C = C_L(Y)$. Let $N/C = O_p(L/C)$. Then $N = (N \cap S)C$ and in particular, $N = (N \cap L)C$. As X is p reduced, $N \cap L$ centralizes X. The same is true for C and so also for N. Since N is normal in L and $Y = \langle X^L \rangle$, N centralizes Y. Thus N = C and Y is p-reduced.

(b) Put $C = C_L(Y_L)$. By Frattini, $L = L^f C$. Since $O_p(L/C) = 1$ we conclude $O_p(L_f) \leq C$ Hence $O_p(L_f) \leq C \cap S = S_L$ and so $O_p(L_f) = S_L$). Let $X = \Omega_1(Z(S_L))$. Then clearly $Y_L \leq X$ and L_f normalizes Y. Put $Y = \langle Y^L \rangle = \langle Y^C \rangle$. Clearly X is p-reduced for S_L and so by (b) applied to C, Y is p-reduced for C. Let N be a normal subgroup of L acting unipotently on Y. Since $Y_L \leq Y$ and Y_L is p-reduced for L, $N \leq C$. As Y is p-reduced for C, N centralizes C and so Y is p-reduced for L. By maximality of Y_L we get $Y \leq Y_L$. But $Y_L \leq X \leq Y$ and so $Y_L = X = Y$.

2 Preliminaries

Lemma 2.1 Let r and s be positive real numbers and put $e = \frac{rs^2 - r - s}{s^2}$.

e

bpred

dpred

- (a) Suppose that s > 1. Then e > O if and only if $r > \frac{s}{s^2 1}$. In particular e > 0 if $r \ge 2$ and $s \ge 1.3$.
- (b) $e \le 1$ if and only if $(r-1)(s-1) \le 1$.

Proof: (a) is easily computed and for (b) note that the following are equivalent: $e \leq 1$, $rs^2 - r - s - s^2 \leq 0$, $(rs - r - s)(s + 1) \leq 0$, $rs - r - s \leq 0$, $(rs - r - s) + 1 \leq 1$ and $(r - 1)(s - 1) \leq 1$.

Lemma 2.2 Let $P \in \mathcal{P}(S)$ be of weak $L_2(2)^k$ type. Put $\Delta = \{L_i \mid 1 \leq i \leq k\}$ and let $Q \leq S$ such that

- (i) $|Z_P/C_{Z_P}(A)| < |A/C_A(Z_P)|^2$ for some $A \le Q$ with $[Z_P, A] \ne 1$.
- (ii) Q contains an involution t acting fixed point freely on Delta.

Then $O^2(P) \leq \langle C_Q(\Delta)^e, t \rangle$ for some $e \in P$.

Proof: Let $\Delta\{L_i \mid 1 \leq i \leq k\}$. Choose A as in (i) with |A| minimal. Then it easy to see that A acts trivially on Δ . Next let T be maximal in $C_Q(\Delta)$ so that T fulfills $|Z_P/C_{Z_P(T)}| < |T/C_T(Z_P)|^2$. By [CD] T is unique and so $T \leq S$. Let $E = O^2(P)C_P/C_P$. Then S acts irreducible on E and $E = E_1 \times \ldots \times E_k$ with $|[Z_p, E_i]| = 4$. We claim that each of the E_i is a Wedderburn component for T on E. Indeed, let E^* be a Wedderburn component for T on E and suppose that $E^* = E_1 \ldots E_t$. Then k = lt for some integer l, $C_T(E^*) = C_T(E_1), |T/C_T(E^*)| = 2$ and $|T/C_T(Z_P)| = |T/C_T(E)| \leq 2^l$. On the otherhand $Z_P/C_{Z_P}(T) = 2^k$. Thus k < 2l and as l divides k, l = k.

We conclude that:

(1) Each T invariant subspace in E is a sum of some of the E_i 's.

As t acts fixed point freely on Δ , t inverts an element $e \in O^2(P)$ with projects nontivially on each of the E_i 's. Thus (1) implies

(2)
$$E = \langle \overline{e}^T \rangle.$$

Let $L = \langle T^e, t \rangle$. Then $T^{e^{-1}} = (T^e)^t \leq L$ and so also $[T, e] \in L$. Since $C_E(T) = 1$, $\overline{e} \in [T, \overline{e}]$ and (2) implies that $E \leq \overline{L}$. Hence P = LS and $O^2(P) \leq \langle T^P \rangle = \langle T^L \rangle \leq L$. As $T \leq C_Q(\Delta)$ the lemma is proved.

Lemma 2.3 Let H be a group, V, B and $Z_i \in I$ subgroups of H and s a positive real number. Suppose that

- (i) $V = \langle Z_i \mid i \in I \rangle$ and for all $i \in I$, $Z_i \leq V$.
- (ii) For all i in I and $D \leq B$, B normalizes Z_i and $|D/C_D(Z_i)|^s \leq |Z_i/C_{Z_i}|$.

Then $|B/C_B(V)|^s \leq |V/C_V(B)|$.

Proof: Without loss $I - \{1, \ldots, n\}$. Let $B_1 = B$ and $B_{i+1} = C_{B_i}(Z_i)$. Then $B_{n+1} = C_B(V)$. Moreover, by (ii) applied to $D = B_i$,

$$|B_i/B_{i+1}|^s \le |Z_i/C_{Z_i}(B_i)| \tag{1}.$$

Thus

$$|B/C_B(V)|^s \le \prod_{i=1}^n |Z_i/C_{Z_i}(B_i)|$$
(2).

qrc

As by definition B_{i+1} centralizes Z_i we get

$$|Z_i/C_{Z_i}(B_i)| = |Z_iC_V(B_i)/C_V(B_i) \le |C_V(B_{i+1}/C_V(B_i)|$$
(3)

Thus

$$\prod_{i=1}^{n} |Z_i/C_{Z_i}(B_i)| \le |C_V(B_{i+1})/C_V(B_i)| = |V/C_V(B)|.$$
(4)

The lemma now follows from (2) and (4).

Lemma 2.4 Let $V = \langle W_i \mid i \in I \rangle$, where W_i is a normal subgroup of V for all $i \in I$. Let B be a subgroup of A normalizing all the W_i 's. If $A \neq B$ define r by $|A/B|^r = |V/C_V(A)|$ and t by $|V/C_V(A)|^t = |A/C_A(V)|$. Let $I = \{1, 2, ..., n\}$ and define $A_0 = B$ and inductively $A_i = C_{A_{i-1}}(V_i)$. Choose notation so that $B = A_0 > A_1 > ... > A_k = C_A(V)$. Define s_i by $|A_{i-1}/A_i|^{s_i} = |W_i/C_{W_i}(A_{i-1})|$ and $s = \min_{i=1}^k s_i$. Then

- (a) $|B/C_B(V)|^s \le |V/C_V(B)|.$
- (b) If $A \neq B$, then $trs \leq r + s$.
- (c) Suppose that $A \neq B$ and equality holds in (b). Then
 - (c.a) $s_i = s$ for all $1 \le i \le k$. (c.b) $C_V(B) = C_V(A)$.
 - (c.c) $|B/V_B(V)|^s = |V/C_V(B)|.$

Proof: (a) follows from 2.3.

Note that $|A/B|^{rt} = |V/C_V(A)|^t = |A/C_A(V)| = |A/B||B/C_B(V)|$ and therefore $|B/C_B(V)| = |A/B|^{rt-1}$. Suppose that $A \neq B$. By (a) we conclude

$$|A/B|^{r} = |V/C_{V}(A)| \le |V/C_{V}(B)| \le |B/C_{B}(V)|^{s} = |A/B|^{(rt-1)s}$$

and so $(rt-1)s \leq r$ and $rts \leq r+s$.

(c) follows by investigating the places where " < " was used.

msn

almp

Lemma 2.5 Let H be a finite group, P a p-subgroup of H and suppose that P is subnormal in all proper subgroups of H containing P, but is not subnormal in H. Then A is contained in a unique maximal subgoup of H.

Proof: Suppose that A is contained in two distinct maximal subgroups M_1 and M_2 . Choose the M_i 's so that M_1 contains a Sylow *p*-subgroup of H and so that $|M_1 \cap M_2|_p$ is maximal. Let D be a Sylow *p*-subgroup of $M_1 \cap M_2$ and put $B_i = \langle A^h | h \in H, A^h \leq M_i \rangle$. Then by asumption $B_i \leq O_p(M_i) \leq M_j$.

Suppose that D is not a Sylow p-subgroup of M_2 . Then $M_{M_2}(D) \leq M_1$ and $|N_{M_2}(D) \cap M_1|_2 > |D|$, a contradiction. Thus D is a Sylow p-subgroup of M_2 and so $B_2 \leq D$ and $N_G(D)$ normalizes B_2 . Thus $N_G(D) \leq M_2$ and so D is also a Sylow p-subgroup of M_1 . Hence $B_1 \leq D$ and $B_1 = B_2$, a contradiction.

Lemma 2.6 Let H be a finite group, p a prime, S a Sylow p-subgroup of H and suppose that S lies in a unique maximal subgroup M of H. Let $P \leq S$ and suppose that $P \not\leq O_p(H)$. Then there exist a subgroup L of H and $h \in H$ so that

- (a) $P \leq L$ and $P \not\leq O_p(L)$
- (b) $M^h \cap L$ is the unique maximal subgroup of L containing P.
- (c) $S^h \cap L$ is a Sylow p-subgroup of L.

Proof: If M is the unique maximal subgroup of H containg P, then the lemma holds with L = H and h = 1. Hence there exists a proper subgroup K of H such that $P \leq K$ and $K \leq M$. Choose K so that $|M \cap S|_p$ is maximal and then with K minimal. Let $T = M \cap K$ and $R = \langle P^G \cap T \rangle$. Let $S^* \in \text{Syl}_p(M)$ with $T \leq S^*$. Then M is the unique maximal subgroup of H containing S^* and so $T \neq S^*$. Thus $T < N_{S^*}(T) \leq N_H(R)$ and $|M \cap K|_p < |M \cap N_H(R)|_p$. Thus by the choice of K, $N_H(R) \leq M$. In particular, $N_K(R) \leq K \cap M$ and so T is a Sylow p-subgroup of K. Hence $O_p(L) \leq T \leq M$. If $R \leq O_p(K)$, then $R \leq K$, contradiction. $P^* \in P^H \cap T$ with $P^* \not\leq O_p(K)$. By the minimal choice of $|K|, M \cap K$ is the unique maximal subgroup of K containing T and so we can apply induction. Thus there exists $L^* \leq K$ with $P^* \leq L^*$, $P^* \not\leq O_p(L^*)$ and $h^* \in K$ so that $(M \cap K)^{h^*} \cap L^*$ is the unique maximal subgroup of L^* containing P^* . Let $x \in H$ with $P^{*x} = P$ and put $h = h^*x$ and $L = L^*x$. The clearly (a) and (b) hold. \Box

Lemma 2.7 Remark: Quadratic groous normalize components

Lemma 2.8 Let $A \leq H$ and V a faithful GF(p)H-module. Suppose that

- (i) A is contained in a unique maximal subgroup of H.
- (ii) [V, A, A] = 1.
- (iii) $A \not\leq O_p(H)$

mqm

anc

- (iv) One of the following holds:
 - 1. $V = \langle Z^H \rangle$ for some $Z \leq V$ with [Z, A] = 1. 2. $V = C_V(A)[V, H]$.

Let $t \in A \setminus O_p(H)$. Then each of the following holds:

- (a) Then $C_V(t) = C_V(A)$.
- (b) $|V/C_V(A)| \ge |A/A \cap O_p(H)|^c$, where c is the number of non-trivial chief-factors for H on V.
- (c) $[V,t] \cap C_V(H) = 1$ and $|[V,t]^2| = |V/C_V(H)$.
- (d) Suppose that (iv)1 holds and $O_p(L)$ normalizes Z. Then one of the following holds:
 - 1. $[V, A \cap O_p(H)] \leq C_V(H)$. $NI2 \ p = 2, \ H/O_p(H) \cong Dih(2r^k), \ r \ an \ odd \ prime \ C_H([V, A \cap O_p(H)]) \not\leq O_p(H).$
- (e) $[V, H] \cap C_V(H) \le [V, A]$
- (f) $W = C_W(H)[W, H]$ for each H-section on V. In particular, H has no central chieffactor on $V/C_V(H)$.

Proof: Note first that (iv)1. implies (iv)2. So we assume from now on that (iv)2. holds. Let M be the unique maximal subgroup of H containg A and $N = \operatorname{Core}_M(G)$. By a Frattini argument, N is p-closed with $O_p(H)$ as the Sylow p-subgroup. Hence $t \notin N$ and so there exists $h \in H$ with $t \notin M^h$. Put $B = A^h$. Then $H = \langle t, B \rangle$ and so [V, H] = [V, t][V, B]. By (iv)2. we conclude and (ii) we conclude

$$V = C_V(A)[V, B] = C_V(t)[V, B].$$

Thus

$$C_V(B) = [V, B](C_V(A) \cap C_V(A)) = [V, B]C_V(H).$$

Hence also

$$C_V(A) = [V, A]C_V(H)$$

and so by (iv)2.,

$$V = C_V(H)[V,H].$$

That is (f) holds for W = V. Moreover, $C_V(t) = C_V(A)(C_V([V, B]) \cap C_V(t)) = C_V(A)$ and so (a) holds. Let $Y = [V, A] \cap C_V(H) = [V, B] \cap C_V(H) = [V, A] \cap [V, B]$. Then $[V, A] = [V, H] \cap [V, A] = [V, t]([V, A] \cap [V, B] \text{ and so } [V, A] = [V, t]Y$. On the other hand, $|[V,t]| = |[V,B,t]| = |[V,B]/([V,B] \cap C_V(t)) = |[V,B]/Y| = |[V,A]/Y|$

and so $[V, A] = [V, t] \oplus Y$. In particular $[V, t] \cap C_V(H) = 1$. Moreover $|[V, H]| = |[V, t]^2|Y|$. $C_{[V,H]}(A) = [V, A]$ and so $C_{[V,H]}(H) = Y$. Thus (c) and (e) hold. Let W be an nontrivial chief-factor for H on V. Since $H = A\langle t^H \rangle$, $A/O_p(H)/O_p(H)$ acts faithfully on W. Also $W = [W, A] \oplus [W, B]$ and so $|W/C_W(A)| = |[W, A]|$. Let $x \in W \setminus C_W(A)$. By (a) $|AO_p(H)/O_p(H)| = |[x, A]| \leq |[W, A]| = |W/C_W(A)|$. Thus (b) holds. Clearly (iv)2 is inherited by quotients of V so it is enough to verify (f) for H-submodules W of V. By (d) applied to V/[W, H], $W \leq [V, A][W, H]$ and so $W = ([V, A] \cap W)[W, H]$ fulfills (iv)2. Thus (f) holds.

It remains to prove (d). Let $h \in H \setminus M$. As A is quadratic, A centralizes $[Z^h, A \cap O_p(H)]$. As $O_p(H)$ normalizes Z^h , also A^h centralizes $[Z^h, A \cap O_p(H)]$. Since $M \neq M^h$, $H = \langle A, A^h \rangle$ and $[Z^h, A \cap O_p(H)] \leq C_V(H)$.

$$Y = \langle Z^h \mid h \in H \setminus M \rangle.$$

Then $[Y, A \cap O_p(H)] \leq C_V(H)$.

Suppose first that $|AO_p(H)/O_p(H) \geq 3$. We claim then that B normalizes Y. For this let $h \in H \setminus M$ and $b \in B$. We need to show that $Z^{hb} \leq Y$. If $hb \notin M$, this is true by definition of Y. So suppose that $hb \in M$. Since $|AO_p(H)/O_p(H) \geq 3$ there exists $c \in B$ with $c \notin O_p(H) \cup O_p(H)b$. If $hc \in M$, then $b^{-1}c \in B \cap M$. But by 2.9 (10), $b^{-1}c \in O_p(H)$, a contradiction. Thus $hc \notin M$. Similarly $hbc \notin M$. Thus $Z^h Z^{hbc} Z^{hc} \leq Y$. Since $Z^h Z^{hbc} Z^{hc} = Z^h[Z^h, bc][Z^h, c]$, the quadratic action of B implies that $\langle bc, c \rangle$ normalizes $Z^h Z^{hbc} Z^{hc}$. Hence $Z^{hb} \leq Y$ as claimed.

Suppose next that $|AO_p(H)/O_p(H)| = 2$. Then p = 2 and $H/O_2(H) \cong Dih(2r^k)$. If k = 1, then $M = AO_p(H)$ normalizes Z and so V = ZY and again d1 and as a matter of fact also d2 holds. So suppose k > 1 and define L as in d2. Then $L \leq M$. Also let H^* be minimal with $A \leq H^*$ and $H^*O_p(H) = M$. Let $V^* = \langle Z^{H^*} = Z^M$. Then $V = V^*Y$. Also $A \cap O_p(H) \leq O_p(H^*)$ and so by induction $R \stackrel{def}{=} C_{H^*}([V^*, A \cap O_p(H)] \mathcal{O}_p(H^*))$. Since $[V, A \cap O_p(H)] = [V^*, A \cap O_p(H)][Y, A \cap O_p(H)]$ we have $[V, A \cap O_p(H), R] = 0$. Since $R \not\leq O_p(H)$, d2 holds in this case.

Lemma 2.9 Let H be a finite group, p a prime, A a p-subgroup of H and V a faithful GF(p)H-module. Suppose that $A \not\leq O_p(H)$, that A acts quadratically on V and that A lies in a unique maximal subgroup of H. Then one of the following holds for $\overline{H} = H/O_p(H)$:

mq

- 1. $\overline{H} \cong SL_2(p^k)$.
- 2. p = 2 and $\overline{H} \cong Sz(2^k)$.
- 3. p = 2 and $\overline{H} \cong Dih(r^k)$, r an odd prime.

Proof: Let M the the unique maximal subgroupp of H containing A and D = $\bigcap_{h\in H} M^h$. Note that M contains a Sylow p-subgroup S of H and so $O_p(H) \leq D$. Replacing V by the direct sum of the H-composition factors on V and H by \overline{H} we may assume that $O_p(H) = 1$. Moreover, if |A| = 2, 3. holds so we may assume |A| > 2.

Let T be an A invariant Sylow p-subgroup of D. Then $H = DN_H(T)$. If $H = N_H(T)$ we get $N_H(T) \leq M$ and so $H = DM \leq M$, a contradiction. Hence $T \leq H$ and so $T \leq O_p(H) = 1$. Thus D is a p'-group. Let R be a maximal subgroup of H and suppose that $D \leq R$. Then H = DR and so R contains a Sylow p-subgroup of H. Hence $A \leq R^h$ for some $h \in H$ and thus $R^h \leq M$. But then $H = DR = DR^h \leq M$, a contradiction. Thus $D \leq R$. It follows that

(1) $D \leq \Phi(H)$ and D is a nilpotent p' group.

Let N be a normal subgroup of H. If $H \neq NA$ then $NA \leq M$ and so $N \leq D$. Put $L = O^p(H)$ and suppose that $L \leq D$. Then $H = DS \leq M$, a contradiction. Thus $L \not\leq D$, H = LA. Hence:

(2) Each normal subgroup of H is either contained in D or contains L. In particular, L/Dis characteristicly simple.

Since H acts faithfully on $[V, O^p(H)]$ and on $V/C_V(O^p(H))$ we may assume that

(3)
$$V = [V, H]$$
 and $C_V(H) = 0$.

Let $1 \neq a \in A$ and pick $g \in H$ with $a \not\leq M^g$. Then $H = \langle a, A^g \rangle$ and so by (3) $V = [V, a] + [V, A^g]$ and $C_V(a) \cap C_V(A^g)$. Since A is quadratically on V we also have

$$[V,a] \le [V,A] \le C_V(A) \le C_V(a).$$

We conclude that

(4)
$$[V,a] = [V,A] = C_V(A) = C_V(a)$$
 and $|V| = |[V,A]|^2$

With a similar argument:

(5) $C_V(b) = [V, b]$ for each non-trivial quadratic element b in H.

We may assume without loss that A is a maximal quadratic subgroup of H and so

(6)
$$A = C_H([V,A]) \cap C_H(V/[V,A])$$

From (4) and (6) we conclude that

(7)
$$C_H(a) \leq N_H(A)$$
 and $A \cap A^h = 1$ for all $h \in H \setminus N_H(A)$.
 $mq - 6$

mq - 4

mq-4'

mq - 5

mq - 1

mq - 2

mq - 3

Let $h \in H$ with $A \cap M^h \neq 1$ and let $b \in A \cap M^h$. Choose $k \in M^h$ so that $\langle b, A^{hk} \rangle$ is a *p*-group. Then $C_V(b) \cap C_V(A^{hk}) \neq 0$ and so also $V_V(A) \cap C_V(A^{hk}) \neq 0$. Thus $H \neq A, A^{hk} \rangle$ and so $M = M^{hk} = M^h$. We proved

(8) Let $h \in H$. Then $h \in M$ or $A \cap M^h = 1$.

If p is odd, then by (5)

$$\dim[V, A] = \min\{\dim[V, b] \mid 1 \neq b \in H, [V, b, b] = 0\}$$

Hence by the work of Thompson and Ho, $H \cong SL_2(p^k)$ or p = 3 and $H \cong 2 \cdot Alt(5)$. But in latter case, A lies in more than one maximal subgroup of H, a contradiction.

Thus we may assume from now on that

(9) p = 2 and $|A| \ge 4$.

In particular, by (7)

$$O_{p'}(H) = \langle C_{O_{p'}(H)}(a) \mid 1 \neq 1 \in A \rangle \le C_H(A).$$

and we conclude:

(10) D = Z(H) and L = E(L) = E(H).

Note that the exceptionell case in 2.7 is not possible and so A normalizes the components of L and thus

(11) L is quasisimple.

None of the groups in ?? is a minimal parabolic and so L is an alternating group or a Lie type in characteristic 2. Since S lies in a unique maximal subgroup of H we get $L \cong Alt(2^k + 1), L_2(2^k), SU_3(2^k), Sz(2^k), SL_3(2^k)$ or $Sp_4(2^k)$. In the last two cases A has to induce a graph automorphism on L, which contradicts the quadratic action of A on V. If $L \cong Alt(2^k + 1), A$ either is contained just has one non-trivial orbit and that one has lenght four or all orbits of A have length at most 2. Since A lies in a unique maximal subgroup of H we conclude that $L = H \cong Alt(5) \cong SL_2(4)$. If $L \cong SU_3(2^k), A$ lies in the normalizer of a Sylow 2-subgroup and in a $SL_2(2^k)$, a contradiction, which completes the proof of the lemma.

factorize

Lemma 2.10 Let G be a finite group, $M \leq G$, p a prime with $F^*(M) = O_p(M)$ and $T \in \operatorname{Syl}_p(M)$. Let $Z_M = \langle \Omega_1(Z(T))^M \rangle$, $C_M = C_M(Z_M)$ and $J(M) = \langle J(T)^M \rangle$.

- (a) $C_M \leq N_G(Z_T)$
- (b) Z_M is a faithful $J(M)C_M/C_M$ -module and $J(M)C_M/C_M = P^*(J(M)C_M/C_M), Z_M)$.

mq-7

mq - 7

mq-8

mq-8

- (c) $M/J(M) \cong N_M(J(T)/N_{J(M)}(J(T)))$
- (d) Suppose that T is normal in a Sylow p-subgroup S of G. Then $N_G(Z(T)) \in \mathcal{L}(S)$ and $N_G(J(T)) \in \mathcal{L}(S)$.

Proof: Obvious.

Lemma 2.11 Let G be a finite group, $N \leq H \leq G$, p a prime, $S \in \text{Syl}_p(H)$, V an elementary abelian normal p-subgroup of H, and $C_S(V) \leq Q \leq S \cap N$ Suppose that $\mathcal{A}(Q)^G \cap \not\subseteq N$, then there exists an elementary abelian subgroup A of S with $H \leq N$, $[V,A] \neq 1$ and $|V/C_V(A)| \leq |A/C_A(V)|$.

Proof: Let $D \in \mathcal{A}(Q)$ and $g \in G$ with $D^g \leq H$ and $D^g \not\leq N$. As S is a Sylow p-subgroup of H there exists $h \in H$ with $D^{gh} \leq S$. Put $A = D^{gh}$. As N is normal in $H, A \not\leq N$. Since $C_N(V) \leq Q \leq N$, $[V, A] \neq 1$. Moreover, $VC_A(V) \leq Q$ and so $|VC_A(V)| \leq |A|$.

Lemma 2.12 Let L be an alternating group or simple group of Lie-type in characteristic 2. Let $H \leq L$ with $|L|_2/|H|_2 \leq 2$. Then all non abelian composition factors of H are alternating or a simple groups of Lie type.

Proof: Let $T \leq \text{Syl}_2(H)$, and $S \leq \text{Syl}_2(L)$ with $T \leq S$. Then $S' \leq T$.

Suppose first that $L = \text{Alt}(\Omega)$. If H is intransitive or imprimitive we are done by induction. So suppose that H is primitive. If H has a non-trivial abelian normal subgroup A, then $H = H_i A$ for any $i \in \Omega$. Thus T_i has index two in a Sylow 2-subgroup of L_i and again we are done by induction.

Hence we may assume that H has no non-trivial solvable normal subgroup. Since $|S/T| \leq 2$, T contains an element x of cycle type (2,2). Since $x \notin O_2(H)$, $1 \neq x \cdot x^h$ has odd order for some $h \in H$. Its is now straight forward to verify the lemma.

So suppose L is a group of Lie type. and not an alternating group. If $O_2(H) \neq 1$, then H is contained in a parabolic subgroup of L and the lemma follows by induction. Hence we may assume that $O_2(H) = 1$.

If S is abelian, $L \cong L_2(q)$ and the result is readily verified in this case.

So we may assume that S is not abelian. In particular, S' and so also H contains a long root group R with $R \leq Z(S)$. As $R \not\leq O_2(H)$, there exists $h \in H$ with $X \stackrel{def}{=} \langle R, R^h \rangle \cong$ $SL_2(q)$, where q = |R|. Let r be the highest ling root in the root system associate to L. Without loss $\omega_r \in X \leq H$. It is now easy to verify that $L = \langle S'\omega_r \rangle$ and so $L \leq H$, a contradiction.

Remark: this is rather scetchy

3 CS generated modules

In this section G is a finite group, p a prime and V a (finite dimensional) GF(p)G-module.

vqnhg

i2lt

dcvg

ec

Definition 3.1 (a) $_{G}V = \langle C_V(S) \mid S \in \operatorname{Syl}_n(G) \rangle.$

(b) V is called CS-generated provided that $V = _{G}V$.

Lemma 3.2 Let $L \lhd \lhd G$. Then $_{G}V \leq _{L}(V)$.

Proof: Let $S \in \text{Syl}_n(G)$. Then $S \cap L \leq \text{Syl}_n(L)$ and $C_V(S) \leq C_V(S \cap L)$.

Lemma 3.3 Let p be a prime, G a finite group, L a normal subgroup of G, $S \in Syl_2(G)$. Then S normalizes a complement to $C_V(L)$ in $C_V(S \cap L)$.

Proof: Remark: This is a standard result in cohomology, the map π below is called the corestriction map, a reference should be included

Let $T = S \cap L$, \mathcal{X} a set of right coset representatives for T in L and define

$$\begin{array}{rccc} \pi : & C_V(T) & \to & V \\ & v & \to & \sum_{x \in \mathcal{X}} v^{Tx} \end{array}$$

Then clearly $\pi(v) = \pi(v^l)$ for al $l \in L$ and so $\pi(C_V(T) \leq C_V(L)$. On the other hand π restricted to $C_V(L)$ is just multiplication by L/T. Thus $\pi \mid_{C_V(L)}$ is an isomorphism and $C_V(T) = C_V(L) \oplus \ker \pi$. Moreover, it follows immediately from the definition of π that for all $v \in C_V(T)$ and $s \in S$, $\pi(v^s) = \pi(v)^s$. Thus S normalizes ker π .

Lemma 3.4 Let $L \triangleleft \triangleleft G$ with $[C_V(S), L] = 1$, then $[C_V(L \cap S), L] = 1$.

Proof: Clearly we may assume that $L \leq G$. By 3.3 there exists an S invariant complement D to $C_V(L)$ in $C_V(S \cap L)$. Moreover, $C_D(S) \leq C_V(S) \leq C_V(G) \leq C_V(L)$ and so $C_D(S) = 0$. This implies D = 0 and $C_V(S \cap L) = C_V(L)$

Lemma 3.5 Let L be subnormal subgroup of G. If $[C_V(S), L] = 1$ then $[_GV, L] = 1$.

Proof: By 3.4 $C_V(S \cap L) \leq C_V(L)$. So *L* centralizes $_LV$ and hence the lemma follows from 3.2.

Lemma 3.6 Let $L \triangleleft \triangleleft G$. Then $L \cap C_G(_GV) = C_L(_LV)$.

Proof: Let $L^* = C_L(_LV \text{ and } L_* = C_G(_GV)$. By 3.2 $L^* \leq L_*$. Moreover, L_* is subnormal in G and centralizes $C_V(S)$. Thus by 3.4 L_* centralizes $C_V(L_* \cap S)$. By 3.2 $_LV \leq _{L^*}V = C_V(L_* \cap S)$ and so $L_* \leq L^*$.

Lemma 3.7 Let $L \leq G$ with $G = LC_G(L)$. If V is CS-generated then [V, L] is a CSgenerated G-module and $V = [V, L]_G C_V(L)$

dualtrans

cc

c

c2

Proof: Let $S \in \text{Syl}_p(G)$, $T = S \cap L$, $R = S \cap C_G(L)$ and put $W = {}_LC_V(R)$. Then by Gaschütz theorem $W = [W, L]C_W(L)$. Moreover, $C_W(T) = C_{[W,L}(T)C_W(L)$. It follows that $[V, L] = \langle C_{[W,T}(T)^G \rangle$ and [V, L] is a CS geneated G-module. Moreover, $V = \langle W^G \rangle =$ $[V, L] \langle C_W(L)^G \rangle$ and so $V = [V, L]_G C_V(L)$.

gaschuetz

l3p

Lemma 3.8 Suppose that $G = \prod_{i \in I} L_i$ for some subgroups $L_i \leq G$ such that $[L_i, L_j] = 1$ whenever $i, j \in I, i \neq j$. For $\Delta \subseteq I$ let $L_{\delta} = \langle L_i | i \in \Delta$ and

$$V_{\delta} = [{}_{G}C_{V}(L_{I \setminus \Delta}, L_{i_{1}}, L_{i_{2}}, \dots L_{i_{r}}]$$

where $r = |\Delta|$ and $\Delta = \{i_1, \ldots, l_r\}$. (Note that by the Three Subgroup Lemma this definition is independent form the order in which the i_j 's are chosen). Also put $V_{\emptyset} = C_V(G)$.

Suppose that V is a CS-generated GF(p)G-modules. Then

$$V = \sum_{\Delta \subseteq I} V_{\Delta}.$$

Moreover, each of the V_{Δ} 's is CS-generated as G-module.

Proof: By 3.7 The V_{δ}^s are CS-generated as G-module and it remains to prove (*). For this we may assume without loss that V is not the direct sum of two proper CS-generated G-submodules. Let $\Delta = \{i \in I \mid [V, L_i] \neq O \text{ and let } i \in \Delta$. 3.7 implies $V = [V, L_i]_G C_V(L_i)$ with both summands CS generated. Hence $V = [V, L_i]$ and $V = V_{\delta}$.

4 Groups with $m_{2'}(G) \leq 3$

Lemma_{QT} **4.1** Let p be an odd prime, P a p group of exponent p, class at most two and epc2r3rank at most three. Then $P \cong E_{p^i}, i \leq 3, Ex(p^{1+2i}), i \leq 2$ or $C_p \times Ex(p^{1+2})$.

Proof: [As, 3.1,3.2]

*

Lemma_{QT} **4.2** Let p be an odd prime, G a irreducible subgroup of $GL_3(p)$ and $\Lambda = Z(GL_3(p))$ Then there exists an irreducible normal subgroup H of G so that one of following holds.

- 1. $H = SL(V) \cong SL_3(p)$.
- 2. $H = \Omega(V,q)$ for some non degenerate quadratic form q on V.
- 3. $H \cong Alt(5), p^2 \equiv 1 \mod 10 \text{ and } G \leq \Lambda \times H.$
- 4. $H \cong L_3(2), p^3 \equiv 1 \mod 7$ and $G \leq \Lambda \times H$.
- 5. $H \cong 3 \cdot Alt(6), p \equiv 1, 19 \mod 30$ and $G \leq \Lambda H$.

- 6. *H* is cyclic of order dividing $p^3 1$ but not p 1 and H = G or $|G/H| \cong C_3$.
- 7. $H \cong Ex(3^{1+2})$ and $G\Lambda/H\Lambda \leq SL_2(3)$.
- 8. G is monomial

Proof: [As, 3.12]

msp4p

Lemma_{QT} **4.3** Let p be an odd prime, V a four dimensional non-degenerate symplectic space over GF(p) and G a maximal subgroup of Sp(V). Then one of the following holds.

- (a) G is the normalizer of a singular 1-space in V and $G \sim Ext(p^{1+2}) : (C_{p-1} \times SL_2(p)).$
- (b) G is the normalizer of a singular 2-space in V and $G \sim E_{p^3} : GL_2(p)$
- (c) $G \sim SL_2(p^2).2$ and G' fixes a non-degenerated 2-dimensional sympectic form over $GF(p^2)$ on V.
- (d) $G \cong SL_2(p) \wr C_2$ and G fixes a decomposition of V into the orthorgonal sum of two non-degenerated 2-dimensional subspaces.
- (e) $G \sim GL_2(p).2$ and G fixes a decomposition of V into the direct sum of two singular 2-spaces.
- (f) $G \sim GU_2(p).2 \sim (C_{p+1} \cdot SL_2(p)).2$ and the subgroup of index 2 fixes a non-degenerate 2-dimensional unitary form over $GF(p^2)$ on V.
- (g) $G \cong SL_2(p)$ and V is the third symmetric power of the natural module for G.

(h)
$$G \sim Ext_{-}(2^{1+4}).Alt(5)(.2)$$

- (i) $G \sim 2 \cdot Alt(6)(.2)$ and V is the half-spin module for G
- (j) p = 7, $G \sim 2$ ·Alt(7) and V is the half-spinmodule for G

Proof: See [Mi, Theorem 10]. We remark that this list can be easily checked if one is only interested in K-groups. Namely let W be the natural $\Omega_5(p)$ module for $PSp_4(p)$, $H = Sp_4(p)$ and $\overline{H} = H/Z(H)$. We may assume that G acts irreducible on W.

If Sol() $\neq 1$ let A be a minimal solvable normal subgroup of \overline{G} . If A is cyclic, |A| divides $p^5 - 1$ and |H|. Hence |A| divides p - 1 and A acts as a scalar on W, a contradiction. So A is not cyclic and it is now easy to see that (h) holds.

If $\operatorname{Sol}(\overline{G}) = 1$, let E be a component of G. Since $O_2^{\pm}(p)$ is solvable, $[W, E]C_W(E)/C_W(E)$ is at least three dimensional. It follows that $C_H(G)$ is solvable and so $EZ(H) = F^*(G)$ and E acts irreducibly on W. If $Z(H) \not\leq E$, $m_2(Z(H)E) \geq 3$, a contradiction to $m_2(Z(H)) = 2$. Thus Z(E) = Z(H). Let V be the natural $Sp_4(p)$ module for H. If E does not act irreducible on V then since $V \wedge V = W \oplus GF(p)$, E is not irreducible on W. So E acts irreducible on W. Using the list of finite simple groups its now easy to verify that one of (g),(i) or (j) holds or that $E \cong 2 \cdot Alt(5)$. But in the latter case, G is contained in a subgroup of type (i) or (j). **Lemma**_{QT} **4.4** Let p be an odd prime, V a four dimensional non-degenerate symplectic space over GF(p) and $G \leq Sp(V)$ with $O_p(G) = 1$.

- (a) If $G = O^{p'}(G) \neq 1$, then one of the following holds:
 - 1. $G \cong Sp_4(p), SL_2(p^2), SL_2(p) \times SL_2(p)$ or $SL_2(p)$ 2. p = 7 and $G \cong 2 \cdot Alt(7)$.
 - 3. p = 5 and $G \sim 2$: $Alt(5), Ext_{-}(2^{1+4}).Alt(5), Ext_{-}(2^{1+4}).C_{5}$.
 - 4. p = 3 and $G \sim 2$ ·Alt(5), $Ext_{-}(2^{1+4})$. Alt(5), $Ext_{-}(2^{1+4})$. C_3 .

(b) If G is quasisimple then one of the following holds:

G ≅ Sp₄(p), SL₂(p²) or SL₂(p).
 G ≅ 2 · Alt(5) or 2 · Alt(6).
 G ≅ 2 · Alt(7) and p = 7.

Proof: [As, 3.13]

Lemma_{QT} **4.5** Let p be an odd prime, G a group with $F^*(G) = O_p(G) \stackrel{def}{=} Q$, $m(Q) \leq 3$ and $G^* = G/Q$.

(a) If $G = O^{p'}(G) \neq Q$, then one of the following holds:

1. $G^* \cong SL_2(p) \text{ or } SL_3(p).$ 2. $G^* \cong SL_2(p) \times SL_2(p), SL_2(p^2), \text{ or } Sp_4(q) \text{ and } m_p(G) > 3.$ 3. $p = 7 \text{ and } G^* \cong 2 \cdot Alt(7).$ 4. $p = 5 \text{ and } G \sim SL_2(5), Ext_-(2^{1+4}) \cdot Alt(5) \text{ or } Ext_-(2^{1+4}) \cdot C_5.$ 5. $p = 3, G \sim 2 \cdot Alt(5) \text{ or } Ext_-(2^{1+4} \cdot Alt(5) \text{ and } m_3(G) > 3.$ 6. $p = 3 \text{ and } G \sim Ext_(2^{1+4}) \cdot C_3$

(b) If G^* is quasisimple then one of the following holds:

- G* ≅ Sp₄(p), or SL₂(p²) and m_p(G) > 3.
 G* ≅ L₂(p), SL₂(p)orSL₃(p)
 Remark: SL₃(p) also should have m_p(G) > 3

 G* ≅ Alt(5), 2 · Alt(5) or 2 · Alt(6). Moreover, if p = 3 then m₃(G) > 3.
 G* ≅ L₃(2) and p³ ≡ 1mod7
- 5. $G^* \cong 3 \cdot Alt(6)$ and $p \equiv 1, 19 \mod 30$
- 6. $G \cong 2 \cdot Alt(7)$ and p = 7.

mp3Q

Proof: By [As, 3.13] we only need to show that $m_p(G) > 3$ in a.5, b.1 and for p = 3 in b.3. As in Aschbacher's proof let G be a minimal counterexample and D a critical subgroup of Q. As $G^* = O^p(G^*)$, $G = O^3(G)$.

Let t be an involution in G with $t^* \in Z(G^*)$. By minimality $G = DC_G(t)$ and without loss D = [D, t]. It follows that $D \cong Ext(p^{1+4})$. In particular, as $m(Q) \leq 3$, $\Omega_1(C_Q(D)) = Z(D)$. As G acts irreducible on D/Z(D), $Q = DC_Q(D)$. Since G centralizes $\Omega_1(C_Q(D))$, $G = O^3(G)$ centralizes $C_Q(D)$.

Considering the *p*-part of the Schur multiplier of G^* we see that $C_G(t)' \cong G^*$ or p = 3and $C_G(t)' \cong 3 \cdot SL_2(3^2)$. In any case there exists $X \leq C_G(t)'$ so that X is an elementary abelian *p*-group and $XD'/D' \cong C_p$. Moreover $[D, X, X, X] \leq D'$ and so $[Y, X] \leq D'$ for some $Y \leq D$ with $Y \cong E_{p^3}$. Since $Y = [Y, t] \times D'$ we have [Y, X] = 1 and so $YX \cong E_{p^4}$.

Definition 4.6 Let p be an odd prime, Q a p-group and H a group acting on Q.

- (a) $CR_Q(H)$ is the set of maximal, H-invariant, class 2 and exponent p, normal subgroups of Q.
- (b) We say that Q is H-homogeneous of rank n provide that there exists $A \in C\mathcal{R}_H(Q)$ so that $A \cong E_{p^n}$ and H acts irreducible on A.

homo

ccr

dcr

Lemma 4.7 Let p be an odd prime, Q a p-group, H a group acting on Q. Let $D \in C\mathcal{R}_Q(H)$ and $T = C_Q(D)$. Then $C\mathcal{R}_T(H) = \{Z(D)\}$. For $i \ge 0$ put $T_i = \Omega_i(T)$. Then $T_{i+1}/T_i = \Omega_1((T/T_i)) = \Omega_1(Z(T/T_i)) \in C\mathcal{R}T/T_i(H)$ and if $i \ge 1$, T_{i+1}/T_i is isomorphic to HQ-submodule $T_{i+1}^p T_{i-1}/T_{i-1}$ of T_i/T_{i-1} .

Proof: Let A = Z(D). Clearly $A \leq \Omega_1(Z(T))$. Let $A^* \in C\mathcal{R}_T(H)$. Then DA^* has class two und exponent p and so by maximality of D, $A^* \leq D \cap T \leq A$. By maximality of A^* , $A \leq A^*$ and so $A = A^*$ and $C\mathcal{R}_T(H) = \{A\}$. Let $C/A \in C\mathcal{R}_{Q/A}(H)$ and B/A = Z(C/A). Then B is of class two and $\Omega_1(B) = A$ by maximality of A. As p is odd the map

$$\phi: B/A \to A$$
$$bA \to b^p$$

is a HQ-homomorphism. As $\Omega_1(B) = A$, ϕ is one to one thus $B/A \cong B^p$ as HQ-module. Let $c, e \in C$ The $c^p \in A \leq Z(T)$ and so $c^p = (c^p)^e = (c^e)^p$ Put $d = cc^{-e}$. As $c^e \in cB, \langle c \rangle B$ has class two and p is odd, $d^p = c^p(c^e)^{-p} = 1$. It follows that $d \in \Omega_1(B) = A$. Hence $cA = c^e A$ for all $e \in C$ and so $cA \in Z(C/A) = B$. Thus C = B and $B/A \in C\mathcal{R}_{Q/A}(H)$. Since T centralizes $B^p \leq A$, T/A centralizes B/A. The lemma now follows by induction on |T|.

Corollary 4.8 Let p be an odd prime, Q a p-group, H a group acting on Q and $D \in C\mathcal{R}_Q(H)$. Then $C_H(D)/C_H(Q)$ is p-group.

Proof: Note first that $C_H(D)$ centralizes $Q/C_Q(D)$ and Z(D). Let T and T_i be as 4.7. Then by 4.7, $C_H(D)$ centralises all factors of the normal series

$$1 = T_0 \le T_1 \le T_2 \cdot T_k = T \le Q.$$

Thus $C_H(D)/C_H(Q)$ is a *p*-group.

Lemma 4.9 Let p be a prime with $p \ge 5$, $A \cong C_{p^2} \times C_{p^2}$ and $t \in Aut(A)$ with $t^p = 1$. Then t centralizes $\Omega_1(A)$. In particular, Aut(A) has no subgroup isomorphic to $SL_2(p)$.

Proof: Identify t which its image in the ring End(A). Since $|A| = p^4$ we have $(t-1)^4 = 0$ and since $p \le 4$ we get

(1) $(t-1)^p = 0$

Since $|A^p| = p^2$ we have

(2)
$$p(t-1)^2 = 0$$

Since $t^p = 1$ we have

(3) $t^p - 1 = 0$

Consider the polyonial $f(x) = x^{p-1} + x^{p-2} + ... + x + 1 \in Z[x]$. Since $f(x) \equiv (x - 1)^{p-1} \mod p$, $f(x) = (x - 1)^{p-1} + p \cdot g(x)$ for some $g(x) \in Z[x]$. Write g(x) = h(x)(x - 1) + d for some $h(x) \in Z[x]$, $d \in Z$. Then $p = f(1) = p \cdot d$ and so d = 1 and $f(x) = (x - 1)^{p-1} + p \cdot h(x)(x - 1) + p$. Since $f(x)(x - 1) = x^p - 1$ we obtain

(4)
$$x^p - 1 = (x - 1)^p + h(x)p(x - 1)^2 + p(x - 1)$$

Substituting t for x in (4) and using (1) to (3) we obtain

(5)
$$0 = p(t-1)$$

Hence t centralizes $A^p = \Omega_1(A)$.

Lemma_{QT} **4.10** Let G be a finite, perfect K-group with $O_2(G) = 1$ and $m_{2'}(G) \leq 3$.

pe = 3

- (a) G is the central product of its Sol-components.
- (b) If G is a Sol-component of G then one the following holds:

- (b1) G is quasisimple and if G/Z(G) is a group of Lie type in characteristic 2 or an alternating group then G/Z(G) is one of the following: $Alt(n), 5 \le n \le 11;$ $L_n(q), n \le 4;$ $L_n(2), n \le 7;$ $Sp_{2n}(q), n \le 3;$ $G_2(q);$ $U_n(q), n \le 4;$ Sz(q); $\Omega_8^-(q);$ $^3D_4(q);$
 - ${}^{2}F_{4}(q).$
- (b2) $F^*(G) = F(G)$. Let p be a prime dividing |[F(G), G]| and put $Q = [O_p(G), G]$. Then one of the following holds:
 - 1. $G/F(G) \cong 2$ ·Alt(5) or $SL_2(p)$, and $Q \cong Ext(p^{1+2})$ or Q is of G homogenous of rank 2.
 - 2. $G/F(G) \cong SL_3(p); L_3(2)$ ($p^3 \equiv 1 \mod 7$); $L_2(p); (2^{\cdot})Alt(5); or (2^{\cdot})3^{\cdot}Alt(6)$ ($p \equiv 1, 19 \mod 30$ and Q is G-homogenous of rank 3.
 - 3. $G/F(G) \cong SL_2(p), 2 \cdot Alt(5), (3 \cdot)2 \cdot Alt(6) \text{ or } 2 \cdot Alt(7) \text{ (and } p = 7) \text{ and } Q \cong Ext(p^{1+4}).$
- (c) Let E be quasisimple so that E/Z(E) is alternating or a group of Lie type in characteristic 2. Suppose that G is a central product of r copies of E with $r \ge 2$. Then $r \le 3$ and one of the following holds:
 - (b1) $E/Z(E) \cong L_2(q), L_3(2) \text{ or } Sz(q).$
 - (b2) $E \cong 3 \cdot Alt(6)$ or $SL_3(4)$, r = 2 and |Z(G)| = 3.

Proof: (a) Let L be a Sol-component of G.

Suppose first that L does centralize all its distinct conjugates under G. Then $|L^G| \leq 3$ and as Sym(3) is solvable, G normalizes L. As L is a \mathcal{K} -group, Out(L/Sol(L)) is solvable and so $G = LC_G(L/Sol(L))$. Bu induction $C_G(L/Sol(L)^{\infty})$ is the central product of its Sol-components.

Hence we may in any case assume that there exist distinct Sol-components L_1 and L_2 of G with $[L_1, L_2] \neq 1$. Note that $[L_1, L_2] \leq Sol(G)$ and by induction $G = L_1L_2$. Moreover, L_i is normal in G. If $[F(G), L_1, L_2] = 1$ and $[F(G), L_2, L_1] = 1$ we get $[L_1, L_2] \leq C_G(F^*(G) \leq F(G))$ and so $[L_1, L_2] = [L_1, L_2, L_2] = [L_1, L_2, L_1, L_2] \leq [F(G), L_1, L_2] = 1$, a contradiction. Hence we may assume that $[O_p(G), L_1, L_2] \neq 1$ for some odd prime p. Put $Q = O_p(G)$ and $D \in C\mathcal{R}_Q(G)$. Then $[D, L_1] \neq 1 \neq [D, L_2]$. We conclude that $D \cong Ext(p^{1+4})$ and $[D, L_1, L_2] = 1$. Moreover, $[D, Q] \leq D'$, $Q = C_Q(D)D$, $C_Q(D)$ is cyclic and so $[C_Q(D), G] = 1$. Thus $[Q, L_1, L_2] = [D, L_1, L_2] = 1$, a contradiction. (b) If $E(G) \neq 1$, then G is clearly a component of G and it is now easy to verify that (b1) holds.

So suppose that E(G) = 1. Then by definition $F^*(G) = F(G)$. Let p and Q be as in (b2). Let $D \in C\mathcal{R}_Q(G)$, $D^* = D/D'$ and $\overline{G} = G/C_G(D^*)$. Let R be minimal in Gwith respect to $D \leq R$ and $G = RC_G(D)$. Then $C_R(D)D/D$ is nilpotent and so $C_R(D)$ is nilpotent. In particular, $F^*(R/O_{p'}(R))$ is a p-group.

Assume that $\operatorname{Sol}(\overline{G}) \neq O_p(\overline{G})Z(\overline{G})$. Then its easy to see that $D \cong Ext(p^{1+4})$ and $\overline{G} \sim Ext_{-}(2^{1+4}).Alt(5)$. Moreover, by 4.55, applied to $R/O_{p'}(R), p > 3$.

Assume that $O_p(\overline{G} \neq 1)$. Then $D \cong E_{p^3}$, $C_p \times Ext(p^1 + 2)$ or $Ext(p^{1+4})$. Mostly without loss, (**TO BE CONTINUED**) G = R and $O_{p'}(G) = 1$.

Suppose that $D \cong Ext(p^{1+4})$ and let A/D' be a minimal G invariant subgroup of D/D'. If |A/D'| = p we get conclude that [A, G'] = 1 and so [A, G] = 1 and [A, D] = 1, a contradiction. Hence $|A/D^p rime| = p^2$ and $\overline{G} \sim p^3 SL_2(p)$ or $p^3 2 \cdot Alt(5)$. Let t be an involution in which inverts A/D'. Then $C_G(t) \sim p^{1+3}SL_2(p)$ or $p^{1+3}2 \cdot Alt(5)$ and so contains a normal E_{p^4} , a contradiction.

Suppose that $D \cong C_p \times Ext(p^{1+2})$. Then G = G' centralizes Z(D) and Z(D)/D' and so $Z(D) \leq Z(G)$. By 4.7 we conclude that G also centralizes $C_Q(D)$ and so $C_Q(D) = C_Q(G)$. Let t be an involution in G inverting D/Z(D). Then $Q/C_Q(D)$ has order p^4 and is inverted by t. Thus $Q/C_Q(D)$ is abelian and $Q' \leq Z(G)$. In particular Q has class two and so $\Omega_1(Q) = D$. Let $x, y \in Q$ so that t inverts x and y and $Q = C_Q(D)D\langle x, y \rangle$. Since t inverts $x^p, x^p \in D$ and since $x^p \neq 1$, we conclude that $D = \langle x^p, y^p \rangle Z(D)$ and so $Q = C_Q(D)\langle x, y \rangle$. Hence $Q' = \langle [x, y] \rangle$ is cyclic and so $Q' \cap D = D'$. Thus $[Q, D] \leq D'$ and $[D^*, Q] = 1$, a contradiction.

Thus $D \cong E_{p^3}$ and so $Q/C_Q(D) \cong E_{p^2}$. We will use 4.7 without further reference. In particular we are done if G normalizes a hyperplane in Q. So suppose $|C_D(G)| = p$. Let T and T_i be as in 4.7. Let t be an involution in G inverting $D/C_D(G)$. Assume first that T = D. The t inverts $Q/C_D(G)$ and thus $Z(Q) = Q' = C_D(G)$. It follows that Q is extra special, a contradiction to $D \in C\mathcal{R}_Q(G)$. Thus $T \neq D$. Let $A/D = C_{T/D}(G)$. Note that $C_Q(t) = C_T(t)$ is cyclic and $A = C_A(t)D$. Thus t inverts $Q/C_Q(A)$. It is now easy to see in Aut(A) that $C_Q(A) = T$ and $A = C_A(G)D$. If $T_2 \neq A$ put $B = T_2$ otherwise let B = Q. Note that since G is perfect, Q = [Q, t] and T = [T, t]Q'. But $|Q'[T, t]/[T, t] \leq p$ and so if $A = T_2$, A = T. Hence in any case $|B/A| = p^2$, [B, Q]D = A and t inverts $B/C_A(G)$. In particular, $B' \leq C_A(G)$. Since t centralizes $Hom(B/A, A/C_A(G))$, $[B, Q] \leq C_A(G)$. If $Q/C_Q(B)$ has exponent p we conclude that [B, Q] has exponent p and $[B, Q] \leq D$, a contradiction. Thus $Q/C_Q(B) \cong C_{p^2} \times C_{p^2}$ and hence $Q^p = T$. Hence $[B, T] = C_D(G)$,

Assume that $\operatorname{Sol}(\overline{G} = Z(\overline{G})$. Then as G is a Sol-component, \overline{G} is quasisimple.

Remark: Lots of case with $L/F(G) \cong 2 \cdot Alt(5)$ or $Ext_{-}(2^{1+4} \text{ need to be worked})$ into the statement of the theorem, 4.9 has to be used to exclude smilar cases for $SL_2(p)$ TO BE CONTINUED

Lemma 4.11 Let $G \cong Sym(\Omega)$ or $Alt(\Omega)$, $|\Omega| = n$ finite, and H a maximal subgroup of G such that |G/H| is odd.

ParAlt

- (a) For an integer k let $b_2(k) = \{2^i \mid a_i \neq 0\}$ where $k = \sum_{i=1}^n a_i 2^i$ with $a_i \in \{0, 1\}$. Then one of the following holds.
 - 1. $H = N_G(\Lambda)$ where $\Lambda \subset \Omega$ and $b_2(|\Lambda|) \subseteq b_2(\Omega)$
 - 2. $H = N_G(\Pi)$, where Π is a partition of Ω into m parts of size l and l is a power of 2 dividing n.
 - 3. G = Alt(7) and $H \cong L_3(2)$.
 - 4. G = Alt(8) and $H \sim 2^3 : L_3(2)$.
- (b) If G = Alt(7), then $H = L_3(2)$, Alt(6), Sym(5) or Sym(3) $\land Sym(4)$.
- (c) If G = Sym(7), then H = Sym(6), $Sym(5) \times C_2$ or $Sym(3) \times Sym(4)$.
- (d) If G = Sym(9) then H = Sym(8).
- (e) If G = Sym(10), then $H = Sym(8) \times C_2$ or $C_2 \wr Sym(5)$.
- (f) If G = Sym(11), then $H = Sym(8) \times Sym(3)$, $Sym(9) \times C_2$ or Sym(10).
- (g) If G = Alt(n), $n \ge 9$, then $H = H^* \cap Alt(n)$ for some maximal subgroup H^* of Sym(n) which contains a Sylow 2-subgroup of Sym(n).

Proof: Remark: Maybe we should find a reference, below is a the sketch of aproof

If $G = Sym(\Omega)$, this easily follows since the subgroup of H generated by the 2-cycles in H is a direct product of natural embedded symmetric groups. So we may assume that $G = Alt(\Omega)$ and $N_{Sum(\Omega)}(H) \leq Alt(\Omega)$. Moreover, we may assume that H acts primitively

on Ω . Let $X \subset \Omega$ with |X| = 4 and $A_X \stackrel{def}{=} O_2(\operatorname{Alt}(X)) \leq H$. Let $h \in H$.

If $|X \cap X^h| = 3$, then $\langle A_X, A_X^h \rangle = Alt(X \cup X^h)$ and so H = G, a contradiction. If $|X \cap X^h| = 1$, then $|X \cap X^a| = 3$ for all $a \in A^h_X$, a contradiction to by previous case.

Thus $|X \cap X^h| \in \{0, 2, 4\}$ for all $h \in H$.

Let V be the power set of Ω viewed as a vector space over GF(2) and endowed with the natural symmetric form. It follows that $U \stackrel{def}{=} \langle X^H \rangle$ is a singular subspace of V and all sets in U have size divisible by 4. Moreover if $|X \cap X^{h}| = 2$, then $X + X^{h}$ is in $\langle A_{X}, A_{X}^{h} \rangle$ conjugate to X and X^h . Since $X \cap X^h$ is not a set of imprimitively, there exists $l \in H$ with $|X \cap X^h \cap X^l \cap X^{hl}| = 1$ It follows that $|X \cap X^h \cap Y| = 1$ or some $Y \in \{X^l, X^{hl}\}$. Let $Z = X \cup X^h \cup Y$. Since $|X \cap Y| = |X^h \cup Y| = 2$ we get |Z| = 7. Put $L = \langle A_X, A_X^h, A_Y \rangle$ then $L \cong L_3(2)$. If $n \leq 7$ we are done. If $n \geq 8$, there must exists $k \in H$ with $Z \cap \widehat{X}^k \neq \emptyset$ and $X^k \not\subset Z$. Since $\overline{X^k}$ is perpendicular to $\langle X^L \rangle$ we get that $|Z \cap X^k| = 3$ (and indeed $Z \cap X^k = Z \setminus X^r$ for some $r \in L$. Let $W = Z \cup X^k$ and $K = \langle L, A_X^k$. Then $K \cong 2^3 : L_3(2)$. We n = 8 then K = H and we are done. If $n \ge 9$ then there exists $s \in H$ with $W \cap X^s \neq \emptyset$ and $X^s \not\subset W$. Since K acts transitively on W, we conclude that X^s intersects each subset of sixe seven in W in O or 3 elements, a contradiction, which completes the proof of the lemma.

5 Subnormal Subgroups

Lemma 5.1 Let G be a finite group, L a subnormal subgroup of G, Q a normal q-subgroup of G and R a subgroup of G which centralizes L and $N_Q(L)$. Then $O^q(R)$ centralizes Q.

Proof: Without loss $R = O^q(R)$. Suppose the lemma is false and let X be minimal in Q such that L and R normalize X, and R does not centralize X. Then $[X, R, R] \neq 1$ and so X = [X, R]. As $O^q(L)$ is subnormal in $Q^q(L)X$ and X is a q-group we conclude that $[X, O^q(L)] \leq L$. Thus R centralizes $[X, O^q(L)]$ and hence $[X, Q^q(L)] \neq X$. But this implies $[X, L] \neq X$ and so by minimal choice of X, [X, L, R] = 1. The three subgroup lemma implies [X, R, L] = 1 and thus [X, L] = 1 and $X \leq N_Q(L)$. We conclude that [X, R] = 1 and the lemma is established.

Lemma 5.2 Let G be a finite group, π a set of primes and L a subnormal subgroup of G such that $L = O^{\pi}(L)$. Then $E_{\pi}(N_G(L)) = E_{\pi}(G)$.

Proof: Note first that $N_G(L) = N_G(LO_\pi((G)))$, $E_\pi(G/O_p(G)) = E_\pi(G)/O_\pi(G)$ and $E_\pi(N_G(L)/O_\pi(G)) = E_\pi(N_G(L)/O_p(G))$. Thus we may assume that $O_\pi(G) = 1$.

Put $H = N_G(L)$. Since E(G) normalizes L we have $E(G) \leq E(H)$. Let R be the group generated by $O_{\pi}(H)$ and the π -components of H which are not contained in E(G). Then R centralizes E(G) and $F(G) \cap H$. By the previous lemma applied with Q a Sylow subgroup of F(G) we conclude that R centralizes F(G) and $F^*(G)$. Thus $R \leq F^*(G)$ and since $E_{\pi}(H) = E(G)R$, $E_{\pi}(H) = E_{\pi}(G) = E(G)$.

Corollary 5.3 Let G be a finite group, p, q distinct primes and L a subnormal subgroup of G such that $L = O^p(L)$ and $L/O_p(L)$ is a q-group. Then $O^q(F_p^*(N_G(L)) = O^q(F_p^*(G)))$.

Proof: Apply the previous lemma with $\pi = q'$.

Lemma 5.4 Let G be a finite group and L a subgroup of G such that $L = O^p(L)$, $O_p(L) \neq 1$ and $L_O(L)$ is either quasi-simple or a q-group. Then L is subnormal in at most one maximal p-local subgroup of G containing $N_G(L)$.

Proof: Let M_1 and M_2 be maximal *p*-locals of *G* containing $N_G(L)$. By the previous lemma $E_p(M_1) = E_p(N_G(L)) = E_p(M_2)$. As $O_p(L) \neq 1$, $O_p(E_p(N_G(L))) \neq 1$ and so $N_G(E_p(N_G(L)))$ is a *p*-local containing M_1 and M_2 . Thus $M_1 = M_2$.

6 Nice Modules

Definition 6.1 Let H be group and V a faithful GF(p)H-module. Then

- 1. $a_V(H)$ is defined by $|V/C_V(H)|^{a_V(H)} = |H|$.
- 2. $qa_V(H) = \min\{a_V(A) \mid 1 \neq A \leq H, [V, A, A] = 1\}$, where $qa_V(H) = \infty$ if H has no nontrivial quadratic subgroups.

OqF

USN

NM davh

pi

- 3. $ra_V(H)$ is the minimum of the $qa_W(H)$, where W runs through the non-trivial composition factor for H on V
- 4. Let a be a positive real number. Then V is called an Fa module if $qa_V(H) \leq a$ and an F^*a module if $qa_V(H) < a$.
- 5. An FF-module is an F1-module.

Lemma 6.2 Let G be a finite group, p an odd prime, $S \in Syl_2(G)$ and V a faithful GF(2)-module. Suppose that

- (i) $G = O_p(G)S$.
- (ii) [V, S, S] = 0.

The there exists a set of hyperplanes \mathcal{H} of S and G-submodules V_H , $H \in \mathcal{H}$ so that

- (a) $V = C_V([O(G), S]) \oplus oplus_{H \in \mathcal{H}} V_H$
- (b) For all H in \mathcal{H} , H centralizes V_H .

Proof: We may assume without loss that V is not the direct sum of two proper Gsubmodules. Put $P = O_p(G)$ and Q = [P, S]. If Q = 1 we are done. So suppose $Q \neq 1$ and let E be a normal subgroup of G in Q minimal with respect to $[E, Q] \neq 1$. Let $F = C_E(QS)$. Then by minimality of E, G acts irreducibly on E/F. In particular, $[E, P] \leq F$, S inverts E/F and |E/F| = p. Since $F \leq Z(Q) \cap E \leq Z(E)$, E is abelian. Then also $[\Omega_1(E), S] \neq 1$ and hence E is elementary abelian. Let $T = C_S(E)$. Then |S/T| = 2.

Suppose first that F = 1. Then $E = [E, S] \leq \langle S^E \rangle \leq C_G([V, T])$. Since $C_V(E) = 0$, T = 1 and the lemma holds.

Suppose next that $F \neq 1$ and ley \mathcal{D} be the set of all hyperplanes D in E with $C_V(D) \neq$. Then

$$V = \bigoplus_{D \in \mathcal{D}} C_V(D).$$

As V is indecomposable, G acts transitively on \mathcal{D} . Moreover, T is a Sylow 2 subgroup of $C_G(E)$ and so $G = N_G(T)C_G(E)$. In particular, $N_G(T)$ acts transitively on \mathcal{D} . We may assume that $[C_V(D), T] \neq 0$ for some $D \in \mathcal{D}$ and so $[C_V(D), T] \neq 1$ for all $D \in \mathcal{D}$. As $[C_V(D), T, S] = 0$, S normalizes $C_V(D)$ and D. Since $F \neq 1$ and $F \leq G$, $F \notin \mathcal{D}$. Hence E = FD and $[E, S] = [D, S] \leq D$. It follows that $[E, S] \leq \bigcap_{D \in calD} D$, contradicting the minimal choice of E.

FFMP

oqu

Lemma 6.3 Let H be finite group such that the Sylow subgroup is contained in a unique maximal subgroup of H. Let V be a faithful GF(2) FF-module for H. Then H has a normal subgroup $L = L_1 \times L_2 \times \ldots \times L_k$ such that

(a) $L_i \cong SL_2(q)$ or Sym(q+1), q power of 2.

- (b) Put $\overline{V} = V/C_V(L)$ and $V_i = [V, L_i]$. Then $\overline{V} = \overline{V_1} \oplus \overline{V_2} \oplus \ldots \oplus \overline{V_k}$ and $\overline{V_i}$ is a natural $SL_2(q)$ -module for $\overline{L_i}$.
- (c) H = LS and S transitively permutes the L_i 's.

F * 2

Lemma 6.4 Let H be finite simple group such that the Sylow subgroup is contained in a unique maximal subgroup of H. Let V be a faithful faithful GF(2) F^*2 -module for H. Then either V is an FF-module or H has a normal subgroup $L = L_1 \times L_2 \times \ldots \times L_k$ such that **Remark: maybe we should do all F2 modules, even the non-quadratic ones**

- (a) $L_i \cong \text{Alt}(q+1)$, $SL_3(q)$ or $O_4^{\pm}(q)$, q a power of two.
- (b) Put $\overline{V} = V/C_V(L)$ and $V_i = [V, L_i]$. Then $\overline{V} = \overline{V_1} \oplus \overline{V_2} \oplus \ldots \oplus \overline{V_k}$ and either $L_i \cong \operatorname{Alt}(q+1)$ and $|\overline{V_i}|$ is natural module or $L_i \cong SL_3(q)$ and $\overline{V_i}$ is the direct sum of a natural module and its dual.
- (c) H = LS and S transitively permutes the L_i 's.
- (d) If $L_i \cong SL_3(q)$, then some element of $N_H(L_i)$ induces a graph automorphism on L_i .

dtendec

qtp

- **Definition 6.5** Let K be a field, H a group and V a KH-module. Then a tensor decomposition of V for H is a tuple $(F, V_i, i \in I)$ such that
 - (a) $F \leq \operatorname{End}_K(V)$ is a field with $K \leq F$.
 - (b) H acts F-semilinear on V.
 - (c) Put $E = C_H(F)$ (the largest subgroup of H acting F-linear on V). Then V_i is an FE-promodule.
 - (d) As FE-modules, V and $\bigotimes_F \{V_i \in I\}$ are isomorphic.

Lemma 6.6 Let Q be a group with $|Q| \ge 3$. $1 \ne Z \le Z(Q)$, K a field with charK = p, p a prime, V a faithful KQ-module with [V, Z, Q] = 0 and $(F, V_i, i \in I)$ a tensor decomposition of V for Q. Then Q acts F-linear and one of the following holds:

- 1. There exists $i \in I$ so that $[V_i, Z, Q] = 0$ and Q acts trivially on all other V_i 's.
- 2. p = 2, Q is F-linear and there exist $i, j \in I$, $a_k \in \operatorname{End}_F(V_k)$ with $a_k^2 = 0$ (k=i,j) and a monomorphism $\lambda : Q \to (F, +)$ so for $q \in Q$,
 - (a) For k = i, j, q acts on V_k as $1 + \lambda(q)a_i$.
 - (b) Q centralizes all V_s 's with $s \neq i, j$.

Proof: Note first that as Z acts quadratically on V, Z is an elementary abelian p-group. Also [V, Z, Q] = 0 and [Q, Z] = 1. So the three subgroup lemma implies that [V, Q, Z] = 1.

Suppose that Q does not act F-linear. Note that z induces some field automorphism σ on F. Let F_{σ} be the fixed field of σ in F. As z is quadratic on V, $f - f^{\sigma} \in F_{\sigma}$ for all $f \in F$. It easy to see that this implies $F = F_{\sigma}$ or p = 2 and F_{σ} has inded two in F. Moreover, [V, z] is an F_{σ} -subspace centralized by Q. So Q is F_{σ} and $F_{\sigma} \neq F$. Since $[V, C_Q(F)]$ is an F-spave centralizes by z, $C_Q(F) = 1$. Thus |Q| = 2 in contradiction to the assumptions.

Suppose from now on the Q is F-linear. Since Z is a p-group, we may assume that the V_i 's are actually FZ-modules and not only promodules. If Q acts trivially on some V_k , V is a direct sum of copies of the FQ-module $\bigotimes_F \{V_i \mid i \in I - k\}$. So the latter has the same properties as V. Thus we may assume for now on that Q acts non-trivially on each V_i . If |I| = 1, then 1. holds

Suppose next that |I| = 2 and say $I = \{1, 2\}$. Note that

$$[C_{V_1}(Z) \otimes V_2, Z] = C_{V_1} \otimes [V_2, Q].$$

Q acts as scalars on $[V_2, Z]$ and $[V_1, Z]$. Hence we may choose the promodules V_1 and V_2 so that $[V_i, Z, Q] = 0$ for i = 1, 2. For $q \in Q$ let q_i be the endomorposim q - 1 of V_i . Then $z_i q_i = 0$. Moreover, in $\operatorname{End}_F(V_1 \otimes V)$,

$$z - 1 = (1 + z_1) \otimes (1 + z_2) - 1 \otimes = z_1 \otimes 1 + 1 \otimes z_2 + z_1 \otimes z_2.$$

Thus [V, z, q] = 0 implies

$$z_1 \otimes q_2 = -q_1 \otimes z_2$$

If $z_1 = 0$ then as V is faithful, $z_2 \neq 0$. Thus the previous equation implies $q_2 = 0$ for q, a contradiction to the assumption that Q does not centalize V_2 . Hence both z_1 and z_2 are not zero. Choosing q = z we see that p = 2. Hence for arbitrary q, $q_1 = \lambda(q)z_1$ and $q_2 = \lambda(q)z_2$ for some $\lambda(q) \in F$. Thus 2. holds in this case.

Suppose now that $|I| \geq 3$. Say $1, 2 \in I$ and but $W = \bigotimes_F \{V_i \mid i \in I \setminus \{1, 2\}$. Then $V \cong (V_1 \otimes V_2) \times W$. Then by the prviuos case Q acts faithfully on $V_1 \otimes V_2$ z - 1 and q - 1 are linear dependent on $V_1 \otimes V_2$. Let $\lambda = \lambda(q)$ be as above. Then on $v_1 \otimes v_2$

 $q-1 = (1+\lambda z_1) \otimes (1+\lambda z_2) - 1 \otimes 1 = \lambda(z_1 \otimes 1 + 1 \otimes z_2 + \lambda z_1 \otimes z_2).$

On the other hand $z - 1 = z_1 \otimes 1 + 1 \times z_2 + z_1 \otimes z_2$ and we conclude that $\lambda = 0, 1$ and so |Q| = 2, a contradiction.

Definition 6.7 Let H be a finite group, F a finite field, V a finite dimensional FH-module and s a postive real number.

(a)

$$P_s(H,V) = \{A \le H \mid |A|^s | C_V(A) | \ge |B|^s | C_V(B) | \text{ for all } B \le A\}$$

.

$$\mathbf{P}_{s}^{*}(H, V) = \{A \in \mathbf{P}_{s}(H, V) \mid |A|^{s} |C_{V}(A)| > |B|^{s} |C_{V}(B)| \text{ for all } C_{A}(V) < B < A\}$$

(c)
$$PQ_s(H, V) = \{A \in P_s(H, V) \mid [V, A, A] = 0$$

(d) $PQ_s^*(H, V) = \{A \in P_s^*(H, V) \mid [V, A, A] = 0$

Lemma 6.8 Let H be a finite group, F a finite field, V a finite dimensional FH-module, s a postive real number and $A \leq H$.

- (a) $A \leq P_s(H, V)$ if and only if $|W/C_W(A)| \leq |A/C_A(W)|^s$ for all $W \leq V$.
- (b) $A \in P_s^*(H, V)$ if and only if $|V/C_V(A)| \leq |A|^s$ and for each $W \leq A$ one of the following holds:
 - 1. [W,A]=0.2. $C_A(W) = C_A(V).$
 - 3. $|W/C_W(A)| < |A/C_A(W)|^s$.
- (c) Let $A \in P_s(H, V)$ and W an FA-submodule in V. Then $A \in P_s(N_H(W), W)$.
- (d) Let $A \in P_s^*(H, V)$ and W an FA-submodule in V. Then $A \in P_s^*(N_H(W), W)$.

Proof: (a) Suppose first that $A \in P_s(H, V)$ and let W be a F-subspace of V. Let $B = C_A(W)$. Then $W \leq C_V(B)$. Since $A \in P_s(H, V)$ we have $|C_V(B)/C_V(A)| \leq |A/B|^s$ and thus

bpgv - 1

bpqv - 1

(1)

$$|W/C_W(A)| \le |C_V(B)/C_V(A)| \le |A/B|^s = |A/C_A(W)|^s.$$

Suppose next that $|W/C_W(A)| \leq |A/C_A(W)|^s$ for all $W \leq V$ and let $B \leq A$. Put $W = C_V(B)$. Then $B \leq C_A(W)$ and

(2)

$$|C_V(B)/C_V(A)| \le |W|/|C_W(A)| \le |A/C_A(W)|^s \le |A/B|^s.$$

(b) Suppose first that $A \in P_s^*(H, V)$ and let W be a F-subspace of V. Let $B = C_A(W)$ Then $W \leq C_V(B)$. If A = B, then 1. holds. If $B = C_A(V)$, then 2. holds. So assume $C_A(V) < B < A$. Then by minimalty of |A| the middle " \leq " in (2) becomes a "<" and so 3.holds. Suppose next that $|V/C_V(A) \leq |A/C_A(V)|^s$ and that 1.,2. or 3. holds for each $W \leq V$. Let B < A. Put $W = C_V(B)$. If 1. holds then, $C_V(A) = C_V(B)$ and so clearly $|A|^s |C_V(A)| > |B|^s |C_V(B)|$. If 2. holds then $B \leq C_A(V)$ and so $|A|^s |C_V(A)| \geq |V||C_A(V)|^s \geq |C_V(B)||B|^s$. If 3. holds then the middle " \leq " in ?? becomes a "<" and (b) is proved.

Finally (c) follows from (a), and (d) from (c) and (b).

Lemma 6.9 Let H be a finite group, F a finite field V a finite dimensional FH-module and s a postive real number with $s \leq 2$. Let $A \in PQ_s(G, V)$

- (a) Suppose that Δ is a System of imprimitivity for A on V and $U \in \Delta$.
 - (a.a) One of the following holds:
 - 1. A normalizes U.
 - 2. |F| = 2 = |U| and $s \ge 1$.
 - 3. $|F| \in \{2, 4\}, |U| = 4 \text{ and } s = 2.$
 - (a.b) If in addition $A \in P * (H, V)$ and either (a.a.2) with s = 1 or (a.a.3) holds, then |A| = 2 and A centralizes $\angle \Delta \setminus U^A \rangle$.
- (b) Suppose that $V = \bigotimes_{i=1}^{n} V_i$ for some FH-module $V_i, 1 \le i \le n$ and that $[V_1, A] \ne 0 \ne [V_2, A]$ and $\dim_F V_i > 1$. Then n = 2, s = 2, $\dim_F V_1 = 2 = \dim_F V_2$, $C_A(V_1) = C_A(V_2) = C_A(V)$ and $|A/C_A(V)| = q$.

Proof: (a) Let $W = \langle U^A \rangle$ and suppose that A does not normalize U. Since A acts on W, we get char F=2, $[U, N_A(U)] = 0$ and $|U^A| = 2$. Thus $|A/C_A(W)| = 2$. Hence by 6.8c, $W/C_W(A) \leq 2^s$. Since $U \cap C_W(A) = 0$ we get $|U| \leq 2^s$ and so 2. or 3. holds. Suppose that $A \in P*(G, V)$ and either 2. with s = 1 or 3. holds. Then $|W/C_W(A)| = |A/C_A(W)|^s$. Thus by 6.8b, $C_A(V) = C_A(W)$. Since $|V/C_V(A)| \leq |A/C_A(W)|^s$ we conclude $V = WC_V(A)$ and so (a) is proved.

(b) If $|A| \ge 3$, this follows this is an easy consequence of 6.6. If |A| = 2 we get $|V/C_V(A)| \le 2^s \le 4$ and again (b) is easily verified.

Lemma 6.10 *F* a finite field , *A* a finite group, *V* a *n*-dimensional *FA*-module with $[V, A] \neq 0 = [V, A]$ and *s* defined by $|V/C_V(A)| = |A/C_V(A)|^s$. Then $s \ge \frac{1}{\dim_F[V, A]} \le \frac{1}{n-1}$.

Proof: We may assume that A acts faithfully on V. Let $m = \dim_F V/C_V(A)$ and $k = \dim[V, A]$. Then $A \leq |F|^{km}$ and so

$$|V/C_V(A)| = |F|^m \le |A|^s \le |F^{kms}.$$

Thus $m \le kms$ and $s \le \frac{1}{k} \le \frac{1}{n-1}$.

lbfs

bqpgv

Lemma 6.11 Let H be a finite group, p a prime and V an irreducible, faithful GF(p)Hmodule. Let s be a positive integer with $s \leq 2$ and $L = \langle PQ_s^*(H, V) \rangle$. Suppose that $L \neq 1$ and that L acts irreducible on V. Let $A \in PQ_s^*(H, V)$ and $F = End_L(V)$, then one of the following holds:

1.
$$p = 2, 3, L \cong SL_2(p), |A| = p, |F| = p, \dim_F V = 2 \text{ and } s \ge 1.$$

- 2. p = 2, $L \cong Dih(D_{10}, |A| = 2, |F| = 4, \dim_F V = 2$ and s = 2.
- 3. p = 2, $L \cong SU_3(2)'$, |A| = 2, |F| = 4, dim_F V = 3 and s = 2.
- 4. $p = 2, 3, L \cong SL_2(p) * SL_2(p), |A| = p, |F| = p, \dim_F V = 4 \text{ and } s = 2.$
- 5. $p = 2, L \cong SL_2(F) \times SL_2(F), |A| = |F|, |F| \ge 4, \dim_F V = 4 \text{ and } s = 2.$
- 6. $p = 2, L \cong O^4_+(F), |A| \le 2|F|, |V/C_V(A)| = |F|^2, |F| \ge 4, \dim_F V = 4 \text{ and } s \ge \frac{4}{3}.$
- 7. p = 3, $L \sim \text{Ext}_{-}(2^{1+4})$. Alt(5), |A| = 3, |F| = 3, $\dim_F V = 4$ and s = 2.
- 8. $p = 2, L \cong Sym(5) \text{ or } Sym(3) \land Sym(5), |A| = 2 \text{ or } A \leq L', F| = 2, \dim_F V = 4,$ $s = 2 \text{ and } |\operatorname{End}_{L'}(V)| = 4.$
- 9. $p = 2, s = 2, F \leq 4$. There exists a system of imprimitivity Δ for L on V with $L/C_L(\Delta) = Sym(\Delta)$. Let $U \in \Delta$, then |U| = 4. If $A \leq C_L(\Delta)$ then |A| = 2. $C_L(\Delta)$ is a $Sym(\Delta)$ invariant subgroup of $Sym(3)^{\Delta}$. If |F| = 2 then $C_L(\Delta)$ induces Sym(3) on U and if |F| = 4 then $C_L(\Delta)$ induces C_3 on U.
- 10. Let K = E(L). Then K is quasi simple, K acts irreducible on V, $F = \text{End}_K(V)$. Moreover, L acts primitively and tensor indecomposable on V.
- 11. s > 1. There exists a central extension L^* so that $V \cong V_1 \otimes V_2$ for some faithful FL^* modules V_1 and V_2 . Let $\{i, j\} = \{1, 2\}$, $P_i = \{A \in PQ_s^*(H, V) \mid [V_j, A] = 0\}$ and $L_i = \langle P_i \rangle$. Then $PQ_s^*(H, V) = P_1 \cup P_2$, $L = L_1L_2$ and $[L_1, L_2] = 1$. Let $K_i = E(L_i)$ Then V_i is an irreducible FK_i module module and $F = \operatorname{End}_{K_i}(V_i)$. $P_i \in PQ_{n_i}^*(L_i, V_i)$.

Let $A_i \in P_i$, $n_i = \dim FV_i$ and and let s_i be defined by $|V_i/C_{V_i}(A_i)| = |A_i|^{s_i}$. Then $s_i \leq \frac{s^2}{n_i+s} \leq \frac{4}{n_i+2}$ and $\frac{n_j}{s} + 1 \leq n_i \leq s(n_j - 1)$.

Proof:

We will first prove:

s2 - 2

(1) Suppose V can be regarded as a vector space over a field F so that L acts F-semilinear but not F-linear on V. Then |A| = p = 2, |F| = 4 or 16, |V| = 4 or 16 and L is one of $Dih(6), Dih(10), Sym(3) \times Sym(3), Sym(5)$ or $Sym(3) \land Sym(5)$. Moreover if $s \neq 2$, then $s \geq 1$, |F| = |V| = 4 and $L \cong Sym(3)$.

s2

(2) Suppose there exist a central extension L^* of L, a field F and FL^* -moduln V_1 and V_2 so that $V \cong V_1 \otimes_F V_2$ as $GF(p)L^*$ modules. Then one of the following holds:

1.
$$s = 2$$
, $p = 2$, $\dim_F V_i = 2$, $|A| = |F|$ for all $A \in PQ_s^*(L, V)$ and $L \cong SL_2(F) \times SL_2(F)$

2. s > 1. Let $\{i, j\} = \{1, 2\}$, $P_i = \{A \in PQ_s^*(H, V) \mid [V_j, A] = 0\}$ and $L_i = \langle P_i \rangle$. Then $PQ_s^*(H, V) = P_1 \cup P_2$, $L = L_1L_2$ and $[L_1, L_2] = 1$. $P_i \in PQ_{\frac{s}{n_j}}^*(L_i, V_i)$. Let $A_i \in P_i$, $n_i = \dim FV_i$ and and let s_i be defined by $|V_i/C_{V_i}(A_i)| = |A_i|^{s_i}$. Then $s_i \leq \frac{s^2}{n_i+s} \leq \frac{4}{n_i+2}$ and $\frac{n_j}{s} + 1 \leq n_i \leq s(n_j - 1)$.

Suppose first that there exists $A \in PQ_s^*(H, V)$ with $[V_1, A] \neq 0 \neq [V_2, A]$. Using 6.9b it is then easy to see that refs2-31. holds. So suppose that no such A exists. Then clearly $PQ_s^*(H, V) = P_1 \cup P_2$, $L = L_1L_2$ and $[L_1, L_2] = 1$.

Note that V is as an L_i module the direct sum of n_j copies of V_i . Hence for all $B \leq L_i$, $|C_V(B)| = |C_{V_1}(B)|^{n_j}$ and so $(|B|^{\frac{s}{n_j}}|C_{V_1}(B)|)^{n_j} = |B|^s |C_V(B)|$. Thus $P_i \in \mathrm{PQ}^*_{\frac{s}{n_j}}(L_i, V_i)$. Moreover, we see that $s_i n_j \leq s$. Thus $s_i \leq \frac{s}{n_j}$. By 6.10 we have $s_i > \frac{1}{n_i-1}$ and so $\frac{s}{n_j} \geq s_i \geq \frac{1}{n_i-1}$ and thus $n_i \geq \frac{n_j}{s} + 1$. Hence also $n_j \geq \frac{n_i}{s} + 1 = \frac{n_i+s}{s}$. Therfore $s_i(\frac{n_i+s}{s}) \leq s_i n_j \leq s$ and $s_i \leq \frac{s^2}{n_i+s}$. Hence refs2-32 holds.

(3) If V is tensor-decomposable as L-module, then 4.,5. or 11. holds.

In case (2)1, 4. or 5. holds. So suppose (2)2. holds. Since $P_i \leq PQ_{\frac{s}{n_i}}(L_i, V_i)$ can imply induction to (L_i, V_i) . Moreover, either $\frac{s}{n_i} < 1$ or $\frac{s}{n_i} = 1$ and $n_i = 2$. If $n_i = 2$, then $s_i = 1$ and $s_i n_j \leq s$ implies $n_j = 2$. It follows that 4. or 11 holds in this case.

We may and do assume form now on that V is tensor indecomopsable.

Suppose that L acts irreducible but does not primitively on V and let Δ be a system of imprimitivity for L on V. Since L acts irreducible on V, L acts transitively on Δ . Thus there exists $U \in \Delta$ and $1 \neq A \in PQ_s^*(H, V)$ so that A does not normalizes U. If |U| = 2, L centralizes the sum of the non-zero elements in $\bigcup \Delta$, a contradiction to the irreducible action of L. Hence by 6.9a we conclude that |U| = 4, s = 2, |A| = 2 and A centralizes $\langle \Delta \setminus U^A$. In particular, A acts a 2-cycle on Δ and we conclude that $L/C_L(\Delta) = Sym(\Delta)$. Thus

(4) If L acts irreducible but not primitively on V, then p = 2, s = 2 and L is a subgroup of $SL_2(2) \wr Sym(n)$, where $n = \dim V/2$.

s2 - 1

s2 - 4

s2 - 3

Suppose next that L acts irreducible and primitively on V.

Let K be a normal subgroup of L minimal with respect to $[K, L] \neq 1$. As L acts primitively, V is a as K-module isomorphic to the direct sum of isomorphix irreducible GF(p)Kmodules. In particular $KC_{GL(V)}(K)$ acts irreducible on V and so $F \stackrel{def}{=} \operatorname{End}_{KC_{GL(V)}(K)}(V)$ is a field. By (1) we may assume that L acts F-linear on V. As V is tensor indecoposable we conclude that K acts irreducible on V. If K is cyclic, we conclude that V is 1-dimensional over F and so L is cyclic, a contradicion, since $O_p(H) = 1$. Thus K is not cyclic and we may assume that all cylic normal subgroup of L are contained in Z(L). In particular $C_L(K) \leq Z(L)$.

Assume that K is a q-group for be a prime q. Then $q \neq p$. Pick $A \in PQ^*(L, V)$ with $[K, A] \neq 1$. Then p = 2 or 3. Moreover, $[K, A] \not\leq Z(K)$ and so $1 \neq [A, K, K] \leq Z(L)$.

Suppose that p = 2, then by 6.2 and the irreducible action of K, A is cyclic. But then |A| = 2 and so $|[V, A]| = |[V/C_V(A)| = 2^r \le 2^s \le 4$ for some integer $r \le s \le 2$. Hence there exist $1 \ne k \in [A, K, K]$ with $|V| = |[V, k]| \le 2^{4r}$. Also note that since $Z(K) \ne 1$, $|F| \ge 4$ and so dim_F $V \le 2r$. Since K is non-abelian and acts irreducible on V, we conclude that r = 2 and

(5)
$$|A| = 2 = p, s = 2, K \cong \text{Ext}(3^{1+2}), |V| = 2^6, \text{ and } L = KA \cong SU_3(2)'$$

Suppose next that p = 3. Then q = 2 and [K, A] is extraspecial. If A is not cyclic we obtain a contradiction to 6.9b applied to an irreducible submodule for [K, A]A in V. Hence A is cyclic and similarly $[K, A] \cong Q_8$. Moreover $|C_V(A)|^2 = |V|$ and so $|V| \le 3^{2s} \le 3^4$. As L is irreducible and tensor indecomospable on V one of the following holds:

(6) 1.
$$|A| = p = 3, s \ge 1, |V| = 3^2$$
 and $L \cong SL_2(3)$.

2.
$$|A| = p = 3, s = 2, |V| = 3^4$$
 and $L \sim \text{Ext}_{-}(2^{1+4}) \cdot Alt(5)$.

Suppose next that K is not nilpotent. Then K = E(K) and L acts transitively on the components of L.

Assume that K is not quasisimple. Then there exist a component R of K and $A \in PQ_2^*(L, V)$ so that A does not normalize R. Since A acts quadratically this implies p = 2, $R \cong SL_2(F)$ and $|R^A| = 2$. Moreover, using 6.9b we get:

(7) Put
$$q = |F|$$
. Then $p = 2, s \ge \frac{4}{3}, q > 2, |A| \le 2q$, $\dim_F V = 4, |V/C_V(A)| = q^2$, and $L \cong \Omega_4^+(F) \sim SL_2(F) \times SL_2(F) : 2.$

Assume finally that K is quasi simple. Then

(8) K = E(L) is quasi simple, $C_L(K) = Z(L)$, L acts irreducibly, primitively, tensor indecompsable and F-linear on V.

Lemma 6.12 F2-modules for groups of Lie type and maybe also the non-quadratic F2modules

s2 - 8

s2 - 7

s2 - 5

s2 - 6

Lieq

PGSym

Lemma 6.13 Let Ω be a finite set, $G = Sym(\Omega)$, and $V(\Omega) = GF(2)[\Omega]$ the natural permutation module GF(2)G-permutation module. Define $V_O(Omega) = [V(\Omega), G]$, $\overline{V(\Omega)} = V(\Omega)/C_{V(\Omega)}(G)$ and $\overline{V_0(\Omega)} = V_0(\Omega)/C_{V_0(\Omega)}(G)$. Let V be one of the modules, $V(\Omega), V_0(\Omega), \overline{V(\Omega)}$ and $\overline{V_O(\Omega)}$.

- (a) Let A be a non-trivial elementary abelian subgroup of G with $|V/C_V(A)| \ge |A|$. Then there exists commuting transpositions t_1, t_2, \dots, t_k so that one of the following holds
 - 1. $A = \langle t_1, t_2, \dots, t_k \rangle$.
 - 2. $|\Omega| = 2k$, $V = V_0(\Omega)$ or $\overline{V_O(\Omega)}$ and $A = \langle t_1 t_2, t_2 t_3, \dots, t_{i-1} t_i, t_{i+1}, t_{i+2}, \dots, t_k \rangle$, where $1 \leq i \leq k$.
 - 3. $|\Omega| = 2k + 4$, $V = V_0(\Omega)$ or $\overline{V_O(\Omega)}$ and $A = \langle t_1, t_2, \dots, t_k, (ab)(cd), (ac)(bd) \rangle$, where a, b, c, d are the four common fixed points of t_1, \dots, t_k .
 - 4. $|\Omega| = 4|, V = \overline{V(\Omega)} \text{ and } A \leq Alt(\Omega).$
 - 5. $|\Omega| = 8$, $V = \overline{V_O(\Omega)}$, |A| = 8 and A acts regularly on Ω .
- (b) Suppose $|\Omega| \neq 8$ and let $H \leq G$ with $H = \langle P(H, V) \rangle$. Let Ψ an orbit for H on Ω . Then one of the following holds:
 - 1. $H/C_H(\Psi) = Sym(\Psi)$.
 - 2. $H/C_H(\Psi) = Alt(\Psi)$.
 - 3. $|\Psi|$ is even and $H/C_H(\Psi) = N_{Sym(\Psi)}(\Delta) \cong C_2 \wr Sym(|Psi|/2)$, where Δ is a partial of Ψ into sets of size 2.
 - 4. $|\Psi| = 4$ and $H/C_H(\Psi) \cong E_4$.
 - 5. $|\Psi| = 6$ and $H/C_H(\Psi) \cong Alt(5)$.
 - 6. $|\Psi| = 8$ and $H/C_H(\Psi) \sim 2^3 : L_3(2)$.

Proof: (a) By induction on |A|, V and $|\Omega|$. Suppose that $A \notin P(G, V)$ and let $1 \neq B \leq A$ with $B \in P(A, V)$ with $|B||C_V(B)| > |A||C_A(V)| \leq |V|$. Then by induction $\Omega = 2k$ and $B = \langle t_1, t_2, \ldots, t_k \rangle$. But then $A \leq C_G(B) = B$ and so A = B, a contradiction.

Hence $A \in P(G, V)$. Let $B = C_V([V, A])$. Then $1 \neq B \in P(G, V)$. Suppose $B \neq A$ and apply (a) to B. In case (a3) $A \leq C_G(B) \leq A$, a contradiction. In case (a1) and (a2), $C_G(B) = \langle t_1, t_2, \ldots t_k \rangle \times Sym(\Omega')$. If $|\Omega| = 2k$, then $C_G(B)$ acts quadratically on V, a contradiction to $A \neq B$. Thus $|\Omega| \neq 2k$ and $A = B \times D$, where $D = B \cap Sym(\Omega')$. We may view $V_O(\Omega')$ as a subspace of V. Then $A \leq P(A, V_O(\Omega'))$ and so $D \in P(Sym(\Omega', V_O(\Omega_I)))$. In particular we can apply (a) to D. Since $C_D([V, A]) = 1$ we get that $C_D(V(\Omega')) = 1$. But this implies that (a3) with k = 0 holds for D on $V_O(\Omega')$. Thus also (a3) holds for A on V.

So we may assume that [V, A, A] = 0. Suppose that A has an orbit of length larger then four on Ω . If $|\Omega| = 4$, (a3) or (a4) holds. So assume $|\Omega| > 4$. If A has an orbit of lenght less then four on Ω then $[V_{\Omega}, A, A]$ has an element of lenght four, a contradiction to [V, A, A] = 0. Thus all orbits of A have length at least four. Moreover, $[V(\Omega), A, A]$ has an element of lenght four and $[V_{\Omega}, A, A]$ has an element of length eight. We conclude that $|\Omega| = 8$ and $V = \overline{V_0(\Omega)}$. If A has an orbit of length eight on Ω , (a5) holds. So suppose that A has two orbits of length four. If $1 \neq a \in A$ acts trivially on on of the orbits of A on Ω , then $[V, a, A \neq 0$. Thus |A| = 4, but $|V/C_V(A)| = 8$, a contradiction.

Hence we may assume that all the orbits of A on V have length at most 2. If A has a fixed point on Ω we are done by induction. Hence we may assume that A acts fixed point freely on Ω . Suppose that there exists $v \in V(\Omega)$ with $0 \neq [v, A] \leq C_{V(\Omega)}(G)$. Then it os easy to see that $C_A(v) = 1$ and so |A| = 2 and $|\Omega| = 2$. So we may assume that no such v exists. Hence $|V/C_V(A)| \geq 2^{k-1}$, where $k = \Omega|/2$ and thus $|A| \geq 2^{k-1}$ and (a2) holds.

(b) Let $A \in P(H, V)$ so that A does not act trivially on Ψ .

Suppose first that some element of H induces a transposition on Ψ . If H acts primitively on Ψ , (b1) holds. So suppose that Δ is a system of imprimitivity for H on Ψ . Since A is generated by elements of support less or equal to four, we conclude that elements of Δ have size two and A on its action on Δ is generated by transposition. As H acts transitively on Δ , $H/C_H(\Delta) = Sym(\Delta)$. Moreover, all the transposition in H act trivially on Δ and so $C_{Sym(\Psi)}(\Delta) \leq H/C_H(\Psi)$ and (b3) holds.

So suppose that no element of H induces a transposition on Ψ . If A fulfils (a3) or (a4) then $|\Psi| = 4$ and (b4) holds.

So we may assume that A fulfils (a2). Then $\Psi = \text{Supp}(\langle t_1, t_2, \dots, t_k \rangle$ and we may assume without loss that $\Psi = \Omega = \{1, \dots, 2k\}$ and $t_i = (2i - 1, 2i)$. It is easy to see that $k \ge 3$. Suppose that Δ is a system of imprimitivity for H on Ψ and without loss that A acts non trivially on Δ . Let $D \in \Delta$. Then |D| = 2 and say $D = \{1, 3\}$. Then $|D^{t_1 t_3} \cap D| = 1$, a contradiction.

Thus A acts primitively in Ψ . Hence if H contains a 3-cycle, (b2) holds. So we may assume that H contains no three cycle. Let $A^* \in P(H, V)$ with $A \neq A^*$ and so that A^* does not normalize A. Let $a \in A$ and $a \in A^*$ with $|\operatorname{Supp}(a)| = |\operatorname{Supp}(a^*)| = 4$ and $A \neq A^{a^*}$. If $|\operatorname{Supp}(a) \cap \operatorname{Supp}(a^*)| = 1$, then $(aa^*)^2$ is a three cycle, a contradiction. Hence $|\operatorname{Supp}(a) \cap \operatorname{Supp}(a^*)| \neq 3$, for all such a and a^* .

Suppose $a^* = (1, 2)(3, 5)$. Then $(12)(34)a^*$ is a three cycles, a contradiction.

Suppose that $a^* = (1,3)(2,5)$. If $k \ge 4$ we obtain a contradiction by choosing a = (34)(78). Thus k = 3, $A^* = \langle (1,3)(2,5), (1,3)(4,6) \rangle$ and $\langle A, A^* \rangle \cong Alt(5)$. It follows that $H = \langle A, A^* \rangle$ and (b5) holds.

Up to conjugation under $N_{Sym(\Psi)}(A)$ we now may assume that $a^* = (1,3)(5,7)$. If $n \leq 5$ we obtain a contradiction by choosing a = (1,2)(9,10). Thus k = 4. By the previous case neither (13)(26) nor (13)(28) can be in A^* and we conclude that the orbits of A^* on Ψ are 13,24,57 and 68. In particular, A and A^* normalize $\{1,2,3,4\}$ and $\langle A, A^* \rangle \sim 2^4 Sym(3)$. It is now readily verified that (b6) holds.

Lemma 6.14 Let G be a finite group with $F^*(G)$ quasisimple. Let V be a faithful GF(p)Gmodule and \mathcal{A} a G invariant subset of P(G, V). Let $S \in Syl_p(G)$ and put $J = J_{\mathcal{A}}(S) =$ $\mathcal{A} \cap S \langle . L \leq G \text{ with } L = N_G(O_p(L) \text{ and } J \leq L \text{ and suppose that } K \text{ is p-component}$

LPGV

of L so that J does not normalize K. Then p = 2, $\langle \mathcal{A} \rangle \cong O_{2n}^+(2^k), n \geq 3, k \geq 2$ and $K/O_2(K) \cong SL_2(2^k)$ all non-trivial composition factors for $\langle \mathcal{A} \rangle$ on V are natural $O_{2n}^+(2^k)$ -modules. In particular, if n = 3, then $P(O_p(L), V) = 1$.

Remark: If n > 3, then it can be shown that K is not subnormal in $C_G(C_V(S))$, where $S \in Syl_p(L)$.

Proof: Let $H = F^*(G)$. We may assume without loss that H centralizes all proper G-submodules in V. That is V = [V, H] and G actss irreducible on $V/C_V(H)$. In particular by the Three Subgroup Lemma, $O_p(G) = 1$.

If p = 2 and H/Z(H) is an alternating group we obtain a contradiction from 6.13. So we may assume that:

(1) H is a group of Lie type in characteristic p.

We may assume without loss that H centralizes all proper G-submodules in V. That is V = [V, H] and G acts irreducibly on $V/C_V(H)$. In particular by the Three Subgroup Lemma, $O_p(G) = 1$.

If $O_2(L) \cap H = 1$, then $[O_2(L), K] = 1$ and so by the $P \times Q$ -lemma, $[C_V(O_2(L), K] \neq 1$. But $L \cap \mathcal{A} \subseteq P(L, C_V(O_2(L)))$ and K maps onto a component of $L/C_L(C_V(O_2(L)))$, a contradiction.

Hence $O_2(L) \cap H \neq 1$. Let $M = N_G(O_2(L) \cap H)$. Then $L \leq M$ and $N_{O_2(M)}(O_2(L)) \leq O_2(L)$ and so $O_2(M) \leq O_2(L)$. Hence $O_2(M) \cap H = O_2(L) \cap H$ and $M \cap H$ is a parabolic subgroup of H. We have proved:

(2) There exists a parabolic subgroup M of G with $L \leq M$ and $O_2(M) \cap H = O_2(L) \cap H$.

It follows immediately from (2) that

(3) *H* has rank at least three.

Note that $C_V(H) = 0$ unless $H \cong Sp_{2n}(q)$ and $V/C_V(H)$ is a natural $Sp_{2n}(q)$ -module. In which case we have $C_V(X)C_V(H)/C_V(H) = C_{V/C_V(H)}(X)$ and so $P(G,V) \subset P(G,V/C_V(H))$. Hence we may assume without loss that $C_V(H) = 0$ and so V is irreducible as G-module.

(4) One of the following holds

1.
$$\langle \mathcal{A} \rangle = H$$

2. $p = 2, \langle \mathcal{A} \rangle = \cong O_{2n}^{\pm}(2^k), n \ge 3 \text{ and } V \text{ is a natural } \Omega_{2n}^{\pm}(2^k) \text{ module for } H.$

Let $P \in \cap P(G, S)$ so that $[C_V(O_2(P)), O^2(P)] \neq 1$. Then J induces inner automorphisms on Head(P) and (4) follows from the structure of P and V.

Suppose that $O_2(M) = O_2(L)$. Then L = M is a parabolic of G and so the p-componets of L are normal in $H \cap L$. Using (4), we conclude that the lemma holds. So we may assume that

LPGV - 1

T D OTT

LPGV - 3

LPGV - 4

LPGV - 2

LPGV - 6

(5) $O_2(M) \neq O_2(L)$ and $O_2(L) \leq H$.

Note that $[O_2(L), L \cap H] \leq O_2(L) \cap H \leq O_2(M)$ and so $L/O_2(M) = C_{M/O_2(M)}(O_2(L))$. In particular, $[J \cap H, O_2(L) \leq O_2(M)$. Without loss $S \leq M$ and $S \cap L \leq Syl_p(L)$. Since $J \not\leq O_2(M)$ there exists $P \in \mathcal{P}(M, S)$ with $J \not\leq P$. Then $J \not\leq O_2(P)$ and $[J \cap H, O_2(L) \leq O_2(P)$. Let $\overline{P} = P/O_2(P)$

Suppose that $J \leq H$. Then $N_P(S \cap H)$ normalizes J and we conclude that $Z(\overline{S \cap P}) \leq \overline{J}$, or p = 2 and $\overline{P} \cong Sym(3) \wr C_2$. As $O_2(L)$ centralizes \overline{J} and $O_2(L) \not\leq H$ one of the following has to hold

- (6) 1. $p = 2, H \cong SL_n(q), O_2(L)$ induces a graph automorphism on H and $\overline{P \cap H} \cong L_2(q)$ or $SL_3(q)$
 - 2. p = 2 $H \cong SU_n(q)$, $O_2(L)$ induces a field automorphism of order two on H and $\overline{P \cap H} \cong L_2(q)$ or $SU_3(q)$

3.
$$p = 2$$
 and $O_2(L)H \cong O2n^{\pm}(q)$.

4. p = 2 and $G = O_2(L)H = Aut(L_n(2))$.

In case (6)1 or (6)2, P is uniquely determined. Let R be the maximal parabolic of M with $P \not\leq M$. Then we conclude that $J \leq R$ and so $[J, [R, O_2(L)] \leq O_2(M)$. By the structure of M this implies $J \leq O_2(M)$, a contradiction. In case (6)3 it is easy to see that L is the normalizer of a non-singular isotropic space and so all p-components of L are normal in L. In case (4), since J does not normalize K and $J \leq H$, M most have parbolic E with $E/O_2(E) \cong L_3(2) \wr C_2$ and $J \not\leq O_2(E)$. Let T be a 2-component of E. As $[J, O_2(L)] \leq O_2(E)$ and $O_2(E)$ does not normalizes $T, T \cap J \leq O_2(E)$. Hence $[T \cap S, J] \leq O_2(E)$ and J i normal in both minimal parabilocs of E, a contradiction.

We have proved:

(7) $J \notin H$, p = 2 and $JH \cong O_{2n}^{\pm}(q)$.

If $O_2(L) \leq JH$ we are done by the argument in (6)3 we are done. So suppose $O_2(L) \not\leq JH$. Then $O_2(L)$ induces field automorphisms on H and on Head(P). In particular $q \geq 2$. If $J \leq HO_2(P)$, we get that $\overline{S \cap P} = \overline{J \cap H}$, a contradiction. Thus $J \not\leq HO_2(P)$ and so P is uniquely determined. But now the argument in (6)1&2 yields a contradiction.

qusp

LPGV - 7

Lemma 6.15 Let H be a finite group such that $L = F^*(H)$ is quasi simple but neither a group of Lie type in characteristic 2 nor an alternating group. Let V be a faithful irreducible GF(2)H-module and $1 \neq A \leq G$ with [V, A, A] = 1 and let B be a maximal quadratic subgroup of H containing A. Moreover assume that there exists at least one fours group in H acting quadratically on V.

(a) One of the following holds.

Remark: Information should be written down more clearly

- 1. $L \cong Mat_{12}$ and V is 10-dimensional.
 - 1.1. |B| = 4, $A \leq L$, $N_L(A) \sim 2^5$.Sym(3) $\sim N_L(B)$, $[V,B] = C_V(B)$ is 5dimensional and either
 - 1.1.1. A = B
 - 1.1.2. |A| = 2 and [V, A] is 4-dimensional.
 - 1.2. $|B| = 4, B \leq L, N_L(B) \sim C_2 \times \text{Sym}(5), C_V(B) = [V, B]$ is 5-dimensional and either
 - 1.2.1. $A \leq L$ and $C_V(A) = C_V(B) = [V, B] = [V, A]$
 - 1.2.2. $A = B \cap L$ and [V, A] is 4-dimensional.
- 2. $L \cong 3 \cdot \text{Mat}_{22}$ and V is 12-dimensional.
 - 2.1. |A| = 2, $A \leq L$ and [V, A] is 4-dimensional.
 - 2.2. |A| = |B| = 2, $|A| \leq L$ and $[V, A] = C_V(A)$ is 6-dimensional.
 - 2.3. $|A| \ge 4$, |B| = 8, $B \le L$, $N_L(B) \sim C_3 \times 2^3 \cdot L_3(2)$ and $C_V(A) = C_V(B) = [V, B] = [V, A]$ is 6-dimensional.
 - 2.4. $|A| \ge 4$, |B| = 16, $B \le L$, $N_L(B) \sim 2^4 : 3 \cdot Alt(6)$ and $C_V(A) = C_V(B) = [V, B] = [V, A]$ is 6-dimensional.
- 3. $L \cong Mat_{22}$ and V is 10 dimensional.
 - 3.1. $|A| = |B \cap L| = 2$ and [V, A] is 4-dimensional.
 - 3.2. |A| = 2, |B| = 4, $A \leq L$, $C_L(A) \sim 2^3 \cdot L_3(2)$ and [V, A] is 3-dimensional.
 - 3.3. $|A| = |B| = 4, A \leq L, N_L(A) = N_L(A \cap L)$ and $C_V(A) = C_V(B) = [V, B] = [V, A]$ is 5-dimensional.
- 4. $H \cong Mat_{24}$ and V is 11-dimensional.
 - 4.1. |A| = 2, |B| = 4, $N_G(A) \sim 2^{1+3+\overline{3}} L_3(2)$ and [V, A] is 4-dimensional.
 - 4.2. |A| = |B| = 4, $N_G(A) \sim 2^8 (Sym(3) \times Sym(3)) \le 2^6 : (Sym(3) \times L_3(2))$ and either
 - V is the Golay code module and $C_V(A) = [V, A]$ is 6-dimensional or
 - V is the Todd module and $C_V(A) = [V, A]$ is 5-dimensional
 - 4.3. $|A| \le 4$, |B| = 4, $N_L(A) \le N_L(B) \sim 2^{2+4} : 3 : Sym(5) \le 2^6 : 3 \cdot Sym(6)$ and either

V is the Golay code module and $C_V(A) = C_V(B) = [V, B]$ is 6-dimensional or

V is the Todd module and $[V, A] = C_V(B) = [V, B]$ is 5-dimensional

- 5. $L \cong 3 \cdot U_4(3)$, V is 12-dimensional.
 - 5.1. |A| = 2, $A \leq L$ and [V, A] is 4-dimensional.
- 5.2. |A| = |B| = 2, A inverts Z(L) and $[V, A] = C_V(A)$ is 6-dimensional.
- 5.3. $|A| = 2, A \leq L, C_L(A) \cong C_3 \times U_4(2)$ and |[V, A]| = 4.
- 5.4. $|A| = 2, A \leq L, |B| = 2^5$ and $C_V(A) = [V, A] = C_V(B) = [V, B]$ is 6dimensional and $C_L(A) \sim 2^4(\text{Sym}(3) \times \text{Sym}(3))$.
- 5.5. $|B \cap L| = 16$, $N_L(B) \sim 2^4 : 3 \cdot \text{Alt}(6)$ and either $C_V(A) = [V, A] = C_V(B) = [V, B]$ is 6-dimensional or |A| = 4, $|A \cap L| = 2$ and $[V, A] = [V, A \cap L]$ is 4 dimensional.

6. $L \cong J_2$ and V is 12-dimensional.

- 6.1. |A| = 2, |B| = 4, $N_L(A) \sim 2^{1+4}Alt(5)$ and [V, A] is 4-dimensional.
- 6.2. |A| = |B| = 4, $N_L(A) \sim 2^6 \cdot Sym(3)$ and $[V, A] = C_V(A)$ is 6-dimensional.
- 6.3. |B| = 4, $N_L(A) \le N_L(B) \cong Alt(4) \times Alt(5)$ and $C_V(A) = [V, A] = C_V(B) = [V, B]$ is 6-dimensional.
- 6.4. |A| = |B| = 2, $A \not\leq L$ and [V, A] is 6-dimensional.
- 7. $G \cong Co_1$ and V is 24-dimensional.
 - 7.1. |A| = 2, |B| = 4, $N_L(A) \sim 2^{1+8}\Omega_8(2)$ and [V, A] is 8-dimensional.
 - 7.2. |A| = |B| = 4, $N_L(A) \sim 2^{14} \cdot Sym(3) \times Alt(8)$ and $[V, A] = C_V(A)$ is 12dimensional.
 - 7.3. |B| = 4, $N_L(A) \le N_L(B) \sim (Alt(4) \times G_2(4)).2$ and $C_V(A) = [V, A] = C_V(B) = [V, B]$ is 12-dimensional.
 - 7.4. |A| = |B| = 2, $N_L(A) \sim 2^{11}Aut(M_{12})$, and [V, A] is 12-dimensional.
- 8. $G \cong Co_2$ and V is 22-dimensional.
 - 8.1. |A| = 2, |B| = 4, $N_L(A) \sim 2^{1+8}Sp_6(2)$ and [V, A] is 6-dimensional. 8.2. |A| = 2, |B| = 4, $N_L(A) \sim 2^{1+4+6}Alt(8)$ and [V, A] is 8-dimensional. 8.3. |A| = |B| = 4, $N_L(A) \sim 2^{15}.L_3(2)$ and $[V, A] = C_V(A)$ is 11-dimensional. 8.4. |A| = |B| = 2, $N_L(A) \sim 2^{10}Aut(Alt(6))$, and [V, A] is 11-dimensional.
- 9. $L \cong 3 \cdot Sz$ and V is 24-dimensional.
 - 9.1. |A| = 2, |B| = 4, $N_L(A) \sim 2^{1+6} \Omega_6(2)$ and [V, A] is 8-dimensional.
 - 9.2. |A| = |B| = 4, $N_L(A) \sim 2^{14}.Sym(3) \times Alt(5)$ and $[V, A] = C_V(A)$ is 12dimensional.
 - 9.3. |B| = 4, $N_L(A) \le N_L(B) \sim (Alt(4) \times L_3(4)).2$ and $C_V(A) = [V, A] = C_V(B) = [V, B]$ is 12-dimensional.
 - 9.4. |A| = |B| = 2, $A \not\leq L$ and [V, A] is 12-dimensional.
- (b) Suppose in addition that $q \leq 2$, where $|A|^q = |V/C_V(A)|$. Let c be the case in (a) fulfilled by A and a = |A|. Then (c, a, q) is one of the following **Remark:** this doesn't look very nice
 - 1. (2.3, 8, 2).

2. (2.4, 8, 2) or $(2.4, 16, \frac{3}{2})$. 3. (5.3, 2, 2). 4. (5.5.1, 8, 2), $(5.5.1, 16, \frac{3}{2})$ or $(5.5.1, 32, \frac{6}{5})$. 5. (5.5.2, 4, 2)

Inparticular, $L \cong Mat_{22}, 3 \cdot Mat_{22}$ or $3 \cdot U_4(3)$; and $q \ge \frac{3}{2}$ unless $L \cong 3 \cdot U_4(3)$ and |A| = 32.

Proof: This can be verified using [MS] and [At].

Definition 6.16 Let H be a group and F a field. Then an FH promodule for H is a pair (ϕ, V) there V is a vector space over F and $\phi : H \to GL_K(V)$ is a map so that the induced map $\phi^* : H \to PGL_K(V)$ is a homomorphism.

Lemma 6.17 Let p a prime and H be a finite group p-connected group with $O_p(H) = 1$. Let $S \in \text{Syl}_p(H)$ and Z and Q non-trivial normal subgroups subgroups of S with $Z \leq Z(Q)$ and $|Q| \geq 3$. Let $L = O^p(H)$.

- (a) Suppose p = 2 and H is a transitive subgroup of $Sym(\Omega)$ such that Z acts trivially all Q orbits of size larger than two. Then one of the following holds:
 - 1. The exists a system of blocks \mathcal{D} for H on Ω such that
 - (a) If $\Delta \in \mathcal{D}$, then Q normalizes Δ , $Q = ZC_Q(\Delta)$ and $|Q/C_Q(\Delta)| = 2$.
 - (b) For $\Delta \in \mathcal{D}$ let $L_{\Delta} = C_L(\bigcup \mathcal{D} \Delta)$. Then $L = \times_{\Delta \in \mathcal{D}} L_{\Delta}$.
 - 2. $L \neq O(L)$. Let \mathcal{D} be the set of orbits of O(H) on $|\Omega|$. Then H/O(H) acts faithfully on H. Let Δ be an orbit for L on \mathcal{D} and for $X \leq H$ let $X^{\Delta} = N_X(\Delta)/C_X(\Delta)$. Then
 - (a) Q normalizes Δ .
 - (b) $L^{\Delta} = F^*(H^{\Delta})$ is simple.
 - (c) $1 \neq Z^{\Delta} \leq Z(Q^{\Delta}), Z^{\Delta}$ and Q^{Δ} are normal in S^{Δ}, S^{Δ} is a Sylow 2-subgroup of $H^{\Delta}, |Q^{\Delta}| \geq 4$, and each orbit for Q^{Δ} on Δ is either centralized by Z^{Δ} or has size at most 2.
 - (d) One of the following holds:
 - 1. $H^{\Delta} = \operatorname{Alt}(\Delta) \text{ or } \operatorname{Sym}(\Delta).$
 - 2. Δ can be viewed as projective space over the field with two elements so that $H^{\Delta} = PGL(\Delta)$. Moreover if K is a component of L/O(L), then $N_S(K)$ induces only inner autmorphism on K.
 - 3. $|\Delta| = 6$ and $H^{\Delta} \cong \text{Alt}(5)$ or Sym(5).
 - 4. $|\Delta| = 10$ and $H^{\Delta} \cong \text{Sym}(6)$ or Aut(Alt(6)).
 - 5. $|\Delta| = 12$ and $H^{\Delta} = \operatorname{Mat}_{12}$ or $\Delta = 24$ and $H^{\Delta} \cong \operatorname{Aut}(\operatorname{Mat}_{12})$.
 - 6. $|\Delta| = 22$ and $H^{\Delta} = \text{Mat}_{22}$ or $\text{Aut}(\text{Mat}_{22})$.

dpromo

VZQ

7. $|\Delta| = 24$ and $H^{\Delta} = Mat24$. Remark: This needs careful checking

- (b) Let K be a field with charK = p and suppose that H is an irreducible subgroup of $GL_K(V)$ with [V, Z, Q] = 0. Let W a Wedderburn componet for L on V. For $X \leq H$ let $X^W = N_X(W/C_X(W))$. Then one of the following holds.
 - 1. p = 2 and there exists a system of blocks \mathcal{D} for H on V such that
 - (a) If $U \in \mathcal{D}$, then Q normalizes U, $Q = ZC_Q(U)$ and $|Q/C_Q(U)| = 2$.
 - (b) For $U \in \mathcal{D}$ let $L_U = C_L(\bigcup \mathcal{D} U)$. Then $L = \times_{U \in \mathcal{D}} L_U$.
 - 2. p = 2 and there exists a system \mathcal{D} of H-blocks on V with $C_H(\mathcal{D}) = O(H)$ and so that the action of H/O(H) on \mathcal{D} is described as in (a)2.
 - 3. L = E(L) and
 - (a) Q normalizes W.
 - (b) L acts irreducible on W.
 - (c) $1 \neq Z^W \leq Z(Q^W)$, Z^W and Q^W are normal in S^W , S^W is a Sylow 2-subgroup of H^{Δ} , $|Q^W| \geq 3$, [W, Z, Q] = 0 and $F^*(H^W) = L^W$.
 - (d) One of the following holds.
 - 1. L^W is quasi-simple.
 - 2. p = 2, $L^W = L_1L_2$, where L_1L_2 are the components of L^W . Q normalizes L_1 and L_2 and as L^WQ^W module $W = W_1 \otimes_F W_2$ for some faithul FL_iQ^W modules W_i . Moreover Q^W acts linear dependently on W_i .
 - 3. p = 2, $L^W Q^W \cong L_2(q) \wr C_2$ and W is the natural $\Omega_4^+(q)$ -module for $L^W Q^W$.
 - 4. One of the following holds:
 - 1. $p = 2, L = O_3(L), L^W \cong \text{Ext}(3^{1+2}), Z^W \cong C_2, Q^W \cong C_4 \text{ or } Q_8 \text{ and } |W| = 2^6.$
 - 2. p = 3, $L = O_2(L)$, $L^W \cong Q_8$, $Z^W = Q^W \cong C_3$ and $|W| = 3^2$.

5.
$$p \in \{2,3\}$$
. Let $\{2,3\} = \{p,q\}$ and $M = O_q(H)^W/Z(O_q(H)^W)$. Then

- (a) $O_q(L)^W \cong \text{Ext}(q^{1+2n}) \text{ or } C_4 \circ \text{Ext}(2^{1+2n}), n \ge 2$
- (b) $Z^W \cong C_p$ and $Q^W \cong C_3, C_4$ or Q_8 .
- (c) L acts irreducible on M.
- (d) $|[M,Q]| = q^2$.
- (e) $O_q(H)$ acts irreducible on W.
- (f) Conjecture If p = 2, then $L/C_L(M) = Sp_{2n}(3)$ and if p = 3, then $L/C_L(M) \cong \Omega_{2n}^{\pm}(2)$, Alt(2n+1), Alt(2n+2), $Sp_{2n}(2)$ or $SU_n(2^2)$. Also there are restrictions on n from the fact that Q is normal in S.

Proof: (a) The proof is divided into a series of steps

(1) Let Δ be a block for Q on Ω .

VZQ - 1

- (a) One of the following holds:
 - 1. Q normalizes Δ .
 - 2. Z centralizes Δ and so also $\bigcup \Delta^Q$.
 - 3. $|\Delta^Z| = |\Delta^Q| = 2$ and $N_Q(\Delta)$ centralizes Δ and so also $\bigcup \Delta^Q$.
- (b) One of the following holds:
 - 1. Q normalizes Δ .
 - 2. $N_Z(\Delta)$ centralizes Δ and so also $\bigcup \Delta^Q$.

Clearly (a) implies (b). For (a) suppose that Z does not centralize Δ . If Z normalizes Δ then Z has a non-trivial orbit on Δ and Q has to normalize that orbit. Since Δ is a block, Q normalizes Δ in this case. If Z does not normalize Δ , pick $z \in Z$ with $\Delta \neq \Delta^z$. Then $\Delta \cup \Delta^z$ is a union of non-trivial z orbits and so Q normalizes $\Delta \cup Delta^z$. Let $\omega \in \Delta$. Then $N_Q(\Delta)$ normalizes $\Delta \cap \{\omega, \omega^z\} = \{\omega\}$. Hence 3. holds in this case.

VZQ - 2

VZQ - 2a

- (2) Let Δ be an *L*-invariant *H*-block. Then
- (a) $\Omega = \bigcup \Delta^S$.
- (b) Z does not centralize Δ .
- (c) If Z normalizes Δ and $|Q/C_Q(\Delta)| = 2$, then (a)1. in the lemma holds.
- (d) If Q does not normalize Δ , then (a)1. in the lemma holds.

Since H = LS, (a) holds. Since $Z \leq S$, (a) implies (b). If the assumptions of (d) hold, then by (b) and (1)(a), also the assumptions of (c) are with Δ replaced by Δ^Z . So it remains to prove (c). By (b) and (1)(a), Q normalizes Δ . Let $\mathcal{D} = \Delta^H$, $Q_D = C_Q(D)$ and note that $Q/Q_D = 2$. Let Γ be the union of the blocks in Δ^H centralized by Q_D . We claim thhat Γ is a H-block. Otherwise there exists $s \in S$ with $Q_D^s \neq Q_D$ and a block in Δ^H centralized by $Q = Q_D Q_D^s$, a contradiction to (b). Hence Γ is a block and replacing Δ by Γ we may assume $\Gamma = \Delta$. Define L_Δ as in (a)1. of the lemma. Let $R = \langle L_\Delta \mid \Delta \in \mathcal{D}$. Then R is a normal subgroup of H and $R = \times_{\Delta \in \mathcal{D}} L_\Delta$. It remains to show that R = L. Let $\mathcal{D} = \{\Delta, \Delta_1, \Delta_2, \ldots, Delta_n\}$. Put $L_0 = L$ and inductively for $1 \leq i \leq n$, $L_i = [L_i, Q_{\Delta_i}]$. We claim that $L = L_i C_L(\Delta)$. This is obvious for i = 0 Since H is 2 connected, L = [L, Q]and so by induction, $L = [L_{i-1}, Q]C_L(\Delta)$. Since $Q = Q_\Delta Q_{\Delta_i}$ and $Q_\Delta \leq C_L(\Delta)$ we conclude, $L = [L_{i-1}, Q_{\Delta_i}]C_L(\Delta) = L_i C_L(\Delta)$. Thus $L = L_n C_L(\Delta)$. But $L_n \leq L_i$ for all iand L_i centalizes Δ_i . Thus $L_n \leq L_\Delta$ and so $L = L_\Delta C_L(\Delta)$ But this clearly implies L = Rcompleting the proof of (2).

(3) Let $F \leq Q$ with $|F/F \cap Z| \leq 2$. Then an orbit for F on Ω has length at most for 2. In particular, F is elementary abelian.

Either $Z \cap F$ acts trivially on a given F-orbit or not. In both cases the orbit has size at most two.

(4) Let P be a subgroup of odd order in H normalizes by Q. Let Δ be an orbit for PQ on Δ such that P acts transitively and Z non-trivially on Δ . Then $|Q/C_Q(\Delta)| = 2$.

By the Sylow theorem and the Frattini argument, Q fixes a point $\omega \in \Delta$. Also $P = [P,Q]C_P(Q)$ and replacing P by [P,Q] and Δ by $\omega^{[P,Q]}$ we may assume that P = [P,Q]. Let R be a maximal Q invariant normal subgroup of P. If R is transitive on Ω , then by induction on |P|, Z centralizes P. Hence $Z/C_Z(\Delta)$ acts semiregulary on Δ and all orbits of Z on Ω have size two. Also Q and hence [R,Q] normalizes all orbits of Z. Thus [R,Q]centralizes Δ . Since P = [P,Q], [R, P centalizes Δ and so $R/C_R(\Delta)$ acts regularly. But then R centralizes Δ , a contradition. So R is not transitive. Let \mathcal{D} be the set of orbits for R on Δ . Then the abelian group $M \stackrel{def}{=} P/R$ acts regularly on \mathcal{D} and \mathcal{D} and and Mare ismorphic as Q-sets. Suppose that Z centralizes M, then $P = C_P(Z)R$ and M acts non-trivially on each member of \mathcal{D} . But then Q normalizes each member of \mathcal{D} . Thus Zacts non-trivially on M and \mathcal{D} . Similarly, if $C_Q(M)$, acts non-trivially on Δ , Z is forced to act trivially on \mathcal{D} . Thus $Q/C_Q(Delta)$ acts faithfully on M and \mathcal{D} . Let $z \in Z \setminus C_Z(M)$. Since $z \in Z(Q)$ and Q acts irrducibly on M, z inverts M. Let $m \in M^{\#}$. Then Q normalize $\{m, m^{-1}$ and as Q is irreducible, $M = \langle m \rangle$ and $|Q/C_Q(M) = Q/C_Q(\Delta)| = 2$.

VZQ-5

VZQ - 3

(5) Suppose (a)1. does not hold and let \mathcal{D} be the set of orbits for O(H) on Ω . Then H/O(H) acts faithfully on \mathcal{D} .

Suppose not. Then since H is 2-connected, L centralizes \mathcal{D} . Let $\Delta \in \mathcal{D}$. By (2), Q normalizes Δ . Also Z acts non-trivially on Δ and O(G) acts transitively. Thus by (4), $|Q/C_Q(\Delta)| = 2$ and by (2) (a)1. holds.

We assume form now on that (a)1. does not hold. Replacing Ω by the set of orbits of O(H) on Ω and H by H/O(H) we also may assume that O(H) = 1. Thus $L = \times_{i=1}^{m} L_i$ for some non-abelian simple groups L_i . Let Δ be an orbit for L on Ω . We wish to whow that a2 holds. a2a and a2c follow from (2). Let $M = L^{\Delta}$. Then $M = \times_{i=1}^{n} E_i$, where $\{E_1, \ldots, E_n\}$ consists of whose $L_i^{\Delta} (\cong L_i)$ which act non-trivially on Δ . Suppose for a contradiction that $n \geq 2$. Let $1 \neq z \in Z \cap Z(S)$. Then z centralizes the Sylow 2-subgroup $M \cap S$ of M and so z normalizes all L_i and E_i . If Q does not normalize the components of M, then $|[S \cap M, Q]| \geq |S \cap M_i| \geq 4$ and so $|M \cap Q| \geq 4$. So replacing Q by $(M \cap Q)Z$ in this case, we may assume that Q does normalize the components of M.

Let $E = E_1$ and $F = C_M(E_1)$. Since $z \in Z(S)$, E = [E, z]. Suppose that $C_Q(E)^{\Delta} \neq 1$ and pick $t \in C_Q(E)^{\Delta}$ with |t| = 2. Then z normalises all the non-trivial orbits for t on Ω . Since E centralizes t, the same is true for E = [E, t]. But the E = E' centralizes each non-trivial orbit of t, a contradiction. Thus $C_Q(E)^{\Delta} = 1$.

Suppose that E does not act transitively on Δ . Since M acts transitively, M does not normalize any orbit of E. As M = [M, z] there exists an orbit Γ for E on Δ with $\Gamma \neq \Gamma^z$.

Thus by (1), $P = C_Q(\Gamma)$ has index two in Q. But then [E, P] centralizes Δ and so [E, P] = 1and $P^{\Delta} \leq C_Q(E)^{\Delta} = 1$, a contradiction to |Q/P| = 2.

Thus E acts transitively on Δ . By symmetry also F is transitively on Δ and so E is regular. Let F be a group of order four in Q^{Δ} with $z^{\Delta} \in F$. Let $\omega \in \Delta$. Let $F = \{1, f_1, f_2, f_3\}$ and $\omega^{f_i} = \omega^{e_i}$ for some $e_i \in E$. Let $E_i = \{e \in E \mid e^{f_i} = e_i^{-1}\}$. Note that E_i is a coset of the proper subgroup $C_E(f_i)$ in E. Let $e \in E$. By (3), there exists $f_i \in F$ with $\omega^e = \omega^{ef_i} = \omega^{f_i e^{f_i}} = \omega^{e_i e^{f_i}}$. As E is regular we get $e_i e^{f_i} = 1$ and so $e \in E_i$. Thus $E = E_1 \cup E_2 \cup E_3$ is covered three proper cosets. But this implies that E has a subgroup of index two or three, a contradiction as E is non-abelian simple. Thus a2c holds.

To prove a2d we assume without loss that $\Delta = \Omega$ so $L = F^*(H)$ is simple. Let $V = GF(2)\Omega$ be the permutation module associate to Ω . Then [V, Z, Q] = 0 and so V is a faithful GF(2)H-module with a quadratic fours group. Hence by 6.15, L is a group of Lie type in characteristic 2, or $L = Mat12, Mat22, Mat24, J_2, CO_1$ or Co_2 . Let $1 \neq z \in Z$ and $R = \langle Q^{C_H(z)}$. Then R normalizes all non trivial orbits of z on Ω and [V, z, Q] = 0.

Suppose that L is one of the sporadic groups. Then H has a unique class of 2-central involution. If L is $J_2, C0_1$ or CO_2 we get that $O_2(C_L(z)) \leq R$ and so $V, z, O_2(C_L(z))] = 1$, a contradiction. Hence L = Mat12, Mat22 or Mat_{24} . TO BE CONTINUED

(b) Again we divide the proof into a series of steps and use a similar strategy as in the proof of (a)

VZQ - 11

VZQ - 12

- (6) Let U be a block for Q on V.
- (a) One of the following holds:
 - 1. Q normalizes U.
 - 2. Z centralizes U and so also $\sum U^Q$.
 - 3. p = 2, $|U^Z| = |U^Q| = 2$ and $N_Q(U)$ centralizes U and so also $\sum U^Q$.
- (b) One of the following holds:
 - 1. Q normalizes U.
 - 2. p = 2 and $N_Z(U)$ centralizes U and so also $\sum U^Q$.

Clearly (a) implies (b). For (a) suppose that Z does not centralize U. If Z normalizes U, then $0 \neq [U, Z] \leq U$ and Q centralizes [U, Q]. Since U is a block, Q normalizes U in this case. If Z does not normalize U, pick $z \in Z$ with $U \neq U^z$. Since $z \in Z(Q)$, $U + U^z$ is a block for Q.Also Q centralizes [U, z] and so normalizes $U + U^z$. As a $N_Q(U)$ module, $U \cong U + U^z/U^z = [U, z] + U^z/U^z \cong [U, z]/[U, z] \cap U^z$ and so $N_Q(U)$ centralizes U. Hence 3. holds in this case.

- (7) Let U be an L-invariant H-block. Then
- (a) $V = \sum U^S$.

(b) Z does not centralize U.

(c) If Z normalizes U and $|Q/C_Q(U)| = 2$, then (b)1. in the lemma holds.

(d) If Q does not normalize U, then (b)1. in the lemma holds.

The proof is essentially the same as the one for (2).

(8) Suppose exists an H-block which is not L-invariant, then (b1) or (b2) in the lemma holds.

Let calD be a block system for H on V with L acting non-trivially on \mathcal{D} and let \mathcal{D} be maximal with this property. Then p = 2, $C_H(\mathcal{D} \leq O(H)$ and we can apply (a) to $H/C_H(\mathcal{D})$ and \mathcal{D} . In case (a)1., (b)1. holds. In case of (a).2 the maximality of \mathcal{D} implies that O(H)acts trivially on \mathcal{D} . Thus (b)2. holds.

We assume from now on without loss that neither (b)1. nor (b)2. hold.

(9) Let W be a Wedderburn component for L on V. Then Q normalizes Q and W is irreducible as L-module.

By (7)d, Q normalizes W. As V is irredicible for H, W is irredicible for $N_H(L)$. As W is L-homogenous and $N_H(L)/L$ is a p-group, L is irreducible on W.

(10) Suppose that L = E(L). Then (b3) holds.

If $Q/C_Q(W)| = 2$, then (b1) holds. Hence ((b3a),(b3b) and (b3c) holds It remains to verify (b3d). Let $L_1, L_2, \ldots L_n$ be the components of $L/C_L(W)$. If n = 1, (b3d1) holds. Put $F = \operatorname{End}_K L(W)$ and let P the largest subgroup of Q normalizing the components of L^W . As in part (a), P^W has order at least three and $(Z \cap P)^W \neq 1$. Then W has a tensor compostion $(F, W_i, 1 \leq i \leq n)$, where W_i is an $C_{LP}(F)$ module centralized by all $L_j, j \neq i$. Then by 6.6, p = 2, n = 2 and P^W acts linearly dependently on W_1 and W_2 . If Q = P, (b3d2) holds. So suppose that |Q/P| = 2 and let $q \in Q \setminus P$. Note that Q is F-linear. Let $1 \neq z \in PZ$. Let U be an irreducible FU subspace in W with $U \neq U^z$. Then $U = W_1 \otimes a_2$ for some $a_2 \in W_2$. Also U^q is an irreducible FL_2P subspace and so $U^q = a_1 \otimes W_1$ for some $w_1 \in W_2$. Similarly $U^z = b_1 \otimes W_2$ and $U^{zq} = W_2 \otimes W_1$. Thus $(U + U^z) \cap (U + U^z)^q = (Fa_1 + Fb_1) \otimes (Fa_2 \otimes Fb_2)$. On the other and , q centralizes $[U, z] \leq U + U^z$ and we conclude that dim_F U = 2. We conclude that W_1 and W_2 are 2-dimensional and by say Dicksson's theorem, (b3d3) holds.

(11) Suppose that W is tensor decomposable for LQ. Then (b3) holds.

By 6.6, p = 2 and Q is elementary abelian and $C_{LW}(q) = C_{LW}(Q$ for all $1 \neq q \in Q$. Thus $O(H)^W \leq Z(L^W)$ and so L = E(L). So the claim follows from (10). VZQ - 14

VZQ - 13

VZQ - 16

VZQ - 15

Suppose from now on that W is tensor indecomposable. Let M be a normal subgroup of H minimal with respect to $[M, L] \neq 1$. Note that $M/C_M(L)$ is characteristicly simple. Hence either M = E(M) or M is a q-group for some prime q. If M = E(M), it is easy to see that M is not a p' group and so M = L since H is p-connected. So in view of (10) we may assume that M is a q- group.

(12) *M* acts irreducible on *W* and $M^W \cong \text{Ext}(q^{1+2n})$ or $C_4 \circ Ext(2^{1+2n}), n \ge 2$.

If M is not homogenous on W. Then L acts non-trivially on the Wedderburn components of M on V, a contradiction to (8). Hence M is homogenous. As W is tensor indecoposable, this implies that M is irreducible on W. Let $F = \operatorname{End}_{KM}(W)$. Then by 6.6, Q and so also L = [L, Q] is F-linear on W. Thus $[Z(M^W), L = 1, C_L(M) = Z(L)]$ and $C_M(L) = Z(M)$. By a standard argument the structure of M^W is as described.

(13) One of the following holds:

1.
$$p = 2, q = 3$$
 and $[M^W, Q]Q^W \cong SU_3(2)$ or $Ext(3^{1+2})C_4$
2. $p = 3, q = 2$ and $[M^W, Q]Q^W \cong SL_2(3)$.

Let $P = [M^W, Q]$, $R = PQ^W$ and Y and irreducible R-submodule in W. Then P and so also R acts faithfuly on Y. Then P is extra-special. Let $1 \neq z \in Z^W$. Then as z acts quadratically on W, Hall-Higmann implies p = 2, or p = 3 and q = 2. Suppose that $P \neq [P, z]$. Then [P, z] and $C_P(z)$ are normal in R and $P = [P, z] \circ C_P(z)$. But then Y is tensor decomposable for R. Then the argument in (11) gives a contradiction. Thus P = [P, z]. A be a maximal abelian z-invariant normal subgroup of P. Let $\mathcal{A} = \{D \leq A | A = Z(P)D, D \cap Z(P) = 1\}$. Then P acts transitively on \mathcal{A} and z fixes a unique member of \mathcal{D} , namely [A, z]. Also $Y \bigoplus_{D \in \mathcal{A}} C_Y(D)$. If p = 3 we conclude that $|\mathcal{A}| = 1$ and so |P| = 8 and 2. holds. So suppose p = 2. Let $|P| = q^{1+2n}$. Then $|A| = q^{1+n}$, $|\mathcal{A}| = q^n$ we conclude that $\dim_F[Y, z] = \frac{q^{n-1}}{2}$, $\dim_F C_Y(z) = \frac{q^{n+1}}{2}$ and $\dim_F C_Y(z)/[Y, z] = 1$. Let $q \in Q^W \setminus \langle z \rangle$. If |q| = 2, we may assume that q normalizes A. But then [Y, z, t] = 0 implies that t normalizes all the orbits of z on \mathcal{A} , a contradicition. Thus |q| = 4 and we may assume $q^2 = z$. Since [Y, q, t] = 0, |[Y, q] + [Y, z]/[Y, z] has dimension at most 1 over F. Hence there exists an q invariant F-hyperplane U in Y with $[U, q] \leq [Y, t] \leq C_U(q)$. Thus [U, q, q] = 0and $[U, q^2] = 1$. Thus $Y/C_Y(z) = 1$ is 1-dimensional. So $\frac{q^{n-1}}{2} = 1$. $q^n = 3$ and $|P| = 3^3$. Hence 1. holds in this case.

VZQ - 19

VZQ - 17

VZQ - 18

(14) Either L acts irreducible on $M^W/Z(M^W)$ or (b4) holds.

Let $Z(M^W) < P \leq M^W$ be minimal with respect to being *L*-invariant. Put $\overline{M} = M^W/Z(M^W)$. If *Q* does not normalize *P*, then by (13), $|\overline{U}| \leq q^2$. Thus $L/C_L(U)$ is a solvable $\{p,q\}$ group. Since *H* is *p*-connected we conclude that $L/C_L(U)$ is a *p'* group and so a *q*-group. Since *L* is irreducible on *U* we conclude [U, L] = 1. Since *H* is irreducible on M/Z(M) we conclude $[M, L] \leq Z(M)$. Thus $O^q(L) \leq C_L(W) \leq Z(L)$ and $L = O_q(L)Z(L)$. Since [Z(L), Q] = 1, *p*-connectivity of *H* implies, $L = O_q(L)$. Thus (b4) holds in this case.

So we may assume that Q normalizes U. If U is abelian, then by (13), Q centralizes U and so also L centalizes U, a contradiction. Hence U is not abelian and $M^W = PC_{M^W}(P)$. Thus 6.17-14 implies $P = M^W$.

(15) If L acts irreducible on $M^W/Z(M^W)$ then (b5) holds.

This follows form (13).

Lemma 6.18 Let p be a group, H a finite p-minimal group with $O_p(H) = 1$. Let $S \in$ Syl_p(H) and Z and Q non-trivial normal subgrous of S with $Z \leq Z(Q)$. Let R be maximal in Q with $[V, R] \leq [V, Z]$. Let V be a faithful GF(p)H-module so that

- (i) [V, Z, Q] = 0.
- (ii) $V = [V, O^p(H)].$

(iii) $V/C_V(O^p(H))$ is irreducible as H-module.

Then $|Q/R| \leq V/C_V(Z)$. Moreover if $T \leq S$ with $Z \leq T$. Then either $T \leq R$ or [V,T] = [V,Q]

Proof: Remark: Some parts of the proof are still very sketchy, also the proof is a lot longer than it should be and to much of a case by case analysis Let $Y = C_V(L)$ and $\bar{V} = V/Y$. Then \bar{V} is irreducible as *H*-module.

Let $C = C_H(\overline{V})$. Then $C \cap L$ centralizes U and V/U and so $C \cap L$ is a p-group. Since $O_p(H) = 1$ we conclude $C \cap L = 1$. Thus $O^p(C) = 1$, C is p-group and C = 1.

Hence H acts faithfully on \overline{V} and we can apply 6.17(b) to \overline{V} .

Let W be a LQ submodule in V minimal with respect to $[W, L] \neq 0$. Then W = [W, L]. For $X \in LQ$ let $X/C_X(W)$. Let $1 \neq z \in Z(S) \cap Z$.

(1) Suppose that $|Q^W/Z^W| \leq \overline{W}/C_{\overline{W}}(Z)$ and $[W,T] \in \{[W,Z], [W,Q]\}$. Then the lemma holds.

Since \bar{V} is irreducible and H = LS, $\bar{V} = \langle \bar{W}^S \rangle$ Thus there exists $s_i \in S, 1 \leq i \leq k$ with $\bar{V} = \bigoplus_{i=1}^k \bar{W}^{s_i}$. Then $V = [V, L] = [\sum_{i=1}^k W^{s_i}, L] = \sum_{i=1}^k W^{s_i}$. Let $P = \bigcap_{i=1}^k ZC_S(W^k)$. Then $P \leq R$ and

$$|Q/R| \le |Q/P| \le |Q^W/Z^W|^k \le \bar{W}/C_{\bar{W}}(Z)^k = |\bar{V}/C_{\bar{V}}(Z) \le V/C_V(Z)$$

Also $[W,T] = [W,Z]$ implies $[V,T] = [V,Z]$, while $[W,T] = [W,Q]$ implies $[V,T] = [V,Q]$
-

(2)
$$C_{LQ}(W) = C_{LQ}(W).$$

Let $B = C_{LQ}(\overline{W})$. Then $B \cap L$ centralizes Y and W + Y/Y and so acts as a p-group on W. Since no composition factor of L on L is a p-group, $B \cap L$ centralizes W. Thus [B, L, W] = 0 and [W, B, L] = 0. Thus by the three subgroup lemma [W, L, B] = 0. As W = [W, L] we conclude [W, L] = 0 and so (2) holds.

VZQm

VZQ - 20

VQZm-1

(3) If $|Q^{\overline{W}}| \leq p^2$, the lemma holds.

By ??, $|Q^W| \leq p^2$. Also $Z^W \neq 1$ and Z does not centralize \overline{W} . Thus (3) follows from ??.

(4) If $O_{p'}(L) \neq 1$, then Y = 0.

By Mascke, $V = C_V(O_{p'}(L)) \oplus [V, O_{p'}(L)]$. Also $Y \leq C_V(O_{p'}(L))$ and as \overline{V} is irreducible, $V = Y + [V, O_{p'}(L))]$. Thus $V = [V, L] = [V, O_{p'}(L)), L]] = [V, O_{p'}(L)]$ and (4) holds.

Suppose first that 1. in 6.17(b) holds for \overline{V} . Then $|Q^{\overline{W}}| = 2$ and we are done by (3).

Suppose next that 2. in 6.17)(b) holds. Let $D/Y \in \mathcal{D}$ and $\Delta = D^L$. Without loss $W \leq \sum \Delta$. Since H is p-minimal we conclude from 6.17(a2) that $L^{\Delta} \cong \operatorname{Alt}(n)$ with $n = 2^k + 1, k \geq 2$ or n = 6. If $n \leq 6$ it is easy to see that $Q^{\Delta} \leq 4$ and so also $|Q^W| \leq 4$. So we may assume that $m = 2^k + 1, k \geq 2$. Let $E \in \Delta$ with $E \neq E^z$. Then $N_Q(E)$ centralizes E. Let $M = N_{LQ}(E)$. Then $M^{\Delta} \cong \operatorname{Alt}(2^n)$ or $\operatorname{Sym}(2^n)$ and so $M^E = \langle N_Q(E)^M \rangle O(L)$. Hence $M = C_M(E)O(L)$. If O(L) centralizes E. Then \bar{V} is a permutation module for L, a contradiction to $C_{\bar{V}}(L) = 0$. Thus $O(L) \neq 1$ and by (4), Y = 0. It follows that [D, Z] = [D, Q]. Let F be the unique fixed point for z on Δ . Since F and E are conjugate under L, all p-elements in $N_{LQ}(F)$ act trivially on F. So [F, Q] = 0 and [V, Z] = [V, Q].

Suppose that 3. in 6.17(b) holds. By (3) we may assume that $|Q^W| > p^2$. Then *p*-minimality and quadratic action implies that the components for *L* are one of $SL_2(q)$, $SU_3(q)$, Sz(q), Alt(q+1), Sp or $L_3(q)$ Here *q* is a power of *p*, p = 2 in the last four cases, and a graph automorphism is induced on the components in the last two cases.

If 3d2 or 3d1in 6.17(b) holds then Y = 0. Let $F = \operatorname{End}_L(W)$. Then $|Q^W| \leq 2 \cdot |F|$, $|W/C_W(Z)| \geq |F|^2$ and [W,T] = [W,Q] if $|T^W| \geq 4$. Thus we are done by ??. So suppose that L^W is quasi simple. If Q^W is not elementary abelain then W is a

So suppose that L^w is quasi simple. If Q^w is not elementary abelain then W is a strongly quadratic module in the sense of Stroth and so \overline{W} is the natural module. Because of the graph automorphism, $L = Sp_4(q)\prime$ is impossible in this case. Thus Y = 0 and the lemma is readily verifed in this case.

So suppose that Q^W is elementary abelian. Then its is easy to check that $|C_{\bar{W}}(Z)|^2 = \bar{W}$ and $|Q^W| \leq |\bar{W}/C_{\bar{W}}(Z)|$. In particular, Q acts quadratically on W. Let $J \leq H^W$ minimal with $Q^W \leq J$ and $Q^W \not\leq O_p(J)$. Suppose first that $O_p(J) = 1$. Then (for example by 2.9), $J \cong SL_2(\tilde{q})$ or $Sz)\tilde{q}$). Thus there exists $j \in J$ with $J = \langle T^{Wj}, T^W \rangle$. Thus $[W, J] = [W, T]^j + [W, T]$ and $[W, Q] = ([W, T]^j \cap [W, Q]) + [W, T]$. But $[W, T]^j \cap [W, Q] \leq C_W(J) \cap [W, T]^j \leq [W, T]$ and so $[W, Q] \leq W$. So we may assume that $O_p(J) \neq 1$ and Jis not generated by two conjugate of T^W in J. In particular, $L^W \cong Sp_4(q)$. We conclude that either $[W, T] \leq [W, Z]$ or $Y \cap W \leq [W, T]$. In the latter case, $[W, Q] \leq [W, T]$ and the lemma holds in this case.

Suppose finally that 4. or 5. in 6.17(b). In view of (3) we may assume that $Q^W \cong Q_8$. So p = 2 Also by (4), Y = 0. Let $X = \langle Q^{O_3(L)} \rangle$. Then $X^W \cong SU_3(2)$ and W is a direct sum of natural modules for X^W , Again it is easy to verify the assumptions of ?? and the lemma is proved.

VZQm - 4

7 An interesting choice of an amalgam for generic *p*-type groups

Hypothesis 7.1 *p* is a prime, *G* is a finite groupe of generic *p*-type and $S \in Syl_p(G)$.

Definition 7.2 (a) \mathcal{W} is the set of sets $\{M_1, M_2\}$ such that

- (a) $M_i \in \mathcal{L}(J(S))$
- (b) $O_p(\langle M_1, M_2 \rangle) = 1.$
- (b) Define an partial ordering " \leq "l on W by defining $(H_1, H_2) < (M_1, M_2)$ if and only if one of the the following holds.
 - 1. Some Sylow p subgroup of $H_1 \cap H_2$ is properly contained in a Sylow p -subgroup of $M_1 \cap M_2$.
 - 2. $H_1 \cap H_2$ and $M_1 \cap M_2$ have a common Sylow subgroup T and $C_{H_1 \cap H_2}(\Omega_1(Z(T)) < C_{M_1 \cap M_2}(\Omega_1(Z(T)))$
 - 3. $H_1 \cap H_2 < M_1 \cap M_2$.
 - 4. $H_1 \cap H_2 = M_1 \cap M_2$ and (possible after interchanging M_1 and M_2 and H_1 and H_2 , $M_1 < H_1$ and $M_2 \leq H_2$.

"
$$\leq$$
 " is defined as " < " or " = "

(c) \mathcal{W}^* is the set of maximal elements of \mathcal{A} under the order defined in (b).

We leave it as an easy exercise to the reader to verify that (\mathcal{W}, \leq) is a partially ordered set.

Lemma 7.3 Let $(M_1, M_2) \in W^*$, $M_{12} = M_1 \cap M_2$, $T \in Syl_p(M_{12})$ and put $Z_0 = \Omega_1 Z(T)$). Then

- (a) For $i = 1, 2, |\mathcal{M}(M_i)| = 1$.
- (b) Suppose R is a p-subgroup of M_1 with T < R. Then $\mathcal{M}(R) = \mathcal{M}(M_1)$ and $T \in Syl_p(M_2)$.
- (c) Suppose that $T \notin \operatorname{Syl}_p(G)$. Then $C(G,T) \in \mathcal{L}$, C(G,T) lies in a unique maximal p-local M of G, $|\mathcal{M}(S)| = 1$ and either T is a Sylow p-subgroup in M_1 and M_2 , or $M = M_i^*$ for some i.
- (d) M_{12} is a maximal subgroup of M_1 and of M_2 .
- (e) One of the following holds:
 - 1. $C_{M_1}(Z_0) = C_{M_{12}}(Z_0) = C_{M_2}(Z_0).$

gpt hgpt dcalw 2. There exists $\{i, j\} = \{1, 2\}$ so that (a) $C_{M_i}(Z_0) \not\leq M_j$, $\mathcal{M}(M_i) = \mathcal{M}(C_{M_i}(Z_0) = \mathcal{M}(C_G(Z_0))$. (b) $C_{M_i}(Z_0) \leq M_i$.

Proof: (a) Suppose M_1 is contained in two distinct maximal *p*-locals L_1, L_2 . Then $M_1 \cap M_2 < M_1 \leq H_1 \cap H_2$. But this contradicts the maximal choice of (M_1, M_2) .

(b) Let $M \in \mathcal{M}(R)$. Then T is properly contained in a Sylow $M_1 \cap M$ and so by that maximality of $(M_1, M_2), M_1 \leq M$. If T is not a Sylow p-subgroup of M_2 , then we conclude $\mathcal{M}(M_1) = \mathcal{M}(N_L(T)) = \mathcal{M}(M_2)$, a contradiction. Thus (b) holds.

(c) Assume without loss that T < S. Then by maximality $N_S(T)$ lies in a unique *p*-local subgroup M of G. Clearly $C(G,T) \leq M$ and it is easy to see that (c) holds.

(d) Let $M_{12} < L_1 \leq M_2$ and put $M = \langle L_1, M_2 \rangle$. If $M \in \mathcal{L}$, then $(M, M_2) \in \mathcal{W}$ and $M_{12} < L_1 \leq M \cap M_1$, a contradiction to the maximality of (M_1, M_2) . Thus $O_p(M) = 1$ and $(L_1, M_2) \in \mathcal{W}$. Also $L_1 \cap M_2 = M_{12}$, $L_1 \leq M_1$ and $M_2 \leq M_2$. So by maximality $L_1 = M_1$.

(e) Suppose that $C_{M_1}(Z_0) \not\leq M_2$ and let $M \in \mathcal{M}(C_{M_1}(Z_0))$. Suppose that $M_1 \not\leq M$. Since $T \leq M_1 \cap M$, maximality implies that T is a Sylow *p*-subgroup of $M_1 \cap M$. But then part 2. of the definition of "i" gives a contradiction. Thus (ea) holds. Clearly (ea) implies (eb).

Lemma 7.4 Let $M \in \mathcal{L}(S)$ and $1 \neq x \in Z_M \cap ZJ(S)$ Suppose that $Z_M \not\leq O_p(C_G(x)0)$. Then **TO BE CONTINUED**

Proof: Assume without loss that M is a maximal p-local. Put $Q = C_S(Z_M)$. Note that $C_G(x) \in \mathcal{L}(B(S))$. Pick $L \in \mathcal{L}(Q)$ so that $Z_M \not\leq O_p(L)$, $|L|_p$ is maximal and |L| is minimal. Let T be a Sylow p-subgroup of |L| with $Q \leq T$. Let R be an T invariant subgroup of L with $[R, Z_M \not\leq O_p(R))$. Then by minimality of L, L = RS. In particular, $L \in \mathcal{N}(T)$. Also $Z_M \leq D = \stackrel{def}{=} \bigcap \{O_p(P) \mid P \in \mathcal{M}(L, T)\}.$

Case 1 T is not a Sylow *p*-subgroup of G.

Let C be a non-trivial characteristic subgroup of T. Then $N_G(C)$ has a larger p-part then L and so by choice of L, $Z_M \leq O_p(N_G(C))$. In particular, C is not normal in L. In particular, $[Z_L, Z_M] \neq 1$.

Suppose that $F^*(L)$ is not a *p*-group. Then no element of $O_p(L)$ is of *p*-type. Pick $E \in \mathcal{L}$ with $Q \leq L$, $F^*(E)$ is not a *p*-group, $|E|_p$ maximal and |E| minimal. Then $Z_M \not\leq O_p(E)$. Let *R* be a Sylow *p*-subgroup of *E* containing *Q* and $R \triangleleft R^*$ for some *p*-group R^* . Let $1 \neq r \in R \cap Z(R^*)$. Then $Q \leq C_G(r)$ and $C_G(r)$ has larger *p*-part then *E*. Thus *r* is of *p*-type and so $r \not\leq O_p(E)$. Thus $[O_p(E), O^p(E)] = 1$. **TO BE CONTINUED**

8 Some general amalgam results

Hypothesis 8.1 1. G is a group.

2. p is a prime.

geamre amalgam

cjt

- 3. G_1 and G_2b are finite subgroups of G.
- 4. $G = \langle G_1, G_2 \rangle$
- 5. $S \leq G_1 \cap G_2$ so that S is a Sylow p-subgroup of G_1 and G_2
- 6. Both $F^*(G_1)$ and $F^*(G_2)$ are p-groups.

Let $O_S(G)$ be the largest subgroup of S which is normal in G. Let $Z = \Omega_1 Z(S)$. Let $\Gamma = \Gamma(G; G_1, G_2)$ be the coset graph for G with respect two G_1, G_2 . In equal the vertices are the right cosets of G_1 and G_2 in G and two cosets are adjacent if they are distinct and have non-empty intersection. For $\gamma \in \Gamma$, let G_{γ} be the stabilizer of $\gamma \in G$, $Q_{\gamma} = O_p(G_{\gamma})$, $Z_{\gamma} = \Omega_1(Z(T)) \mid T \in \operatorname{Syl}_p(G_{\gamma}), \, \triangle(\gamma)$ is the set of neighbors of $\gamma, \, G_{\gamma\delta} = G_{\gamma} \cap G_{\delta}$. $G_{\gamma}^{(1)} = \bigcup_{\delta \in \triangle(\gamma)} G_{\gamma\delta}, \, V_{\gamma} = \langle Z_{\delta} \mid \delta \in \triangle(\gamma), \, C_{\gamma} = C_{G_{\gamma}}(Z_{\delta}), \, E_{\gamma} = O^p(G_{\gamma}), \, Q_{\gamma}^* = [Q_{\gamma}, E_{\gamma})], \, X_{\gamma} = \Omega_1 Z(Q_{\gamma}), \, X_{\gamma}^* = C_{Q_{\gamma}}(Q_{\gamma}^*), \, Y_{\gamma}$ is the largest *p*-reduced normal subgroup of G_{γ}

For $\gamma \in \Gamma$ let $b_{\gamma} = \min\{d(\gamma, \delta) \mid Z_{\gamma} \not\leq G_{\delta}^{(1)}$. Let $b = \min_{\gamma \in \Gamma} b_{\gamma} = \min\{b_{G_1}, b_{G_2}\}$. Let $\alpha, \alpha' \in \Gamma$ with $d(\alpha, \alpha') = b$ and $Z_{\alpha} \not\leq G_{\alpha'}^{(1)}$. Let

$$(\alpha, \alpha + 1, \alpha + 2, \dots, \alpha + b) = (\alpha' - b, \dots, \alpha' - 1, \alpha')$$

be a shortest path form α to α' . Put $\beta = \alpha + 1$. Without loss $\{G_{\alpha}, G_{\beta}\} = \{G_1, G_2\}$. Let $q_{\delta} = qa_{Z_{\delta}}(G_{\delta}), r_{\delta} = \min\{r \mid |AQ_{\beta}/Q_{\beta}|^r = |V_{\beta}/C_{V_{\beta}}(A)\}$ for some $A \leq S$ with $A \not\leq Q_{\beta}$ and $[V_{\beta}, A, A] = 1$. Let c_{β} the number of non-trivial chief factors for G_{β} on V_{β} .

Definition 8.2 Let H be a group and T a subgroup of H.

- 1. *H* is connected with respect to *T* if *T* is not normal in *H* and for each normal subgroup N of *H*, either $N \cap T$ is normal in *H* or H = NT.
- 2. H is p-connected if H is connected with respect to some Sylow p-subgroup of H.
- 3. *H* is *p*-minimal with *H* is not *p*-closed and a Sylow *p*-subgroup of *H* lies in a unique maximal subgroup of *H*.

Lemma 8.3 If G_{β} is connected then, $r_{\beta} \geq ra_{V_{\beta}}c_b$.

Proof: $A \leq G_{\beta}$ with $[V_{\beta}, A, A] = 1$ and put $r = ra_{V_{\beta}}$. Let U be a non-trivial chief factor for G_{β} on S Then as $G_{\beta} \in \mathcal{N}^*(S)$, $C_A(U) = A \cap Q_{\beta}$. So by definition of $ra_{V_{\beta}}(S)$, $|AQ_{\beta}/Q_b|^r \leq |U/C_U(A)|$. Multiplying together these inequalities over all such U in a chief series we obtain $|AQ_{\beta}/Q_b|^{rc_{\beta}} \leq |V/C_V(A)|$ and so $r_b \geq rc_{\beta}$.

Lemma 8.4 Suppose that $b \ge 2$ and allow for the case that $O_S(G) \ne 1$.

(a) Suppose that $q_{\alpha} > 1$ and $[V_{\beta}, J(S) \neq 1$. Then b is odd or ∞ and $(q_{\alpha} - 1)(r_{\beta} - 1) \leq 1$.

connected

QRC

rrc

(b) Suppose that $C_{\alpha} \cap Q_{\beta}$ is not normal in G_{α} and put $Q = \langle C_{\alpha} \cap Q_{b}^{G_{\beta}} \rangle$. Then Q acts quadratically on Z_{α} , $|[Z_{\alpha}, Q]| \leq |Q/C_{Q}(Z_{\alpha})|$, Z_{α} is an FF module and $[C_{Z_{\alpha}}(Q), E_{\beta}] = 1$.

Proof: (a) If b is even, 8.17 shows that Z_{α} or $Z_{\alpha'}$ is FF, a contradiction to $q_{\alpha} > 1$. Thus b is odd or ∞ . In particular, $b \geq 3$ and V_{β} is abelian.

Since $[V_{\beta}, J(S) \neq 1$, there exists $A \in \mathcal{A}(S)$ with $[V_{\beta}, A] \neq 1$. By the Thompson replacement lemma we may assume that $[V_{\beta}, A, A] = 1$. Suppose $A \leq Q_{\beta}$ and let $\delta \in \Delta(\beta)$. Then $q_{\delta} > 1$ implies $[Z_{\delta}, A] = 1$ and $[V_{\beta}, A] = 1$, a contradiction. Thus $A \not\leq Q_{\beta}$. Put $B = A \cap Q_{\beta}$. We will apply 2.4 with $I = \Delta(\beta)$ and $W_i = Z_i$ for $i \in I$. Define r, t and s as in the 2.4. Since $A \in \mathcal{A}(S)$, $|V_{\beta}/C_{V_{\beta}}(A)| \leq |A/C_A(V_{\beta})|$ and so $t \geq 1$. Also $s \geq q_a > 1$ and $r \geq r_{\beta}$. By 2.4b to obtain $trs \leq r+s$, $rs \leq r+s$, $(s-1)(r-1) \leq 1$ and $(q_{\alpha}-1)(r_{\beta}-1) \leq 1$.

(b) Let $D = C_{Z_{\alpha}}(E_{\alpha})$. If $D = Z_{\alpha}$, then Z_{α} and $Q = C_{\alpha} \cap Q_{\beta}$ are normal in G_b in contrast to our assumptions. Thus $Z_{\alpha} \neq D$ and we can choose $D \leq E \leq Z_{\alpha}$ with $E \leq S$ and |E/D| = p. Let $W = \langle E_{\beta}^{G} \rangle$. Note that $[E, Q] \leq D$ and so is centralized by E_b and normalized by S. Thus $[E, Q] \leq G_{\beta}$, [E, Q] = [W, Q] Since $[W, E_{\beta}] \neq 1$ and $c_{\beta} = 1$, $[V_{\beta}, E_b] \leq W$ and so $V_{\beta} = Z_{\alpha}W$. Hence $[V_{\beta}, C_{Q_{\beta}}(Z_{\alpha})] \leq [W, Q$ and so $[Z_a, Q] \leq [V_{\beta}, Q] = [W, Q] = [E, Q] \leq Z_{\alpha}$. $[C_{\alpha} \cap Q_{\beta}$ centralizes D, Q centralizes D and [E, Q]. Hence $[E, Q] = \{[e, q] \mid q \in Q\}$, where $e \in E \setminus D$. Thus $|[E, Q]| = |Q/C_Q(e) \leq |Q/C_Q(Z_{\alpha})|$. If $C_{Z_{\alpha}}(Q) \neq D$, we can choose [E, Q] = 1 and we get $[Z_{\alpha}, Q] = 1$ and so $Q = C_{\alpha} \cap Q_{\beta}$ is normal in G_{β} , a contradiction. \Box

Lemma 8.5 Suppose that b is odd, $b \ge 3$ and $L \le G_{\alpha'}$ with

(i)
$$L = (G_{\alpha'-1} \cap L)O^p(L)$$
.

(ii)
$$G_{\alpha'} = \langle G_{\alpha'-1}, L \rangle.$$

(iii) L has at most one non-central composition factor on $\langle Z_{ap-1}^L \rangle$.

Then one of the following holds

- 1. $[Z_{ap-1}, [Q_{\alpha'}, O^p(L)] \neq 1$ and Z_{α} is an FF-module for G_{α}/C_{α} .
- 2. $[Z_{ap-1}, [Q_{\alpha'}, O^p(L)] = 1$ and
 - (a) $V_{\beta} = Z_{\alpha}C_{V_b}(Q_b).$
 - (b) $C_a \cap Q_\beta \trianglelefteq G_\beta$.
 - (c) $C_{V_b}(Q_b)$ is an FF module for $\langle \mathbf{Q}_a^{G_\beta} \rangle$.

Proof: Let $V = \langle Z_{ap-1}^L \rangle$ and $Q = [Q_{\alpha'}, O^p(L)]$. Then by (i), $V = \langle Z_{ap-1}^{O^p(L)} \rangle$ and we may assume without loss that $L = O^p(L)$. Note also that $Q_{\alpha'}$ normalizes $Z_{\alpha'}$ and V.

Suppose first that $[Z_{\alpha'-1}, Q] \neq 1$. If $[V, Q, L] \neq 1$, then by (iii), $V = Z_{\alpha'-1}[V, Q]$ and so $V = Z_{\alpha'-1}$, a contradiction to (ii). Thus [V, Q, L] = 1 and by [St1] (1) holds.

So we may assume that Q centralizes $Z_{\alpha'-1}$ and V. Hence (iii) implies that $[V, Q_{ap}, L] = 1$ and $[V, L, Q_{ap}] = 1$. Thus $V = Z_{\alpha'-1}C_V(Q_{\alpha'})$ and so L normalizes $Z_{ap-1}C_{V_{\alpha'}}(Q_{\alpha'})$.

ocf

Therefore (ii) implies that $G_{\alpha'}$ normalizes $Z_{ap-1}C_{V_{\alpha'}}(Q_{\alpha'})$ and so $V_{\alpha'} = Z_{ap-1}C_{V_{\alpha'}}(Q_{\alpha'})$. Thus $C_{Q_{\alpha'}}(V_{ap}) = C_{\alpha'-1} \cap Q_{\alpha'}$ and (a) and (b) are proved. Moreover we get $[V_{\beta} \cap Q_{\alpha'}, V_{\alpha'}] = 1$ and $[V_{\alpha'} \cap Q_{\beta}, V_{\beta} = 1$. Hence (c) follows from 8.17.

Lemma 8.6 Suppose that G_{β} is a minimal parabolic and allow for the case that $O_S(G) \neq 1$. Then one of the following holds:

- 1. S centralises Z_{α} .
- 2. $Z_{\alpha} \not\leq Q_{\beta}$.
- 3. $q_a \leq 2$
- 4. Z_{α} is the dual of an FF-module
- 5. There exists a non-tivial characteristic subgroup C of B(S) with $C \leq G_{\beta}$ and $G_{\alpha} = N_{G_{\alpha}}(C)C_{\alpha}$. Moreover, either C = J(S) or $Q_b^* \leq B(S) \leq C_{\alpha}$.
- 6. Put $G_{\beta}^* = B(S)O^2(G_{\beta})$. T $O_2(G_{\beta}^*) \leq B(S) \leq C_{\alpha}$ and non-trivial characteristic subgroup of B(S) is normal in G_{β}^* . Moreover, $Z \leq G_{\beta}$.
- 7. Z and Z_{α} are normal in G_{β} and centralized by E_{β} . Futhermore, $S \cap C_{\alpha}$ is a Sylow p-subgroup of $C_{G_{\beta}}(Z_{\alpha})$.

Proof: Without loss $Z_a \leq Q_b$. If $[J(S), Z_\alpha] \neq 1$, $r(S, Z_1) \leq 1$. So we may assume that $J(S) \leq C_\alpha$. Thus $Z_\alpha \leq C_S(J(S))$ and $B(S) \leq C_\alpha$. Hence

(1) $G_{\alpha} = N_{G_{\alpha}}(B(S))C_a = N_{G_{\alpha}}(C)C_a$ for any characteristic subgroup C of B(S).

If E_{β} centralizes V_{β} , then 7. holds. So suppose $[V_{\beta}, E_{\beta}] \neq 1$. If $J(S) \leq G_{\beta}$, 5. holds. Hence we may assume that $J(S) \leq G_{\beta}$. in particular, $[V_{\beta}, J(S)] \neq 1$. By 6.3, $r_{V_b}(G_{\beta}) \geq 1$. If $c_{\beta} \geq 2$, then 8.3 implies $r_{\beta} \geq 2$. By refQRCa, $(q_{\alpha} - 1)(r_b - 1) \leq 1$ and so 3. holds. If $c_{\beta} = 1$, then 8.4b implies that 4. holds or $C_{\alpha}capQ_{\beta}$ is normal in G_{β} . So suppose the latter.

Since $J(S) \leq C_{\alpha}$, J(S) centralizes $Q_{\beta}/Q_{\beta} \cap C_{\alpha}$. Since $J(S) \not\leq Q_{\beta}$, $E_{\beta} \leq \langle J(S)_{\beta}^{G} \rangle$ and so E_{β} centralizes $Q_{\beta}/Q_{\beta} \cap C_{\alpha}$. Thus $Q_{\beta}^{*} \leq C_{\alpha} \cap Q_{\beta}$ and $[V_{\beta}, Q_{b}^{*}] = 1$. Thus $[C_{Q_{\beta}}(Q_{\beta}^{*}), E_{\beta}] \neq 1$ and by Thompson's $P \times Q$ -lemma, $[X_{\beta}, E_{\beta}] \neq 1$. Thus by 8.10 (and the remark following 8.10), $O_{p}(E_{b}) \leq B(S)$. Now either there exists a non-trivial charcteristic subgroup of B(S) which is normal in G_{β}^{*} or there does not. In the first case (1) implies that 5. holds and in the second 6. holds.

q < 2 - 1

Lemma 8.7 Suppose b > 1, $s_{Z_{\alpha}}(S) \ge 1$, $C_{G_{\beta}}(V_b)$ is p-closed and $[V_{\beta} \cap Q_{\alpha'}, V_{\alpha'} \cap Q_{\beta}] = 1$. Then V_{β} is F2 for G_{β} . **Proof:** We may assume without loss that $V_{\beta}Q_{\alpha'}/Q_{\alpha'} \ge V_{\alpha'}Q_{\beta}/Q_ap$. Since $s_{Z_{\alpha}}(S) \ge 1$ we can apply 2.3 with s = 1, $V = V_{\beta}$ and $B = V_{\alpha'} \cap Q_{\beta}$ and conclude

$$|B/C_B(V_b)| \le |V_b/C_{V_b}(B)|$$

By assumption $V_{\beta} \cap Q_{\alpha'} \leq C_{V_b}(B)$ and so

$$|V_{\alpha'}/C_{V_{\alpha'}}(V_b)| \le |V_{\alpha'}/B||B/C_B(V_\beta) \le |V_{\alpha'}Q_\beta/Q_b| \cdot |V_\beta/V_b \cap Q_{\alpha'}| \le |V_\beta Q_{\alpha'}/Q_{\alpha'}|^2.$$

Hence V_{β} is F^2 .

Lemma 8.8 Let (P_0, P_1, P_2) be an amalgam over S. Let $Z_0 = \langle Z^{P_0} \rangle$. For i = 1, 2 put $L_i = \langle P_0, P_i \rangle$ and $Z_i = \langle Z^{L_i} \rangle$. Suppose that

cb

- (i) P_1 and P_2 are in $\mathcal{P}(S)$.
- (ii) For $\{i, j\} = \{1, 2\}, O^2(P_i) \not\leq O_2(P_j).$
- (iii) For $i = 1, 2, Z \leq O_S(L_i)$

The one of the following holds for some $i \in \{1, 2\}$

- 1. $J(S) \leq P_0$.
- 2. $J(S) \leq P_i, [Z_0, O^2(P_i)] \neq 1 \text{ and } r(S, Z_i) \leq 1.$
- 3. $Z_i \not\leq Q_j$

4.
$$r(S, Z_j) \leq 2 \text{ or } r^*(S, Z_j) \leq 2$$

Proof: Without loss $J(S) \triangleleft P_O$ and since J(S) is not normal in all the P_i 's we may assume that $J(S) \trianglelefteq P_1$. If $[Z_0, O^2(P_1)] \neq 1$ we conclude that $[Z_1, J(S)] \neq 1$ and 2. holds. So we also may assume that $[Z_0, O^2(P_1)] = 1$. Then Z_0 is not normal in P_2 and hence $[Z_0, O^2(P_2)] \neq 1$.We apply 8.6 to $G_\alpha = L_2$ and $G_\beta = P_1$. As $J(S) \trianglelefteq P_1 = G_\beta$ we conclude that either 3. holds or 4. holds or $[Z_2, Q_1^*] = 1$. In the latter case $Q_1^* \not\leq O_2(P_2)$ implies $[Z_2, O^2(P_2) = 1$, a contradiction to $[Z_0, O^2(P_2)] \neq 1$.

Lemma 8.9 Let L be a subgroup of G_{β} which acts transitively on $\triangle(\beta)$. Put $D_{\beta} = \bigcap_{\delta \in \triangle(\beta)} Z_{\delta}$ and l minimal with $[Z_{\alpha}, Q_{\beta}, l] \leq D_{\beta}$. Suppose that $V_{\beta} \leq Q_{\beta}$. Then for all $0 \leq i < l, L$ acts non-trivially on $[V_{\beta}, Q_{\beta}, i]/[V_{\beta}, Q_{\beta}, i+1]$.

Proof: Put $Z_i = [Z_{\alpha}, Q_{\beta}, i]$ and $V_i = [V_{\beta}, Q_{\beta}, i]$. As L acts transitively on $\triangle(\beta)$, $V_i = \langle Z_i^L \rangle$. Let i be so that L acts trivially on V_i/V_{i+1} . Then $V_i = Z_i V_{i+1}$ and so $V_i/Z_i = [V_i/Z_i, Q_{\beta}]$. Hence $V_i = Z_i$ and $Z_i \leq D_{\beta}$. Thus $i \geq l$.

Baumann

Lemma 8.10 Let G be a finite group, p a prime, p-subgroup of G, $V = \langle \Omega_1(Z(O_p(G))), \rangle$ $B(S) = C_S(\Omega_1(Z(J(S)), J(G) = \langle J(S)^G \rangle, B(G) = \langle B(S)^G \rangle, \overline{G} = G/C_G(V), and \widetilde{V} =$ $V/C_V(O^p(B(G)))$ and suppose that each of the following holds:

- (i) $C_G(V)$ is p-closed.
- (ii) If $A \in P(\overline{G}, V)$ then $|\tilde{V}/C_{\tilde{V}}(A)| \ge |A|$.
- (iii) If U is an FF-module for $G/O_p(G)$ module with $\tilde{V} \leq U$ and $U = C_U(B(S))\tilde{V}$, then $U = C_U(O^p(J(G)))\tilde{V}.$

Then $O_p(B(G)) \leq B(S)$.

Proof: and $Y = \Omega_1 Z J(S)$. Let $A \in \mathcal{A}(S)$. Then $\overline{A} \in P(\overline{G}, V)$ and so by (ii), $|\tilde{V}/C_{\tilde{V}}(A)| \geq 1$ $|\overline{A}|$. By (i), $|\overline{A}| = |A/A \cap Q|$ and so $V(A \cap Q) \in \mathcal{A}(S)$. Thus $Y \leq V(A \cap Q) \leq Q$. Put $W = \langle Y^G \rangle V$. We conclude that $W \leq \Omega_1 Z J(Q)$ and so W is elementary abelian and $(A \cap Q)V$ centralizes W. Hence $W \leq (A \cap Q)V$ and $W = V(A \cap W) = VC_W(A)$. It follows that A centralizes W/V. Since A was arbitrary in $\mathcal{A}(S)$, J(G) centralizes W/V. As Y = $\Omega_1 Z J(S \cap J(G))$, Sylow's theorem implies that J(G) acts transitively on Y^G . Thus W = YVand so $[W,Q] = [Y,Q] \leq Y$. Hence $[W,Q] \leq C_W(B(G))$. Let $D = C_W(O^p(B(G)))$ and U =W/D. Then $O_p(G)$ centralizes U. Since $V \cong VD/D$ and U = YV/D, we can apply (iii) to conclude that W = DV and $U \cong \widetilde{V}$. Since $A \in \mathcal{A}(S), |W/W \cap A| \leq |A/C_A(W)| = |A/A \cap Q|$. One the other hand by (i), $|A/A \cap Q| \leq |\widetilde{V}/C_{\widetilde{V}}(A)| = |U/C_U(A)| \leq |W/C_W(A)D|$. Thus $|W/C_W(A)| \leq |W/C_W(A)D|$ and $D \leq C_W(A)$. Hence $[D, A] = 1, D \leq Y$ and [D, B(G)] =1. Therefore $[W, O_p(B(G)] \le [D, B(G)][V, Q] = 1$ and so $O_p(B(G)) \le C_S(Y) = B(S)$.

Remark 8.11 Assume (i) in 8.10. Then (ii) and (iii) hold as well unless $\overline{J(G)}$ has a component K with $K \cong Alt(2n), n \geq 3$; $SL_n(q), n \geq 3$; $SU_n(q), n \geq 6$; $Sp_{2n}(q), n \geq 2$; $\Omega_{2n}^+(q), n \geq 3; \text{ or } \Omega_{2n}^-(q), n \geq 4; \text{ and some composition factor for } K \text{ on } V \text{ is a natural}$ module.

Lemma 8.12 pushing up minimal parabolics, odd elements

Lemma 8.13 pushing up sym(10) over $\langle (12), (34), (56), (78), (9, 10) \rangle$

Lemma 8.14 some trivial pushing up result, at least including $L_5(2)$ over the O_2 of a point stabilizer, saying that b = 4 and non trivial center; or b = 2 and O_2 basicly a natural module

Lemma 8.15 Suppose that G_{α} is a p-minimal. Then $Q_{\alpha} \not\leq Q_{\beta}$.

Proof: This follows from 8.12**Remark: This needs some thought**

Lemma 8.16 Suppose that each of the following holds:

(i) $\alpha, \beta = \{\gamma, \delta\}.$

pusymtrpu

pump

qaniqb

znnab1

- (ii) G_{γ} is p-minimal and $[X_{\gamma}, E_{\gamma}] \neq 1$.
- (iii) G_{δ} is p-connected or $C_S(X_{\delta}) = Q_{\delta}$.

Then one of the following holds.

- (a) $[X_{\delta}^*, E_{\delta}] = 1 \text{ and } Z \leq G_{\delta}.$
- (b) $J(S) \not\leq Q_{\delta}$ and X_{δ} is an FF-module for G_{δ} .
- (c) (a) $J(S) \leq G_{\delta}$.
 - (b) $O_p(B(G_\gamma)) \leq B(S) = B(Q_\delta).$
 - (c) E_{γ} is a $SL_2(p^r)^k$ -block, $Alt(2^r+1)^k$ -block or $SL_2(3^r)^k$ double block.
 - (d) If G is finite and $S \in Syl_p(G)$, then G contains a p-local R with $B(S) \leq R$ and $C_R(O_p(R)) \not\leq O_p(R)$.

Proof: We may assume that $[X_{\delta}^*, E_{\delta}] \neq 1$. Then by Thompsons's $A \times B$ -lemma, $[X_{\delta}, E_{\delta}] \neq 1$. 1. Hence if G_{δ} is *p*-connected, $C_S(X_{\delta}) = Q_{\delta}$. Thus by (ii) $C_S(X_{\delta}) = Q_{\delta}$. If $J(S) \not\leq Q_{\delta}$, then (b) holds.

So suppose $J(S) \leq Q_{\delta}$. Then $X_{\delta} \leq ZJ(S)$ and so $B(S) \leq C_S(X_{\delta}) \leq Q_{\delta}$ and $B(S) = B(Q_{\delta})$. By 8.10, $O_p(B(G_{\gamma})) \leq B(S)$. Thus (ca) and (cb) hold in this case.

Since G_{γ} is *p*-minimal, $G_{\gamma} = B(G_{\gamma})S$. Let *R* be normal subgroup of $B(G_{\gamma})$. Let *U* be unique maximal subgroup of G_{γ} containing *S*. Let *C* be a non-trivial characteristic subgroup of B(S). Then *C* is normal in G_{δ} and so *C* is not normal in G_{γ} . Since $S \leq N_{G_{\gamma}}$, this implies $N_{G_{\gamma}} \leq U$. Let $W = W_{\gamma} = \langle \Omega_1 Z(J(S))^{G_{\gamma}}$. Then *W* is an *FF*-modules for $B(G_{\gamma})$ and $O_p(B(G_{\gamma}))$ centralizes *V*. Hence $W/C_W(E_{\gamma})$ is a natural $SL_2(p^r)^k$ or $Sym(2^r + 1)^k$ module for $B(G_{\gamma})$. Let *E* be minimal with $B(S) \leq E$, and $O^p(E)$ maps onto on normal $SL_2(q)'$'s or Alt(q+1)'s. Then $E \not\leq U$ and so $C \not\leq E$. Hence by 8.12 $O^p(E)$ is an $L_2(p^r)$ -block, $Alt(2^r + 1)$ block or $SL_2(q)$ -double block. It is now easy to see that $O^p(E)$ is normal in E_{γ} and that (cc) holds.

Suppose now that G is finite and $S \in Syl_p(G)$. Assume first that E_{γ} is a $SL_2(p^r)^{k}$ - or $Alt(2^r+1)^k$ -block. Then there exists $\lambda \in \Delta(\delta)$ with $[W_{\gamma}, W_{\lambda}] \neq 1$. Then $W_{\lambda} \leq B(Q_{\delta}) = B(S) \leq B(G_{\gamma})$). Suppose that $[X_{\delta}, Q_{\gamma}] \neq 1$ **TO BE CONTINUED**

Lemma 8.17 Let $\lambda, \mu \in \Gamma$ and F_{λ} , F_{μ} normal p-subgroups of G_{λ} and G_{μ} , respectively. Suppose that

- (i) $F_{\lambda} \leq G_{\mu}$ and $F_{\mu} \leq G_{\lambda}$.
- (ii) $[F_{\lambda}, F_{\mu}] \neq 1.$
- (iii) For $\rho \in \{\lambda, \mu\}$, $C_{G_{\rho}}(F_{\rho})$ is p-closed
- (iv) $[F_{\lambda}, F^{\mu} \cap Q_{\lambda}] = 1$ and $F_{\mu}, F_{\lambda} \cap Q_{\mu}] = 1$.

PFF

Then one of the following holds

- 1. F_{λ} is an F^*1 module for G_{λ} .
- 2. F_{μ} is an F^*1 module for G_{μ} .
- 3. Both F_{λ} and F_{μ} are FF-modules.

Proof: By (iii) and (iv) $F_{\lambda} \cap Q_{\mu} = C_{F_{\lambda}}(F_{\mu})$ and $F_{\mu} \cap Q_{\lambda} = C_{F_{\mu}}(F_{\lambda})$. $|F_{\lambda}/F_{\lambda} \cap Q_{\mu}|$ is either less, larger or equal to $F_{\mu}/F_{\mu} \cap Q_{\lambda}$. In the first case $|F_{\lambda}/C_{F_{\lambda}}(F_{\mu})| < F_{\mu}Q_{\lambda}/Q_{\lambda}|$ and 1. holds. Similarly the second case implies 2. and the third 3.

Lemma 8.18 Suppose that $b \ge 3$, b is odd and $r_{\alpha} \ge 1$.

- (a) $(r_a 1)(r_b 1) \le 1$.
- (b) Suppose that equality holds in (b). Then
 - (b.a) $|V_{\alpha'}Q_{\beta}/Q_a| = V_{\beta}Q_{\alpha'}/Q_{\alpha'}|$
 - (b.b) $C_{V_{\alpha'}}(V_{\beta} \cap Q_{\alpha'}) = C_{V_{\alpha'}}(V_{\beta}).$
 - (c.b) Let $\delta \in \triangle(\beta)$ with $[Z_{\delta}, V_{\alpha'}] \neq 1$. Then $V_{\alpha'} \cap Q_{\beta} \not\leq Q_{\delta}$ and $|(V_{\alpha'} \cap Q_b)Q_{\alpha}/Q_a|^s = |Z_{\delta}/C_{Z_{\delta}}(V_{\alpha'})|$.
 - (c.d) $|V_{\beta}Q_{\alpha'}/Q_{\alpha'}|^r = |V_{\alpha'}/C_{V_{\alpha'}}(V_{\beta})|.$

Proof: By 2.4 we have

(1)
$$|V_{\alpha'} \cap Q_{\beta}/C_{V_{\alpha'}}(V_{\beta})|^{r_{\alpha}} \leq |V_{\beta}/C_{V_{\beta}}(V_{\alpha'} \cap Q_{\beta})|.$$

and

(2) $|V_{\beta} \cap Q_{\alpha'}/C_{V_{\beta}}(V_{\alpha'})|^{r_{\alpha}} \leq |V_{\alpha'}/C_{V_{\alpha'}}(V_{\beta} \cap Q_{\alpha'})|.$

Suppose first that $V_{\alpha'} \leq Q_{\beta}$. Since $r_{\alpha} \geq (1)$ implies $|V_{\alpha'}/C_{V_{\alpha'}}(V_{\beta})| \leq |V_{\beta}/C_{V_{\beta}}(V_{\alpha'})|$. If $V_{\alpha'}$, Q_{β} the situation is symmetric in α' and β and we may assume in any case that

(3) $|V_{\alpha'}/C_{V_{\alpha'}}(V_{\beta})| \le |V_{\beta}/C_{V_{\beta}}(V_{\alpha'})|$

TO BE CONTINUED

Lemma 8.19 Suppose that $r_{\beta} \geq 1$, $s_{\alpha} \geq \frac{3}{2}$ and $s_{\alpha}^* > 1$. Then

- (a) $\frac{3}{2} \le s_{\alpha} \le 2$.
- (b) $1 \le r_{\beta} \le \frac{3}{2}$.
- (c) c = 2 or 3.

rsc

vbvap1

vbvap2

vbvap

vbvap3

- (d) If c = 3, then $s_{\alpha} = \frac{3}{2}$ and $r_{\beta} = 1$.
- (e) If $r_{\beta} = \frac{3}{2}$, then c = 2, $s_{\alpha} = \frac{3}{2}$ and $(s_{\alpha} 1)(r_{\beta}c_{\beta} 1) = 1$.
- (f) If $s_{\alpha} = 2$, then c = 2, $r_{\beta} = 1$ and $(s_{\alpha} 1)(r_{\beta}c_{\beta} 1) = 1$.
- (g) $[Z_{\alpha}, Z_{\alpha'}] = 1.$

Proof: As $s_{\alpha}^* > 1$, 2.4 implies $c_{\beta} \ge 2$. All but the last statement are now an immediate consequece of 8.4. The last statement follows from 8.17.

Lemma 8.20 Suppose that b is odd and $\beta^+, \beta^- \in \Gamma_2$ with $d(\beta^+, \beta^-) = b-1$ For $\epsilon \in \{+, -\}$ let $\Lambda^{\epsilon} \subseteq \Delta(\beta^{\epsilon})$. Define $V^{\epsilon} = \langle Z_{\lambda} | \lambda \in \Lambda^{\epsilon} \rangle$ and $B = V^{\epsilon} \cap \bigcap_{\lambda \in \Lambda^{-\epsilon}} G_{\lambda}$. Finally, let s be a postive real number so that for all $\epsilon \in \{+, -\}$, all $\lambda \in \Lambda^{-\epsilon}$, and all $A \leq B^{\epsilon}, |Z_{\lambda}/C_{Z_{\lambda}}(A)|^{s} \leq |A/C_A(Z_{\lambda})|$. Then

(a) (aa) $|B^+/C_{B^+}(V^-)| \le |V^-/V_{V^-}(B^+)|^{\frac{1}{s}} \le |V^-/C_{V^-}(B^+)|^{\frac{1}{s}}$ (ab) $|V^+/C_{V^+}(V^-)| \le |V^+/B^+||B^+/C_{B^+}(V^-)|$ (ac) $|V^+/C_{V^+}(V^-) \le |V^+/B^+||V^-/C_{V^-}(V^+)|^{\frac{1}{s}}$.

(b) (b.a)
$$|V^+/C_{V^+}(V^-)|^{\frac{s^2-1}{s^2}} \le |V^+/B^+||V^-/B^-|^{\frac{1}{s}}.$$

(b.b) $|B^+/C_{B^+}(V^-)|^{\frac{s^2-1}{s}} \le |V^+/B^+|^{\frac{1}{s}}|V^-/B^-|.$

- (c) Suppose s > 1 and $V^+ = B^+$, then $|V^+/C_{V^+}(V^-)| \le |V^-/B^-|^{\frac{s}{s^2-1}}$.
- (d) Suppose s > 1 and that r is a positive real number with $|V^-/B^-|^r \le |V^+/C_{V^+}(V^-)|$. Put $e = \frac{rs^2 - r - s}{s^2}$.
 - (d.a) $|V^-/B^-|^e \le |V^+/B^+|$.

(d.b)
$$|B^-/C_{B^-}(V^+)| \ge \frac{|V^-/B^-|^r}{|V^+/B^+|}$$

(d.c) If e > 0, then $|B^+/C_{B^+}(V^-)|| \le |V^+/B^+|^{\frac{rs}{rs^2-r-s}}$

- (e) Suppose s > 1 and r is a positive integer so that for $\epsilon \in \{+, -\}, |V^{\epsilon}/B^{\epsilon}|^r \leq |V^{-\epsilon}/C_{V^{-\epsilon}}(V^{\epsilon})|$. Put $e = \frac{rs^2 r s}{s^2}$ and suppose that e > 0.
 - (e.a) $|V^-/B^-|^e \le |V^+/B^+||V^-/B^-|^{\frac{1}{e}}$ (e.b) If $V^- \ne B^-$, then $V^+ \ne B^+$ and $e \le 1$.

Proof: The first inequa lityin (aa) follows from 2.3 while the second is obvious. (ab) is obviuos and (ac) follows from (aa) and (ab).

Interchanging "+" and "-" in (ac) and substituting the result into (ac) we obtain

$$|V^+/C_{V^+}(V^-)| \le |V^+/B^+||V^-/B^-|^{\frac{1}{s}}|V^+/C_{V^+}(V^-)|^{\frac{1}{s}}$$

Thus (b.a) holds. Simimalry interchanging "+" and "-" in (ac) and substituting the result into (ab) one obtains (bb).

(c) follows easily from (b.a). (ea) follows from (da) and using symmetry in "+" and "-". (eb) follows from (eb). So it remains to prove (d). By assumption $|V^-/B^-|^r \leq |V^+/C_{V^+}(V^-)|$. As s > 1 we can raise this inequality to the $\frac{s^2-1}{s^2}$ power and obtain

$$|V^{-}/B^{-}|^{\frac{r(s^{2}-1)}{s^{2}}} \le |V^{+}/C_{V^{+}}(V^{-})|^{\frac{s^{2}-1}{s^{2}}}.$$

Thus (da) follows from (ba). For (db) note that

$$|V^{-}/B^{-}|^{r} \le |V^{+}/C_{V^{+}}(V^{-})| \le |V^{+}/B^{+}||B^{+}/V_{V^{+}}(V^{-}).$$

Finally (d.c) follows from (d.a), (b.b) and a simple computation.

LLp

Lemma 8.21 Suppose b > 1 and G_{β} is p-minimal. Let $M_{\alpha\beta}$ be the unique maximal subgroup of G_{β} containing $G_{\alpha\beta}$. Put $\beta^+ = \beta, \beta^- = \alpha'$. Then one of the following holds

- 1. For each $\epsilon \in \{+, -\}$ there exists $L^{\epsilon} \leq G_{\beta^{\epsilon}}$ and $\mu^{\epsilon} \in \Delta(\beta^{\epsilon})$ so that for $V^{\epsilon} = \langle Z_{\mu^{\epsilon}}^{L^{\epsilon}}$ each of the following holds.
 - (a) $V^{-\epsilon} \not\leq 0_p(L_{\epsilon}).$
 - (b) $V^{-\epsilon} \leq G_{\mu^{\epsilon}}$ and $G_{\beta^{\epsilon}\mu^{\epsilon}}$ contains a Sylow p-subgroup of L^{ϵ}
 - (c) $L^{\epsilon} \cap M_{\beta^{\epsilon}\mu^{\epsilon}}$ is the unique maximal subgroup of L^{ϵ} containg $V^{-\epsilon}$.
 - (d) $[V^{-\epsilon}, Z_{\mu^{\epsilon}}] = 1.$
- 2. There exists $\epsilon \in \{+,-\}$, $L^{\epsilon} \leq G_{\beta^{\epsilon}}$, $\mu^{\epsilon} \in \Delta(\beta^{\epsilon} \text{ and } \mu \in \Delta(\beta^{-epsilon}) \text{ so that with } V^{\epsilon} = \langle Z_{\mu^{\epsilon}}^{L^{\epsilon}} \text{ each of the following holds.} \rangle$
 - (a) $V_{\epsilon} \leq G_{\mu}, Z_{\mu} \leq L^{\epsilon} \text{ and } Z_{\mu} \leq 0_p(L_{\epsilon}).$
 - (b) $Z_{\mu} \leq G_{\mu^{\epsilon}}$ and $G_{\beta^{\epsilon}\mu^{\epsilon}}$ contains a Sylow p-subgroup of L^{ϵ}
 - (c) $L^{\epsilon} \cap M_{\beta^{\epsilon}\mu^{\epsilon}}$ is the unique maximal subgroup of L^{ϵ} containg Z_{μ} .
 - (d) $[Z_{\mu}, Z_{\mu^{\epsilon}}] = 1.$
- 3. There exist $\mu^+ \in \triangle(\beta^+)$ and $\mu^- \in \triangle(\beta^-)$ so that $Z_{\mu^+} \leq G_{\mu^-}, Z_{\mu^-} \leq G_{\mu^+}$ and $[Z_{\mu^+}, Z_{mu^-}] \neq 1.$

Proof: Suppose that 3. does not hold. For $\epsilon \in \{+, -\}$ choose $L^{\epsilon} \leq G_{\beta^{\epsilon}}$ and $\mu^{\epsilon} \in \Delta(\beta^{\epsilon})$ so that $|L^+||L^-|$ is minimal with respect to

- (i) For all $\epsilon, V^{-\epsilon} \leq L^{\epsilon} \cap G_{\beta^{\epsilon}\mu^{\epsilon}}$.
- (ii) For all ϵ , $G_{\beta^{\epsilon}\mu^{\epsilon}} \cap L^{\epsilon}$ contains a Sylow *p*-subgroup of L^{ϵ} and $M_{\beta^{\epsilon}\mu^{\epsilon}} \cap L^{\epsilon}$ the unique maximal subgroups of L^{ϵ} containg that Sylow *p*-subgroup.

(iii) For at least one $\epsilon, V^{-\epsilon} \not\leq O_p(L^{\epsilon})$.

Note that (i),(ii) and (iii) are fulfilled with $L^{\epsilon} = G_{\beta^{\epsilon}}$, $\mu^{+} = \alpha + 2$ and $\mu^{-} = \alpha' - 1$ and so we can make such a minimal choice.

Case 1 For some $\epsilon \in \{+, -\}$ and some $\mu \in \mu^{\epsilon L^{\epsilon}}$, $[V^{-\epsilon}, Z_{\mu}] \neq 1$ and $V^{-\epsilon} \leq G_{\mu}$.

For ease of notation we assume without loss that $\epsilon = -$.

(1) In case 1, $Z_{\mu} \not\leq O_p(L^+)$ and $[Z_{\mu^+}, Z_{\mu}] = 1$.

Suppose $Z_{\mu} \leq O_p(L^+)$ and pick $\rho \in \mu^{+L^+}$ with $[Z_{\rho}, Z_{\mu}] \neq 1$. Then $Z_{\mu} \leq G_{\rho}, Z_{\rho} \leq G_{\mu}$ and so 3. holds, contrary to our assumption. As $Z_{\mu} \leq G_{\mu^+}$, the same argument shows $[Z_{\mu^+}, Z_{\mu}] = 1$.

(2) In case 1, 2. holds.

By 2.6 there exists $L \leq L^+$ and $h \in L^+$ such that $Z_{\mu} \leq L$, $Z_{\mu} \not\leq O_p(L)$, $(G_{\beta^+\mu^+} \cap L^+)^h \cap L$ contains a Sylow *p*-subgroup of *L*, and $(M_{\beta^+\mu^+} \cap L^+)^h \cap L$ is the unique maximal subgroup of *L* containing Z_{μ} . Thus 2. holds with $\epsilon = +, L$ in place of L^{ϵ} .

Case 2 Case 1 does not hold.

(3) In case 2, for all ϵ , $V^{-\epsilon} \leq O_p(L^{\epsilon})$ and $[V^{-\epsilon}, Z_{\mu^{\epsilon}}] = 1$.

If the first statement is false pick $\mu \in \mu^{\epsilon L^{\epsilon}}$ with $[Z_{\mu}, V^{-\epsilon}] \neq 1$, if the second statement is false put $\mu = \mu^{\epsilon}$. Then in any case $V^{-\epsilon} \leq G_{\mu}$ and the assumption of Case 1 are fulfilled.

(4) In case 2. 1. holds.

We prove is basicly the same as for (2). By 2.6 there exists $L \leq L^{\epsilon}$ and $h \in L^{\epsilon}$ such that $V^{-\epsilon} \leq L, V^{\epsilon} \leq O_p(L), (G_{\beta^{\epsilon}\mu^{\epsilon}} \cap L_{\epsilon})^h$ contains a Sylow *p*-subgroup of *L*, and $(M_{\beta^{\epsilon}\mu^{\epsilon}} \cap L_{\epsilon})^h \cap L$ is the unique maximal subgroup of *L* containing V^{ϵ} . Hence (i), (ii) and (iii) are still fulfilled if we replace L^{ϵ} be L, μ^{ϵ} by $\mu^{\epsilon h}$ and leave $L^{-\epsilon}$ and $\mu^{-\epsilon}$ as they are. Thus the minimal choice of $|L^+||L^-|$ implies $L = L^{\epsilon}$ and so 1. holds holds.

Lemma 8.22 Assume that each of the following holds for each $\{\gamma, \delta\} = \{\alpha, \beta\}$ and each critical pair (α, α')

- (I) $Z_{\alpha\beta} \not \leq G_{\gamma}$.
- (ii) If $N \lhd G_{\gamma}$ with $N \cap O_p(G_{\alpha}\beta) \not\leq Q_{\gamma}$ then $G_{\gamma} = NG_{\alpha\beta}$.
- (iii) Let $\mathcal{O} = \mathcal{O}_{\gamma\delta} = \{A \leq Q_{\delta} \mid |Z_{\gamma}/C_{Z_{\gamma}}(A) \leq |AQ_{\gamma}/Q_{\gamma}| \neq 1, [Z_{\gamma}, A, A] = 1\}$. Then $Z_{\gamma}/C_{Z_{\gamma}}(A) = |AQ_{\gamma}/Q_{\gamma}|$ for all $A \in \mathcal{O}$.
- (iv) Either $\mathcal{O} = \emptyset$ or $A_{\gamma\delta} \stackrel{def}{=} \bigcap_{A \in \mathcal{O}} [Z_{\gamma}, A] \neq 1$.

znnab

LLp - 11

LLp - 12

LLp-2

LLp - 13

(v) $Z_{\beta}Z_{\alpha} \not \lhd G_{\alpha}$

(vi) One of the following holds

- (vi.1) If $\alpha 1 \in \Delta(\alpha)$ such $Z_{\alpha'}$ does normalize $Z_{\alpha-1}Z_{\alpha}$, then $Z_{\alpha-1} \not\leq Q_{\alpha'-1}$.
- (vi.2) There exists $\alpha 1 \in \triangle(\alpha)$ with $G_{\alpha} = \langle G_{\alpha\alpha-1} \text{ and } Z_{\alpha-1} \not\leq Q_{\alpha'-1}$.

Then

- (a) $\mathcal{O}_{\alpha\beta} \neq \emptyset \neq \mathcal{O}_{\alpha\beta}$.
- (b) If $b \geq 2$, then $A_{\beta\alpha} \leq G_{\alpha}$.
- (c) $b \le 2$.

Proof: By (iii), $Z_{\alpha'} \in \mathcal{O}_{\alpha\beta}$. By (ii) and (vi), there exists $\alpha - 1 \in \Delta(\alpha)$ so that $Z_{\alpha'}$ does not normalize $Z_{\alpha-1}Z_{\alpha}$. Hence by (vi) we may choose $\alpha - 1$ so that $Z_{\alpha-1} \not\leq Q_{\alpha'-1}$. In particular,

(1)
$$Z_{\alpha'-1} \in \mathcal{O}_{\alpha-1\alpha}$$

Thus (a) holds.

Let $H = N(G_{\alpha})(Z_{\alpha}Z_{\alpha} - 1))$, $\mathcal{G} = \{g \in G_{\alpha} \mid Z_{\alpha'}^g \not H\}$ and $T = \langle Z_{\alpha'^g} \mid g \in \mathcal{G} \rangle$. Let $g \in G$. Then $g \in \mathcal{G}$ or $Z_{\alpha'}^g \leq H$. Hence $\langle H, T \rangle \geq G_{\alpha-1\alpha}Z_{\alpha'}^{G_{\alpha}} \rangle = G_{\alpha}$, where the last evality follows from (ii). Since both H and T normalize T, we conclude that $T = \langle Z_{\alpha'}^{G_{\alpha}} \rangle$ and inparticular

(2)
$$G_{\alpha} = G_{\alpha-1\alpha} \langle Z_{\alpha'^g} \mid g \in \mathcal{G} \}.$$

Suppose now that b > 1 and $A_{\beta\alpha} \not \lhd G_{\alpha}$. Then by (2) we may assume that $Z_{\alpha'}$ does not normalize $A_{\alpha-1\alpha}$. But (1) and the definition of $A_{\alpha-1\alpha}$ imply $A_{\alpha-1\alpha} \leq [Z_{\alpha-1}, Z_{\alpha'-1}]$. Hence $A_{\alpha-1\alpha} \leq Z_{\alpha'-1}$ and b > 1 provides the contradiction, $[A_{\alpha-1\alpha}, Z_{\alpha'}] = 1$. Thus (b) holds.

Suppose now that b > 2. Then by (b) applied to $(\alpha - 1, \alpha' - 1)$ in place of (α, α') , $A_{\alpha\alpha-1} \leq G_{\alpha-1}$. Hence by (2) we may now assume that $Z_{\alpha'}$ does not normalize $A_{\alpha\alpha-1}$. On the otherhand by (1) there exist $\alpha - 2 \in \triangle(\alpha - 1)$ so that $Z_{\alpha'-2} \in \mathcal{O}_{\alpha-2\alpha-1}$ Hence

$$A_{\alpha\alpha-1} = A_{\alpha-2\alpha-1} \le [Z_{\alpha} - 2, Z_{\alpha'} - 2] \le Z_{\alpha'-2}$$

Since b > 2 we conclude $[A_{\alpha\alpha-1}, Z_{\alpha'}] = 1$, a contradiction and so also (c) is established.

Lemma 8.23 Suppose that (i) to (v) in 8.22 holds. Suppose in addition that

- (a) If $A \in \mathcal{Q}$ and B is an elementary abelian subgroup of Q_{δ} with $[Z_{\gamma}, A, B] = 1$ and $A \leq B$. Then $[Z_{\gamma}, B] \leq [Z_{\gamma}, A][C_{Z_{\gamma}}(A), B]$
- (b) If $A \in \mathcal{Q}$ then there exists $\lambda \in \Delta(\gamma)$ with $G_{\gamma} = \langle G_{\lambda\gamma}, A \rangle$.

Then (vi.2) in 8.22 and so also the conclusions of 8.22 hold.

vvi1

znnab - 1

znnab-2

Proof: By (b) there exists $\alpha - 1 \in \Delta(a)$ with $G_{\alpha} = \langle G_{\alpha-1\alpha}, Z_{\alpha} \rangle$. Suppose that $Z_{\alpha-1} \leq Q_{\alpha'-1}$. Then by (a) applied with $\gamma = \alpha'$, $A = Z_{\alpha}$ and $B = Z_{\alpha-1}Z_{\alpha}$, we conclude that

$$[Z_{\alpha'}, Z_{\alpha-1}Z_{\alpha}] \leq [Z_{\alpha'}, Z_{\alpha}][Z_{\alpha'} \cap Q_{\alpha}, Z_{\alpha-1}] \leq Z_{\alpha-1}Z_{\alpha}.$$

Thus $Z_{\alpha-1}Z_{\alpha}$ is normalized by $\langle G_{\alpha-1\alpha}, Z_{\alpha} \rangle = G\alpha$, a contradiction to (v).

cznnab

Lemma 8.24 Suppose that (i) to (v) in 8.22 holds. In addition assume that for each $A \in Q$ and each elementary abelian subgroup B each Q_{δ} with $[Z_{\gamma}, A, B] = 1$ and $A \leq B$ the following statements hold

- (a) $|B/C_B(C_{Z_{\gamma}}(A) \leq |C_{Z_{\gamma}}(A)/C_{Z_{\gamma}}(B)).$
- (b) If $[C_{Z_{\gamma}}(A), B] = 1$ then $[Z_{\gamma}, B] \leq [Z_{\gamma}, A]$.
- (c) Suppose that $[C_{Z_{\gamma}}(A), B] \neq 1$. Then for elementary abelian subgroup C of Q_{δ} with $B \leq C$ and $[Z_{\gamma}, B, C] = 1$, $[C_{Z_{\gamma}}(A), C] \leq [C_{Z_{\gamma}}(A), B]$
- (d) There exists $\lambda \in \triangle(\gamma)$ with $L_{\gamma} = \langle O_p(G_{\lambda\gamma}), A \rangle$.

Then the conclusions of 8.22 hold.

Proof: We may assume that (vi.2) in 8.22 does not hold. Thus by (d) we can choose a critical pair (α, α') and $\alpha - 1 \in \Delta(a)$ with $G_{\alpha} = \langle G_{\alpha-1\alpha} \rangle Z_{\alpha} \rangle$ and $Z_{\alpha-1} \leq Q_{\alpha'-1}$. If $[Z_{\alpha'}, Z_{\alpha-1}Z_{\alpha}] \leq [Z_{\alpha'}, Z_{\alpha}]$ we get that $Z_{\alpha-1}Z_{\alpha}$ is normalized by $\langle G_{\alpha-1}, Z_{\alpha'} \rangle = G_{\alpha}$, a contradiction to (v). Then by (b) we may assume that $[Z_{\alpha'} \cap Q_{\alpha}, Z_{a-1}] \neq 1$. Put $X = Z_{\alpha'} \cap Q_{\alpha}$. Then by (a) $[X \in Q_{\alpha-1\alpha} \text{ and so } 8.22(a) \text{ holds.}$

Moreover, $A_{\alpha-1\alpha} \leq [Z_{\alpha}-1, X] \leq Z_{\alpha'}$ and so $A_{\alpha-1\alpha}$ is normalized by $G_{\alpha-1}\alpha$ and $Z_{\alpha'}$ and so 8.22b holds.

Suppose that b > 2. By (d) there exists $\alpha - 2 \in \Delta(\alpha - 1)$ with $G_{\alpha-1} = \langle G_{\alpha-2\alpha-1}, X \rangle$. If $Z_{\alpha-2} \not\leq Q_{\alpha'-2}$, then $A_{\alpha-2\alpha-1} \leq [Z_{\alpha} - 2, Z_{\alpha'} - 2] \leq Z_{\alpha'} - 2$. As b > 2 we get that $G_{\alpha\alpha-2}$, X and $Z_{\alpha'}$ normalize $A_{\alpha-2\alpha-1}$. But then $A_{\alpha-2\alpha-1}$ is normal in $G_{\alpha-1}$ and G_{α} .

Hence $Z_{a-2} \leq Q_{\alpha'-2}$. If $Z_{\alpha-2} \not\leq Q_{\alpha'-1}$, then since also $Z_{\alpha'-1} \leq Q_{\alpha-1}$ we conclude from 8.22(iii) that $Z_{\alpha'} - 1 \leq calQ_{\alpha'-2\alpha'-1}$. But then $A_{\alpha-2\alpha-1} \leq [Z_{\alpha} - 2, Z_{\alpha'} - 1]$ a we get the same contradiction to the previous paragaph.

Thus $Z_{\alpha-2} \leq Q_{\alpha'-1}$ and so by (c) applied with $C = Z_{\alpha-2}$ and $\gamma = \alpha'$ we conclude that $[Z_{\alpha-2}, X] \leq [Z_{\alpha-1}, X] \leq Z_{\alpha-1}$. Hence $Z_{\alpha-2}Z_{\alpha-1}$ is normalized by $G_{\alpha-2\alpha-1}$ and X, a contradiction to 8.22(v).

znnabmp

Lemma 8.25 Suppose that G_{α} and G_{β} are minimal parabolics and $Z \not \triangleq G_{\alpha}$ and $Z \not \triangleq G_{\beta}$. Then $b \leq 2$ or $Z_{\alpha}Z_{\beta} \leq G_{\alpha}$ **Proof:** We assume without loss that $G_{\alpha\beta}$ is Sylow 2-subgroup of G_{α} and G_{β} . Put $T_{\alpha\beta} = \langle Z_{\alpha'}^{G_{\alpha\beta}} \rangle Q_a$ and $Z_{\alpha\beta} = C_{Z_{\alpha}}(T_{\alpha\beta})$. Note that $T_{\alpha\beta}$ only depends on α and β but not on $Z_{\alpha'}$. Let $\alpha - 1 \in \Delta(a)$ with $Z_{\alpha\beta} \cap Z_{\alpha\alpha-1} \leq D_{\alpha}$. For $O \leq i \leq b$, put $W_i = \langle Z_{\alpha'-i}^{G_{\alpha\beta}} \rangle$. Then $W_b = Z_{\alpha}$ and $W_0 Q_{\alpha} = T_{\alpha\beta}$. Put $T = T_{\alpha-1\alpha}$ and suppose that $W_1 Q_{\alpha-1} \neq T$. Then there exists a $U \leq T$ so that $Z_{\alpha} = \langle U^{G_{\alpha\alpha-1}} \rangle$ and $[W_1, U] = 1$. Hence $U \leq Q_{\alpha'-1}$. It is now easy to see that $Z_{\alpha'} \cap Q_{\alpha} \leq T_{\alpha-1\alpha}$ and so $[U, Z_{\alpha'}] \leq [Z_{\alpha}, Z_{\alpha'}][U, Z_{\alpha'} \cap Q_{\alpha}] \leq Z_{\alpha}[U, T]$. Hence $[U, W_0] \leq Z_{\alpha}[U, T]$ and W_0 . Let $L = \langle T, W_0$. Then $O^2(L)$ centralizes UZ_{α}/Z_{α} . As $Z_{\beta} = \langle U^{G_{\alpha-1\alpha}} \rangle$ we conclude that G_{α} normalizes $Z_{\beta}Z_{\alpha}$. Remark: It is easy to see that V_{α}/Z_{α} is an FF-module. This will kill any problem $O_{2\Phi}$ might cause, also this shows that basicly $T_{\alpha\beta} = T_{\beta\alpha}$

Hence $W_1Q_{\alpha-1} = T$. Choose $\alpha - i - 1 \in \triangle(\alpha - i)$ with $Z_{\alpha-i-1\alpha-i} \cap Z_{\alpha-i+1\alpha-i} \leq Z(G_{\alpha-i})$. Then a similar argument shows inductively that $W_iQ_{\alpha-i} = T_{\alpha-i\alpha-i+1}$. Hence $Z_{\alpha}Q_{\alpha-b} = T_{\alpha-b\alpha-b+1}$. Therfore we may assume that $Z_{\alpha'}Q_a = T_{\alpha\beta}$. The above argument now shows that $Z_{\alpha'-1}Q_{\alpha-1} = T$ and we conclude that if b > 1, then $[Z_{\alpha-1}, T] = [Z_{\alpha-1}, Z_{\alpha-1}] \leq D_{\alpha}$. Moreover, if b > 2, $[Z_{\alpha}-2, Z_{\alpha'}-2] \leq D_{\alpha}-1 \cap D_{\alpha}$, a contradiction and the lemma is proved.

Lemma 8.26 Let $M_i \in calL(S)$, $1 \le i \le 3$ and suppose that that

- (i) For $i = 2, 3, O^2(M1i \cap S \le Q_{23})$
- (ii) $O^2(M_1) \cap S = (O^2(M_12 \cap S))(O^2(M_13 \cap S))$.

Then Q_{23} is a Sylow 2-subgroup of $O^2(M_1)Q_{23}$ and $Q_1 \cap Q_{23} = O_2(O^2(M_1)Q_{23})$ is normal in M_1

Proof: Let $L = O^2(M_1)Q_{23}$. Then by (ii) and (i)

$$Q_{23} \leq L \cap S = (O^2(M_1) \cap S)Q_{23} = (O^2(M_{12} \cap S))(O^2(M_{13} \cap S))Q_{23} = Q_{23}$$

. Since $L \leq LS = M_1$, $O_2(L) \leq Q_1$. Hence $O_2(L) = Q_1 \cap L = Q_1 \cap Q_{23}$.

9 Amalgams involving uniqueness groups

Hypothesis 9.1 (i) Hypothesis 8.1 holds with G finite.

- (ii) G_{α} is a minimal parabolic.
- (iii) $E_{\beta}B(S)$ lies in a unique maximal p-local M_{β} of G.

(iv)
$$Q_{\beta}^* \leq O_p(M_b)$$
.

- (v) $G_{\beta} = E_{\beta}G_{\alpha\beta}$
- (vi) $M_{\alpha\beta} \stackrel{def}{=} M_{\beta} \cap G_{\alpha}$ is the unique maximal subgroup of G_{α} containing S.

minparun

(vii) $G_{\beta} \in \mathcal{CL}(S)$.

Put $Q_{\alpha\beta} = O_2(M_{\alpha\beta})$, $X_b = \Omega_1(Z(Q_b))$ and $X_{\beta}^* = \Omega_1(C_{Q_{\beta}}(Q_b^*))$ Put $D_{\beta} = \bigcap_{\delta \in \triangle(\beta)} Z_{\delta}$ and $R = [Z_{\alpha}, Z_{\alpha'}]$. The next two lemmas reveal how the assumptions on E_{β} can be used

Lemma 9.2 (a) $Q_{\beta}^* \leq O_2(M_{\beta}) \leq Q_{\alpha\beta}$.

(b) Let $\gamma \in \triangle(\beta)$ and R_{α} be a normal subgroup of G_{α} . Then

$$R_{\gamma} \cap Q_{\beta} \le (R_{\alpha} \cap Q_{\beta})Q_{\beta}^* \le (R_{\alpha} \cap Q_{\beta})Q_{\alpha\beta} \le (R_{\alpha} \cap Q_{\beta})O_2(M_{\beta}) \le R_{\alpha}Q_{\alpha\beta}.$$

- (c) Let $\gamma \in \triangle(\beta)$. Then $Q_{\gamma} \cap Q_{\beta} \leq Q_{\alpha}O_2(M_{\beta}) \leq Q_{\alpha\beta}$.
- (d) Let $R_{\alpha\beta}$ be a normal subgroup of $G_{\alpha\beta}$ contained in Q_{β} . Then for all $\gamma \in \Delta\beta$,

$$R_{\alpha\beta} \le \langle R_{\alpha\beta}^{G_{\beta}} \rangle \le O_2(M_{\beta})R_{\gamma\alpha}$$

Proof: By hypothesis, $Q_{\beta}^* \leq O_2(M_{\beta})$. As $G_{\alpha\beta}$ contains a Sylow 2-subgroup of M_{β} , $O_2(M_{\beta}) \leq G_{\alpha\beta}$ and (a) holds.

Since E_{β} acts transitively on $\Delta(\beta)$ we have $R_{\gamma} \cap Q_{\beta} \leq (R_{\alpha} \cap Q_{\beta})[Q_{\beta}, E_{\beta}]$ and so (b) follows from (a).

Since $Q_{\alpha} \leq Q_{\alpha\beta}$, (c) follows from (b) applied to $R_{\alpha} = Q_{\alpha}$. As $R_{\alpha\beta} \leq \langle R_{\gamma\beta}^{E_{\beta}} \rangle \leq [Q_{\beta}, E_{\beta}]R_{\gamma\alpha} \leq O_p(M)R_{\gamma\alpha}$, (d) holds.

Lemma 9.3 Suppose $1 \neq D \leq ZJ(S)$ and $E_{\beta} \leq N_G(D)$. Then

- (a) $N_{G_{\alpha}}(D) \leq M_{\alpha\beta}$
- (b) Let $\delta \in \Gamma$ such that $d(\beta, \delta) = b i$ with $1 \le i < b$. Suppose that $N_{G_{\delta}}(D)$ normalizes no non-trivial 2-subgroup of G_{δ}/Q_{δ} . Then
 - (ba) $V_{\beta}^{(i+1)} \cap G_{\delta} \leq Q_{\delta}$ (bb) $V_{\beta}^{(i)} \leq Q_{\delta}$.
 - (bc) If $N_{G_{\delta}}(D)$ contains a Sylow p-subgroup of G_{δ} , then $V_{\beta}^{(i+1)} \leq Q_{\delta}$.
- (c) If b is odd and $b \geq 3$, then $E_{\alpha'}$ does not normalize D.
- (d) Suppose that b is even, $b \ge 3$ and $E_{\alpha'-1}$ normalizes D, then
 - (da) $V_{\beta}^{(3)} \cap G_{\alpha'-1} \leq Q_{\alpha'-1} \leq G_{\alpha'}$. (db) If $G_{\alpha'-1}$ normalizes D, then $V_{\beta}^{(3)} \leq Q_{\alpha'-1} \leq G_{\alpha'}$.

Mtrick

Qab

Proof: As B(S) and E_{β} normalize D, $N_G(D) \leq M_{\beta}$. Thus (a) holds.

For (b) let $\gamma \in \Delta(\beta)$ with $d(\gamma, \delta) = b - i - 1$. Then by 9.2(d) $V_{\beta}^{(i+1)} \leq V_{\gamma}^{(i-1)}O_2(M_{\beta})$. By minimality of $b, V_{\gamma}^{(i)} \leq Q_{\delta}$. Since $N_{G_{\delta}}(D) \leq M_{\beta}, N_{G_{\delta}}(D)$ normalizes the 2-group $G_{\delta} \cap O_2(M_{\beta})$. Thus by assumption, $G_{\delta} \cap O_2(M_{\beta}) \leq Q_{\delta}$. Hence $V_{\beta}^{(i+1)} \cap G_{\delta} \leq V_{\gamma}^{(i-1)}(O_2(M_{\beta}) \cap G_{\delta}) \leq Q_{\delta}$. So (ba) holds. Clearly (ba) implies (bb). In case (bc) $O_2(M_{\beta}) \leq G_{\delta}$ and so $V_b^{(i+1)} \leq G_{\delta}$.

Suppose b is odd and $E_{\alpha'}$ centralizes D. Then by (bb) applied with $\delta = \alpha'$ and i = 1, $V_{\beta} \leq Q_{\alpha'}$, a contradiction.

(d) follows from (ba) and (bc) applied with $\delta = \alpha' - 1$ and i = 2.

Lemma 9.4 Suppose that $[Z, E_{\beta}] \neq 1$. Then Z_{β} is an FF-module.

Proof: 8.16

Lemma 9.5 Suppose that $[Z_{\alpha}, Z_{\alpha'}] \neq 1$ and $[Z, E_{\beta}] = 1$.

- (a) Let $L_{\alpha} = \langle Z_{\alpha'}^{G_{\alpha}} \rangle Q_{\alpha}$. Then $L_{\alpha}/C_{\alpha} \cong SL_2(q)^k$, where k is a postive integer and q a power of 2.
- (b) Z_{α} is a natural module for L_{α}/C_a .
- (c) $Z_{\alpha'}Q_{\alpha}$ is a Sylow p-subgroup of $\langle Z_{\alpha'}^{L_{\alpha}}\rangle Q_{\alpha}$.

Proof: As $[Z_{\alpha}, Z_{\alpha'}] \neq 1$ we may assume that $Z_{\alpha'}$ acts as an offending subgroup on Z_{α} . Since $[Z, E_{\beta}] = 1$, $C_{Z_{\alpha}}(L_{\alpha}) = 1$. Moreover, by 9.2c $Z_{\alpha'} \leq Q_{\alpha\beta}$, which excludes the possibility that Z_{α} is a natural Sym $(q+1)^k$ -modules for $q \geq 4$. Thus the lemma follows from 6.3. \Box

Define $Z_{\alpha\beta} = C_{Z_{\alpha}}(S \cap L_{\alpha})$ and $Z_{\beta}^* = \langle Z_{\alpha\beta}^{G_{\beta}} \rangle$. In the next two lemmas we will assume $[Z_{\alpha}, Z_{\alpha'}] \neq 1$. Let V be an irreducible L_{α} submodule in Z_{α} not centralized by $Z_{\alpha'}$ and similarly choose $V' \leq Z_{\alpha'}$. Put R = [V, V'].

Lemma 9.6 Suppose that $[Z_{\alpha}, Z_{\alpha'}] \neq 1$ and $[Z, E_{\beta}] = 1$. Then one of the following holds:

- 1. $Z_{\alpha\beta}$ is normal in G_{β} .
- 2. $Z_{\alpha\beta} \leq X^*_{\beta}$ and $[X^*_{\beta}, E_{\beta}] \neq 1$.
- 3. q = 2 and $k \geq 2$. Moreover, if $U_{\alpha\beta}$ be maximal in $Z_{\alpha\beta}$ with $[U_{\alpha\beta}, G_{\alpha\beta}] \leq Z_{\beta}$ and $U_{\beta} = \langle U_{\alpha\beta}^{G_{\beta}} \rangle$, Then U_{β}/Z_{β} is an FF-module for G_{β}/Q_{β}

Proof: We may assume that $Z_{\alpha\beta}$ is not normal G_{β} and so is not centralized by E_{β} . Suppose first that q > 2 or k = 1. Then $Q_{\beta}^* \leq Q_{\alpha\beta} \leq L_{\alpha}$ and so $Z_{\alpha\beta} \leq X_{\beta}^*$. Thus $[X_{\beta}^*, E_{\beta}] \neq 1$ and the $P \times Q$ lemma implies $[X_{\beta}, E_{\beta}] \neq 1$.

So suppose now that q = 2 and k > 1. Let $\alpha - 1 \in \Delta(\alpha)$ with $\langle G_{\alpha\alpha-1}, V' \rangle = G_{\alpha}$. By 9.5c, $[Z_{\alpha\beta}, Z_{\alpha'}] = 1$ and so

1za

uznn

zb*

zb * -1

zb * -1a

~h ... 9

G

- (a) $Z_{\beta}^* \leq Q_{\delta}$ for all $\delta \in \Gamma$ with $d(\beta, \delta) < b$. (1)
- (b) $[Z^*_{\alpha'-1}, V'] = 1$, even if b = 2.

In particular, $[Z^*_{\beta}, Z_{\alpha'}] = 1$ and as S acts transitively on the $L^{(i)}_{\alpha}$ and normalizes $C_{Q_{\beta}}(Z^*_{b})$ we conclude

- (a) $S \cap L_{\alpha} = C_{Q_{\beta}}(Z_{\beta}^*)Q_{\alpha}.$ (2)
- (b) $Z^*_{\beta} \cap Z_{\alpha} = Z_{\alpha\beta}$.

By definition of $U_{\alpha\beta}$ we have $[U_{\alpha\beta}, Q_{\beta}] \leq Z_{\beta}$ and thus

$$(3) \quad [U_{\beta},Q_{\beta}] \leq Z_{\beta}.$$

In particular, $D \stackrel{def}{=} [U_{\alpha-1}, U_{\alpha'-1} \cap Q_{\alpha-1}] \leq Z_{\alpha-1}$. On the other hand, by (1)a, $U_{\alpha-1} \leq Z_{\alpha-1}^* \leq Q_{\alpha'-2} \leq G_{ap-1}$ and so $D \leq U_{\alpha'-1} \leq Z_{ap-1}^*$ and so by (1)c, [D, V'] = 1. Hence by choice of $\alpha - 1$, D is centralized by G_{α} and $G_{\alpha-1}$. Thus

(4)
$$[U_{\alpha-1}, Z^*_{\alpha'-1} \cap Q_{\alpha-1}] = 1.$$

Suppose that $U_{\alpha-1} \leq Q_{\alpha'-1}$. As $[R, U_{\alpha-1}] = 1$ we conclude that $[U_{\alpha-1}, V'] \leq R \leq Z_{\alpha}$. Thus

$$U_{\alpha-1}Z_{\alpha} \trianglelefteq \langle G_{\alpha-1\alpha}, V' \rangle = G_{\alpha}.$$

Hence also $[U_{\alpha-1}, Q_{\alpha}] \leq G_{\alpha}$. By (4), $Z_{\alpha} \leq U_{\alpha-1}$ and since Z_{α} is the unique minimal normal subgroup of G_{α} in Q_{α} we conclude that $[U_{\alpha-1}, Q_{\alpha}] = 1$. Thus $[U_{\beta}, Q_{\alpha}] = 1$. Since $E_{\beta} \leq \langle Q_{\alpha}^{G_{\beta}} \rangle T$ we get $[U_{\beta}, E_{\beta}] = 1$. Note also that $[U_{\alpha\beta} \leq ZJ(S)]$ and that there exists $1 \neq D \leq U_{\alpha\beta}$ with $C_{G_{\alpha}}(D) \not\leq M_{\alpha\beta}$. Hence we obtain a contradiction to 9a. We proved

(5) (a)
$$[U_{\beta}, E_{\beta}] \neq 1.$$
 $zb * -4$

(b)
$$U_{\alpha-1} \not\leq Q_{\alpha'-1}$$
.

If $[U_{\alpha-1} \cap Q_{\alpha'-1}, U_{\alpha'-1}] = 1$, then 8.17 and (4) imply that 3. holds. Thus we may assume:

(6)
$$Z_{\alpha'-1} = [U_{\alpha-1} \cap Q_{\alpha'-1}, U_{\alpha'-1}] \le U_{\alpha-1}$$

Suppose that b = 2. Then by (6) and (2)b, $Z_{\beta} = Z_{\alpha'-1} \leq U_{\alpha-1} \cap Z_{\alpha} \leq Z_{\alpha-1}^* \cap Z_{\alpha} =$ $Z_{\alpha\alpha-1}$. But this contradicts the choice of $\alpha-1$. Hence

(7)
$$b \ge 4$$
.

By (6), there exists $\lambda \in \Delta(\alpha'-1)$ and $t \in U_{\alpha-1} \cap Q_{\alpha'-1}$ with $[t, U_{\alpha'-1\lambda}] = Z_{\alpha'-1}$. Suppose t normalizes one of the $Z_{\lambda}^{(i)}$ and let X be the sum of the $Z_{\lambda}^{(j)}, j \neq i$. Then $U_{\alpha'-1\lambda} = U_{\alpha'-1\lambda} \cap Z_{\lambda}^{(i)} \oplus U_{\alpha'-1\lambda} \cap X$, t centralise $U_{\alpha'-1\lambda} \cap Z_{\lambda}^{i}$ and so $Z_{\alpha'-1} = [U_{\alpha'-1\lambda}, t] \leq [X, t] \leq X$, a contradiction. zb * -7

(8) t acts fixed-point freely on $\{L_{\lambda}^{(i)} \mid 1 \le i \le k\}$.

Thus by 2.2 and (2) a there exists $\mu \in \Delta(\lambda)$ with $O^2(G_{\lambda}) \leq \langle C_{Q_{\mu}}(Z_{\mu}^*), t \rangle$. As t centralizes Z_{α} , (8) implies that $Z_{\alpha} \leq Q_{\lambda}$. Moreover, $U_{\mu} \leq Q_{\alpha+2} \leq G_{\beta}$ and so $[V_{\beta}, U_{\mu}] \leq U_{\mu} \cap V_{\beta}$. Since $b \geq 4$, we conclude from (1) a that $U_{\alpha-1}$ and so also t centralizes $[V_{\beta}, U_{\mu}]$. Since $C_{Q_{\lambda}}(O^2(G_{\lambda})) = 1$ the choice of μ implies $[V_{\beta}, U_{\mu}] = 1$ and so

(9) $U_{\mu} \leq Q_{\beta} \cap Q_{\alpha} \leq G_{\alpha-1}$.

Since $d(\mu, \alpha') = 3 < b$, (2) implies $[\langle U_{\mu}^{G_{\lambda}} \rangle, V' = 1$. Thus $[t, U_{\mu} \cap Q_{\alpha-1}] \leq Z_{\alpha-1}(V') = 1$. From $C_{U_{\mu}}(t) \leq C_{Q_{\lambda}}(O^2(G_{\lambda})) = 1$ we get

(10) $U_{\mu} \cap Q_{\alpha-1} = 1$

Thus

$$|U_{\alpha-1}/C_{U_{\alpha-1}}(U_{\mu})| \le |U_{\alpha-1}| = |U_{\mu}| = |U_{\mu}Q_{\alpha-1}/Q_{\alpha-1}|$$

and 3. holds.

Lemma 9.7 Suppose that $[Z_{\alpha}, Z_{\alpha'}] \neq 1$ and $Z_{\alpha\beta}$ is normal in G_{β} . Then b = 2, E_{β} centralizes $Z_{\alpha\beta}$ and G_a is of L_2 -type.

Proof: By8.15 $Q_{\alpha} \not\leq Q_{\beta}$. As Q_{α} centralizes $Z_{\alpha\beta}$ and $E_{\beta} \leq \langle Q_{\alpha}^{G_{\beta}} \rangle$ we conclude that E_{β} centralizes $Z_{\alpha\beta}$. Note that $V \cap Z_{\alpha\beta} \neq 1$ and so by 9, $C_{G_{\alpha}}(V \cap Z_{\alpha\beta} \leq M_{\alpha\beta})$. Thus k = 1 and G_{α} is of L_2 -type. It remains to show that b = 2.

Suppose that b > 2. Let $\alpha - 1 \in \Delta(\alpha)$ with $\langle G_{\alpha-1\alpha}, V \rangle = G_{\alpha}$ and note that $R = Z_{\beta}^* = Z_{\alpha'-1}^*$ is normalized by G_{β} and $G_{\alpha'-1}$. Hence 9(d) implies that $V_{\alpha-1} \leq G_{\alpha'}$. As $V_{\alpha-1}$ centralizes R we conclude that $[V_{\alpha-1}, Z_{\alpha'}] \leq R$ and G_{α} normalizes $V_{\alpha-1}$, again a contradiction.

2za

zb * -8

zb * -9

pred

Lemma 9.8 Suppose that $[Z_{\alpha}, Z_{\alpha'}] = 1$, b > 1 and $r_{\beta} > 1$. Then there exists a normal subgroups L_{α} of G_{α} and normal subgroups $L_{\alpha}^{(i)}$, $1 \le i \le k$ of L_{α} such that

- (a) $C_{\alpha} \leq L_{\alpha}$ and $C_{\alpha} \leq L_{\alpha}^{(i)}$
- (b) $\overline{O^2(L_\alpha)} = \overline{L_\alpha^{(1)}} \times \ldots \times \overline{L_\alpha^{(k)}}$
- (c) $G_{\alpha} = L_{\alpha}S$, S transitively permutes the $L_{\alpha}^{(i)}$'s and L_{α} is the largest subgroup of G_{α} normalizing all the $L_{\alpha}^{(i)}$'s.

- (d) Put $Z_{\alpha}^{(i)} = [Z_{\alpha}, L_{\alpha}^{(i)}]$. Then $Z_{\alpha} = Z_{\alpha}^{(1)} \oplus \ldots \oplus Z_{\alpha}^{(k)}$.
- (e) One of the following holds
 - 1. $\overline{L_{\alpha}^{(i)}} \cong SL_2(q), q \text{ a power of } 2 \text{ and } Z_{\alpha}^{(i)} \text{ is a natural } SL_2(q)\text{-module for } L_{\alpha}^{(i)}.$ 2. $\overline{L_{\alpha}^{(i)}} \cong C_3, |Z_{\alpha}^{(i)}| = 4 \text{ and } s_{Z_{\alpha}}(O_2(M_{\beta})) < 2.$
 - 3. $\overline{L_{\alpha}^{(i)}} \cong SL_3(q)$, q a power of 2; $Z_{\alpha}^{(i)}$ is direct sum of a natural $SL_3(q)$ -module for $L_{\alpha}^{(i)}$ with its dual; some element of S induces a graph automorphism on $\overline{L_{\alpha}^{(i)}}$ and $c_{\beta} = 2$

Proof: Suppose first that $c_{\beta} = 1$. Then the lemma holds by 8.4 and 6.3, where the Sym(q+1) case is excluded as in 9.5.

So suppose that $c_{\beta} \geq 2$. Then $r_{\beta}c_{\beta} - 1 > 1$ and so by 2.4a, $r_{\alpha} < 2$. Thus we can apply 6.4 with the Sym(q + 1)-case excluded as usual. Note that in case (e3) we actually have $r_a = \frac{3}{2}$. As $r_{\beta} > 1$, 2.4 implies $c_{\beta} = 2$ and all parts of the lemma are proved.

Put $Z_{\alpha\beta} = C_{Z_{\alpha}}(L_{\alpha} \cap S)$ and $Z_{\beta}^* = \langle Z_{\alpha\beta}^{G_{\beta}} \rangle$.

Lemma 9.9 Suppose that $[Z_{\alpha}, Z_{\alpha'-1}] = 1$, b > 1 and the conclusions of 9.8 hold for case e3 hold. Then $Q_{\beta}Q_{\alpha}/Q_{\alpha} \leq Z(S \cap L_{\alpha}/Q_{\alpha})$, $[X_{\beta}, E_{\beta}] \neq 1$ and X_{β} is an FF-module.

Proof: Suppose that E_{β} centralizes $Z_{\alpha\beta}$ and let D be the intersection of $Z_{\alpha\beta}$ with one of the irreducible L_{α} submodule in Z_{α} . Then $D \neq 1$, $N_{G_{\alpha}}(D) \leq M_{\alpha\beta}$ and $E_{\beta}B(S)$ centralizes D, a contradiction to 9a.

Thus E_{β} does not centralize $Z_{\alpha\beta}$.

Recall that $c_{\beta} = 2$ in case 9.8e3. Thus 8.9 applied to $L = E_b$ shows that $[Z_{\alpha}, Q_{\beta}, 2] \leq D_{\beta}$. By 8.15 Q_{α} $\langle Q_{\beta}$. Hence $E_{\beta} \leq \langle Q_{\alpha}^{G_{\beta}} \rangle$ and so $[D_{\beta}, E_{\beta}] = 1$. In particular $Z_{\alpha\beta} \not\leq D_{\beta}$ and so $Z_{\alpha\beta} \not\leq [Z_{\alpha}, Q_{\beta}, 2]$. As *S* normalizes $[Z_{\alpha}, Q_{\beta}, 2]$ we conclude from the action of *S* on Z_{α} that $[Z_{\alpha}, Q_{\beta}, 2] < Z_{\alpha\beta}$. Since Q_{β} is normal in *S* this implies that $Q_{\beta} \leq L_{\alpha}$ and then that Q_{β} acts quadratically on each of the irreducible L_{α} submodules in Z_{α} . As *S* normalizes Q_{β} and induces a graph automorphism on the $L_{\alpha}^{(1)}$ we get $Q_{\beta}Q_{\alpha}/Q_{a} \leq Z(S \cap L_{\alpha}/Q_{\alpha})$ and $Z_{\alpha\beta} \leq X_{\beta}$. Hence $[X_{\beta}, E_{\beta}] \neq 1$ and so by **??** X_{β} is an *FF*-module.

Lemma 9.10 Suppose that $[Z_{\alpha}, Z_{\alpha'-1}] = 1$, b > 1 and the conclusions of 9.8 hold for case e1 or e2 hold. Then one of the following is true:

- 1. k = 1, $[Z_{\alpha\beta}, E_{\beta}] = 1$ and V_{β} is an FF-module for G_{β}
- 2. k = 1, b = 3 and V_{β} is an F2-module.
- 3. $[Z_{\alpha\beta}, E_{\beta}] \neq 1$ and X_{β} is an FF-module.

l2k

4. $q = 2, k \ge 2$ and $[Z_{\alpha\beta}, E_{\beta}] \ne 1$. Let $U_{\alpha\beta}$ be maximal in $Z_{\alpha\beta}$ with $[U_{\alpha\beta}, Q_{\beta}] \le Z_{\beta}$ and put $U_{\beta} = \langle U_{\alpha\beta}^{G_{\beta}} \rangle$. Then U_{β} is an FF-module for G_{β} .

Proof: By 9a, $[Z_{\alpha\beta}, E_{\beta}] = 1$ implies, k = 1.

Suppose that q > 2 or k = 1. Then $Q_{\beta}^* \leq O_2(M_{\beta}) \leq Q_{\alpha\beta} \leq L_{\alpha}$ and so $Z_{\alpha\beta} \leq X_{\beta}^*$. So if in addition $[Z_{\alpha\beta}, E_{\beta}] \neq 1$, then ?? implies that 3. holds. Hence we may assume from now on that

l2k - 1

2h20

vqvq

sym

(1) One of the following holds:

(Case 1) k = 1 and $[Z_{a\beta}, E_{\beta}] = 1$.

(Case 2) $q = 2, k \ge 2$ and $[Z_{\alpha\beta}, E_{\beta}] \ne 1$.

Put $D_{\beta}^{*} = Z_{\alpha\beta} \cap D_{\beta}$ and note that in case Case 1, $D_{\beta}^{*} = Z_{\alpha\beta}$ while in case Case 2 9a implies $D_{\beta}^{*} = Z_{\beta}$. In Case 1 let $U_{\alpha\beta} = Z_{\alpha}$ and in Case 2 let $U_{\alpha\beta}$ be maximal in $Z_{\alpha\beta}$ with $[U_{\alpha\beta}, Q_{\beta}] \leq D_{\beta}^{*}$. Put $U_{\beta} = \langle U_{\alpha\beta}^{G_{\beta}} \rangle$. It follows easily from the definitions and 9.2c that:

- (2) (a) $[U_{\alpha\beta}, E_{\beta}] \neq 1$ 2z * b
- (b) $[U_{\beta}, Q_{\beta}^*] \leq [V_{\beta}, O_2(M_{\beta})] \leq D_{\beta}^* \leq Z_{\alpha}$
- (c) $[U_{\beta}, Q_{\beta} \cap Q_{\alpha+2}] \leq D_{\beta}^*$.

By 9d applied with $D = D^*_{\beta} \cap D^*_{\alpha'-1}$ we get

(3)
$$D^*_{\beta} \cap D^*_{\alpha'-1} = 1$$

By (2)c, $[U_{\beta} \cap Q_{\alpha'}, U_{\alpha'} \cap Q_{\beta}] \leq D^*_{\beta} \cap D^*_{\alpha'-1} = 1$ and so

(4)
$$[U_{\beta} \cap Q_{\alpha'}, U_{\alpha'} \cap Q_{\beta}] = 1$$

We may and do assume from now on that U_{β} is not an *FF*-module and will show that 2. holds.

Suppose that $U_{\alpha'} \leq Q_{\beta}$. As $b \geq 3$, $U_{\alpha'}$ acts quadratically on Z_{α} . Let V be an irreducible L_{α} submodule in Z_{α} with $V \not\leq Q_{\alpha'}$. Assume first that $U_{\alpha'}$ normalizes V. Then

$$|V/C_V(U_{\alpha'}) = q \ge |U_{\alpha'}/C_{U_{\alpha'}}(V)|.$$

If q = 2, this clearly implies that $U_{\alpha'}$ is an *FF*-module. If q > 2 we are in Case 2 and so $V \leq U_{\beta}$ and by (4), $U_{\beta} \cap Q_{\alpha'} \leq C_V(U_{\alpha'})$. Hence $|VQ_{\alpha'}/Q_{\alpha'}| \geq q$. Again $U_{\alpha'}$ is an *FF*-module, a contradiction.

Thus $U_{\alpha'}$ does not normalizes V and quadratic action implies $|U_{\alpha'}/C_{U_{\alpha'}}(V)| \leq 2$, again a contradiction. Thus

(5) $U_{\alpha'} \not\leq Q_{\beta}$ and the situation is symmetric in β and α' .

Suppose that $[U_{\beta}, U_{\alpha'} \cap Q_{\beta}] = 1 = [U_{\alpha'}, U_{\beta} \cap Q_{\alpha'}]$. Then by 8.17 we get that U_{β} is an *FF*-module. Thus

(6)
$$D_{\beta} = [U_{\beta}, U_{\alpha'} \cap Q_{\beta}] \le U_{\alpha'} \text{ or } D_{\alpha'} \le [U_{\alpha'}, U_{\beta} \cap Q_{\alpha'}] \le U_{\beta}$$

Hence we may assume $[U_{\beta}, U_{\alpha'} \cap Q_{\beta}] \neq 1$ and so

(7)
$$D^*_{\beta} = [U_{\beta}, U_{\alpha'} \cap Q_{\beta}] \leq U_{\alpha'}.$$

Pick $\mu \in \Delta(\beta)$ and $t \in U_{\alpha'} \cap Q_{\beta}$ with $[U_{\mu\beta}, t] \neq 1$. Then by (4), $Z_{\mu} \leq Q_{\alpha'}$ and we may assume that $\mu = \alpha$. Hence

(8) There exists $t \in U_{\alpha'} \cap Q_{\beta}$ with $[U_{\alpha\beta}, t] \neq 1$. In particular, $t \notin Q_{\alpha}$

In particular, by 9.2c, $O_2(M_\beta) \not\leq Q_\alpha$, as $O_2(M_\beta)$ is normal in $M_{\alpha\beta}$ we conclude (compare also (8) in 9.6).

- (9) (a) In case 1, $O_2(M_\beta)Q_a = S \cap L_\alpha$.
- (b) In Case 2, t acts fixed point freely on $\{L_{\alpha}^{(i)} \mid 1 \le i \le k\}$.

In particular, (also use 2.2 in Case 2) there exists $\alpha - 1 \in \Delta(\alpha)$ with

(10)
$$E_{\alpha} \leq \langle O_2(M_{\alpha-1}) \cap L\alpha, t \rangle.$$

By (4) and (8) we have $|U_{\beta}Q_{\alpha'}/Q_{\alpha'}| \geq |U_{\alpha\beta}Q_{\alpha'}/Q_{\alpha'}| = |U_{\alpha\beta}/C_{U_{\alpha\beta}}(t)| \geq q$. We record

(11)
$$|U_{\beta}Q_{\alpha'}/Q_{\alpha'}| \geq q.$$

Define $Y_{\alpha} = \bigcap_{\delta \in \Delta(\alpha)} U_{\delta} Z_{\alpha}$. Suppose now that $[U_{\alpha-1}, V_{\alpha'-2}] = 1$. Then $U_{\alpha-1} \leq Q_{\alpha'-2} \cap Q_{\alpha'-1}$. Put $A = U_{\alpha-1} \cap (U_{\beta}Q_{\alpha'})$. Then $A \leq U_{\beta}(U_{\beta}U_{\alpha-1} \cap Q_{\alpha'}) \leq U_{\beta}(Q_{\alpha'-1} \cap Q_{\alpha'})$. Thus by (2)

$$[A,t] \le [U_{\beta},t][Q_{\alpha'-1} \cap Q_{\alpha'},t] \le D_{\beta}^* D_{\alpha'}^*$$

Let X be maximal in A with $[X,t] \leq D_{\beta}^*$. As $|D_{\alpha'}^*| = q$ we have $|A/X| \leq q$. Since $D_{\beta}^* \leq X$, t normalizes X. By (2), $O_2(M_{\alpha-1})$ also normalizes XZ_{α} . As E_{α} is transitive on $\triangle(\alpha)$ we conclude from (10) that $XZ_{\alpha} \leq Y_{\alpha}$. Put $a = |U_{\alpha-1}/A|$. Then $|U_{\alpha-1}Y_a/Y_a| \leq |U_{\alpha-1}/A||A/X| \leq aq$. Hence

$$|U_{\beta}Y_a/Y_{\alpha}| \le aq.$$

Note that $U_{\alpha-1} \leq Q_{\alpha'-2} \cap Q_{\alpha'-1} \leq G_{\alpha'}$. Since $Y_{\alpha'-1} \leq V_{\alpha'-2}$ we conclude from $|U_{\beta}Y_a/Y_{\alpha}| \leq qa$ and edge-transitivity that

$$|U_{\alpha'}/C_{U_{\alpha'}}(U_{\alpha-1}U_{\beta})| \le |U_{\alpha'}Y_{\alpha'-1}/Y_{\alpha'-1}| = |u_{\beta}Y_{a}/Y_{\alpha}| \le aq.$$

vbqa

O2G

vvq

vvqa

vbq

QMbQS

On the other hand by definition of a, an isomorphism theorem and (11)

$$|U_{\alpha-1}U_{\beta}Q_{\alpha'}/Q_{\alpha'}| = |U_{\alpha-1}U_{\beta}Q_{\alpha'}/U_{\beta}Q_{\alpha'}||U_{\beta}Q_{\alpha'}/Q_{\alpha'}| \ge aq.$$

By the last two equations, $U_{\alpha'}$ is an *FF*-module, a contradiction. Hence

(12) $[U_{\alpha-1}, V_{\alpha'-2}] \neq 1$

Suppose that $V_{\alpha'-2} \leq Q_{a-1}$. Then by (5), $V_{\alpha-1} \leq Q_{\alpha'-2}$. Note that by (10), $C_{D_{\alpha-1}^*}(t) = 1$. Thus

$$1 \neq [U_{\alpha-1}, V_{\alpha'-2}] \le D_{\alpha-1}^* \cap D_{\alpha'-2}^* \le C_{D_{\alpha-1}^*}(t) = 1$$

a contradiction to (12). Thus

(13) $V_{\alpha'-2} \not\leq Q_{\alpha-1}$

In particular, $(\alpha' - 2, \alpha - 1)$ has the same properties as (β, α') and we conclude from (5) that

(14)
$$U_{\alpha-1} \not\leq Q_{\alpha'-2}$$

Suppose that $1 \neq x \leq D^*_{\alpha'-2} \cap U_{\alpha-1}$. As t centralizes $x, x \in X \leq Y_{\alpha}$ and so E_{α} normalizes xZ_{α} .

Suppose first that $[x, Q_{\alpha}] \neq 1$. Since E_{α} normalizes $[x, Q_a], Z_{\alpha}^{(i)} \leq [x, Q_a]$ for some *i*. Put $L = O^p(L_{\alpha}^{(i)})$ and $Q = [Q_{\alpha}, L]$. Then $[x, Q_{\alpha}, L] = Z_{\alpha}^{(i)}$ and $[x, L, Q_{\alpha}] = 1$. Thus be the three subgroup lemma, $[x, Q] = Z_{\alpha}^{(i)} = [x, L]$. Since [x, Q, Q] = 1 we colcude that $xQ = x^Q = x^L$ and so by the Frattini argument, $L = C_L(x)Q$. Since $x \leq D_{\alpha'-2}, x$ is centralised by $E_{\alpha'-2}$ and the Thompson subgroup of $G_{\alpha'-1\alpha'-2}$. By the proof of (ba), Mtrick $t \in V_{\alpha'} \cap G_{\alpha} \leq V_{\alpha'-2}^{(3)} \cap G_{\alpha} \leq Q_p(M_{ap-2} \cap G_{\alpha}.$ As $C_L(x)$ normalizes $Q_p(M_{ap-2} \cap G_{\alpha}$ we get $[t, L] \leq Q_{\alpha}$. In case 1 this is impossible since $t \notin Q_a$ and in Case 2 this contradicts ??b.

Suppose next that $[x, Q_{\alpha}] = 1$, but $x \notin Z_{\alpha}$. Then its is easy to see that q > 2 and $C_{E_a}(x)Q_{\alpha}/Q_{\alpha}$ is isomphic to $D_{2\cdot q\pm 1}$ and again $C_{E_a}(x)$ normalizes no non-trivial 2-subgroup in G_a/Q_a and we get the same contradiction as above.

Hence $x \in Z_{\alpha}$ and so $D_{\alpha'-2}^* \leq Z_{\alpha}$. Note that t centralizes $D_{\alpha'-2}^*$. In Case 2 we have $n x \in Z_{\alpha}$, $[x, O_2(M_{\alpha-1} \cap L_{\alpha})] \leq Z_{\alpha-1}$ and $s_{Z_{\alpha}}(O_2(M_{\alpha-1} \cap L_{\alpha}) < 2$ implies, $[x, O_2(M_{\alpha-1} \cap L_{\alpha})] = 1$. Hence by (10), $[x, E_{\alpha}] = 1$ a contradiction to $C_{Q_{\alpha}}(E_{\alpha}) = 1$.

In case Case 1 we conclude that $D^*_{\alpha'-2} = D^*_{\beta}$. If b > 3, 9bb implies that $V_{\alpha-1} \leq V^{(3)}_{\beta} \leq Q_{\alpha'-2}$, a contradiction. We have proved

(15) If $D^*_{\alpha'-2} \cap U_{\alpha-1} \neq 1$, then b = 3 and Case 1 holds.

Assume that b > 3. Then t centralizes $[U_{\alpha'-2} \cap Q_{\alpha-1}, U_{\alpha-1}]$ and as by (10) $C_{D^*_{\alpha-1}}(t) = 1$ we get $[U_{\alpha'} - 2 \cap Q_{\alpha-1}U_{\alpha-1}] = 1$. Thus by (6) and ?? that $D^*_{\alpha'-2} = [U_{\alpha-1} \cap Q_{\alpha'-2}, U_{\alpha'-1}] \leq U_{\alpha-1}$ a contradiction to (15). Thus va - 1va - 2

va - 1qa - 1

dcu

(16) b = 3.

Suppose that k > 1. By (6) applied to $(\alpha - 1, \beta)$ in place of (β, α') we get $Z_{\alpha-1} = D_{\alpha-1}^* \leq U_{\beta}$ or $Z_{\beta} = D_b^* \leq U_{\alpha'-1}$. In the first case $[Z_{\alpha-1}, O_2(M_{\beta}) \leq Z_{\beta}]$ and as above so $[Z_{\alpha-1}, O_2(M_{\beta} \cap L_{\alpha})] = 1$. But this implies $Z_{\alpha-1} \leq Z_{\alpha\beta}$ and $Z_{\alpha\alpha-1} = Z_{\alpha\beta}$ a contradiction to (10). The second case yields the same contradiction.

Thus k = 1 and so $V_{\beta} = U_{\beta}$. By (4) and ??, V_{β} is F2 and so 2. holds.

We remark that an example for case 2 of the previous theorem occurs in ${}^{2}F_{4}(q)$. In that example V_{β} is exactly F2 (that is not $F^{*}2$)

10 Connected parabolics not normalizing Z

Hypothesis 10.1 (a) Hypothesis 8.1 holds.

- (b) $C_{G_{\alpha}}(Y_{\alpha})$ is p-closed.
- (c) G_{β} is *p*-minimal.
- (d) Y_{α} is neither an FF nor an dual FF-modul.

Remark: "b" in this section is defined with respect to Y_{γ} not Z_{γ}

Definition 10.2 $M_{\alpha\beta}$ is the unique maximal subgroup of G_{β} containing S.

Lemma 10.3 b is odd, $Z \leq G_{\beta}$ and $[X_{\beta}, E_{\beta}] = 1$.

Proof: By 8.17 *b* is odd and as *p*-minimal groups have no $F1^*$ -module, $Z \leq G_\beta$. Since Y_α is not FF, $J(S) \leq Q_\beta$. If $[X_\beta, E_\beta] \neq 1$, we conclude that X_β is FF. As G_β is *p*-minimal this gives the contradiction, $Z \nleq G_\beta$.

Lemma 10.4 $Q_{\beta}^* \not\leq Q_{\alpha}$ and $Q_{\alpha} \not\leq Q_{\beta}$.

Proof: Suppose that $Q_{\beta}^* \leq Q_{\alpha}$. Then $[V_{\beta}, Q_{\beta}^*] = 1$ and so by Thompson's $P \times Q$ -Lemma, $[X_{\beta} \cap V_{\beta}, L_{\beta}] \neq 1$, a contradiction to 10.3. The second statement holds since

$$Z_{\alpha} \le Q_{\alpha'-2} \cap Q_{\alpha'-1} \le Q_{\alpha'-1}^* Q_{\alpha'}.\Box$$

Lemma 10.5 (a) $r_{V_{\beta}}(G_{\beta}) \leq 1$.

- (b) $c_{\beta} \geq 2$.
- (c) $q_{\alpha} \leq 2$.

Proof: (a) holds since G_{β} is *p*-minimal. Since $Q_{\alpha} \not\leq Q_{\beta}$ and $Q_{\beta}^* \not\leq Q_{\alpha}$, $Q_{\alpha} \cap Q_b$ is not normal in G_{β} . Thus by 8.4b, (b) holds. Hence by 8.4a also c. is true.

UII HUII

zc

dmab

qbniqa

Lemma 10.6 Suppose that b > 1.

(a) 8.21.1 or 8.21.2 holds.

(b) For each ϵ in 8.211. or 2., L^{ϵ} has at least two non trivial chief-factors on V^{ϵ} .

(c) In case ?? $q_{\alpha} < \frac{1+\sqrt{17}}{4}$.

(a) Suppose that 8.21.3 holds. Then by 8.17 one of Z_{μ^+} and Z_{μ^-} is FF. But then Z_{α} is FF, a contradiction.

(b) Suppose L^{ϵ} has at most one non-central chief factor on V^{ϵ} . Since L^{ϵ} and $G_{\beta^{\epsilon}}$ are *p*minimal, 2. implies $L^{\epsilon} = O^{p}(L^{\epsilon})(G_{\beta^{\epsilon}\mu^{\epsilon}} \cap L^{\epsilon})$ and $G_{\beta^{\epsilon}} = \langle G_{\beta^{\epsilon}\mu^{\epsilon}}, L^{\epsilon} \rangle$. Thus we can apply 8.5 to $(\mu^{\epsilon}, \beta^{\epsilon}$ in place of (α, β) . Since by assumption α is not a dual FF- module we conclude that $V_{\beta} \leq Z_{\alpha}X_{\beta}$. But then $[V_{\beta}, Q_{\alpha}] \leq X_{\beta}$ and so $[V_{\beta}, E_{\beta}] \leq X_{\beta}$ and $[V_{\beta}, E_{\beta}] = 1$, a contradiction.

(c) Suppose that $q_a \geq \frac{1+\sqrt{17}}{4}$. Put $\Lambda^+ = \mu^{+L^+}$ and $\Lambda^- = \{\mu\}$. Abusing notation define V^+ , V^-, B^+ and B^- as in that lemma. Note that V^+ is the same V^+ as defined before, but V^- now is Z_{μ} . Also $B^+ = V^+$ and $B^- = Z_{\mu} \cap O_p(L^+)$. In particular, $V^- \neq B^-$ and $V^+ = B^+$. We wish to apply 8.20e with r = 2 and $s = q_{\alpha}$. By ?? and since L^+ is p-minimial, $|Z_{\mu}/B^-|^2 \leq |V^+/C_{V^+}(Z_{\mu})|$. Also $|V^+/B^+|^2 = 1 \leq |Z_{\mu}/C_{Z_{\mu}}(V^+)|$ and so the asumptions of 8.20e are indeed fulfiled for this choice of r and s. Also e > 0 by 2.1a. Thus 8.20e gives the contradiction $V^+ \neq B^+$.

Proposition 10.7 There exists $1 \neq x \in Z_{\alpha}$ and $\lambda \in \Gamma$ with $d(\alpha, \lambda) = b$ and $Z_{\alpha} \not\leq O_p(C_{G_{\lambda}})(x)$.

Proof: Suppose the lemma is false. Then by 10.3 b > 1 and we can apply 8.21. In case 8.21.1 we assume without loss that $\alpha \in \mu^{+L^+}$ with $Z_{\alpha} \notin O_p(L^-)$. Put $Q = O_p(L^+)$.

In case 8.21.2 we assume $\epsilon = -$ and $\alpha = \mu$. Put $Q = G_{\alpha}$ and $V^+ = Z_{\alpha}$.

In each case note that by 8.21 the assumptions of 2.8 with $H = L^-$, $V = V^-$, $A = Z_{\alpha}$ and $Z = Z_{\mu^-}$ are fulfilled.

(1) $V^- \cap Q \leq G_{\alpha}$ and $C_{V^-}(Z_{\alpha}) = C_{V^-}(V^+) \leq V^- \cap Q$

In case 8.21.2 there is nothing to prove. So suppose 8.21.1 holds. Then $O_p(L^+) \leq G_\alpha$ and so the first statement holds. The second follows from 2.8a.

(2) $[Z_{\alpha} \cap O_p(L^-), V^- \cap Q] = 1$

Suppose $1 \neq x \in [Z_{\alpha} \cap O_p(L^-), V^- \cap Q]$. Then $x \in Z_{\alpha}$. Thus by 2.8d, $Z_{\alpha} \not\leq O_p(C_L(x))$ and so also $Z_{\alpha} \not\leq O_p(C_{G_{\alpha'}}(x))$, a contradiction.

Since L^- has at least two non-central chief-factors on V^- and as Z_{α} is not FF we now compute

zn1 - 1

znn - .5

zf1

$$|V^{-}/V^{-} \cap Q|||V^{-} \cap Q/C_{V^{-}}(V^{+})| = |V^{-}/C_{V^{-}}(V^{+})| = |V^{-}/C_{V^{-}}(Z_{\alpha})| \ge |Z_{\alpha}/Z_{\alpha} \cap O_{p}(L^{-})|^{2} \ge |Z_{\alpha}/C_{Z_{\alpha}}(V^{-} \cap Q)|$$
(1)

Hence

$$|V^{-}/V^{-} \cap Q| \ge |V^{-} \cap Q/C_{V^{-}}(V^{+})|.$$
(2)

In case of 8.21.2 we conclude $V^- = V_{V^-}(Z_\alpha)$, a contradiction. Thus

(3) 8.21.1 holds.

In particular, the situation is symmetric in + and - and $Q = O_p(L^+)$. Since by 8.21.1, L^+ has two non-central chief factor on V^+ ,

$$|V^+/C_{V^+}(V^-)| \ge |V^-Q/Q|^2 = |V^-/V^- \cap Q||V^-/V^- \cap Q|$$

and so by (2)

$$|V^+/C_{V^+}(V^-)| \ge |V^-/V^- \cap Q| |V^- \cap Q/C_{V^-}(V^+)| = |V^-/C_{V^-}(V^+)|$$

But the same inequality holds with the roles of + and - are interchanged. Hence equality holds here and also in (1). But has Z_{α} is not FF this is only possible if $V^{-} \cap Q$ centralizes Z_{α} . But then all the numbers compared in (1) are equal to 1 and so $V^{-} = C_{V^{-}}(V^{+})$, a contradiction which completes the proof of ??.

Theorem 10.8 Suppose G is of generic p-type, $S \in \text{Syl}_p(G)$ and V is a maximal member of $\{Y_L \mid L \in \mathcal{L}(S)$. Then either V is an FF-or dual FF-module for S or $V \not\leq O_p(C_G(Z))$.

Proof: Let $M = N_G(V)$ and $L = N_G(C_S(V))$. Then M is the unique maximal p-local of G containing L. Let $G_{\alpha} = L$ and H a p-minimal member of $\mathcal{L}(S)$ not contained in M. Suppose that V is neither FF nor dual FF for S. Then the assumptions of this section are fulfilled. Hence by ?? there exists a p-local subgroup H with $O_p(L) \leq H$ and $V \not\leq O_p(H)$. Choose such an H with $|H \cap M|_p$ maximal and then |H|-minimal. Let R be a Sylow p-subgroup of $H \cap M$ with $O_p(L) \leq R$. Since $O_p(L)$ is a Sylow psubgroup of $C_G(V)$, $O_p(L) = C_R(V) \leq R$ and so $R \leq L$. Without loss $R \leq S$.

Since $O_p(L) \leq R$ and V is not FF, $J(R) \leq O_p(L)$. Hence $L \leq N_G(J(R))$ and so $N_G(J(R)) \leq M$. Thus $N_H(J(R)) \leq M$ and in particular, $N_H(R) \leq M$. Thus R is a Sylow *p*-subgroup of H.

Let $W = Z_H$ and suppose that $[W, V] \neq 1$. Since $W \leq O_p(H) \leq R \leq S$, $|V/C_V(W) > |W/C_W(V)$. Thus V is F * 1 on W. By the minimality of $H, V \leq O_p(P)$ for all $P \in \mathcal{L}(H, S)$ with $P \neq H$ and contradiction to ??

Hence V centralizes W By minimiality of H, $H = \langle V^H \rangle R$ and so $\Omega_1(Z(R)) = W \leq Z(H)$. Thus $V \not\leq O_p(N_G(W))$. By maximality if $|H \cap M|$, R is a Sylow p-subgroup of $M \cap N_G(W)$. Thus $N_S(R) \leq N_S(W) \leq R$, R = S and W = Z. Thus the theorem is proved \Box

zn1 - 3

ffb1
CVanV

Lemma 10.9 There exists 1 $neqA \leq SC_{\alpha}/C_{\alpha}$ with

- (a) $[Z_{\alpha}, A, A] = 1$
- (b) $|Z_{\alpha}/C_{Z_{\alpha}}(A)| \le |A^2|.$
- (c) $\langle C_{Z_{\alpha}}(a) \mid a \in A^{\#} \rangle \neq Z_{\alpha}.$
- (d) If 8.212 holds, then $|Z_{\alpha}/C_{Z_{\alpha}}(A)| < |A^{\frac{3}{2}}|$.

Remark: We proof contains more information than stated in the lemma Proof: Let L^{ϵ} , μ^{ϵ} and μ as in 8.21.

In case of 8.211. may assume without loss that $|V^+/C_{V^+}(V^-)| \leq |V^-/C_{V^-}(V^+)|$. Pick $\mu \in \mu^{+L^+}$ with $Z_{\mu} \not\leq O_p(L^-)$ and put $B^- = V^- \cap O_p(L^+)$

In case of 8.212 we assume without loss $\epsilon = -$. Put $V^+ = Z_{\mu}$ and $B^+ = Z_{\mu} \cap O_p(L^-)$. In general pick $t \in Z_{\mu} \setminus O_p(L^-)$. By 8.21 the assumptions for 2.8 are fulfilled with $H = L^-$, $A = V^+, V = V^-$ and $Z = Z_{\mu^-}$. We conclude that $C_{V^-}(t) = C_{V^-}(V^+)$. Thus

$$\langle C_{Z_{\mu}}(a) \mid a \in B^- \setminus C_{\mu} \langle \leq Z_{\mu} \cap O_p(L^-).$$

Suppose now that 8.211. holds and define s by $|B^-/C_{B^-}(Z_{\mu})|^s = |Z_{\mu}/C_{Z_{\mu}}(B^-)|$. Note that that $C_{B^-}(Z_{\mu}) \leq C_{B^-}(t) \leq C_{B^-}(V^+)$. Let c be the number of non-central chief-factors for L^+ on V^+ . By 2.8 $|V^-/B^-|^c \leq |V_+/C_{V^+}(V^-)$. Then by 2.4b, (with $A = V^-, V = V^+, "s = s", t \geq 1, r \geq c \geq 2$) we get that $s \geq 2$. Thus the lemma holds in this case with $A = B^-C_{\mu}/C_{\mu}($ and μ in place of α).

Suppose next that 8.212 holds. As L^- has at least two non-trivial chief-factors on V^- , we conclude from ?? that

$$|Z_{\mu}/B^{+}|^{2} \leq |V^{-}/C_{V}^{-}(Z_{\mu}).$$

On the other hand has Z_{α} is not FF, 2.4a implies

$$|B^+/C_{B^+}(V^-)| < |V^-/V_{V^-}(B^+)| \le (V^-/C_{V^-}(Z_{\mu}).$$

Combining the last two inequalities we get $|Z_{\mu}/C_{Z_{\mu}}(V^{-})| \leq |V^{-}/C_{V^{-}}(Z_{\mu})|^{\frac{3}{2}}$. Hence the lamma holds also in this case with $A = V^{-}C_{\mu}/C_{\mu}$.

zair

Lemma 10.10 Either Z_{α} is irreducible as G_{α} module or some non-trivial chief-factor for G_{α} on Z_{α} is FF.

Proof: Since $[Z, E_{\beta}] = 1$, $C_{Z_{\alpha}}(E_{\alpha})$. Since Z_{α} is CS-generated, we conclude $Z_{\alpha} = [Z_{\alpha}, E_{\alpha}]$. So if G_{α} a unique non-central chief-factor, Z_{α} is irreducible. If Z_{α} has more than one non-central chief-factor, then as Z_{α} is F2 and G_{α} is p-connected, at least one chief-factor is FF.

nospor

Proposition 10.11 Let U be a non-trivial chief-factor for E_{α} on Z_{α} . Let $E = E_{\alpha}/C_{E_a}(U)$. Then one of the following holds:

- 1. E is solvable and one of the following holds:
 - 1.1. p = 2, $E \cong C_3$ and $|U| = 2^2$. 1.2. p = 3, $E \cong Q_8$ and $|U| = 3^2$. 1.3. p = 2, $E \cong C_5$ and $|U| = 2^4$. 1.4. p = 2, $E \cong \text{Ext}(3^{1+2})$ and $|U| = 2^6$. 1.5. p = 3, $E \cong \text{Ext}(2^{1+4}_+)$ and $|U| = 3^4$.
- 2. E is perfect but $Sol(E) \not\leq Z(E)$ and one of the folloing holds.
 - 2.1. $p = 2, E = (C_3 \wr Alt(n))', n \ge 5 \text{ and } |U| = 2^{2n}.$ 2.2. $p = 3, E = \text{Ext}(2^{1+4}).Alt(5) \text{ and } |U| = 3^4.$
- 3. E is quasisimple and one of the following holds.
 - 3.1. E is group of Lie type in charcateristic p. 3.2. p = 2 and E/Z(E) is an alternating group.
 - 3.3. $p = 2, E \cong 3 \cdot U_4(3)$ and $|U| = 2^{12}$.
- 4. $E = E_1E_2$ for some components E_1, E_2 of E, E_1 and E_2 are isomorphic groups of Lie type in characteristic $p, U = U_1 \otimes U_2$ for some U_i module E_i such that (E_1, U_1) and (E_2, U_2) isomorphic. Moreover, if n is the dimension of U_i over $\operatorname{End}_{E_i}(U_i)$ then U_i is a quadratic $F\frac{2}{n}$ -module for E_i .

Proof: Let W be a non-trivial chief-factor for G_{α} on Z_{α} . By 10.9 Z_{α} is quadratic F2and since G_{α} is *p*-connected, W is quadratic F_2 . Let Let $H = G_{\alpha}/C_{G_{\alpha}}(W)$ and $L = \langle PQ_2^*(G_{\alpha}/C_{G_{\alpha}}(V), V) \rangle$. As *p*-connected $O^p(H) \leq L$. Let V be a Wedderburn component for H on W. Since $N_H(V)$ is irreducible on V and $N_H(V)/L$ is a *p*-group, V is irreducible for L. Hence we can apply 6.11 to $\overline{L} = L/C_L(V)$. In particular we see that (except in case 6.114 with p = 2) $O^p(L)$ is irreducible on V and clearly any chiefactor for E_{α} on Z_{α} arises in such a way. Moreover, since G_{α} is *p*-connected, Case 8 of 6.11 does not arise and in case 9, $C_L(\Delta)$ is a 3-group. Thus it remains to show that in cases 10, 11 the componets of L are groups of Lie type or E(L)/Z(E(L)) is quasi simple and neither an alternating group, a group of Lietype in characteristic p nor $3 \cdot U_4(3)$

Then G_{α} has no *FF*-module and so *W* is the unique non-trivial composition factor for G_{α} on Z_{α} and as $Z \leq G_{\beta}$ we get that Z_{α} is irreducible. We conclude that $E_{\alpha}C_{\alpha}/C_{a}$ the central product of its components $L^{(i)}, 1 \leq 1 \leq n$ and Z_{α} the the direct sum of the $Z_{\alpha}^{i} = [Z_{\alpha}, L^{(i)}]$. By 6.15b $L^{(i)}$ is isomorphic to 3: Mat_{22} Let A be as in 10.9 and put $X = \langle C_{Z_{\alpha}}(a) \mid a \in A^{\#} \rangle \neq Z_{\alpha}$. Pick $V = Z_{\alpha}^{(i)}$ so that $V \not\leq X$ and pick $t \in V \setminus X$. Then $C_A(t) = 1$ and so A acts faithfully, quadratic and F2 on V. Thus by 6.15b, $A \geq 2^3$ and 6.152.3 or 2.4 hold. Let $a \in A^{\#}$. Then $C_V(a) \neq C_V(A)$ and so $C_V(A) < X \cap V < V$. Since $X \cap V$ is invariant under $N_{G_{\alpha}}(A)$ we conclude that case 2.4 with $|A| = 2^3$ holds. Note that V is actually a 6-dimensional space GF(4). Each $a \in A^{\#}$ $C_V(a)/C_V(a)$ is 1-dimensional over GF(4) and differnt a's give different 1-spaces. Hence $X/C_V(A)$ contains 7 different GF(4)-1-spaces and so X = V, a contradiction.

11 The case b = 1 with G_{α} connected and G_{β} minimal

- **Hypothesis 11.1** (a) Hypothesis 8.1 holds, except for the $S \leq G_{\alpha} \cap G_{\beta}$ we only assume hyb1c $Q_{\alpha} \leq S$ and $S \in \text{Syl}_{p}(G_{\beta})$.
 - (b) G_{α} is p-connected.
 - (c) b = 1, that is $Z_{\alpha} \not\leq Q_{\beta}$.

Definition 11.2 (a) V is a normal subgroup of G_{β} minimal with respect to $[V, E_{\beta}] \neq 1$.

(b) $M_{\alpha\beta}$ is the unique maximal subgroup of G_{β} containing S.

Lemma 11.3 Suppose that G_{β} is p-minimal. Then either $[Q_{\alpha}, E_{\alpha}] \leq Z_{\alpha}$ or Q_a/Z_a has a unique non-central chief-factor and that chief-factor is FF.

Proof: Let $D = [V, Q_{\beta}]$. Then $[D, E_{\beta}] = 1$. Also note that $V = [V, E_{\beta}]$ and since $E_{\beta} \leq \langle Z_{\alpha}^{G_{\beta}} \rangle$ we conclude that $V = \langle [V, Z_{\alpha}]^{G_{\beta}} \rangle$. Thus $D = \langle [V, Z_{\alpha}, Q_{\beta}]^{G_{\beta}} \rangle$. Since $[V, Z_{\alpha}, Q_{\beta}]$ is normalized by $SE_{\beta} = G_{\beta}$ we conclude that $D = [V, Z_{\alpha}, Q_{\beta}] \leq Z_{\alpha}$. Let $\overline{V} = V/D$. Then $[V, Z_{\alpha}, Q_{\alpha}] \leq [Z_{\alpha}, Q_{\alpha}] = 1$. So let R be maximal in Q_{α} with $[\overline{V}, R] \leq [\overline{V}, Z_{\alpha}]$. Then by 6.18,

$$|Q_{\alpha}/R| \le |\overline{V}/C_{\overline{V}}(Z_{\alpha})| \le |V/C_{V}(Z_{\alpha})| = |VQ_{\alpha}/Q_{\alpha}|$$

Also $[R,V] \leq [V,Z_{\alpha}]D \leq Z_{\alpha}$. Let $\tilde{Q}_{\alpha} = Q_{\alpha}/Z_{\alpha}$, we conclude

$$|\tilde{Q}_{\alpha}/C_{\tilde{Q}_{\alpha}}(V)| \le |VQ_{\alpha}/Q_{\alpha}|.$$

Futhermore, $[V, Z_{\alpha}] \neq 1$ and so $V \not\leq Q_{\alpha}$. It remains to show that G_{α} has at most one non-central chief-factor on \tilde{Q}_{α} . So suppose $[\tilde{Q}_{\alpha}, E_{\alpha}] \neq 1$ and let P be a normal subgroup of G_{α} minimal with respect to $[P, E_{\alpha}] \not\leq Z_{\alpha}$. Then $[P, V] \not\leq Z_{\alpha}$] and so $P \not\leq R$. By 6.18, we conclude $[\overline{V}, P] = [\overline{V}, Q_{\alpha}]$ and so $[Q_{\alpha}, V] \leq [P, V_{\alpha}] \leq P$. Hence $[Q_{\alpha}, E_{\alpha}] \leq P$ and the lemma is proved.

Lemma 11.4 Z_{α} is a cubic F2-module for G_{α} .

qmzff

dVMab

b1c

zaf2

Proof: Remark: 1. There should be a much nicer proof which does not go through the list of finite simple groups

2. The structure of L has determined in proof should be recorded as an independent lemma

Assume that Z_{α} is not FF and let L be minimal such that

(i)
$$Z_{\alpha} \leq L$$
.

- (ii) $Z_{\alpha} \not\leq O_p(L)$.
- (iii) $G_{\alpha} \cap L$ contains a Sylow *p*-subgroup *T* of *L*.
- (iv) $C_L(O_p(L)) \leq O_p(L)$.

By minimality of L, $L = \langle Z_{\alpha}^{L} \rangle$. Let R be a normal subgroup of L with $L \neq RZ_{\alpha}$. Then again by minimality $Z_{\alpha} \leq O_{p}(RZ_{0})$. Thus $[R, Z_{\alpha}] \leq O_{p}(R) \leq O_{p}(L)$ and $[R, L] \leq O_{p}(L)$. In particular L is *p*-connected. Let V be a non-central chief-factor for L on $O_{p}(L)$. Since $O_{p}(L) \leq T \leq G_{\alpha}, Z_{\alpha}$ acts quadratically on $O_{p}(L)$ and so also on W. Let $\tilde{L} = L/C_{L}(W)$. If $|\tilde{Z}_{\alpha}| = 2$, then $L/O_{2}(L)$ is a dihedral group. If $|\tilde{Z}_{\alpha}| \geq 3$, we can apply 6.17 to \tilde{L} and W. So in any case we conclude that one of the following holds (where we used the minimalty of L to rule out some of the cases)

- 1. p = 2 and $\tilde{L} \cong Dih(2r)$, r and odd prime.
- 2. $F^*(\tilde{L})$ is quasisimple.
- 3. p = 3 and $\tilde{L} \cong SL_2(3)$.

Suppose first that Z_{α} lies in a unique maximal subgroup M of L. Put

Put $A = Z_{\alpha}$, $B = A \cap O_p(L)$ and $Q = \langle B^L$. Let $l \in L \setminus M$. Then $L = \langle A, A^l \rangle$ and so as $[Q, A] \leq B, Q = BB^l$. Moreover, $B \cap B^l = C_{B^l}(L) = C_{B^l}(A)$. And so

$$B^{l}/C^{l}_{B}(A) = B^{l}/B \cap B^{l} = |Q/B| = |Q/C_{Q}(A)| \ge |AQ/Q| = |A/B|$$

where the last inequality holds has L is F * 1-modules.

Now $|B/C_B(B^l)| \le |B/C_B(A^l)| = |B/B \cap B^l = |B^l/C_{B^l}(A).$

Hence B^l is F2 on A. Since $[A, B^l] \leq Q$ and B^l is quadratic on Q, B^l is cubic on A. Thus the lemma holds in this case.

So we may assume form now on that A lies in more one maximal subgroup of L. In particular, $K = F^*(\tilde{L})$ is quasi simple. Let $T \leq M < L$. Then by minimality of L, $A \leq O_p(M) \leq T$. Put $Q_M = \langle A^M \rangle$. If Q_M is not abelian, then $[A, A^m] \neq 1$ for some $m \in M$. But then A is FF on A^l or A^l is FF on A, a contradiction. Hence Q_M is abelain for all such M and so acts quadratically on Q. Let $1 \neq \tilde{a} \in \tilde{A} \cap Z(\tilde{T})$. We conclude

zaf2-1

(1) A lies in an abelian normal subgroup of $C_{\tilde{L}}(\tilde{a})$ which acts quadratically on Q.

Suppose next K is not a group of Lie type in characteristic p. Then p = 2 or 3. If p = 3, then $|\tilde{A}| = 3$ and \tilde{A} lies subgroup of L is morphic to $SL_2(3)$, a contradiction to the minimality of L. So p = 2. Since $|\tilde{A}| \ge 2$, 6.15 and (1) apply $\tilde{L} \cong 3 \cdot \text{Mat}_{22}$, Aut(Mat(22)) or Mat₂₄. But in each of these cases there exists a overgroup of \tilde{M} which does not have a non trivial quadratic normal subgroup.

We conclude

(2) L is a group of Lie type in characteristic p of rank at least two.

Suppose that \tilde{A} is contained in a root group X if \tilde{A} . Then $X \leq T$ and X the Sylow subgroup of some $(S)L_2(q)$ in \tilde{L} . But this contradicts the minimal choice of L. Hence \tilde{A} is not contained in a root group. By (1) and as A is contained in $O_p(M)$ for all $T \leq M \leq L$ we conclude that p = 2, $L \cong Sp_{2n}(q)$ or $F_4(q)$ and $A \leq Z(T)$. The minimality of L implies $L \cong Sp_4(q)$. But $Sp_4(q)$ has no module on which the O_p 's of both parabolic acts quadratically.

12 Elementary results on *p*-connected groups

Definition 12.1 $\mathcal{N}(S)$ is the set of all *p*-connected $L \in \mathcal{L}(S)$ wh

Remark: change this to \mathcal{N}^* and use \mathcal{N} for $\mathcal{P} \cup \mathcal{E}$

Lemma 12.2 Let $L \in \mathcal{L}(S)$. Put $E = O^2(L)$. Then L is in $\mathcal{N}(S)$ if and only if one of the following holds:

- 1. L is solvable, $E/O_2(E)$ has odd order and for all maximal S invariant normal subgroups N of E, $C_S(E/N) = O_2(L)$.
- 1. E is perfect, and $E/O_{2,2'}(E)$ is the direct product of simple groups which are transitively permuted by S.

Proof: It is trivial to verify that (1) and also (2) imply $L \in \mathcal{N}(S)$. So assume now that $L \in \mathcal{N}(S)$ and let K be the unique maximal normal subgroup of E with $K/O_2(K)$ of odd order. Note that $O_2(E) \leq K$ and by the odd order theorem, K is solvable.

Suppose first that K = E. Let and let N be a maximal S invariant normal subgroup of E. Then $NC_S(E/N)$ is normalized by ES = L. Since $E \ NC_S(E/N)$ we conclude that $C_S(N) \leq O_2(L)$. Thus (1) holds in this case.

Suppose next that $E \neq K$ and let E^*/K be a minimal L invariant subgroup of E/K. Then E^*/K does not have odd order, $S \cap E^* \not\leq K$, $S \cap E^* \not\leq O_2(L)$ and so $E \leq E^*$ and $E = E^*$. As $E = O^2(E)$, E/K is not a 2-group and so E/K is not solvable. Thus E/K is the direct product of simple groups transitively permuted by S. Since $E' \cap S \not\leq O_2(L)$, E = E'.

The following is an extended version of a lemma from [St2] which describes the structure of rank 2 groups.

zaf2 - 2

NS

dcn

p - con

gsr2

Lemma 12.3 Let $P_1, P_2 \in \mathcal{N}(S)$. Put $L = \langle P_1, P_2 \rangle$. Let L_0 be a normal subgroup of L maximal with respect to $O^2(P_i) \not\leq L_0$ for i = 1 and i = 2. Let L_1/L_0 be a minimal normal subgroup of L/L_0 . Then **Remark:** change L_1, L_0 notation

- (a) $S \cap N = O_2(L)$ and $L_0/O_2(L)$ has odd order.
- (b) Let $O^2(P_i) \leq L_1$ for at least one $i \in \{1, 2\}$.
- (c) If $O^2(P_j) \leq L_1$, then $P_j \leq N_L(L_1 \cap S)$ and $O_2(O^2(P_i)) \leq O_2(P_j)$.
- (d) Suppose that $L_1/L_0 = E_1 \times E_2 \times \ldots \times E_r$ is the direct product of alternating groups or simple groups of Lie type in characteristic 2. Then P_j acts transitively on the E_l 's and one of the following holds:
 - (d.1) $O^2(P_i) \not\leq L_1$ and $O^2(P_i)L_0/L_0$ is the product of some of the E_l 's.
 - (d.2) $O^2(P_j) \not\leq L_1, E_1 \cong D_4(q)$ and some element on P_j induces a graph automorphism of order 3 on E_1
 - (d.3) $O^2(P_j) \leq L_1, \ j = 1, 2, \ L = L_1 S = \langle E_1^S \rangle S$ and $E_1 = \langle E_1 \cap P_1, E_1 \cap P_2 \rangle$. (modulo L_0)

Proof: As $O_2(L)L_0 \cap P_i = O_2(L)(L_0 \cap P_i) \leq O_2(P_i)$ the maximality of L_0 implies $O_2(L) \leq L_0$. Let N be a normal subgroup of L and $k \in \{1, 2\}$.

We next prove that

(1) Suppose that $S \cap N \leq O_2(P_k)$. Then P_k normalizes $S \cap N$.

Indeed this is clear as $S \cap N = O_2(P_k) \cap N$ in this case.

(2) If $O^2(P_k) \not\leq N$, then P_k normalizes $S \cap N$

As $O^2(P_k) \not\leq N$ we have $S \cap N \leq O_2(P_k)$ and so (2) follows from (1).

By definition of $\mathcal{N}(S)$ and $O^2(P_i) \not\leq L_0$ we have $S \cap L_0 \leq O_2(P_i)$. By (1) applied to $N = L_0$ and k = 1, 2 we conclude that $L_0 \cap S$ is normal in $L = \langle P_1, P_2 \rangle$ and so (a) holds. (b) follows from the maximal choice of L_0 . The first part of (c) follows from (2) while the second follows from the first.

To prove (d) we assume without loss that $L_0 = 1$. Note that $P_i \cap L_1$ is a parabolic subgroup of L_1 and $P_i = (P_i \cap L_1)S$. Thus either P_i normalizes $S \cap L_1$ or we may choose notation so that $P_i = ((P_i \cap E_1) \times \ldots (P_i \cap E_l))S$, where $P_i \cap E_1$ is a parabolic of E_1 with $O^{2'}(P_i \cap E_1) = P_i \cap E_1$.

Suppose now that $O^2(P_j) \not\leq L_1$. Pick E_1 so that $S \cap N_L(E_1)$ is a Sylow 2-subgroup of $N_L(E_1)$. Then as $L_1 \cap S$ is not normal in L, (c) implies that P_i does not normalise $L \cap S$. If $E_1 \leq P_i$, (d.1) holds. So we may assume that $P_i \cap E_1$ is a proper parabolic subgroup of E_1 . Suppose that (d.2) does not hold and that E_1 is a group of Lie type in characteristic two.

qsr2-2

qsr2-1

Then no element of odd order in $N_{P_j}(E_1)$ induces a non-trivial graph automorphism on E_1 and so $O^2(N_G(P_j))$ normalizes $P_i \cap S$. Hence $N_G(P_j) = O^2(N_G(P_j))(N_S(E_1))$ normalizes $P_i \cap E_1$ and so $L \neq \langle (P_i \cap E_1)^{P_j} P_j = \langle P_1, P_2 \rangle$, a contradiction. If E_1 is an alternating of degree at least six, then $N_{Aut(E_1)}(S \cap E_1)$ is a 2-group and we obtain a similar contradiction. So assume now that $O^2(P_j) \leq L_1$ for j = 1, 2. Then it is easy to verify that (d.3) holds.

13 Establishing Geometries

Throughout this section we assume

(i) $U_0, U_1 \in \mathcal{N}(S)$

Remark: redefine \mathcal{N} as $\mathcal{P} \cup \mathcal{E}$?

- (ii) all non-abelian composition factors of elements of $\mathcal{L}(S)$ are alternating groups, rank one group of Lie type over GF(q), $G_2(q)$'s or classical groups over GF(q), where q is a power of two.
- (ii) $U_0 \not\leq U_1$ and $U_1 \not\leq U_0$.

Lemma 13.1 Let $H \leq G$ with $F^*(H) = O_2(H)$ and $|S/S \cap H| \leq 2$. Then all non-abelian composition factors of elements of $\mathcal{L}(S)$ are alternating groups, rank one group of Lie type over GF(q), $G_2(q)$'s or classical groups over GF(q), where q is a power of two.

Proof: By 2.10 we may assume that $H \leq L^* \in \mathcal{L}(S)$. Hence the claim follows from 2.12.

Lemma_{QT} **13.2** Put $L = \langle U_1, U_2 \rangle$ and suppose that $L \in \mathcal{L}(S)$. Then the L_0 and L_1 in 12.3 and $\{i, j\} = \{0, 1\}$ can be chosen so that one of the following holds

- 1. $[O^2(U_0), O^2(U_1) \le Q.$
- 2. L is not solvable and $L \in \mathcal{N}(S)$.
- 3. $O^2(L)O_2(L)/O_2(L)$ is a p-group for some prime odd p.
- 4. L_i is a $\{2, p\}$ -group for some prime p, $O^2(P_i) \leq L_1$ and L_1/L_0 is an elementary abelian p-group. Moreover, there exists an odd prime $q \neq p$ so that the image of $O^2(P_j)$ in $\operatorname{Aut}(L_1/L_0)$ has one of the following shapes: cyclic q group with $q \mid p^4 - 1$; homocyclic q group of rank 2 with $q \mid p - 1$; $Ext(3^{1+2})$ with $p \neq 3$; $Ext_-(2^{1+4}).5$; $Ext_-(2^{1+4}).Alt(5)$; Alt(4), 2·Alt(n), n = 4, 5; 2· $Alt(4) \times 2$ ·Alt(4); 2· $Alt(5) \times 2$ ·Alt(5), $p \equiv 0, 1, 4(5)$; 2·Alt(6); 2·Alt(7) (with p = 7); Alt(5); $L_3(2)$ or 3·Alt(6).
- 5. U_i induces Sym(3) on the set of components of L_1/L_0 , U_j is the product of one or two 2-components of L_1 and $U_i/O_2(U_i) \cong Dih_{2,3^l}$.
- 6. $O^2(U_i)$ acts trivially on the set of components of L_1/L_0 , $U_i/O_2(P_i)$ is a dihedral group, U_i normalizes $O^2(U_i)$, and $O^2(U_i) = E_2(L_1)$. Moreover, $O_2(U_i) = O_2(L)$.

compfact

EG

Remark: The case that $O^2(U_i) \leq L_1$ for i = 0 and 1 and L_1/L_0 is a direct product of perfect simple groups still needs some attention: one needs to show that L_1/L_0 is "central" (and this should be possible) and also things $L/O_2(L) \cong$ $C_3 \times Alt(5).2$ arise here, this is covered by case 6. But $O^2(U_i)$ induces inner automorphism on $O^2(U_j)$. So this probably should be listed as a seperate case, but it is also kind of the same as 1.

Proof: Remark: numbering and notation needs to be updated

We use the results and notation of 12.3. As $m_{2'}(L) \leq 3$, case d.2 in 12.3 is not possible. Put $D = C_L(L_1/L_0)$.

Suppose first that L_1/L_0 is not solvable. Then $O^2(U) \leq L_1$. If $D \neq L_0$ we get $D \cap L_1 = L_0$ and by maximality L_O , $O^2(P) \leq D$. Thus $O^2(U), O^2(P) \leq L_O$. In this case we replace L_1 by $O^2(P)L_O$. So we may assume that $D = L_0$. As $m_{2'}(L) \leq 3$, $r \leq 3$

Assume in addition that $O^2(P) \leq L_1$. As P is solvable, d.1 is impossible. Thus d.3 holds. Moreover, $L = L_1 S$ and so $O^2(L) \leq L_1$ thus 4. holds in this case. So assume that $O^2(P) \not\leq L_1$.

If $O^2(P)$ does not act trivially on the set of components of L_1/L_0 we conclude that r = 3 and P induces Sym(3) on the set of components of L_1/L_0 . As $e(G) \leq 3$ and L_1/L_0 has three components, $[L_1^{\infty}, L_0] \leq O_2(L)$]. Thus 5. holds.

So suppose that $O^2(P)$ acts trivially on the set of components of L_1/L_0 . The S acts transitively thereon and $r \leq 2$. If r = 2, then $O^2(U) = E_2(L_1)$. Since $e(G) \leq 3$ we have E_1 is $L_2(q), S_2(q), L_3(4), L_3(2), Alt(6), Alt(7)$. But in the last three cases $Out(E_1$ is a 2-group, a contradiction. In the first two cases, $Out(E_1)$ is cyclic and so PL_1/L_1 is a dihedral group. If $E_1 \cong L_3(4)$, then $O^2(U)O_2(L)/O_2(L) \cong SL_3(4) * SL_3(4)$. Since the action of $Aut(L_1/L_0)$ on $Out(L_1/L_0)$ on the 3-part of the Schur multiplier respectively the outer automorphisms of L_1/L_0 are isomorphic we conclude that S does not act irreducibly on $O_3(Out(L_1/L_0))$ and so $O^2(P)L_1/L_1 \cong C_3$ and so again $P/O_2(L)$ is a dihedral group. Thus 6. holds

If r = 1 we conclude that PL_1/L_1 is isomorphic to a subgroup of $Out(E_1)$ and so $Out(E_1)$ is not abelian. Hence $E_1 \cong U_3(q), U_4(q), L_3(q)$ and $P/O_2(P)$ is a dihedral group and 6. holds.

Assume now that L_1 is solvable.

Suppose that L_2/L_O is a minimal normal subgroup of L/L_0 different from L_1/L_O . Then we may choose notation so that $O^2(P) \leq L_1$ and $O^2(U) \leq L_2$. Then $[O^2(P), O^2(U)] \leq L_0$, $L_1 = O^2(P)L_O$ and $L_2 = O^2(U)L_0$.

Suppose that $O^2(U) \leq L_1$. Then by assumption L_1/L_0 is an elementary abelian 3-group.

TO BE CONTINUED

Corollary 13.3 Assume that

- (i) $U_0 \in \mathcal{P}(S)$
- (ii) If $U_1 \in \mathcal{P}(S)$ and U_1 is solvable then U_1 is a $\{2, 3\}$ -group.
- (iii) $L \stackrel{def}{=} \langle U_0, U_1 \rangle \in \mathcal{L}(S).$

Then one of the following holds

TO BE CONTINUED

Lemma_{QT} 13.4 Suppose that

(i)
$$E \in \mathcal{E}(S) \setminus \mathcal{P}(S)$$
.

- (ii) $O_2(\langle U_1, E \rangle) = 1.$
- (iii) For all $U^* \in \mathcal{N}(E, S)$ with $U^* \neq E$, $\langle U_1, U^* \rangle \in \mathcal{L}(S)$
- (iv) There exists a maximal element $U_1 \in \mathcal{N}(E, S)$ so that one of the cases 3-6 in 13.2 holds.

Then one of the following holds for $L(1) = \langle U_0, U_1 \rangle$.

- 1. U_1 is solvable.
- 2. Head $(U_1) \cong L_2(q)^r$, $r \leq 2, q \geq 4$; $U_O/O_2(U_O) \cong D_{2\cdot 3^k}$, Head $(L_1(1) \cong L_2(q)^3$ and $O^2(U_O)$ transitively permutes the three 2-components of L(1)
- 3. $O^2(U_1)/O_2(U_1) \cong Alt(5)$, $\text{Head}(E) \cong U_4(2)$ and $O^2(U_0) \leq O_{2,p}(L(1))$, p a prime with p > 3. Moreover, if **TO BE CONTINUED**
- 4. Put $R_1 = O^2(U_1)O_2(U_1)$. Then
 - (a) U_O normalizes R_1 and no non-trivial characteristic subgroup of R_1 is normal in E.
 - (b) One of the following holds
 - 1. Head(E) $\cong U_4(2), U_O/O_2(U_O) \cong D_{2\cdot 3^k}$ and Head(U₁) $\cong Alt(5)$.
 - 2. There exists a maximal element U_2 of $\mathcal{N}(E, S)$ which fulfils 3. with U_2 in place of U_1 .

Remark: Case 4b1 is impossible by a trivial pushing up argument (or by quoting pushing up)

Proof: Let \mathcal{N} be the set of proper maximal elements $U^* \in \mathcal{N}(E, S)$. We assume without loss that U_1 is not solvable.

By 8.2 there exists U_2 in \mathcal{N} so that $\langle U_1, U_2 \rangle = E$. Under all these U_2 's with pick one which (possibly trivial) 2-component K with $K/O_2(K)$ maximal.

In particular $O^2(E) = \langle O^2(U_1), O^2(U_2) \rangle$. For i = 1, 2 let $L(t) = \langle U_O, U_i$. We will apply 13.2 to L(1) and L(2). We write Case t(i) if Case t in 13.2 holds for L(1). For i = 0, 1, 2 put $Q_i^* = [O_2(U_i), O^2(U_i)]$. The next two statement follow immediately from 13.2 applied to L(1).

O2L1

(1) U_O is solvable and $O^2(U_1)/O_2(O^2(U_1)) \cong Alt(n)$ for $8 \le n \le 11$.

(2) One of the following holds:

- Case 4(1) with (i, j) = (O, 1) and Head $(U_1) \cong Alt(5), Alt(6), 3 \cdot Alt(6), Alt(7)$ or $L_3(2)$
- Case 5(1) with (i, j) = (O, 1) and $\text{Head}(U_1) \cong L_2(k)^r$ or $L_3(2)^r$, with $r \leq 2$.
- Case 6(1) with (i, j) = (O, 1)

By 8.2, the second statement in (1) and as U_1 is not solvable we can choose U_2 so that $U_1 \cap U_2$ is a maximal parabolic of U_1 .

Remark: this needs to be proved very carefully for the the symmetric groups

Next we prove

(3) In Case 1(2), 5(1) holds.

As we are in case 1(2), $[O^2(U_O), O^2(U_2)]$ is a 2-group. Hence also $[O^2(U_O), U_1 \cap O^2(U_2)]$ is a 2-group. On the other hand in case 4(1), $U_1 \cap O^2(U_2)$ acts fixed point freely on $L_1(1)/L_0(1)$, a contradiction. In case 6(1) $O^2(U_0)$ normalizes $O^2(U_1)$ and $O^2(U_2)$, again a contradiction. Thus case 5(1) holds.

(4) In Case 4(1), Case 4(2) holds.

By (3) we may assume that Case 2(2),3(2), 5(2) or 6(2) holds. As P_O is solvable, we get in case 2(2), 3(2) and 5(2) that P_0 is a 2,3-group a contradiction. Hence Case 6(2) holds, Head(U_O) is cyclic and $O^2(P_0)$ induces field or diagonal automorphism of odd order larger than 3 on $O^2(U_2)/O_2(O^2(U_2))$. But this contradicts the structure of U_1 and E.

(5) If Case 4(1) and Case 4(2) holds, 3. holds

Considering the action of Q_2^* on $L_1(1)/L_0(1)$ we see that $[O^2(U_O), Q_2^*] = O^2(U_0)$ Remark: more details please. Hence $O^2(U_2) \not\leq L_1(2)$ and so $O^2(U_O) \leq L_1(2)$. Moreover, $Q_2^* \not\leq O_2(L(2))$. Hence either U_2 is solvable or acts as $Ext2^{1+4}.A_5$ on $L_1(2)/L_0(2)$. In the latter we get $L_1(2) \leq P_0 \leq L(2)$ and then $L_1(1) = L_2(1)$, a contradiction. Thus U_2 is solvable and so $U_2/O_2(U_2) \cong Sym(3)$ or $Sym(3) \wr C_2$.

In the latter case, $[L_1(2)/L_0(2), Q_2^* \neq 1$ implies that S acts irreducible on $[L_1(2)/L_0(2)]$. But then $L_1(2) \leq P_0 \leq L_1(1)$, a contradiction.

Thus $U_2/O_2(U_2) \cong Sym(3)$ and as U_1 is not solvable we conclude that $\text{Head}(E) \cong U_4(2)$. Hence 3. holds.

(6) In case 5(1), 2.holds.

O2L1 - 4

O2L1 - 5

O2L1 - 6

O2L1 - 2

O2L1 - 3

We may assume that $\operatorname{Head}(U_1) \cong L_3(2)^r$, r = 1, 2. If r = 1 and U_1 induces no graph automorphism on $\operatorname{Head}(U_1)$, then $\operatorname{Head}(E) \cong L_4(2)$, $Sp_6(2)$, $\Omega_8^-(2)$ or $(3 \cdot)Alt(7)$. If r = 1and U_1 induces a graph automorphism on $\operatorname{Head}(U_1)$, then $\operatorname{Head}(E) \cong L_5(2)$. If r = 2 then now element of U_1 induces a graph automorphism on $\operatorname{Head}(U_1)$ and $\operatorname{Head}(E) \cong L_6(2), L_7(2)$ or $3 \cdot (Alt(7) \times Alt(7))$. Let K be the normaliser in U_1 of some 2-component of U_1 and $P \in \mathcal{P}(K, S \cap T)$. Then $|S/S \cap P| \leq 2$. Let $H_O = N_{L(1)}(O^2(P))$, $H_1 = N_E(O^2(P))$ and $H = \langle H_1, H_2$. Then $\operatorname{Head}(H_O/O^2(P)) \cong L_3(2) \times L_3(2)$. Moreover we can and do choose Pso that $H_1 \not\leq L(1)$ and so $H \neq H_1$. As $m_3(H) \leq 3$ and $O^2(P)O_2(H)/O_2(H)$ is a normal subgroup of order three in H. By 4.10 we conclude that $H^{\infty}/O_{2,2'}(H^{\infty}) \cong L_3(2) \times L_3(2)$ or $L_3(2) \times Alt(7)$. In the first case each minimal parabolics of H is either contained in H_0 or is solvable and not a $\{2,3\}$ -group, a contradition to $H_1 \not H_O$. In the second case H has a 2-component R with $\operatorname{Head}(R) \cong 3 \cdot Alt(7)$, $O_{2,3}(R) \leq P$ and $\operatorname{Head}(R \cap H_1) \cong C_3 \times L_3(2)$. It follows that $P \cap K$ induces a group of automorphisms on $3 \cdot Alt(7)(= \operatorname{Head}(R))$ which inverts the central three but centralizes an $L_3(2)$ subgroup, a contradiction.

(7) In case 6(1), 4. holds.

By case 6(1) $O_2(U_1) = O_2(L(1))$ and U_0 normalizes $O^2(U_1)$. Thus the first statement in 4. holds. As U_1 induces diagonal or field automorphism of odd order on Head (U_1) , E is not a group of Lie type in over the field of 2-elements, except maybe $U_4(2)$.

Suppose first that U_2 is solvable. Then $\text{Head}(E) \cong U_4(2)$, $\text{Head}(U_1) \cong Alt(5)$ and so 4b1 holds.

Suppose next that U_2 is not solvable. In case 1(2) or 6(2), P_O normalizes $O^2(U_2)$, a contradiction as P_0 already normalizes $O^2(U_1)$. Suppose Case 2(2) holds. As U_O is solvable, we conclude that $\text{Head}(L_1(2)) \cong U_4(2)$. Let $Q = O_2(U_2)$. In E we see that Q induces inner automorphism on $\text{Head}(U_1)$, in L(2) we see that Q inverts $\text{Head}(U_0)$ and in L(1) we see that every element that inverts $\text{Head}(U_0)$ induces an outer automorphism on $\text{Head}(U_1)$, a contradiction.

Hence we may assume that one of 4(2) or 5(2) holds. In particular, U_2 in place of U_1 fulfils the assumption of this lemma and so by (4) and (6) applied with U_1 and U_2 interchanged 5(2) we get that case 5(2) holds and $\text{Head}(U_2) \cong L_2(q)^r$, $r \leq 2$. Thus 4b2 holds. **Remark:** I forget to think about $3 \cdot Alt(6)$ for $\text{Head}(U_1)$. This might arrise for $\text{Head}(E) = 3 \cdot Alt(7)$

Lemma_{QT} **13.5** Retain the assumptions of 13.4 and assume that 13.4.2 holds. Then one of the following holds:

a. troet

Proof:

(1) (a) If r = 1, then Head $(H) \cong (3 \cdot)Alt(7)$ (with q = 4); Alt(10) (with q = 4); $(S)L_3(q)$; $Sp_4(q)$; $G_2(q)$; $U_4(q)$; $U_4(\sqrt{q})$; or $L_4(q)$ (with S inducing a graph automorphismus).

nl2ws3

nl2ws3 - 1

O2L1 - 7

- (b) If r = 2 then Head $(H) \cong 3 \cdot (L_3(4) \times L_3(4))$ (with q = 4), $3 \cdot (Alt(7) \times Alt(7))$ with q = 4) or $L_4(q)$ (with S inducing a graph automorphism).
- (c) Let $H \in \mathcal{L}(S)$ with $L_1(1)S \leq H$. Then $\text{Head}(H^{\infty}) = H_1 \cdot H_2 \cdot H_3$, where S normalizes H_1 and interchanges H_2 and H_3 , for $1 \leq i \leq 2$, $H_i/O(H_i) \cong (2 \cdot)Alt(5)$ and $O(H_0)$ and $O(H_1)$ have coprime order.

This follows easily from 4.10

Let K_1, K_2, K_3 be three different 2-components of L(1) with $K_1 \leq U_1$. Put $K = K_1K_2K_3$. Let $\{i, j, k\} = \{1, 2, 3\}$. Put $H^i = N_G(K_i)$ and $K_j^i = \langle K_j^{H^{i\infty}}$. As $L(1) \leq H^i$ and H^i contains a Sylow 2-subgroup of G we can apply (1)c and conclude that K_k^i normalizes K_j^i and K_j). Hence $K_k^i \leq H^j$ and $K_k^i \leq K_k^j$. By symmetry $K_k^j \leq K_k^i$ and so $K_k^* \stackrel{=}{def} K_k^j = K_k^i$. In particular K_i^* normalizes K_j^* and the K_j^* 's are pairwise isomorphic. By (1)c applied to $K_1^*K_2^*K_2^*S$ we conclude that $O_22'(K_i^*) = O_2(K_i)$ and so $K_i^* = K_i$. It follows that

nl2ws3-2

notA11

(2) Put $L = N_G(K)$. Then L is the unique maximal 2-local of G containg KS. Moreover, $C_L(K/O_2(K)/O_2(L))$ is coprime to $|L_2(q)|$

Remark: the same argument works for any group with three 2-componets which are conjugate in G so we should make an extra lemma and use it in the $L_3(2) \wr Sym(3)$ case

Suppose that $\text{Head}(E) \cong Alt(7) \text{ or } Alt(10)$. Then $Head(U_2) \cong Alt(6)$ or Alt(8) respectively and $U_1 \cap U_2/O_2(U_1 \cap U_2) \cong Sym(3)$. Hence we see in L(1) that U_0 does not normalize $U_1 \cap U_2$ and $\text{Head}(\langle U_O, U_1 \cap U_2 \rangle \cong C_3 \wr C_3$. Hence U_O does not normalize U_2 . It follows that case 2(2) holds and $\text{Head}(L(2)) \cong Alt(7), Sp_6(2), L_6(2), Alt(9), Alt(10)$ or Alt(11). But this contadicts the stucture of $\langle U_O, U_1 \cap U_2 \rangle$.

Suppose that q = 4 and $\text{Head}(E) \cong (L_3(4) \times L_3(4))$ or $3 \cdot (Alt(7) \times Alt(7))$ and let K_1 be a 2-component of U_1 . Then $N_G(K_1)$ involves $L_3(4)$ respectively Alt(7), a contradiction to (1).

Let $L = KO_2(L(1), T = L \cap S$ and $B = N_L(T)$. Note that B normalizes K_1 . Let $F = \langle B, E \rangle$.

Suppose that $F \notin \mathcal{L}(S)$. TO BE CONTINUED

14 Large Alternating Groups

In this section we assume that G is a quasi thin group, and that there exists an amalgam (P, E) so that $P \in \mathcal{P}(S), E \in \mathcal{E}(S), \text{Head}(E) \cong Alt(n), n = 10, 11$ **Remark: we should at least also allow** $E/O_2(E) \cong Sym(9)$

Lemma_{QT} **14.1** Suppose n = 11 and let $U \leq calL(E, S)$ with $Head(U) \cong Alt(10)$. Then (P, U) is an amalgam.

Proof: Let $L = \langle P, U \rangle$ and suppose that $L \in \mathcal{L}(S)$. Then by 13.2, $[O^2(P), O^2(U)]$ is a 2-group or $L \in \mathcal{N}(S)$. In the second case we get that $\text{Head}(L) \cong Alt(11)$ and so $O_2(L) = O_2(U) = O_2(E)$ a contradiction. Thus $[O^2(P), O^2(U)]$ is a 2-group. As $m_3(O^2(U)) = 3$ we conclude that P is a 3' group. Let T be a Sylow 2-subgroup of $O^2(P)$. Then clearly U normalizes T and so $T \leq O_2(U)$ and $O_2(U)$ is a Sylow 2-subgroup of $O_2(U)O^2(P)$. As $O_2(U) = O_2(E)$, no non-trivial characteristic subgroup of $O_2(U)$ is normal in $O_2(U)O^2(P)$. Hence $O_2(U)O^2(P)$ has a non-trivial irreducible FF-module and so is not a 3' group, a contradiction.

Lemma_{QT} **14.2** Suppose $E/O_2(U) \cong Sym(9)$, Alt(10) or Sym(10) and let $U \leq calL(E, S)$ with $U/O_2(U) \cong Sym(8)$. Then (P, U) is an amalgam.

Proof: Let $L = \langle P, U \rangle$ and suppose that $L \in \mathcal{L}(S)$. Then by 13.2, $[O^2(P), O^2(U)]$ is a 2-group or $L \in \mathcal{N}(S)$.

Suppose that $O_2(E) \leq O_2(L)$. Then $O_2(U) \neq O_2(E)$ and $E/O_2(E) \cong Sym(10)$. Let $R \leq E$ with $O_2(L) \in Syl_2(R)$ and $R/O_2(E) \cong Sym(3)$. Let C be a characteristic subgroup of $O_2(L)$ normal in R. Then C is normal in L and in $\langle U, R \rangle = E$. Hence C = 1 and so by 8.12 $O^2(P)$ normalizes $\Omega_1(Z(O_2(E)))$, a contradiction.

(1) $O_2(E) \not\leq O_2(L)$.

Let $U^* \in \mathcal{L}(U, S)$ with $U^*/O_2(U^*) \cong Sym(3)$ and Let $Q/O_2(U)$ be the unique elementary abelian, normal subgroup of order 16 in $U^*/O_2(U)$. Then $N_E(Q)/Q \cong Sym(5)$. Let Cbe a characteristic subgroup of Q normal in L. Then C is normal in $\langle U, N_E(U) \rangle = E$ and so C = 1. We proved

(2) $O_2(L) < Q$ and no non trivial characteristic subgroup of Q is normal in L.

Remark: (2) and its set up makes no sense for the Sym(9) case, some fixing necessary

Suppose that $L \in calN(S)$. Then $Head(L) \cong Alt(m), 9 \leq m \leq 11$ or $L/O_2(L) \sim L_6(2).2$.

If Head(L) $\cong Alt(m)$, m = 9 or 11, L cannot be generated by U and a minimal parabolic unless m = 9 and P = L. We conclude $P/O_2(P) \cong Sym(9)$ and $O_2(E) \leq O_2(U) \leq O_2(L)$, a contradiction

If Head(L) $\cong Alt(10)$, the situation is symmetric in E and L. $L(1) = \langle N_E(Q), N_L(Q) \rangle$. Then $Q = O_2(L(1))$ and 13.4 provides a contradiction. **Remark: One has to make sure that the possibility of two different complements** Sym(5) to a group of odd order was really ruled out

If $L/O_2(L) \cong L_6(2).2$,

$$O_2(U) = [O_2(U), U]O_2(L) \le O_2(E)O_2(L) \le O_2(U)$$

and so $O_2(U) = O_2(E)O_2(L)$. If $E/O_2(E) \cong Sym(9)$ or Alt(10), then $O_2(L) \leq O_2(U)$. Hence no non-trivial characteristic subgroup of $O_2(U)$ is normal in L and we conclude

notA10

notA10 - 2

notA10 - 1

that $[J(U), \langle \Omega_1(Z(O_2(U))^L \rangle = 1)$, a contradiction. Thus $E/O_2(E) \cong Sym(10)$. Let $V = \Omega_1(Z(O_2(L)))$. Then by (2), $C_S(V) = O_2(L)$. On the other hand, $L/O_2(L)$ has no faithful module with respect to it $O_2(U)/O_2(L)$ contains an offending subgroup. Hence $J(O_2(U) \leq O_2(L))$ and so $J(O_2(U) \leq O_2(E))$. It follows that there exists a conjugate of $J(O_2(U))$ under E which is contained in U but not in $U'O_2(U)$. Hence by 2.11 there exists an offender for L on V which is not contained in $L'O_2(L)$, a contradiction.

We have proved that $[O^2(U), O^2(P)] \leq O_2(U)$. Put $P^0 = O^2(P)Q$. As $O^2(P) \cap S \leq O_2(U) \leq Q$, $S \cap P^0 = Q$. Put $U_1 = N_E(Q)$ and $L(1) \stackrel{def}{=} \langle P, U_1 \rangle$ By 8.12 we conclude that

(3)
$$[O_2(P), O^2(P)] \le O_2(L(1))$$

By a similar argument $O_2(L) = O_2(U)$ leads to a contradiction and so $O_2(L) \neq O_2(U)$. In particular, $E/O_2(E) \cong Sym(10)$. As U normalizes $O^2(P)$, U_1 does not. So by 13.4, $L(1) \in \mathcal{N}(S)$. By (3), the components of Head(L(1)) cannot be groups of Lie type in characteristic 2 and thus are alternating groups. Furthermore, as $m_3(L) \leq 3$ and $m_3(U) = 2$, $m_3(P) \leq 1$. This leads to Head($L(1) \cong (3 \cdot)Alt(7)$ or Alt(11). In particular $P/O_2(P) \cong Sym(3)$. In the second case $N_{(L(1)}(O^2(P)))$ involves Sym(8) and we obtain a contradiction by considering $\langle N_{(L(1)}(O^2(P)), U \rangle$ (note here that $U \not\leq L(1)$ as already $U_1 \leq L(1)$. Thus Head($L(1)) \cong (3 \cdot)Alt(7)$. By (1), $O_2(E)$ inverts Head(P). Thus $L/O_2(L) \cong Sym(3) \times Sym(8)$. As $U^* \leq U_1 \leq L(1)$ we get $L(1)/O_2(L(1)) \cong (3 \cdot)Sym(7)$. The $3 \cdot Sym(7)$ case is exclude by considering $N_G(O^2(P))$. Thus $L(1)/O_2(L(1)) \cong Sym(7)$.

In L we see that $O_2(L) = O_2(U) \cap O_2(P)$, in L(1) that $O_2(L(1)) = O_2(U_1) \cap O_2(P)$ and in E that $O_2(U) \leq O_2(U_1)$. Hence $O_2(L) \leq O_2(L(1))$. Moreover, in L we see that $|O_2(E)O_2(L)/O_2(L)| = 2$ and in L(1) that $|O_2(E)O_2(L(1))/O_2(L(1))| = 2$. It follows that $F = \stackrel{def}{=} O_2(E) \cap O_2(L) = O_2(E) \cap O_2(L(1))$. Thus F is normalized U and U_1 and so F is normal in E. Note that $O^2(U) \cap O_2(E) \leq O_2(O^2(U)) \leq O_2(L)$ and so $O^2(U) \cap O_2(E) \leq F$. Hence by the "Satz von Gaschütz, $O^2(E) \cap O_2(E) \leq F$. Put $E^* = O^2(E)O_2(L)$. Since $O_2(L) \cap O^2(E)O_2(E) = F$ we conclude that $O_2(E^*) = F \leq O_2(L)$. Now the same argument as in the proof of (1) gives a contradiction, which completes the proof of the lemma.

We remark that Sym(14) has parabolics $C_2 \wr Sym(7)$, $Sym(8) \times C_2 \wr Sym(3)$ and $Sym(10) \times C_2 \wr C_2$, intersecting in the same way has the groups in the last case we ruled out. But of course these parabolics in Sym(14) are not of 2-type and so do not furnish a counter example.

Lemma_{QT} 14.3 Suppose $E/O_2(E) \cong Alt(9)$ and let $U \leq calL(E,S)$ with $U/O_2(U) \cong Alt(10)$. Then one of the following holds

- 1. (P, U) is an amalgam.
- 2. Let $L = \langle P, U \rangle$. Then $L/O_2(L) \cong L_5(2)$, $[O_2(L), O^2(L)$ is a natural module and [Z, E] = 1.

Proof: We may assume that $L \in \mathcal{L}(S)$. As above $[O^2(U), O^2(P)]$ is not a 2-group and $L/O_2(L) \not\cong Alt(9)$. This leaves the possibility $L/O_2(L) \cong L_5(2)$. Note that $O_2(L) \leq O_2(E)$

notAlt9

and so no non-trivial characteristic subgroup of $O_2(E)$ is normal in L. Let $Z_1 = \Omega_1(Z(O_2(L)$ and $Z_2 = \Omega_1(O_2(E)$ and note that $Z_2 = C_{Z_1}(O_2(E))$. Suppose that $[Z_2, E] \neq 1$. Then $[Z_2, E] \neq 1$. As Z_1 is an FF-module, all non-trivial composition non-trivial factors of L in Z_1 are isomorphic natural modules. Hence Z_2 is as U module the direct sum of isomorphic natural modules and trivial modules. Let d be an element of order three in Uacting fixed point freely on the natural module for U, then it is easy to see that $C_{Z_2}(d) =$ $C_{Z_2}(U) = C_{Z_1}(E)$ and so d acts fixed point freely on $Z_2/C_{Z_2}(E)$. It follows that Z_2 involves a spinmodule for E and so also two non-isomorphic natural modules for U, a contradiction. **Remark: u** se the easier alt 7 argument

Hence $[Z_2, E] = 1$. It follows that Z_1 is a natural module for L and so by 8.14 and as $C_{Z_1}(E)$ we get $[O_2(E), O^2(E) = Z_1$ and so (2) holds

15 Tits Chamber Systems

In this section we us the following assumptions and notations:

- (i) I is a finite set with $|I| \ge 3$,
- (ii) For $i \in I$, $P_i \in \mathcal{P}(S)$.
- (iii) For $J \subset I$ put $J' = I \setminus J$, $P_J = \langle P_j \mid j \in J \rangle$ and $M_J = P_{I'}$
- (iv) Define a graph on I by considering i and j to be adjacent if and only if $[O^2(P_i), O^2(P_j)]$ is not a 2-group.
- (v) If $J \subset I$ is connected with $|J| \ge 2$, then $P_J \in \mathcal{E}(S)$ and for all $j \in J, S \cap P'_J \not \trianglelefteq P_j$.
- (vi) Let $i \in I$. Then Head(M)i is a central extension of a groups of Lie type in characteristic two.

(vii) Let J be a proper subset of J. $Q_J = O_2(P_J)$ and $Z_J = \langle Z^{P_J}$. Then $C_{P_J}(Q_J) \leq Q_J$).

(viii) $\langle P_i | \in I \not\leq \mathcal{L}(S).$

Lemma 15.1 Suppose there exists two distinct i, j in I with $Z \not \cong P_i$ and $Z \not \cong P_j$. Then one of the following holds: **TO BE CONTINUED**

Proof: Suppose first that there exists $k \in I \setminus \{i, j\}$ so that k' is connected. Apply 8.6 with to $G_{\alpha} = M_k$ and $G_{\beta} = P_k$. As P_i does not centralize Z, 8.61 does not hold. By the stucture of M_k , 8.61 implies $C \subseteq M_k$ and P_k , a contradiction.

In case (6) 8.12 implies that $[Q_k O^2(P_k)] \leq Z_k$. let $k \neq r$ so that r is connected. Then $[Q_k, O^2(P_k)] \leq Z_k \leq Z_{r'} \leq Q_{r'}$ a contradiction to (v) and (vi).

Hence we may assume that $q(M_k, Z_{k'} \leq 2)$. As two parabolics of M_k act non-trivially on Z we get from 6.12 that M_k is of type $L_n(q)$, k' is a string with i and j as endpoints and M_k has exactly two non-central composition factors on $Z_{k'}$. Moreover these composition factors

zni2p

are natural modules dual to each other. Is is easy to see that $Z \leq P_k$. Let $J = I \setminus \{i, j, k\}$. Assume that k is adjacent to some element of J. Then we can apply 8.22 to $G_{\alpha} = M_i$, $G_{\beta} = M_j$ and $G_{\alpha\beta} = M_{ij}$. Thus **TO BE CONTINUED**Assume that k is not adjacent to an element of J and without loss that k is adjacent to i. Then we can apply 8.22 to $G_{\alpha} = M_i$, $G_b = M_k$ and $G_{\alpha\beta}$ and we conclude that $J = \emptyset$. Thus **TO BE CONTINUED**

Remark: the effect of graph automorphisms needs to be worked in, $Z_{\alpha}Z_{\beta} \trianglelefteq G_{\beta}$ needs to be ruled out

Suppose next that no such k exists. Then clearly I is a string with i and j as the end notes. Then we can apply 8.22 to $G_{\alpha} = M_i$, $G_{\beta} = M_j$ and $G_{\alpha\beta} = M_{ij}$. Thus **TO BE CONTINUED**

References

- [As] M. Aschbacher, Finite Groups of Rank 3.I., Invent. Math.63, (1981), 357-402.
- [At] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. 1985.n, The Atlas of Finite Group, Oxford University Press, London, (1985)
- [Bl] D. Bloom, The subgroups of $PSL_3(q)$, for q odd. Trans.Amer.Math.Soc. **127**,(1967), 150-178.
- [CD] A. Chermak, A. Delgado, A measuring argument for finite groups, Proc. Amer. Math. Soc.107,(1989) 907-914.
- [MS] U. Meierfrankenfeld and G. Stroth, Quadratic GF(2)-modules for sporadic simple groups and alternating groups, Com. Alg. 18(7) (1990),2099-2139.
- [Me] U. Meierfrankenfeld, Quadratic pairs in odd charctaristic, Preprint, East Lansing, (1986).
- [Mi] H. Mitchell, The subgroups of the quaternary abelian groups. Trans.Amer.Math.Soc. 15, 379-396(1914).
- [St1] B. Stellmacher, On the 2-local structure of finite groups, in *Groups, Combinatorics, and Geometry*, M. Liebeck and J.Saxl (eds), Cambridge University Press, (1992),495-506.
- [St2] B. Stellmacher, An application of the amalgam method: the 2-local structure of Ngroups of characteristic 2-type, preprint, Kiel (1995).

Department of Mathematics Michigan State University East Lansing, Michigan 48824 meier@math.msu.edu

Mathematisches Seminar Universität Kiel Ludewig-Meyn Str. 4 24118 Kiel