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dgptyDefinition 0.1 Let G be a finite group, p a prime dividing. the order of G and S ∈ Sylp(G).
Then G is of generic p-type provided that

(a) If L is a p-local subgroup of G with S ≤ L, then F ∗(L) = Op(L).

(b) G is generated by the p-locals containing S.

(c) all p-locals of G are K-groups.
dqt

Definition 0.2 1. A quasisimple group K is called a C2 - group if and only if
K is a quasisimple group of Lie type in characteristic 2 or
K = PSL(2, q) for q a Fermat or Mersenne prime or q = 9
or K = PSL(3, 3), PSL(4, 3), PSU(4, 3), 2U(4, 3) or G2(3)
or K/Z(K) = M11,M12,M22,M23,M24, J2, J3, J4, HS,Suz,Ru, Co1, Co2, F i22, F i23,

Fi′24, F3, F2, or F1
except 2A8, Sp(4, 3) and [X]L3(4) for exp X = 4 are not C2 groups.

2. L2(G) = {K : for some involution x of G, K is a component of CG(x)/O2′(CG(x))}

3. G is of even type if and only if the following conditions hold:
(a) Every element of L2(G) is a C2 - group
(b) O2′(CG(x)) = 1 for every involution x of G; and
(c) m2(G) ≥ 3.

4. Let G be of even type and let S be a Sylow 2−subgroup of G. Then
σ(G) = {p : p is an odd prime and mp(M) ≥ 4 for some maximal 2-local M of G with

|S : S ∩M | ≤ 2}.

5. G is of quasithin type if G is a simple group of even type with σ(G) empty.
dhead

Definition 0.3 Head(P )
def
= Op(P )Op(P )/Op(P ).

1 Random Observations

Let G be a finite group, S the Sylow 2-subgroup of G and B the intersection of the maximal
2-locals containing M .

Borel
Lemma 1.1 Let G be a finite group such that F ∗(G) is the direct product of simple groups of
simple groups of Lie type in characteristic 2. Suppose that all the 2-locals of G containing
S are of characteristic 2-type. Then S acts transitive on the set of components of G,
B = NG(S ∩ F ∗(G)) and BF ∗(G) = G.

Remark: False for D4(q).3 and D4(q).Sym(3)
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Proof: Let E1, . . . , En be the components of G, E = F ∗(G) = E1E2 . . . En and T =
E ∩ S. Suppose that S does not act transitively on the set of components of G. Then
〈E1, S〉 is contained in a 2-local which is not of 2-type, a contradiction.

Let M be any maximal 2-local of G containing S. As M is of 2-type and CE(O2(M)) 6= 1
we conclude O2(M) ∩ E 6= 1.

Let Qi be the projection of O2(M) ∩E onto Ei and Q = Q1 ·Q2 · . . . ·Qn. Then Q is a
2 group normalized by M and so O2(M) ≤ Q ≤ O2(M), Q = O2(M) and M = NG(Q).

Suppose now that n = 1.
Let Mi = NM (Ei) and M∗i a maximal 2-local subgroup of Ei containing M ∩Ei. Then

〈M∗Mi 〉 ∩ Ei = Mi and so 〈M∗i ,M〉 is contained in a 2-local of G. Thus M∗i = M ∩ Ei.
TO BE CONTINUED

Remark 1.2 It seems that in groups of charateristic 2-type, B-irreducible subgroups actu-
ally have B as a maximal subgroup. For example if G has a parabolic P with P/O2(P ) ∼=
Sym(5) then the the inverse image of the Sym(4) seems always to be in the Borel group.

2closed
Lemma 1.3 For L ∈ L(= L(S) put ZL = 〈Ω1(Z(S))L, CL = CL(ZL) and L∗ = NL(S ∩
CL). Let R ⊆ L put R = 〈L∗ | L ∈ R〉.

(a) L = L∗CL for all L ∈ L.

(b) Let L ∈ L and P ∈ calN(L, S). Then P ≤ L∗ or O2(P ) ≤ CL.

(c) Let L ∈ calL. Then O2(L∗) = S ∩ CL

(d) If R ∈ L, then CR is 2-closed and R = R∗.

(e) Let R = L

e.1. Suppose R ∈ L. Then for all L ∈ L, L = (R ∩ L)(C ∩ L).

e.2. Suppose that R 6∈ L. Then there exists Ri ⊆ L, i = 1, 2 so that Ri ∈ L but
O2(〈R1, R2〉) = 1.

Proof: (a) follows by the Frattini argument.
To prove (b) let L ∈ R. Then L∗ ≤ R, ZL ≤ ZR, and S ∩ CR ≤ CL. Thus S ∩ CR =

(S ∩ CL) ∩ CR and S ∩ CR is normalized by L∗. As R is generated by the L∗’s, L ∈ R,
S ∩ CR is normal in R and so also in CR. Thus CR is 2-closed and R = R∗.

(c) and (d) are obviuos.
(e.1) follows since from (a) as L∗ ≤ R ∩ L and CL ≤ L ∩ C.
For (e.2) let for R1 be maximal in L with R1 ∈ L and let R2 = {L} for some L ∈ L\R1.

∗gomi
Lemma 1.4 Let R = RL and suppose that R ∈ L.

(a) NG(ZL) is the unique maximal 2-local of G containing R.
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(b) Let L ∈ N (R,S) with O2(L) � �R and P ∈ N (S) with P 6≤ R. If 〈P,L〉 ∈ L, then
O2(P ) ∩ S ≤ O2(L).

(c) Let P ∈ calN(S) so that P does not normalize ZR. Then there exists L ∈ N (R,S)
with O2(L) � �R and 〈L,P 〉 6∈ calL.

Proof: (a) Let R ≤ M ∈ L. Then M∗ ≤ R and so R = M∗ and ZM = ZM∗ = ZR.
Thus M ≤ NG(ZR).

(b) Let M = 〈P,L〉. As P 6≤ R, O2(P ) ≤ CM . By 3.6 [Z,L] 6= 1 and so S ∩ O2(P ) ≤
S ∩ CM ≤ O2(L).

(c) As O2(R) is the intersection of the O2(L)’s, L as in the statement of (c) we conclude
that O2(P )∩S ≤ O2(R). Hence O2(R) is a Sylow 2-subgroup of O2(P )O2(R). By (a) 〈P,R〉
is not a 2-local and we conclude that 〈Ω1(O2(R)O2 (P )〉 is an FF-module for O2(P )O2(R).
But this contradicts [Z,P ] = 1.

L+
Lemma 1.5 Let N+(S) = {L ∈ N (S) | [Z,L] 6= 1} and for L ∈ L put L+ = 〈N+(L, S)〉.
Then

(a) O2(L+) = S ∩ CL = O2(L∗)

(b) L = L+(L ∩ C).

(c) ZL = ZL+.

Proof: Put T = S ∩ CL and R = NL(T ). Then by 3.6 F ∗2 (R) ≤ R+ an so O2(L+) =
O2(F ∗2 (R). As O2(L/CL) = 1, O2(F ∗2 ) = T . So (a) holds.

For (b) suppose first that CL 6= O2(L). By the Frattini argument, L = RCL and by
induction R = R+(R ∩ C). Hence L = R+CL(R ∩ C) = L+(L ∩ C).

So suppose that CL = O2(L).Then R = L. Let E = S ∩ F ∗2 (L) and H = NL(T ).
By the Frattini argument, L = F ∗2 (L)H and by induction, H = H+(H ∩ C). Hence
L = F ∗2 (L)H+(H ∩ C) = L+(L ∩ C)..

(c) follows directly from (b)
Rgomi

Lemma 1.6 Let N+(S) = {L ∈ N (S) | [Z,L] 6= 1} and D =
⋂
{O2(L∗) | L ∈ L}.

(a) Let P ∈ N+(S) with P 6≤ NG(D). Then there exists L ∈ N+(S) so that 〈P,L〉 6∈ L.

(b) Let R+ = N+(S)〉 and suppose that R+ ∈ L.

(b.a) For all L ∈ L, L = (L ∩R+)(L ∩ C).

(b.b) Suppose that R+ ≤ L ∈ L. Then R+ = L+, ZL = Z+R+ and O2(R+) = CL∩S.

(b.c) O2(R) = D.

(b.d) NG(ZR+) is the unique maximal 2-local of G containing R+.
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Proof: Suppose (a) is false. Let L ∈ calN+(S) and put M = 〈L, S〉. By assumption
M ∈ calL and so by 1.3b, M = M∗. Let Y ∈ N (M) with O2(Y ) � �M . Then by 3.6,
[Z, Y ] 6= 1 and so Y ∈ N+(S). Hence the Gomi argument implies that P normalizes D.

(b.a) follows directly from 1.5b
Since

N+(S) ⊆ N+(R+, S) ⊆ N+(L, S)N+(S),

R+ = L+. Thus by 1.5a, O2(R) = CL ∩ S. Furthermore, by 1.5c, ZL = ZL+ = ZR+

(b.c) follows from 1.5a.
(b.d) follows directly from (b.b)

dpred
Definition 1.7 Let L ∈ L(S). Then a p-reduced normal subgroup of L is a elementary
abelian normal p-subgroup Y of L so that Op(L/CL(Y )) = 1,( i.e all normal subgroups of
L which act unipotently on Y already centralize Y .

bpred
Lemma 1.8 Let L ≤ L(S).

(a) There exists a unique maximal p-reduced normal subgroup YL of L.

(b) Let R ∈ (L, S) and X a p-reduced normal subgroup of R. Then 〈XL〉 is a p-reduced
normal subgroup of L. In particular, YR ≤ YL.

(c) Let SL = CS(YL) and Lf = NG(SL). Then SL = Op(Lf ) and YL = Ω1Z(SL).

Proof: (a) Let YL be the subgroup generated by the p-reduced normal subgroups of L.
Let N be a normal subgroup acting unipotently on YL. Then N also acts unipotently on
all the generators of YL. Hence N centralizes all the generators of YL and so YL. Thus YL
is p-reduced.

(c) Let Y = 〈XL〉 and C = CL(Y ). Let N/C = Op(L/C). Then N = (N ∩ S)C and in
particular, N = (N ∩ L)C. As X is p reduced, N ∩ L centralizes X. The same is true for
C and so also for N . Since N is normal in L and Y = 〈XL〉, N centralizes Y . Thus N = C
and Y is p-reduced.

(b) Put C = CL(YL). By Frattini, L = LfC. Since Op(L/C) = 1 we conclude Op(Lf ) ≤
C Hence Op(Lf ) ≤ C ∩ S = SL and so Op(Lf ) = SL). Let X = Ω1(Z(SL)). Then clearly
YL ≤ X and Lf normalizes Y . Put Y = 〈Y L〉 = 〈Y C〉. Clearly X is p-reduced for SL and
so by (b) applied to C, Y is p-reduced for C. Let N be a normal subgroup of L acting
unipotently on Y . Since YL ≤ Y and YL is p-reduced for L, N ≤ C. As Y is p-reduced for
C, N centralizes C and so Y is p-reduced for L. By maximality of YL we get Y ≤ YL. But
YL ≤ X ≤ Y and so YL = X = Y .

2 Preliminaries
e

Lemma 2.1 Let r and s be positive real numbers and put e = rs2−r−s
s2

.
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(a) Suppose that s > 1. Then e > O if and only if r > s
s2−1 . In particular e > 0 if r ≥ 2

and s ≥ 1.3.

(b) e ≤ 1 if and only if (r − 1)(s− 1) ≤ 1.

Proof: (a) is easily computed and for (b) note that the following are equivalent:
e ≤ 1 , rs2 − r− s− s2 ≤ 0, (rs− r− s)(s+ 1) ≤ 0, rs− r− s ≤ 0, (rs− r− s) + 1 ≤ 1

and (r − 1)(s− 1) ≤ 1.
G = Qt

Lemma 2.2 Let P ∈ P(S) be of weak L2(2)k type. Put ∆ = {Li | 1 ≤ i ≤ k} and let Q�S
such that

(i) |ZP /CZP (A)| < |A/CA(ZP )|2 for some A ≤ Q with [ZP , A] 6= 1.

(ii) Q contains an involution t acting fixed point freely on Delta.

Then O2(P ) ≤ 〈CQ(∆)e, t〉 for some e ∈ P .

Proof: Let ∆{Li | 1 ≤ i ≤ k}. Choose A as in (i) with |A| minimal. Then it easy
to see that A acts trivially on ∆. Next let T be maximal in CQ(∆) so that T fullfills
|ZP /CZP (T )| < |T/CT (ZP )|2. By [CD] T is unique and so T � S. Let E = O2(P )CP /CP .
Then S acts irreducible on E and E = E1 × . . . × Ek with |[Zp, Ei]| = 4. We claim that
each of the Ei is a Wedderburn component for T on E. Indeed, let E∗ be a Wedderburn
component for T on E and suppose that E∗ = E1 . . . Et. Then k = lt for some integer l,
CT (E∗) = CT (E1), |T/CT (E∗)| = 2 and |T/CT (ZP )| = |T/CT (E)| ≤ 2l. On the otherhand
ZP /CZP (T ) = 2k. Thus k < 2l and as l divides k, l = k.

We conclude that:

(1) Each T invariant subspace in E is a sum of some of the Ei’s.

As t acts fixed point freely on ∆, t inverts an element e ∈ O2(P ) with projects non-
tivially on each of the Ei’s. Thus (1) implies

(2) E = 〈eT 〉.

Let L = 〈T e, t〉. Then T e
−1

= (T e)t ≤ L and so also [T, e] ∈ L. Since CE(T ) = 1,
e ∈ [T, e] and (2) implies that E ≤ L. Hence P = LS and O2(P ) ≤ 〈TP 〉 = 〈TL〉 ≤ L. As
T ≤ CQ(∆) the lemma is proved.

s
Lemma 2.3 Let H be a group, V,B and Zi ∈ I subgroups of H and s a positve real number.
Supppose that

(i) V = 〈Zi | i ∈ I〉 and for all i ∈ I, Zi � V .

(ii) For all i in I and D ≤ B, B normalizes Zi and |D/CD(Zi)|s ≤ |Zi/CZi |.
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Then |B/CB(V )|s ≤ |V/CV (B)|.

Proof: Without loss I − {1, . . . , n}. Let B1 = B and Bi+1 = CBi(Zi). Then Bn+1 =
CB(V ). Moreover, by (ii) applied to D = Bi,

|Bi/Bi+1|s ≤ |Zi/CZi(Bi)| (1).

Thus

|B/CB(V )|s ≤
n∏
i=1

|Zi/CZi(Bi)| (2).

As by defintion Bi+1 centralizes Zi we get

|Zi/CZi(Bi)| = |ZiCV (Bi)/CV (Bi) ≤ |CV (Bi+1/CV (Bi)| (3).

Thus

n∏
i=1

|Zi/CZi(Bi)| ≤ |CV (Bi+1)/CV (Bi)| = |V/CV (B)|. (4).

The lemma now follows from (2) and (4).
qrc

Lemma 2.4 Let V = 〈Wi | i ∈ I〉, where Wi is a normal subgroup of V for all i ∈ I. Let
B be a subgroup of A normalizing all the Wi’s. If A 6= B define r by |A/B|r = |V/CV (A)|
and t by |V/CV (A)|t = |A/CA(V )|. Let I = {1, 2, . . . n} and define A0 = B and inductively
Ai = CAi−1(Vi). Choose notation so that B = A0 > A1 > . . . > Ak = CA(V ). Define si by
|Ai−1/Ai|si = |Wi/CWi(Ai−1)| and s = minki=1 si. Then

(a) |B/CB(V )|s ≤ |V/CV (B)|.

(b) If A 6= B, then trs ≤ r + s.

(c) Suppose that A 6= B and equality holds in (b). Then

(c.a) si = s for all 1 ≤ i ≤ k.

(c.b) CV (B) = CV (A).

(c.c) |B/VB(V )|s = |V/CV (B)|.

Proof: (a) follows from 2.3.
Note that |A/B|rt = |V/CV (A)|t = |A/CA(V )| = |A/B||B/CB(V )| and therefore

|B/CB(V )| = |A/B|rt−1. Suppose that A 6= B. By (a) we conclude

|A/B|r = |V/CV (A)| ≤ |V/CV (B)| ≤ |B/CB(V )|s = |A/B|(rt−1)s

and so (rt− 1)s ≤ r and rts ≤ r + s.
(c) follows by investigating the places where ” < ” was used.
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msn
Lemma 2.5 Let H be a finite group, P a p-subgroup of H and suppose that P is subnormal
in all proper subgroups of H containing P , but is not subnormal in H. Then A is contained
in a unique maximal subgoup of H.

Proof: Suppose that A is contained in two distinct maximal subgroups M1 and M2.
Choose the Mi’s so that M1 contains a Sylow p-subgroup of H and so that |M1 ∩M2|p is
maximal. Let D be a Sylow p-subgroup of M1 ∩M2 and put Bi = 〈Ah | h ∈ H,Ah ≤Mi〉.
Then by asumption Bi ≤ Op(Mi) ≤Mj .

Suppose that D is not a Sylow p-subgroup of M2. Then MM2(D) 6≤M1 and |NM2(D)∩
M1|2 > |D|, a contradiction. Thus D is a Sylow p-subgroup of M2 and so B2 ≤ D and
NG(D) normalizes B2. Thus NG(D) ≤ M2 and so D is also a Sylow p-subgroup of M1.
Hence B1 ≤ D and B1 = B2, a contradiction.

almp
Lemma 2.6 Let H be a finite group, p a prime, S a Sylow p-subgroup of H and suppose
that S lies in a unique maximal subgroup M of H. Let P ≤ S and suppose that P 6≤ Op(H).
Then there exist a subgroup L of H and h ∈ H so that

(a) P ≤ L and P 6≤ Op(L)

(b) Mh ∩ L is the unique maximal subgroup of L containing P .

(c) Sh ∩ L is a Sylow p-subgroup of L.

Proof: If M is the unique maximal subgroup of H containg P , then the lemma holds
with L = H and h = 1. Hence there exists a proper subgroup K of H such that P ≤ K
and K 6≤ M . Choose K so that |M ∩ S|p is maximal and then with K minimal. Let
T = M ∩K and R = 〈PG ∩ T 〉. Let S∗ ∈ Sylp(M) with T ≤ S∗. Then M is the unique
maximal subgroup of H containing S∗ and so T 6= S∗. Thus T < NS∗(T ) ≤ NH(R)
and |M ∩ K|p < |M ∩ NH(R)|p. Thus by the choice of K, NH(R) ≤ M . In particular,
NK(R) ≤ K ∩ M and so T is a Sylow p-subgroup of K. Hence Op(L) ≤ T ≤ M . If
R ≤ Op(K), then R �K, contradiction. P ∗ ∈ PH ∩ T with P ∗ 6≤ Op(K). By the minimal
choice of |K|, M ∩ K is the unique maximal subgroup of K containing T and so we can
apply induction. Thus there exists L∗ ≤ K with P ∗ ≤ L∗, P ∗ 6≤ Op(L∗) and h∗ ∈ K so
that (M ∩K)h

∗ ∩L∗ is the unique maximal subgroup of L∗ containing P ∗. Let x ∈ H with
P ∗x = P and put h = h∗x and L = L∗x. The clearly (a) and (b) hold.

anc
Lemma 2.7 Remark: Quadratic groous normalize components

mqm
Lemma 2.8 Let A ≤ H and V a faithful GF (p)H-module. Suppose that

(i) A is contained in a unique maximal subgroup of H.

(ii) [V,A,A] = 1.

(iii) A 6≤ Op(H)
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(iv) One of the following holds:

1. V = 〈ZH〉 for some Z ≤ V with [Z,A] = 1.

2. V = CV (A)[V,H].

Let t ∈ A \Op(H). Then each of the following holds:

(a) Then CV (t) = CV (A).

(b) |V/CV (A)| ≥ |A/A ∩ Op(H)|c, where c is the number of non-trivial chief-factors for
H on V .

(c) [V, t] ∩ CV (H) = 1 and |[V, t]2| = |V/CV (H).

(d) Suppose that (iv)1 holds and Op(L) normalizes Z. Then one of the follwing holds:

1. [V,A ∩Op(H)] ≤ CV (H).
NI2 p = 2, H/Op(H) ∼= Dih(2rk), r an odd prime CH([V,A∩Op(H)]) 6≤ Op(H).

(e) [V,H] ∩ CV (H) ≤ [V,A]

(f) W = CW (H)[W,H] for each H-section on V . In particular, H has no central chief-
factor on V/CV (H).

Proof: Note first that (iv)1. implies (iv)2. So we assume from now on that (iv)2. holds.
Let M be the unique maximal subgroup of H containg A and N = CoreM (G). By a Frattini
argument, N is p-closed with Op(H) as the Sylow p-subgroup. Hence t 6∈ N and so there
exists h ∈ H with t 6∈ Mh. Put B = Ah. Then H = 〈t, B〉 and so [V,H] = [V, t][V,B]. By
(iv)2. we conclude and (ii) we conclude

V = CV (A)[V,B] = CV (t)[V,B].

Thus

CV (B) = [V,B](CV (A) ∩ CV (A) = [V,B]CV (H).

Hence also

CV (A) = [V,A]CV (H)

and so by (iv)2.,

V = CV (H)[V,H].

That is (f) holds for W = V . Moreover, CV (t) = CV (A)(CV ([V,B]) ∩ CV (t)) = CV (A)
and so (a) holds. Let Y = [V,A] ∩ CV (H) = [V,B] ∩ CV (H) = [V,A] ∩ [V,B]. Then
[V,A] = [V,H] ∩ [V,A] = [V, t]([V,A] ∩ [V,B] and so [V,A] = [V, t]Y . On the otherhand,
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|[V, t]| = |[V,B, t]| = |[V,B]/([V,B] ∩ CV (t)) = |[V,B]/Y | = |[V,A]/Y |

and so [V,A] = [V, t]⊕ Y . In particular [V, t] ∩ CV (H) = 1. Moreover |[V,H]| = |[V, t]2|Y |.
C[V,H](A) = [V,A] and so C[V,H](H) = Y . Thus (c) and (e) hold. Let W be an non-
trivial chief-factor for H on V . Since H = A〈tH〉, A/Op(H)/Op(H) acts faithfully on W .
Also W = [W,A] ⊕ [W,B] and so |W/CW (A)| = |[W,A]|. Let x ∈ W \ CW (A). By (a)
|AOp(H)/Op(H)| = |[x,A]| ≤ |[W,A]| = |W/CW (A)|. Thus (b) holds. Clearly (iv)2 is
inherited by quotients of V so it is enough to verify (f) for H-submodules W of V . By (d)
applied to V/[W,H], W ≤ [V,A][W,H] and so W = ([V,A] ∩W )[W,H] fulfills (iv)2. Thus
(f) holds.

It remains to prove (d). Let h ∈ H\M . As A is quadratic, A centralizes [Zh, A∩Op(H)].
As Op(H) normalizes Zh, also Ah centralizes [Zh, A∩Op(H). Since M 6= Mh, H = 〈A,Ah〉
and [Zh, A ∩Op(H) ≤ CV (H).

Y = 〈Zh | h ∈ H \M〉.

Then [Y,A ∩Op(H)] ≤ CV (H).
Suppose first that |AOp(H)/Op(H) ≥ 3. We claim then that B normalizes Y . For this

let h ∈ H \M and b ∈ B. We need to show that Zhb ≤ Y . If hb 6∈ M , this is true by
definition of Y . So suppose that hb ∈ M . Since |AOp(H)/Op(H) ≥ 3 there exists c ∈ B
with c 6∈ Op(H) ∪ Op(H)b. If hc ∈ M , then b−1c ∈ B ∩ M . But by 2.9 (10), b−1c ∈
Op(H), a contradcition. Thus hc 6∈ M . Similarly hbc 6∈ M . Thus ZhZhbcZhc ≤ Y . Since
ZhZhbcZhc = Zh[Zh, bc][Zh, c], the quadratic action of B implies that 〈bc, c〉 normalizes
ZhZhbcZhc. Hence Zhb ≤ Y as claimed.

Suppose next that |AOp(H)/Op(H)| = 2. Then p = 2 and H/O2(H) ∼= Dih(2rk). If
k = 1, then M = AOp(H) normalizes Z and so V = ZY and again d1 and as a matter of
fact also d2 holds. So suppose k > 1 and define L as in d2. Then L ≤ M . Also let H∗

be minimal with A ≤ H∗ and H∗Op(H) = M . Let V ∗ = 〈ZH∗ = ZM . Then V = V ∗Y .

Also A ∩Op(H) ≤ Op(H∗) and so by induction R
def
= CH∗([V ∗, A ∩Op(H)] 6 Op(H∗). Since

[V,A ∩ Op(H)] = [V ∗, A ∩ Op(H)][Y,A ∩ Op(H] we have [V,A ∩ Op(H), R] = 0. Since
R 6≤ Op(H), d2 holds in this case.

mq
Lemma 2.9 Let H be a finite group, p a prime, A a p-subgroup of H and V a faithful
GF (p)H-module. Suppose that A 6≤ Op(H), that A acts quadratically on V and that A lies
in a unique maximal subgroup of H. Then one of the following holds for H = H/Op(H):

1. H ∼= SL2(pk).

2. p = 2 and H ∼= Sz(2k).

3. p = 2 and H ∼= Dih(rk), r an odd prime.
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Proof: Let M the the unique maximal subgroupp of H containing A and D =⋂
h∈HM

h. Note that M contains a Sylow p-subgroup S of H and so Op(H) ≤ D. Re-
placing V by the direct sum of the H-composition factors on V and H by H we may
assume that Op(H) = 1. Moreover, if |A| = 2, 3. holds so we may assume |A| > 2.

Let T be an A invariant Sylow p-subgroup of D. Then H = DNH(T ). If H = NH(T )
we get NH(T ) ≤ M and so H = DM ≤ M , a contradiction. Hence T � H and so
T ≤ Op(H) = 1. Thus D is a p′-group. Let R be a maximal subgroup of H and suppose
that D 6≤ R. Then H = DR and so R contains a Sylow p-subgroup of H. Hence A ≤ Rh

for some h ∈ H and thus Rh ≤M . But then H = DR = DRh ≤M , a contradiction. Thus
D ≤ R. It follows that

mq − 1
(1) D ≤ Φ(H) and D is a nilpotent p′ group.

Let N be a normal subgroup of H. If H 6= NA then NA ≤ M and so N ≤ D. Put
L = Op(H) and suppose that L ≤ D. Then H = DS ≤ M , a contradiction. Thus L 6≤ D,
H = LA. Hence:

mq − 2
(2) Each normal subgroup of H is either contained in D or contains L. In particular, L/D

is characteristicly simple.

Since H acts faithfully on [V,Op(H)] and on V/CV (Op(H)) we may assume that
mq − 3

(3) V = [V,H] and CV (H) = 0.

Let 1 6= a ∈ A and pick g ∈ H with a 6≤ Mg. Then H = 〈a,Ag〉 and so by (3)
V = [V, a] + [V,Ag] and CV (a) ∩ CV (Ag). Since A is quadratically on V we also have

[V, a] ≤ [V,A] ≤ CV (A) ≤ CV (a).

We conclude that
mq − 4

(4) [V, a] = [V,A] = CV (A) = CV (a) and |V | = |[V,A]|2

With a similar argument:
mq − 4′

(5) CV (b) = [V, b] for each non-trivial quadratic element b in H.

We may assume without loss that A is a maximal quadratic subgroup of H and so
mq − 5

(6) A = CH([V,A]) ∩ CH(V/[V,A])

From (4) and (6) we conclude that
mq − 6

(7) CH(a) ≤ NH(A) and A ∩Ah = 1 for all h ∈ H \NH(A).

11



Let h ∈ H with A ∩Mh 6= 1 and let b ∈ A ∩Mh. Choose k ∈ Mh so that 〈b, Ahk〉 is a
p-group. Then CV (b) ∩ CV (Ahk) 6= 0 and so also VV (A) ∩ CV (Ahk) 6=). Thus H 6= A,Ahk〉
and so M = Mhk = Mh. We proved

mq − 7
(8) Let h ∈ H. Then h ∈M or A ∩Mh = 1.

If p is odd, then by (5)

dim[V,A] = min{dim[V, b] | 1 6= b ∈ H, [V, b, b] = 0}

Hence by the work of Thompson and Ho, H ∼= SL2(pk) or p = 3 and H ∼= 2.Alt(5). But
in latter case, A lies in more than one maximal subgroup of H, a contradiction.

Thus we may assume from now on that
mq − 8

(9) p = 2 and |A| ≥ 4.

In particular, by (7)

Op′(H) = 〈COp′ (H)(a) | 1 6= 1 ∈ A〉 ≤ CH(A).

and we conclude:
mq − 7

(10) D = Z(H) and L = E(L) = E(H).

Note that the exceptionell case in 2.7 is not possible and so A normalizes the components
of L and thus

mq − 8
(11) L is quasisimple.

None of the groups in ?? is a minimal parabolic and so L is an alternating group or
a Lie type in characteristic 2. Since S lies in a unique maximal subgroup of H we get
L ∼= Alt(2k+1), L2(2k), SU3(2k), Sz(2k), SL3(2k) or Sp4(2k). In the last two cases A has to
induce a graph automorphism on L, which contradicts the quadratic action of A on V . If
L ∼= Alt(2k +1), A either is contained just has one non-trivial orbit and that one has lenght
four or all orbits of A have length at most 2. Since A lies in a unique maximal subgroup of
H we conclude that L = H ∼= Alt(5) ∼= SL2(4). If L ∼= SU3(2k), A lies in the normalizer
of a Sylow 2-subgroup and in a SL2(2k), a contradiction, which completes the proof of the
lemma.

factorize
Lemma 2.10 Let G be a finite group, M ≤ G, p a prime with F ∗(M) = Op(M) and
T ∈ Sylp(M). Let ZM = 〈Ω1(Z(T ))M 〉, CM = CM (ZM ) and J(M) = 〈J(T )M 〉.

(a) CM ≤ NG(ZT )

(b) ZM is a faithful J(M)CM/CM -module and J(M)CM/CM = P∗(J(M)CM/CM ), ZM ).

12



(c) M/J(M) ∼= NM (J(T )/NJ(M)(J(T )

(d) Suppose that T is normal in a Sylow p-subgroup S of G. Then NG(Z(T )) ∈ L(S) and
NG(J(T )) ∈ L(S).

Proof: Obvious.
vqnhg

Lemma 2.11 Let G be a finite group, N �H ≤ G, p a prime, S ∈ Sylp(H) , V an elemen-
tary abelian normal p-subgroup of H, and CS(V ) ≤ Q ≤ S ∩N Suppose that A(Q)G∩ 6⊆ N ,
then there exists an elementary abelian subgroup A of S with H 6≤ N , [V,A] 6= 1 and
|V/CV (A)| ≤ |A/CA(V )|.

Proof: Let D ∈ A(Q) and g ∈ G with Dg ≤ H and Dg 6≤ N . As S is a Sylow
p-subgroup of H there exists h ∈ H with Dgh ≤ S. Put A = Dgh. As N is normal
in H, A 6≤ N . Since CN (V ) ≤ Q ≤ N , [V,A] 6= 1. Moreover, V CA(V ) ≤ Q and so
|V CA(V )| ≤ |A|.

i2lt
Lemma 2.12 Let L be an alternating group or simple group of Lie-type in characteristic
2. Let H ≤ L with |L|2/|H|2 ≤ 2. Then all non abelian composition factors of H are
alternating or a simple groups of Lie type.

Proof: Let T ≤ Syl2(H), and S ≤ Syl2(L) with T ≤ S. Then S′ ≤ T .
Suppose first that L = Alt(Ω). If H is intransitive or imprimitive we are done by

induction. So suppose that H is primitive. If H has a non-trivial abelian normal subgroup
A, then H = HiA for any i ∈ Ω. Thus Ti has index two in a Sylow 2-subgroup of Li and
again we are done by induction.

Hence we may assume that H has no non-trivial solvable normal subgroup. Since
|S/T | ≤ 2, T contains an element x of cycle type (2, 2). Since x 6∈ O2(H), 1 6= x · xh has
odd order for some h ∈ H. Its is now straight forward to verify the lemma.

So suppose L is a group of Lie type. and not an alternating group. If O2(H) 6= 1, then
H is contained in a parabolic subgroup of L and the lemma follows by induction. Hence we
may assume that O2(H) = 1.

If S is abelian, L ∼= L2(q) and the result is readily verified in this case.
So we may assume that S is not abelian. In particular, S′ and so also H contains a long

root group R with R ≤ Z(S). As R 6≤ O2(H), there exists h ∈ H with X
def
= 〈R,Rh〉 ∼=

SL2(q), where q = |R|. Let r be the highest ling root in the root system associate to L.
Without loss ωr ∈ X ≤ H. It is now easy to verify that L = 〈S′ωr〉 and so L ≤ H, a
contradiction.

Remark: this is rather scetchy

3 CS generated modules

In this section G is a finite group, p a prime and V a ( finite dimensional) GF (p)G-module.
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dcvg
Definition 3.1 (a) GV = 〈CV (S) | S ∈ Sylp(G)〉.

(b) V is called CS-generated provided that V = GV .
ec

Lemma 3.2 Let L� �G. Then GV ≤ L(V ).

Proof: Let S ∈ Sylp(G). Then S ∩ L ≤ Sylp(L) and CV (S) ≤ CV (S ∩ L).
dualtrans

Lemma 3.3 Let p be a prime, G a finite group, L a normal subgroup of G, S ∈ Syl2(G).
Then S normalizes a complement to CV (L) in CV (S ∩ L).

Proof: Remark: This is a standard result in cohomology, the map π below
is called the corestriction map, a reference should be included

Let T = S ∩ L, X a set of right coset representatives for T in L and define

π : CV (T ) → V
v →

∑
x∈X v

Tx

Then clearly π(v) = π(vl) for al l ∈ L and so π(CV (T ) ≤ CV (L). On the otherhand
π restricted to CV (L) is just multiplication by L/T . Thus π |CV (L) is an isomorphism and
CV (T ) = CV (L)⊕ kerπ. Moreover, it follows immediately from the definition of π that for
all v ∈ CV (T ) and s ∈ S, π(vs) = π(v)s. Thus S normalizes kerπ.

cc
Lemma 3.4 Let L� �G with [CV (S), L] = 1, then [CV (L ∩ S), L] = 1.

Proof: Clearly we may assume that L � G. By 3.3 there exists an S invariant com-
plement D to CV (L) in CV (S ∩ L). Moreover, CD(S) ≤ CV (S) ≤ CV (G) ≤ CV (L) and so
CD(S) = 0. This implies D = 0 and CV (S ∩ L) = CV (L)

c2
Lemma 3.5 Let L be subnormal subgroup of G. If [CV (S), L] = 1 then [GV, L] = 1.

Proof: By 3.4 CV (S ∩L) ≤ CV (L). So L centralizes LV and hence the lemma follows
from 3.2.

c
Lemma 3.6 Let L� �G. Then L ∩ CG(GV ) = CL(LV ).

Proof: Let L∗ = CL(LV and L∗ = CG(GV ). By 3.2 L∗ ≤ L∗. Moreover, L∗ is subnormal
in G and centralizes CV (S). Thus by 3.4 L∗ centralizes CV (L∗ ∩ S). By 3.2 LV ≤ L∗V =
CV (L∗ ∩ S) and so L∗ ≤ L∗.

[V, L]
Lemma 3.7 Let L � G with G = LCG(L). If V is CS-generated then [V, L] is a CS-
generated G-module and V = [V, L]GCV (L)

14



Proof: Let S ∈ Sylp(G), T = S ∩ L, R = S ∩ CG(L) and put W = LCV (R). Then
by Gaschütz theorem W = [W,L]CW (L). Moreover, CW (T ) = C[W,L(T )CW (L). It follows
that [V, L] = 〈C[W,T (T )G〉 and [V, L] is a CS geneated G-module. Moreover, V = 〈WG〉 =
[V, L]〈CW (L)G〉 and so V = [V, L]GCV (L).

gaschuetz
Lemma 3.8 Suppose that G = Πi∈ILi for some subgroups Li ≤ G such that [Li, Lj ] = 1
whenever i, j ∈ I, i 6= j. For ∆ ⊆ I let Lδ = 〈Li | i ∈ ∆ and

Vδ = [GCV (LI\∆, Li1 , Li2 , . . . Lir ]

where r = |∆| and ∆ = {i1, . . . lr}. (Note that by the Three Subgroup Lemma this defintion
is independent form the order in which the ij’s are chosen). Also put V∅ = CV (G).

Suppose that V is a CS-generated GF (p)G-modules. Then

∗ V =
∑
∆⊆I

V∆.

Moreover, each of the V∆’s is CS-generated as G-module.

Proof: By 3.7 The V s
δ are CS-generated as G-module and it remains tp prove (*). For

this we may assume without loss that V is not the direct sum of two proper CS-generated
G-submodules. Let ∆ = {i ∈ I | [V, Li] 6= O and let i ∈ ∆. 3.7 implies V = [V, Li]GCV (Li)
with both summands CS generated. Hence V = [V, Li] and V = Vδ.

4 Groups with m2′(G) ≤ 3
gwm3
epc2r3LemmaQT 4.1 Let p be an odd prime, P a p group of exponent p, class at most two and

rank at most three. Then P ∼= Epi , i ≤ 3, Ex(p1+2i), i ≤ 2 or Cp × Ex(p1+2).

Proof: [As, 3.1,3.2]
l3p

LemmaQT 4.2 Let p be an odd prime, G a irreducible subgroup of GL3(p) and Λ =
Z(GL3(p)) Then there exists an irreducible normal subgroup H of G so that one of fol-
lowing holds.

1. H = SL(V ) ∼= SL3(p).

2. H = Ω(V, q) for some non degenerate quadratic form q on V .

3. H ∼= Alt(5), p2 ≡ 1mod10 and G ≤ Λ×H.

4. H ∼= L3(2), p3 ≡ 1mod7 and G ≤ Λ×H.

5. H ∼= 3.Alt(6), p ≡ 1, 19mod30 and G ≤ ΛH.
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6. H is cyclic of order dividing p3 − 1 but not p− 1 and H = G or |G/H| ∼= C3.

7. H ∼= Ex(31+2) and GΛ/HΛ ≤ SL2(3).

8. G is monomial

Proof: [As, 3.12]
msp4p

LemmaQT 4.3 Let p be an odd prime, V a four dimensional non-degenerate symplectic
space over GF (p) and G a maximal subgroup of Sp(V ). Then one of the following holds.

(a) G is the normalizer of a singular 1-space in V and G ∼ Ext(p1+2) : (Cp−1×SL2(p)).

(b) G is the normalizer of a singular 2-space in V and G ∼ Ep3 : GL2(p)

(c) G ∼ SL2(p2).2 and G′ fixes a non-degenerated 2-dimensional sympectic form over
GF (p2) on V .

(d) G ∼= SL2(p) o C2 and G fixes a decompostion of V into the orthorgonal sum of two
non-degenerated 2-dimensional subspaces.

(e) G ∼ GL2(p).2 and G fixes a decomposition of V into the direct sum of two singular
2-spaces.

(f) G ∼ GU2(p).2 ∼ (Cp+1 · SL2(p)).2 and the subgroup of index 2 fixes a non-degenerate
2-dimensional unitary form over GF (p2) on V .

(g) G ∼= SL2(p) and V is the third symmetric power of the natural module for G.

(h) G ∼ Ext−(21+4).Alt(5)(.2).

(i) G ∼ 2.Alt(6)(.2) and V is the half-spin module for G

(j) p = 7, G ∼ 2.Alt(7) and V is the half-spinmodule for G

Proof: See [Mi, Theorem 10]. We remark that this list can be easily checked if one is
only interested in K-groups. Namely let W be the natural Ω5(p) module for PSp4(p),
H = Sp4(p) and H = H/Z(H). We may assume that G acts irreducible on W .

If Sol() 6= 1 let A be a minimal solvable normal subgroup of G. If A is cyclic, |A| divides
p5 − 1 and |H|. Hence |A| divides p − 1 and A acts as a scalar on W , a contradiction. So
A is not cyclic and it is now easy to see that (h) holds.

If Sol(G) = 1, let E be a component of G. Since O±2 (p) is solvable, [W,E]CW (E)/CW (E)
is at least three dimensional. It follows that CH(G) is solvable and so EZ(H) = F ∗(G) and
E acts irreducibly on W . If Z(H) 6≤ E, m2(Z(H)E) ≥ 3, a contradiction to m2(Z(H)) = 2.
Thus Z(E) = Z(H). Let V be the natural Sp4(p) module for H. If E does not act
irreducible on V then since V

∧
V = W ⊕ GF (p), E is not irreducible on W . So E acts

irreducible on W . Using the list of finite simple groups its now easy to verify that one of
(g),(i) or (j) holds or that E ∼= 2.Alt(5). But in the latter case, G is contained in a subgroup
of type (i) or (j).
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sp4p
LemmaQT 4.4 Let p be an odd prime, V a four dimensional non-degenerate symplectic
space over GF (p) and G ≤ Sp(V ) with Op(G) = 1.

(a) If G = Op
′
(G) 6= 1, then one of the following holds:

1. G ∼= Sp4(p), SL2(p2), SL2(p)× SL2(p) or SL2(p)

2. p = 7 and G ∼= 2.Alt(7).

3. p = 5 and G ∼ 2.Alt(5), Ext−(21+4).Alt(5), Ext(21+4).C5.

4. p = 3 and G ∼ 2.Alt(5), Ext−(21+4).Alt(5), Ext(21+4).C3.

(b) If G is quasisimple then one of the following holds:

1. G ∼= Sp4(p), SL2(p2) or SL2(p).

2. G ∼= 2.Alt(5) or 2.Alt(6).

3. G ∼= 2.Alt(7) and p = 7.

Proof: [As, 3.13]
mp3Q

LemmaQT 4.5 Let p be an odd prime, G a group with F ∗(G) = Op(G)
def
= Q, m(Q) ≤ 3

and G∗ = G/Q.

(a) If G = Op
′
(G) 6= Q, then one of the following holds:

1. G∗ ∼= SL2(p) or SL3(p).

2. G∗ ∼= SL2(p)× SL2(p), SL2(p2), or Sp4(q) and mp(G) > 3.

3. p = 7 and G∗ ∼= 2.Alt(7).

4. p = 5 and G ∼ SL2(5), Ext−(21+4).Alt(5) or Ext−(21+4).C5.

5. p = 3, G ∼ 2.Alt(5) or Ext−(21+4.Alt(5) and m3(G) > 3.

6. p = 3 and G ∼ Ext(21+4).C3

(b) If G∗ is quasisimple then one of the following holds:

1. G∗ ∼= Sp4(p), or SL2(p2) and mp(G) > 3.

2. G∗ ∼= L2(p), SL2(p)orSL3(p)
Remark: SL3(p) also should have mp(G) > 3

3. G∗ ∼= Alt(5), 2.Alt(5) or 2.Alt(6). Moreover, if p = 3 then m3(G) > 3.

4. G∗ ∼= L3(2) and p3 ≡ 1mod7

5. G∗ ∼= 3.Alt(6) and p ≡ 1, 19mod30

6. G ∼= 2.Alt(7) and p = 7.
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Proof: By [As, 3.13] we only need to show that mp(G) > 3 in a.5, b.1 and for p = 3 in
b.3. As in Aschbacher’s proof let G be a minimal counterexample and D a critical subgroup
of Q. As G∗ = Op(G∗), G = O3(G).

Let t be an involution in G with t∗ ∈ Z(G∗). By minimality G = DCG(t) and without
loss D = [D, t]. It follows that D ∼= Ext(p1+4). In particular, as m(Q) ≤ 3, Ω1(CQ(D)) =
Z(D). As G acts irreducible on D/Z(D), Q = DCQ(D). Since G centralizes Ω1(CQ(D)),
G = O3(G) centralizes CQ(D).

Considering the p-part of the Schur multiplier of G∗ we see that CG(t)′ ∼= G∗ or p = 3
and CG(t)′ ∼= 3.SL2(32). In any case there exists X ≤ CG(t)′ so that X is an elementary
abelian p-group and XD′/D′ ∼= Cp. Moreover [D,X,X,X] ≤ D′ and so [Y,X] ≤ D′ for
some Y ≤ D with Y ∼= Ep3 . Since Y = [Y, t]×D′ we have [Y,X] = 1 and so Y X ∼= Ep4 .

dcr
Definition 4.6 Let p be an odd prime, Q a p-group and H a group acting on Q.

(a) CRQ(H) is the set of maximal, H-invariant, class 2 and exponent p, normal subgroups
of Q.

(b) We say that Q is H-homogeneous of rank n provide that there exists A ∈ CRH(Q) so
that A ∼= Epn and H acts irreducible on A.

homo
Lemma 4.7 Let p be an odd prime, Q a p-group, H a group acting on Q. Let D ∈
CRQ(H) and T = CQ(D). Then CRT (H) = {Z(D)}. For i ≥ 0 put Ti = Ωi(T ). Then
Ti+1/Ti = Ω1((T/Ti) = Ω1(Z(T/Ti)) ∈ CRT/Ti(H) and if i ≥ 1, Ti+1/Ti is isomorphic to
HQ-submodule T pi+1Ti−1/Ti−1 of Ti/Ti−1.

Proof: Let A = Z(D). Clearly A ≤ Ω1(Z(T )). Let A∗ ∈ CRT (H). Then DA∗ has
class two und exponent p and so by maximality of D, A∗ ≤ D∩T ≤ A. By maximality of A∗,
A ≤ A∗ and so A = A∗ and CRT (H) = {A}. Let C/A ∈ CRQ/A(H) and B/A = Z(C/A).
Then B is of class two and Ω1(B) = A by maximality of A. As p is odd the map

φ : B/A→ A

bA→ bp

is a HQ-homomorphism. As Ω1(B) = A, φ is one to one thus B/A ∼= Bp as HQ-module.
Let c, e ∈ C The cp ∈ A ≤ Z(T ) and so cp = (cp)e = (ce)p Put d = cc−e. As ce ∈ cB,〈c〉B
has class two and p is odd, dp = cp(ce)−p = 1. It follows that d ∈ Ω1(B) = A. Hence
cA = ceA for all e ∈ C and so cA ∈ Z(C/A) = B. Thus C = B and B/A ∈ CRQ/A(H).
Since T centralizes Bp ≤ A, T/Acentralizes B/A. The lemma now follows by induction on
|T |.

ccr
Corollary 4.8 Let p be an odd prime, Q a p-group, H a group acting on Q and D ∈
CRQ(H). Then CH(D)/CH(Q) is p-group.
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Proof: Note first that CH(D) centralizes Q/CQ(D) and Z(D). Let T and Ti be as
4.7. Then by 4.7, CH(D) centralises all factors of the normal series

1 = T0 ≤ T1 ≤ T2 · Tk = T ≤ Q.

Thus CH(D)/CH(Q) is a p-group.

Lemma 4.9 Let p be a prime with p ≥ 5, A ∼= Cp2 × Cp2 and t ∈ Aut(A) with tp = 1.
Then t centralizes Ω1(A). In particular, Aut(A) has no subgroup isomorphic to SL2(p).

Proof: Identify t which its image in the ring End(A). Since |A| = p4 we have (t−1)4 = 0
and since p ≤ 4 we get

(1) (t− 1)p = 0

Since |Ap| = p2 we have

(2) p(t− 1)2 = 0

Since tp = 1 we have

(3) tp − 1 = 0

Consider the polyomial f(x) = xp−1 + xp−2 + . . . + x + 1 ∈ Z[x]. Since f(x) ≡ (x −
1)p−1modp, f(x) = (x− 1)p−1 + p · g(x) for some g(x) ∈ Z[x]. Write g(x) = h(x)(x− 1) + d
for some h(x) ∈ Z[x], d ∈ Z. Then p = f(1) = p · d and so d = 1 and f(x) = (x− 1)p−1 +
p · h(x)(x− 1) + p. Since f(x)(x− 1) = xp − 1 we obtain

(4) xp − 1 = (x− 1)p + h(x)p(x− 1)2 + p(x− 1)

Substituting t for x in (4) and using (1) to (3) we obtain

(5) 0 = p(t− 1)

Hence t centralizes Ap = Ω1(A).
pe = 3

LemmaQT 4.10 Let G be a finite, perfect K-group with O2(G) = 1 and m2′(G) ≤ 3.

(a) G is the central product of its Sol-components.

(b) If G is a Sol-component of G then one the following holds:
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(b1) G is quasisimple and if G/Z(G) is a group of Lie type in characteristic 2 or an
alternating group then G/Z(G) is one of the following:
Alt(n), 5 ≤ n ≤ 11;
Ln(q), n ≤ 4;
Ln(2), n ≤ 7;
Sp2n(q), n ≤ 3;
G2(q);
Un(q), n ≤ 4;
Sz(q);
Ω−8 (q);
3D4(q);
2F4(q).

(b2) F ∗(G) = F (G). Let p be a prime dividing |[F (G), G]| and put Q = [Op(G), G].
Then one of the following holds:

1. G/F (G) ∼= 2.Alt(5) or SL2(p), and Q ∼= Ext(p1+2) or Q is of G homogenous
of rank 2.

2. G/F (G) ∼= SL3(p); L3(2) ( p3 ≡ 1mod7); L2(p); (2.)Alt(5); or (2.)3.Alt(6)
( p ≡ 1, 19mod30 and Q is G-homogenous of rank 3.

3. G/F (G) ∼= SL2(p), 2.Alt(5), (3.)2.Alt(6) or 2.Alt(7) ( and p = 7) and Q ∼=
Ext(p1+4).

(c) Let E be quasisimple so that E/Z(E) is alternating or a group of Lie type in char-
acteristic 2. Suppose that G is a central product of r copies of E with r ≥ 2. Then
r ≤ 3 and one of the following holds:

(b1) E/Z(E) ∼= L2(q),L3(2) or Sz(q).

(b2) E ∼= 3.Alt(6) or SL3(4), r = 2 and |Z(G)| = 3.

Proof: (a) Let L be a Sol-component of G.
Suppose first that L does centralize all its distinct conjugates under G. Then |LG| ≤ 3

and as Sym(3) is solvable, G normalizes L. As L is a K-group, Out(L/Sol(L)) is solvable
and so G = LCG(L/Sol(L)). Bu induction CG(L/Sol(L)∞ is the central product of its
Sol-components.

Hence we may in any case assume that there exist distinct Sol-components L1 and
L2 of G with [L1, L2] 6= 1. Note that [L1, L2] ≤ Sol(G) and by induction G = L1L2.
Moreover, Li is normal in G. If [F (G), L1, L2] = 1 and [F (G), L2, L1] = 1 we get [L1, L2] ≤
CG(F ∗(G) ≤ F (G) and so [L1, L2] = [L1, L2, L2] = [L1, L2, L1, L2] ≤ [F (G), L1, L2] = 1,
a contradiction. Hence we may assume that [Op(G), L1, L2] 6= 1 for some odd prime p.
Put Q = Op(G) and D ∈ CRQ(G). Then [D,L1] 6= 1 6= [D,L2]. We conclude that
D ∼= Ext(p1+4) and [D,L1, L2] = 1. Moreover, [D,Q] ≤ D′, Q = CQ(D)D, CQ(D) is cyclic
and so [CQ(D), G] = 1. Thus [Q,L1, L2] = [D,L1, L2] = 1, a contradiction.
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(b) If E(G) 6= 1, then G is clearly a component of G and it is now easy to verify that
(b1) holds.

So suppose that E(G) = 1. Then by definition F ∗(G) = F (G). Let p and Q be as
in (b2). Let D ∈ CRQ(G), D∗ = D/D′ and G = G/CG(D∗). Let R be minimal in G
with respect to D ≤ R and G = RCG(D). Then CR(D)D/D is nilpotent and so CR(D) is
nilpotent. In particular, F ∗(R/Op′(R)) is a p-group.

Assume that Sol(G) 6= Op(G)Z(G). Then its easy to see that D ∼= Ext(p1+4) and
G ∼ Ext−(21+4).Alt(5). Moreover, by 4.55, applied to R/Op′(R), p > 3.

Assume that Op(G 6= 1. Then D ∼= Ep3 , Cp×Ext(p1 + 2) or Ext(p1+4. Mostly without
loss,(TO BE CONTINUED) G = R and Op′(G) = 1.

Suppose that D ∼= Ext(p1+4) and let A/D′ be a minimal G invariant subgroup of
D/D′. If |A/D′| = p we get conclude that [A,G′] = 1 and so [A,G] = 1 and [A,D] = 1,
a contradiction. Hence |A/Dprime| = p2 and G ∼ p3SL2(p) or p32.Alt(5). Let t be an
involution in which inverts A/D′. Then CG(t) ∼ p1+3SL2(p) or p1+32.Alt(5) and so contains
a normal Ep4 , a contradiction.

Suppose that D ∼= Cp×Ext(p1+2). Then G = G′ centralizes Z(D) and Z(D)/D′ and so
Z(D) ≤ Z(G). By 4.7 we conclude that G also centralizes CQ(D) and so CQ(D) = CQ(G).
Let t be an involution in G inverting D/Z(D). Then Q/CQ(D) has order p4 and is inverted
by t. Thus Q/CQ(D)is abelian and Q′ ≤ Z(G). In particular Q has class two and so
Ω1(Q) = D. Let x, y ∈ Q so that t inverts x and y and Q = CQ(D)D〈x, y〉. Since t inverts
xp, xp ∈ D and since xp 6= 1, we conlude that D = 〈xp, yp〉Z(D) and so Q = CQ(D)〈x, y〉.
Hence Q′ = 〈[x, y]〉 is cyclic and so Q′ ∩ D = D′. Thus [Q,D] ≤ D′ and [D∗, Q] = 1, a
contradiction.

Thus D ∼= Ep3 and so Q/CQ(D) ∼= Ep2 . We will use 4.7 without further reference. In
particular we are done if G normalizes a hyperplane in Q. So suppose |CD(G)| = p. Let
T and Ti be as in 4.7. Let t be an involution in G inverting D/CD(G). Assume first that
T = D. The t inverts Q/CD(G) and thus Z(Q) = Q′ = CD(G). It follows that Q is extra
special, a contradiction to D ∈ CRQ(G). Thus T 6= D. Let A/D = CT/D(G). Note that
CQ(t) = CT (t) is cyclic and A = CA(t)D. Thus t inverts Q/CQ(A). It is now easy to see
in Aut(A) that CQ(A) = T and A = CA(G)D. If T2 6= A put B = T2 otherwise let B = Q.
Note that since G is perfect, Q = [Q, t] and T = [T, t]Q′. But |Q′[T, t]/[T, t] ≤ p and so
if A = T2, A = T . Hence in any case |B/A| = p2, [B,Q]D = A and t inverts B/CA(G).
In particular, B′ ≤ CA(G). Since t centralizes Hom(B/A,A/CA(G)), [B,Q] ≤ CA(G).
If Q/CQ(B) has exponent p we conclude that [B,Q] has exponent p and [B,Q] ≤ D, a
contradiction. Thus Q/CQ(B) ∼= Cp2 × Cp2 and hence Qp = T . Hence [B, T ] = CD(G),

Assume that Sol(G = Z(G. Then as G is a Sol-component, G is quasisimple.
Remark: Lots of case with L/F (G) ∼= 2.Alt(5) or Ext−(21+4 need to be worked

into the statement of the theorem,4.9 has to be used to exclude smilar cases for
SL2(p) TO BE CONTINUED

ParAlt
Lemma 4.11 Let G ∼= Sym(Ω) or Alt(Ω), |Ω| = n finite, and H a maximal subgroup of G
such that |G/H| is odd.
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(a) For an integer k let b2(k) = {2i | ai 6= 0} where k =
∑n

i=1 ai2
i with ai ∈ {0, 1}. Then

one of the following holds.

1. H = NG(Λ) where Λ ⊂ Ω and b2(|Λ|) ⊆ b2(Ω)

2. H = NG(Π), where Π is a partition of Ω into m parts of size l and l is a power
of 2 dividing n.

3. G = Alt(7) and H ∼= L3(2).

4. G = Alt(8) and H ∼ 23 : L3(2).

(b) If G = Alt(7), then H = L3(2), Alt(6), Sym(5) or Sym(3) |∧Sym(4).

(c) If G = Sym(7), then H = Sym(6), Sym(5)× C2 or Sym(3)× Sym(4).

(d) If G = Sym(9) then H = Sym(8).

(e) If G = Sym(10), then H = Sym(8)× C2 or C2 o Sym(5).

(f) If G = Sym(11), then H = Sym(8)× Sym(3), Sym(9)× C2 or Sym(10).

(g) If G = Alt(n), n ≥ 9, then H = H∗ ∩ Alt(n) for some maximal subgroup H∗ of
Sym(n) which contains a Sylow 2-subgroup of Sym(n).

Proof: Remark: Maybe we should find a reference, below is a the sketch of
aproof

If G = Sym(Ω), this easliy follows since the subgroup of H generated by the 2-cycles
in H is a direct product of natural embedded symmetric groups. So we may assume that
G = Alt(Ω) and NSym(Ω)(H) ≤ Alt(Ω). Moreover, we may assume that H acts primitively

on Ω. Let X ⊂ Ω with |X| = 4 and AX
def
= O2(Alt(X)) ≤ H. Let h ∈ H.

If |X ∩ Xh| = 3, then 〈AX , AhX〉 = Alt(X ∪ Xh) and so H = G, a contradiction. If
|X ∩Xh| = 1, then |X ∩Xa| = 3 for all a ∈ AhX , a contradiction to by previuos case.

Thus |X ∩Xh| ∈ {0, 2, 4} for all h ∈ H.
Let V be the power set of Ω viewed as a vector space over GF (2) and endowed with

the natural symmetric form. It follows that U
def
= 〈XH〉 is a singular subspace of V and all

sets in U have size divisible by 4. Moreover if |X ∩Xh| = 2, then X + Xh is in 〈AX , AhX〉
conjugate to X and Xh. Since X ∩ Xh is not a set of imprimitivety, there exists l ∈ H
with |X ∩Xh ∩X l ∩Xhl| = 1 It follows that |X ∩Xh ∩ Y = 1 or some Y ∈ {X l, Xhl. Let
Z = X ∪Xh ∪ Y . Since |X ∩ Y | = |Xh ∪ Y | = 2 we get |Z| = 7. Put L = 〈AX , AhX , AY 〉
then L ∼= L3(2). If n ≤ 7 we are done. If n ≥ 8, there must exists k ∈ H with Z ∩Xk 6= ∅
and Xk 6⊂ Z. Since Xk is perpendicular to 〈XL〉 we get that |Z ∩ Xk| = 3 ( and indeed
Z ∩Xk = Z \Xr for some r ∈ L. Let W = Z ∪Xk and K = 〈L,AkX . Then K ∼= 23 : L3(2).
We n = 8 then K = H an we are done. If n ≥ 9 then there exists s ∈ H with W ∩Xs 6= ∅
and Xs 6⊂ W . Since K acts transitively on W , we conclude that Xs intersects each subset
of sixe seven in W in O or 3 elements, a contradiction, which completes the proof of the
lemma.
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5 Subnormal Subgroups
OqRcQ

Lemma 5.1 Let G be a finite group, L a subnormal subgroup of G, Q a normal q-subgroup
of G and R a subgroup of G which centralizes L and NQ(L). Then Oq(R) centralizes Q.

Proof: Without loss R = Oq(R). Suppose the lemma is false and let X be minimal in
Q such that L and R normalize X, and R does not centralize X. Then [X,R,R] 6= 1 and
so X = [X,R]. As Oq(L) is subnormal in Qq(L)X and X is a q-group we conclude that
[X,Oq(L)] ≤ L. Thus R centralizes [X,Oq(L)] and hence [X,Qq(L)] 6= X. But this implies
[X,L] 6= X and so by minimal choice of X, [X,L,R] = 1. The three subgroup lemma
implies [X,R,L] = 1 and thus [X,L] = 1 and X ≤ NQ(L). We conclude that [X,R] = 1
and the lemma is established.

pi
Lemma 5.2 Let G be a finite group, π a set of primes and L a subnormal subgroup of G
such that L = Oπ(L). Then Eπ(NG(L)) = Eπ(G).

Proof: Note first that NG(L) = NG(LOπ((G))), Eπ(G/Op(G)) = Eπ(G)/Oπ(G) and
Eπ(NG(L)/Oπ(G)) = Eπ(NG(L)/Op(G). Thus we may assume that Oπ(G) = 1.

Put H = NG(L). Since E(G) normalizes L we have E(G) ≤ E(H). Let R be the
group generated by Oπ(H) and the π-components of H which are not contained in E(G).
Then R centralizes E(G) and F (G) ∩H. By the previous lemma applied with Q a Sylow
subgroup of F (G) we conclude that R centralizes F (G) and F ∗(G). Thus R ≤ F ∗(G) and
since Eπ(H) = E(G)R, Eπ(H) = Eπ(G) = E(G).

OqF
Corollary 5.3 Let G be a finite group, p, q distinct primes and L a subnormal subgroup of
G such that L = Op(L) and L/Op(L) is a q-group. Then Oq(F ∗p (NG(L)) = Oq(F ∗p (G)).

Proof: Apply the previous lemma with π = q′.
USN

Lemma 5.4 Let G be a finite group and L a subgroup of G such that L = Op(L), Op(L) 6= 1
and L/Op(L) is either quasi-simple or a q-group. Then L is subnormal in at most one
maximal p-local subgroup of G containing NG(L).

Proof: Let M1 and M2 be maximal p-locals of G containing NG(L). By the previ-
ous lemma Ep(M1) = Ep(NG(L) = Ep(M2). As Op(L) 6= 1, Op(Ep(NG(L)) 6= 1 and so
NG(Ep(NG(L))) is a p-local containing M1 and M2. Thus M1 = M2.

6 Nice Modules
NM
davhDefinition 6.1 Let H be group and V a faithful GF (p)H-module. Then

1. aV (H) is defined by |V/CV (H)|aV (H) = |H|.

2. qaV (H) = min{aV (A) | 1 6= A ≤ H, [V,A,A] = 1]}, where qaV (H) = ∞ if H has no
nontrivial quadratic subgroups.
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3. raV (H) is the minimum of the qaW (H), where W runs through the non-trivial com-
position factor for H on V

4. Let a be a positive real number. Then V is called an Fa module if qaV (H) ≤ a and
an F ∗a module if qaV (H) < a.

5. An FF -module is an F1-module.
oqu

Lemma 6.2 Let G be a finite group, p an odd prime, S ∈ Syl2(G) and V a faithful GF (2)-
module. Suppose that

(i) G = Op(G)S.

(ii) [V, S, S] = 0.

The there exists a set of hyperplanes H of S and G-submodules VH , H ∈ H so that

(a) V = CV ([O(G), S])⊕ oplusH∈HVH

(b) For all H in H, H centralizes VH .

Proof: We may assume without loss that V is not the direct sum of two proper G-
submodules. Put P = Op(G) and Q = [P, S]. If Q = 1 we are done. So suppose Q 6= 1 and
let E be a normal subgroup of G in Q minimal with respect to [E,Q] 6= 1. Let F = CE(QS).
Then by minimality of E, G acts irreducibly on E/F . In particular, [E,P ] ≤ F , S inverts
E/F and |E/F | = p. Since F ≤ Z(Q) ∩E ≤ Z(E), E is abelian. Then also [Ω1(E), S] 6= 1
and hence E is elementary abelian. Let T = CS(E). Then |S/T | = 2.

Suppose first that F = 1. Then E = [E,S] ≤ 〈SE〉 ≤ CG([V, T ]). Since CV (E) = 0,
T = 1 and the lemma holds.

Suppose next that F 6= 1 and ley D be the set of all hyperplanes D in E with CV (D) 6=).
Then

V = ⊕D∈DCV (D).

As V is indecomposable, G acts transitively on D. Moreover, T is a Sylow 2 subgroup
of CG(E) and so G = NG(T )CG(E). In particular, NG(T ) acts transitively on D. We may
assume that [CV (D), T ] 6= 0 for some D ∈ D and so [CV (D), T ] 6= 1 for all D ∈ D. As
[CV (D), T, S] = 0, S normalizes CV (D) and D. Since F 6= 1 and F � G, F 6∈ D. Hence
E = FD and [E,S] = [D,S] ≤ D. It follows that [E,S] ≤

⋂
D∈calDD, contradicting the

minimal choice of E.
FFMP

Lemma 6.3 Let H be finite group such that the Sylow subgroup is contained in a unique
maximal subgroup of H. Let V be a faithful GF (2) FF-module for H. Then H has a normal
subgroup L = L1 × L2 × . . .× Lk such that

(a) Li ∼= SL2(q) or Sym(q + 1), q power of 2.
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(b) Put V = V/CV (L) and Vi = [V, Li]. Then V = V1 ⊕ V2 ⊕ . . .⊕ Vk and Vi is a natural
SL2(q)-module for Li.

(c) H = LS and S transitively permutes the Li’s.
F ∗ 2

Lemma 6.4 Let H be finite simple group such that the Sylow subgroup is contained in a
unique maximal subgroup of H. Let V be a faithful faithful GF (2) F ∗2-module for H. Then
either V is an FF -module or H has a normal subgroup L = L1 × L2 × . . . × Lk such that
Remark: maybe we should do all F2 modules, even the non-quadratic ones

(a) Li ∼= Alt(q + 1), SL3(q) or O±4 (q), q a power of two.

(b) Put V = V/CV (L) and Vi = [V, Li]. Then V = V1 ⊕ V2 ⊕ . . . ⊕ Vk and either
Li ∼= Alt(q+ 1) and |Vi| is natural module or Li ∼= SL3(q) and Vi is the direct sum of
a natural module and its dual.

(c) H = LS and S transitively permutes the Li’s.

(d) If Li ∼= SL3(q), then some element of NH(Li) induces a graph automorphism on Li.
dtendec

Definition 6.5 Let K be a field, H a group and V a KH-module. Then a tensor decom-
position of V for H is a tuple (F, Vi, i ∈ I) such that

(a) F ≤ EndK(V ) is a field with K ≤ F .

(b) H acts F -semilinear on V .

(c) Put E = CH(F ) ( the largest subgroup of H acting F -linear on V ). Then Vi is an
FE-promodule.

(d) As FE-modules, V and
⊗

F {Vi ∈ I} are isomorphic.
qtp

Lemma 6.6 Let Q be a group with |Q| ≥ 3. 1 6= Z ≤ Z(Q), K a field with charK = p, p a
prime, V a faithful KQ-module with [V, Z,Q] = 0 and (F, Vi, i ∈ I) a tensor decomposition
of V for Q. Then Q acts F -linear and one of the follwing holds:

1. There exists i ∈ I so that [Vi, Z,Q] = 0 and Q acts trivially on all other Vj’s.

2. p = 2, Q is F -linear and there exist i, j ∈ I, ak ∈ EndF (Vk) with a2
k = 0 (k=i,j)and a

monomorphism λ : Q→ (F,+) so for q ∈ Q,

(a) For k = i, j, q acts on Vk as 1 + λ(q)ai.

(b) Q centralizes all Vs’s with s 6= i, j.
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Proof: Note first that as Z acts quadratically on V , Z is an elementary abelian p-group.
Also [V, Z,Q] = 0 and [Q,Z] = 1. So the three subgroup lemma implies that [V,Q,Z] = 1.

Suppose that Q does not act F -linear. Note thet z induces some field automorphism σ
on F . Let Fσ be the fixed field of σ in F . As z is quadratic on V , f −fσ ∈ Fσ for all f ∈ F .
It easy to see that this implies F = Fσ or p = 2 and Fσ has inded two in F . Moreover,
[V, z] is an Fσ-subspace centralized by Q. So Q is Fσ and Fσ 6= F . Since [V,CQ(F )] is an
F -spave centralizes by z, CQ(F ) = 1. Thus |Q| = 2 in contradcition to the assumptions.

Suppose from now on the Q is F -linear. Since Z is a p-group, we mau assume that the
Vi’s are actually FZ-modules and not only promodules. If Q acts trivially on some Vk, V
is a direct sum of copies of the FQ-module

⊗
F {Vi | i ∈ I − k}. So the latter has the same

properties as V . Thus we may assume fom now on that Q acts non-trivially on each Vi. If
|I| = 1, then 1. holds

Suppose next that |I| = 2 and say I = {1, 2}. Note that

[CV1(Z)⊗ V2, Z] = CV1 ⊗ [V2, Q].

Q acts as scalars on [V2, Z] and [V1, Z]. Hence we may choose the promodules V1 and
V2 so that [Vi, Z,Q] = 0 for i = 1, 2. For q ∈ Q let qi be the endomorposim q − 1 of Vi.
Then ziqi = 0. Moreover, in EndF (V1 ⊗ V ),

z − 1 = (1 + z1)⊗ (1 + z2)− 1⊗ = z1 ⊗ 1 + 1⊗ z2 + z1 ⊗ z2.

Thus [V, z, q] = 0 implies

z1 ⊗ q2 = −q1 ⊗ z2

If z1 = 0 then as V is faithful, z2 6= 0. Thus the previuos equation implies q2 = 0 for
q, a contradcition to the assumption that Q does not centalize V2. Hence both z1 and z2
are not zero. Choosing q = z we see that p = 2. Hence for arbitray q, q1 = λ(q)z1 and
q2 = λ(q)z2 for some λ(q) ∈ F . Thus 2. holds in this case.

Suppose now that |I| ≥ 3. Say 1, 2 ∈ I and but W =
⊗

F {Vi | i ∈ I \ {1, 2}. Then
V ∼= (V1 ⊗ V2)×W . Then by the prviuos case Q acts faithfully on V1 ⊗ V2 z − 1 and q − 1
are linear dependent on V1 ⊗ V2. Let λ = λ(q) be as above. Then on v1 ⊗ v2

q − 1 = (1 + λz1)⊗ (1 + λz2)− 1⊗ 1 = λ(z1 ⊗ 1 + 1⊗ z2 + λz1 ⊗ z2).
On the otherhand z − 1 = z1 ⊗ 1 + 1× z2 + z1 ⊗ z2 and we conclude that λ = 0, 1 and

so |Q| = 2, a contradiction.

Definition 6.7 Let H be a finite group, F a finite field, V a finite dimensional FH-module
and s a postive real number.

(a)
Ps(H,V ) = {A ≤ H | |A|s|CV (A)| ≥ |B|s|CV (B)| for all B ≤ A}

.
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(b)

P∗s(H,V ) = {A ∈ Ps(H,V ) | |A|s|CV (A)| > |B|s|CV (B)| for all CA(V ) < B < A}

.

(c) PQs(H,V ) = {A ∈ Ps(H,V ) | [V,A,A] = 0

(d) PQ∗s(H,V ) = {A ∈ P∗s(H,V ) | [V,A,A] = 0
bpgv

Lemma 6.8 Let H be a finite group, F a finite field, V a finite dimensional FH-module,
s a postive real number and A ≤ H.

(a) A ≤ Ps(H,V ) if and only if |W/CW (A)| ≤ |A/CA(W )|s for all W ≤ V .

(b) A ∈ P∗s(H,V ) if and only if |V/CV (A)| ≤ |A|s and for each W ≤ A one of the
following holds:

1. [W,A]=0.

2. CA(W ) = CA(V ).

3. |W/CW (A)| < |A/CA(W )|s.

(c) Let A ∈ Ps(H,V ) and W an FA-submodule in V . Then A ∈ Ps(NH(W ),W ).

(d) Let A ∈ P ∗s (H,V ) and W an FA-submodule in V . Then A ∈ P∗s(NH(W ),W ).

Proof: (a) Suppose first that A ∈ Ps(H,V ) and let W be a F -subspace of V . Let
B = CA(W ) . Then W ≤ CV (B). Since A ∈ Ps(H,V ) we have |CV (B)/CV (A)| ≤ |A/B|s
and thus

bpgv − 1
(1)

|W/CW (A)| ≤ |CV (B)/CV (A)| ≤ |A/B|s = |A/CA(W )|s.

.

Suppose next that |W/CW (A)| ≤ |A/CA(W )|s for all W ≤ V and let B ≤ A. Put
W = CV (B). Then B ≤ CA(W ) and

bpgv − 1
(2)

|CV (B)/CV (A)| ≤ |W |/|CW (A)| ≤ |A/CA(W )|s ≤ |A/B|s.

(b) Suppose first that A ∈ P∗s(H,V ) and let W be a F -subspace of V . Let B = CA(W )
Then W ≤ CV (B). If A = B, then 1. holds. If B = CA(V ), then 2. holds. So assume
CA(V ) < B < A. Then by minimalty of |A| the middle ”≤” in (2) becomes a ”<” and so
3.holds.
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Suppose next that |V/CV (A) ≤ |A/CA(V )|s and that 1.,2. or 3. holds for each
W ≤ V . Let B < A. Put W = CV (B). If 1. holds then, CV (A) = CV (B) and so
clearly |A|s|CV (A)| > |B|s|CV (B)|. If 2. holds then B ≤ CA(V ) and so |A|s|CV (A)| ≥
|V ||CA(V )|s ≥ |CV (B)||B|s. If 3. holds then the middle ”≤” in ?? becomes a ”<” and (b)
is proved.

Finally (c) follows from (a), and (d) from (c) and (b).
bqpgv

Lemma 6.9 Let H be a finite group, F a finite field V a finite dimensional FH-module
and s a postive real number with s ≤ 2. Let A ∈ PQs(G,V )

(a) Suppose that ∆ is a System of imprimitivity for A on V and U ∈ ∆.

(a.a) One of the following holds:

1. A normalizes U .
2. |F | = 2 = |U | and s ≥ 1.
3. |F | ∈ {2, 4}, |U | = 4 and s = 2.

(a.b) If in addition A ∈ P ∗ (H,V ) and either (a.a.2) with s = 1 or (a.a.3) holds, then
|A| = 2 and A centralizes \∆ \ UA〉.

(b) Suppose that V = ⊗ni=1Vi for some FH-module Vi, 1 ≤ i ≤ n and that [V1, A] 6= 0 6=
[V2, A] and dimF Vi > 1. Then n = 2, s = 2, dimF V1 = 2 = dimF V2, CA(V1) =
CA(V2) = CA(V ) and |A/CA(V )| = q.

Proof: (a) Let W = 〈UA〉 and suppose that A does not normalize U . Since A acts on
W , we get char F=2, [U,NA(U)] = 0 and |UA| = 2. Thus |A/CA(W )| = 2. Hence by 6.8c,
W/CW (A) ≤ 2s. Since U ∩CW (A) = 0 we get |U | ≤ 2s and so 2. or 3. holds. Suppose that
A ∈ P∗(G,V ) and either 2. with s = 1 or 3. holds. Then |W/CW (A)| = |A/CA(W )|s. Thus
by 6.8b, CA(V ) = CA(W ). Since |V/CV (A)| ≤ |A/CA(W )|s we conclude V = WCV (A)
and so (a) is proved.

(b) If |A| ≥ 3, this follows this is an easy consequence of 6.6. If |A| = 2 we get
|V/CV (A)| ≤ 2s ≤ 4 and again (b) is easily verified.

lbfs
Lemma 6.10 F a finite field , A a finite group, V a n-dimensional FA-module with
[V,A] 6= 0 = [V,A] and s defined by |V/CV (A)| = |A/CV (A)|s. Then s ≥ 1

dimF [V,A] ≤
1

n−1 .

Proof: We may assume that A acts faithfully on V . Let m = dimF V/CV (A) and
k = dim[V,A]. Then A ≤ |F |km and so

|V/CV (A)| = |F |m ≤ |A|s ≤ |F kms.

Thus m ≤ kms and s ≤ 1
k ≤

1
n−1 .
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s2
Lemma 6.11 Let H be a finite group, p a prime and V an irreducible, faithful GF (p)H-
module. Let s be a positive integer with s ≤ 2 and L = 〈PQ∗s(H,V )〉. Suppose that L 6= 1
and that L acts irreducible on V . Let A ∈ PQ∗s(H,V ) and F = EndL(V ), then one of the
following holds:

1. p = 2, 3, L ∼= SL2(p), |A| = p, |F | = p, dimF V = 2 and s ≥ 1.

2. p = 2, L ∼= Dih(D10, |A| = 2, |F | = 4, dimF V = 2 and s = 2.

3. p = 2, L ∼= SU3(2)′, |A| = 2, |F | = 4,dimF V = 3 and s = 2.

4. p = 2, 3, L ∼= SL2(p) ∗ SL2(p), |A| = p, |F | = p, dimF V = 4 and s = 2.

5. p = 2, L ∼= SL2(F )× SL2(F ), |A| = |F |, |F | ≥ 4, dimF V = 4 and s = 2.

6. p = 2, L ∼= O4
+(F ), |A| ≤ 2|F |, |V/CV (A)| = |F |2, |F | ≥ 4, dimF V = 4 and s ≥ 4

3 .

7. p = 3, L ∼ Ext−(21+4).Alt(5), |A| = 3, |F | = 3, dimF V = 4 and s = 2.

8. p = 2, L ∼= Sym(5) or Sym(3) |∧Sym(5), |A| = 2 or A ≤ L′, F | = 2, dimF V = 4,
s = 2 and |EndL′(V )| = 4.

9. p = 2, s = 2, F ≤ 4. There exists a system of imprimitivity ∆ for L on V with
L/CL(∆) = Sym(∆). Let U ∈ ∆, then |U | = 4. If A ≤ CL(∆) then |A| = 2. CL(∆)
is a Sym(∆) invariant subgroup of Sym(3)∆. If |F | = 2 then CL(∆) induces Sym(3)
on U and if |F | = 4 then CL(∆) induces C3 on U .

10. Let K = E(L). Then K is quasi simple, K acts irreducible on V , F = EndK(V ).
Moreover, L acts primitively and tensor indecomposable on V .

11. s > 1. There exists a central extension L∗ so that V ∼= V1 ⊗ V2 for some faithful FL∗

modules V1 and V2. Let {i, j} = {1, 2}, Pi = {A ∈ PQ∗s(H,V ) | [Vj , A] = 0} and
Li = 〈Pi〉. Then PQ∗s(H,V ) = P1 ∪ P2, L = L1L2 and [L1, L2] = 1. Let Ki = E(Li)
Then Vi is an irreducible FKi module module and F = EndKi(Vi). Pi ∈ PQ∗s

nj

(Li, Vi).

Let Ai ∈ Pi, ni = dimFVi and and let si be defined by |Vi/CVi(Ai)| = |Ai|si. Then
si ≤ s2

ni+s
≤ 4

ni+2 and nj
s + 1 ≤ ni ≤ s(nj − 1).

Proof:
We will first prove:

s2− 2
(1) Suppose V can be regarded as a vector space over a field F so that L acts F -semilinear

but not F -linear on V . Then |A| = p = 2, |F | = 4 or 16, |V | = 4 or 16 and L is one of
Dih(6), Dih(10), Sym(3)× Sym(3), Sym(5) or Sym(3) |∧Sym(5). Moreover if s 6= 2, then
s ≥ 1, |F | = |V | = 4 and L ∼= Sym(3).
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Choose A ∈ PQ∗(L, V ) which does not act F -linear on A. Since A acts quadratically
on V we conclude that |A| = 2. Moreover, |V | = |V/CV (A)|2 ≤ |A|2s = 22s ≤ 16. Thus
L ≤ ΓGL2(4). (1) now follows by inspecting the irreducible subgroups of ΓGL2(4) ∼=
Sym(3) |∧Sym(5) generated by involutions.

s2− 3
(2) Suppose there exist a central extension L∗ of L, a field F and FL∗-moduln V1 and V2

so that V ∼= V1 ⊗F V2 as GF (p)L∗ modules. Then one of the following holds:

1. s = 2, p = 2, dimF Vi = 2, |A| = |F | for all A ∈ PQ∗s(L, V ) and L ∼= SL2(F )×SL2(F )

2. s > 1. Let {i, j} = {1, 2}, Pi = {A ∈ PQ∗s(H,V ) | [Vj , A] = 0} and Li = 〈Pi〉.
Then PQ∗s(H,V ) = P1 ∪ P2, L = L1L2 and [L1, L2] = 1. Pi ∈ PQ∗s

nj

(Li, Vi). Let

Ai ∈ Pi, ni = dimFVi and and let si be defined by |Vi/CVi(Ai)| = |Ai|si . Then
si ≤ s2

ni+s
≤ 4

ni+2 and nj
s + 1 ≤ ni ≤ s(nj − 1).

Suppose first that there exists A ∈ PQ∗s(H,V ) with [V1, A] 6= 0 6= [V2, A]. Using 6.9b
it is then easy to see that refs2-31. holds. So suppose that no such A exists. Then clearly
PQ∗s(H,V ) = P1 ∪ P2, L = L1L2 and [L1, L2] = 1.

Note that V is as an Li module the direct sum of nj copies of Vi. Hence for all B ≤ Li,
|CV (B)| = |CV1(B)|nj and so (|B|

s
nj |CV1(B)|)nj = |B|s|CV (B)|. Thus Pi ∈ PQ∗s

nj

(Li, Vi).

Moreover, we see that sinj ≤ s. Thus si ≤ s
nj

. By 6.10 we have si > 1
ni−1 and so s

nj
≥ si ≥

1
ni−1 and thus ni ≥ nj

s + 1. Hence also nj ≥ ni
s + 1 = ni+s

s . Therfore si(ni+ss ) ≤ sinj ≤ s

and si ≤ s2

ni+s
. Hence refs2-32 holds.

s2− 4
(3) If V is tensor-decomposable as L-module, then 4.,5. or 11. holds.

In case (2)1, 4. or 5. holds. So suppose (2)2. holds. Since Pi ≤ PQ s
ni

(Li, Vi) can imply

induction to (Li, Vi). Moreover, either s
ni
< 1 or s

ni
= 1 and ni = 2. If ni = 2, then si = 1

and sinj ≤ s implies nj = 2. It follows that 4. or 11 holds in this case.
We may and do assume form now on that V is tensor indecomopsable.
Suppose that L acts irreducible but does not primitively on V and let ∆ be a system

of imprimitivity for L on V . Since L acts irreducble on V , L acts transitively on ∆. Thus
there exists U ∈ ∆ and 1 6= A ∈ PQ∗s(H,V ) so that A does not normalizes U . If |U | = 2,
L centralizes the sum of the non-zero elements in

⋃
∆, a contradiction to the irreducible

action of L. Hence by 6.9a we conclude that |U | = 4, s = 2, |A| = 2 and A centralizes
〈∆ \ UA. In particular, A acts a 2-cycle on ∆ and we conclude that L/CL(∆) = Sym(∆).

Thus
s2− 1

(4) If L acts irreducible but not primitively on V , then p = 2, s = 2 and L is a subgroup
of SL2(2) o Sym(n), where n = dimV/2.
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Suppose next that L acts irreducible and primitively on V .
Let K be a normal subgroup of L minimal with respect to [K,L] 6= 1. As L acts primi-

tively, V is a as K-module isomorphic to the direct sum of isomorphix irreducible GF (p)K-

modules. In particular KCGL(V )(K) acts irreducible on V and so F
def
= EndKCGL(V )(K)(V )

is a field. By (1) we may assume that L acts F -linear on V . As V is tensor indecoposable we
conclude that K acts irreducible on V . If K is cyclic, we conclude that V is 1-dimensional
over F and so L is cyclic, a contradicion, since Op(H) = 1. Thus K is not cyclic and
we may assume that all cylic normal subgroup of L are contained in Z(L). In particular
CL(K) ≤ Z(L).

Assume that K is a q-group for be a prime q. Then q 6= p. Pick A ∈ PQ∗(L, V ) with
[K,A] 6= 1. Then p = 2 or 3. Moreover, [K,A] 6≤ Z(K) and so 1 6= [A,K,K] ≤ Z(L).

Suppose that p = 2, then by 6.2 and the irreducible action of K, A is cyclic. But then
|A| = 2 and so |[V,A]| = |[V/CV (A)| = 2r ≤ 2s ≤ 4 for some integer r ≤ s ≤ 2. Hence there
exist 1 6= k ∈ [A,K,K] with |V | = |[V, k]| ≤ 24r. Also note that since Z(K) 6= 1, |F | ≥ 4
and so dimF V ≤ 2r. Since K is non-abelian and acts irreducible on V , we conclude that
r = 2 and

s2− 5
(5) |A| = 2 = p, s = 2, K ∼= Ext(31+2), |V | = 26, and L = KA ∼= SU3(2)′

Suppose next that p = 3. Then q = 2 and [K,A] is extraspecial. If A is not cyclic we
obtain a contradiction to 6.9b applied to an irreducible submodule for [K,A]A in V . Hence
A is cyclic and similarly [K,A] ∼= Q8. Moreover |CV (A)|2 = |V | and so |V | ≤ 32s ≤ 34. As
L is irreducible and tensor indecomospable on V one of the following holds:

s2− 6
(6) 1. |A| = p = 3, s ≥ 1, |V | = 32 and L ∼= SL2(3).

2. |A| = p = 3, s = 2, |V | = 34 and L ∼ Ext−(21+4).Alt(5).

Suppose next that K is not nilpotent. Then K = E(K) and L acts transitively on the
components of L.

Assume that K is not quasisimple. Then there exist a component R of K and A ∈
PQ∗2(L, V ) so that A does not normalize R. Since A acts quadratically this implies p = 2,
R ∼= SL2(F ) and |RA| = 2. Moreover, using 6.9b we get:

s2− 7
(7) Put q = |F |. Then p = 2, s ≥ 4

3 , q > 2, |A| ≤ 2q, dimF V = 4, |V/CV (A)| = q2, and
L ∼= Ω+

4 (F ) ∼ SL2(F )× SL2(F ) : 2.

Assume finally that K is quasi simple. Then
s2− 8

(8) K = E(L) is quasi simple, CL(K) = Z(L), L acts irreducibly, primitively, tensor
indecompsable and F -linear on V .

Lieq
Lemma 6.12 F2-modules for groups of Lie type and maybe also the non-quadratic F2-
modules
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PGSym
Lemma 6.13 Let Ω be a finite set, G = Sym(Ω), and V (Ω) = GF (2)[Ω] the natu-
ral permutation module GF (2)G-permutaion module. Define VO(Omega) = [V (Ω), G],
V (Ω) = V (Ω)/CV (Ω)(G) and V0(Ω) = V0(Ω)/CV0(Ω)(G). Let V be one of the modules,
V (Ω), V0(Ω), V (Ω) and VO(Ω).

(a) Let A be a non-trivial elementary abelian subgroup of G with |V/CV (A)| ≥ |A|. Then
there exists commuting transpositions t1, t2, . . . tk so that one of the following holds

1. A = 〈t1, t2, . . . , tk〉.
2. |Ω| = 2k, V = V0(Ω) or VO(Ω) and A = 〈t1t2, t2t3, . . . , ti−1ti, ti+1, ti+2, . . . , tk〉,

where 1 ≤ i ≤ k.

3. |Ω| = 2k + 4, V = V0(Ω) or VO(Ω) and A = 〈t1, t2, . . . , tk, (ab)(cd), (ac)(bd)〉,
where a, b, c, d are the four common fixed points of t1, . . . , tk.

4. |Ω| = 4|, V = V (Ω) and A ≤ Alt(Ω).

5. |Ω| = 8, V = VO(Ω), |A| = 8 and A acts regularly on Ω.

(b) Suppose |Ω| 6= 8 and let H ≤ G with H = 〈P(H,V ). Let Ψ an orbit for H on Ω.
Then one of the following holds:

1. H/CH(Ψ) = Sym(Ψ).

2. H/CH(Ψ) = Alt(Ψ).

3. |Ψ| is even and H/CH(Ψ) = NSym(Ψ)(∆) ∼= C2 o Sym(|Psi|/2), where ∆ is a
partion of Ψ into sets of size 2.

4. |Ψ| = 4 and H/CH(Ψ) ∼= E4.

5. |Ψ| = 6 and H/CH(Ψ) ∼= Alt(5).

6. |Ψ| = 8 and H/CH(Ψ) ∼ 23 : L3(2).

Proof: (a) By induction on |A|, V and |Ω|. Suppose that A 6∈ P(G,V ) and let 1 6=
B ≤ A with B ∈ P(A, V ) with |B||CV (B)| > |A||CA(V )| ≤ |V |. Then by induction Ω = 2k
and B = 〈t1, t2, . . . , tk〉. But then A ≤ CG(B) = B and so A = B, a contradiction.

Hence A ∈ P(G,V ). Let B = CV ([V,A]). Then 1 6= B ∈ P(G,V ). Suppose B 6= A
and apply (a) to B. In case (a3) A ≤ CG(B) ≤ A, a contradiction. In case (a1) and (a2),
CG(B) = 〈t1, t2, . . . tk〉 × Sym(Ω′). If |Ω| = 2k, then CG(B) acts quadratically on V , a
contradiction to A 6= B. Thus |Ω| 6= 2k and A = B×D, where D = B ∩Sym(Ω′). We may
view VO(Ω′) as a subspace of V . Then A ≤ P(A, VO(Ω′) and so D ∈ P(Sym(Ω′, VO(Ω′).
In particular we can apply (a) to D. Since CD([V,A]) = 1 we get that CD(V (Ω′) = 1. But
this implies that (a3) with k = 0 holds for D on VO(Ω′). Thus also (a3) holds for A on V .

So we may assume that [V,A,A] = 0. Suppose that A has an orbit of length larger
then four on Ω. If |Ω| = 4, (a3) or (a4) holds. So assume |Ω| > 4. If A has an orbit of
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lenght less then four on Ω then [VΩ, A,A] has an element of lenght four, a contradiction to
[V,A,A] = 0. Thus all orbits of A have length at least four. Moreover, [V (Ω), A,A] has
an element of lenght four and [VΩ, A,A] has an element of length eight. We conclude that
|Ω| = 8 and V = V0(Ω). If A has an orbit of lenght eigth on Ω, (a5) holds. So suppose that
A has two orbits of length four. If 1 6= a ∈ A acts trivially on on of the orbits of A on Ω,
then [V, a,A 6= 0. Thus |A| = 4, but |V/CV (A)| = 8, a contradiction.

Hence we may assume that all the orbits of A on V have length at most 2. If A has a
fixed point on Ω we are done by induction. Hence we may assume that A acts fixed point
freely on Ω. Suppose that there exists v ∈ V (Ω) with 0 6= [v,A] ≤ CV (Ω)(G). Then it os
easy to see that CA(v) = 1 and so |A| = 2 and |Ω| = 2. So we may assume that no such v
exists. Hence |V/CV (A)| ≥ 2k−1, where k = Ω|/2 and thus |A| ≥ 2k−1 and (a2) holds.

(b) Let A ∈ P(H,V ) so that A does not act trivially on Ψ.
Suppose first that some element of H induces a transposition on Ψ. If H acts primitively

on Ψ, (b1) holds. So suppose that ∆ is a system of imprimitivity for H on Ψ. Since A is
generated by elements of support less or equal to four, we conclude that elements of ∆ have
size two and A on its action on ∆ is generated by transopsition. As H acts transitively on
∆, H/CH(∆) = Sym(∆). Moreover, all the transposition in H act trivially on ∆ and so
CSym(Ψ)(∆) ≤ H/CH(Ψ) and (b3) holds.

So suppose that no element of H induces a transposition on Ψ.If A fulfils (a3) or (a4)
then |Ψ| = 4 and (b4) holds.

So we may assume that A fulfils (a2). Then Ψ = Supp(〈t1, t2, . . . tk〉 and we may assume
without loss that Ψ = Ω = {1, . . . , 2k} and ti = (2i − 1, 2i). It is easy to see that k ≥ 3.
Suppose that ∆ is a system of imprimitivity for H on Ψ and without loss that A acts non
trivially on ∆. Let D ∈ ∆. Then |D| = 2 and say D = {1, 3}. Then |Dt1t3 ∩ D| = 1, a
contradiction.

Thus A acts primitively in Ψ. Hence if H contains a 3-cycle, (b2) holds. So we may
assume that H contains no three cycle. Let A∗ ∈ P(H,V ) with A 6= A∗ and so that
A∗ does not normalize A. Let a ∈ A and a ∈ A∗ with |Supp(a)| = |Supp(a∗)| = 4 and
A 6= Aa

∗
. If |Supp(a) ∩ Supp(a∗)| = 1, then (aa∗)2 is a three cycle, a contradiction. Hence

|Supp(a) ∩ Supp(a∗)| 6= 3, for all such a and a∗.
Suppose a∗ = (1, 2)(3, 5). Then (12)(34)a∗ is a three cycles, a contradiction.
Suppose that a∗ = (1, 3)(2, 5). If k ≥ 4 we obtain a contradiction by choosing a =

(34)(78). Thus k = 3, A∗ = 〈(1, 3)(2, 5), (1, 3)(4, 6)〉 and 〈A,A∗〉 ∼= Alt(5). It follows that
H = 〈A,A∗〉 and (b5) holds.

Up to conjugation under NSym(Ψ)(A) we now may assume that a∗ = (1, 3)(5, 7). If n ≤ 5
we obtain a contradiction by choosing a = (1, 2)(9, 10). Thus k = 4. By the previous case
neither (13)(26) nor (13)(28) can be in A∗ and we conclude that the orbits of A∗ on Ψ are
13, 24, 57 and 68. In particular, A and A∗ normalize {1, 2, 3, 4} and 〈A,A∗〉 ∼ 24Sym(3).
It is now readily verified that (b6) holds.

LPGV
Lemma 6.14 Let G be a finite group with F ∗(G) quasisimple. Let V be a faithful GF (p)G-
module and A a G invariant subset of P(G,V ). Let S ∈ Sylp(G) and put J = JA(S) =
〉A ∩ S〈. L ≤ G with L = NG(Op(L) and J ≤ L and suppose that K is p-component
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of L so that J does not normalize K. Then p = 2, 〈A〉 ∼= O+
2n(2k), n ≥ 3, k ≥ 2 and

K/O2(K) ∼= SL2(2k) all non-trivial composition factors for 〈A〉 on V are natural O+
2n(2k)-

modules. In particular, if n = 3, then P(Op(L), V ) = 1 .

Remark: If n > 3, then it can be shown that K is not subnormal in CG(CV (S),
where S ∈ Sylp(L).

Proof: Let H = F ∗(G). We may assume without loss that H centralizes all proper
G-submodules in V . That is V = [V,H] and G actss irreducible on V/CV (H). In particular
by the Three Subgroup Lemma, Op(G) = 1.

If p = 2 and H/Z(H) is an alternating group we obtain a contradiction from 6.13. So
we may assume that:

LPGV − 1
(1) H is a group of Lie type in characteristic p.

We may assume without loss that H centralizes all proper G-submodules in V . That
is V = [V,H] and G acts irreducibly on V/CV (H). In particular by the Three Subgroup
Lemma, Op(G) = 1.

If O2(L)∩H = 1, then [O2(L),K] = 1 and so by the P ×Q-lemma, [CV (O2(L),K] 6= 1.
But L ∩ A ⊆ P(L,CV (O2(L)) and K maps onto a component of L/CL(CV (O2(L)), a
contradiction.

Hence O2(L) ∩H 6= 1. Let M = NG(O2(L) ∩H). Then L ≤ M and NO2(M)(O2(L)) ≤
O2(L) and so O2(M) ≤ O2(L). Hence O2(M) ∩H = O2(L) ∩H and M ∩H is a parabolic
subgroup of H. We have proved:

LPGV − 3
(2) There exists a parabolic subgroup M of G with L ≤M and O2(M)∩H = O2(L)∩H.

It follows immediately from (2) that
LPGV − 4

(3) H has rank at least three.

Note that CV (H) = 0 unless H ∼= Sp2n(q) and V/CV (H) is a natural Sp2n(q)-module. In
which case we have CV (X)CV (H)/CV (H) = CV/CV (H)(X) and so P(G,V ) ⊂ P(G,V/CV (H)).
Hence we may assume without loss that CV (H) = 0 and so V is irreducible as G-module.

LPGV − 2
(4) One of the following holds

1. 〈A〉 = H

2. p = 2, 〈A〉 =∼= O±2n(2k), n ≥ 3 and V is a natural Ω±2n(2k) module for H.

Let P ∈ ∩P (G,S) so that [CV (O2(P )), O2(P )] 6= 1. Then J induces inner automor-
phisms on Head(P ) and (4) follows from the structure of P and V .

Suppose that O2(M) = O2(L). Then L = M is a parabolic of G and so the p−componets
of L are normal in H ∩L. Using (4),we conclude that the lemma holds. So we may assume
that
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LPGV − 5
(5) O2(M) 6= O2(L) and O2(L) 6≤ H.

Note that [O2(L), L∩H] ≤ O2(L)∩H ≤ O2(M) and so L/O2(M) = CM/O2(M)(O2(L)).
In particular, [J ∩H,O2(L) ≤ O2(M). Without loss S ≤ M and S ∩ L ≤ Sylp(L). Since
J 6≤ O2(M) there exists P ∈ P(M,S) with J 5 P . Then J 6≤ O2(P ) and [J ∩H,O2(L) ≤
O2(P ). Let P = P/O2(P )

Suppose that J ≤ H. ThenNP (S∩H) normalizes J and we conclude that Z(S ∩ P ) ≤ J ,
or p = 2 and P ∼= Sym(3) oC2. As O2(L) centralizes J and O2(L) 6≤ H one of the following
has to hold

LPGV − 6
(6) 1. p = 2, H ∼= SLn(q), O2(L) induces a graph automorphism on H and P ∩H ∼=

L2(q) or SL3(q)

2. p = 2 H ∼= SUn(q), O2(L) induces a field automorphism of order two on H and
P ∩H ∼= L2(q) or SU3(q)

3. p = 2 and O2(L)H ∼= O2n±(q).

4. p = 2 and G = O2(L)H = Aut(Ln(2)).

In case (6)1 or (6)2, P is uniquely determined. Let R be the maximal parabolic of
M with P 6≤ M . Then we conclude that J � R and so [J, [R,O2(L)] ≤ O2(M). By the
structure of M this implies J ≤ O2(M), a contradiction. In case (6)3 it is easy to see that L
is the normalizer of a non-singular isotropic space and so all p-components of L are normal
in L. In case (4), since J does not normalize K and J ≤ H, M most have parbolic E with
E/O2(E) ∼= L3(2) oC2 and J 6≤ O2(E). Let T be a 2-componet of E. As [J,O2(L)] ≤ O2(E)
and O2(E) does not normalizes T , T ∩J ≤ O2(E). Hence [T ∩S, J ] ≤ O2(E) and J i normal
in both minimal parabilocs of E, a contradiction.

We have proved:
LPGV − 7

(7) J 6∈ H, p = 2 and JH ∼= O±2n(q).

If O2(L) ≤ JH we are done by the argument in (6)3 we are done. So suppose O2(L) 6≤
JH. Then O2(L) induces field automorphisms on H and on Head(P ). In particular q ≥ 2.
If J ≤ HO2(P ), we get that S ∩ P ) = J ∩H, a contradiction. Thus J 6≤ HO2(P ) and so
P is uniquely determined. But now the argument in (6)1&2 yields a contradiction.

qusp
Lemma 6.15 Let H be a finite group such that L = F ∗(H) is quasi simple but neither a
group of Lie type in charcateristic 2 nor an alternating group. Let V be a faithful irreducible
GF (2)H-module and 1 6= A ≤ G with [V,A,A] = 1 and let B be a maximal quadratic
subgroup of H containing A. Moreover assume that there exists at least one fours group in
H acting quadratically on V .
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(a) One of the following holds.

Remark: Information should be written down more clearly

1. L ∼= Mat12 and V is 10-dimensional.

1.1. |B| = 4, A ≤ L, NL(A) ∼ 25.Sym(3) ∼ NL(B), [V,B] = CV (B) is 5-
dimensional and either

1.1.1. A = B

1.1.2. |A| = 2 and [V,A] is 4-dimensional.
1.2. |B| = 4, B 6≤ L, NL(B) ∼ C2 × Sym(5), CV (B) = [V,B] is 5-dimensional

and either
1.2.1. A 6≤ L and CV (A) = CV (B) = [V,B] = [V,A]
1.2.2. A = B ∩ L and [V,A] is 4-dimensional.

2. L ∼= 3.Mat22 and V is 12-dimensional.

2.1. |A| = 2, A ≤ L and [V,A] is 4-dimensional.
2.2. |A| = |B| = 2, |A| 6≤ L and [V,A] = CV (A) is 6-dimensional.
2.3. |A| ≥ 4, |B| = 8, B ≤ L, NL(B) ∼ C3 × 23.L3(2) and CV (A) = CV (B) =

[V,B] = [V,A] is 6-dimensional.
2.4. |A| ≥ 4, |B| = 16, B ≤ L, NL(B) ∼ 24 : 3.Alt(6) and CV (A) = CV (B) =

[V,B] = [V,A] is 6-dimensional.

3. L ∼= Mat22 and V is 10 dimensional.

3.1. |A| = |B ∩ L| = 2 and [V,A] is 4-dimensional.
3.2. |A| = 2, |B| = 4, A 6≤ L, CL(A) ∼ 23.L3(2) and [V,A] is 3-dimensional.
3.3. |A| = |B| = 4, A 6≤ L, NL(A) = NL(A∩L) and CV (A) = CV (B) = [V,B] =

[V,A] is 5-dimensional.

4. H ∼= Mat24 and V is 11-dimensional.

4.1. |A| = 2, |B| = 4, NG(A) ∼ 21+3+3̄.L3(2) and [V,A] is 4-dimensional.
4.2. |A| = |B| = 4, NG(A) ∼ 28.(Sym(3) × Sym(3)) ≤ 26 : (Sym(3) × L3(2))

and either
V is the Golay code module and CV (A) = [V,A] is 6-dimensional or
V is the Todd module and CV (A) = [V,A] is 5-dimensional

4.3. |A| ≤ 4, |B| = 4, NL(A) ≤ NL(B) ∼ 22+4 : 3 : Sym(5) ≤ 26 : 3.Sym(6) and
either
V is the Golay code module and CV (A) = CV (B) = [V,B] is 6-dimensional
or
V is the Todd module and [V,A] = CV (B) = [V,B] is 5-dimensional

5. L ∼= 3.U4(3), V is 12-dimensional.

5.1. |A| = 2, A ≤ L and [V,A] is 4-dimensional.
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5.2. |A| = |B| = 2, A inverts Z(L) and [V,A] = CV (A) is 6-dimensional.
5.3. |A| = 2, A 6≤ L, CL(A) ∼= C3 × U4(2) and |[V,A]| = 4.
5.4. |A| = 2, A 6≤ L, |B| = 25 and CV (A) = [V,A] = CV (B) = [V,B] is 6-

dimensional and CL(A) ∼ 24(Sym(3)× Sym(3).
5.5. |B ∩ L| = 16, NL(B) ∼ 24 : 3.Alt(6) and either

CV (A) = [V,A] = CV (B) = [V,B] is 6-dimensional or
|A| = 4, |A ∩ L| = 2 and [V,A] = [V,A ∩ L] is 4 dimensional.

6. L ∼= J2 and V is 12-dimensional.

6.1. |A| = 2, |B| = 4, NL(A) ∼ 21+4Alt(5) and [V,A] is 4-dimensional.
6.2. |A| = |B| = 4, NL(A) ∼ 26.Sym(3) and [V,A] = CV (A) is 6-dimensional.
6.3. |B| = 4, NL(A) ≤ NL(B) ∼= Alt(4)×Alt(5) and CV (A) = [V,A] = CV (B) =

[V,B] is 6-dimensional.
6.4. |A| = |B| = 2, A 6≤ L and [V,A] is 6-dimensional.

7. G ∼= Co1 and V is 24-dimensional.

7.1. |A| = 2, |B| = 4, NL(A) ∼ 21+8Ω8(2) and [V,A] is 8-dimensional.
7.2. |A| = |B| = 4, NL(A) ∼ 214.Sym(3) × Alt(8) and [V,A] = CV (A) is 12-

dimensional.
7.3. |B| = 4, NL(A) ≤ NL(B) ∼ (Alt(4) × G2(4)).2 and CV (A) = [V,A] =

CV (B) = [V,B] is 12-dimensional.
7.4. |A| = |B| = 2, NL(A) ∼ 211Aut(M12), and [V,A] is 12-dimensional.

8. G ∼= Co2 and V is 22-dimensional.

8.1. |A| = 2, |B| = 4, NL(A) ∼ 21+8Sp6(2) and [V,A] is 6-dimensional.
8.2. |A| = 2, |B| = 4, NL(A) ∼ 21+4+6Alt(8) and [V,A] is 8-dimensional.
8.3. |A| = |B| = 4, NL(A) ∼ 215.L3(2) and [V,A] = CV (A) is 11-dimensional.
8.4. |A| = |B| = 2, NL(A) ∼ 210Aut(Alt(6)), and [V,A] is 11-dimensional.

9. L ∼= 3.Sz and V is 24-dimensional.

9.1. |A| = 2, |B| = 4, NL(A) ∼ 21+6Ω6(2) and [V,A] is 8-dimensional.
9.2. |A| = |B| = 4, NL(A) ∼ 214.Sym(3) × Alt(5) and [V,A] = CV (A) is 12-

dimensional.
9.3. |B| = 4, NL(A) ≤ NL(B) ∼ (Alt(4) × L3(4)).2 and CV (A) = [V,A] =

CV (B) = [V,B] is 12-dimensional.
9.4. |A| = |B| = 2, A 6≤ L and [V,A] is 12-dimensional.

(b) Suppose in addition that q ≤ 2, where |A|q = |V/CV (A)|. Let c be the case in (a)
fulfilled by A and a = |A|. Then (c, a, q) is one of the following Remark: this
doesn’t look very nice

1. (2.3, 8, 2).
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2. (2.4, 8, 2) or (2.4, 16, 3
2).

3. (5.3, 2, 2).

4. (5.5.1, 8, 2), (5.5.1, 16, 3
2) or (5.5.1, 32, 6

5).

5. (5.5.2, 4, 2)

Inparticular, L ∼= Mat22, 3.Mat22 or 3.U4(3); and q ≥ 3
2 unless L ∼= 3.U4(3) and

|A| = 32.

Proof: This can be verified using [MS] and [At].
dpromo

Definition 6.16 Let H be a group and F a field. Then an FH promodule for H is a pair
(φ, V ) there V is a vector space over F and φ : H → GLK(V ) is a map so that the induced
map φ∗ : H → PGLK(V ) is a homomorphism.

V ZQ
Lemma 6.17 Let p a prime and H be a finite group p-connected group with Op(H) = 1.
Let S ∈ Sylp(H) and Z and Q non-trivial normal subgroups subgroups of S with Z ≤ Z(Q)
and |Q| ≥ 3. Let L = Op(H).

(a) Suppose p = 2 and H is a transitive subgroup of Sym(Ω) such that Z acts trivially all
Q orbits of size larger than two. Then one of the following holds:

1. The exists a system of blocks D for H on Ω such that

(a) If ∆ ∈ D, then Q normalizes ∆, Q = ZCQ(∆) and |Q/CQ(∆)| = 2.
(b) For ∆ ∈ D let L∆ = CL(

⋃
D −∆). Then L = ×∆∈DL∆.

2. L 6= O(L). Let D be the set of orbits of O(H) on |Ω|. Then H/O(H) acts
faithfully on H. Let ∆ be an orbit for L on D and for X ≤ H let X∆ =
NX(∆)/CX(∆).Then

(a) Q normalizes ∆.
(b) L∆ = F ∗(H∆) is simple.
(c) 1 6= Z∆ ≤ Z(Q∆), Z∆ and Q∆ are normal in S∆, S∆ is a Sylow 2-subgroup

of H∆, |Q∆| ≥ 4, and each orbit for Q∆ on ∆ is either centralized by Z∆ or
has size at most 2.

(d) One of the following holds:
1. H∆ = Alt(∆) or Sym(∆).
2. ∆ can be viewed as projective space over the field with two elements so

that H∆ = PGL(∆). Moreover if K is a component of L/O(L), then
NS(K) induces only inner autmorphism on K.

3. |∆| = 6 and H∆ ∼= Alt(5) or Sym(5).
4. |∆| = 10 and H∆ ∼= Sym(6) or Aut(Alt(6)).
5. |∆| = 12 and H∆ = Mat12 or ∆ = 24 and H∆ ∼= Aut(Mat12.
6. |∆| = 22 and H∆ = Mat22 or Aut(Mat22.
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7. |∆| = 24 and H∆ = Mat24. Remark: This needs careful checking

(b) Let K be a field with charK = p and suppose that H is an irreducible subgroup of
GLK(V ) with [V, Z,Q] = 0. Let W a Wedderburn componet for L on V . For X ≤ H
let XW = NX(W/CX(W ). Then one of the following holds.

1. p = 2 and there exists a system of blocks D for H on V such that

(a) If U ∈ D, then Q normalizes U , Q = ZCQ(U) and |Q/CQ(U | = 2.
(b) For U ∈ D let LU = CL(

⋃
D − U). Then L = ×U∈DLU .

2. p = 2 and there exists a system D of H-blocks on V with CH(D) = O(H) and so
that the action of H/O(H) on D is described as in (a)2.

3. L = E(L) and

(a) Q normalizes W .
(b) L acts irreducible on W .
(c) 1 6= ZW ≤ Z(QW ), ZW and QW are normal in SW , SW is a Sylow 2-

subgroup of H∆, |QW | ≥ 3, [W,Z,Q] = 0 and F ∗(HW ) = LW .
(d) One of the follwing holds.

1. LW is quasi-simple.
2. p = 2, LW = L1L2, where L1L2 are the components of LW . Q normal-

izes L1 and L2 and as LWQW module W = W1 ⊗F W2 for some faithul
FLiQ

W modules Wi. Moreover QW acts linear dependently on Wi.
3. p = 2, LWQW ∼= L2(q) o C2 and W is the natural Ω+

4 (q)-module for
LWQW .

4. One of the following holds:

1. p = 2, L = O3(L), LW ∼= Ext(31+2),ZW ∼= C2, QW ∼= C4 or Q8 and
|W | = 26.

2. p = 3, L = O2(L), LW ∼= Q8, ZW = QW ∼= C3 and |W | = 32.

5. p ∈ {2, 3}. Let {2, 3} = {p, q} and M = Oq(H)W /Z(Oq(H)W . Then

(a) Oq(L)W ∼= Ext(q1+2n) or C4 ◦ Ext(21+2n), n ≥ 2
(b) ZW ∼= Cp and QW ∼= C3, C4 or Q8.
(c) L acts irreducible on M .
(d) |[M,Q]| = q2.
(e) Oq(H) acts irreducible on W .
(f) Conjecture If p = 2, then L/CL(M) = Sp2n(3) and if p = 3, then

L/CL(M) ∼= Ω±2n(2),Alt(2n+1),Alt(2n+2), Sp2n(2) or SUn(22). Also there
are restricions on n from the fact that Q is normal in S.

Proof: (a) The proof is divided into a series of steps
V ZQ− 1

(1) Let ∆ be a block for Q on Ω.
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(a) One of the following holds:

1. Q normalizes ∆.

2. Z centralizes ∆ and so also
⋃

∆Q.

3. |∆Z | = |∆Q| = 2 and NQ(∆) centralizes ∆ and so also
⋃

∆Q.

(b) One of the following holds:

1. Q normalizes ∆.

2. NZ(∆) centralizes ∆ and so also
⋃

∆Q.

Clearly (a) implies (b). For (a) suppose that Z does not centralize ∆. If Z normalizes
∆ then Z has a non-trivial orbit on ∆ and Q has to normalize that orbit. Since ∆ is a
block, Q normalizes ∆ in this case. If Z does not normalize ∆, pick z ∈ Z with ∆ 6= ∆z.
Then ∆∪∆z is a union of non-trivial z orbits and so Q normalizes ∆∪Deltaz. Let ω ∈ ∆.
Then NQ(∆) normalizes ∆ ∩ {ω, ωz} = {ω}. Hence 3. holds in this case.

V ZQ− 2
(2) Let ∆ be an L-invariant H-block. Then

(a) Ω =
⋃

∆S .

(b ) Z does not centralize ∆.

(c) If Z normalizes ∆ and |Q/CQ(∆)| = 2, then (a)1. in the lemma holds.

(d) If Q does not normalize ∆, then (a)1. in the lemma holds.

Since H = LS,(a) holds. Since Z � S, (a) implies (b). If the assumptions of (d) hold,
then by (b) and (1)(a), also the assumptions of (c) are with ∆ replaced by ∆Z . So it
remains to prove (c). By (b) and (1)(a), Q normalizes ∆. Let D = ∆H , QD = CQ(D)
and note that Q/QD = 2. Let Γ be the union of the blocks in ∆H centralized by QD. We
claim thhat Γ is a H-block. Otherwise there exists s ∈ S with QsD 6= QD and a block in
∆H centralized by Q = QDQ

s
D, a contradiction to (b). Hence Γ is a block and replacing ∆

by Γ we may assume Γ = ∆. Define L∆ as in (a)1. of the lemma. Let R = 〈L∆ | ∆ ∈ D.
Then R is a normal subgroup of H and R = ×∆∈DL∆. It remains to show that R = L. Let
D = {∆,∆1,∆2, . . . , Deltan}. Put L0 = L and inductively for 1 ≤ i ≤ n, Li = [Li, Q∆i ].
We claim that L = LiCL(∆). This is obvious for i = 0 Since H is 2 connected, L = [L,Q]
and so by induction, L = [Li−1, Q]CL(∆). Since Q = Q∆Q∆i and Q∆ ≤ CL(∆) we
conclude, L = [Li−1, Q∆i ]CL(∆) = LiCL(∆). Thus L = LnCL(∆). But Ln ≤ Li for all i
and Li centalizes ∆i. Thus Ln ≤ L∆ and so L = L∆CL(∆) But this clearly implies L = R
completing the proof of (2).

V ZQ− 2a
(3) Let F ≤ Q with |F/F ∩ Z| ≤ 2. Then an orbit for F on Ω has length at most for 2.

In particular, F is elementary abelian.

40



Either Z ∩F acts trivially on a given F -orbit or not. In both cases the orbit has size at
most two.

V ZQ− 3
(4) Let P be a subgroup of odd order in H normalizes by Q. Let ∆ be an orbit for PQ

on ∆ such that P acts transitively and Z non-trivially on ∆. Then |Q/CQ(∆)| = 2.

By the Sylow theorem and the Frattini argument, Q fixes a point ω ∈ ∆. Also P =
[P,Q]CP (Q) and replacing P by [P,Q] and ∆ by ω[P,Q] we may assume that P = [P,Q].
Let R be a maximal Q invariant normal subgroup of P . If R is transitive on Ω, then by
induction on |P |, Z centralizes P . Hence Z/CZ(∆) acts semiregulary on ∆ and all orbits
of Z on Ω have size two. Also Q and hence [R,Q] normalizes all orbits of Z. Thus [R,Q]
centralizes ∆. Since P = [P,Q], [R,P centalizes ∆ and so R/CR(∆) acts regularly. But
then R centralizes ∆, a contradition. So R is not transitive. Let D be the set of orbits
for R on ∆. Then the abelian group M

def
= P/R acts regularly on D and D and and M

are ismorphic as Q-sets. Suppose that Z centralizes M , then P = CP (Z)R and M acts
non-trivially on each member of D. But then Q normalizes each member of D. Thus Z
acts non-trivially on M and D. Similarly, if CQ(M), acts non-trivialy on ∆, Z is forced to
act trivially on D. Thus Q/CQ(Delta) acts faithfully on M and D. Let z ∈ Z \ CZ(M).
Since z ∈ Z(Q) and Q acts irrducibly on M , z inverts M . Let m ∈M#. Then Q normalize
{m,m−1 and as Q is irreducible, M = 〈m〉 and |Q/CQ(M) = Q/CQ(∆)| = 2.

V ZQ− 5
(5) Suppose (a)1. does not hold and let D be the set of orbits for O(H) on Ω. Then
H/O(H) acts faithfully on D.

Suppose not. Then since H is 2-connected, L centralizes D .Let ∆ ∈ D. By (2), Q
normalizes ∆. Also Z acts non-trivially on ∆ and O(G) acts transitively. Thus by (4),
|Q/CQ(∆)| = 2 and by (2) (a)1. holds.

We assume form now on that (a)1. does not hold. Replacing Ω by the set of orbits of
O(H) on Ω and H by H/O(H) we also may assume that O(H) = 1. Thus L = ×mi=1Li for
some non-abelian simple groups Li. Let ∆ be an orbit for L on Ω. We wish to whow that a2
holds. a2a and a2c follow from (2). Let M = L∆. Then M = ×ni=1Ei, where {E1, . . . , En}
consists of whose L∆

i (∼= Li) which act non-trivially on ∆. Suppose for a contradiction that
n ≥ 2. Let 1 6= z ∈ Z ∩ Z(S). Then z centralizes the Sylow 2-subgroup M ∩ S of M
and so z normalizes all Li and Ei. If Q does not normalize the componets of M , then
|[S ∩M,Q]| ≥ |S ∩Mi| ≥ 4 and so |M ∩Q| ≥ 4. So replacing Q by (M ∩Q)Z in this case,
we may assume that Q does normalize the components of M .

Let E = E1 and F = CM (E1). Since z ∈ Z(S), E = [E, z]. Suppose that CQ(E)∆ 6= 1
and pick t ∈ CQ(E)∆ with |t| = 2. Then z normalises all the non-trivial orbits for t on
Ω. Since E centralizes t, the same is true for E = [E, t]. But the E = E′ centralizes each
non-trivial orbit of t, a contradiction. Thus CQ(E)∆ = 1.

Suppose that E does not act transitively on ∆. Since M acts transitively, M does not
normalize any orbit of E. As M = [M, z] there exists an orbit Γ for E on ∆ with Γ 6= Γz.
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Thus by (1), P = CQ(Γ) has index two in Q. But then [E,P ] centralizes ∆ and so [E,P ] = 1
and P∆ ≤ CQ(E)∆ = 1, a contradiction to |Q/P | = 2.

Thus E acts transitively on ∆. By symmetry also F is transitively on ∆ and so E
is regular. Let F be a group of order four in Q∆ with z∆ ∈ F . Let ω ∈ ∆. Let F =
{1, f1, f2, f3} and ωfi = ωei for some ei ∈ E. Let Ei = {e ∈ E | efi = e−1

i }. Note that
Ei is a coset of the proper subgroup CE(fi) in E. Let e ∈ E. By (3), there exists fi ∈ F
with ωe = ωefi = ωfie

fi = ωeie
fi . As E is regular we get eiefi = 1 and so e ∈ Ei. Thus

E = E1 ∪ E2 ∪ E3 is covered three proper cosets. But this implies that E has a subgroup
of index two or three, a contradiction as E is non-abelian simple. Thus a2c holds.

To prove a2d we assume without loss that ∆ = Ω so L = F ∗(H) is simple. Let
V = GF (2)Ω be the permutation module associate to Ω. Then [V, Z,Q] = 0 and so V is a
faithful GF (2)H-module with a quadratic fours group. Hence by 6.15, L is a group of Lie
type in characteristic 2, or L = Mat12,Mat22,Mat24, J2, CO1 or Co2. Let 1 6= z ∈ Z and
R = 〈QCH(z). Then R normalizes all non trivial orbits of z on Ω and [V, z,Q] = 0.

Suppose that L is one of the sporadic groups. Then H has a unique class of 2-central
involution. If L is J2, C01 or CO2 we get that O2(CL(z)) ≤ R and so V, z,O2(CL(z))] = 1,
a contradcition. Hence L = Mat12,Mat22 or Mat24. TO BE CONTINUED

(b) Again we divide the proof into a series of steps and use a similar strategy as in the
proof of (a)

V ZQ− 11
(6) Let U be a block for Q on V .

(a) One of the following holds:

1. Q normalizes U .

2. Z centralizes U and so also
∑
UQ.

3. p = 2, |UZ | = |UQ| = 2 and NQ(U) centralizes U and so also
∑
UQ.

(b) One of the following holds:

1. Q normalizes U .

2. p = 2 and NZ(U) centralizes U and so also
∑
UQ.

Clearly (a) implies (b). For (a) suppose that Z does not centralize U . If Z normalizes
U , then 0 6= [U,Z] ≤ U and Q centralizes [U,Q]. Since U is a block, Q normalizes U in
this case. If Z does not normalize U , pick z ∈ Z with U 6= U z. Since z ∈ Z(Q), U + U z

is a block for Q.Also Q centralizes [U, z] and so normalizes U + U z. As a NQ(U) module,
U ∼= U + U z/U z = [U, z] + U z/U z ∼= [U, z]/[U, z] ∩ U z and so NQ(U) centralizes U . Hence
3. holds in this case.

V ZQ− 12
(7) Let U be an L-invariant H-block. Then

(a) V =
∑
US .
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(b ) Z does not centralize U .

(c) If Z normalizes U and |Q/CQ(U)| = 2, then (b)1. in the lemma holds.

(d) If Q does not normalize U , then (b)1. in the lemma holds.

The proof is essentially the same as the one for (2).

V ZQ− 13
(8) Suppose exists an H-block which is not L-invariant, then (b1) or (b2) in the lemma

holds.

Let calD be a block system for H on V with L acting non-trivially on D and let D be
maximal with this property. Then p = 2, CH(D ≤ O(H) and we can apply (a) to H/CH(D)
and D. In case (a)1., (b)1. holds. In case of (a).2 the maximality of D implies that O(H)
acts trivially on D. Thus (b)2. holds.

We assume from now on without loss that neither (b)1. nor (b)2. hold.
V ZQ− 15

(9) Let W be a Wedderburn component for L on V . Then Q normalizes Q and W is
irreducible as L-module.

By (7)d, Q normalizes W . As V is irredicble for H, W is irreucible for NH(L). As W
is L-homogenous and NH(L)/L is a p-group, L is irreducible on W .

V ZQ− 16
(10) Suppose that L = E(L). Then (b3) holds.

If Q/CQ(W )| = 2, then (b1) holds. Hence ((b3a),(b3b) and (b3c) holds It remains to
verify (b3d). Let L1, L2, . . . Ln be the components of L/CL(W ). If n = 1, (b3d1) holds.
Put F = EndKL(W ) and let P the largest subgroup of Q normalizing the components
of LW . As in part (a), PW has order at least three and (Z ∩ P )W 6= 1. Then W has a
tensor compostion (F,Wi, 1 ≤ i ≤ n), where Wi is an CLP (F ) module centralized by all
Lj , j 6= i. Then by 6.6,p = 2, n = 2 and PW acts linearly dependently on W1 and W2.
If Q = P , (b3d2) holds. So suppose that |Q/P | = 2 and let q ∈ Q \ P . Note that Q is
F -linear. Let 1 6= z ∈ PZ. Let U be an irreducible FU subspace in W with U 6= U z.
Then U = W1 ⊗ a2 for some a2 ∈ W2. Also U q is an irreducible FL2P subspace and so
U q = a1 ⊗W1 for some w1 ∈ W2. Similarly Uz = b1 ⊗W2 and U zq = W2 ⊗W1. Thus
(U + U z) ∩ (U + U z)q = (Fa1 + Fb1) ⊗ (Fa2 ⊗ Fb2). On the otherhand , q centralizes
[U, z] ≤ U + U z and we conclude that dimF U = 2. We conclude that W1 and W2 are
2-dimensional and by say Dicksson’s theorem, (b3d3) holds.

V ZQ− 14
(11) Suppose that W is tensor decomposable for LQ. Then (b3) holds.

By 6.6, p = 2 and Q is elementary abelian and CLW (q) = CLW (Q for all 1 6= q ∈ Q.
Thus O(H)W ≤ Z(LW ) and so L = E(L). So the claim follows from (10).
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Suppose from now on that W is tensor indecomposable. Let M be a normal subgroup
of H minimal with respect to [M,L] 6= 1. Note that M/CM (L) is characteristicly simple.
Hence either M = E(M) or M is a q-group for some prime q. If M = E(M), it is easy to
see that M is not a p′ group and so M = L since H is p-connected. So in view of (10) we
may assume that M is a q- group.

V ZQ− 17
(12) M acts irreducible on W and MW ∼= Ext(q1+2n) or C4 ◦ Ext(21+2n), n ≥ 2.

IfM is not homogenous onW . Then L acts non-trivially on the Wedderburn components
of M on V , a contradiction to (8). Hence M is homogenous. As W is tensor indecoposable,
this implies that M is irreducible on W . Let F = EndKM (W ). Then by 6.6, Q and so also
L = [L,Q] is F -linear on W . Thus [Z(MW ), L = 1, CL(M) = Z(L) and CM (L) = Z(M).
By a standard argument the structure of MW is as described.

V ZQ− 18
(13) One of the following holds:

1. p = 2, q = 3 and [MW , Q]QW ∼= SU3(2) or Ext(31+2)C4

2. p = 3, q = 2 and [MW , Q]QW ∼= SL2(3).

Let P = [MW , Q], R = PQW and Y and irreducible R-submodule in W . Then P
and so also R acts faithfuly on Y . Then P is extra-special. Let 1 6= z ∈ ZW . Then as
z acts quadratically on W , Hall-Higmann implies p = 2, or p = 3 and q = 2. Suppose
that P 6= [P, z]. Then [P, z] and CP (z) are normal in R and P = [P, z] ◦ CP (z). But then
Y is tensor decomposable for R. Then the argument in (11) gives a contradiction. Thus
P = [P, z]. A be a maximal abelian z-invariant normal subgroup of P . Let A = {D ≤
A|A = Z(P )D,D∩Z(P ) = 1}. Then P acts transitively on A and z fixes a unique member
of D, namely [A, z]. Also Y

⊕
D∈ACY (D). If p = 3 we conclude that |A| = 1 and so

|P | = 8 and 2. holds. So suppose p = 2. Let |P | = q1+2n. Then |A| = q1+n, |A| = qn

we conclude that dimF [Y, z] = qn−1
2 , dimF CY (z) = qn+1

2 and dimF CY (z)/[Y, z] = 1. Let
q ∈ QW \ 〈z〉. If |q| = 2, we may assume that q normalizes A. But then [Y, z, t] = 0 implies
that t normalizes all the orbits of z on A, a contradicition. Thus |q| = 4 and we may assume
q2 = z. Since [Y, q, t] = 0, |[Y, q] + [Y, z]/[Y, z] has dimension at most 1 over F . Hence there
exists an q invariant F -hyperplane U in Y with [U, q] ≤ [Y, t] ≤ CU (q). Thus [U, q, q] = 0
and [U, q2] = 1. Thus Y/CY (z) = 1 is 1-dimensional. So qn−1

2 = 1. qn = 3 and |P | = 33.
Hence 1. holds in this case.

V ZQ− 19
(14) Either L acts irreducible on MW /Z(MW ) or (b4) holds.

Let Z(MW ) < P ≤ MW be minimal with respect to being L-invariant. Put M =
MW /Z(MW ). If Q does not normalize P , then by (13), |U | ≤ q2. Thus L/CL(U) is a
solvable {p, q} group. Since H is p-connected we conclude that L/CL(U) is a p′ group and
so a q-group. Since L is irreducible on U we conclude [U,L] = 1. Since H is irreducible on
M/Z(M) we conclude [M,L] ≤ Z(M). Thus Oq(L) ≤ CL(W ) ≤ Z(L) and L = Oq(L)Z(L).
Since [Z(L), Q] = 1, p-connectivity of H implies, L = Oq(L). Thus (b4) holds in this case.
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So we may assume that Q normalizes U . If U is abelian, then by (13), Q centralizes U
and so also L centalizes U , a contradiction. Hence U is not abelian and MW = PCMW (P ).
Thus 6.17-14 implies P = MW .

V ZQ− 20
(15) If L acts irreducible on MW /Z(MW ) then (b5) holds.

This follows form (13).
V ZQm

Lemma 6.18 Let p be a group, H a finite p-minimal group with Op(H) = 1. Let S ∈
Sylp(H) and Z and Q non-trivial normal subgrous of S with Z ≤ Z(Q). Let R be maximal
in Q with [V,R] ≤ [V, Z]. Let V be a faithful GF (p)H-module so that

(i) [V, Z,Q] = 0.

(ii) V = [V,Op(H)].

(iii) V/CV (Op(H)) is irreducible as H-module.

Then |Q/R| ≤ V/CV (Z). Moreover if T � S with Z ≤ T . Then either T ≤ R or
[V, T ] = [V,Q]

Proof: Remark: Some parts of the proof are still very sketchy, also the proof
is a lot longer than it should be and to much of a case by case analysis Let
Y = CV (L) and V̄ = V/Y . Then V̄ is irreducible as H-module.

Let C = CH(V̄ ).Then C ∩ L] centralizes U and V/U and so C ∩ L is a p-group. Since
Op(H) = 1 we conclude C ∩ L = 1. Thus Op(C) = 1, C is p-group and C = 1.

Hence H acts faithfully on V̄ and we can apply 6.17(b) to V̄ .
Let W be a LQ submodule in V minimal with respect to [W,L] 6= 0. Then W = [W,L].

For X ∈ LQ let X/CX(W ). Let 1 6= z ∈ Z(S) ∩ Z.
V QZm− 1

(1) Suppose that |QW /ZW | ≤ W̄/CW̄ (Z) and [W,T ] ∈ {[W,Z], [W,Q]. Then the lemma
holds.

Since V̄ is irreducible and H = LS, V̄ = 〈W̄S〉 Thus there exists si ∈ S, 1 ≤ i ≤ k with
V̄ = ⊕ki=1W̄

si . Then V = [V, L] = [
∑k

i=1 W si , L] =
∑k

i=1W
si . Let P =

⋂k
i=1 ZCS(W k).

Then P ≤ R and

|Q/R| ≤ |Q/P | ≤ |QW /ZW |k ≤ W̄/CW̄ (Z)k = |V̄ /CV̄ (Z) ≤ V/CV (Z)

Also [W,T ] = [W,Z] implies [V, T ] = [V, Z], while [W,T ] = [W,Q] implies [V, T ] = [V,Q]
V QZm− 2

(2) CLQ(W̄ ) = CLQ(W ).

Let B = CLQ(W̄ ). Then B ∩ L centralizes Y and W + Y/Y and so acts as a p-group
on W . Since no composition factor of L on L is a p-group, B ∩ L centralizes W . Thus
[B,L,W ] = 0 and [W,B,L] = 0. Thus by the three subgroup lemma [W,L,B] = 0. As
W = [W,L] we conclude [W,L] = 0 and so (2) holds.
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V ZQm− 3
(3) If |QW̄ | ≤ p2, the lemma holds.

By ??, |QW | ≤ p2.Also ZW 6= 1 and Z does not centralize W̄ . Thus (3) follows from ??.
V ZQm− 4

(4) If Op′(L) 6= 1, then Y = 0.

By Mascke, V = CV (Op′(L))⊕[V,Op′(L)]. Also Y ≤ CV (Op′(L)) and as V̄ is irreducible,
V = Y + [V,Op′(L))]. Thus V = [V, L] = [V,Op′(L)), L]] = [V,Op′(L)] and (4) holds.

Suppose first that 1. in 6.17(b) holds for V̄ . Then |QW̄ | = 2 and we are done by (3).
Suppose next that 2. in 6.17)(b) holds. Let D/Y ∈ D and ∆ = DL. Without loss

W ≤
∑

∆. Since H is p-minimal we conclude from 6.17(a2) that L∆ ∼= Alt(n) with
n = 2k + 1, k ≥ 2 or n = 6. If n ≤ 6 it is easy to see that Q∆ ≤ 4 and so also |QW | ≤ 4. So
we may assume that m = 2k + 1, k ≥ 2. Let E ∈ ∆ with E 6= Ez. Then NQ(E) centralizes
E. Let M = NLQ(E). Then M∆ ∼= Alt(2n) or Sym(2n) and so ME = 〈NQ(E)M 〉O(L).
Hence M = CM (E)O(L). If O(L) centralizes E. Then V̄ is a permutation module for
L, a contradiction to CV̄ (L) = 0. Thus O(L) 6= 1 and by (4), Y = 0. It follows that
[D,Z] = [D,Q]. Let F be the unique fixed point for z on ∆. Since F and E are conjugate
under L, all p-elements in NLQ(F ) act trivially on F . So [F,Q] = 0 and [V, Z] = [V,Q].

Suppose that 3. in 6.17(b) holds. By (3) we may assume that |QW | > p2. Then p-
minimality and quadratic action implies that the components for L are one of SL2(q), SU3(q), Sz(q),Alt(q+1), Sp4(q)′

or L3(q) Here q is a power of p, p = 2 in the last four cases, and a graph automorphism is
induced on the components in the last two cases.

If 3d2 or 3d1in 6.17(b) holds then Y = 0. Let F = EndL(W ). Then |QW | ≤ 2 · |F |,
|W/CW (Z)| ≥ |F |2 and [W,T ] = [W,Q] if |TW | ≥ 4. Thus we are done by ??.

So suppose that LW is quasi simple. If QW is not elementary abelain then W is a
strongly quadratic module in the sense of Stroth and so W̄ is the natural module. Because
of the graph automorphism, L = Sp4(q)′ is impossible in this case. Thus Y = 0 and the
lemma is readily verifed in this case.

So suppose that QW is elementary abelian. Then its is easy to check that |CW̄ (Z)|2 = W̄
and |QW | ≤ |W̄/CW̄ (Z)|. In particular, Q acts quadratically on W . Let J ≤ HW minimal
with QW ≤ J and QW 6≤ Op(J). Suppose first that Op(J) = 1. Then ( for example
by 2.9), J ∼= SL2(q̃) or Sz)q̃). Thus there exists j ∈ J with J = 〈TWj , TW 〉. Thus
[W,J ] = [W,T ]j + [W,T ] and [W,Q] = ([W,T ]j ∩ [W,Q]) + [W,T ]. But [W,T ]j ∩ [W,Q] ≤
CW (J) ∩ [W,T ]j ≤ [W,T ] and so [W,Q] ≤ W . So we may assume that Op(J) 6= 1 and J
is not generated by two conjugate of TW in J . In particular, LW ∼= Sp4(q). We conclude
that either [W,T ] ≤ [W,Z] or Y ∩W ≤ [W,T ]. In the latter case, [W,Q] ≤ [W,T ] and the
lemma holds in this case.

Suppose finally that 4. or 5. in 6.17(b). In view of (3) we may assume that QW ∼= Q8.
So p = 2 Also by (4), Y = 0. Let X = 〈QO3(L)〉. Then XW ∼= SU3(2) and W is a direct
sum of natural modules for XW , Again it is easy to verify the assumptions of ?? and the
lemma is proved.
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7 An interesting choice of an amalgam for generic p-type
groups

gpt

hgptHypothesis 7.1 p is a prime, G is a finite groupe of generic p-type and S ∈ Sylp(G).

dcalw
Definition 7.2 (a) W is the set of sets {M1,M2} such that

(a) Mi ∈ L(J(S)

(b) Op(〈M1,M2〉) = 1.

(b) Define an partial ordering ” ≤ ”l on W by defining (H1,H2) < (M1,M2) if and only
if one of the the follwing holds.

1. Some Sylow p subgroup of H1 ∩H2 is properly contained in a Sylow p -subgroup
of M1 ∩M2.

2. H1∩H2 and M1∩M2 have a common Sylow subgroup T and CH1∩H2(Ω1(Z(T )) <
CM1∩M2(Ω1(Z(T ))

3. H1 ∩H2 < M1 ∩M2.

4. H1 ∩H2 = M1 ∩M2 and (possible after interchanging M1 and M2 and H1 and
H2, M1 < H1 and M2 ≤ H2.

” ≤ ” is defined as ” < ” or ” = ”

(c) W∗ is the set of maximal elements of A under the order defined in (b).

We leave it as an easy exercise to the reader to verify that (W,≤) is a partially ordered
set.

Lemma 7.3 Let (M1,M2) ∈ W∗, M12 = M1 ∩M2, T ∈ Sylp(M12) and put Z0 = Ω1Z(T )).
Then

(a) For i = 1, 2, |M(Mi)| = 1.

(b) Suppose R is a p-subgroup of M1 with T < R. Then M(R) = M(M1) and T ∈
Sylp(M2).

(c) Suppose that T 6∈ Sylp(G). Then C(G,T ) ∈ L, C(G,T ) lies in a unique maximal
p-local M of G, |M(S)| = 1 and either T is a Sylow p-subgroup in M1 and M2, or
M = M∗i for some i.

(d) M12 is a maximal subgroup of M1 and of M2.

(e) One of the following holds:

1. CM1(Z0) = CM12(Z0) = CM2(Z0).
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2. There exists {i, j} = {1, 2} so that

(a) CMi(Z0) 6≤Mj, M(Mi) =M(CMi(Z0) =M(CG(Z0)).
(b) CMj (Z0) ≤Mi.

Proof: (a) Suppose M1 is contained in two distinct maximal p-locals L1,L2. Then M1 ∩
M2 < M1 ≤ H1 ∩H2. But this contradicts the maximal choice of (M1,M2).

(b) Let M ∈ M(R). Then T is properly contained in a Sylow M1 ∩M and so by that
maximality of (M1,M2), M1 ≤M . If T is not a Sylow p-subgroup of M2, then we conclude
M(M1) =M(NL(T )) =M(M2), a contradcition. Thus (b) holds.

(c) Assume without loss that T < S. Then by maximality NS(T ) lies in a unique p-local
subgroup M of G. Clearly C(G,T ) ≤M and it is easy to see that (c) holds.

(d) Let M12 < L1 ≤ M2 and put M = 〈L1,M2〉. If M ∈ L, then (M,M2) ∈ W and
M12 < L1 ≤M ∩M1, a contradiction to the maximality of (M1,M2). Thus Op(M) = 1 and
(L1,M2) ∈ W. Also L1 ∩M2 = M12, L1 ≤M1 and M2 ≤M2. So by maximality L1 = M1.

(e) Suppose that CM1(Z0) 6≤ M2 and let M ∈ M(CM1(Z0). Suppose that M1 6≤ M .
Since T ≤M1 ∩M , maximality implies that T is a Sylow p-subgroup of M1 ∩M . But then
part 2. of the definition of ”¡” gives a contradiction. Thus (ea) holds. Clearly (ea) implies
(eb).

cjt
Lemma 7.4 Let M ∈ L(S) and 1 6= x ∈ ZM ∩ ZJ(S) Suppose that ZM 6≤ Op(CG(x)0.
Then TO BE CONTINUED

Proof: Assume without loss that M is a maximal p-local. Put Q = CS(ZM ). Note that
CG(x) ∈ L(B(S). Pick L ∈ L(Q) so that ZM 6≤ Op(L), |L|p is maximal and |L| is minimal.
Let T be a Sylow p-subgroup of |L| with Q ≤ T . Let R be an T invariant subgroup of L
with [R,ZM 6≤ Op(R). Then by minimality of L, L = RS. In particular, L ∈ N (T ). Also

ZM ≤ D =
def
=
⋂
{Op(P ) | P ∈M(L, T )}.

Case 1 T is not a Sylow p-subgroup of G.
Let C be a non-trivial characteristic subgroup of T . Then NG(C) has a larger p-part

then L and so by choice of L, ZM ≤ Op(NG(C)). In particular, C is not normal in L. In
particular, [ZL, ZM ] 6= 1.

Suppose that F ∗(L) is not a p-group. Then no element of Op(L) is of p-type. Pick E ∈ L
with Q ≤ L, F ∗(E) is not a p-group, |E|p maximal and |E| minimal. Then ZM 6≤ Op(E).
Let R be a Sylow p-subgroup of E containing Q and R � R∗ for some p-group R∗. Let
1 6= r ∈ R ∩ Z(R∗). Then Q ≤ CG(r) and CG(r) has larger p-part then E. Thus r is of
p-type and so r 6≤ Op(E). Thus [Op(E), Op(E)] = 1. TO BE CONTINUED

8 Some general amalgam results
geamre

amalgamHypothesis 8.1 1. G is a group.

2. p is a prime.
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3. G1 and G2b are finite subgroups of G.

4. G = 〈G1, G2〉

5. S ≤ G1 ∩G2 so that S is a Sylow p-subgroup of G1 and G2

6. Both F ∗(G1) and F ∗(G2) are p-groups.

Let OS(G) be the largest subgroup of S which is normal in G. Let Z = Ω1Z(S). Let
Γ = Γ(G;G1, G2) be the coset graph for G with respect two G1, G2. In equal the vertices
are the right cosets of G1 and G2 in G and two cosets are adjacent if they are distinct and
have non-empty intersection. For γ ∈ Γ, let Gγ be the stabilizer of γ ∈ G, Qγ = Op(Gγ),
Zγ = Ω1(Z(T )) | T ∈ Sylp(Gγ), 4(γ) is the set of neighbors of γ, Gγδ = Gγ ∩ Gδ.
G

(1)
γ =

⋃
δ∈4(γ)Gγδ, Vγ = 〈Zδ | δ ∈ 4(γ), Cγ = CGγ (Zδ), Eγ = Op(Gγ), Q∗γ = [Qγ , Eγ)],

Xγ = Ω1Z(Qγ), X∗γ = CQγ (Q∗γ), Yγ is the largest p-reduced normal subgroup of Gγ
For γ ∈ Γ let bγ = min{d(γ, δ) | Zγ 6≤ G

(1)
δ . Let b = minγ∈Γ bγ = min{bG1 , bG2 . Let

α, α′ ∈ Γ with d(α, α′) = b and Zα 6≤ G(1)
α′ . Let

(α, α+ 1, α+ 2, . . . , α+ b) = (α′ − b, . . . , α′ − 1, α′)

be a shortest path form α to α′. Put β = α+ 1. Without loss {Gα, Gβ} = {G1, G2}.
Let qδ = qaZδ(Gδ), rδ = min{r | |AQβ/Qβ|r = |Vβ/CVβ (A)} for some A ≤ S with

A 6≤ Qβ and [Vβ, A,A] = 1. Let cβ the number of non-trivial chief factors for Gβ on Vβ.
connected

Definition 8.2 Let H be a group and T a subgroup of H.

1. H is connected with respect to T if T is not normal in H and for each normal subgroup
N of H, either N ∩ T is normal in H or H = NT .

2. H is p-connected if H is connected with respect to some Sylow p-subgroup of H.

3. H is p-minimal with H is not p-closed and a Sylow p-subgroup of H lies in a unique
maximal subgroup of H.

rrc
Lemma 8.3 If Gβ is connected then, rβ ≥ raVβcb.

Proof: A ≤ Gβ with [Vβ, A,A] = 1 and put r = raVβ . Let U be a non-trivial chief
factor for Gβ on S Then as Gβ ∈ N ∗(S), CA(U) = A ∩ Qβ. So by definition of raVβ (S),
|AQβ/Qb|r ≤ |U/CU (A)|. Multiplying together these inequalities over all such U in a chief
series we obtain |AQβ/Qb|rcβ ≤ |V/CV (A)| and so rb ≥ rcβ.

QRC
Lemma 8.4 Suppose that b ≥ 2 and allow for the case that OS(G) 6= 1.

(a) Suppose that qα > 1 and [Vβ, J(S) 6= 1. Then b is odd or ∞ and (qα− 1)(rβ − 1) ≤ 1.
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(b) Suppose that Cα ∩ Qβ is not normal in Gα and put Q = 〈Cα ∩ Q
Gβ
b 〉. Then Q acts

quadratically on Zα, |[Zα, Q]| ≤ |Q/CQ(Zα)|, Zα is an FF module and [CZα(Q), Eβ] =
1.

Proof: (a) If b is even,8.17 shows that Zα or Zα′ is FF , a contradiction to qα > 1.
Thus b is odd or ∞. In particular, b ≥ 3 and Vβ is abelian.

Since [Vβ, J(S) 6= 1, there exists A ∈ A(S) with [Vβ, A] 6= 1. By the Thompson replace-
ment lemma we may assume that [Vβ, A,A] = 1. Suppose A ≤ Qβ and let δ ∈ 4(β). Then
qδ > 1 implies [Zδ, A] = 1 and [Vβ, A] = 1, a contradiction. Thus A 6≤ Qβ. Put B = A∩Qβ.
We will apply 2.4 with I = 4(β) and Wi = Zi for i ∈ I. Define r, t and s as in the 2.4.
Since A ∈ A(S), |Vβ/CVβ (A)| ≤ |A/CA(Vβ) and so t ≥ 1. Also s ≥ qa > 1 and r ≥ rβ. By
2.4b to obtain trs ≤ r + s, rs ≤ r + s, (s− 1)(r − 1) ≤ 1 and (qα − 1)(rβ − 1) ≤ 1.

(b) Let D = CZα(Eα). If D = Zα, then Zα and Q = Cα ∩ Qβ are normal in Gb in
contrast to our assumptions. Thus Zα 6= D and we can choose D ≤ E ≤ Zα with E�S and
|E/D| = p. LetW = 〈EGβ 〉. Note that [E,Q] ≤ D and so is centralized by Eb and normalized
by S. Thus [E,Q]�Gβ, [E,Q] = [W,Q] Since [W,Eβ] 6= 1 and cβ = 1, [Vβ, Eb] ≤W and so
Vβ = ZαW . Hence [Vβ, CQβ (Za)] ≤ [W,Q and so [Za, Q] ≤ [Vβ, Q] = [W,Q] = [E,Q] ≤ Zα.
[Cα ∩Qβ centralizes D, Q centralizes D and [E,Q]. Hence [E,Q] = {[e, q] | q ∈ Q}, where
e ∈ E \ D. Thus |[E,Q]| = |Q/CQ(e) ≤ |Q/CQ(Zα)|. If CZα(Q) 6= D, we can choose
[E,Q] = 1 and we get [Zα, Q] = 1 and so Q = Cα ∩Qβ is normal in Gβ,a contradiction.

ocf
Lemma 8.5 Suppose that b is odd, b ≥ 3 and L ≤ Gα′ with

(i) L = (Gα′−1 ∩ L)Op(L).

(ii) Gα′ = 〈Gα′−1, L〉.

(iii) L has at most one non-central composition factor on 〈ZLap−1〉.

Then one of the following holds

1. [Zap−1, [Qα′ , Op(L)] 6= 1 and Zα is an FF -module for Gα/Cα.

2. [Zap−1, [Qα′ , Op(L)] = 1 and

(a) Vβ = ZαCVb(Qb).

(b) Ca ∩Qβ �Gβ.

(c) CVb(Qb) is an FF module for 〈QGβ
a 〉.

Proof: Let V = 〈ZLap−1〉 and Q = [Qα′ , Op(L). Then by (i), V = 〈ZO
p(L)

ap−1 〉 and we
may assume without loss that L = Op(L). Note also that Qα′ normalizes Zα′ and V .

Suppose first that [Zα′−1, Q] 6= 1. If [V,Q,L] 6= 1, then by (iii), V = Zα′−1[V,Q] and so
V = Zα′−1, a contradiction to (ii). Thus [V,Q,L] = 1 and by [St1] (1) holds.

So we may assume that Q centralizes Zα′−1 and V . Hence (iii) implies that [V,Qap, L] =
1 and [V, L,Qap] = 1. Thus V = Zα′−1CV (Qα′) and so L normalizes Zap−1CVα′ (Qα′).
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Therefore (ii) implies that Gα′ normalizes Zap−1CVα′ (Qα′) and so Vα′ = Zap−1CVα′ (Qα′).
Thus CQα′ (Vap) = Cα′−1∩Qα′ and (a) and (b) are proved. Moreover we get [Vβ∩Qα′ , Vα′ ] =
1 and [Vα′ ∩Qβ, Vβ = 1. Hence (c) follows from 8.17.

q < 2
Lemma 8.6 Suppose that Gβ is a mimimal parabolic and allow for the case that OS(G) 6= 1.
Then one of the following holds:

1. S centralises Zα.

2. Zα 6≤ Qβ.

3. qa ≤ 2

4. Zα is the dual of an FF -module

5. There exists a non-tivial characteristic subgroup C of B(S) with C � Gβ and Gα =
NGα(C)Cα. Moreover, either C = J(S) or Q∗b ≤ B(S) ≤ Cα.

6. Put G∗β = B(S)O2(Gβ). T O2(G∗β) ≤ B(S) ≤ Cα and non-trivial characteristic
subgroup of B(S) is normal in G∗β. Moreover, Z �Gβ.

7. Z and Zα are normal in Gβ and centralized by Eβ. Futhermore, S ∩ Cα is a Sylow
p-subgroup of CGβ (Za).

Proof: Without loss Za ≤ Qb. If [J(S), Zα] 6= 1, r(S,Z1) ≤ 1. So we may assume
that J(S) ≤ Cα. Thus Zα ≤ CS(J(S)) and B(S) ≤ Cα. Hence

q < 2− 1
(1) Gα = NGα(B(S))Ca = NGα(C)Ca for any characteristic subgroup C of B(S).

If Eβ centralizes Vβ, then 7. holds. So suppose [Vβ, Eβ] 6= 1. If J(S) � Gβ, 5. holds.
Hence we may assume that J(S) 6≤ Gβ. in particular, [Vβ, J(S)] 6= 1. By 6.3, rVb(Gβ) ≥ 1.
If cβ ≥ 2, then 8.3 implies rβ ≥ 2. By refQRCa, (qα − 1)(rb − 1) ≤ 1 and so 3. holds. If
cβ = 1, then 8.4b implies that 4. holds or CαcapQβ is normal in Gβ. So suppose the latter.

Since J(S) ≤ Cα, J(S) centralizes Qβ/Qβ∩Cα. Since J(S) 6≤ Qβ, Eβ ≤ 〈J(S)Gβ 〉 and so
Eβ centralizes Qβ/Qβ ∩Cα. Thus Q∗β ≤ Cα∩Qβ and [Vβ, Q∗b ] = 1. Thus [CQβ (Q∗β), Eβ] 6= 1
and by Thompson’s P ×Q-lemma, [Xβ, Eβ] 6= 1. Thus by 8.10 ( and the remark following
8.10), Op(Eb) ≤ B(S). Now either there exists a non-trivial charcteristic subgroup of B(S)
which is normal in G∗β or there does not. In the first case (1) implies that 5. holds and in
the second 6. holds.

Lemma 8.7 Suppose b > 1, sZα(S) ≥ 1, CGβ (Vb) is p-closed and [Vβ ∩Qα′ , Vα′ ∩Qβ] = 1.
Then Vβ is F2 for Gβ.
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Proof: We may assume without loss that VβQα′/Qα′ ≥ Vα′Qβ/Qap. Since sZα(S) ≥ 1 we
can apply 2.3 with s = 1, V = Vβ and B = Vα′ ∩Qβ and conclude

|B/CB(Vb)| ≤ |Vb/CVb(B)|

By assumption Vβ ∩Qα′ ≤ CVb(B) and so

|Vα′/CVα′ (Vb)| ≤ |Vα′/B||B/CB(Vβ) ≤ |Vα′Qβ/Qb| · |Vβ/Vb ∩Qα′ | ≤ |VβQα′/Qα′ |2.

Hence Vβ is F 2.
mqrc

Lemma 8.8 Let (P0, P1, P2) be an amalgam over S. Let Z0 = 〈ZP0〉. For i = 1, 2 put
Li = 〈P0, Pi〉 and Zi = 〈ZLi〉. Suppose that

(i) P1 and P2 are in P(S).

(ii) For {i, j} = {1, 2}, O2(Pi) 6≤ O2(Pj).

(iii) For i = 1, 2, Z ≤ OS(Li)

The one of the following holds for some i ∈ {1, 2}

1. J(S) � P0.

2. J(S) � Pi, [Z0, O
2(Pi)] 6= 1 and r(S,Zi) ≤ 1.

3. Zi 6≤ Qj

4. r(S,Zj) ≤ 2 or r∗(S,Zj) ≤ 2

Proof: Without loss J(S) � PO and since J(S) is not normal in all the Pi’s we may
assume that J(S) � P1. If [Z0, O

2(P1)] 6= 1 we conclude that [Z1, J(S)] 6= 1 and 2. holds.
So we also may assume that [Z0, O

2(P1)] = 1. Then Z0 is not normal in P2 and hence
[Z0, O

2(P2)] 6= 1.We apply 8.6 to Gα = L2 and Gβ = P1. As J(S) � P1 = Gβ we conclude
that either 3. holds or 4. holds or [Z2, Q

∗
1] = 1. In the latter case Q∗1 6≤ O2(P2) implies

[Z2, O
2(P2) = 1, a contradiction to [Z0, O

2(P2)] 6= 1.
cb

Lemma 8.9 Let L be a subgroup of Gβ which acts transitively on 4(β). Put Dβ =⋂
δ∈4(β) Zδ and l minimal with [Zα, Qβ, l] ≤ Dβ. Suppose that Vβ ≤ Qβ. Then for all

0 ≤ i < l, L acts non-trivially on [Vβ, Qβ, i]/[Vβ, Qβ, i+ 1].

Proof: Put Zi = [Zα, Qβ, i] and Vi = [Vβ, Qβ, i]. As L acts transitively on 4(β),
Vi = 〈ZLi 〉. Let i be so that L acts trivially on Vi/Vi+1. Then Vi = ZiVi+1 and so Vi/Zi =
[Vi/Zi, Qβ]. Hence Vi = Zi and Zi ≤ Dβ. Thus i ≥ l.
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Baumann
Lemma 8.10 Let G be a finite group, p a prime, p-subgroup of G, V = 〈Ω1(Z(Op(G)),
B(S) = CS(Ω1(Z(J(S)), J(G) = 〈J(S)G〉, B(G) = 〈B(S)G〉, G = G/CG(V ), and Ṽ =
V/CV (Op(B(G)) and suppose that each of the following holds:

(i) CG(V ) is p-closed.

(ii) If A ∈ P(G,V ) then |Ṽ /CṼ (A)| ≥ |A|.

(iii) If U is an FF -module for G/Op(G) module with Ṽ ≤ U and U = CU (B(S))Ṽ , then
U = CU (Op(J(G)))Ṽ .

Then Op(B(G)) ≤ B(S).

Proof: and Y = Ω1ZJ(S). Let A ∈ A(S). Then A ∈ P(G,V ) and so by (ii), |Ṽ /CṼ (A)| ≥
|A|. By (i), |A| = |A/A ∩ Q| and so V (A ∩ Q) ∈ A(S). Thus Y ≤ V (A ∩ Q) ≤ Q. Put
W = 〈Y G〉V . We conclude that W ≤ Ω1ZJ(Q) and so W is elementary abelian and
(A∩Q)V centralizes W . Hence W ≤ (A∩Q)V and W = V (A∩W ) = V CW (A). It follows
that A centralizes W/V . Since A was arbitray in A(S), J(G) centralizes W/V . As Y =
Ω1ZJ(S∩J(G)), Sylow’s theorem implies that J(G) acts transitively on Y G. Thus W = Y V
and so [W,Q] = [Y,Q] ≤ Y . Hence [W,Q] ≤ CW (B(G)). Let D = CW (Op(B(G)) and U =
W/D. Then Op(G) centralizes U . Since Ṽ ∼= V D/D and U = Y V/D, we can apply (iii) to
conclude thatW = DV and U ∼= Ṽ . Since A ∈ A(S), |W/W∩A| ≤ |A/CA(W )| = |A/A∩Q|.
One the otherhand by (i), |A/A ∩ Q| ≤ |Ṽ /CeV (A)| = |U/CU (A)| ≤ |W/CW (A)D|. Thus
|W/CW (A)| ≤ |W/CW (A)D| and D ≤ CW (A). Hence [D,A] = 1, D ≤ Y and [D,B(G)] =
1. Therefore [W,Op(B(G)] ≤ [D,B(G)][V,Q] = 1 and so Op(B(G)) ≤ CS(Y ) = B(S).

Remark 8.11 Assume (i) in 8.10. Then (ii) and (iii) hold as well unless J(G) has a
component K with K ∼= Alt(2n), n ≥ 3; SLn(q), n ≥ 3; SUn(q), n ≥ 6; Sp2n(q), n ≥ 2;
Ω+

2n(q), n ≥ 3; or Ω−2n(q), n ≥ 4 ; and some compostion factor for K on V is a natural
module.

pump
Lemma 8.12 pushing up minimal parabolics, odd elements

pusym
Lemma 8.13 pushing up sym(10) over 〈(12), (34), (56), (78), (9, 10)〉

trpu
Lemma 8.14 some trivial pushing up result, at least including L5(2) over the O2 of a point
stabilizer, saying that b = 4 and non trivial center; or b = 2 and O2 basicly a natural module

qaniqb
Lemma 8.15 Suppose that Gα is a p-minimal. Then Qα 6≤ Qβ.

Proof: This follows from 8.12Remark: This needs some thought
znnab1

Lemma 8.16 Suppose that each of the follwing holds:

(i) α, β = {γ, δ}.
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(ii) Gγ is p-minimal and [Xγ , Eγ ] 6= 1.

(iii) Gδ is p-connected or CS(Xδ) = Qδ.

Then one of the following holds.

(a) [X∗δ , Eδ] = 1 and Z �Gδ.

(b) J(S) 6≤ Qδ and Xδ is an FF -module for Gδ.

(c) (a) J(S) �Gδ.

(b) Op(B(Gγ)) ≤ B(S) = B(Qδ).

(c) Eγ is a SL2(pr)k-block, Alt(2r + 1)k-block or SL2(3r)k- double block.

(d) If G is finite and S ∈ Sylp(G), then G contains a p-local R with B(S) ≤ R and
CR(Op(R)) 6≤ Op(R).

Proof: We may assume that [X∗δ , Eδ] 6= 1. Then by Thompsons’s A×B-lemma, [Xδ, Eδ] 6=
1. Hence if Gδ is p-connected, CS(Xδ) = Qδ. Thus by (ii) CS(Xδ) = Qδ.

If J(S) 6≤ Qδ, then (b) holds.
So suppose J(S) ≤ Qδ. Then Xδ ≤ ZJ(S) and so B(S) ≤ CS(Xδ) ≤ Qδ and B(S) =

B(Qδ). By 8.10, Op(B(Gγ)) ≤ B(S). Thus (ca) and (cb) hold in this case.
Since Gγ is p-minimal, Gγ = B(Gγ)S. Let R be normal subgroup of B(Gγ). Let U

be unique maximal subgroup of Gγ containing S. Let C be a non-trivial characteristic
subgroup of B(S). Then C is normal in Gδ and so C is not normal in Gγ . Since S ≤ NGγ ,
this implies NGγ ≤ U . Let W = Wγ =〉Ω1Z(J(S))Gγ . Then W is an FF -modules for B(Gγ)
and Op(B(Gγ)) centralizes V . Hence W/CW (Eγ) is a natural SL2(pr)k or Sym(2r + 1)k

module for B(Gγ). Let E be minimal with B(S) ≤ E, and Op(E) maps onto on normal
SL2(q)′’s or Alt(q + 1)’s. Then E 6≤ U and so C 5 E. Hence by 8.12 Op(E) is an L2(pr)-
block, Alt(2r + 1) block or SL2(q)-double block. It is now easy to see that Op(E) is normal
in Eγ and that (cc) holds.

Suppose now that G is finite and S ∈ Sylp(G). Assume first that Eγ is a SL2(pr)k- or
Alt(2r + 1)k-block. Then there exists λ ∈ 4(δ) with [Wγ ,Wλ] 6= 1. Then Wλ ≤ B(Qδ) =
B(S) ≤ B(Gγ)). Suppose that [Xδ, Qγ ] 6= 1TO BE CONTINUED

PFF
Lemma 8.17 Let λ, µ ∈ Γ and Fλ, Fµ normal p-subgroups of Gλ and Gµ, respectively.
Suppose that

(i) Fλ ≤ Gµ and Fµ ≤ Gλ.

(ii) [Fλ, Fµ] 6= 1.

(iii) For ρ ∈ {λ, µ}, CGρ(Fρ) is p-closed

(iv) [Fλ, Fµ ∩Qλ] = 1 and Fµ, Fλ ∩Qµ] = 1.

54



Then one of the follwing holds

1. Fλ is an F ∗1 module for Gλ.

2. Fµ is an F ∗1 module for Gµ.

3. Both Fλ and Fµ are FF -modules.

Proof: By (iii) and (iv) Fλ ∩Qµ = CFλ(Fµ) and Fµ ∩Qλ = CFµ(Fλ). |Fλ/Fλ ∩Qµ| is
either less, larger or equal to Fµ/Fµ ∩Qλ. In the first case |Fλ/CFλ(Fµ)| < FµQλ/Qλ| and
1. holds. Similarly the second case implies 2. and the third 3.

vbvap
Lemma 8.18 Supposse that b ≥ 3, b is odd and rα ≥ 1.

(a) (ra − 1)(rb1) ≤ 1.

(b) Suppose that equality holds in (b). Then

(b.a) |Vα′Qβ/Qa| = VβQα′/Qα′ |
(b.b) CVα′ (Vβ ∩Qα′) = CVα′ (Vβ).

(c.b) Let δ ∈ 4(β) with [Zδ, Vα′ ] 6= 1. Then Vα′ ∩Qβ 6≤ Qδ and |(Vα′ ∩Qb)Qα/Qa|s =
|Zδ/CZδ(Vα′)|.

(c.d) |VβQα′/Qα′ |r = |Vα′/CVα′ (Vβ)|.

Proof: By 2.4 we have
vbvap1

(1) |Vα′ ∩Qβ/CVα′ (Vβ)|rα ≤ |Vβ/CVβ (Vα′ ∩Qβ)|.

and
vbvap2

(2) |Vβ ∩Qα′/CVβ (Vα′)|rα ≤ |Vα′/CVα′ (Vβ ∩Qα′)|.

Suppose first that Vα′ ≤ Qβ. Since rα ≥, (1) implies |Vα′/CVα′ (Vβ)| ≤ |Vβ/CVβ (Vα′)|. If
Vα′ 6 Qβ the situation is symmetric in α′ and β and we may assume in any case that

vbvap3
(3) |Vα′/CVα′ (Vβ)| ≤ |Vβ/CVβ (Vα′)|

TO BE CONTINUED
rsc

Lemma 8.19 Suppose that rβ ≥ 1, sα ≥ 3
2 and s∗α > 1. Then

(a) 3
2 ≤ sα ≤ 2.

(b) 1 ≤ rβ ≤ 3
2 .

(c) c = 2 or 3.
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(d) If c = 3, then sα = 3
2 and rβ = 1.

(e) If rβ = 3
2 , then c = 2, sα = 3

2 and (sα − 1)(rβcβ − 1) = 1.

(f) If sα = 2, then c = 2, rβ = 1 and (sα − 1)(rβcβ − 1) = 1.

(g) [Zα, Zα′ ] = 1.

Proof: As s∗α > 1, 2.4 implies cβ ≥ 2. All but the last statement are now an immediate
consequece of 8.4. The last statement follows from 8.17.

p3/2
Lemma 8.20 Suppose that b is odd and β+, β− ∈ Γ2 with d(β+, β−) = b−1 For ε ∈ {+,−}
let Λε ⊆ 4(βε). Define V ε = 〈Zλ|λ ∈ Λε〉 and B = V ε ∩

⋂
λ∈Λ−ε Gλ. Finally, let s be a

postive real number so that for all ε ∈ {+,−}, all λ ∈ Λ−ε, and all A ≤ Bε, |Zλ/CZλ(A)|s ≤
|A/CA(Zλ)|. Then

(a) (aa) |B+/CB+(V −)| ≤ |V −/VV −(B+)|
1
s ≤ |V −/CV −(B+)|

1
s

(ab) |V +/CV +(V −)| ≤ |V +/B+||B+/CB+(V −)|

(ac) |V +/CV +(V −) ≤ |V +/B+||V −/CV −(V +)|
1
s .

(b)(b.a) |V +/CV +(V −)|
s2−1
s2 ≤ |V +/B+||V −/B−|

1
s .

(b.b) |B+/CB+(V −)|
s2−1
s ≤ |V +/B+|

1
s |V −/B−|.

(c) Suppose s > 1 and V + = B+, then |V +/CV +(V −)| ≤ |V −/B−|
s

s2−1 .

(d) Suppose s > 1 and that r is a positive real number with |V −/B−|r ≤ |V +/CV +(V −)|.
Put e = rs2−r−s

s2
.

(d.a) |V −/B−|e ≤ |V +/B+|.

(d.b) |B−/CB−(V +)| ≥ |V
−/B−|r
|V +/B+|

(d.c) If e > 0, then |B+/CB+(V −)|| ≤ |V +/B+|
rs

rs2−r−s

(e) Suppose s > 1 and r is a positive integer so that for ε ∈ {+,−}, |V ε/Bε|r ≤
|V −ε/CV −ε(V ε)|. Put e = rs2−r−s

s2
and suppose that e > 0.

(e.a) |V −/B−|e ≤ |V +/B+||V −/B−|
1
e

(e.b) If V − 6= B−, then V + 6= B+ and e ≤ 1.

Proof: The first inequa lityin (aa) follows from 2.3 while the second is obvious. (ab)
is obviuos and (ac) follows from (aa) and (ab).

Interchanging ” + ” and ”− ” in (ac) and substituting the result into (ac) we obtain

|V +/CV +(V −)| ≤ |V +/B+||V −/B−|
1
s |V +/CV +(V −)|

1
s2 .
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Thus (b.a) holds. Simimalrly interchanging ” + ” and ”− ” in (ac) and substituting the
result into (ab) one obtains (bb).

(c) follows easily from (b.a). (ea) follows from (da) and using symmetry in ” + ” and
” − ”. (eb) follows from (eb). So it remains to prove (d). By assumption |V −/B−|r ≤
|V +/CV +(V −)|. As s > 1 we can raise this inequality to the s2−1

s2
power and obtain

|V −/B−|
r(s2−1)
s2 ≤ |V +/CV +(V −)|

s2−1
s2 .

Thus (da) follows from (ba). For (db) note that

|V −/B−|r ≤ |V +/CV +(V −)| ≤ |V +/B+||B+/VV +(V −).

Finally (d.c) follows from (d.a), (b.b) and a simple computation.
LLp

Lemma 8.21 Suppose b > 1 and Gβ is p-minimal. Let Mαβ be the unique maximal sub-
group of Gβ containing Gαβ. Put β+ = β, β− = α′. Then one of the follwing holds

1. For each ε ∈ {+,−} there exists Lε ≤ Gβε and µε ∈ 4(βε) so that for V ε = 〈ZLεµε each
of the following holds.

(a) V −ε 6≤ 0p(Lε).

(b) V −ε ≤ Gµε and Gβεµε contains a Sylow p-subgroup of Lε

(c) Lε ∩Mβεµε is the unique maximal subgroup of Lε containg V −ε.

(d) [V −ε, Zµε ] = 1.

2. There exists ε ∈ {+,−}, Lε ≤ Gβε, µε ∈ 4(βε and µ ∈ 4(β−epsilon) so that with
V ε = 〈ZLεµε each of the follwing holds.

(a) Vε ≤ Gµ, Zµ ≤ Lε and Zµ 6≤ 0p(Lε).

(b) Zµ ≤ Gµε and Gβεµε contains a Sylow p-subgroup of Lε

(c) Lε ∩Mβεµε is the unique maximal subgroup of Lε containg Zµ.

(d) [Zµ, Zµε ] = 1.

3. There exist µ+ ∈ 4(β+) and µ− ∈ 4(β−) so that Zµ+ ≤ Gµ−, Zµ− ≤ Gµ+ and
[Zµ+ , Zmu− ] 6= 1.

Proof: Suppose that 3. does not hold. For ε ∈ {+,−} choose Lε ≤ Gβε and µε ∈ 4(βε)
so that |L+||L−| is minimal with respect to

(i) For all ε, V −ε ≤ Lε ∩Gβεµε .

(ii) For all ε, Gβεµε ∩ Lε contains a Sylow p-subgroup of Lε and Mβεµε ∩ Lε the unique
maximal subgroups of Lε containg that Sylow p-subgroup.
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(iii) For at least one ε, V −ε 6≤ Op(Lε).

Note that (i),(ii) and (iii) are fulfilled with Lε = Gβε , µ+ = α+ 2 and µ− = α′ − 1 and
so we can make such a minimal choice.

Case 1 For some ε ∈ {+,−} and some µ ∈ µεLε , [V −ε, Zµ] 6= 1 and V −ε ≤ Gµ.

For ease of notation we assume without loss that ε = −.
LLp− 11

(1) In case 1, Zµ 6≤ Op(L+) and [Zµ+ , Zµ] = 1.

Suppose Zµ ≤ Op(L+) and pick ρ ∈ µ+L+
with [Zρ, Zµ] 6= 1. Then Zµ ≤ Gρ, Zρ ≤ Gµ

and so 3. holds, contrary to our assumption. As Zµ ≤ Gµ+ , the same argument shows
[Zµ+ , Zµ] = 1.

LLp− 12
(2) In case 1, 2. holds.

By 2.6 there exists L ≤ L+ and h ∈ L+ such that Zµ ≤ L, Zµ 6≤ Op(L), (Gβ+µ+∩L+)h∩L
contains a Sylow p-subgroup of L, and (Mβ+µ+ ∩L+)h ∩L is the unique maximal subgroup
of L containing Zµ. Thus 2. holds with ε = +, L in place of Lε.

Case 2 Case 1 does not hold.

LLp− 13
(3) In case 2, for all ε, V −ε 6≤ Op(Lε) and [V −ε, Zµε ] = 1.

If the first statement is false pick µ ∈ µεLε with [Zµ, V −ε] 6= 1, if the second statement
is false put µ = µε. Then in any case V −ε ≤ Gµ and the assumption of Case 1 are fulfilled.

LLp− 2
(4) In case 2. 1. holds.

We prove is basicly the same as for (2). By 2.6 there exists L ≤ Lε and h ∈ Lε such that
V −ε ≤ L, V ε 6≤ Op(L), (Gβεµε∩Lε)h contains a Sylow p-subgroup of L, and (Mβεµε∩Lε)h∩L
is the unique maximal subgroup of L containing V ε. Hence (i), (ii) and (iii) are still fulfilled
if we replace Lε be L, µε by µεh and leave L−ε and µ−ε as they are. Thus the minimal
choice of |L+||L−| implies L = Lε and so 1. holds holds.

znnab
Lemma 8.22 Assume that each of the following holds for each {γ, δ} = {α, β} and each
critical pair (α, α′)

(I) Zαβ 5 Gγ.

(ii) If N �Gγ with N ∩Op(Gαβ) 6≤ Qγ then Gγ = NGαβ.

(iii) Let O = Oγδ = {A ≤ Qδ | |Zγ/CZγ (A) ≤ |AQγ/Qγ | 6= 1, [Zγ , A,A] = 1}. Then
Zγ/CZγ (A) = |AQγ/Qγ | for all A ∈ O.

(iv) Either O = ∅ or Aγδ
def
=
⋂
A∈O[Zγ , A] 6= 1.
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(v) ZβZα 6 �Gα

(vi) One of the following holds

(vi.1) If α− 1 ∈ 4(α) such Zα′ does normalize Zα−1Zα, then Zα−1 6≤ Qα′−1.

(vi.2) There exists α− 1 ∈ 4(α) with Gα = 〈Gαα−1 and Zα−1 6≤ Qα′−1.

Then

(a) Oαβ 6= ∅ 6= Oαβ.

(b) If b ≥ 2, then Aβα �Gα.

(c) b ≤ 2.

Proof: By (iii), Zα′ ∈ Oαβ . By (ii) and (vi), there exists α − 1 ∈ 4(α) so that Zα′
does not normalize Zα−1Zα. Hence by (vi) we may choose α− 1 so that Zα−1 6≤ Qα′−1. In
particular,

znnab− 1
(1) Zα′−1 ∈ Oα−1α

Thus (a) holds.
Let H = N(Gα)(ZαZα− 1)), G = {g ∈ Gα | Zgα′ 6 H} and T = 〈Zα′g | g ∈ G〉. Let g ∈ G.

Then g ∈ G or Zgα′ ≤ H. Hence 〈H,T 〉 ≥ Gα−1αZ
Gα
α′ 〉 = Gα, where the last euality follows

from (ii). Since both H and T normalize T , we conclude that T = 〈ZGαα′ 〉 and inparticular
znnab− 2

(2) Gα = Gα−1α〈Zα′g | g ∈ G}.

Suppose now that b > 1 and Aβα 6 �Gα. Then by (2) we may assume that Zα′ does not
normalize Aα−1α. But (1) and the definition of Aα−1α imply Aα−1α ≤ [Zα−1, Zα′−1]. Hence
Aα−1α ≤ Zα′−1 and b > 1 provides the contradiction, [Aα−1α, Zα′ ] = 1. Thus (b) holds.

Suppose now that b > 2. Then by (b) applied to (α − 1, α′ − 1) in place of (α, α′),
Aαα−1 �Gα−1. Hence by (2) we may now assume that Zα′ does not normalize Aαα−1. On
the otherhand by (1) there exist α− 2 ∈ 4(α− 1) so that Zα′−2 ∈ Oα−2α−1 Hence

Aαα−1 = Aα−2α−1 ≤ [Zα − 2, Zα′ − 2] ≤ Zα′−2.

Since b > 2 we conclude [Aαα−1, Zα′ ] = 1, a contradiction and so also (c) is established.
vvi1

Lemma 8.23 Suppose that (i) to (v) in 8.22 holds. Suppose in addition that

(a) If A ∈ Q and B is an elementary abelian subgroup of Qδ with [Zγ , A,B] = 1 and
A ≤ B. Then [Zγ , B] ≤ [Zγ , A][CZγ (A), B]

(b) If A ∈ Q then there exists λ ∈ 4(γ) with Gγ = 〈Gλγ , A〉.

Then (vi.2) in 8.22 and so also the conclusions of 8.22 hold.
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Proof: By (b) there exists α − 1 ∈ 4(a) with Gα = 〈Gα−1α, Zα〉. Suppose that
Zα−1 ≤ Qα′−1. Then by (a) applied with γ = α′, A = Zα and B = Zα−1Zα, we conclude
that

[Zα′ , Zα−1Zα] ≤ [Zα′ , Zα][Zα′ ∩Qα, Zα−1] ≤ Zα−1Zα.

Thus Zα−1Zα is normalized by 〈Gα−1α, Zα〉 = Gα, a contradiction to (v).
cznnab

Lemma 8.24 Suppose that (i) to (v) in 8.22 holds. In addition assume that for each
A ∈ Q and each elementary abelian subgroup B each Qδ with [Zγ , A,B] = 1 and A ≤ B the
following statements hold

(a) |B/CB(CZγ (A) ≤ |CZγ (A)/CZγ (B).

(b) If [CZγ (A), B] = 1 then [Zγ , B] ≤ [Zγ , A].

(c) Suppose that [CZγ (A), B] 6= 1. Then for elementary abelian subgroup C of Qδ with
B ≤ C and [Zγ , B, C] = 1, [CZγ (A), C] ≤ [CZγ (A), B]

(d) There exists λ ∈ 4(γ) with Lγ = 〈Op(Gλγ), A〉.

Then the conclusions of 8.22 hold.

Proof: We may assume that (vi.2) in 8.22 does not hold. Thus by (d) we can choose
a critical pair (α, α′) and α − 1 ∈ 4(a) with Gα = 〈Gα−1α)Zα〉 and Zα−1 ≤ Qα′−1.
If [Zα′ , Zα−1Zα] ≤ [Zα′ , Zα] we get that Zα−1Zα is normalized by 〈Gα−1, Zα′〉 = Gα, a
contradiction to (v). Then by (b) we may assume that [Zα′ ∩ Qα, Za−1] 6= 1. Put X =
Zα′ ∩Qα. Then by (a) [X ∈ Qα−1α and so 8.22(a) holds.

Moreover, Aα−1α ≤ [Zα − 1, X] ≤ Zα′ and so Aα−1α is normalized by Gα−1α and Zα′

and so 8.22b holds.
Suppose that b > 2. By (d) there exists α − 2 ∈ 4(α − 1) with Gα−1 = 〈Gα−2α−1, X〉.

If Zα−2 6≤ Qα′−2, then Aα−2α−1 ≤ [Zα− 2, Zα′ − 2] ≤ Zα′ − 2. As b > 2 we get that Gαα−2,
X and Zα′ normalize Aα−2α−1. But then Aα−2α−1 is normal in Gα−1 and Gα.

Hence Za−2 ≤ Qα′−2. If Zα−2 6≤ Qα′−1, then since also Zα′−1 ≤ Qα−1 we conclude from
8.22(iii) that Zα′ − 1 ≤ calQα′−2α′−1. But then Aα−2α−1 ≤ [Zα − 2, Zα′ − 1] a we get the
same contradiction to the previous paragaph.

Thus Zα−2 ≤ Qα′−1 and so by (c) applied with C = Zα−2 and γ = α′ we conclude
that [Zα−2, X] ≤ [Zα−1, X] ≤ Zα−1. Hence Zα−2Zα−1 is normalized by Gα−2α−1 and X, a
contradiction to 8.22(v).

znnabmp
Lemma 8.25 Suppose that Gα and Gβ are minimal parabolics and Z 5 Gα and Z 5 Gβ.
Then b ≤ 2 or ZαZβ �Gα
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Proof: We assume without loss that Gαβ is Sylow 2-subgroup of Gα and Gβ. Put
Tαβ = 〈ZGαβα′ 〉Qa and Zαβ = CZα(Tαβ . Note that Tαβ only depends on α and β but not
on Zα′ . Let α − 1 ∈ 4(a) with Zαβ ∩ Zαα−1 ≤ Dα. For O ≤ i ≤ b, put Wi = 〈ZGαβα′−i〉.
Then Wb = Zα and W0Qα = Tαβ . Put T = Tα−1α and supose that W1Qα−1 6= T . Then
there exists a U � T so that Zα = 〈UGαα−1〉 and [W1, U ] = 1. Hence U ≤ Qα′−1. It is
now easy to see that Zα′ ∩Qα ≤ Tα−1α and so [U,Zα′ ] ≤ [Zα, Zα′ ][U,Zα′ ∩Qα] ≤ Zα[U, T ].
Hence [U,W0] ≤ Zα[U, T ] and WO. Let L = 〈T,WO. Then O2(L) centralizes UZα/Zα. As
Zβ = 〈UGα−1α〉 we conclude that Gα normalizes ZβZα. Remark: It is easy to see that
Vα/Zα is an FF-module. This will kill any problem O2Φ might cause, also this
shows that basicly Tαβ = Tβα

Hence W1Qα−1 = T . Choose α−i−1 ∈ 4(α−i) with Zα−i−1α−i∩Zα−i+1α−i ≤ Z(Gα−i.
Then a similar argument shows inductively that WiQα−i = Tα−iα−i+1. Hence ZαQα−b =
Tα−bα−b+1. Therfore we may assume that Zα′Qa = Tαβ . The above argument now shows
that Zα′−1Qα−1 = T and we conclude that if b > 1, then [Zα−1, T ] = [Zα−1, Zα−1] ≤ Dα.
Moreover, if b > 2, [Zα−2, Zα′−2] ≤ Dα−1∩Dα, a contradiction and the lemma is proved.

Lemma 8.26 Let Mi ∈ calL(S), 1 ≤ i ≤ 3 and suppose that that

(i) For i = 2, 3, O2(M1i ∩ S ≤ Q23

(ii) O2(M1) ∩ S = (O2(M12 ∩ S)(O2(M13 ∩ S).

Then Q23 is a Sylow 2-subgroup of O2(M1)Q23 and Q1 ∩ Q23 = O2(O2(M1)Q23) is
normal in M1

Proof: Let L = O2(M1)Q23. Then by (ii) and (i)

Q23 ≤ L ∩ S = (O2(M1) ∩ S)Q23 = (O2(M12 ∩ S)(O2(M13 ∩ S)Q23 = Q23

. Since L� LS = M1, O2(L) ≤ Q1.
Hence O2(L) = Q1 ∩ L = Q1 ∩Q23.

9 Amalgams involving uniqueness groups
minparun

Hypothesis 9.1 (i) Hypothesis 8.1 holds with G finite.

(ii) Gα is a minimal parabolic.

(iii) EβB(S) lies in a unique maximal p-local Mβ of G.

(iv) Q∗β ≤ Op(Mb).

(v) Gβ = EβGαβ

(vi) Mαβ =
def
= Mβ ∩Gα is the unique maximal subgroup of Gα containing S.

61



(vii) Gβ ∈ CL(S).

Put Qαβ = O2(Mαβ), Xb = Ω1(Z(Qb)) and X∗β = Ω1(CQβ (Q∗b))
Put Dβ =

⋂
δ∈4(β) Zδ and R = [Zα, Zα′ ].

The next two lemmas reveal how the assumptions on Eβ can be used
Qab

Lemma 9.2 (a) Q∗β ≤ O2(Mβ) ≤ Qαβ.

(b) Let γ ∈ 4(β) and Rα be a normal subgroup of Gα. Then

Rγ ∩Qβ ≤ (Rα ∩Qβ)Q∗β ≤ (Rα ∩Qβ)Qαβ ≤ (Rα ∩Qβ)O2(Mβ) ≤ RαQαβ .

(c) Let γ ∈ 4(β). Then Qγ ∩Qβ ≤ QαO2(Mβ) ≤ Qαβ.

(d) Let Rαβ be a normal subgroup of Gαβ contained in Qβ. Then for all γ ∈ 4β,

Rαβ ≤ 〈R
Gβ
αβ 〉 ≤ O2(Mβ)Rγα.

Proof: By hypothesis, Q∗β ≤ O2(Mβ). As Gαβ contains a Sylow 2-subgroup of Mβ,
O2(Mβ) ≤ Gαβ and (a) holds.

Since Eβ acts transitively on 4(β) we have Rγ ∩ Qβ ≤ (Rα ∩ Qβ)[Qβ, Eβ] and so (b)
follows from (a).

Since Qα ≤ Qαβ , (c) follows from (b) applied to Rα = Qα.
As Rαβ ≤ 〈R

Eβ
γβ 〉 ≤ [Qβ, Eβ]Rγα ≤ Op(M)Rγα, (d) holds.

Mtrick
Lemma 9.3 Suppose 1 6= D ≤ ZJ(S) and Eβ] ≤ NG(D). Then

(a) NGα(D) ≤Mαβ

(b) Let δ ∈ Γ such that d(β, δ) = b− i with 1 ≤ i < b . Suppose that NGδ(D) normalizes
no non-trivial 2-subgroup of Gδ/Qδ. Then

(ba) V
(i+1)
β ∩Gδ ≤ Qδ

(bb) V
(i)
β ≤ Qδ.

(bc) If NGδ(D) contains a Sylow p−subgroup of Gδ, then V
(i+1)
β ≤ Qδ.

(c) If b is odd and b ≥ 3, then Eα′ does not normalize D.

(d) Suppose that b is even, b ≥ 3 and Eα′−1 normalizes D, then

(da) V
(3)
β ∩Gα′−1 ≤ Qα′−1 ≤ Gα′.

(db) If Gα′−1 normalizes D, then V
(3)
β ≤ Qα′−1 ≤ Gα′.
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Proof: As B(S) and Eβ normalize D, NG(D) ≤Mβ. Thus (a) holds.
For (b) let γ ∈ 4(β) with d(γ, δ) = b − i − 1. Then by 9.2(d) V (i+1)

β ≤ V
(i−1)
γ O2(Mβ).

By minimality of b, V (i)
γ ≤ Qδ. Since NGδ(D) ≤Mβ, NGδ(D) normalizes the 2-group Gδ ∩

O2(Mβ). Thus by assumption, Gδ ∩O2(Mβ) ≤ Qδ. Hence V (i+1)
β ∩Gδ ≤ V

(i−1)
γ (O2(Mβ) ∩

Gδ) ≤ Qδ. So (ba) holds. Clearly (ba) implies (bb). In case (bc) O2(Mβ) ≤ Gδ and so
V

(i+1)
b ≤ Gδ.

Suppose b is odd and Eα′ centralizes D. Then by (bb) applied with δ = α′ and i = 1,
Vβ ≤ Qα′ , a contradiction.

(d) follows from (ba) and (bc) applied with δ = α′ − 1 and i = 2.
uznn

Lemma 9.4 Suppose that [Z,Eβ] 6= 1. Then Zβ is an FF -module.

Proof: 8.16
1za

Lemma 9.5 Suppose that [Zα, Zα′ ] 6= 1 and [Z,Eβ] = 1.

(a) Let Lα = 〈ZGαα′ 〉Qα. Then Lα/Cα ∼= SL2(q)k, where k is a postive integer and q a
power of 2.

(b) Zα is a natural module for Lα/Ca.

(c) Zα′Qα is a Sylow p-subgroup of 〈ZLαα′ 〉Qα.

Proof: As [Zα, Zα′ ] 6= 1 we may assume that Zα′ acts as an offending subgroup on Zα.
Since [Z,Eβ] = 1, CZα(Lα) = 1.Moreover, by 9.2c Zα′ ≤ Qαβ , which excludes the possibilty
that Zα is a a natural Sym(q + 1)k-modules for q ≥ 4. Thus the lemma follows from 6.3.

Define Zαβ = CZa(S ∩ Lα) and Z∗β = 〈ZGβαβ 〉. In the next two lemmas we will assume
[Zα, Zα′ ] 6= 1. Let V be an irreducible Lα submodule in Zα not centralized by Zα′ and
similarly choose V ′ ≤ Zα′ . Put R = [V, V ′].

zb∗
Lemma 9.6 Suppose that [Zα, Zα′ ] 6= 1 and [Z,Eβ] = 1. Then one of the following holds:

1. Zαβ is normal in Gβ.

2. Zαβ ≤ X∗β and [X∗β, Eβ] 6= 1.

3. q = 2 and k ≥ 2. Moreover, if Uαβ be maximal in Zαβ with [Uαβ, Gαβ ] ≤ Zβ and
Uβ = 〈UGβαβ 〉, Then Uβ/Zβ is an FF-module for Gβ/Qβ

Proof: We may assume that Zαβ is not normal Gβ and so is not centralized by Eβ.
Suppose first that q > 2 or k = 1. Then Q∗β ≤ Qαβ ≤ Lα and so Zαβ ≤ X∗β. Thus

[X∗β, Eβ] 6= 1 and the P ×Q lemma implies [Xβ, Eβ] 6= 1.
So suppose now that q = 2 and k > 1. Let α − 1 ∈ 4(α) with 〈Gαα−1, V

′〉 = Gα. By
9.5c, [Zαβ , Zα′ ] = 1 and so
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zb ∗ −1
(1) (a) Z∗β ≤ Qδ for all δ ∈ Γ with d(β, δ) < b.

(b) [Z∗α′−1, V
′] = 1, even if b = 2.

In particular, [Z∗β, Zα′ ] = 1 and as S acts transitively on the L(i)
α and normalizes CQβ (Z∗b )

we conclude
zb ∗ −1a

(2) (a) S ∩ Lα = CQβ (Z∗β)Qα.

(b) Z∗β ∩ Zα = Zαβ.

By definition of Uαβ we have [Uαβ , Qβ] ≤ Zβ and thus
zb ∗ −2

(3) [Uβ, Qβ] ≤ Zβ.

In particular, D
def
= [Uα−1, Uα′−1 ∩ Qα−1] ≤ Zα−1. On the otherhand, by (1)a,Uα−1 ≤

Z∗α−1 ≤ Qα′−2 ≤ Gap−1 and so D ≤ Uα′−1 ≤ Z∗ap−1 and so by (1)c, [D,V ′] = 1. Hence by
choice of α− 1, D is centralized by Gα and Gα−1. Thus

zb ∗ −3
(4) [Uα−1, Z

∗
α′−1 ∩Qα−1] = 1.

Suppose that Uα−1 ≤ Qα′−1. As [R,Uα−1] = 1 we conclude that [Uα−1, V
′] ≤ R ≤ Zα.

Thus

Uα−1Zα � 〈Gα−1α, V
′〉 = Gα.

Hence also [Uα−1, Qα] � Gα. By (4), Zα 6≤ Uα−1 and since Zα is the unique minimal
normal subgroup of Gα in Qα we conclude that [Uα−1, Qα] = 1. Thus [Uβ, Qα] = 1. Since
Eβ ≤ 〈Q

Gβ
α 〉T we get [Uβ, Eβ] = 1. Note also that [Uαβ ≤ ZJ(S) and that there exists

1 6= D ≤ Uαβ with CGα(D) 6≤Mαβ . Hence we obtain a contradiction to 9a. We proved
zb ∗ −4

(5) (a) [Uβ, Eβ] 6= 1.

(b) Uα−1 6≤ Qα′−1.

If [Uα−1 ∩ Qα′−1, Uα′−1] = 1, then 8.17 and (4) imply that 3. holds. Thus we may
assume:

zb ∗ −5
(6) Zα′−1 = [Uα−1 ∩Qα′−1, Uα′−1] ≤ Uα−1

Suppose that b = 2. Then by (6) and (2)b, Zβ = Zα′−1 ≤ Uα−1 ∩ Zα ≤ Z∗α−1 ∩ Zα =
Zαα−1. But this contradicts the choice of α− 1. Hence

zb ∗ −6
(7) b ≥ 4.
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By (6), there exists λ ∈ 4(α′ − 1) and t ∈ Uα−1 ∩Qα′−1 with [t, Uα′−1λ] = Zα′−1.
Suppose t normalizes one of the Z(i)

λ and let X be the sum of the Z(j)
λ , j 6= i. Then

Uα′−1λ = Uα′−1λ ∩ Z
(i)
λ ⊕ Uα′−1λ ∩X, t centralise Uα′−1λ ∩ Ziλ and so Zα′−1 = [Uα′−1λ, t] ≤

[X, t] ≤ X, a contradiction.
zb ∗ −7

(8) t acts fixed-point freely on {L(i)
λ | 1 ≤ i ≤ k}.

Thus by 2.2 and (2)a there exists µ ∈ 4(λ) with O2(Gλ) ≤ 〈CQµ)(Z∗µ), t〉. As t central-
izes Zα, (8) implies that Zα ≤ Qλ. Moreover, Uµ ≤ Qα+2 ≤ Gβ and so [Vβ, Uµ] ≤ Uµ ∩ Vβ.
Since b ≥ 4, we conclude from (1)a that Uα−1 and so also t centralizes [Vβ, Uµ]. Since
CQλ(O2(Gλ)) = 1 the choice of µ implies [Vβ, Uµ] = 1 and so

zb ∗ −8
(9) Uµ ≤ Qβ ∩Qα ≤ Gα−1.

Since d(µ, α′) = 3 < b, (2) implies [〈UGλµ 〉, V ′ = 1. Thus [t, Uµ ∩Qα−1] ≤ Zα−1(V ′) = 1.
From CUµ(t) ≤ CQλ(O2(Gλ)) = 1 we get

zb ∗ −9
(10) Uµ ∩Qα−1 = 1

Thus
|Uα−1/CUα−1(Uµ)| ≤ |Uα−1| = |Uµ| = |UµQα−1/Qα−1|

and 3. holds.
pred

Lemma 9.7 Suppose that [Zα, Zα′ ] 6= 1 and Zαβ is normal in Gβ. Then b = 2, Eβ cen-
tralizes Zαβ and Ga is of L2-type.

Proof: By8.15 Qα 6≤ Qβ. As Qα centralizes Zαβ and Eβ ≤ 〈Q
Gβ
α 〉 we conclude that Eβ

centralizes Zαβ. Note that V ∩Zαβ 6= 1 and so by 9, CGα(V ∩Zαβ ≤Mαβ . Thus k = 1 and
Gα is of L2-type. It remains to show that b = 2.

Suppose that b > 2. Let α − 1 ∈ 4(α) with 〈Gα−1α, V 〉 = Gα and note that R =
Z∗β = Z∗α′−1 is normalized by Gβ and Gα′−1. Hence 9(d) implies that Vα−1 ≤ Gα′ . As
Vα−1 centralizes R we conclude that [Vα−1, Zα′ ] ≤ R and Gα normalizes Vα−1, again a
contradiction.

2za
Lemma 9.8 Suppose that [Zα, Zα′ ] = 1, b > 1 and rβ > 1. Then there exists a normal
subgroups Lα of Gα and normal subgroups L(i

α , 1 ≤ i ≤ k of Lα such that

(a) Cα ≤ Lα and Cα ≤ L(i)
α

(b) O2(Lα) = L
(1)
α × . . .× L(k)

α

(c) Gα = LαS, S transitively permutes the L
(i)
α ’s and Lα is the largest subgroup of Gα

normalizing all the L(i)
α ’s.
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(d) Put Z(i)
α = [Zα, L

(i)
α ]. Then Zα = Z

(1)
α ⊕ . . .⊕ Z(k)

α .

(e) One of the following holds

1. L(i)
α
∼= SL2(q), q a power of 2 and Z(i)

α is a natural SL2(q)-module for L(i)
α .

2. L(i)
α
∼= C3, |Z(i)

α | = 4 and sZα(O2(Mβ)) < 2.

3. L(i)
α
∼= SL3(q), q a power of 2; Z(i)

α is direct sum of a natural SL3(q)-module for

L
(i)
α with its dual; some element of S induces a graph automorphism on L

(i)
a and

cβ = 2

Proof: Suppose first that cβ = 1. Then the lemma holds by 8.4 and 6.3, where the
Sym(q + 1) case is excluded as in 9.5.

So suppose that cβ ≥ 2. Then rβcβ − 1 > 1 and so by 2.4a, rα < 2. Thus we can apply
6.4 with the Sym(q + 1)-case excluded as usual. Note that in case (e3) we actually have
ra = 3

2 . As rβ > 1, 2.4 implies cβ = 2 and all parts of the lemma are proved.

Put Zαβ = CZα(Lα ∩ S) and Z∗β = 〈ZGβαβ 〉.
l3q.2

Lemma 9.9 Suppose that [Zα, Zα′−1] = 1, b > 1 and the conclusions of 9.8 hold for case
e3 hold. Then QβQα/Qα ≤ Z(S ∩ Lα/Qα), [Xβ, Eβ] 6= 1 and Xβ is an FF -module.

Proof: Suppose that Eβ centralizes Zαβ and let D be the intersection of Zαβ with
one of the irreducible Lα submodule in Zα. Then D 6= 1, NGα(D) 6≤ Mαβ and EβB(S)
centralizes D, a contradiction to 9a.

Thus Eβ does not centralize Zαβ .
Recall that cβ = 2 in case 9.8e3. Thus 8.9 applied to L = Eb shows that [Zα, Qβ, 2] ≤ Dβ.

By 8.15 Qα 6 Qβ. Hence Eβ ≤ 〈Q
Gβ
a 〉 and so [Dβ, Eβ] = 1. In particular Zαβ 6≤ Dβ and

so Zαβ 6≤ [Zα, Qβ, 2]. As S normalizes [Zα, Qβ, 2] we conclude from the action of S on Zα
that [Zα, Qβ, 2] < Zαβ. Since Qβ is normal in S this implies that Qβ ≤ Lα and then that
Qβ acts quadratically on each of the irreducible Lα submodules in Zα. As S normalizes
Qβ and induces a graph automorphism on the L(1)

α we get QβQα/Qa ≤ Z(S ∩Lα/Qα) and
Zαβ ≤ Xβ. Hence [Xβ, Eβ] 6= 1 and so by ?? Xβ is an FF -module.

l2k
Lemma 9.10 Suppose that [Zα, Zα′−1] = 1, b > 1 and the conclusions of 9.8 hold for case
e1 or e2 hold. Then one of the following is true:

1. k = 1, [Zαβ , Eβ] = 1 and Vβ is an FF -module for Gβ

2. k = 1, b = 3 and Vβ is an F2-module.

3. [Zαβ , Eβ] 6= 1 and Xβ is an FF -module.
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4. q = 2, k ≥ 2 and [Zαβ , Eβ] 6= 1. Let Uαβ be maximal in Zαβ with [Uαβ, Qβ] ≤ Zβ and
put Uβ = 〈UGβαβ 〉. Then Uβ is an FF -module for Gβ.

Proof: By 9a, [Zαβ , Eβ] = 1 implies, k = 1.
Suppose that q > 2 or k = 1. Then Q∗β ≤ O2(Mβ) ≤ Qαβ ≤ Lα and so Zαβ ≤ X∗β. So if

in addition [Zαβ , Eβ] 6= 1, then ?? implies that 3. holds. Hence we may assume from now
on that

l2k − 1
(1) One of the following holds:

(Case 1) k = 1 and [Zaβ , Eβ] = 1.

(Case 2) q = 2, k ≥ 2 and [Zαβ , Eβ] 6= 1.

Put D∗β = Zαβ ∩ Dβ and note that in case Case 1, D∗β = Zαβ while in case Case 2 9a
implies D∗β = Zβ. In Case 1 let Uαβ = Zα and in Case 2 let Uαβ be maximal in Zαβ with

[Uαβ , Qβ] ≤ D∗β. Put Uβ = 〈UGβαβ 〉. It follows easily from the definitions and 9.2c that:
2z ∗ b

(2) (a) [Uαβ , Eβ] 6= 1

(b) [Uβ, Q∗β] ≤ [Vβ, O2(Mβ)] ≤ D∗β ≤ Zα

(c) [Uβ, Qβ ∩Qα+2] ≤ D∗β.

By 9d applied with D = D∗β ∩D∗α′−1 we get
zbza

(3) D∗β ∩D∗α′−1 = 1

By (2)c, [Uβ ∩Qα′ , Uα′ ∩Qβ] ≤ D∗β ∩D∗α′−1 = 1 and so
vqvq

(4) [Uβ ∩Qα′ , Uα′ ∩Qβ] = 1

We may and do assume from now on that Uβ is not an FF -module and and will show
that 2. holds.

Suppose that Uα′ ≤ Qβ. As b ≥ 3, Uα′ acts quadratically on Zα. Let V be an irreducible
Lα submodule in Zα with V 6≤ Qα′ . Assume first that Uα′ normalizes V . Then

|V/CV (Uα′) = q ≥ |Uα′/CUα′ (V )|.

If q =2, this clearly implies that Uα′ is an FF -module. If q > 2 we are in Case 2 and
so V ≤ Uβ and by (4), Uβ ∩ Qα′ ≤ CV (Uα′). Hence |V Qα′/Qα′ | ≥ q. Again Uα′ is an
FF -module, a contradiction.

Thus Uα′ does not normalizes V and quadratic action implies |Uα′/CUα′ (V )| ≤ 2, again
a contradiction. Thus

sym
(5) Uα′ 6≤ Qβ and the situation is symmetric in β and α′.
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Suppose that [Uβ, Uα′ ∩ Qβ] = 1 = [Uα′ , Uβ ∩ Qα′ ]. Then by 8.17 we get that Uβ is an
FF -module. Thus

vvqa
(6) Dβ = [Uβ, Uα′ ∩Qβ] ≤ Uα′ or Dα′ ≤ [Uα′ , Uβ ∩Qα′ ] ≤ Uβ

Hence we may assume [Uβ, Uα′ ∩Qβ] 6= 1 and so
vvq

(7) D∗β = [Uβ, Uα′ ∩Qβ] ≤ Uα′ .

Pick µ ∈ 4(β) and t ∈ Uα′ ∩Qβ with [Uµβ , t] 6= 1. Then by (4), Zµ 6≤ Qα′ and we may
assume that µ = α. Hence

vbq
(8) There exists t ∈ Uα′ ∩Qβ with [Uαβ , t] 6= 1. In particular, t 6∈ Qα

In particular, by 9.2c, O2(Mβ) 6≤ Qα, as O2(Mβ) is normal in Mαβ we conclude (
compare also (8) in 9.6).

QMbQS
(9) (a) In case 1, O2(Mβ)Qa = S ∩ Lα.

(b) In Case 2, t acts fixed point freely on {L(i)
α | 1 ≤ i ≤ k}.

In particular, ( also use 2.2 in Case 2) there exists α− 1 ∈ 4(α) with
O2G

(10) Eα ≤ 〈O2(Mα−1) ∩ Lα, t〉.

By (4) and (8) we have |UβQα′/Qα′ | ≥ |UαβQα′/Qα′ | = |Uαβ/CUαβ (t)| ≥ q. We record
vbqa

(11) |UβQα′/Qα′ | ≥ q.

Define Yα =
⋂
δ∈4(α) UδZα.

Suppose now that [Uα−1, Vα′−2]=1. Then Uα−1 ≤ Qα′−2 ∩ Qα′−1. Put A = Uα−1 ∩
(UβQα′). Then A ≤ Uβ(UβUα−1 ∩Qα′) ≤ Uβ(Qα′−1 ∩Qα′). Thus by (2)

[A, t] ≤ [Uβ, t][Qα′−1 ∩Qα′ , t] ≤ D∗βD∗α′ .

Let X be maximal in A with [X, t] ≤ D∗β. As |D∗α′ | = q we have |A/X| ≤ q. Since
D∗β ≤ X, t normalizes X. By (2), O2(Mα−1) also normalizes XZα. As Eα is transitive on
4(α) we conclude from (10) that XZα ≤ Yα. Put a = |Uα−1/A|. Then |Uα−1Ya/Ya| ≤
|Uα−1/A||A/X| ≤ aq. Hence

|UβYa/Yα| ≤ aq.

Note that Uα−1 ≤ Qα′−2 ∩ Qα′−1 ≤ Gα′ . Since Yα′−1 ≤ Vα′−2 we conclude from
|UβYa/Yα| ≤ qa and edge-transitivity that

|Uα′/CUα′ (Uα−1Uβ)| ≤ |Uα′Yα′−1/Yα′−1| = |uβYa/Yα| ≤ aq.
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On the otherhand by definition of a, an isomorphism theorem and (11)

|Uα−1UβQα′/Qα′ | = |Uα−1UβQα′/UβQα′ ||UβQα′/Qα′ | ≥ aq.

By the last two equations, Uα′ is an FF -module, a contradiction. Hence
va− 1va− 2

(12) [Uα−1, Vα′−2] 6= 1

Suppose that Vα′−2 ≤ Qa−1. Then by (5), Vα−1 ≤ Qα′−2. Note that by (10), CD∗α−1
(t) =

1. Thus
1 6= [Uα−1, Vα′−2] ≤ D∗α−1 ∩D∗α′−2 ≤ CD∗α−1

(t) = 1

a contradiction to (12). Thus
va− 1qa− 1

(13) Vα′−2 6≤ Qα−1

In particular, (α′ − 2, α − 1) has the same properties as (β, α′) and we conclude from
(5) that

va− 1qa− 2
(14) Uα−1 6≤ Qα′−2

Suppose that 1 6= x ≤ D∗α′−2 ∩ Uα−1. As t centralizes x, x ∈ X ≤ Yα and so Eα
normalizes xZα.

Suppose first that [x,Qα] 6= 1. Since Eα normalizes [x,Qa], Z
(i)
α ≤ [x,Qa] for some

i. Put L = Op(L(i)
α ) and Q = [Qα, L]. Then [x,Qα, L] = Z

(i)
α and [x, L,Qα] = 1. Thus

be the three subgroup lemma, [x,Q] = Z
(i)
α = [x, L]. Since [x,Q,Q] = 1 we colcude that

xQ = xQ = xL and so by the Frattini argument, L = CL(x)Q. Since x ≤ Dα′−2, x
is centralised by Eα′−2 and the Thompson subgroup of Gα′−1α′−2. By the proof of (ba), Mtrick

t ∈ Vα′ ∩Gα ≤ V
(3)
α′−2 ∩Gα ≤ Qp(Map−2 ∩Gα. As CL(x) normalizes Qp(Map−2 ∩Gα we get

[t, L] ≤ Qα. In case 1 this is impossible since t 6∈ Qa and in Case 2 this contradicts ??b.
Suppose next that [x,Qα] = 1, but x 6∈ Zα. Then its is easy to see that q > 2 and

CEa(x)Qα/Qα is ismorphic to D2·q±1 and again CEa(x) normalizes no non-trivial 2-subgroup
in Ga/Qa and we get the same contradiction as above.

Hence x ∈ Zα and soD∗α′−2 ≤ Zα. Note that t centralizesD∗α′−2. In Case 2 we have n x ∈
Zα, [x,O2(Mα−1∩Lα)] ≤ Zα−1 and sZα(O2(Mα−1∩Lα) < 2 implies, [x,O2(Mα−1∩Lα)] = 1.
Hence by (10), [x,Eα] = 1 a contradiction to CQα(Eα) = 1.

In case Case 1 we conclude that D∗α′−2 = D∗β. If b > 3, 9bb implies that Vα−1 ≤ V (3)
β ≤

Qα′−2, a contradiction. We have proved
dcu

(15) If D∗α′−2 ∩ Uα−1 6= 1, then b = 3 and Case 1 holds.

Assume that b > 3. Then t centralizes [Uα′−2∩Qα−1, Uα−1] and as by (10) CD∗α−1
(t) = 1

we get [Uα′−2∩Qα−1Uα−1] = 1. Thus by (6) and ?? that D∗α′−2 = [Uα−1∩Qα′−2, Uα′−1] ≤
Uα−1 a contradiction to (15). Thus
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l2kb3
(16) b = 3.

Suppose that k > 1. By (6) applied to (α − 1, β) in place of (β, α′) we get Zα−1 =
D∗α−1 ≤ Uβ or Zβ = D∗b ≤ Uα′−1. In the first case [Zα−1, O2(Mβ) ≤ Zβ and as above so
[Zα−1, O2(Mβ ∩ Lα) = 1. But this implies Zα−1 ≤ Zαβ and Zαα−1 = Zαβ a contradiction
to (10). The second case yields the same contradicion.

Thus k = 1 and so Vβ = Uβ. By (4) and ??, Vβ is F2 and so 2. holds.

We remark that an example for case 2 of the previous theorem occurs in 2F4(q). In that
example Vβ is exactly F2 ( that is not F ∗2)

10 Connected parabolics not normalizing Z
UII
HUIIHypothesis 10.1 (a) Hypothesis 8.1 holds.

(b) CGα(Yα) is p-closed.

(c) Gβ is p-minimal.

(d) Yα is neither an FF nor an dual FF -modul.

Remark: ”b” in this section is defined with respect to Yγ not Zγ
dmab

Definition 10.2 Mαβ is the unique maximal subgroup of Gβ containing S.
zc

Lemma 10.3 b is odd, Z �Gβ and [Xβ, Eβ] = 1.

Proof: By 8.17 b is odd and as p-minimal groups have no F1∗-module, Z �Gβ. Since
Yα is not FF , J(S) 6≤ Qβ. If [Xβ, Eβ] 6= 1, we conclude that Xβ is FF . As Gβ is p-minimal
this gives the contradiction, Z 5 Gβ.

qbniqa
Lemma 10.4 Q∗β 6≤ Qα and Qα 6≤ Qβ.

Proof: Suppose that Q∗β ≤ Qα. Then [Vβ, Q∗β] = 1 and so by Thompson’s P × Q-
Lemma, [Xβ ∩ Vβ, Lβ] 6= 1, a contradiction to 10.3. The second statement holds since

Zα ≤ Qα′−2 ∩Qα′−1 ≤ Q∗α′−1Qα′ .

sb
Lemma 10.5 (a) rVβ (Gβ) ≤ 1.

(b) cβ ≥ 2.

(c) qα ≤ 2.

Proof: (a) holds since Gβ is p-minimal. Since Qα 6≤ Qβ and Q∗β 6≤ Qα, Qα ∩ Qb is not
normal in Gβ. Thus by 8.4b, (b) holds. Hence by 8.4a also c. is true.
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nLLp
Lemma 10.6 Suppose that b > 1.

(a) 8.21.1 or 8.21.2 holds.

(b) For each ε in 8.211. or 2., Lε has at least two non trivial chief-factors on V ε.

(c) In case ?? qα <
1+
√

17
4 .

(a) Suppose that 8.21.3 holds. Then by 8.17 one of Zµ+ and Zµ− is FF . But then Zα is
FF , a contradiction.

(b) Suppose Lε has at most one non-central chief factor on V ε. Since Lε and Gβε are p-
minimal, 2. implies Lε = Op(Lε)(Gβεµε ∩Lε) and Gβε = 〈Gβεµε , Lε〉. Thus we can apply 8.5
to (µε, βε in place of (α, β). Since by assumption α is not a dual FF- module we conclude
that Vβ ≤ ZαXβ. But then [Vβ, Qα] ≤ Xβ and so [Vβ, Eβ] ≤ Xβ and [Vβ, Eβ] = 1, a
contradiction.

(c) Suppose that qa ≥ 1+
√

17
4 . Put Λ+ = µ+L+

and Λ− = {µ}. Abusing notation define
V +, V −,B+ and B− as in that lemma. Note that V + is the same V + as defined before,
but V − now is Zµ. Also B+ = V + and B− = Zµ ∩ Op(L+). In particular, V − 6= B−

and V + = B+. We wish to apply 8.20e with r = 2 and s = qα. By ?? and since L+ is
p-minimial, |Zµ/B−|2 ≤ |V +/CV +(Zµ)|. Also |V +/B+|2 = 1 ≤ |Zµ/CZµ(V +)| and so the
asumptions of 8.20e are indeed fullfiled for this choice of r and s. Also e > 0 by 2.1a. Thus
8.20e gives the contradiction V + 6= B+.

zf1
Proposition 10.7 There exists 1 6= x ∈ Zα and λ ∈ Γ with d(α, λ) = b and Zα 6≤
Op(CGλ)(x).

Proof: Suppose the lemma is false. Then by 10.3 b > 1 and we can apply 8.21. In case
8.21.1 we assume without loss that α ∈ µ+L+

with Zα 6∈ Op(L−). Put Q = Op(L+).
In case 8.21.2 we assume ε = − and α = µ. Put Q = Gα and V + = Zα.
In each case note that by 8.21 the assumptions of 2.8 with H = L−, V = V −, A = Zα

and Z = Zµ− are fulfilled.
znn− .5

(1) V − ∩Q ≤ Gα and CV −(Zα) = CV −(V +) ≤ V − ∩Q

In case 8.21.2 there is nothing to prove. So suppose 8.21.1 holds. Then Op(L+) ≤ Gα
and so the first statement holds. The second follows from 2.8a.

zn1− 1
(2) [Zα ∩Op(L−), V − ∩Q] = 1

Suppose 1 6= x ∈ [Zα ∩Op(L−), V − ∩Q]. Then x ∈ Zα . Thus by 2.8d, Zα 6≤ Op(CL(x))
and so also Zα 6≤ Op(CGα′ (x), a contradiction.

Since L− has at least two non-central chief-factors on V − and as Zα is not FF we now
compute
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|V −/V −∩Q|||V −∩Q/CV −(V +)| = |V −/CV −(V +)| = |V −/CV −(Zα)| ≥ |Zα/Zα∩Op(L−)|2 ≥ |Zα/CZα(V −∩Q)|2 ≥ |V −∩Q/CV ∩Q(Zα)|2 = |V −∩Q/CV −(V +)|2
(1)

Hence
|V −/V − ∩Q| ≥ |V − ∩Q/CV −(V +)|. (2)

In case of 8.21.2 we conclude V − = VV −(Zα), a contradiction. Thus
zn1− 3

(3) 8.21.1 holds.

In particular, the sitution is symmetric in + and − and Q = Op(L+). Since by 8.21.1,
L+ has two non-central chief factor on V +,

|V +/CV +(V −)| ≥ |V −Q/Q|2 = |V −/V − ∩Q||V −/V − ∩Q|

and so by (2)

|V +/CV +(V −)| ≥ |V −/V − ∩Q||V − ∩Q/CV −(V +)| = |V −/CV −(V +)|

But the same inequality holds with the roles of + and− are interchanged. Hence equality
holds here and also in (1). But has Zα is not FF this is only posibble if V − ∩Q centralizes
Zα. But then all the numbers compared in (1) are equal to 1 and so V − = CV −(V +), a
contradiction which completes the proof of ??.

ffb1
Theorem 10.8 Suppose G is of generic p-type, S ∈ Sylp(G) and V is a maximal member
of {YL | L ∈ L(S). Then either V is an FF -or dual FF -module for S or V 6≤ Op(CG(Z)).

Proof: Let M = NG(V ) and L = NG(CS(V )). Then M is the unique maximal p-local
of G containing L. Let Gα = L and H a p-minimal member of L(S) not contained in
M . Suppose that V is neither FF nor dual FF for S. Then the assumptions of this
section are fulfilled. Hence by ?? there exists a p-local subgroup H with Op(L) ≤ H and
V 6≤ Op(H). Choose such an H with |H ∩M |p maximal and then |H|-minimal. Let R be a
Sylow p-subgroup of H ∩M with Op(L) ≤ R. Since Op(L) is a Sylow psubgroup of CG(V ),
Op(L) = CR(V ) �R and so R ≤ L. Without loss R ≤ S.

Since Op(L) ≤ R and V is not FF , J(R) ≤ Op(L). Hence L ≤ NG(J(R)) and so
NG(J(R)) ≤M . Thus NH(J(R)) ≤M and in particular, NH(R) ≤M . Thus R is a Sylow
p-subgroup of H.

Let W = ZH and suppose that [W,V ] 6= 1. Since W ≤ Op(H) ≤ R ≤ S, |V/CV (W ) >
|W/CW (V ). Thus V is F ∗1 on W . By the minimality of H, V ≤ Op(P ) for all P ∈ L(H,S)
with P 6= H and contradiction to ??

Hence V centralizes W By minimiality of H, H = 〈V H〉R and so Ω1(Z(R)) = W ≤
Z(H). Thus V 6≤ Op(NG(W ). By maximaliy if |H ∩ M |, R is a Sylow p-subgroup of
M ∩NG(W ). Thus NS(R) ≤ NS(W ) ≤ R, R = S and W = Z. Thus the theorem is proved
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CV anV
Lemma 10.9 There exists 1
neqA ≤ SCα/Cα with

(a) [Zα, A,A] = 1

(b) |Zα/CZα(A)| ≤ |A2|.

(c) 〈CZα(a) | a ∈ A#〉 6= Zα.

(d) If 8.212 holds,then |Zα/CZα(A)| < |A
3
2 |.

Remark: We proof contains more information than stated in the lemma Proof:
Let Lε, µε and µ as in 8.21.

In case of 8.211. may assume without loss that |V +/CV +(V −)| ≤ |V −/CV −(V +)|.Pick
µ ∈ µ+L+

with Zµ 6≤ Op(L−) and put B− = V − ∩Op(L+)
In case of 8.212 we assume without loss ε = −. Put V + = Zµ and B+ = Zµ ∩Op(L−).
In general pick t ∈ Zµ \ Op(L−). By 8.21 the assumptions for 2.8 are fulfilled with

H = L−, A = V +,V = V − and Z = Zµ− . We conclude that CV −(t) = CV −(V +). Thus

〈CZµ(a) | a ∈ B− \ Cµ〈≤ Zµ ∩Op(L−).

Suppose now that 8.211. holds and define s by |B−/CB−(Zµ)|s = |Zµ/CZµ(B−)|. Note
that that CB−(Zµ) ≤ CB−(t) ≤ CB−(V +). Let c be the number of non-central chief-factors
for L+ on V +. By 2.8 |V −/B−|c ≤ |V+/CV +(V −). Then by 2.4b, (with A = V −, V =
V +, ”s = s”, t ≥ 1, r ≥ c ≥ 2) we get that s ≥ 2. Thus the lemma holds in this case with
A = B−Cµ/Cµ( and µ in place of α).

Suppose next that 8.212 holds. As L− has at least two non-trivial chief-factors on V −,
we conclude from ?? that

|Zµ/B+|2 ≤ |V −/C−V (Zµ).

On the otherhand has Zα is not FF , 2.4a implies

|B+/CB+(V −)| < |V −/VV −(B+)| ≤ (V −/CV −(Zµ).

Combining the last two inequalites we get |Zµ/CZµ(V −)| ≤ |V −/CV −(Zµ)|
3
2 . Hence the

lamma holds also in this case with A = V −Cµ/Cµ.
zair

Lemma 10.10 Either Zα is irreducible as Gα module or some non-trivial chief-factor for
Gα on Zα is FF .

Proof: Since [Z,Eβ] = 1, CZα(Eα). Since Zα is CS-generated, we conclude Zα = [Zα, Eα].
So if Gα a unique non-central chief-factor, Zα is irreducible. If Zα has more than one non-
central chief-factor, then as Zα is F2 and Gα is p-connected, at least one chief-factor is FF .
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Proposition 10.11 Let U be a non-trivial chief-factor for Eα on Zα. Let E = Eα/CEa(U).
Then one of the following holds:

1. E is solvable and one of the following holds:

1.1. p = 2, E ∼= C3 and |U | = 22.

1.2. p = 3, E ∼= Q8 and |U | = 32.

1.3. p = 2, E ∼= C5 and |U | = 24.

1.4. p = 2, E ∼= Ext(31+2) and |U | = 26.

1.5. p = 3, E ∼= Ext(21+4
+ ) and |U | = 34.

2. E is perfect but Sol(E) 6≤ Z(E) and one of the folloing holds.

2.1. p = 2, E = (C3 oAlt(n))′, n ≥ 5 and |U | = 22n.

2.2. p = 3, E = Ext(21+4
− ).Alt(5) and |U | = 34.

3. E is quasisimple and one of the following holds.

3.1. E is group of Lie type in charcateristic p.

3.2. p = 2 and E/Z(E) is an alternating group.

3.3. p = 2, E ∼= 3.U4(3) and |U | = 212.

4. E = E1E2 for some components E1, E2 of E, E1 and E2 are isomorphic groups of Lie
type in charactaristic p, U = U1 ⊗ U2 for some Ui module Ei such that (E1, U1) and
(E2, U2) isomorphic. Moreover, if n is the dimension of Ui over EndEi(Ui) then Ui is
a quadratic F 2

n -module for Ei.

Proof: Let W be a non-trivial chief-factor for Gα on Zα. By 10.9 Zα is quadratic F2
and since Gα is p-connected, W is quadratic F2. Let Let H = Gα/CGα(W ) and L =
〈PQ∗2(Gα/CGα(V ), V ). As p-connected Op(H) ≤ L. Let V be a Wedderburn component
for H on W . Since NH(V ) is irreducible on V and NH(V )/L is a p-group, V is irreducible
for L. Hence we can apply 6.11 to L = L/CL(V ). In particular we see that ( except in case
6.114 with p = 2) Op(L) is irreducible on V and clearly any chiefactor for Eα on Zα arises
in such a way. Moreover, since Gα is p-connected, Case 8 of 6.11 does not arise and in case
9, CL(∆) is a 3-group. Thus it remains to show that in cases 10, 11 the componets of L are
groups of Lie type or E(L)/Z(E(L)) is an alternating group. But this is clear in case 11
and so we may assume that E(L) is quasi simple and neither an alternating group, a group
of Lietype in characteristic p nor 3.U4(3)

Then Gα has no FF -module and so W is the unique non-trivial composition factor
for Gα on Zα and as Z � Gβ we get that Zα is irreducible. We conclude that EαCα/Ca
the central product of its components L(i), 1 ≤ 1 ≤ n and Zα the the direct sum of the
Ziα = [Zα, L(i)]. By 6.15b L(i) is isomorphic to 3..Mat22
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Let A be as in 10.9 and put X = 〈CZα(a) | a ∈ A#〉 6= Zα. Pick V = Z
(
αi) so that

V 6≤ X and pick t ∈ V \X. Then CA(t) = 1 and so A acts faithfully, quadratic and F2 on
V . Thus by 6.15b, A ≥ 23 and 6.152.3 or 2.4 hold. Let a ∈ A#. Then CV (a) 6= CV (A) and
so CV (A) < X ∩ V < V . Since X ∩ V is invariant under NGα(A) we conclude that case 2.4
with |A| = 23 holds. Note that V is actually a 6-dimensional space GF (4). Each a ∈ A#

CV (a)/CV (a) is 1-dimensional over GF (4) and differnt a’s give different 1-spaces. Hence
X/CV (A) contains 7 different GF (4)-1-spaces and so X = V , a contradiction.

11 The case b = 1 with Gα connected and Gβ minimal
b1c
hyb1cHypothesis 11.1 (a) Hypothesis 8.1 holds, except for the S ≤ Gα ∩Gβ we only assume

Qα ≤ S and S ∈ Sylp(Gβ).

(b) Gα is p-connected.

(c) b = 1, that is Zα 6≤ Qβ.
dVMab

Definition 11.2 (a) V is a normal subgroup of Gβ minimal with respect to [V,Eβ] 6= 1.

(b) Mαβ is the unique maximal subgroup of Gβ containing S.
qmzff

Lemma 11.3 Suppose that Gβ is p-minimal. Then either [Qα, Eα] ≤ Zα or Qa/Za has a
unique non-central chief-factor and that chief-factor is FF .

Proof: Let D = [V,Qβ]. Then [D,Eβ] = 1. Also note that V = [V,Eβ] and since
Eβ ≤ 〈Z

Gβ
α 〉 we conclude that V = 〈[V, Zα]Gβ 〉. Thus D = 〈[V, Zα, Qβ]Gβ 〉. Since [V, Zα, Qβ]

is normalized by SEβ = Gβ we conclude that D = [V, Zα, Qβ] ≤ Zα. Let V = V/D. Then
[V, Zα, Qα] ≤ [Zα, Qα] = 1. So let R be maximal in Qα with [V ,R] ≤ [V ,Zα]. Then by
6.18,

|Qα/R| ≤ |V /CV (Zα)| ≤ |V/CV (Zα) = |V Qα/Qα|

Also [R, V ] ≤ [V, Zα]D ≤ Zα. Let Q̃α = Qα/Zα , we conclude

|Q̃α/CQ̃α(V )| ≤ |V Qα/Qα|.

.
Futhermore, [V, Zα] 6= 1 and so V 6≤ Qα. It remains to show that Gα has at most one

non-central chief-factor on Q̃α. So suppose [Q̃α,Eα] 6= 1 and let P be a normal subgroup
of Gα minimal with respect to [P,Eα] 6≤ Zα. Then [P, V ] 6≤ Zα] and so P 6≤ R. By 6.18,
we conclude [V , P ] = [V ,Qα] and so [Qα, V ] ≤ [P, Vα] ≤ P . Hence [Qα, Eα] ≤ P and the
lemma is proved.

zaf2
Lemma 11.4 Zα is a cubic F2-module for Gα.
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Proof: Remark: 1. There should be a much nicer proof which does not go
through the list of finite simple groups
2. The structure of L has determined in proof should be recorded as an inde-
pendent lemma

Assume that Zα is not FF and let L be minimal such that

(i) Zα ≤ L.

(ii) Zα 6≤ Op(L).

(iii) Gα ∩ L contains a Sylow p-subgroup T of L.

(iv) CL(Op(L)) ≤ Op(L).

By minimality of L, L = 〈ZLα 〉. Let R be a normal subgroup of L with L 6= RZα. Then
again by minimality Zα ≤ Op(RZ0). Thus [R,Zα] ≤ Op(R) ≤ Op(L) and [R,L] ≤ Op(L).
In particular L is p-connected. Let V be a non-central chief-factor for L on Op(L). Since
Op(L) ≤ T ≤ Gα, Zα acts quadratically on Op(L) and so also on W . Let L̃ = L/CL(W ).
If |Z̃α| = 2, then L/O2(L) is a dihedral group. If |Z̃α| ≥ 3, we can apply 6.17 to L̃ and W .
So in any case we conclude that one of the following holds ( where we used the minimalty
of L to rule out some of the cases)

1. p = 2 and L̃ ∼= Dih(2r), r and odd prime.

2. F ∗(L̃) is quasisimple.

3. p = 3 and L̃ ∼= SL2(3).

Suppose first that Zα lies in a unique maximal subgroup M of L. Put
Put A = Zα, B = A ∩Op(L) and Q = 〈BL. Let l ∈ L \M . Then L = 〈A,Al〉 and so as

[Q,A] ≤ B, Q = BBl. Moreover, B ∩Bl = CBl(L) = CBl(A). And so

Bl/C lB(A) = Bl/B ∩Bl = |Q/B| = |Q/CQ(A)| ≥ |AQ/Q| = |A/B|

where the last inequality holds has L is F ∗ 1-modules.
Now |B/CB(Bl)| ≤ |B/CB(Al)| = |B/B ∩Bl = |Bl/CBl(A).
Hence Bl is F2 on A. Since [A,Bl] ≤ Q and Bl is quadratic on Q, Bl is cubic on A.

Thus the lemma holds in this case.
So we may assume form now on that A lies in more one one maximal subgroup of L.

In particular, K = F ∗(L̃) is quasi simple. Let T ≤ M < L. Then by minimality of L,
A ≤ Op(M) ≤ T . Put QM = 〈AM 〉. If QM is not abelian, then [A,Am] 6= 1 for some
m ∈M . But then A is FF on Al or Al is FF on A, a contradiction. Hence QM is abelain
for all such M and so acts quadratically on Q. Let 1 6= ã ∈ Ã ∩ Z(T̃ ). We conclude

zaf2− 1
(1) Ã lies in an abelian normal subgroup of CL̃(ã) which acts quadratically on Q.
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Suppose next K is not a group of Lie type in characteristic p. Then p = 2 or 3. If
p = 3, then |Ã| = 3 and Ã lies subgroup of L is morphic to SL2(3), a contradiction to the
minimality of L. So p = 2. Since |Ã| ≥ 2, 6.15 and (1) apply L̃ ∼= 3.Mat22,Aut(Mat(22))
or Mat24. But in each of these cases there exists a overgroup of M̃ which does not have a
non trivial quadratic normal subgroup.

We conclude
zaf2− 2

(2) L is a group of Lie type in characteristic p of rank at least two.

Suppose that Ã is contained in a root group X if Ã. Then X ≤ T and X the Sylow
subgroup of some (S)L2(q) in L̃. But this contradcits the minimal choice of L. Hence Ã is
not contained in a root group. By (1) and as A is contained in Op(M) for all T ≤ M ≤ L
we conclude that p = 2, L ∼= Sp2n(q) or F4(q) and A ≤ Z(T ). The minimality of L
implies L ∼= Sp4(q). But Sp4(q) has no module on which the Op’s of both parabolic acts
quadratically.

12 Elementary results on p-connected groups
p− con
dcnDefinition 12.1 N (S) is the set of all p-connected L ∈ L(S) wh

Remark: change this to N ∗ and use N for P ∪ E
NS

Lemma 12.2 Let L ∈ L(S). Put E = O2(L). Then L is in N (S) if and only if one of the
following holds:

1. L is solvable, E/O2(E) has odd order and for all maximal S invariant normal sub-
groups N of E, CS(E/N) = O2(L).

1. E is perfect, and E/O2,2′(E) is the direct product of simple groups which are transi-
tively permuted by S.

Proof: It is trivial to verify that (1) and also (2) imply L ∈ N (S). So assume now
that L ∈ N (S) and let K be the unique maximal normal subgroup of E with K/O2(K) of
odd order. Note that O2(E) ≤ K and by the odd order theorem, K is solvable .

Suppose first that K = E. Let and let N be a maximal S invariant normal subgroup
of E. Then NCS(E/N) is normalized by ES = L. Since E 6 NCS(E/N) we conclude that
CS(N) ≤ O2(L). Thus (1) holds in this case.

Suppose next that E 6= K and let E∗/K be a minimal L invariant subgroup of E/K.
Then E∗/K does not have odd order, S ∩ E∗ 6≤ K, S ∩ E∗ 6≤ O2(L) and so E ≤ E∗ and
E = E∗. As E = O2(E), E/K is not a 2-group and so E/K is not solvable. Thus E/K
is the direct product of simple groups transitively permuted by S. Since E′ ∩ S 6≤ O2(L),
E = E′.

The following is an extended version of a lemma from [St2] which describes the structure
of rank 2 groups.
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gsr2
Lemma 12.3 Let P1, P2 ∈ N (S). Put L = 〈P1, P2〉. Let L0 be a normal subgroup of L
maximal with respect to O2(Pi) 6≤ L0 for i = 1 and i = 2. Let L1/L0 be a minimal normal
subgroup of L/L0. Then Remark: change L1, L0 notation

(a) S ∩N = O2(L) and L0/O2(L) has odd order.

(b) Let O2(Pi) ≤ L1 for at least one i ∈ {1, 2}.

(c) If O2(Pj) 6≤ L1, then Pj ≤ NL(L1 ∩ S) and O2(O2(Pi)) ≤ O2(Pj).

(d) Suppose that L1/L0 = E1 × E2 × . . . × Er is the direct product of alternating groups
or simple groups of Lie type in characteristic 2. Then Pj acts transitively on the El’s
and one of the following holds:

(d.1) O2(Pj) 6≤ L1 and O2(Pi)L0/L0 is the product of some of the El’s.

(d.2) O2(Pj) 6≤ L1, E1 ∼= D4(q) and some element on Pj induces a graph automor-
phism of order 3 on E1

(d.3) O2(Pj) ≤ L1, j = 1, 2, L = L1S = 〈ES1 〉S and E1 = 〈E1 ∩ P1, E1 ∩ P2〉.( modulo
L0)

Proof: As O2(L)L0 ∩ Pi = O2(L)(L0 ∩ Pi) ≤ O2(Pi) the maximality ofL0 implies
O2(L) ≤ L0. Let N be a normal subgroup of L and k ∈ {1, 2}.

We next prove that
gsr2− 1

(1) Suppose that S ∩N ≤ O2(Pk). Then Pk normalizes S ∩N .

Indeed this is clear as S ∩N = O2(Pk) ∩N in this case.
gsr2− 2

(2) If O2(Pk) 6≤ N , then Pk normalizes S ∩N

As O2(Pk) 6≤ N we have S ∩N ≤ O2(Pk) and so (2) follows from (1).

By definition of N (S) and O2(Pi) 6≤ L0 we have S ∩ L0 ≤ O2(Pi). By (1) applied to
N = L0 and k = 1, 2 we conclude that L0 ∩ S is normal in L = 〈P1, P2〉 and so (a) holds.
(b) follws from the maximal choice of L0. The first part of (c) follows from (2) while the
second follows from the first.

To prove (d) we assume without loss that L0 = 1. Note that Pi ∩ L1 is a parabolic
subgroup of L1 and Pi = (Pi ∩ L1)S. Thus either Pi normalizes S ∩ L1 or we may choose
notation so that Pi = ((Pi ∩ E1)× . . . (Pi ∩ El))S, where Pi ∩ E1 is a parabolic of E1 with
O2′(Pi ∩ E1) = Pi ∩ E1.

Suppose now that O2(Pj) 6≤ L1. Pick E1 so that S ∩NL(E1) is a Sylow 2-subgroup of
NL(E1). Then as L1∩S is not normal in L, (c) implies that Pi does not normalise L∩S. If
E1 ≤ Pi, (d.1) holds. So we may assume that Pi ∩E1 is a proper parabolic subgroup of E1.
Suppose that (d.2) does not hold and that E1 is a group of Lie type in characteristic two.
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Then no element of odd order in NPj (E1) induces a non-trivial graph automorphism on E1
and so O2(NG(Pj)) normalizes Pi ∩ S. Hence NG(Pj) = O2(NG(Pj))(NS(E1)) normalizes
Pi ∩ E1 and so L 6= 〈(Pi ∩ E1)PjPj = 〈P1, P2〉, a contradiction. If E1 is an alternating of
degree at least six, then NAut(E1)(S∩E1) is a 2-group and we obtain a similar contradiction.

So assume now that O2(Pj) ≤ L1 for j = 1, 2. Then it is easy to verify that (d.3) holds.

13 Establishing Geometries
EG

Throughout this section we assume

(i) U0, U1 ∈ N (S)

Remark: redefine N as P ∪ E ?

(ii) all non-abelian composition factors of elements of L(S) are alternating groups, rank
one group of Lie type over GF (q), G2(q)’s or classical groups over GF (q), where q is
a power of two.

(ii) U0 6≤ U1 and U1 6≤ U0.
compfact

Lemma 13.1 Let H ≤ G with F ∗(H) = O2(H) and |S/S ∩H| ≤ 2. Then all non-abelian
composition factors of elements of L(S) are alternating groups, rank one group of Lie type
over GF (q), G2(q)’s or classical groups over GF (q), where q is a power of two.

Proof: By 2.10 we may assume that H ≤ L∗ ∈ L(S). Hence the claim follows from 2.12.
O2Ln1

LemmaQT 13.2 Put L = 〈U1, U2〉 and suppose that L ∈ L(S). Then the L0 and L1 in
12.3 and {i, j} = {0, 1} can be chosen so that one of the following holds

1. [O2(U0), O2(U1) ≤ Q.

2. L is not solvable and L ∈ N (S).

3. O2(L)O2(L)/O2(L) is a p-group for some prime odd p.

4. Li is a {2, p}-group for some prime p, O2(Pi) ≤ L1 and L1/L0 is an elementary
abelian p-group. Moreover, there exists an odd prime q 6= p so that the image of
O2(Pj) in Aut(L1/L0) has one of the following shapes: cyclic q group with q | p4 − 1;
homocyclic q group of rank 2 with q | p − 1; Ext(31+2) with p 6= 3; Ext−(21+4).5;
Ext−(21+4).Alt(5); Alt(4), 2.Alt(n), n = 4, 5; 2.Alt(4)×2.Alt(4); 2.Alt(5)×2.Alt(5),
p ≡ 0, 1, 4(5); 2.Alt(6); 2.Alt(7) ( with p = 7); Alt(5); L3(2) or 3.Alt(6).

5. Ui induces Sym(3) on the set of components of L1/L0, Uj is the product of one or
two 2-components of L1 and Ui/O2(Ui) ∼= Dih2·3l.

6. O2(Ui) acts trivially on the set of components of L1/L0, Ui/O2(Pi) is a dihedral group,
Ui normalizes O2(Uj), and O2(Uj) = E2(L1). Moreover, O2(Uj) = O2(L).
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Remark: The case that O2(Ui) ≤ L1 for i = 0 and 1 and L1/L0 is a direct
product of perfect simple groups still needs some attention: one needs to show
that L1/LO is ”central” ( and this should be possible) and also things L/O2(L) ∼=
C3 × Alt(5).2 arise here, this is covered by case 6. But O2(Ui) induces inner
automorphism on O2(Uj). So this probably should be listed as a seperate case,
but it is also kind of the same as 1.

Proof: Remark: numbering and notation needs to be updated
We use the results and notation of 12.3. As m2′(L) ≤ 3, case d.2 in 12.3 is not possible.

Put D = CL(L1/L0).
Suppose first that L1/L0 is not solvable. Then O2(U) ≤ L1. If D 6= L0 we get D∩L1 =

L0 and by maximality LO, O2(P ) ≤ D. Thus O2(U), O2(P ) ≤ LO. In this case we replace
L1 by O2(P )LO. So we may assume that D = L0. As m2′(L) ≤ 3, r ≤ 3

Assume in addition that O2(P ) ≤ L1. As P is solvable, d.1 is impossible. Thus d.3
holds. Moreover, L = L1S and so O2(L) ≤ L1 thus 4. holds in this case.

So assume that O2(P ) 6≤ L1.
If O2(P ) does not act trivially on the set of components of L1/L0 we conclude that

r = 3 and P induces Sym(3) on the set of components of L1/L0. As e(G) ≤ 3 and L1/L0
has three components, [L∞1 , L0] ≤ O2(L)]. Thus 5. holds.

So suppose that O2(P ) acts trivially on the set of components of L1/L0. The S acts
transitively thereon and r ≤ 2. If r = 2, then O2(U) = E2(L1). Since e(G) ≤ 3 we have E1
is L2(q), Sz(q), L3(4), L3(2), Alt(6), Alt(7). But in the last three cases Out(E1 is a 2-group,
a contradiction. In the first two cases, Out(E1) is cyclic and so PL1/L1 is a dihedral group.
If E1 ∼= L3(4), then O2(U)O2(L)/O2(L) ∼= SL3(4)∗SL3(4). Since the action of Aut(L1/LO)
on Out(L1/L0) on the 3-part of the Schur multiplier respectively the outer automorphisms
of L1/LO are isomorphic we conclude that S does not act irreducibly on O3(Out(L1/L0)
and so O2(P )L1/L1 ∼= C3 and so again P/O2(L) is a dihedral group. Thus 6. holds

If r = 1 we conclude that PL1/L1 is isomorphic to a subgroup of Out(E1) and so
Out(E1) is not abelian. Hence E1 ∼= U3(q), U4(q), L3(q) and P/O2(P ) is a dihedral group
and 6. holds.

Assume now that L1 is solvable.
Suppose that L2/LO is a minimal normal subgroup of L/L0 different from L1/LO. Then

we may choose notation so that O2(P ) ≤ L1 and O2(U) ≤ L2. Then [O2(P ), O2(U)] ≤ L0,
L1 = O2(P )LO and L2 = O2(U)L0.

Suppose that O2(U) ≤ L1. Then by assumption L1/LO is an elementary abelian 3-
group.

TO BE CONTINUED

Corollary 13.3 Assume that

(i) U0 ∈ P(S)

(ii) If U1 ∈ P(S) and U1 is solvable then U1 is a {2, 3}-group.

(iii) L
def
= 〈U0, U1〉 ∈ L(S).
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Then one of the following holds

TO BE CONTINUED
O2L1

LemmaQT 13.4 Suppose that

(i) E ∈ E(S) \ P(S).

(ii) O2(〈U1, E〉) = 1.

(iii) For all U∗ ∈ N (E,S) with U∗ 6= E, 〈U1, U
∗〉 ∈ L(S)

(iv) There exists a maximal element U1 ∈ N (E,S) so that one of the cases 3-6 in 13.2
holds.

Then one of the following holds for L(1) = 〈U0, U1〉.

1. U1 is solvable.

2. Head(U1) ∼= L2(q)r, r ≤ 2, q ≥ 4; UO/O2(UO) ∼= D2·3k , Head(L1(1) ∼= L2(q)3 and
O2(UO) transitively permutes the three 2-components of L(1)

3. O2(U1)/O2(U1) ∼= Alt(5), Head(E) ∼= U4(2) and O2(U0) ≤ O2,p(L(1)), p a prime with
p > 3. Moreover, if TO BE CONTINUED

4. Put R1 = O2(U1)O2(U1). Then

(a) UO normalizes R1 and no non-trivial characteristic subgroup of R1 is normal in
E.

(b) One of the following holds

1. Head(E) ∼= U4(2), UO/O2(UO) ∼= D2·3k and Head(U1) ∼= Alt(5).
2. There exists a maximal element U2 of N (E,S) which fulfils 3. with U2 in

place of U1.

Remark: Case 4b1 is impossible by a trivial pushing up argument ( or by
quoting pushing up)

Proof: Let N be the set of proper maximal elements U∗ ∈ N (E,S). We assume
without loss that U1 is not solvable.

By 8.2 there exists U2 in N so that 〈U1, U2〉 = E. Under all these U2’s with pick one
which ( possibly trivial) 2-component K with K/O2(K)| maximal.

In particular O2(E) = 〈O2(U1), O2(U2)〉. For i = 1, 2 let L(t) = 〈UO, Ui. We will apply
13.2 to L(1) and L(2). We write Case t(i) if Case t in 13.2 holds for L(1). For i = 0, 1, 2
put Q∗i = [O2(Ui), O2(Ui)]. The next two statement follow immediately from 13.2 applied
to L(1).
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O2L1− 1
(1) UO is solvable and O2(U1)/O2(O2(U1)) 6∼= Alt(n) for 8 ≤ n ≤ 11.

O2L1− 2
(2) One of the following holds:

• Case 4(1) with (i, j) = (O, 1) and Head(U1) ∼= Alt(5), Alt(6), 3 ·Alt(6), Alt(7) or L3(2)

• Case 5(1) with (i, j) = (O, 1) and Head(U1) ∼= L2(k)r or L3(2)r, with r ≤ 2.

• Case 6(1) with (i, j) = (O, 1)

By 8.2, the second statement in (1) and as U1 is not solvable we can choose U2 so that
U1 ∩ U2 is a maximal parabolic of U1.

Remark: this needs to be proved very carefully for the the symmetric
groups

Next we prove
O2L1− 3

(3) In Case 1(2), 5(1) holds.

As we are in case 1(2), [O2(UO), O2(U2)] is a 2-group. Hence also [O2(UO), U1∩O2(U2)]
is a 2-group. On the other hand in case 4(1), U1 ∩ O2(U2) acts fixed point freely on
L1(1)/L0(1), a contradiction. In case 6(1) O2(U0) normalizes O2(U1) and O2(U2), again a
contradiction. Thus case 5(1) holds.

O2L1− 4
(4) In Case 4(1), Case 4(2) holds.

By (3) we may assume that Case 2(2),3(2), 5(2) or 6(2) holds. As PO is solvable, we get
in case 2(2), 3(2) and 5(2) that P0 is a 2, 3-group a contradiction. Hence Case 6(2) holds,
Head(UO) is cyclic and O2(P0) induces field or diagonal automorphism of odd order larger
than 3 on O2(U2)/O2(O2(U2). But this contradicts the structure of U1 and E.

O2L1− 5
(5) If Case 4(1) and Case 4(2) holds, 3. holds

Considering the action of Q∗2 on L1(1)/L0(1) we see that [O2(UO), Q∗2] = O2(U0) Re-
mark: more details please . Hence O2(U2) 6≤ L1(2) and so O2(UO) ≤ L1(2). Moreover,
Q∗2 6≤ O2(L(2). Hence either U2 is solvable or acts as Ext21+4.A5 on L1(2)/L0(2). In the
latter we get L1(2) ≤ P0 ≤ L(2) and then L1(1) = L2(1), a contradiction. Thus U2 is
solvable and so U2/O2(U2) ∼= Sym(3) or Sym(3) o C2.

In the latter case, [L1(2)/L0(2), Q∗2 6= 1 implies that S acts irreducible on [L1(2)/L0(2)].
But then L1(2) ≤ P0 ≤ L1(1), a contradcition.

Thus U2/O2(U2) ∼= Sym(3) and as U1 is not solvable we conclude that Head(E) ∼= U4(2).
Hence 3. holds.

O2L1− 6
(6) In case 5(1), 2.holds.
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We may assume that Head(U1) ∼= L3(2)r, r = 1, 2. If r = 1 and U1 induces no graph
automorphism on Head(U1), then Head(E) ∼= L4(2), Sp6(2),Ω−8 (2) or (3.)Alt(7). If r = 1
and U1 induces a graph automorphism on Head(U1), then Head(E) ∼= L5(2). If r = 2 then
now element of U1 induces a graph automorphism on Head(U1) and Head(E) ∼= L6(2), L7(2)
or 3.(Alt(7) × Alt(7). Let K be the normaliser in U1 of some 2-component of U1 and
P ∈ P(K,S ∩ T ). Then |S/S ∩ P | ≤ 2. Let HO = NL(1)(O2(P ), H1 = NE(O2(P )) and
H = 〈H1,H2. Then Head(HO/O

2(P )) ∼= L3(2)×L3(2). Moreover we can and do choose P
so that H1 6≤ L(1) and so H 6= H1. As m3(H) ≤ 3 and O2(P )O2(H)/O2(H) is a normal
subgroup of order three in H. By 4.10 we conclude that H∞/O2,2′(H∞) ∼= L3(2) × L3(2)
or L3(2)× Alt(7). In the first case each minimal parabolics of H is either contained in H0
or is solvable and not a {2, 3}-group, a contradition to H1 6 HO. In the second case H has
a 2-component R with Head(R) ∼= 3.Alt(7), O2,3(R) ≤ P and Head(R ∩H1) ∼= C3 × L3(2).
It follows that P ∩ K induces a group of automorphisms on 3.Alt(7)(= Head(R)) which
inverts the central three but centralizes an L3(2) subgroup, a contradiction.

O2L1− 7
(7) In case 6(1),4. holds.

By case 6(1) O2(U1) = O2(L(1)) and U0 normalizes O2(U1). Thus the first statement
in 4. holds. As U1 induces diagonal or field automorphism of odd order on Head(U1), E is
not a group of Lie type in over the field of 2-elements, except maybe U4(2).

Suppose first that U2 is solvable. Then Head(E) ∼= U4(2), Head(U1) ∼= Alt(5) and so
4b1 holds.

Suppose next that U2 is not solvable.In case 1(2) or 6(2), PO normalizes O2(U2), a
contradiction as P0 already normalizes O2(U1). Suppose Case 2(2) holds. As UO is solvable,
we conclude that Head(L1(2)) ∼= U4(2). Let Q = O2(U2). In E we see that Q induces inner
automorphism on Head(U1), in L(2) we see that Q inverts Head(U0) and in L(1) we see
that every element that inverts Head(U0) induces an outer automorphism on Head(U1), a
contradiction.

Hence we may assume that one of 4(2) or 5(2) holds. In particular, U2 in place of
U1 fulfils the assumption of this lemma and so by (4) and (6) applied with U1 and U2
interchanged 5(2) we get that case 5(2) holds and Head(U2) ∼= L2(q)r, r ≤ 2. Thus 4b2
holds. Remark: I forget to think about 3.Alt(6) for Head(U1). This might arrise
for Head(E) = 3.Alt(7)

nl2ws3
LemmaQT 13.5 Retain the assumptions of 13.4 and assume that 13.4.2 holds. Then one
of the following holds:

a. troet

Proof:
nl2ws3− 1

(1) (a) If r = 1, then Head(H) ∼= (3.)Alt(7) ( with q = 4); Alt(10) (with q = 4);
(S)L3(q); Sp4(q); G2(q); U4(q); U4(

√
q); or L4(q) ( with S inducing a graph automor-

phismus).
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(b) If r = 2 then Head(H) ∼= 3.(L3(4) × L3(4)) (with q = 4), 3.(Alt(7) × Alt(7) with
q = 4) or L4(q)( with S inducing a graph automorphism).

(c) Let H ∈ L(S) with L1(1)S ≤ H. Then Head(H∞) = H1 ·H2 ·H3, where S normalizes
H1 and interchanges H2 and H3, for 1 ≤ i ≤ 2, Hi/O(Hi) ∼= (2.)Alt(5) and O(H0)
and O(H1) have coprime order.

This follows easily from 4.10
Let K1,K2,K3 be three different 2-components of L(1) with K1 ≤ U1. Put K =

K1K2K3. Let {i, j, k} = {1, 2, 3}. Put H i = NG(Ki) and Ki
j = 〈KHi∞

j . As L(1) ≤ H i and
H i contains a Sylow 2-subgroup of G we can apply (1)c and conclude that Ki

k normalizes Ki
j

and Kj). Hence Ki
k ≤ Hj and Ki

k ≤ K
j
k. By symmetry Kj

k ≤ K
i
k and so K∗k

=
def Kj

k = Ki
k.

In particular K∗i normalizes K∗j and the K∗j ’s are pairwise isomorphic. By (1)c applied to
K∗1K

∗
2K
∗
2S we conclude that O22′(K∗i ) = O2(Ki) and so K∗i = Ki. It follows that

nl2ws3− 2
(2) Put L = NG(K). Then L is the unique maximal 2-local of G containg KS. Moreover,
CL(K/O2(K)/O2(L) is coprime to |L2(q)|

Remark: the same argument works for any group with three 2-componets
which are conjugate in G so we should make an extra lemma and use it in the
L3(2) o Sym(3) case

Suppose that Head(E) ∼= Alt(7)orAlt(10). Then Head(U2) ∼= Alt(6) or Alt(8) respec-
tively and U1∩U2/O2(U1∩U2) ∼= Sym(3). Hence we see in L(1) that U0 does not normalize
U1∩U2 and Head(〈UO, U1∩U2〉 ∼= C3 oC3. Hence UO does not normalize U2. It follows that
case 2(2) holds and Head(L(2)) ∼= Alt(7), Sp6(2), L6(2), Alt(9), Alt(10) or Alt(11). But this
contadicts the stucture of 〈UO, U1 ∩ U2〉.

Suppose that q = 4 and Head(E) ∼= .(L3(4) × L3(4)) or 3.(Alt(7) × Alt(7) and let K1
be a 2-component of U1. Then NG(K1) involves L3(4) respectively Alt(7), a contradiction
to (1).

Let L = KO2(L(1), T = L ∩ S and B = NL(T ). Note that B normalizes K1. Let
F = 〈B,E〉.

Suppose that F 6∈ L(S). TO BE CONTINUED

14 Large Alternating Groups

In this section we assume that G is a quasi thin group, and that there exists an amalgam
(P,E) so that P ∈ P(S), E ∈ E(S), Head(E) ∼= Alt(n), n = 10, 11 Remark: we should
at least also allow E/O2(E) ∼= Sym(9)

notA11
LemmaQT 14.1 Suppose n = 11 and let U ≤ calL(E,S) with Head(U) ∼= Alt(10). Then
(P,U) is an amalgam.
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Proof: Let L = 〈P,U〉 and suppose that L ∈ L(S). Then by 13.2, [O2(P ), O2(U)] is
a 2-group or L ∈ N (S). In the second case we get that Head(L) ∼= Alt(11) and so O2(L) =
O2(U) = O2(E) a contradiction. Thus [O2(P ), O2(U)] is a 2-group. As m3(O2(U)) = 3
we conclude that P is a 3′ group. Let T be a Sylow 2-subgroup of O2(P ). Then clearly
U normalizes T and so T ≤ O2(U) and O2(U) is a Sylow 2-subgroup of O2(U)O2(P ). As
O2(U) = O2(E), no non-trivial characteristic subgroup of O2(U) is normal in O2(U)O2(P ).
Hence O2(U)O2(P ) has a non-trivial irreducible FF -module and so is not a 3′ group, a
contradiction.

notA10
LemmaQT 14.2 Suppose E/O2(U) ∼= Sym(9), Alt(10) or Sym(10) and let U ≤ calL(E,S)
with U/O2(U) ∼= Sym(8). Then (P,U) is an amalgam.

Proof: Let L = 〈P,U〉 and suppose that L ∈ L(S). Then by 13.2, [O2(P ), O2(U)] is
a 2-group or L ∈ N (S).

Suppose that O2(E) ≤ O2(L). Then O2(U) 6= O2(E) and E/O2(E) ∼= Sym(10). Let
R ≤ E with O2(L) ∈ Syl2(R) and R/O2(E) ∼= Sym(3). Let C be a characteristics subgroup
of O2(L) normal in R. Then C is normal in L and in 〈U,R〉 = E. Hence C = 1 and so by
8.12 O2(P ) normalizes Ω1(Z(O2(E)), a contradiction.

notA10− 1
(1) O2(E) 6≤ O2(L).

Let U∗ ∈ L(U, S) with U∗/O2(U∗) ∼= Sym(3) and Let Q/O2(U) be the unique elemen-
tary abelian, normal subgroup of order 16 in U∗/O2(U). Then NE(Q)/Q ∼= Sym(5). Let C
be a characteristic subgroup of Q normal in L. Then C is normal in 〈U,NE(U)〉 = E and
so C = 1. We proved

notA10− 2
(2) O2(L) < Q and no non trivial characteristic subgroup of Q is normal in L.

Remark: (2) and its set up makes no sense for the Sym(9) case, some fixing
necessary

Suppose that L ∈ calN(S). Then Head(L) ∼= Alt(m), 9 ≤ m ≤ 11 or L/O2(L) ∼
L6(2).2.

If Head(L) ∼= Alt(m),m = 9 or 11, L cannot be generated by U and a minimal parabolic
unless m = 9 and P = L. We conclude P/O2(P ) ∼= Sym(9) and O2(E) ≤ O2(U) ≤ O2(L),
a contradiction

If Head(L) ∼= Alt(10), the situation is symmetric in E and L. L(1) = 〈NE(Q), NL(Q).
Then Q = O2(L(1)) and 13.4 provides a contradiction. Remark: One has to make sure
that the possibility of two different complements Sym(5) to a group of odd order
was really ruled out

If L/O2(L) ∼= L6(2).2,

O2(U) = [O2(U), U ]O2(L) ≤ O2(E)O2(L) ≤ O2(U)

and so O2(U) = O2(E)O2(L). If E/O2(E) ∼= Sym(9) or Alt(10), then O2(L) ≤ O2(U).
Hence no non-trivial characteristic subgroup of O2(U) is normal in L and we conclude
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that [J(U), 〈Ω1(Z(O2(U))L〉 = 1, a contradiction. Thus E/O2(E) ∼= Sym(10). Let V =
Ω1(Z(O2(L)). Then by (2), CS(V ) = O2(L). On the otherhand, L/O2(L) has no faithful
module with respect to it O2(U)/O2(L) contains an offending subgroup. Hence J(O2(U) ≤
O2(L) and so J(O2(U) 6≤ O2(E). It follows that there exists a conjugate of J(O2(U)) under
E which is contained in U but not in U ′O2(U). Hence by 2.11 there exists an offender for
L on V which is not contained in L′O2(L), a contradiction.

We have proved that [O2(U), O2(P )] ≤ O2(U). Put P 0 = O2(P )Q. As O2(P ) ∩ S ≤
O2(U) ≤ Q, S ∩ P 0 = Q. Put U1 = NE(Q) and L(1)

def
= 〈P,U1〉 By 8.12 we conclude that

notA10− 3
(3) [O2(P ), O2(P )] ≤ O2(L(1)).

By a similar argument O2(L) = O2(U) leads to a contradiction and so O2(L) 6= O2(U).
In particular, E/O2(E) ∼= Sym(10). As U normalizes O2(P ), U1 does not. So by 13.4,
L(1) ∈ N (S). By (3), the compoents of Head(L(1)) cannot be groups of Lie type in
characteristic 2 and thus are alternating groups. Furthermore, asm3(L) ≤ 3 andm3(U) = 2,
m3(P ) ≤ 1. This leads to Head(L(1) ∼= (3.)Alt(7) or Alt(11). In particular P/O2(P ) ∼=
Sym(3). In the second case N(L(1)(O2(P )) involves Sym(8) and we obtain a contradiction
by considering 〈N(L(1)(O2(P )), U〉 (note here that U 6≤ L(1) as already U1 ≤ L(1). Thus
Head(L(1)) ∼= (3.)Alt(7). By (1), O2(E) inverts Head(P ). Thus L/O2(L) ∼= Sym(3) ×
Sym(8). As U∗ ≤ U1 ≤ L(1) we get L(1)/O2(L(1)) ∼= (3.)Sym(7). The 3.Sym(7) case is
exclude by considering NG(O2(P )). Thus L(1)/O2(L(1)) ∼= Sym(7).

In L we see that O2(L) = O2(U) ∩ O2(P ), in L(1) that O2(L(1)) = O2(U1) ∩ O2(P )
and in E that O2(U) ≤ O2(U1). Hence O2(L) ≤ O2(L(1)). Moreover, in L we see that
|O2(E)O2(L)/O2(L)| = 2 and in L(1) that |O2(E)O2(L(1))/O2(L(1))| = 2. It follows that

F =
def
= O2(E) ∩ O2(L) = O2(E) ∩ O2(L(1)). Thus F is normalized U and U1 and so F is

normal in E. Note that O2(U)∩O2(E) ≤ O2(O2(U)) ≤ O2(L) and so O2(U)∩O2(E) ≤ F .
Hence by the ” Satz von Gaschütz, O2(E) ∩ O2(E) ≤ F . Put E∗ = O2(E)O2(L). Since
O2(L)∩O2(E)O2(E) = F we conclude that O2(E∗) = F ≤ O2(L). Now the same argument
as in the proof of (1) gives a contradiction, which completes the proof of the lemma.

We remark that Sym(14) has parabolics C2 o Sym(7), Sym(8) × C2 o Sym(3) and
Sym(10) × C2 o C2, intersecting in the same way has the groups in the last case we ruled
out. But of course these parabolics in Sym(14) are not of 2-type and so do not furnish a
counter example.

notAlt9
LemmaQT 14.3 Suppose E/O2(E) ∼= Alt(9) and let U ≤ calL(E,S) with U/O2(U) ∼=
Alt(10). Then one of the following holds

1. (P,U) is an amalgam.

2. Let L = 〈P,U〉. Then L/O2(L) ∼= L5(2), [O2(L), O2(L) is a natural module and
[Z,E] = 1.

Proof: We may assume that L ∈ L(S).As above [O2(U), O2(P ) is not a 2-group and
L/O2(L) 6∼= Alt(9). This leaves the possiblity L/O2(L) ∼= L5(2). Note that O2(L) ≤ O2(E)
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and so no non-trivial characteristic subgroup of O2(E) is normal in L. Let Z1 = Ω1(Z(O2(L)
and Z2 = Ω1(O2(E) and note that Z2 = CZ1(O2(E)). Suppose that [Z2, E] 6= 1. Then
[Z2, E] 6= 1. As Z1 is an FF-module, all non-trivial composition non-trivial factors of
L in Z1 are isomorphic natural modules. Hence Z2 is as U module the direct sum of
isomorphic natural modules and trivial modules. Let d be an element of order three in U
acting fixed point freely on the natural module for U , then it is easu to see that CZ2(d) =
CZ2(U) = CZ1(E) and so d acts fixed point freely on Z2/CZ2(E). It follows that Z2 involves
a spinmodule for E and so also two non-isomorphic natural modules for U , a contradiction.
Remark: u se the easier alt 7 argument

Hence [Z2, E] = 1. It follows that Z1 is a natural module for L and so by 8.14 and as
CZ1(E) we get [O2(E), O2(E) = Z1 and so (2) holds

15 Tits Chamber Systems

In this section we us the following assumptions and notations:

(i) I is a finite set with |I| ≥ 3,

(ii) For i ∈ I, Pi ∈ P(S).

(iii) For J ⊂ I put J ′ = I \ J , PJ = 〈Pj | j ∈ J〉 and MJ = PI′

(iv) Define a graph on I by considering i and j to be adjacent if and only if [O2(Pi), O2(Pj)]
is not a 2-group.

(v) If J ⊂ I is connected with |J | ≥ 2, then PJ ∈ E(S) and for all j ∈ J , S ∩ P ′J 5 Pj .

(vi) Let i ∈ I. Then Head(M)i is a central extension of a groups of Lie type in character-
istic two.

(vii) Let J be a proper subset of J . QJ = O2(PJ) and ZJ = 〈ZPJ . Then CPJ (QJ) ≤ QJ).

(viii) 〈Pi| ∈ I 6≤ L(S).
zni2p

Lemma 15.1 Suppose there exists two distinct i, j in I with Z 5 Pi and Z 5 Pj. Then
one of the following holds: TO BE CONTINUED

Proof: Suppose first that there exists k ∈ I \ {i, j} so that k′ is connected. Apply 8.6
with to Gα = Mk and Gβ = Pk. As Pi does not centralize Z, 8.61 does not hold. By the
stucture of Mk, 8.61 implies C �Mk and Pk, a contradiction.

In case (6) 8.12 implies that [Qk.O2(Pk)] ≤ Zk. let k 6= r so that r is connected. Then
[Qk, O2(Pk)] ≤ Zk ≤ Zr′ ≤ Qr′ a contradiction to (v) and (vi).

Hence we mau assume that q(Mk, Zk′ ≤ 2. As two parabolics of Mk act non-trivially on
Z we get from 6.12 that Mk is of type Ln(q), k′ is a string with i and j as endpoints and Mk

has exactly two non-central composition factors on Zk′ . Moreover these composition factors
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are natural modules dual to each other. Is is easy to see that Z � Pk. Let J = I \ {i, j, k}.
Assume that k is adjacent to some element of J . Then we can apply 8.22 to Gα = Mi,
Gβ = Mj and Gαβ = Mij . Thus TO BE CONTINUEDAssume that k is not adjacent
to an element of J and without loss that k is adjacent to i. Then we can apply 8.22 to
Gα = Mi, Gb = Mk and Gαβ and we conclude that J = ∅. Thus TO BE CONTINUED

Remark: the effect of graph automorphisms needs to be worked in, ZαZβ�Gβ
needs to be ruled out

Suppose next that no such k exists. Then clearly I is a string with i and j as the end
notes. Then we can apply 8.22 to Gα = Mi, Gβ = Mj and Gαβ = Mij . Thus TO BE
CONTINUED
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