A Characteristic Subgroup for Pushing Up in Finite Groups

Andy Chermak, Ulrich Meierfrankenfeld

June 24, 2002

1 Introduction

2 The Kieler Lemma and Pointsstabilzers

An elementary abelian normal subgroup V of a finite group L is called p reduced if any subnormal subgroup of L which acts unipotently on V has to act trivially. Note that this is equivalent to $O_{p}\left(L / C_{L}(V)\right)=1$. Here are the basic properties of p-reduced normal subgroups.
Comment:due to Thompson? check history
Lemma 2.1 [YL] Let L be a finite group of characteritic p and $T \in \operatorname{Syl}_{p}(L)$
(a) [a] There exists a unique maximal p-reduced normal subgroup Y_{L} of L.
(b) [b] Let $T \leq R \leq L$ and X a p-reduced normal subgroup of R. Then $\left\langle X^{L}\right\rangle$ is a p-reduced normal subgroup of L. In particular, $Y_{R} \leq Y_{L}$.
(c) $[\mathbf{c}]$ Let $T_{L}=C_{T}\left(Y_{L}\right)$ and $L^{f}=N_{G}\left(T_{L}\right)$. Then $L=L_{f} \mathbb{C}_{L}\left(Y_{L}\right), T_{L}=$ $O_{p}\left(L^{f}\right)$ and $Y_{L}=\Omega_{1} Z\left(T_{L}\right)$.
(d) $[\mathbf{d}] Y_{T}=\Omega_{1} \mathrm{Z}(T), Z_{L}:=\left\langle\Omega_{1} \mathrm{Z}(T)^{L}\right\rangle$ is p-reduced for L and $\Omega_{1} \mathrm{Z}(T) \leq$ $Z_{L} \leq Y_{L}$.

Now let L be any finite group and $T \in \operatorname{Syl}_{p}(L)$. definitionine $P_{L}(T):=$ $O^{p^{\prime}}\left(C_{L}\left(\Omega_{1} \mathrm{Z}(T)\right)\right)$. Then $P_{L}(T)$ is called a point stabilizer of L. The following lemma ist the principal tool for working with point stabilzers.

Lemma 2.2 [kieler lemma] Let H be a finite group of local characteristic $p, T \in \operatorname{Syl}_{p}(H)$ and L a subnormal subgroup of H. Then
(a) [a] [Kieler Lemma] $C_{L}\left(\Omega_{1} \mathrm{Z}(T)\right)=C_{L}\left(\Omega_{1} \mathrm{Z}(T \cap L)\right)$
(b) $[\mathbf{b}] \quad P_{L}(T \cap L)=O^{p^{\prime}}\left(P_{H}(T) \cap L\right)$
(c) $[\mathbf{c}] C_{L}\left(Y_{L}\right)=C_{L}\left(Y_{H}\right)$
(d) $[\mathbf{d}]$ Suppose $L=\left\langle L_{1}, L_{2}\right\rangle$ for some subnormal subgroups L_{1}, L_{2} of H. Then
(a) [da] $P_{L}(T \cap L)=\left\langle P_{L_{1}}\left(T \cap L_{1}\right), P_{L_{2}}\left(T \cap L_{2}\right)\right\rangle$.
(b) $[\mathbf{d b}]$ For $i=1,2$ let P_{i} be a point stabilizer of L_{i}. Then $\left\langle P_{1}, P_{2}\right\rangle$ contains a point stabilizer of L.

The proof of the above lemma is elementary and does not require any \mathcal{K}-group assumption assumption.
Comment: not all parts of this lemma are really needed
Lemma 2.3 [minimal overgroups] Let H be a finite group and $F<H$.
(a) [a] Let $\mathcal{I}_{H}(F)$ be the set of all I with $F<I \leq H$ such that F lies in a unique maximal subgroup of I. Then $H=\left\langle\mathcal{I}_{H}(F)\right\rangle$.
(b) $[\mathbf{b}]$ Let $\mathcal{J}_{H}(F)=\left\{I \in \mathcal{I}_{G}(F) \mid F \nsubseteq I\right\}$. Then $H=\left\langle\mathcal{J}_{H}(F)\right\rangle N_{H}(F)$.

Proof: By induction on $|H|$. Suppose that F lies in two different maximal subgroups M_{1}, M_{2} of H. By induction, $M_{i}=\left\langle\mathcal{I}_{M_{i}}(F)\right\rangle=\left\langle\mathcal{J}_{M_{i}}(F)\right\rangle N_{M_{i}}(F)$. Thus $H=\left\langle M_{1}, M_{2}\right\rangle=\left\langle\mathcal{I}_{H}(F)\right\rangle=\left\langle\mathcal{J}_{H}(F)\right\rangle N_{H}(F)$.

So suppose F lies in a unique maximal subgroup of H. Then $H \in \mathcal{I}$ and $H=\langle\mathcal{I}\rangle$. Moreover either F is normal in H or $H \in \mathcal{J}$. In any case $H=\langle\mathcal{J}\rangle N_{H}(F)$.

Lemma 2.4 (Schur multipliers) [schur multipliers]
Proof: [Schur]

3 Modules

Lemma 3.1 (Point Stabilizer Theorem) [the point stabilizer theorem] Let H be a finite group, $V a \mathbb{F}_{p} H$-module, L a point stabilizer for H on V and $A \leq O_{p}(L)$.
(a) [a] If V is p-reduced, then $\left|V / C_{V}(A)\right| \geq\left|A / C_{A}(V)\right|$.
(b) [b] If V is irreducible, $F^{*}(H)$ is quasi-simple, $H=\left\langle A^{H}\right\rangle$ and A is a non-trivial offender on V, then $M \cong S L_{n}(q), S p_{2 n}(q), G_{2}(q)$ or $\operatorname{Sym}(n)$, where $p=2$ in the last two cases.

Proof: [BBSM]

Lemma 3.2 (FF-modules for miminal parabolics) [ff-modules for miminal parabolics]
Proof: [BBSM]

Lemma 3.3 [spin module] Let $H=S p_{2 n}(q), V a \mathbb{F}_{p} H$-module, P a point stabilizer for H on the natural module, $T=O_{p}(P), Z=Z(P)$ and W an $\mathbb{F}_{p} T$ submodule of V. Suppose that
(i) $[\mathbf{i}] \quad V=\left\langle W^{H}\right\rangle$.
(ii) $[\mathbf{i i}][V, T, T]=1$.
(iii) $[\mathbf{i i i}][V, Z] \leq W \leq C_{V}(T)$.

Let $U=\bigcap_{h \in H} W^{h}[V, T]^{h}$ and $\bar{V}=V / U$. Let $h \in H$ with $Z \not \leq P^{h}$. Then
(a) $[\mathbf{a}] \quad V=[V, Z] C_{V}\left(T^{h}\right)=W[V, T]^{h}, \bar{W}=[\bar{W}, T]=C_{\bar{V}}(T)=C_{\bar{V}}(Z)$ and $\bar{V}=\bar{W} \times \bar{W}^{h}$.
(b) [b] If $[W, H] \neq 1$, then $|\bar{V}| \geq q^{2^{n}}$ and $\left|V / C_{V}(T)\right| \geq q^{2^{n-1}}$.

Proof: Let $Y=W[V, T]$. Then $Y \leq C_{V}(T)$. Note that $H=\left\langle Z, T^{h}\right\rangle$. Since $[V, Z] \leq W$ we conclude that H normalizes $W[V, T]^{h}$ and so by (i), $V=W[V, T]^{h}$. Also H also normalizes $[V, Z] Y^{h}$ and since $W^{h} \leq Y^{h}$ we conclude $V=[V, Z] Y^{h}=[V, Z] C_{V}\left(T^{h}\right)$. Let $X / U=C_{\bar{V}}(Z)$. Then $U \leq$ $X \cap Y^{h}$. Thus $H=\left\langle Z, T^{h}\right\rangle$ normalizes $X \cap Y^{h}$ and so $X \cap Y^{h}=U$. Thus
$\bar{V}=\bar{X} \times \bar{Y}^{h}$. Since $V=[V, Z] Y^{h}$ we also get $\bar{V}=[\bar{V}, Z] \times \bar{Y}^{h}$. This implies $[\bar{V}, Z]=\bar{X}=C_{\bar{V}}(Z)$.

Note that

$$
[\bar{V}, Z] \leq[\bar{V}, T] \leq \bar{Y} \leq C_{\bar{V}}(T) \leq C_{\bar{V}}(Z)
$$

Now all the inequalities in the preceeding inequalities have to be equalities. So (a) is proved.

To prove (b) suppose that $[W, H] \neq 1$. By (a) also $[\bar{W}, H]=1$ and so we may assume that $U=1$.

Suppose first that $n=1$ and $1 \neq z \in Z$. Since $H=\left\langle z, T^{h}\right\rangle, C_{Y^{h}}(z) \leq$ $U=1$. Let $1 \neq y \in Y^{h}$. We conclude that $|[y, Z]| \geq|Z|=q$ and so $|W| \geq q$ and $|V| \geq q^{2}$.

Suppose next that $n>1$ and let $H^{*}=C_{H}\left(\left\langle Z, Z^{h}\right\rangle\right.$. Then $H^{*} \cong$ $S p_{2 n-2}(q)$ and $Z^{*}:=Z^{k} \leq H^{*}$ for some $k \in H$. Then $P^{*}:=P^{k} \cap H^{*}$ is a point stabilizer for H^{*} on its natural module, $T^{*}:=T^{k} \cap H^{*}=O_{p}\left(P^{*}\right)$ and $Z^{*}=Z\left(P^{*}\right)$. Since $W=C_{V}(Z)$ and $H^{*} \leq C_{G}(Z), W$ is a $\mathbb{F}_{p} H^{*}$ submodule of W. Suppose that $\left[W, Z^{*}, H^{*}\right]=1$. Let $h^{*} \in H^{*}$ with $Z^{* h^{*}} \not \leq P^{*}$. Then $\left[W, Z^{*}\right] \leq\left[V, Z^{*}\right] \cap\left[V, Z^{* h^{*}}\right]=1$ and so $\left[W, Z^{*}\right]=1$. Thus $C_{V}(Z)=W=C_{W}\left(Z^{*}\right)$ and so P and P^{*} normalize W, a contradcition since $H=\left\langle P, P^{*}\right\rangle$. Thus $\left[W, Z^{*}, H^{*}\right] \neq 1$. Let $V^{*}=\left\langle\left[W, Z^{*}\right]^{H^{*}}\right\rangle$. Then by induction $\left|V^{*}\right| \geq q^{2^{n-1}}$. Since $V^{*} \leq W$ and $|V|=|W|^{2}$ we get $|V| \geq q^{2^{n}}$.

We remark that (for example by $[\mathrm{BBSM}]$), \bar{V} from the preceeding lemma must be a direct sum of spin-modules for H.

Lemma 3.4 (H1 of natural modules) [h1]

Proof: [BBSM]

4 The Baumann subgroup

For a p-group R we let $\mathcal{P} \mathcal{U}_{1}(R)$ be the class of all finite groups L containing R such
(a) $[\mathbf{a}] L$ is of characteristic p,
(b) $[\mathbf{b}] R=O_{p}\left(N_{L}(R)\right)$
(c) $[\mathbf{c}] \quad N_{L}(R)$ contains a point stabilizer of L.

Let $\mathcal{P U}_{2}(R)$ be the class of all finite groups L containg R such that L is of characteristic p and

$$
L=\left\langle N_{L}(R), H \mid R \leq H \leq L, H \in \mathcal{P U}_{1}(R)\right\rangle .
$$

Let $\mathcal{P U}_{3}(R)$ be the class of all finite groups L such that
(a) $[\mathrm{a}] L$ is of characteristic p.
(b) $[\mathbf{b}] R \leq L$ and $L=\left\langle R^{L}\right\rangle$
(c) $[\mathbf{c}] L / C_{L}\left(Y_{L}\right) \cong S L_{n}(q), S p_{2 n}(q)$ or $G_{2}(q)$, where q is a power of p and $p=2$ in the last case.
(d) $[\mathbf{d}] Y_{L} / C_{Y_{L}}(L)$ is the corresponding natural module.
(e) $[\mathbf{e}] O_{p}(L) \leq R$ and $N_{L}(R)$ contains a point stabilizer of L.
(f) [f] If $L / C_{L}\left(Y_{L}\right) \not \neq G_{2}(q)$ then $R=O_{p}\left(N_{L}(R)\right.$.

Let $\mathcal{P U}_{4}(R)$ be the class of all finite groups L containg R such that L is of characteristic p and

$$
L=\left\langle N_{L}(R), H \mid R \leq H \leq L, H \in \mathcal{P U}_{3}(R)\right\rangle .
$$

Let $\mathrm{B}(R)=C_{R}\left(\Omega_{1} \mathrm{Z}(\mathrm{J}(R))\right)$, the Baumann subgroup of R. Recall that a finite group F is p-closed if $O^{\prime F}=O_{p}(F)$.

Lemma 4.1 (Baumann Argument) [baumann argument] Let L be a finite group, R a p-sugroup of $L, V:=\Omega_{1} \mathrm{Z}\left(O_{p}(L)\right), K:=\left\langle\mathrm{B}(R)^{L}\right\rangle, \widetilde{V}=$ $V / C_{V}\left(O^{p}(K)\right)$, and suppose that each of the following holds:
(i) $[\mathbf{i}] O_{p}(L) \leq R$ and $L=\left\langle\mathrm{J}(R)^{L}\right\rangle N_{L}(\mathrm{~J}(R))$.
(ii) [ii] $C_{K}(\tilde{V})$ is p-closed.
(iii) [iii] $\left|\tilde{V} / C_{V}(A)\right| \geq\left|A / C_{A}(\tilde{V})\right|$ for all elementary abelian subgroups A of R.
(iv) [iv] If U is $L / O_{p}(L)$ module with $\tilde{V} \leq U$ and $U=C_{U}(B(R)) \tilde{V}$, then $U=C_{U}\left(O^{p}(K)\right) V$.

Then $O_{p}(K) \leq B(R)$.

Proof: Let $T=O_{p}(L), \bar{L}=L / C_{L}(V)$ and $Y=\Omega_{1} Z \mathrm{~J}(R)$. Let $A \in$ $\mathcal{A}(R)$. Since $A \in \mathcal{A}(R)$ and $V \leq T \leq R,\left|V / C_{V}(A)\right| \leq \mid A / C_{A}(V)$. By (ii) $C_{A}(\tilde{V})=A \cap T$ and so also $C_{A}(V)=A \cap T$. Thus (iii) implies $\left|V / C_{V}(A)\right|=$ $|\bar{A}|=|A / A \cap T|$ and so $V(A \cap T) \in \mathcal{A}(R) \cap \mathcal{A}(T)$. Thus $Y \leq V(A \cap T) \leq$ T. Put $W=\left\langle Y^{L}\right\rangle V$. We conclude that $W \leq \Omega_{1} \mathrm{Z}(\mathrm{J}(T))$ and so W is elementary abelian and $(A \cap T) V$ centralizes W. Hence $W \leq(A \cap T) V$ and $W=V(A \cap W)=V C_{W}(A)$. It follows that A centralizes W / V. Since A was arbitray in $\mathcal{A}(R),\left\langle\mathrm{J}(R)^{L}\right\rangle$ centralizes W / V. Since $Y=\Omega_{1} \mathrm{Z}(\mathrm{J}(R)$, $N_{L}(\mathrm{~J}(R))$ normalizes Y. So by (i) also L normalizes $Y V$. Thus $W=Y U$ and $[W, T]=[Y, T] \leq Y$. Since L normalizes $[W, T]$ we get $[W, T] \leq C_{W}(K)$. Let $D=C_{W}\left(O^{p}(K)\right)$ and $U=W / D$. Then T centralizes U. Since $\widetilde{V} \cong$ $V D / D$ and $U=Y V / D$, we can apply (iv) to conclude that $W=D V$ and $U \cong \widetilde{V}$. Since $A \in \mathcal{A}(R),|W / W \cap A| \leq\left|A / C_{A}(W)\right|=|A / A \cap T|$. One the otherhand by (iii), $|A / A \cap T| \leq\left|\widetilde{V} / C_{\widetilde{V}}(A)\right|=\left|U / C_{U}(A)\right| \leq\left|W / C_{W}(A) D\right|$. Thus $\left|W / C_{W}(A)\right| \leq\left|W / C_{W}(A) D\right|$ and $D \leq C_{W}(A)$. Hence $[D, A]=1$, $D \leq Y$ and $[D, K]=1$. Therefore $\left[W, O_{p}(K)\right] \leq[D, K][V, T]=1$ and so $O_{p}(K) \leq C_{R}(Y)=\mathrm{B}(R)$.

Lemma 4.2 [pu2(R) in pu4(B(R))] Let R be a p-group. Then $\mathcal{P U}_{2}(R) \subseteq$ $\mathcal{P U}_{4}(\mathrm{~B}(R))$.

Proof: Let $L \in \mathcal{P} \mathcal{U}_{2}(R)$. Since $N_{L}(R) \leq N_{L}(\mathrm{~B}(R))$ we may assume that $L \in \mathcal{P U}_{1}(R)$. Set $P=N_{L}(R)$. If $P<H \leq L$, then clearly $H \in \mathcal{P U}_{1}(R)$. By 2.3(a) L is generated by the $H \leq L$ such that P is contained in a unique maximal subgroup of H. If $H \in \mathcal{P}_{4}(\mathrm{~B}(R))$ for all such H, then by the definition of $\mathcal{P U}_{4}$ also $L \in \mathcal{P U}_{4}(\mathrm{~B}(R))$. Hence we may assume from now on that

1) $[1] \quad P$ is contained in unique maximal subgroup H of L.

Let D be the largest normal subgroup of L contained in P. Then $[D, R] \leq$ $[P, R] \leq R$ and so $[D, R] \leq O_{p}(D) \leq O_{p}(L)$.

Choose $T \in \operatorname{Syl}_{p}(L)$ with $P_{L}(T) \leq P$. Then $R \leq O_{p}\left(P_{L}(T) \leq O_{p}\left(C_{L}\left(\Omega_{1} \mathrm{Z}(T)\right)\right.\right.$ and $\left[R, C_{L}\left(Z_{L}\right)\right] \leq O_{p}\left(C_{L}\left(Z_{L}\right)\right)=O_{p}(L) \leq R$. Thus $C_{L}\left(Z_{L}\right) \leq N_{L}(R) \leq P$. We proved:
2) $[\mathbf{2}] \quad\left[D,\left\langle R^{L}\right\rangle\right] \leq O_{p}(L)$ and $C_{L}\left(Z_{L}\right) \leq D$

If $\mathrm{J}(R) \leq D$, then $J(R)=J\left(O_{p}(D)\right)$ and so $J(R) \unlhd H$. Thus $\left[Z_{L}, \mathrm{~J}(R)\right]=$ 1 and so also $\left[Z_{L}, \mathrm{~B}(R)\right]=1$. So by $\operatorname{rr2}, \mathrm{B}(R) \leq D$ and $\mathrm{B}(R)=\mathrm{B}\left(O_{p}(D)\right)$. Thus $\mathrm{B}(R) \unlhd H$ and so $H \in \mathcal{P U}_{4}(\mathrm{~B}(R))$.

So we may assume that $\mathrm{J}(R) \not \leq D$ and so by $\operatorname{rr} 2\left[Z_{L}, J(R)\right] \neq 1$. Let $K=\left\langle\mathrm{J}(R)^{L}\right\rangle, \bar{L}=L / C_{L}\left(Z_{L}\right)$ and $\widetilde{Z_{L}}=Z_{L} / C_{Z_{L}}\left(O^{p}(K)\right)$. By ?? there exists a L-invariant set of normal subgroups $K_{i}, 1 \leq i \leq l$, in K such that
(3-i) $K_{i}=O^{p^{\prime}}\left(K_{i}\right)$,
(3-ii) $\bar{K}=\overline{K_{1}} \times \overline{K_{2}} \times \ldots \times \overline{K_{l}}$,
(3-iii) $\widetilde{Z_{L}}=\left[\widetilde{Z_{L}}, K_{1}\right] \times\left[\widetilde{Z_{L}}, K_{2}\right] \times\left[\widetilde{Z_{L}}, K_{l}\right]$,
$\left(3\right.$-iv) $\overline{K_{i}} \cong S L_{n}(q), S p_{2 n}(q), G_{2}(q)$ or $\operatorname{Sym}(n)$, where q is a power of $p, p=2$ in the last two cases and $n \equiv 2,3 \bmod 4$ in the last case,
(3-v) $\left[\widetilde{Z_{L}}, K_{i}\right]$ is the natural module for K_{i},
$(3-\mathrm{vi}) \overline{\mathrm{J}(R)}=\left(\overline{\mathrm{J}(R)} \cap \overline{K_{1}}\right) \times \ldots \times\left(\overline{\mathrm{J}(R)} \cap \overline{K_{l}}\right)$
It is now easy to see that $\bar{L}=\bar{K} N_{\bar{L}}(\overline{\mathrm{~J}(R)}$
By $\operatorname{rr} 2 O_{p}\left(C_{L}\left(Z_{L}\right) \mathrm{J}(R)\right)=O_{p}(L) \mathrm{J}(R)$ and so $\mathrm{J}(R)=\mathrm{J}\left(O_{p}\left(C_{L}\left(Z_{L}\right) \mathrm{J}(R)\right)\right)$.
Thus $\overline{N_{L}(\mathrm{~J}(R))}=N_{\bar{L}}(\overline{\mathrm{~J}(R)}$ and so
3) $[4] \quad L=K N_{L}(\mathrm{~J}(R))$.

Suppose that $K \leq H$. Then by rr1 and $\operatorname{rr} 4 \mathrm{~J}(R)$ is normal in L and $\mathrm{J}(R) \leq O_{p}(L) \leq D$, a contradiction to the assumptions.

Thus $K \not \leq H$. Pick j with $K_{j} \not \leq H$. Then by 1) $L=\left\langle K_{j}, P\right\rangle=\left\langle K_{j}^{P}\right\rangle P$. Thus $\left\langle K_{j}^{P}\right\rangle \mathrm{J}(R)$ is normal in L. So P acts transitively on $\left\{K_{i} \mid 1 \leq i \leq l\right\}$, and $L=K P$. By 2) $\left[C_{L}\left(Z_{L}\right), \mathrm{J}(R)\right] \leq O_{p}(L)$ and so $\left.C_{L}\left(Z_{L}\right), K\right] \leq O_{p}(L)$. Hence $C_{K}\left(Z_{L}\right)$ is p-closed. Also $C_{K}\left(Z_{L}\right)=C_{K}\left(\widetilde{Z_{L}}\right)$.

Note also that $\mathrm{B}(R) \leq K O_{p}(L)$ and so $\left\langle\mathrm{B}(R)^{L}\right\rangle=K \mathrm{~B}(R)$.
Suppose that $\mathrm{B}(R) O_{p}(L)=O_{p}\left(P \cap K O_{p}(L)\right)$ or that $\overline{K_{j}} \cong G_{2}(q)$. Then it is easy to see that the assumptions of 4.1 are fulfiled. We conclude that $O_{p}(K \mathrm{~B}(R)) \leq \mathrm{B}(R)$. Moreover, either $\overline{K_{j}} \cong G_{2}(q)$ or $\mathrm{B}(R)=O_{p}(P \cap$ $K \mathrm{~B}(R))$. By 2.2(a)

$$
C_{K_{i}}\left(\Omega_{1} \mathrm{Z}\left(T \cap K_{j} \mathrm{~B}(R)\right)\right)=C_{K_{j}}\left(\Omega_{1} \mathrm{Z}\left(T \cap K_{i}\right)\right)=C_{K_{j}}\left(\Omega_{1} \mathrm{Z}(T)\right)
$$

and we conclude that $P \cap K_{j} \mathrm{~B}(R)$ contains a point stabilizer of $K_{i} B(R)$. Suppose in addition that $\bar{K}_{j} \neq \operatorname{Sym}(n), n \geq 7$. Then $K_{i} \mathrm{~B}(R) \in \mathcal{P U}_{3}(\mathrm{~B}(R))$. Also $P \leq N_{L}(\mathrm{~B}(R))$ and $L=\left\langle P, K_{i} \mathrm{~B}(R) \mid 1 \leq i \leq l\right\rangle$ and so $L \in$ $\mathcal{P U}_{4}(\mathrm{~B}(R))$.

Suppose now that $\overline{K_{j}} \not \neq G_{2}(q)$ and either $\mathrm{B}(R) O_{p}(L) \neq O_{p}\left(P \cap K O_{p}(L)\right)$ or $\bar{K}_{i} \cong \operatorname{Sym}(n), n \geq 7$. Put $q:=2$ in the second case. Then $\bar{K}_{i} \cong S p_{2 n}(q)$
or $\operatorname{Sym}(n)$ and $\mid B(R) / O_{p}\left(K_{i} \mathrm{~B}(R) \mid=q\right.$. Hence there exists a subgroup D_{i} of $K_{i} \mathrm{~B}(R)$ with $\mathrm{B}(R) \leq D_{i}, D_{i}=\left\langle\mathrm{B}(R)^{D_{i}}\right\rangle$ and $D_{i} / O_{p}\left(D_{i}\right) \cong S L_{2}(q)$. By 4.1 $\mathrm{B}(R) \in \operatorname{Syl}_{p}\left(D_{i}\right)$. Thus $D_{i} \in \mathcal{P} \mathcal{U}_{3}(\mathrm{~B}(R))$. Moreover, $K_{i}=\left\langle D_{i}, N_{K_{i}}(\mathrm{~B}(R))\right\rangle$ and so $L=\left\langle D_{i}, N_{L}(\mathrm{~B}(R))\right| 1 \leq i \leq n$. Thus again $L \in \mathcal{P U}_{4}(\mathrm{~B}(R)$.

Lemma $4.3[\mathbf{P}(\mathbf{T})$ in $\mathbf{P U 4}(\mathbf{B}(\mathbf{T}))]$ Let P be a finite group of characteristic p. Let $T \in \operatorname{Syl}_{p}(T)$ and suppose that T lies in a unique maximal subgroup of P. Then either $Z_{L}=\Omega_{1} \mathrm{Z}(L)$ or $P \in \mathcal{P}_{4}(\mathrm{~B}(T))$.

Proof: Suppose that $\left[\mathrm{J}(T), Z_{L}\right]=1$. Then also $\left[\mathrm{B}(T), Z_{L}\right]=1$ and so by the Frattinargument $L=C_{L}\left(Z_{L}\right) N_{L}(\mathrm{~B}(T))$. Since L is minimal parabolic, $L=C_{L}\left(Z_{L}\right) S$ or $\mathrm{B}(T)$ is normal in L. In the first case $Z_{L}=\Omega_{1} \mathrm{Z}(L)$ and in the second case $L \in \mathcal{P U}_{4}(T)$.

So we may assume that $\left[\mathrm{B}(T), Z_{L}\right] \neq 1$. Using 3.2 we can argue just as in 4.2.

5 A solution to the principal amalgam problem

Let R be a group and Σ a set of groups containing R. Then

$$
O_{R}(\Sigma)=\langle N \leq R \mid N \unlhd L \forall L \in \Sigma\rangle
$$

So $O_{R}(\Sigma)$ is the largest subgroup of R which is normal in all the $L \in \Sigma$.
Theorem 5.1 [simultanous pushing up] Let R be a finite p-group with $R=\mathrm{B}(R)$ and Σ a subset of $\mathcal{P U}_{3}(R)$. If $O_{R}(\Sigma)=1$, then one of the following holds
(a) [a] who knows

The proof will be achieved in a long sequence of lemmas. Let G^{*} be the free amalgameted product of the Σ over R. We view $L \in \Sigma$ as a subgroup of G^{*}. Let Γ be the graph with vertices G^{*} and edges $\left(L_{1} g, L_{2} g\right), g \in G^{*}$, $L_{1} \neq L_{2} \in \Sigma$. Note that G^{*} acts on Γ by right multiplication. For $\alpha \in \Gamma$ let $G_{\alpha}=\left\{g \in G^{*} \mid \alpha=\alpha^{g}\right\}, Q_{\alpha}=O_{p}\left(G_{\alpha}\right)$ and $Z_{\alpha}=Z_{G_{\alpha}}$ and $U_{\alpha}=\left[Z_{\alpha}, G_{\alpha}\right]$. For an edge (α, β) let $Q_{\alpha \beta}=G_{\alpha} \cap G_{\beta}$ and $Z_{\alpha \beta}=\Omega_{1} \mathrm{Z}\left(Q_{\alpha \beta}\right.$. Let $\Delta(\alpha)$ be the set of neigbors of α and $G_{\alpha}^{(1)}=G_{\alpha} \cap \bigcap_{\beta \in \Delta(\alpha)} G_{\beta}$. Let $U_{\alpha}=\left[Z_{\alpha}, G_{\alpha}\right]$. Then by definition of Γ and of $\mathcal{P U}_{3}(R)$.

Lemma 5.2 [basics of pushing up]

(a) $[\mathbf{a}] G_{\alpha}=L^{g}$ for some $L \in \Sigma$ and $g \in G^{*}$, and G_{α} is of characteristic p.
(b) $[\mathbf{b}] \overline{G_{\alpha}}:=G_{\alpha} / C_{G_{\alpha}}\left(Z_{\alpha}\right) \cong S L_{n_{\alpha}}\left(q_{\alpha}\right), S p_{2 n}\left(q_{\alpha}\right)$ or $G_{2}\left(q_{\alpha}\right), q_{\alpha}$ a power of p.
(c) $[\mathbf{c}] \widetilde{Z_{\alpha}}:=Z_{\alpha} / C_{Z_{\alpha}}\left(G_{\alpha}\right)$ is a natural module.
(d) $[\mathbf{d}] Q_{\alpha \beta}=\mathrm{B}\left(Q_{\alpha \beta}\right)$ and $G_{\alpha}=\left\langle Q_{\alpha \beta}^{G_{\alpha}}\right\rangle$
(e) $[\mathbf{e}] \quad P_{\alpha \beta}:=N_{G_{\alpha}}\left(Q_{\alpha \beta}\right)$ contains a point stabilzer of G_{α}.
(f) $[\mathbf{f}]$ If $\overline{G_{\alpha}} \neq G_{2}(q)$ then $Q_{\alpha \beta}=O_{p}\left(P_{\alpha \beta}\right)$.

Next we show

Lemma 5.3 [more basics of pushing up]

(a) $[\mathbf{a}] \quad Z_{\alpha \beta} \leq Z_{\alpha}=\Omega_{1} \mathrm{Z}\left(Q_{\alpha}\right)$
(b) $[\mathbf{b}] C_{G_{\alpha}}\left(Z_{\alpha}\right)=Q_{\alpha}$.
(c) $[\mathbf{c}] Q_{\alpha}=G_{\alpha}^{(1)}$.
(d) [d] One of the following holds:

1. [1] $U_{\alpha} \cap \Omega_{1} \mathrm{Z}\left(G_{\alpha}\right)=1$, that is U_{α} is the natural module.
2. $[\mathbf{2}] \overline{G_{\alpha}} \cong S p_{2 n}(q)$ or $G_{2}(q)$ and U_{α} is a quotient of the natural $O_{2 n+1}(q)$-module for $\overline{G_{\alpha}}$, (where $n=3$ in the $G_{2}(q)$-case).
(e) $[\mathbf{e}]$ For all $H \leq G_{\alpha}, C_{\widetilde{Z_{\alpha}}}(H)=\widetilde{C_{Z_{\alpha}}(H)}$.
(f) $[\mathbf{f}]$ Let $T \in \operatorname{Syl}_{p}\left(P_{\alpha \beta}\right)$ and $x \in \Omega_{1} \mathrm{Z}(T)$ with $x \notin \Omega_{1} \mathrm{Z}\left(G_{\alpha}\right)$. Then $C_{G_{\alpha}}(x)=O^{p^{\prime}}\left(P_{\alpha \beta}\right)$.
(a) follows from 5.2(d),(e) and 3.1.

Let $T \in \operatorname{Syl}_{p}\left(P_{\alpha \beta}\right)$. Since $C_{G_{\alpha}}\left(Z_{\alpha}\right) \leq C_{G_{\alpha}}\left(\Omega_{1} \mathrm{Z}(T)\right) \leq P_{\alpha \beta}=N_{G_{\alpha}}\left(Q_{\alpha \beta}\right)$ we get

$$
\left.\left[C_{G_{\alpha}}\left(Z_{\alpha}\right), Q_{\alpha \beta}\right] \leq C_{G_{\alpha}}\left(Z_{\alpha}\right) \cap Q_{\alpha \beta}\right] \leq O_{p}\left(C_{G_{\alpha}}\left(\Omega_{1} \mathrm{Z}(T)\right)\right) \leq Q_{\alpha}
$$

Thus $5.2(\mathrm{~d}),\left[C_{G_{\alpha}}\left(Z_{\alpha}\right), G_{\alpha}\right] \leq Q_{\alpha}$. we proved this before, should have been recorded

Thus (b) follows from 2.4 and 5.2 (d).
By 5.2 (f) $Q_{\alpha} \leq Q_{\alpha \beta}=G_{\alpha} \cap G_{\beta}$. So (c) holds.
(d) follows from 3.4, and (e) follows from (d). Finally (f) follows from (b), (e), and 5.2 (c),(e).

We say that $\beta \in \Gamma$ is symplectic if $\overline{G_{\beta}} \cong S p_{2 n}(q)$ with $n \geq 2, \beta$ is linear if $\overline{G_{\beta}} \cong S L_{n}(q)$ and β is a hex if $\overline{G_{\beta}} \cong G_{2}(q)$. Let $\alpha \in \Delta(\beta)$. definitionine

$$
X_{\alpha \beta}:= \begin{cases}{\left[Z_{\alpha}, Q_{\alpha \beta}\right]} & \text { if } \alpha \text { is symplectic. } \\ Z_{\alpha} & \text { otherwise }\end{cases}
$$

Put

$$
A_{\alpha \beta}=\left[X_{\alpha \beta}, Q_{\alpha \beta}\right]
$$

Lemma 5.4 [agammadelta] Let (α, β) be an edge in Γ. Then $A_{\alpha \beta} \leq$ $\Omega_{1} \mathrm{Z}\left(Q_{\alpha \beta}\right) \leq \Omega_{1} \mathrm{Z}\left(Q_{\beta}\right) \leq Z_{\beta}$ and $A_{\alpha \beta} \not \leq Z\left(G_{\alpha}\right)$.

Proof: Readily verfied.

Lemma 5.5 [offenders on xgammadelta] Let (α, β) be an edge in Γ, $D=X_{\alpha \beta}$ or $D=Z_{\alpha}$ and $B \leq Q_{\alpha \beta}$ be a non-trivial offender on D
(a) $[\mathbf{a}]\left|D / C_{D}(B)\right|=\left|B / C_{B}(D)\right|$.
(b) [b] One of the following holds:

1. $[1]\left[D, Q_{\alpha \beta}\right] \leq[D, B]$.
2. $[\mathbf{2}] \quad \alpha$ is a symplectic, $D=Z_{\alpha}$ and $\left[D, C_{Q_{\alpha \beta}}\left(X_{\alpha \beta}\right)\right] \leq[D, B]$.
(c) $[\mathbf{c}]$ One of the following holds
3. $[1]\left[D, B, Q_{\alpha \beta}\right]=1$.
4. $[\mathbf{2}] \alpha$ is symplectic, $D=Z_{\alpha},\left[X_{\alpha \beta}, B\right] \neq 1$ and $\left[D, Q_{\alpha \beta}, Q_{\alpha \beta}\right]=A_{\alpha \beta}$.

Proof: This follows easily from the action of $Q_{\alpha \beta}$ on D

Lemma $5.6[\mathbf{a g d}$ in $\mathbf{z g d}] \operatorname{Let}(\alpha, \beta)$ be an edge in Γ and suppose that $Z_{\beta} \leq$ Q_{α}.
(a) [a] If $X_{\alpha \beta} \not \leq Z_{\beta}$ then $A_{\alpha \beta} \leq Z\left(G_{\beta}\right)$.
(b) [b] Suppose α is symplectic and that N is a normal p-subgroup of G_{β} with $\left[X_{\alpha \beta}, N\right]=1$. Then $\left[Z_{\alpha}, N\right] \leq Z\left(G_{\beta}\right)$.

Proof: For the proof of (b) we may assume (a) has been proved and that $\left[Z_{\alpha}, N\right] \neq 1$.

We prove (a) and (b) simultaneously. For the proof of (a) let $D_{\alpha}=X_{\alpha \beta}$ and $U=Q_{\beta}$. Note that D_{α} also depends on β but β will be fixed throughout the proof. For the proof of (b) let $D_{\alpha}=Z_{\alpha}$ and $U=N$. Let $A_{\alpha}=\left[D_{\alpha}, U\right]$. From the definition of A_{α} we obtain:

1) $[1] \quad A_{\alpha} \leq Z_{\alpha \beta}$

Next we show:
2) [2] Let $B \leq Q_{\alpha \beta}$ and suppose that B is a non-trivial offender on D_{α}. Then $A_{\alpha} \leq\left[D_{\alpha}, B\right] \cap Z_{\alpha \beta}$.

By 1) we only need to show that $A_{\alpha} \leq\left[D_{\alpha}, B\right]$. We apply $5.5(\mathrm{~b})$ with D_{α}. If 1. holds we have $A_{\alpha}=\left[D_{\alpha}, U\right] \leq\left[D_{\alpha}, Q_{\alpha \beta}\right] \leq\left[D_{\alpha}, B\right]$ and we are done. Suppose that 2.holds. Then $D_{\alpha} \neq X_{\alpha \beta}$ and so we must be in the proof of (b). So $U=N \leq C_{Q_{\alpha \beta}}\left(X_{\alpha \beta}\right)$ and again $A_{\alpha} \leq\left[D_{\alpha}, B\right]$.
3) [3] Let $B \leq Q_{\beta}$ and suppose that B is a non-trivial offender on D_{α}. $\left[D_{\alpha}, B, Q_{\alpha \beta}\right] \leq \Omega_{1} \mathrm{Z}\left(G_{\beta}\right)$.

We apply 5.5(c). If 1 . holds we are done. So suppose 2. holds. Then we are in the proof of (b), $\left[X_{\alpha \beta}, B\right] \neq 1$ and $\left[D_{\alpha}, B, Q_{\alpha \beta}\right]=A_{\alpha \beta}$. Since $B \leq Q_{\beta}$, we get $X_{\alpha \beta} \not \leq Z_{\beta}$ and so by (a) $A_{\alpha \beta} \leq \Omega_{1} \mathrm{Z}\left(G_{\beta}\right)$ and 3) is proved.

Since $Q_{\alpha \beta}=\mathrm{B}\left(Q_{\alpha \beta}\right)$ and $C_{G_{\beta}}\left(Z_{\beta}\right)=Q_{\beta}$ we have $\left[Z_{\beta}, \mathrm{J}\left(Q_{\alpha \beta}\right)\right] \neq 1$. Thus there exists $A \in \mathcal{A}\left(Q_{\alpha \beta}\right)$ with $A \not \leq Q_{\beta}$. Let $a \in A$ with $a \notin Q_{\beta}$. If β is a hex we choose a such that in addition $C_{Z_{\beta}}(a)=Z_{\alpha \beta}$. Let $\gamma \in \alpha^{G_{\beta}}$ with $Z_{\alpha \beta} \cap Z_{\gamma \beta}=\Omega_{1} \mathrm{Z}\left(G_{\beta}\right)$ and $a \notin P_{\beta \gamma}$. The choice of a implies
4) $[4] \quad Z_{\gamma \beta} \cap Z_{\gamma \beta}^{a}=\Omega_{1} \mathrm{Z}\left(G_{\beta}\right)$

Suppose first that
(*) $\left[D_{\gamma}, D_{\gamma}^{a}\right] \neq 1$.

Then by $5.5 D_{\gamma}^{a}$ is an offender on D_{γ} and vice versa. So by 2) applied to $\left(D_{\gamma}^{a}, \gamma\right)$ in place of (B, α)

$$
A_{\gamma} \leq\left[D_{\gamma}, D_{\gamma}^{a}\right] \cap Z_{\gamma \beta}
$$

By 3) applied to $\left(D_{\gamma}, \gamma^{a}\right)$ in place of (B, α) we have $\left[\left[D_{\gamma^{a}}, D_{\gamma}\right], Q_{\gamma \beta}^{a}\right] \leq$ $Z\left(G_{\beta}\right)$. Hence 5.3(f) implies $Z_{\beta} \cap\left[D_{\gamma^{a}}, D_{\gamma}\right] \leq Z_{\gamma \beta}^{a}$ and thus

$$
\left.A_{\gamma} \leq\left[D_{\gamma^{a}}, D_{\gamma}\right] \cap Z_{\gamma \beta}\right) \leq Z_{\gamma \beta} \cap Z_{\gamma \beta}^{a} \leq \Omega_{1} \mathrm{Z}\left(G_{\beta}\right)
$$

and we are done in this case.
Suppose next that

$$
(* *) \quad\left[D_{\gamma}, D_{\gamma}^{a}\right]=1 .
$$

Set $B:=A \cap Q_{\beta}$ and $C:=C_{B}\left(D_{\gamma}\right)$. Then $Z_{\beta} B \in \mathcal{A}\left(Q_{\beta}\right) \subseteq \mathcal{A}\left(Q_{\alpha \beta}\right)$. Since Z_{β} centralizes Z_{γ}, B is an offender on D_{γ}. Since A is abelian and $C \leq B \leq A$ we have $B=B^{a}$ and $C=C^{a}$. Thus $C=C_{B}\left(D_{\gamma}^{a}\right)$ and C centralizes D_{γ}^{a}. Since by assumption $Z_{\beta} \leq Q_{\alpha}$ we get $Z_{\beta} \leq Q_{\gamma}^{a}$. Thus by $\left.{ }^{(* *}\right) Z_{\beta} D_{\gamma} C$ centralizes D_{γ}^{a}. By 1) $Z_{\beta} D_{\alpha} C \in \mathcal{A}\left(Q_{\beta}\right)$ and we conclude that $D_{\gamma}^{a} \leq Z_{\beta} D_{\gamma} C$. By symmetry in γ and γ^{a} we conclude $Z_{\beta} D_{\gamma} C=Z_{\beta} D_{\gamma}^{a} C$. Thus

$$
\left[D_{\gamma}, B\right]=\left[D_{\gamma}^{a}, B\right] .
$$

Suppose that B does not centralize D_{γ}. Then by 2) applied to γ in place of $\alpha, A_{\gamma} \leq\left[D_{\gamma}, B\right] \cap Z_{\gamma \beta}$. From $\left[D_{\gamma}, B\right]=\left[D_{\gamma}^{a}, B\right]$ and 3) applied to γ^{a} in place of α we get $\left[D_{\gamma}, B, Q_{\gamma \beta}^{a}\right] \leq Z\left(G_{\beta}\right)$ Now as in the $\left(^{*}\right)$ case $A_{\gamma} \leq Z\left(G_{\beta}\right)$ and we are done.

Suppose next that B centralizes D_{γ}. Then also $Z_{\beta} B$ centralizes D_{γ} and so $D_{\gamma} \leq Z_{\gamma} B$. Since a centralizes B we conclude that $D_{\gamma} Z_{\beta}=D_{\gamma}^{a} Z_{\beta}$. Hence

$$
A_{\gamma}=\left[D_{\gamma}, U\right]=\left[D_{\gamma} Z_{\beta}, U\right]=\left[D_{\gamma}^{a}, U\right]=A_{\gamma^{a}} \leq Z_{\gamma \beta} \cap Z_{\gamma \beta}^{a} \leq \Omega_{1} \mathrm{Z}\left(G_{\beta}\right)
$$

and we are also done in this final case.
For adjacent vertices α, β let $V_{\alpha}^{\beta}=\left\langle Z_{\beta}^{G_{\alpha}}\right\rangle$.
Lemma 5.7 [qgamma cap qdelta normal] Let (β, α) be an edge of Γ and suppose that V_{α}^{β} and V_{β}^{α} are abelian. Then $Q_{\alpha} \cap Q_{\beta}$ is normal in G_{α}.

Proof: Choose A, a and γ as in the proof of 5.6. Assume that $Q_{\alpha} \cap Q_{\beta}$ is not normal in G_{α}. By conjugation $Q_{\gamma} \cap Q_{\beta}$ is not normal in G_{γ} and so $Q_{\gamma} \cap Q_{\beta} \neq Q_{\delta} \cap Q_{\gamma}$ for some $\delta \in \beta^{G_{\gamma}}$. Then $\left[Q_{\gamma} \cap Q_{\beta}, Z_{\delta}\right] \neq 1$.

If possible, choose δ such that $\left[Q_{\gamma} \cap Q_{\beta}, X_{\delta \gamma}\right] \neq 1$. In this case put $D_{\delta \gamma}=X_{\delta \gamma}$.

If not possible, put $N=\left\langle\left(Q_{\alpha} \cap Q_{\beta}\right)^{G_{\gamma}}\right\rangle$ and $D_{\delta \gamma}=Z_{\delta}$. Then $\left[X_{\beta \gamma}, N\right]=$ 1.

Note that $Z_{\gamma} \leq V_{\beta}^{\gamma}$ and so $Z_{\gamma} \leq Q_{\beta}$. Thus we can apply 5.6 and to (β, γ) in place of (α, β). We conclude that $A_{\gamma}:=\left[D_{\delta \gamma}, Q_{\alpha} \cap Q_{\beta}\right] \leq \Omega_{1} \mathrm{Z}\left(G_{\gamma}\right)$. Since $A_{\gamma} \not \leq \Omega_{1} \mathrm{Z}\left(G_{\delta}\right)$ and $\delta \in \beta^{G_{\gamma}}$ we get $A_{\gamma} \not \leq \Omega_{1} \mathrm{Z}\left(G_{\beta}\right)$. Since $Z_{\gamma \beta}^{a^{-1}} \cap Z_{\gamma \beta} \leq$ $\Omega_{1} \mathrm{Z}\left(G_{\beta}\right)$ we have

1) $[\mathbf{1}] \quad A_{\gamma} \leq \Omega_{1} \mathrm{Z}\left(G_{\gamma}\right)$ and $Z_{\gamma \beta}^{a^{-1}} \nsupseteq A_{\gamma} \not \leq Z_{\gamma \beta}^{a}$.

From the definition of $D_{\delta \gamma}$ and 5.5(b) we deduce
2) $[\mathbf{2}] \quad$ Let $F \leq Q_{\delta \gamma}$ be an offender on $D_{\delta \gamma}$, then $A_{\gamma} \leq\left[D_{\delta \gamma}, F\right]$.

Let $B=A \cap Q_{\beta}$ and $C=B \cap Q_{\gamma}$. Then $Z_{\beta} B$ and $Z_{\beta} Z_{\gamma} C$ are in $\mathcal{A}\left(Q_{\beta \gamma}\right)$. Next we show
3) $[\mathbf{3}] \quad D_{\delta \gamma} \leq Z_{\beta} Z_{\gamma} C$ for all $\delta \in \beta^{G_{\gamma}}$ with $\left[Q_{\beta} \cap Q_{\gamma}, D_{\gamma \delta}\right] \neq 1$.

Assume that $\left[C, D_{\delta \gamma}\right]=1$. Since V_{γ}^{β} is abelian, $Z_{\gamma} Z_{\beta}$ centralizes Z_{δ} and so also $D_{\delta \gamma}$. Since $Z_{\beta} Z_{\gamma} C \in \mathcal{A}\left(Q_{\beta \gamma}\right)$ we conclude that 3) holds in this case. So assume for a contradiction that $\left[C, D_{\delta \gamma}\right] \neq 1$ and put $D=C_{C}\left(D_{\delta \gamma}\right)$. Then by 2), $A_{\gamma} \leq\left[C, D_{\delta \gamma}\right]$ and by 5.5(a) $E:=Z_{\beta} Z_{\gamma} D_{\delta \gamma} D \in \mathcal{A}\left(Q_{\gamma}\right)$.

We will show that $\left[E, D_{\delta \gamma}^{a}\right]=1$. Since $V_{\gamma^{a}}^{\beta}$ is abelian, $D_{\delta \gamma}^{a}$ centralizes Z_{β}.
Suppose that $\left[D_{\delta \gamma}^{a}, Z_{\gamma}\right] \neq 1$. Since V_{β}^{γ} is abelian, $Z_{\gamma} \leq Q_{\beta} \cap Q_{\gamma}^{a}$. From 5.5(a) we conclude that Z_{γ} is an offender on $D_{\delta \gamma}$ and vice versa. By 2) $A_{\gamma}^{a}=\left[D_{\delta \gamma}^{a}, Z_{\gamma}\right] \leq Z_{\gamma \beta}$, a contradiction to 1).

Thus $\left[D_{\delta \gamma}^{a}, Z_{\gamma}\right]=1$ and $D_{\delta \gamma}^{a} \leq Q_{\beta} \cap Q_{\gamma}$. By symmetry $D_{\delta \gamma} \leq Q_{\beta} \cap Q_{\gamma}^{a}$. Hence by 5.5 (a) $D_{\delta \gamma}$ and $D_{\delta \gamma}^{a}$ are offenders on each other.

Suppose that $\left[D_{\delta \gamma}, D_{\delta \gamma}^{a}\right] \neq 1$. Then by 2) $A_{\gamma} \leq\left[D_{\delta \gamma}, D_{\delta \gamma}^{a}\right] \leq Z_{\gamma \beta}^{a}$, again a contradiction to 1).

Thus $\left[D_{\delta \gamma}, D_{\delta \gamma}^{a}\right]=1$. Since D centralizes $D_{\delta \gamma}$ and since $D=D^{a}, D$ centralizes $D_{\delta \gamma}^{a}$. Thus E centralizes $D_{\gamma \delta}^{a}$ and so $D_{\gamma \delta}^{a} \leq E$. Note that C is a non-trivial offender on $D_{\delta \gamma}$ and so by 2) $A_{\gamma} \leq\left[C, D_{\delta \gamma}\right.$. Since a centralizes C we get

$$
A_{\gamma}^{a} \leq\left[C, D_{\delta \gamma}^{a}\right] \leq[C, E]=\left[C, D_{\gamma \delta}\right] \leq Z_{\gamma \beta}
$$

contradicting 1). This completes the proof of 3).

Suppose that $B \neq C$, that is $B \not \leq Q_{\gamma}$. By 3$)\left[B, D_{\delta \gamma}\right] \leq\left[B, Z_{\gamma}\right] \leq Z_{\gamma}$ and so $B \leq N_{G_{\gamma}}\left(D_{\delta \gamma} Z_{\gamma}\right)$. In particular, B normalizes $C_{Q_{\gamma}}\left(D_{\delta \gamma}\right)$. Let $\rho \in \beta^{G_{\gamma}}$ with $\left[Q_{\beta} \cap Q_{\gamma}, D_{\rho \gamma}\right]=1$. Then

$$
\left[Q_{\gamma}, B\right] \leq\left[Q_{\gamma}, Q_{\beta}\right] \leq Q_{\beta} \cap Q_{\gamma} \leq C_{Q_{\gamma}}\left(D_{\rho \gamma}\right)
$$

So B normalizes $C_{Q_{\gamma}}\left(D_{\rho \gamma}\right)$. It follows that B normalizes $C_{Q_{\gamma}}\left(D_{\tau \gamma}\right)$ for all $\tau \in \beta^{G_{\gamma}}$. Since $B \not \leq Q_{\gamma}$ we conclude that $C_{Q_{\gamma}}\left(D_{\beta \gamma}\right)$ is normal in $\left\langle B^{G_{\gamma}}\right\rangle Q_{\beta \gamma}=G_{\gamma}$. But then

$$
Q_{\beta} \cap Q_{\gamma} \leq C_{Q_{\gamma}}\left(D_{\beta \gamma}\right)=C_{Q_{\gamma}}\left(D_{\beta \delta}\right)
$$

a contradiction.
Thus $B=C$. So B centralizes $Z_{\gamma}, Z_{\gamma} \leq Z_{\beta} B$ and by 2) $D_{\delta \gamma} \leq Z_{\beta} B$. Since A centralizes B, we conclude that A normalizes $Z_{\gamma} Z_{\beta}$ and $D_{\delta \gamma} Z_{\beta}$. But then A also normalizes $Q_{\gamma} \cap Q_{\beta}$ and $\left[Q_{\gamma} \cap Q_{\beta}, D_{\delta \gamma} Z_{\beta}\right]$. Since this latter group is A_{γ} we get a contradiction to 1).

Lemma 5.8 [zalpha offender] Let (α, β) and (γ, δ) be edges in Γ such that $Z_{\alpha} Z_{\delta} \leq Q_{\alpha \beta} \cap Q_{\delta \gamma}$ and $\left[Z_{\alpha}, Z_{\delta}\right] \neq 1$. Then
(a) $[\mathbf{a}] Z_{\alpha}$ is an offender on Z_{δ} and vice versa.
(b) $[\mathbf{b}]\left|Z_{\alpha} Q_{\delta} / Q_{\delta}\right|=\left|Z_{\delta} Q_{\alpha} / Q_{\alpha}\right|$.
(c) $[\mathbf{c}] \quad G_{\alpha}=\left\langle Z_{\delta}^{G_{\alpha}}\right\rangle Q_{\alpha}$.

Proof: (a) and (b) follows from the fact that $Q_{\alpha \beta}$ contains no over-offender on Z_{α}.

Note that $O^{p}\left(G_{\alpha}\right) Q_{\alpha}=G_{\alpha}$ unless $\bar{G}_{\alpha} \cong S L_{2}(2), S L_{2}(3), S p_{4}(2)$ or $G_{2}(2)$. In each of the four exceptionell case $O^{p}\left(G_{\alpha}\right) Q_{\alpha}$ has index p in G_{α} and $Q_{\alpha \beta} \cap O^{p}\left(G_{\alpha}\right) Q_{\alpha}$ contains no non-trivial offender on Z_{α}. Thus (c) follows from (a).

Lemma 5.9 [critical pairs] Let (α, β) and (γ, δ) be edges in Γ such that $Z_{\alpha} Z_{\delta} \leq Q_{\alpha \beta} \cap Q_{\delta \gamma}$ and $\left[Z_{\alpha}, Z_{\delta}\right] \neq 1$.

Then $q:=q_{\alpha}=q_{\beta}$ and one of the following holds.

1. $[1] \quad \bar{G}_{\alpha} \cong \bar{G}_{\delta} \cong G_{2}(q)$.
2. $[2]$
(a) $[\mathbf{a}] \quad \bar{G}_{\alpha} \cong S p_{2 n_{\alpha}}(q)$ and $\bar{G}_{\delta} \cong S p_{2 n_{\delta}}(q)$
(b) $[\mathbf{b}]\left|Z_{\alpha} Q_{\delta} / Q_{\delta}\right|=\left|Z_{\delta} Q_{\alpha} / Q_{\alpha}\right|=q$.
(c) $[\mathbf{c}]\left[Z_{\alpha},\left[Z_{\delta}, Q_{\gamma \delta}\right]\right]=1$ and $\left[Z_{\delta},\left[Z_{\alpha}, Q_{\alpha \beta}\right]\right]=1$.
3. [3]
(a) $[\mathbf{a}] \quad \bar{G}_{\alpha} \cong S p_{2 n_{\alpha}}(q), \bar{G}_{\delta} \cong S p_{2 n_{\delta}}(q), n_{\alpha}, n_{\delta} \geq 2$,
(b) $[\mathbf{b}]\left|Z_{\alpha} Q_{\delta} / Q_{\delta}\right|=\left|Z_{\delta} Q_{\alpha} / Q_{\alpha}\right|=q^{2}$,
(c) $[\mathbf{c}]\left[X_{\alpha \beta}, X_{\delta \gamma}\right]=1$.
(d) $[\mathbf{d}]$ One of the following holds:
4. [1] $\left[X_{\alpha \beta}, Z_{\delta}\right]=\left[X_{\delta \gamma}, Z_{\alpha}\right], U_{\alpha}$ is the natural module for G_{α} and U_{δ} is the natural module for G_{δ}.
5. [2] $q=2,\left[X_{\alpha \beta}, Z_{\delta}\right] \neq\left[X_{\delta \gamma}, Z_{\alpha}\right]$ and $U_{\alpha} \cap Z\left(G_{\alpha}\right)=U_{\delta} \cap Z\left(G_{\delta}\right)$
6. [4]
(a) $[\mathbf{a}] \bar{G}_{\alpha} \cong S L_{n_{\alpha}}(q)$ and $\bar{G}_{\delta} \cong S L_{n_{\delta}}(q)$
(b) $[\mathbf{b}]\left|\left[Z_{\alpha}, Z_{\delta}\right]\right|=q$.
7. [5] After interchanging (α, β) with (δ, γ) if necessary:
(a) $[\mathbf{a}] \bar{G}_{\alpha} \cong S L_{n_{\alpha}}(q), n_{\alpha}>2$ and $\bar{G}_{\delta} \cong S p_{2 n_{\delta}}(q), n_{\beta}>1$
(b) $[\mathbf{b}]\left|Z_{\alpha} Q_{\delta} / Q_{\delta}\right|=\left|Z_{\delta} Q_{\alpha} / Q_{\alpha}\right|=q$,
(c) $[\mathbf{c}]\left[X_{\delta \gamma}, Z_{\alpha}\right]=1$
(d) $[\mathbf{d}]\left|\left[Z_{\alpha}, Z_{\gamma}\right]\right|=q$

Proof:

Let $I_{\alpha \delta}=\left\{\left|\left[Z_{\alpha}, y\right]\right| \mid 1 \neq y \in Z_{\delta} Q_{\alpha} / Q_{\alpha}\right.$ and $J_{\alpha \delta}=\left\{\left|\left[x, Z_{\delta}\right]\right| \mid x \in\right.$ $Z_{\alpha} \backslash C_{Z_{\alpha}}\left(Z_{\delta}\right)$

By ??(??) implies $\left.\left|\left[Z_{\alpha}, y\right]\right|=\mid \widetilde{Z_{\alpha}}, y\right] \mid$ and $\left|\left[\widetilde{x}, Z_{\delta}\right]\right|$, for all $y \in Z_{\delta}$ and $x \in Z_{\alpha}$. definitionine the positive integer $k_{\alpha \delta}$ by $\left|\widetilde{Z_{\alpha}} / C_{\widetilde{Z_{\alpha}}}\left(Z_{\delta}\right)\right|=q_{\alpha}^{k_{\alpha} \delta}$ and note that

$$
q_{\alpha}^{k_{\alpha \delta}}=\left|Z_{\alpha} Q_{\delta} / Q_{\delta}\right|=Z_{\delta} Q_{\alpha} / Q_{\alpha} \mid=q_{\delta}^{k_{\delta \alpha}}
$$

Also Z_{δ} is a quadratic offender on Z_{α} and the action of $\overline{G_{\alpha}}$ on $\widetilde{Z_{\alpha}}$ implies:

$\overline{G_{\alpha}}$	$I_{\alpha \delta}$	$J_{\alpha \delta}$
$G_{2}\left(q_{\alpha}\right)$	$\left\{q_{\alpha}^{2}, q_{\alpha}^{3}\right\}$	$\left\{q_{\alpha}^{2}, q_{\alpha}^{3}\right\}$
$S L_{n_{\alpha}}\left(q_{\alpha}\right)$	$\left\{q_{\alpha}\right\}$	$\left\{q_{\alpha}\right\}$
$S p_{2 n_{\alpha}}\left(q_{\alpha}\right), k_{\alpha \delta}=1$	$\left\{q_{\alpha}\right\}$	$\left\{q_{\alpha}\right\}$
$S p_{2 n_{\alpha}}\left(q_{\alpha}\right), k_{\alpha \delta}>1$	$\left\{q_{\alpha}, q_{\alpha}^{2}\right\}$	$\left\{q_{\alpha}, q_{\alpha}^{\left.k_{\alpha \delta}\right\}}\right.$

Note that the definitions of $I_{\alpha \delta}$ and $J_{\alpha \delta}$ imply $I_{\alpha \delta}=J_{\delta \alpha}$. This allows as to relate \bar{G}_{α} and \bar{G}_{δ}. In particular we see that

$$
q:=q_{\alpha}=q_{\delta} \quad \text { and } \quad k:=k_{\alpha \delta}=k_{\delta \alpha} .
$$

Furthermore, $\bar{G}_{\alpha} \cong G_{2}\left(q_{\alpha}\right)$ we conclude that also $\bar{G}_{\delta} \cong G_{2}\left(q_{\delta}\right)$ So (a) holds in this case.

If $\bar{G}_{\alpha} \cong S L_{n_{\alpha}}\left(q_{\alpha}\right)$ and $n_{\alpha}>2$, we get $\bar{G}_{\alpha} \cong S L_{n_{\delta}}\left(q_{\delta}\right)$ or $S p_{2 n_{\delta}}\left(q_{\delta}\right)$. In the latter cae we get $k=1$. In any case since $n_{\alpha}>2,\left|\left[Z_{\alpha}, Z_{\gamma}\right]\right|=q$ and so (4) or (5) holds.

If $\bar{G}_{\alpha} \cong S p_{2 n_{\alpha}}(q)$ and $\bar{G}_{\delta} \cong S p_{n_{\alpha}}(q)$ we get $k \in\{1,2\}$. If $k=1$, (2) holds.

So suppose that $k=2$. Then clearly $n_{\alpha}, n_{\delta}>2$. We will show that (3) holds. We already prived (3)(a) and (b). Also both $\left[X_{\alpha \beta}, Z_{\delta}\right]$ and $\left[X_{\delta \gamma}, Z_{\alpha}\right]$ have order q. It follows that $X_{\alpha \beta} Q_{\delta} / Q_{\delta}$ is the unique full transvection group in $Q_{\gamma \delta} / Q_{\delta}$ and thus (3)(c) holds.

If $q>2$, then $\left|\left[X_{\delta \gamma}, Z_{\alpha}\right]\right|=q$ implies that U_{α} is a natural module and so also $\left[X_{\alpha \beta}, Z_{\delta}\right]=\left[Z_{\alpha}, X_{\delta \gamma}\right]=U_{\alpha} \cap Z_{\alpha \beta}$. Thus (3) holds in this case.

So suppose that $q=2$. Note that $U_{\alpha} \cap Z_{\alpha \beta}=\left[X_{\alpha \beta}, Z_{\delta}\right]\left[Z_{\alpha}, X_{\delta \gamma}\right]$. If [$\left.X_{\alpha \beta}, Z_{\delta}\right]=\left[Z_{\alpha}, X_{\delta \gamma}\right]$ we conclude that U_{α} is a natural module and (3) holds. If $\left[X_{\alpha \beta}, Z_{\delta}\right] \neq\left[Z_{\alpha}, X_{\delta \gamma}\right]$ we get that $U_{\alpha} \cap Z\left(G_{\alpha}\right)$ is the unique subgroup of order two in $\left[X_{\alpha \beta}, Z_{\delta}\right]\left[Z_{\alpha}, X_{\delta \gamma}\right]$ distinct from $\left[X_{\alpha \beta}, Z_{\delta}\right]$ and $\left[Z_{\alpha}, X_{\delta \gamma}\right]$. The same is true for $U_{\delta} \cap Z\left(G_{\delta}\right)$ and again (3) holds.

Lemma $5.10[\mathbf{q}=\mathbf{2}$ for $\mathbf{g 2 (q)] ~ L e t ~}(\alpha, \beta, \gamma, \delta)$ be as in Case 1. of 5.9. Then $q=2$ and $U_{\alpha} \cap Z\left(G_{\alpha}\right)=U_{\delta} \cap Z\left(G_{\delta}\right)$.

Proof: The following argument is taken from [MS].
Let $R=\left[Z_{\alpha}, Z_{\delta}\right]$ and $\left.X=R \backslash\left\{[x, y] \neq 1 \mid x \in Z_{\alpha}, y \in Z_{\delta}\right]\right\}$. Then it is not too difficult to see that $X=C_{U_{\alpha}}\left(G_{\alpha}\right)=C_{U_{\delta}}\left(G_{\delta}\right)$. We will compare the actions of U_{α} / X on U_{δ} / X as seen in G_{δ} with the action of U_{δ} / X on U_{α} / X
as seen in G_{α}. Let $\mathbb{F}_{\alpha}=\operatorname{End}_{G_{\alpha}}\left(U_{\alpha} / X\right)$. Then \mathbb{F}_{α} is a field isomorphic to $G F(q)$.

Let

$$
K_{\delta \alpha}=\left\{C_{U_{\delta}}(y) \mid y \in Z_{\alpha}, U_{\delta} \cap Q_{\alpha}<C_{U_{\delta}}(y)<U_{\delta}\right\} .
$$

and similarly define $K_{\alpha \delta}$. If $A \in K_{\delta \alpha}$ then $\left.C_{U_{\alpha}} A\right) \neq U_{\alpha} \cap Q_{\delta}$ and $C_{U_{\alpha}}(A) / R$ is a 1-dim. $\quad \mathbb{F}_{\alpha}$-subspace of U_{α} / R. Also $C_{U_{\alpha}}(A)=C_{U_{\alpha}}(a)$ for all $a \in$ $A \backslash Q_{\alpha}$. So $C_{U_{\alpha}}(A) \in K_{\alpha \delta}$ and we obtained a bijection between $K_{\alpha \delta}$ and $K_{\delta \alpha}$. Moreover, \bar{A} is a long root subgroup of \bar{G}_{α}. Let $t \in Z_{\alpha}$ with $[t, A] \neq 1$.

We show next that
(*) $[t, A] X / X$ is a 1 -dim. \mathbb{F}_{α} and \mathbb{F}_{δ} subspace of R / X and a
Clearly it is a 1 -dim $\mathbb{F}_{\delta^{-}}$subspace. Let $P=C_{G_{\alpha}}(\bar{A})$. Then $W:=$ $U_{\alpha} / C_{U_{\alpha}}(A)$ is a natural module for $P / O_{p}(P) \cong S L_{2}(q)$. Let t^{*} be the image of t in W. Then $S:=C_{P}\left(\tilde{t}^{*}\right)$ is a Sylow p-subgroup of P and so of G_{α}. Since S centalizes $[t, A]$ we conclude that $[t, A] X / X=C_{U_{\alpha} / X}(S)$, which is a 1-dim. \mathbb{F}_{α}-space.

The preceeding argument also shows that every 1-dim. \mathbb{F}_{α} subspace of $\left[U_{\alpha}, A\right] X / X$ is of the form $[t, A]$ for some $t \in Z_{\alpha}$. Moreover each 1-dim. \mathbb{F}_{α} subspace of R / X is contained in $\left[U_{\alpha}, A\right] X / X$ for some $A \in K_{\delta \alpha}$. Thus (*) implies
${ }^{(* *)} \quad$ The \mathbb{F}_{α} and \mathbb{F}_{δ} subspaces in R / X coincide.
Let $W_{\alpha \beta}=\left[U_{\alpha}, O_{p}\left(P_{\alpha \beta}\right)\right] X$ and $U_{\alpha \beta}=C_{U_{\alpha}}\left(O_{p}\left(P_{\alpha \beta}\right)\right.$. Then $U_{\alpha \beta} / X$ is a 1 -dim. \mathbb{F}_{α} subspace of R / X. Moreover, $U_{\alpha \delta} \leq\left[U_{\alpha}, A\right] X$ for all $A \in K_{\delta \alpha}$. Considering the action of $U_{\alpha} Q_{\delta} / Q_{\delta}$ on U_{δ} / X we conclude that $U_{\alpha \beta}=U_{\gamma \delta}$.

Fix $z \in U_{\alpha} \backslash W_{\alpha \beta}$ and define $Y / U_{\delta \gamma}:=C_{U_{\delta} / U_{\delta \gamma}}(z)$. Then Y / R is 1dimensional \mathbb{F}_{δ} subspace of U_{δ} / R. Since $[Y, z] \leq U_{\delta \gamma}=U_{\alpha \delta}$ we also have $\left[Y, \mathbb{F}_{\alpha} z X / X\right] \leq U_{\alpha \delta}$. Since $\left[z, Q_{\alpha \beta}\right] R=W_{\alpha \beta}$, the Frattin-argument shows that $L:=C_{P_{\alpha \beta}}(z R / R)$ has a quotient $S L_{2}(q)$.. Since L normalizes Y, we conclude that $Y Q_{\alpha} / Q_{a}$ is a short root subgroup of \bar{G}_{α}.

Hence there exists a subgroup M of \bar{G}_{α} with $Y Q_{\alpha} / Q_{\alpha} \leq M$ and $M \cong$ $S L_{2}(q)$. Note that for all $t \in Y_{\alpha},[t, Y] X / X$ is an $\mathbb{F}_{\boldsymbol{\delta}}$-submodule of R / X. Hence $[t, Y] X / X$ is also an \mathbb{F}_{α}-submodule of U_{α} / X. But this implies that U_{α} / X is as an $\mathbb{F}_{\alpha} M$-module the direct sum three isomorphic natural module. But this implies $q=2$. (For example let P be a mimimal parabolic of G_{α} / Q_{a} with M as a Levi complement, $V_{1}=C_{U_{\alpha} / X}\left(O_{p}(P)\right)$ and $V_{2}=$ $\left[U_{\alpha} / X, O_{p}(P)\right] / V_{1}$. Then $O_{p}(P) / \Phi\left(O_{p}(P)\right)$ is isomorphic to a \mathbb{F}_{p}-submodule
of $\operatorname{Hom}_{\mathbb{F}_{\alpha}}\left(V_{2}, V_{1}\right)$. Since V_{2} and V_{1} are isomorphic $\mathbb{F}_{\alpha} M$ modules, we conclude that every composition factor for M in $O_{p}(P)$ is either natural or trivial. Thus $q=2$.
Comment: a quote from [BBSM] would be more appropriate

Lemma $5.11[\mathbf{b}=1$ sigma=2] Suppose that $|\Sigma|=2, \Sigma=\{\alpha, \beta\}$ and $\left[Z_{\alpha}, Z_{\beta}\right] \neq 1$. Then for $\gamma \in \Sigma$ there exists $K_{\gamma} \leq \Omega_{1} \mathrm{Z}\left(G_{\gamma}\right)$ and $L_{\gamma} \leq G_{\gamma}$ such that $G_{\gamma}=K_{\gamma} \times L_{\gamma}$ and one of the follwing holds.

1. [1] $L_{\alpha} \sim L_{\beta} \sim q^{n} S L_{n}(q)$ and $\left|K_{\alpha}\right|=K_{\beta} \mid \leq q$.
2. [2] $p=2$ and (after interchanging α and β if necessary), $G_{\alpha}=L_{\alpha} \sim$ $q^{1+2 n} S p_{2 n}(q), G_{\beta}=L_{\beta} \sim q^{1+2+2 \cdot(2 n-2)} S L_{2}(q)$.
3. [3] $p=2, L_{\alpha} \sim L_{\beta} \sim 2^{6} G_{2}(2)$ and $\left|K_{\alpha}\right|=\left|K_{\beta}\right| \leq 2^{3}$.
4. [4] $p=2$ and $G_{\alpha}=L_{\alpha} \sim G_{\beta}=L_{\beta} \sim q^{1+6+8} S p_{6}(q)$.
5. [5] $p \neq 2, L_{\alpha} \sim L_{\beta} \sim q^{2 n} S p_{2 n}(q), n \geq 2$ and $\left|K_{\alpha}\right|=\left|K_{\beta}\right| \leq q$.
6. [6] $q=2, G_{\alpha} \sim 2^{1+2 n} S p_{2 n}(2)$ and $G_{\beta} \sim 2^{1+2+1 \cdot m+1 \cdot m+2 \cdot k} S L_{2}(2)$ for some m, k with $m+k=n-2$ and k even.
7. [7] who knows

Proof:

By assumption, $\left[Z_{\alpha}, Z_{\beta}\right] \neq 1$. Clearly $Z_{\alpha} Z_{\beta} \leq Q_{\alpha \beta}$ and we can apply 5.9 with $(\delta, \gamma)=(\beta, \alpha)$.

For $\{\gamma, \delta\}=\{\alpha, \beta\}$ define $H_{\gamma}=\left\langle Z_{\delta}^{G_{\gamma}}\right\rangle$. Let $R=\left[Z_{\alpha}, Z_{\beta}\right], I=\{1 \neq$ $\left.[x, y] \mid x \in Z_{\alpha}, y \in Z_{b}\right\}$ and $D_{\gamma}=C_{Q_{\gamma}}\left(O^{p}\left(G_{\gamma}\right)\right)$.

We devide the proof in a series of Steps.
Step 1 [da cap db] $D_{\alpha} \cap D_{\beta}=1$.
Proof: This holds since $D_{\alpha} \cap D_{\beta}$ is normalized by $G_{\alpha}=O^{p}\left(G_{\alpha}\right) Q_{\alpha \beta}$ and $G_{\beta}=O^{p}\left(G_{\beta}\right) Q_{\alpha \beta}$.

We call α non-abelian if α is symplectic, $p \neq 2$ and $n_{\alpha} \geq 2$. Otherwise α is called abelian.

Step 2 [abelian]

(a) $[\mathbf{a}] \alpha$ is abelian if only if $Q_{\alpha \beta} / Q_{\alpha}$ is elementary abelian.
(b) [b] If α is abelian, then $\Phi\left(Q_{\beta}\right) \leq D_{\beta}$.
(c) [c] If α and β are abelian, then $Q_{\alpha} \cap Q_{b}$ is elementary abelian.

Proof: (a) is obvious. If $\Phi\left(Q_{\beta}\right) \leq Q_{\alpha}$, then Z_{α} centralizes $\Phi\left(Q_{\beta}\right)$ and so $\Phi\left(Q_{\beta}\right) \leq D_{\alpha}$. Thus (b) holds.

Since $\Phi\left(Q_{\alpha} \cap Q_{\beta}\right) \leq \Phi\left(Q_{\alpha}\right) \cap \Phi\left(Q_{\beta}\right)$, Step 1 and (b) imply (c).
Step $3[\mathbf{b}=\mathbf{1}$ case 1] Suppose that 5.9(1) holds. Then 5.11(3) holds.
Proof: Note first that $Q_{\alpha} \leq Q_{\alpha \beta}=Z_{\alpha} Q_{\beta}$. Thus $Q_{\alpha}=Z_{\alpha}\left(Q_{\alpha} \cap Q_{\beta}\right)$ and Step 2(c) implies that Q_{α} is elementary abelian. Thus by 5.3(a), $Q_{\alpha}=Z_{\alpha}$. By $5.10, q=2$ and

$$
U_{\alpha} \cap Z\left(G_{\alpha}\right)=U_{\beta} \cap Z\left(G_{\beta}\right) \leq D_{\alpha} \cap D_{\beta}=1
$$

Thus $\left|U_{\alpha}\right|=2^{6}$.
By [Schur, Schur Multiplier] we get $O^{2}\left(G_{\alpha}\right) / U_{a} \cong G_{2}(2)^{\prime}$. Since $G_{\alpha}=$ $Q_{\alpha} Z_{\beta} O^{2}\left(G_{\alpha}\right)$ and $\left.\left[Q_{\alpha}, Z_{\beta}\right] \leq\left[U_{\alpha}, Z_{\beta}\right] \leq U_{\alpha} \leq O^{2} * G_{\alpha}\right)$ we get that $G_{\alpha} / O^{2}\left(G_{\alpha}\right)$ is elementary abelian. Hence there exists $L_{\alpha} \leq G_{\alpha}$ with $G_{\alpha}=$ $D_{\alpha} \times L_{\alpha}$ and $L_{\alpha} \sim 2^{6} G_{2}(2)$. Since $D_{\alpha} \leq Z_{\alpha \beta}$ and $D_{\alpha} \cap D_{\beta}=1$ we have $\left|D_{\alpha}\right| \leq\left|Z_{\alpha \beta} / D_{\beta}\right|=2^{3}$, a the proof of Step 3 is complete.

Step $4[\mathbf{b}=1$ case 2] Suppose that 5.9 (2) holds. Then
Proof:
Let $D_{\alpha \beta}=\left[Z_{\alpha}, Q_{\alpha \beta}\right]$ and $A_{\alpha \beta}=\left[D_{\alpha \beta}, Q_{\alpha \beta}\right] \leq Z_{\alpha \beta}$.
We will show first

1) $[6] \quad\left[D_{\beta \alpha}, Q_{\alpha}\right] \leq \Omega_{1} \mathrm{Z}\left(G_{\alpha}\right)$. In particular, either $D_{\beta \alpha} \leq Z_{\alpha}$ or $A_{\beta \alpha} \leq$ $\Omega_{1} \mathrm{Z}\left(G_{\alpha}\right)$.

Choose $\delta \in \beta^{G_{\alpha}}$ with $\left[Z_{\delta \alpha}, Z_{\beta}\right] \neq 1$. If $\left[D_{\delta \alpha}, D_{\beta \alpha}\right] \neq 1$, then

$$
\left[D_{\beta \alpha}, Q_{\alpha}\right] \leq A_{\beta \alpha}=\left[D_{\beta \alpha}, D_{\delta \alpha}\right] \leq Z_{\alpha \beta} \cap Z_{\alpha \delta} \leq \Omega_{1} \mathrm{Z}\left(G_{a}\right)
$$

So suppose that $\left[D_{\delta \alpha}, D_{\beta \alpha}\right]=1$. Then $\left[D_{\delta \alpha}, Z_{\beta} \leq Z_{\alpha \beta} \leq Z_{\alpha}\right.$ and so $D_{\beta \alpha} Z_{\alpha}$ is normal in $G_{\alpha}=\left\langle Q_{\alpha \delta}, Z_{\beta}\right\rangle$. Hence also [$D_{\beta \alpha}, Q_{\alpha}$] is normal in G_{α}. Since $Q_{\alpha \beta}$ centralizes $D_{\beta \alpha}$ and $G_{\alpha}=\left\langle Q_{\alpha \beta}^{G_{\alpha}}\right\rangle$, the first statement in 1) hold. If $\left[D_{\beta \alpha}, Q_{\alpha}\right]=1$ then since $\Omega_{1} \mathrm{Z}\left(Q_{\alpha}\right)=1$ we get $D_{b \alpha} \leq Z_{\alpha}$. If $\left.\mathrm{D}_{\beta \alpha}, Q_{\alpha}\right] \neq 1$, then $A_{\beta \alpha}=\left[D_{\beta \alpha}, Q_{\alpha}\right] \leq \Omega_{1} \mathrm{Z}\left(G_{\alpha}\right)$, completing the proof of 1$)$.

Next we prove:
2) $[7]$ If $\left[D_{\beta \alpha}, Q_{\alpha}\right]=1$, then $D_{\beta \alpha} \leq Z_{\alpha} \cap Q_{\beta}=D_{\alpha \beta} Z_{\alpha \beta} 3.4$ implies .

By 5.3, $D_{\beta \alpha} \leq Z_{\alpha}$. Also $D_{\beta \alpha} \leq Z_{\beta} \leq Q_{\beta}$ and so 2) holds.
3) [8] If p is odd, then 1. or 5 of 5.11 holds.

If $\left[D_{\beta \alpha}, Q_{\alpha}\right] \neq 1$, then by 1$), R=A_{\beta \alpha}=\left[D_{\beta \alpha}, Q_{\alpha}\right] \leq Z\left(G_{\alpha}\right)$ a contradiction. Thus $\left[D_{\beta \alpha}, Q_{\alpha}\right]=1$ and by 2) $D_{\beta \alpha} \leq D_{\alpha \beta} Z_{\alpha \beta}$. By symmetry $D_{\alpha \beta} \leq D_{\beta \alpha} Z_{\alpha \beta}$. Hence $Z_{\alpha} \cap Z_{\beta}=Z_{\alpha} \cap Q_{\beta}=Z_{\beta} \cap Q_{\alpha}$. Thus $Z_{\alpha} \cap Z_{\beta} / Z_{\alpha \beta}=q^{2 n_{\alpha}-2}$ and $n_{\alpha}=n_{b}$. Since $Q_{\alpha} \leq Z_{\alpha} Q_{\beta}$ we get that $Q_{\alpha} \cap Q_{\beta}$ is elementary abelian, $Q_{\alpha}=Z_{\alpha}$ and $Q_{\beta}=Z_{b}$. Also $D_{\alpha} \leq Z\left(G_{\alpha}\right), D_{\alpha} \leq Z_{\alpha \beta}$ and $D_{\alpha} \cap D_{\beta}=1$. Thus $\left|D_{\alpha}\right| \leq q$. Hence 5. holds and 3) is proved.

We may assume from now on that $p=2$. Set $D=D_{\alpha \beta} D_{\beta \alpha}$ and $T=$ $C_{Q_{\alpha \beta}}(D)$. By ?? $Q_{\alpha} \cap Q_{\beta}$ is elementary abelian. Since $C_{Q_{\alpha \beta}}\left(D_{\alpha \beta}=Z_{\beta} Q_{\alpha}\right.$ we have $T=Z_{\alpha} Z_{\beta}\left(Q_{\alpha} \cap Q_{\beta}\right)$. Since $p=2$ we conclude that
4) $[\mathbf{1 0}] \mathcal{A}(T)=\left\{Z_{\alpha}\left(Q_{\alpha} \cap Q_{\beta}\right), Z_{\beta}\left(Q_{\alpha} \cap Q_{\beta}\right)\right\}$

Let $A \in \mathcal{A}\left(Q_{\alpha \beta}\right)$. Then $C_{A}\left(D_{\alpha \beta}\right) D_{\alpha \beta}$ is in $\mathcal{A}\left(Q_{\alpha \beta}\right.$. Then $C_{A}(D) \in$ $\mathcal{A}(T)$ and so $C_{A}(D) D=Z_{\gamma}\left(Q_{\alpha} \cap Q_{b}\right)$ for some $\gamma \in\{\alpha, \beta\}$. In particular, $C_{A}(D) D \leq Q_{\gamma}$. Let $\{\alpha, \beta\}=\{\gamma, \delta\}$. Since $E:=C_{A}\left(D_{\delta \gamma}\right) D_{\delta \gamma} \in \mathcal{A}\left(Q_{\alpha \beta}\right.$, E is an offender on Z_{γ}. Moreover, $C_{E}(D) \leq C_{A}(D) D \leq Q_{\gamma}$, the action of $Q_{\gamma \delta}$ on Z_{γ} implies $E \leq Q_{\gamma}$. Since $E \in \mathcal{A}\left(Q_{\alpha \beta}\right.$ we conclude, $Z_{\gamma} \leq E$. Thus $\left[Z_{\gamma}, A\right] \leq[E, A] \leq\left[D_{\delta \gamma}, A\right]$. Suppose that $\left[Z_{\gamma}, A\right] \neq 1$, then also $\left[Z_{\gamma}, A\right] \not \leq Z\left(G_{\gamma}\right)$ and 1$)$ implies $\left[D_{\delta \gamma}, Q_{\gamma}\right]=1$. By 2), we get $D_{\delta \gamma} \leq D_{\gamma \delta} Z_{\gamma \delta}$, so $Z_{\gamma} \leq A D_{\gamma \delta} Z_{\gamma \delta}$ and thus $Z_{\gamma}=C_{Z_{\gamma}}(A) D_{\gamma \delta}$. This implies $\left[Z_{\gamma}, A\right]=1$. So $\left[Z_{\gamma}, A\right]=1$ and $A \leq Q_{\gamma}$. Hence
5) $[11] \mathcal{A}\left(Q_{\alpha \beta}\right)=\mathcal{A}\left(Q_{\alpha}\right) \cup \mathcal{A}\left(Q_{\beta}\right)$.

Since $Q_{\alpha \beta}=\mathrm{J}\left(Q_{\alpha \beta}\right)$ we conclude $Q_{\alpha \beta}=\mathrm{J}\left(Q_{\alpha}\right) \mathrm{J}\left(Q_{\beta}\right)$. In particular $Q_{\alpha} \leq \mathrm{J}\left(Q_{\alpha}\right) Q_{\beta}$ and so $Q_{\alpha}=J\left(Q_{\alpha}\right)\left(Q_{\alpha} \cap Q_{\beta}\right)$. Since $Z_{\alpha}\left(Q_{\alpha} \cap Q_{\beta}\right) \in \mathcal{A}\left(Q_{\alpha \beta}\right)$ we get $Q_{\alpha}=\mathrm{J}\left(Q_{\alpha}\right)$. Thus
6) $[\mathbf{1 2}] \quad Q_{\alpha}=\mathrm{J}\left(Q_{\alpha}\right), Q_{\beta}=\mathrm{J}\left(Q_{b}\right)$ and $Q_{\alpha \beta}=Q_{\alpha} Q_{\beta}$.

Let $A \in \mathbb{A}\left(Q_{\alpha}\right)$. Then $Z_{\alpha} \leq A$ and $C_{A}\left(D_{\beta \alpha}\right) D_{\beta \alpha}=Z_{\alpha}\left(Q_{\alpha} \cap Q_{\beta}\right)$. Thus $Q_{\alpha} \cap Q_{\beta}=\left(A \cap Q_{\beta}\right) D_{\beta \alpha}$ and $\left[Q_{\alpha} \cap Q_{\beta}, A\right]=\left[D_{\beta \alpha}, A\right] \leq A_{\beta \alpha} \leq Z_{\beta}$.

So
7) $[13] \quad\left[Q_{\alpha} \cap Q_{\beta}, Q_{\beta}\right] \leq A_{\alpha \beta}$ and $\left[Q_{\alpha} \cap Q_{\beta}, Q_{\alpha \beta} \leq A_{\alpha \beta} A \beta \alpha \leq Z_{\alpha \beta}\right.$

Let $\widehat{Q_{\beta}}=Q_{\beta} / Z_{\beta}$. We conclude that
8) $[\mathbf{1 4}] \quad\left[\left(Q_{\alpha} \widehat{\cap Q_{\beta}}\right) Z_{\beta}, Q_{\alpha}\right]=1$ and $\left[\widehat{Q_{\beta}}, Q_{\alpha}\right] \leq \widehat{Q_{\alpha} \cap Q_{\beta}}$

We will now prove
9) [9] Suppose $p=2$, and $D_{\beta \alpha} Z_{\alpha}$ is normal in G_{α}, then 1. or 2, of 5.11 holds.

Since $\left[Q_{\alpha}, Z_{\beta}\right] \leq D_{\beta \alpha}$ and $\left[D_{\beta \alpha}, Z_{\beta}\right]=1$ we get $\left[Q_{\alpha}, O^{p}\left(G_{\alpha}\right)\right] \leq Z_{\alpha}$. Let $\bar{Q}_{\alpha}=Q_{\alpha} / D_{\alpha}$. Then Q_{α} centralizes $\overline{Q_{\alpha}}, C{\overline{Q_{\alpha}}}\left(O^{p}\left(G_{\alpha}\right)\right)=1$ and $\left[\overline{Q_{\alpha}}, O^{p}\left(G_{\alpha}\right)\right]=$ $\overline{U_{\alpha}}$ is a natural module. Thus the stucture of $\overline{Q_{\alpha}}$ is determined by 3.4. From $\left[Q_{\alpha} \cap Q_{\beta}, Z_{\beta}\right]=1, Q_{\alpha} Q_{\beta}=Q_{\alpha \beta}$ and $\left(^{*}\right)$ we get $\overline{Q_{\alpha} \cap Q_{\beta}}=\overline{D_{\alpha \beta}}$. Hence $Q_{\alpha} \cap Q_{\beta} \leq D_{\alpha} D_{\alpha \beta}$ and so

$$
Q_{\alpha} \cap \beta=\left(D_{\alpha} \cap Q_{\beta}\right) D_{\alpha \beta}
$$

Since $\left[D_{\alpha} \cap Q_{\beta}, Q_{\beta}\right] \leq D_{\alpha} \cap D_{\beta}=1$ we have $D_{\alpha} \cap Q_{\beta} \leq Z_{\beta}$. As Z_{α} centralizes $D_{\alpha}, D_{\alpha} \cap Q_{\beta} \leq Z_{\beta} \cap Q_{\alpha}=D_{\beta \alpha} Z_{\alpha \beta}$. We conclude

$$
Q_{\alpha} \cap Q_{\beta}=D_{\alpha \beta} D_{\beta \alpha} Z_{\alpha \beta} \text { and } T=Z_{\alpha} Z_{\beta}=U_{\alpha} Z_{\beta}
$$

Since Q_{β} centralizes $D_{\beta \alpha}, 3.4$ implies $D_{\beta \alpha} \leq D_{\alpha} Z_{\alpha \beta}$ and so

$$
D_{\beta \alpha} Z_{\alpha \beta}=\left(D_{\alpha} \cap\left(D_{\beta \alpha} Z_{\alpha \beta}\right) Z_{\alpha \beta} .\right.
$$

. Note that $r:=\left|Q_{\alpha} / D_{\alpha} U_{\alpha}\right| \leq q$. Let $F=O^{p}\left(G_{\alpha}\right) \cap Q_{\alpha \beta}$. Then $U_{\alpha} \leq F$ and $\left|Q_{\alpha \beta} / Q_{\alpha} F\right|=e$, where $e=2$ if $\left(n_{\alpha}, q\right)=(2,2)$ or $(1,2)$ and $e=1$ otherwise. Since $D_{\beta \alpha} \leq D_{\alpha} Z_{\alpha}, F$ centralizes $D_{\beta \alpha}$ and so $F \leq U_{\alpha} Q_{\beta}$ and $F=U_{\alpha}\left(F \cap Q_{\beta}\right)$. Let $F_{1}=C_{F}\left(D_{\alpha \beta}\right)$. Since F centralizes $D_{\beta \alpha}, F_{1} \leq T=$ $U_{\alpha} Z_{\beta}$. Since $U_{\alpha} \leq F_{1}, F_{1}=U_{\alpha}\left(F_{1} \cap Z_{\beta}\right)$.

Suppose that $G_{\alpha} / Q_{\alpha} \cong S p_{2}(2)$. Then $Q_{\alpha}=D_{a} \times U_{\alpha}$. Moreover $Q_{\beta} \leq$ $Z_{\beta} Q_{\alpha}$ and $Q_{\beta}=Z_{\beta}\left(Q_{\alpha} \cap Q_{\beta}\right)=Z_{\beta} D_{\alpha \beta}=Z_{\beta}$. Since $\left[D_{\alpha}, Z_{\beta}\right] \leq R \cap D_{\alpha}=1$, $D_{\alpha} \leq Z_{\beta}$. Thus D_{α} is abelian and D_{α} is centralized by $D_{\alpha} U_{\alpha} Z_{\beta}=Q_{\alpha \beta}$. Thus $D_{\alpha} \leq Z_{\alpha \beta}$ and $Q_{\alpha}=Z_{\alpha}$. Hence $Z_{\beta} \cap Q_{\alpha}=Z_{\alpha \beta}$ and so $G_{\beta} / Q_{\beta} \cong$ $S l_{2}(2)$. Thus 1. or 2. of ?? holds in this case.

Suppose that $G_{\alpha} / Q_{\alpha} \notin\left\{S p_{2}(2), S p_{4}(2)\right\}$. Then $F_{1} \cap Z_{\beta} \not \leq Q_{\alpha}$. Since D_{α} centralizes $F_{1} \cap Z_{\beta}$ we conclude that $D_{\alpha} \leq Q_{\beta}$. Since $\mid Q_{\alpha \beta} / D_{\alpha}(F \cap$ $\left.Q_{\beta}\right) Z_{\beta} \leq r q \leq q^{2}$ we get $\left|Q_{\alpha \beta} / Q_{\beta}\right| \leq q^{2}$ and so $n_{\beta}=1$. Thus $D_{\beta \alpha} \leq Z_{\alpha \beta}$ and so $\left.Q_{\alpha} \cap Q_{\beta}=D_{\alpha \beta} Z_{\alpha \beta}=Z_{\alpha} \cap Q_{\beta}\right)$. Moreover, $Q_{\alpha} \leq U_{\alpha} Q_{\beta}$ and so $Q_{\alpha}=U_{\alpha}\left(Q_{\alpha} \cap Q_{\beta}\right)=Z_{\alpha}$. Assume that $\left(Z_{\alpha} \cap Q_{\beta}\right) Z_{\beta}$ is normal in
G_{β}. If $G_{\beta} / Q_{\beta} \cong S L(2)$, the preceeding paragraph gives a contradiction. If $G_{\beta} / Q_{b} \cong S p_{4}(2)$??? And if $G_{\beta} / Q_{\beta} \notin\left\{S p_{2}(2), S p_{4}(2)\right\}$, the first half of this paragraph applied with the roles of α and β reversed, gives $n_{\alpha}=1$. But then case (1) or (2) holds. Assume now that $\left(Z_{\alpha} \cap Q_{\beta}\right)$ is not normal in G_{β}. Let $W=\left(Z_{\alpha} \cap Q_{\beta}\right) Z_{\beta}, V=\left\langle W^{G_{\beta}}\right\rangle$ and $U=\bigcap_{g \in G_{\beta}} W^{g}$. Since $\left[W, Q_{\beta}\right] \leq Z_{\beta} \leq$ U and $\left[V, Q_{\alpha}\right] \leq Q_{\alpha} \cap Q_{\beta} \leq W$ we have $\left[V, Q_{\alpha \beta} \leq W\right.$ and $\left[W, Q_{\alpha \beta} \leq U\right.$. Thus we can apply 3.3 to V / U and conclude that $W=\left[Z_{\alpha}, V\right] U$. Hence

$$
Z_{\alpha} \cap Q_{\beta}=\left[Z_{\alpha}, V\right]\left(Z_{\alpha} \cap U\right.
$$

We claim that $Z_{\alpha} \cap U=C_{Z_{\alpha}}(V)$. Indeed, $U \leq Z(V)$ and so $Z_{\alpha} \cap V \leq$ $C_{Z_{\alpha}}(V)$. For the converse let $g \in G_{\beta}$. Then $\left[C_{Z_{\alpha}}(V), Z_{\alpha}^{g}\right] \leq R^{g} \leq Z_{\alpha}$ and so $C_{Z_{\alpha}}(V) Z_{\beta}$ is normal in G_{β}. Thus $C_{Z_{\alpha}}(V) \leq U$. This proves the claim and so

$$
Z_{\alpha} \cap Q_{\beta}=\left[Z_{\alpha}, V\right] C_{Z_{\alpha}}(V) .
$$

The action of $Q_{\alpha \beta}$ on Z_{α} implies $\left[Z_{\alpha}, V\right] \cap C_{Z_{\alpha}}(V) \leq Z_{\alpha \beta}$. Let $V^{*}=\left[V, H_{\beta}\right]$. Since H_{β} is generated by two conjugates of Z_{α} we derive

$$
V / Z_{\beta}=V^{*} / Z_{\beta} \times U / Z_{\beta}
$$

$U \leq X \leq Z(V)$ with $\left[X, Q_{\alpha \beta} \leq U\right.$. Then $X \leq W$ and so $X=Z_{\beta}(X \cap$ Z_{α}). Since $Z(V) \cap Z_{\alpha} \leq U$ we conclude that $X \leq Z(V)$. Since $Q_{\alpha \beta}$ normalizes $Z(V) / U$ we get $U=Z(V)$. Since $\left[W, Q_{\beta}\right]=A_{\alpha \beta}$ and $\Phi\left(Q_{\beta} \leq D_{\beta}\right.$ we get that $A_{\beta}:=A_{\alpha \beta} \leq Z\left(G_{\beta}\right)$ and $A_{\beta}=\left[V, Q_{\beta}\right]$. Hence also $\left[V^{*}, Q_{\beta}\right]=$ A_{α}. Put $D^{*}=C_{Q_{\beta}}\left(V^{*}\right)$. Then Q_{β} / D^{*} is dual to V^{*} / Z_{β} as G_{β} module. Hence $Q_{\beta}=V^{*} D^{*}$. Note that $\left[D^{*}, O^{p}\left(G_{\beta}\right) \leq Z_{\beta}\right.$. Suppose that $q \neq 2$. Then

$$
\left[Z_{\alpha}, Q_{\beta}\right] \leq\left(\left[D^{*} V^{*} O^{p}\left(G_{\beta}\right), D^{*}\right] \cap Z_{\alpha}\right)\left[Z_{\alpha}, V\right] \leq\left(D_{\beta} \cap Z_{\alpha}\right)\left[Z_{\alpha}, V\right]
$$

But $D_{\beta} \cap Z_{\alpha}$ is

For $\alpha \in \Sigma$ let

$$
\Sigma_{1}(\alpha)=\left\{\beta \in \Sigma \mid\left[Z_{\alpha}, Z_{\beta}\right] \neq 1\right\}
$$

and

$$
\Sigma_{2}(\alpha)=\left\{\beta \in \Sigma \mid\left[Z_{\alpha}, Z_{\beta}\right]=1 \neq\left[Z_{\alpha}, V_{\beta}^{\alpha}\right]\right\}
$$

Lemma 5.12 Let $\alpha \in \Sigma$ and $\beta \in \Sigma_{1}(\alpha)$. definitionine $L:=\left\langle G_{\alpha}, G_{\beta}\right\rangle$, $L^{*}:=\left\langle\Omega_{1} \mathrm{Z}(R)^{L}\right\rangle, K:=O_{R}\left(\left\{G_{\alpha}, G_{\beta}\right\}\right)$ and $\widetilde{L}:=L / K$. For $\{\alpha, \beta\}=\{\gamma, \delta\}$, put $K_{\gamma}=C_{Q_{\gamma}}\left(\left\langle Z_{\delta}^{G_{\gamma}}\right\rangle\right)$. Then for $\gamma \in\{\alpha, \beta\}$ there exists a normal subgroup L_{γ} of G_{γ} such that
(a) $[\mathbf{a}]\left[K, L^{*}\right]=1$.
(b) [b] $K=K_{\alpha} \cap K_{\beta}$ and $\Phi\left(K_{\alpha} K_{\beta}\right) \leq K$.
(c) $[\mathbf{c}] \quad G_{\alpha}=K_{\alpha} L_{\alpha}$ and $G_{\beta}=K_{\beta} L_{\beta}$.
(d) [d] Interchanging α and β if necessary one of the following holds (where q is a power of p.

1. [1] $\widetilde{L}_{\alpha} \sim \widetilde{L}_{b} \sim q^{n} S L_{n}(q)$.
2. [2] $p=2, \widetilde{L}_{\alpha} \sim q^{1+2 n} S p_{2 n}(q)$, and $\widetilde{L}_{\beta} \sim q^{1+2+2 \cdot(2 n-2)} S L_{2}(q)$.
3. $[3] p=2$ and $\widetilde{L}_{\alpha} \sim \widetilde{L}_{\beta} \sim 2^{6} G_{2}(2)$
4. [4] $p=2$ and $\widetilde{L}_{\alpha} \sim \widetilde{L}_{\beta} \sim q^{1+6+8} S p_{6}(q)$.
5. [5] Who knows.

Proof: Note that K is normal in L and $K \leq R$, indeed K is the largest normal subgroup of L contained in R. Let $g \in K$ then

$$
\left[\Omega_{1} \mathrm{Z}(R)^{g}, K\right]=\left[\Omega_{1} \mathrm{Z}(R)^{g}, K^{g}=\left[\Omega_{1} \mathrm{Z}(R), K\right]^{g}=1\right.
$$

Thus (a) holds.
Let $H_{\gamma}=\left\langle Z_{\delta}^{G_{\gamma}}\right\rangle, R=\left[Z_{\alpha}, Z_{\beta}\right]$ and $D_{\beta \alpha}=\left[Z_{\beta}, Q_{\alpha \beta}\right.$.
Note that by (a), $K \leq K_{\alpha} \cap K_{\beta}$ also $K_{\alpha} \cap K_{\beta}$ is normalized by

$$
\left\langle O^{2}\left(G_{\alpha}\right), O^{2}\left(G_{\beta}\right), Q_{\alpha \beta}\right\rangle=L
$$

Thus $K=K_{\alpha} \cap K_{b}$. So the first part of (b) holds. By definition $\left[K_{\alpha}, Z_{\beta}\right]=1$ and so $K_{a} \leq Q_{\beta}$. Thus $\Phi\left(K_{\alpha}\right) \leq \Phi\left(Q_{\beta}\right) \cap K_{\alpha}$. Note that $\Phi\left(Q_{\beta}\right) \leq \Phi\left(Q_{\alpha \beta}\right)$. Since $Q_{\alpha \beta} / Q_{\alpha}$ is elementary abelian, unless α is symplectic, $n_{\alpha}>1$ and $p \neq 2$, we get
$\left(^{*}\right) \quad \Phi\left(K_{\alpha}\right) \leq K$ and $\left[\Phi\left(Q_{\beta}\right), H_{\beta}\right]=1$, unless α is symplectic, $n_{\alpha}>1$ and $p \neq 2$.

Note that by definition of $\Sigma_{1}(\alpha),\left[Z_{\alpha}, Z_{\beta}\right] \neq 1$. Clearly $Z_{\alpha} Z_{b} \leq Q_{\alpha \beta}$ and we can apply 5.9 with $(\delta, \gamma)=(\beta, \alpha)$.

Suppose that Case c. 1 of 5.9 holds. Then $Q_{\alpha} \leq Q_{\alpha \beta}=Z_{\alpha} Q_{\beta}$. Since Q_{α} normalizes Z_{β}, H_{α} is generated by two conjugates of Z_{β}. Thus $\left|Q_{\alpha} / K_{\alpha}\right| \leq q^{6}$ and so $Q_{\alpha}=K_{\alpha} U_{\alpha}$. By 5.10, $q=2$ and $U_{\alpha} \cap Z\left(G_{\alpha}\right)=U_{\beta} \cap Z\left(G_{\beta}\right)$. Thus $U_{\alpha} \cap Z\left(G_{\alpha}\right) \leq K$ and $\left|\widetilde{U}_{\alpha}\right|=2^{6}$. Using [Schur, Schur Multiplier] we get $O^{2}\left(G_{\alpha}\right) / U_{a} \cong G_{2}(2)^{\prime}$ also by $\left(^{*}\right) G_{\alpha} / O^{2}\left(G_{\alpha}\right) K$ is elementary abelian. Hence there exists $L_{\alpha} \leq G_{\alpha}$ with $O^{2}\left(G_{\alpha}\right) K \leq L, G_{\alpha}=K_{\alpha} L_{\alpha}$ and $L_{\alpha} \cap K_{\alpha}=K$. Thus d. 3 holds in this case.

Suppose next that Case c. 2 of 5.9 holds.
Suppose that $n_{\beta}=1$. Then $\left[Q_{\alpha}, Z_{\beta}\right] \leq\left[Z_{\alpha}, Z_{\beta}\right] \leq U_{\alpha}$ and so $\left[Q_{\alpha}, H_{\alpha}\right] \leq$ U_{α}. Also $\Phi\left(Q_{\alpha}\right) \leq Q_{\beta}$ and so $\left[\Phi\left(Q_{\alpha}\right), H_{\alpha}\right]=1$. Suppose that also $n_{\alpha}=$ 1. Then H_{α} is generated by two conjugates of Z_{β} and we conclude that $\left|Q_{\alpha} / K_{\alpha}\right|=q^{2}$ and $Q_{\alpha}=K_{\alpha} U_{\alpha}$. Let $I=\left\{1 \neq[x, y] \mid x \in Z_{\alpha}, y \in Z_{b}\right\}$. If $q \leq\left|\left[Z_{\alpha}, Z_{\beta}\right]\right|<q^{2}$ then $U_{\alpha} \cap Z\left(G_{\alpha}\right)=\left[Z_{\alpha}, Z_{b}\right] \backslash I=U_{\beta} \cap Z\left(G_{\beta}\right)$ and thus d. 1 holds. If $\left|\left[Z_{\alpha}, Z_{\beta}\right]\right|=q^{2}$, then $\left[Z_{\alpha}, Z_{b}\right] \backslash I$ contains exactly two subgroups of order q and these two subgroups have trivial intersection. Hence either $U_{\alpha} \cap Z\left(G_{\alpha}\right)=U_{\beta} \cap Z\left(G_{\beta}\right)$ and d. 1 holds; or $U_{\alpha} \cap Z\left(G_{\alpha}\right) \cap U_{\beta} \cap Z\left(G_{b}\right)=1$ and d. 2 holds.

Suppose next that $n_{\beta}>1$ and that $D_{\beta \alpha} Z_{\alpha}$ is normal in G_{α}. Then $A_{\alpha}:=$ [$D_{\beta \alpha}, Q_{\alpha \beta}=\left[D_{\beta \alpha} Z_{\alpha}, Q_{\alpha}\right]$ is normal in G_{α}. Since $Q_{\alpha \beta}$ centralizes A_{α} we get $A_{\alpha} \leq Z\left(G_{\alpha}\right)$. Let $D_{\alpha}:=C_{Q_{\alpha}}\left(O^{p}\left(G_{\alpha}\right)\right)$. We conclude that $D_{\alpha \beta} \leq U_{\alpha} D_{\alpha}$ and $D_{\alpha \beta} \leq D_{\alpha} Z_{\alpha \beta}$. Note that $\left[Q_{\alpha}, Z_{\beta}\right] \leq D_{\beta \alpha}$ and so $\left[Q_{\alpha}, H_{\alpha}\right] \leq U_{\alpha} D_{\alpha}$.

Note that $\left|R A_{\alpha} / A_{a}\right| \geq q$ and so $p=2$ and $\left|U_{\beta} \cap Z\left(G_{\beta}\right)\right|=\mathrm{q}$. By (${ }^{*}$) $\left[\Phi\left(Q_{\alpha}\right), H_{\alpha}\right]=1$. Thus $\left|Q_{\alpha} / U_{\alpha} D_{\alpha}\right| \leq q$. Note that $O^{2}\left(G_{\alpha}\right) \cap Q_{\alpha \beta}$ centralizes $D_{\alpha} Z_{\alpha \beta}$ and so we have $O^{2}\left(G_{\alpha}\right) \cap Q_{\alpha \beta} \leq C_{Q_{\alpha \beta}}\left(D_{\beta} \alpha\right)=Z_{\alpha} Q_{b}$. Note also that $Z_{\beta} \leq Q_{\beta}, G_{\alpha}=O^{2}\left(G_{a}\right) Z_{\beta}$ and $Z_{\alpha} \leq Q_{\alpha}$. Thus $Q_{\alpha \beta}=Q_{\alpha} Q_{\beta}$.

If $q>2$, then $A_{a} \leq R$ and we conclude that $A_{\alpha}=U_{\alpha} \cap Z\left(G_{\alpha}\right)$.
Let $\gamma \in \beta^{G_{\alpha}}$ with $\left[Z_{\gamma \alpha}, Z_{\beta}\right] \neq 1$.
Lemma 5.13 [sigma symmetric] Let $\alpha, \beta \in \Sigma$ and $i \in\{1,2\}$. Then $\alpha \in \Sigma_{i}(\beta)$ if and only if $\beta \in \Sigma_{i}(\alpha)$.

Proof: For $i=1$ this is obvious. Suppose now that $\beta \in \Sigma_{2}(\alpha)$ but $\alpha \notin$ $\Sigma_{2}(\beta)$. The $Z_{a} Z_{\beta} \leq Q_{\alpha} \cap Q_{b}, V_{\beta}^{\alpha} \not \leq Q_{\alpha}$ and $V_{\alpha}^{\beta} \leq Q_{\beta}$.

Lemma 5.14 [vdelta non abelian] There exists an edge (γ, δ) in Γ such that $\left\langle Z_{\delta}^{G_{\gamma}}\right\rangle$ is not abelian.

Proof: Suppose not. Let $V=\left\langle Z_{L}\right\rangle L \in \Sigma$ and $Q=\bigcap O_{p}(L) \mid L \in \Sigma$. Then $V \leq Q$ and so $Q \neq 1$. Let $L \in \Sigma$. Then $Q=\bigcap\left(O_{p}(L) \cap O_{p}(H) \mid L \neq H \in \Sigma\right.$ and so by $5.7 Q$ is normal in L. Hence Q is a non-trivial subgroup of R which is normal in all the $L \Sigma$, a contradiction.

Some ideas on the rest of the proof. definitionine a relation \approx on Σ by $L \approx H$ if $\left\langle Z_{L}^{H}\right\rangle$ is not abelian or if $Z_{L}=Z_{H}$. This should be an equivalence relation and $L \approx H$ if and only if $O_{p}(L) \cap O_{p}(H)$ is not normal in L. If $L \not \approx H$ we should have $\left[\left(R \cap O^{p}(L), O^{p}(H)\right]=1 . b=2(\right.$ that is $L \approx H$ and $\left.Z_{L} \leq O_{p}(H)\right)$ seems to occur only for the $G_{2}\left(3^{k}\right)$ situation, and $2^{1+4+6} L_{4}(2)$

What still needs to be discussed in this section is the consequences of 5.1 for the sets $\mathcal{P U}_{i}, i=1,2,4$. There are some interesting cases: for example an amalgam if Z_{L} is the 6-dimensional module for $L / O_{2}(L) \cong 3 \operatorname{Alt}(6)$ then $L \in \mathcal{P U}_{4}(R)$. Same for $\operatorname{Alt}(6)$ or $\operatorname{Alt}(7)$ on the four dimensional module.

Also it seems possile to enlarge the set $\mathcal{P} \mathcal{U}_{3}$ without having to change the " $b<3$ " part of the proof of 5.1. Namely can drop the assumption on $N_{L}(R)$ containing a point stabilizor one can allow $\left[Z_{L}, L\right]$ to be the four dimensionnal module for $S L_{3}(2)$, This would be usefull for the $\neg E$! case. Other exceptional $F F$-modules could be included to. The properties one really needs is: no over-offenders and good commutator control. For example Alt(n) on the natural module should be o.k. This also would be o.k for $D_{1} 0(q)$ on the 16 -dimensional spinmodule and $L_{n}(q), n \geq 5$ on the exterior square. But the choice of $a \in A$ will cause some problems. Might not be so important though, maybe we only need $\bigcap_{a \in A} Z_{\gamma}^{a} \leq \Omega_{1} \mathrm{Z}\left(G_{\delta}\right)$.

6 The C(G,T)-Theroem

Suppose that G fullfills $C G T$. Then S is contained in unique maximal subgroup M of G, but there exists $L \in \mathcal{L}(S)$ such that $L \not \leq M$ and $|L \cap M|_{p} \neq$ 1. Choose such an L such that $|H \cap L|_{p}$ is maximal. Let T be a Sylow p subgroup of $H \cap T$. Without loss $T \leq S$. If $T=S$ we get that $L \in \mathcal{L}(S)$ contradicting our assumption M is the unique maximal p-local subgroup of M. Thus $T \neq S$. Let C be a non-trivial characteristic subgroup of S. Then $N_{S}(T) \leq N_{G}(C)$ and so $\left|M \cap N_{G}(C)\right|_{p}>|M \cap L|$ Hence the maximal choice of $|M \cap L|_{p}$ implies $N_{G}(C) \leq M$. In particular, $N_{L}(C) \leq M \cap L$. For $C=S$ we conclude that $T \in \operatorname{Syl}_{p}(T)$. Then we can apply the

Theorem 6.1 (Local $\mathbf{C}(\mathbf{G}, \mathbf{T})$-Theorem) [local CGT] Let L be a finite \mathcal{K}_{p} group of characteristicp, T a Sylow p-subgroup of L, and suppose that

$$
\left.C(L, T):=\left\langle N_{L}(C)\right| 1 \neq C \text { a characteristic subgroup of } S\right\rangle
$$

is a proper subgroup of L. Then there exists a L-invariant set \mathcal{D} of subnormal subgroup of L such that
(a) $[\mathbf{a}] L=\langle\mathcal{D}\rangle C(L, T)$
(b) $[\mathbf{b}]\left[D_{1}, D_{2}\right]=1$ for all $D_{1} \neq D_{2} \in \mathcal{D}$.
(c) [c] Let $D \in \mathcal{D}$, then $D \nsubseteq C(L, T)$ and one of the following holds:

1. [1] $D / Z(D)$ is the semidirect product of $S L_{2}\left(p^{k}\right)$ with a natural module for $S D_{2}\left(p^{k}\right)$. Moreover $O_{p}(D)=\left[O_{p}(D), D\right]$ is elementary abelian.
2. $[\mathbf{2}] \quad p=2$ and D is the the semidirect product of $\operatorname{Sym}\left(2^{k}+1\right)$ with a natural module for $\operatorname{Sym}\left(2^{k}+1\right)$.
3. $[3] \quad p=3, D$ is the semidirect product of $O_{3}(D)$ and $S D_{2}\left(3^{k}\right)$, $Z(D)=O_{p}(D)$ has order 3^{k} and both $\left[Z\left(O_{3}(D)\right), D\right]$ and $O_{3}(D) / Z\left(O_{3}(D)\right)$ are natural $S L_{2}\left(3^{k}\right)$ modules for D.

For $p=2$ the local $C(G, T)$-theorem was proved by Aschbacher in [Asch].
For general p by GLS?. For us it will be consequence of the ??.
Back to G. Case 3 can be rules out using that $N_{S}(T) / T$ is odd. Let $m=$ $|\mathcal{D}|$ and suppose that $m>1$. Let $g \in N_{S}(T) \backslash T$. Then there exists $X, Y \in \mathcal{D}$ such that $R:=\left[[V, X],[V, Y]^{g}\right] \neq 1$. Let $H=N_{G}(R)$. Then for all $Z \in \mathcal{D}$ with $D \neq D, D \leq N_{G}(R)$ and since $\left[[V, D], V^{g}\right] \neq 1,[V, D] \not \leq O_{p}\left(N_{L^{g}}(R)\right.$. Thus $[V, D] \not \leq O_{p}(H)$. Let $U=O_{p}(H)$. We conclude that $[Q \cap T, D]=1$. Since H is of characteristic p, D acts non-trivially on $Q / Q \cap T$.

Let $T^{*} \in \operatorname{Syl}_{p}(H)$ with $N_{T}(R) \leq T^{*}$. The maximal choice of $|T|$ implies $\left|T^{*} / N_{T}(R)\right| \leq\left|T / N_{T}(R)\right|=T / N_{T}(X)$. In particular $|U / U \cap T| \leq$ $\mid T / N_{T}(X)$. Thus T does not normalize X. Let $e:=\left|T / N_{T}(X)\right|$. Then there are at least $e-1$ choices for D, each two of whcih commute and each acting non-trivialy on $U / U \cap T$ whci has order at most e. This is impossible.

Hence there exists a unique $D \in \mathcal{D}$.
Suppose that case 2. holds and $n \geq 3$. Then $O_{2}(M \cap L)=O_{2}(L)$. Let $Q=O_{2}(M)$. Then $T \cap Q \leq O_{2}(M \cap L) \leq O_{2}(L)$. On the otherhand the maximality of $|T|$ implies $N_{Q}\left(O_{2}(L)\right) \leq T$. Thus $N_{Q}\left(O_{2}(L)\right) \leq O_{2}(L)$ and so $Q \leq O_{2}(L)$.

If Q is not elementary abelian that $[\Phi(Q), D]=1$ implies $D \leq M$, a contradiction. Hence Q is elementary abelian.

Since $\left[Q, O_{2}(D)\right]=1$ and M is of characteritic p we conclude $O_{2}(D) \leq Q$. Thus $[Q, D] \leq\left[O_{2}(L), D\right] \leq O_{2}(D) \leq Q$ and so $D \leq N_{G}(Q) \leq M$. Thus also $L=D(M \cap L) \leq M$, a contradiction.

Suppose that case 2 holds and $n=2$. Then we can choose $x \in[V, D]$ so that $R:=\left[V^{g}, x\right]$ has order two. Also $C_{D}(x)$ is divisible by 3 and $\left.\left[V, O^{2}\left(C_{D}(x)\right)\right], C_{D^{g}}(x)\right]$ is not a 2-group. Argue as above we get $C_{D}(x)$ acts non trivially on $Q / Q \cap T$. But $\mid Q / Q \cap T$ has order 2 a contradiction.

Thus Case 1. holds. We have proved:

References

[Asch] M. Aschbacher, A Factorization Theorem for 2-constrained Groups, Proc. London. Math. Soc. (3) 43 (1981), 450-477.
[BBSM] B. Baumeister, A. Chermak, U. Meierfrankenfeld, G. Stroth, The Big Book Of Small Modules
[Gor] D. Gorenstein, Finite Groups, Chelsea (1980) New York.
[MS] U. Meierfrankenfeld, B. Stellmacher, Pushing Up Weak BN-Pairs of rank two, Comm. in Algebra, 21(3), 825-934 (1993).
[Schur] Some Schurmultipliers

