A Characteristic Subgroup for Pushing Up in Finite Groups

Andy Chermak, Ulrich Meierfrankenfeld

June 24, 2002

1 Introduction

2 The Kieler Lemma and Pointsstabilzers

An elementary abelian normal subgroup V of a finite group L is called p-reduced if any subnormal subgroup of L which acts unipotently on V has to act trivially. Note that this is equivalent to $O_p(L/C_L(V)) = 1$. Here are the basic properties of p-reduced normal subgroups. Comment:due to Thompson? check history

Lemma 2.1 [YL] Let L be a finite group of characteritic p and $T \in Syl_n(L)$

- (a) [a] There exists a unique maximal p-reduced normal subgroup Y_L of L.
- (b) [b] Let $T \leq R \leq L$ and X a p-reduced normal subgroup of R. Then $\langle X^L \rangle$ is a p-reduced normal subgroup of L. In particular, $Y_R \leq Y_L$.
- (c) [c] Let $T_L = C_T(Y_L)$ and $L^f = N_G(T_L)$. Then $L = L_f \mathbb{C}_L(Y_L)$, $T_L = O_p(L^f)$ and $Y_L = \Omega_1 Z(T_L)$.
- (d) [d] $Y_T = \Omega_1 Z(T), Z_L := \langle \Omega_1 Z(T)^L \rangle$ is p-reduced for L and $\Omega_1 Z(T) \leq Z_L \leq Y_L.$

Now let L be any finite group and $T \in \text{Syl}_p(L)$. definitionine $P_L(T) := O^{p'}(C_L(\Omega_1 \mathbb{Z}(T)))$. Then $P_L(T)$ is called a point stabilizer of L. The following lemma ist the principal tool for working with point stabilizers.

Lemma 2.2 [kieler lemma] Let H be a finite group of local characteristic $p, T \in Syl_p(H)$ and L a subnormal subgroup of H. Then

- (a) [a] [Kieler Lemma] $C_L(\Omega_1 Z(T)) = C_L(\Omega_1 Z(T \cap L))$
- (b) [b] $P_L(T \cap L) = O^{p'}(P_H(T) \cap L)$
- (c) $[\mathbf{c}] \quad C_L(Y_L) = C_L(Y_H)$
- (d) [d] Suppose $L = \langle L_1, L_2 \rangle$ for some subnormal subgroups L_1, L_2 of H. Then
 - (a) [da] $P_L(T \cap L) = \langle P_{L_1}(T \cap L_1), P_{L_2}(T \cap L_2) \rangle.$
 - (b) [db] For i = 1, 2 let P_i be a point stabilizer of L_i . Then $\langle P_1, P_2 \rangle$ contains a point stabilizer of L.

The proof of the above lemma is elementary and does not require any \mathcal{K} -group assumption assumption.

Comment: not all parts of this lemma are really needed

Lemma 2.3 [minimal overgroups] Let H be a finite group and F < H.

- (a) [a] Let $\mathcal{I}_H(F)$ be the set of all I with $F < I \leq H$ such that F lies in a unique maximal subgroup of I. Then $H = \langle \mathcal{I}_H(F) \rangle$.
- (b) [b] Let $\mathcal{J}_H(F) = \{I \in \mathcal{I}_G(F) \mid F \not\leq I\}$. Then $H = \langle \mathcal{J}_H(F) \rangle N_H(F)$.

Proof: By induction on |H|. Suppose that F lies in two different maximal subgroups M_1, M_2 of H. By induction, $M_i = \langle \mathcal{I}_{M_i}(F) \rangle = \langle \mathcal{J}_{M_i}(F) \rangle N_{M_i}(F)$. Thus $H = \langle M_1, M_2 \rangle = \langle \mathcal{I}_H(F) \rangle = \langle \mathcal{J}_H(F) \rangle N_H(F)$.

So suppose F lies in a unique maximal subgroup of H. Then $H \in \mathcal{I}$ and $H = \langle \mathcal{I} \rangle$. Moreover either F is normal in H or $H \in \mathcal{J}$. In any case $H = \langle \mathcal{J} \rangle N_H(F)$.

Lemma 2.4 (Schur multipliers) [schur multipliers]

Proof: [Schur]

3 Modules

Lemma 3.1 (Point Stabilizer Theorem) [the point stabilizer theorem] Let H be a finite group, V a \mathbb{F}_pH -module, L a point stabilizer for H on Vand $A \leq O_p(L)$.

- (a) [a] If V is p-reduced, then $|V/C_V(A)| \ge |A/C_A(V)|$.
- (b) [b] If V is irreducible, $F^*(H)$ is quasi-simple, $H = \langle A^H \rangle$ and A is a non-trivial offender on V, then $M \cong SL_n(q)$, $Sp_{2n}(q)$, $G_2(q)$ or Sym(n), where p = 2 in the last two cases.

Proof: [BBSM]

Lemma 3.2 (FF-modules for miminal parabolics) [ff-modules for miminal parabolics]

Proof: [BBSM]

Lemma 3.3 [spin module] Let $H = Sp_{2n}(q)$, $V \ a \mathbb{F}_p H$ -module, $P \ a \ point$ stabilizer for H on the natural module, $T = O_p(P)$, Z = Z(P) and W an $\mathbb{F}_p T$ submodule of V. Suppose that

- (i) [i] $V = \langle W^H \rangle$.
- (*ii*) [**ii**] [V, T, T] = 1.
- (*iii*) [**iii**] $[V, Z] \le W \le C_V(T)$.

Let $U = \bigcap_{h \in H} W^h[V,T]^h$ and $\overline{V} = V/U$. Let $h \in H$ with $Z \not\leq P^h$. Then

- (a) [a] $V = [V, Z]C_V(T^h) = W[V, T]^h, \ \overline{W} = [\overline{W}, T] = C_{\overline{V}}(T) = C_{\overline{V}}(Z)$ and $\overline{V} = \overline{W} \times \overline{W}^h$.
- (b) [b] If $[W, H] \neq 1$, then $|\overline{V}| \ge q^{2^n}$ and $|V/C_V(T)| \ge q^{2^{n-1}}$.

Proof: Let Y = W[V,T]. Then $Y \leq C_V(T)$. Note that $H = \langle Z, T^h \rangle$. Since $[V,Z] \leq W$ we conclude that H normalizes $W[V,T]^h$ and so by (i), $V = W[V,T]^h$. Also H also normalizes $[V,Z]Y^h$ and since $W^h \leq Y^h$ we conclude $V = [V,Z]Y^h = [V,Z]C_V(T^h)$. Let $X/U = C_{\overline{V}}(Z)$. Then $U \leq X \cap Y^h$. Thus $H = \langle Z, T^h \rangle$ normalizes $X \cap Y^h$ and so $X \cap Y^h = U$. Thus $\overline{V} = \overline{X} \times \overline{Y}^h$. Since $V = [V, Z]Y^h$ we also get $\overline{V} = [\overline{V}, Z] \times \overline{Y}^h$. This implies $[\overline{V}, Z] = \overline{X} = C_{\overline{V}}(Z).$

Note that

$$[\overline{V}, Z] \le [\overline{V}, T] \le \overline{Y} \le C_{\overline{V}}(T) \le C_{\overline{V}}(Z)$$

Now all the inequalities in the preceeding inequalities have to be equalities. So (a) is proved.

To prove (b) suppose that $[W, H] \neq 1$. By (a) also $[\overline{W}, H] = 1$ and so we may assume that U = 1.

Suppose first that n = 1 and $1 \neq z \in Z$. Since $H = \langle z, T^h \rangle, C_{Y^h}(z) \leq$ U = 1. Let $1 \neq y \in Y^h$. We conclude that $|[y, Z]| \geq |Z| = q$ and so $|W| \geq q$ and $|V| \ge q^2$.

Suppose next that n > 1 and let $H^* = C_H(\langle Z, Z^h \rangle)$. Then $H^* \cong$ $Sp_{2n-2}(q)$ and $Z^* := Z^k \leq H^*$ for some $k \in H$. Then $P^* := P^k \cap H^*$ is a point stabilizer for H^* on its natural module, $T^* := T^k \cap H^* = O_p(P^*)$ and $Z^* = Z(P^*)$. Since $W = C_V(Z)$ and $H^* \leq C_G(Z)$, W is a $\mathbb{F}_p H^*$ submodule of W. Suppose that $[W, Z^*, H^*] = 1$. Let $h^* \in H^*$ with $Z^{*h^*} \leq P^*$. Then $[W, Z^*] \leq [V, Z^*] \cap [V, Z^{*h^*}] = 1$ and so $[W, Z^*] = 1$. Thus $C_V(Z) = W = C_W(Z^*)$ and so P and P^{*} normalize W, a contradition since $H = \langle P, P^* \rangle$. Thus $[W, Z^*, H^*] \neq 1$. Let $V^* = \langle [W, Z^*]^{H^*} \rangle$. Then by induction $|V^*| \geq q^{2^{n-1}}$. Since $V^* \leq W$ and $|V| = |W|^2$ we get $|V| \geq q^{2^n}$. \square

We remark that (for example by [BBSM]), \overline{V} from the preceeding lemma must be a direct sum of spin-modules for H.

Lemma 3.4 (H1 of natural modules) [h1]

Proof: [BBSM]

4 The Baumann subgroup

For a p-group R we let $\mathcal{PU}_1(R)$ be the class of all finite groups L containing R such

- (a) $[\mathbf{a}]$ L is of characteristic p,
- (b) [b] $R = O_p(N_L(R))$
- (c) $[\mathbf{c}] \quad N_L(R)$ contains a point stabilizer of L.

Let $\mathcal{PU}_2(R)$ be the class of all finite groups L containg R such that L is of characteristic p and

$$L = \langle N_L(R), H \mid R \le H \le L, H \in \mathcal{PU}_1(R) \rangle.$$

Let $\mathcal{PU}_3(R)$ be the class of all finite groups L such that

- (a) $[\mathbf{a}]$ L is of characteristic p.
- (b) [b] $R \leq L$ and $L = \langle R^L \rangle$
- (c) [c] $L/C_L(Y_L) \cong SL_n(q), Sp_{2n}(q)$ or $G_2(q)$, where q is a power of p and p = 2 in the last case.
- (d) [d] $Y_L/C_{Y_L}(L)$ is the corresponding natural module.
- (e) [e] $O_p(L) \leq R$ and $N_L(R)$ contains a point stabilizer of L.
- (f) [f] If $L/C_L(Y_L) \not\cong G_2(q)$ then $R = O_p(N_L(R))$.

Let $\mathcal{PU}_4(R)$ be the class of all finite groups L containg R such that L is of characteristic p and

$$L = \langle N_L(R), H \mid R \le H \le L, H \in \mathcal{PU}_3(R) \rangle.$$

Let $B(R) = C_R(\Omega_1 Z(J(R)))$, the Baumann subgroup of R. Recall that a finite group F is p-closed if $O'^F = O_p(F)$.

Lemma 4.1 (Baumann Argument) [baumann argument] Let L be a finite group, R a p-sugroup of L, $V := \Omega_1 Z(O_p(L))$, $K := \langle B(R)^L \rangle$, $\tilde{V} = V/C_V(O^p(K))$, and suppose that each of the following holds:

- (i) [i] $O_p(L) \leq R$ and $L = \langle J(R)^L \rangle N_L(J(R))$.
- (ii) [ii] $C_K(\tilde{V})$ is p-closed.
- (iii) [iii] $|\tilde{V}/C_V(A)| \ge |A/C_A(\tilde{V})|$ for all elementary abelian subgroups A of R.
- (iv) [iv] If U is $L/O_p(L)$ module with $\tilde{V} \leq U$ and $U = C_U(B(R))\tilde{V}$, then $U = C_U(O^p(K))\tilde{V}$.

Then $O_p(K) \leq B(R)$.

Proof: Let $T = O_p(L)$, $\overline{L} = L/C_L(V)$ and $Y = \Omega_1 Z J(R)$. Let $A \in$ $\mathcal{A}(R)$. Since $A \in \mathcal{A}(R)$ and $V \leq T \leq R$, $|V/C_V(A)| \leq |A/C_A(V)$. By (ii) $C_A(V) = A \cap T$ and so also $C_A(V) = A \cap T$. Thus (iii) implies $|V/C_V(A)| =$ $|\overline{A}| = |A/A \cap T|$ and so $V(A \cap T) \in \mathcal{A}(R) \cap \mathcal{A}(T)$. Thus $Y \leq V(A \cap T) \leq \mathcal{A}(R) \cap \mathcal{A}(T)$. T. Put $W = \langle Y^L \rangle V$. We conclude that $W \leq \Omega_1 Z(J(T))$ and so W is elementary abelian and $(A \cap T)V$ centralizes W. Hence $W \leq (A \cap T)V$ and $W = V(A \cap W) = VC_W(A)$. It follows that A centralizes W/V. Since A was arbitray in $\mathcal{A}(R)$, $\langle J(R)^L \rangle$ centralizes W/V. Since $Y = \Omega_1 Z(J(R))$, $N_L(\mathcal{J}(R))$ normalizes Y. So by (i) also L normalizes YV. Thus W = YUand $[W,T] = [Y,T] \leq Y$. Since L normalizes [W,T] we get $[W,T] \leq C_W(K)$. Let $D = C_W(O^p(K))$ and U = W/D. Then T centralizes U. Since $V \cong$ VD/D and U = YV/D, we can apply (iv) to conclude that W = DV and $U \cong V$. Since $A \in \mathcal{A}(R)$, $|W/W \cap A| \leq |A/C_A(W)| = |A/A \cap T|$. One the otherhand by (iii), $|A/A \cap T| \leq |\widetilde{V}/C_{\widetilde{V}}(A)| = |U/C_U(A)| \leq |W/C_W(A)D|.$ Thus $|W/C_W(A)| \leq |W/C_W(A)D|$ and $D \leq C_W(A)$. Hence [D, A] = 1, $D \leq Y$ and [D, K] = 1. Therefore $[W, O_p(K)] \leq [D, K][V, T] = 1$ and so $O_p(K) \leq C_R(Y) = B(R).$

Lemma 4.2 [pu2(R) in pu4(B(R))] Let R be a p-group. Then $\mathcal{PU}_2(R) \subseteq \mathcal{PU}_4(B(R))$.

Proof: Let $L \in \mathcal{PU}_2(R)$. Since $N_L(R) \leq N_L(B(R))$ we may assume that $L \in \mathcal{PU}_1(R)$. Set $P = N_L(R)$. If $P < H \leq L$, then clearly $H \in \mathcal{PU}_1(R)$. By 2.3(a) L is generated by the $H \leq L$ such that P is contained in a unique maximal subgroup of H. If $H \in \mathcal{PU}_4(B(R))$ for all such H, then by the definition of \mathcal{PU}_4 also $L \in \mathcal{PU}_4(B(R))$. Hence we may assume from now on that

1) [1] P is contained in unique maximal subgroup H of L.

Let D be the largest normal subgroup of L contained in P. Then $[D, R] \leq [P, R] \leq R$ and so $[D, R] \leq O_p(D) \leq O_p(L)$.

Choose $T \in Syl_p(L)$ with $P_L(T) \leq P$. Then $R \leq O_p(P_L(T) \leq O_p(C_L(\Omega_1 \mathbb{Z}(T)))$ and $[R, C_L(Z_L)] \leq O_p(C_L(Z_L)) = O_p(L) \leq R$. Thus $C_L(Z_L) \leq N_L(R) \leq P$. We proved:

2) [2] $[D, \langle R^L \rangle] \leq O_p(L) \text{ and } C_L(Z_L) \leq D$

If $J(R) \leq D$, then $J(R) = J(O_p(D))$ and so $J(R) \leq H$. Thus $[Z_L, J(R)] = 1$ and so also $[Z_L, B(R)] = 1$. So by rr2, $B(R) \leq D$ and $B(R) = B(O_p(D))$. Thus $B(R) \leq H$ and so $H \in \mathcal{PU}_4(B(R))$. So we may assume that $J(R) \not\leq D$ and so by rr2 $[Z_L, J(R)] \neq 1$. Let $K = \langle J(R)^L \rangle$, $\overline{L} = L/C_L(Z_L)$ and $\widetilde{Z_L} = Z_L/C_{Z_L}(O^p(K))$. By ?? there exists a *L*-invariant set of normal subgroups K_i , $1 \leq i \leq l$, in *K* such that

- (3-i) $K_i = O^{p'}(K_i),$
- (3-ii) $\overline{K} = \overline{K_1} \times \overline{K_2} \times \ldots \times \overline{K_l}$,
- (3-iii) $\widetilde{Z_L} = [\widetilde{Z_L}, K_1] \times [\widetilde{Z_L}, K_2] \times [\widetilde{Z_L}, K_l],$
- (3-iv) $\overline{K_i} \cong SL_n(q), Sp_{2n}(q), G_2(q)$ or Sym(n), where q is a power of p, p = 2 in the last two cases and $n \equiv 2, 3 \mod 4$ in the last case,
- (3-v) $[Z_L, K_i]$ is the natural module for K_i ,
- (3-vi) $\overline{\mathcal{J}(R)} = (\overline{\mathcal{J}(R)} \cap \overline{K_1}) \times \ldots \times (\overline{\mathcal{J}(R)} \cap \overline{K_l})$

It is now easy to see that $\overline{L} = \overline{K}N_{\overline{L}}(\overline{J(R)})$

By $\operatorname{rr2} O_p(C_L(Z_L)\operatorname{J}(R)) = O_p(L)\operatorname{J}(\overline{R})$ and so $\operatorname{J}(R) = \operatorname{J}(O_p(C_L(Z_L)\operatorname{J}(R)))$. Thus $\overline{N_L(\operatorname{J}(R))} = N_{\overline{L}}(\overline{\operatorname{J}(R)})$ and so

3) [4] $L = KN_L(J(R)).$

Suppose that $K \leq H$. Then by rr1 and rr4 J(R) is normal in L and $J(R) \leq O_p(L) \leq D$, a contradiction to the assumptions.

Thus $K \nleq H$. Pick j with $K_j \nleq H$. Then by 1) $L = \langle K_j, P \rangle = \langle K_j^P \rangle P$. Thus $\langle K_j^P \rangle J(R)$ is normal in L. So P acts transitively on $\{K_i \mid 1 \le i \le l\}$, and L = KP. By 2) $[C_L(Z_L), J(R)] \le O_p(L)$ and so $C_L(Z_L), K] \le O_p(L)$. Hence $C_K(Z_L)$ is p-closed. Also $C_K(Z_L) = C_K(\widetilde{Z_L})$.

Note also that $B(R) \leq KO_p(L)$ and so $\langle B(R)^L \rangle = K B(R)$.

Suppose that $B(R)O_p(L) = O_p(P \cap KO_p(L))$ or that $\overline{K_j} \cong G_2(q)$. Then it is easy to see that the assumptions of 4.1 are fulfiled. We conclude that $O_p(K B(R)) \leq B(R)$. Moreover, either $\overline{K_j} \cong G_2(q)$ or $B(R) = O_p(P \cap K B(R))$. By 2.2(a)

$$C_{K_i}(\Omega_1 \mathbb{Z}(T \cap K_j \mathbb{B}(R))) = C_{K_i}(\Omega_1 \mathbb{Z}(T \cap K_i)) = C_{K_i}(\Omega_1 \mathbb{Z}(T))$$

and we conclude that $P \cap K_j \operatorname{B}(R)$ contains a point stabilizer of $K_i \operatorname{B}(R)$. Suppose in addition that $\overline{K}_j \not\cong \operatorname{Sym}(n), n \geq 7$. Then $K_i \operatorname{B}(R) \in \mathcal{PU}_3(\operatorname{B}(R))$. Also $P \leq N_L(\operatorname{B}(R))$ and $L = \langle P, K_i \operatorname{B}(R) \mid 1 \leq i \leq l \rangle$ and so $L \in \mathcal{PU}_4(\operatorname{B}(R))$.

Suppose now that $\overline{K_j} \ncong G_2(q)$ and either $B(R)O_p(L) \neq O_p(P \cap KO_p(L))$ or $\overline{K_i} \cong \text{Sym}(n), n \ge 7$. Put q := 2 in the second case. Then $\overline{K_i} \cong Sp_{2n}(q)$ or Sym(n) and $|B(R)/O_p(K_i B(R))| = q$. Hence there exists a subgroup D_i of $K_i B(R)$ with $B(R) \leq D_i$, $D_i = \langle B(R)^{D_i} \rangle$ and $D_i/O_p(D_i) \cong SL_2(q)$. By 4.1 $B(R) \in Syl_p(D_i)$. Thus $D_i \in \mathcal{PU}_3(B(R))$. Moreover, $K_i = \langle D_i, N_{K_i}(B(R)) \rangle$ and so $L = \langle D_i, N_L(B(R)) | 1 \leq i \leq n$. Thus again $L \in \mathcal{PU}_4(B(R))$. \Box

Lemma 4.3 [P(T) in PU4(B(T))] Let P be a finite group of characteristic p. Let $T \in Syl_p(T)$ and suppose that T lies in a unique maximal subgroup of P. Then either $Z_L = \Omega_1 Z(L)$ or $P \in \mathcal{P}_4(B(T))$.

Proof: Suppose that $[J(T), Z_L] = 1$. Then also $[B(T), Z_L] = 1$ and so by the Frattinargument $L = C_L(Z_L)N_L(B(T))$. Since L is minimal parabolic, $L = C_L(Z_L)S$ or B(T) is normal in L. In the first case $Z_L = \Omega_1 Z(L)$ and in the second case $L \in \mathcal{PU}_4(T)$.

So we may assume that $[B(T), Z_L] \neq 1$. Using 3.2 we can argue just as in 4.2.

5 A solution to the principal amalgam problem

Let R be a group and Σ a set of groups containing R. Then

$$O_R(\Sigma) = \langle N \leq R \mid N \trianglelefteq L \,\forall L \in \Sigma \rangle$$

So $O_R(\Sigma)$ is the largest subgroup of R which is normal in all the $L \in \Sigma$.

Theorem 5.1 [simultanous pushing up] Let R be a finite p-group with R = B(R) and Σ a subset of $\mathcal{PU}_3(R)$. If $O_R(\Sigma) = 1$, then one of the following holds

(a) $[\mathbf{a}]$ who knows

The proof will be achieved in a long sequence of lemmas. Let G^* be the free amalgameted product of the Σ over R. We view $L \in \Sigma$ as a subgroup of G^* . Let Γ be the graph with vertices G^* and edges $(L_1g, L_2g), g \in G^*,$ $L_1 \neq L_2 \in \Sigma$. Note that G^* acts on Γ by right multiplication. For $\alpha \in \Gamma$ let $G_\alpha = \{g \in G^* \mid \alpha = \alpha^g\}, Q_\alpha = O_p(G_\alpha) \text{ and } Z_\alpha = Z_{G_\alpha} \text{ and } U_\alpha = [Z_\alpha, G_\alpha].$ For an edge (α, β) let $Q_{\alpha\beta} = G_\alpha \cap G_\beta$ and $Z_{\alpha\beta} = \Omega_1 Z(Q_{\alpha\beta}$. Let $\Delta(\alpha)$ be the set of neighbors of α and $G_\alpha^{(1)} = G_\alpha \cap \bigcap_{\beta \in \Delta(\alpha)} G_\beta$. Let $U_\alpha = [Z_\alpha, G_\alpha].$ Then by definition of Γ and of $\mathcal{PU}_3(R)$.

Lemma 5.2 [basics of pushing up]

- (a) [a] $G_{\alpha} = L^g$ for some $L \in \Sigma$ and $g \in G^*$, and G_{α} is of characteristic p.
- (b) [b] $\overline{G_{\alpha}} := G_{\alpha}/C_{G_{\alpha}}(Z_{\alpha}) \cong SL_{n_{\alpha}}(q_{\alpha}), Sp_{2n}(q_{\alpha}) \text{ or } G_{2}(q_{\alpha}), q_{\alpha} \text{ a power of } p.$
- (c) [c] $\widetilde{Z_{\alpha}} := Z_{\alpha}/C_{Z_{\alpha}}(G_{\alpha})$ is a natural module.
- (d) [d] $Q_{\alpha\beta} = B(Q_{\alpha\beta})$ and $G_{\alpha} = \langle Q_{\alpha\beta}^{G_{\alpha}} \rangle$
- (e) [e] $P_{\alpha\beta} := N_{G_{\alpha}}(Q_{\alpha\beta})$ contains a point stabilter of G_{α} .
- (f) [f] If $\overline{G_{\alpha}} \ncong G_2(q)$ then $Q_{\alpha\beta} = O_p(P_{\alpha\beta})$.

Next we show

Lemma 5.3 [more basics of pushing up]

- (a) [a] $Z_{\alpha\beta} \leq Z_{\alpha} = \Omega_1 \mathbb{Z}(Q_{\alpha})$
- (b) [b] $C_{G_{\alpha}}(Z_{\alpha}) = Q_{\alpha}.$
- (c) [c] $Q_{\alpha} = G_{\alpha}^{(1)}$.
- (d) [d] One of the following holds:
 - 1. [1] $U_{\alpha} \cap \Omega_1 \mathbb{Z}(G_{\alpha}) = 1$, that is U_{α} is the natural module.
 - 2. [2] $\overline{G_{\alpha}} \cong Sp_{2n}(q)$ or $G_2(q)$ and U_{α} is a quotient of the natural $O_{2n+1}(q)$ -module for $\overline{G_{\alpha}}$, (where n = 3 in the $G_2(q)$ -case).
- (e) [e] For all $H \leq G_{\alpha}$, $C_{\widetilde{Z_{\alpha}}}(H) = \widetilde{C_{Z_{\alpha}}(H)}$.
- (f) [f] Let $T \in \operatorname{Syl}_p(P_{\alpha\beta})$ and $x \in \Omega_1 \mathbb{Z}(T)$ with $x \notin \Omega_1 \mathbb{Z}(G_{\alpha})$. Then $C_{G_{\alpha}}(x) = O^{p'}(P_{\alpha\beta})$.

(a) follows from 5.2(d), (e) and 3.1.

Let $T \in \text{Syl}_p(P_{\alpha\beta})$. Since $C_{G_{\alpha}}(Z_{\alpha}) \leq C_{G_{\alpha}}(\Omega_1 \mathbb{Z}(T)) \leq P_{\alpha\beta} = N_{G_{\alpha}}(Q_{\alpha\beta})$ we get

$$[C_{G_{\alpha}}(Z_{\alpha}), Q_{\alpha\beta}] \le C_{G_{\alpha}}(Z_{\alpha}) \cap Q_{\alpha\beta}] \le O_p(C_{G_{\alpha}}(\Omega_1 Z(T))) \le Q_{\alpha}$$

Thus 5.2(d), $[C_{G_{\alpha}}(Z_{\alpha}), G_{\alpha}] \leq Q_{\alpha}$. we proved this before, should have been recorded

Thus (b) follows from 2.4 and 5.2 (d).

By 5.2(f) $Q_{\alpha} \leq Q_{\alpha\beta} = G_{\alpha} \cap G_{\beta}$. So (c) holds.

(d) follows from 3.4, and (e) follows from (d). Finally (f) follows from (b),(e), and 5.2 (c),(e). $\hfill \Box$

We say that $\beta \in \Gamma$ is symplectic if $\overline{G_{\beta}} \cong Sp_{2n}(q)$ with $n \ge 2$, β is linear if $\overline{G_{\beta}} \cong SL_n(q)$ and β is a hex if $\overline{G_{\beta}} \cong G_2(q)$. Let $\alpha \in \Delta(\beta)$. definitionine

$$X_{\alpha\beta} := \begin{cases} [Z_{\alpha}, Q_{\alpha\beta}] & \text{if } \alpha \text{ is symplectic.} \\ Z_{\alpha} & \text{otherwise.} \end{cases}$$

Put

$$A_{\alpha\beta} = [X_{\alpha\beta}, Q_{\alpha\beta}]$$

Lemma 5.4 [agammadelta] Let (α, β) be an edge in Γ . Then $A_{\alpha\beta} \leq \Omega_1 Z(Q_{\alpha\beta}) \leq \Omega_1 Z(Q_{\beta}) \leq Z_{\beta}$ and $A_{\alpha\beta} \not\leq Z(G_{\alpha})$.

Proof: Readily verfied.

Lemma 5.5 [offenders on xgammadelta] Let (α, β) be an edge in Γ , $D = X_{\alpha\beta}$ or $D = Z_{\alpha}$ and $B \leq Q_{\alpha\beta}$ be a non-trivial offender on D

- (a) [a] $|D/C_D(B)| = |B/C_B(D)|.$
- (b) [b] One of the following holds:
 - 1. [1] $[D, Q_{\alpha\beta}] \leq [D, B].$
 - 2. [2] α is a symplectic, $D = Z_{\alpha}$ and $[D, C_{Q_{\alpha\beta}}(X_{\alpha\beta})] \leq [D, B]$.
- (c) $[\mathbf{c}]$ One of the following holds
 - 1. [1] $[D, B, Q_{\alpha\beta}] = 1$. 2. [2] α is symplectic, $D = Z_{\alpha}$, $[X_{\alpha\beta}, B] \neq 1$ and $[D, Q_{\alpha\beta}, Q_{\alpha\beta}] = A_{\alpha\beta}$.

Proof: This follows easily from the action of $Q_{\alpha\beta}$ on D

Lemma 5.6 [agd in zgd] Let (α, β) be an edge in Γ and suppose that $Z_{\beta} \leq Q_{\alpha}$.

- (a) [a] If $X_{\alpha\beta} \not\leq Z_{\beta}$ then $A_{\alpha\beta} \leq Z(G_{\beta})$.
- (b) [b] Suppose α is symplectic and that N is a normal p-subgroup of G_{β} with $[X_{\alpha\beta}, N] = 1$. Then $[Z_{\alpha}, N] \leq Z(G_{\beta})$.

Proof: For the proof of (b) we may assume (a) has been proved and that $[Z_{\alpha}, N] \neq 1$.

We prove (a) and (b) simultaneously. For the proof of (a) let $D_{\alpha} = X_{\alpha\beta}$ and $U = Q_{\beta}$. Note that D_{α} also depends on β but β will be fixed throughout the proof. For the proof of (b) let $D_{\alpha} = Z_{\alpha}$ and U = N. Let $A_{\alpha} = [D_{\alpha}, U]$. From the definition of A_{α} we obtain:

1) [1]
$$A_{\alpha} \leq Z_{\alpha\beta}$$

Next we show:

2) [2] Let $B \leq Q_{\alpha\beta}$ and suppose that B is a non-trivial offender on D_{α} . Then $A_{\alpha} \leq [D_{\alpha}, B] \cap Z_{\alpha\beta}$.

By 1) we only need to show that $A_{\alpha} \leq [D_{\alpha}, B]$. We apply 5.5(b) with D_{α} . If 1. holds we have $A_{\alpha} = [D_{\alpha}, U] \leq [D_{\alpha}, Q_{\alpha\beta}] \leq [D_{\alpha}, B]$ and we are done. Suppose that 2.holds. Then $D_{\alpha} \neq X_{\alpha\beta}$ and so we must be in the proof of (b). So $U = N \leq C_{Q_{\alpha\beta}}(X_{\alpha\beta})$ and again $A_{\alpha} \leq [D_{\alpha}, B]$.

3) [3] Let $B \leq Q_{\beta}$ and suppose that B is a non-trivial offender on D_{α} . $[D_{\alpha}, B, Q_{\alpha\beta}] \leq \Omega_1 \mathbb{Z}(G_{\beta}).$

We apply 5.5(c). If 1. holds we are done. So suppose 2. holds. Then we are in the proof of (b), $[X_{\alpha\beta}, B] \neq 1$ and $[D_{\alpha}, B, Q_{\alpha\beta}] = A_{\alpha\beta}$. Since $B \leq Q_{\beta}$, we get $X_{\alpha\beta} \nleq Z_{\beta}$ and so by (a) $A_{\alpha\beta} \leq \Omega_1 Z(G_{\beta})$ and 3) is proved.

Since $Q_{\alpha\beta} = B(Q_{\alpha\beta})$ and $C_{G_{\beta}}(Z_{\beta}) = Q_{\beta}$ we have $[Z_{\beta}, J(Q_{\alpha\beta})] \neq 1$. Thus there exists $A \in \mathcal{A}(Q_{\alpha\beta})$ with $A \nleq Q_{\beta}$. Let $a \in A$ with $a \notin Q_{\beta}$. If β is a hex we choose a such that in addition $C_{Z_{\beta}}(a) = Z_{\alpha\beta}$. Let $\gamma \in \alpha^{G_{\beta}}$ with $Z_{\alpha\beta} \cap Z_{\gamma\beta} = \Omega_1 Z(G_{\beta})$ and $a \notin P_{\beta\gamma}$. The choice of a implies

4) [4] $Z_{\gamma\beta} \cap Z^a_{\gamma\beta} = \Omega_1 \mathbb{Z}(G_\beta)$

Suppose first that

$$(*) \quad [D_{\gamma}, D^a_{\gamma}] \neq 1.$$

Then by 5.5 D^a_{γ} is an offender on D_{γ} and vice versa. So by 2) applied to (D^a_{γ}, γ) in place of (B, α)

$$A_{\gamma} \le [D_{\gamma}, D^a_{\gamma}] \cap Z_{\gamma\beta}$$

By 3) applied to (D_{γ}, γ^a) in place of (B, α) we have $[[D_{\gamma^a}, D_{\gamma}], Q^a_{\gamma\beta}] \leq Z(G_{\beta})$. Hence 5.3(f) implies $Z_{\beta} \cap [D_{\gamma^a}, D_{\gamma}] \leq Z^a_{\gamma\beta}$ and thus

$$A_{\gamma} \le [D_{\gamma^a}, D_{\gamma}] \cap Z_{\gamma\beta}) \le Z_{\gamma\beta} \cap Z^a_{\gamma\beta} \le \Omega_1 \mathbb{Z}(G_{\beta})$$

and we are done in this case.

Suppose next that

$$(**) [D_{\gamma}, D_{\gamma}^{a}] = 1.$$

Set $B := A \cap Q_{\beta}$ and $C := C_B(D_{\gamma})$. Then $Z_{\beta}B \in \mathcal{A}(Q_{\beta}) \subseteq \mathcal{A}(Q_{\alpha\beta})$. Since Z_{β} centralizes Z_{γ} , B is an offender on D_{γ} . Since A is abelian and $C \leq B \leq A$ we have $B = B^a$ and $C = C^a$. Thus $C = C_B(D^a_{\gamma})$ and C centralizes D^a_{γ} . Since by assumption $Z_{\beta} \leq Q_{\alpha}$ we get $Z_{\beta} \leq Q^a_{\gamma}$. Thus by $(^{**}) \ Z_{\beta}D_{\gamma}C$ centralizes D^a_{γ} . By 1) $Z_{\beta}D_{\alpha}C \in \mathcal{A}(Q_{\beta})$ and we conclude that $D^a_{\gamma} \leq Z_{\beta}D_{\gamma}C$. By symmetry in γ and γ^a we conclude $Z_{\beta}D_{\gamma}C = Z_{\beta}D^a_{\gamma}C$. Thus

$$[D_{\gamma}, B] = [D_{\gamma}^a, B].$$

Suppose that B does not centralize D_{γ} . Then by 2) applied to γ in place of α , $A_{\gamma} \leq [D_{\gamma}, B] \cap Z_{\gamma\beta}$. From $[D_{\gamma}, B] = [D^a_{\gamma}, B]$ and 3) applied to γ^a in place of α we get $[D_{\gamma}, B, Q^a_{\gamma\beta}] \leq Z(G_{\beta})$ Now as in the (*) case $A_{\gamma} \leq Z(G_{\beta})$ and we are done.

Suppose next that B centralizes D_{γ} . Then also $Z_{\beta}B$ centralizes D_{γ} and so $D_{\gamma} \leq Z_{\gamma}B$. Since a centralizes B we conclude that $D_{\gamma}Z_{\beta} = D_{\gamma}^{a}Z_{\beta}$. Hence

$$A_{\gamma} = [D_{\gamma}, U] = [D_{\gamma}Z_{\beta}, U] = [D_{\gamma}^{a}, U] = A_{\gamma^{a}} \le Z_{\gamma\beta} \cap Z_{\gamma\beta}^{a} \le \Omega_{1} \mathbb{Z}(G_{\beta})$$

and we are also done in this final case.

For adjacent vertices α, β let $V_{\alpha}^{\beta} = \langle Z_{\beta}^{G_{\alpha}} \rangle$.

Lemma 5.7 [qgamma cap qdelta normal] Let (β, α) be an edge of Γ and suppose that V_{α}^{β} and V_{β}^{α} are abelian. Then $Q_{\alpha} \cap Q_{\beta}$ is normal in G_{α} .

Proof: Choose A, a and γ as in the proof of 5.6. Assume that $Q_{\alpha} \cap Q_{\beta}$ is not normal in G_{α} . By conjugation $Q_{\gamma} \cap Q_{\beta}$ is not normal in G_{γ} and so $Q_{\gamma} \cap Q_{\beta} \neq Q_{\delta} \cap Q_{\gamma}$ for some $\delta \in \beta^{G_{\gamma}}$. Then $[Q_{\gamma} \cap Q_{\beta}, Z_{\delta}] \neq 1$.

If possible, choose δ such that $[Q_{\gamma} \cap Q_{\beta}, X_{\delta\gamma}] \neq 1$. In this case put $D_{\delta\gamma} = X_{\delta\gamma}$.

If not possible, put $N = \langle (Q_{\alpha} \cap Q_{\beta})^{G_{\gamma}} \rangle$ and $D_{\delta\gamma} = Z_{\delta}$. Then $[X_{\beta\gamma}, N] = 1$.

Note that $Z_{\gamma} \leq V_{\beta}^{\gamma}$ and so $Z_{\gamma} \leq Q_{\beta}$. Thus we can apply 5.6 and to (β, γ) in place of (α, β) . We conclude that $A_{\gamma} := [D_{\delta\gamma}, Q_{\alpha} \cap Q_{\beta}] \leq \Omega_1 \mathbb{Z}(G_{\gamma})$. Since $A_{\gamma} \not\leq \Omega_1 \mathbb{Z}(G_{\delta})$ and $\delta \in \beta^{G_{\gamma}}$ we get $A_{\gamma} \not\leq \Omega_1 \mathbb{Z}(G_{\beta})$. Since $Z_{\gamma\beta}^{a^{-1}} \cap Z_{\gamma\beta} \leq \Omega_1 \mathbb{Z}(G_{\beta})$ we have

1) [1] $A_{\gamma} \leq \Omega_1 \mathbb{Z}(G_{\gamma}) \text{ and } Z^{a^{-1}}_{\gamma\beta} \not\geq A_{\gamma} \not\leq Z^a_{\gamma\beta}.$

From the definition of $D_{\delta\gamma}$ and 5.5(b) we deduce

2) [2] Let $F \leq Q_{\delta\gamma}$ be an offender on $D_{\delta\gamma}$, then $A_{\gamma} \leq [D_{\delta\gamma}, F]$.

Let $B = A \cap Q_{\beta}$ and $C = B \cap Q_{\gamma}$. Then $Z_{\beta}B$ and $Z_{\beta}Z_{\gamma}C$ are in $\mathcal{A}(Q_{\beta\gamma})$. Next we show

3) [3] $D_{\delta\gamma} \leq Z_{\beta}Z_{\gamma}C \text{ for all } \delta \in \beta^{G_{\gamma}} \text{ with } [Q_{\beta} \cap Q_{\gamma}, D_{\gamma\delta}] \neq 1.$

Assume that $[C, D_{\delta\gamma}] = 1$. Since V_{γ}^{β} is abelian, $Z_{\gamma}Z_{\beta}$ centralizes Z_{δ} and so also $D_{\delta\gamma}$. Since $Z_{\beta}Z_{\gamma}C \in \mathcal{A}(Q_{\beta\gamma})$ we conclude that 3) holds in this case. So assume for a contradiction that $[C, D_{\delta\gamma}] \neq 1$ and put $D = C_C(D_{\delta\gamma})$. Then by 2), $A_{\gamma} \leq [C, D_{\delta\gamma}]$ and by 5.5(a) $E := Z_{\beta}Z_{\gamma}D_{\delta\gamma}D \in \mathcal{A}(Q_{\gamma})$.

We will show that $[E, D^a_{\delta\gamma}] = 1$. Since $V^{\beta}_{\gamma^a}$ is abelian, $D^a_{\delta\gamma}$ centralizes Z_{β} . Suppose that $[D^a_{\delta\gamma}, Z_{\gamma}] \neq 1$. Since V^{γ}_{β} is abelian, $Z_{\gamma} \leq Q_{\beta} \cap Q^a_{\gamma}$. From 5.5(a) we conclude that Z_{γ} is an offender on $D_{\delta\gamma}$ and vice versa. By 2) $A^a_{\gamma} = [D^a_{\delta\gamma}, Z_{\gamma}] \leq Z_{\gamma\beta}$, a contradiction to 1).

Thus $[D^a_{\delta\gamma}, Z_{\gamma}] = 1$ and $D^a_{\delta\gamma} \leq Q_{\beta} \cap Q_{\gamma}$. By symmetry $D_{\delta\gamma} \leq Q_{\beta} \cap Q^a_{\gamma}$. Hence by 5.5(a) $D_{\delta\gamma}$ and $D^a_{\delta\gamma}$ are offenders on each other.

Suppose that $[D_{\delta\gamma}, D^a_{\delta\gamma}] \neq 1$. Then by 2) $A_{\gamma} \leq [D_{\delta\gamma}, D^a_{\delta\gamma}] \leq Z^a_{\gamma\beta}$, again a contradiction to 1).

Thus $[D_{\delta\gamma}, D^a_{\delta\gamma}] = 1$. Since D centralizes $D_{\delta\gamma}$ and since $D = D^a$, D centralizes $D^a_{\delta\gamma}$. Thus E centralizes $D^a_{\gamma\delta}$ and so $D^a_{\gamma\delta} \leq E$. Note that C is a non-trivial offender on $D_{\delta\gamma}$ and so by 2) $A_{\gamma} \leq [C, D_{\delta\gamma}]$. Since a centralizes C we get

 $A^a_\gamma \leq [C, D^a_{\delta\gamma}] \leq [C, E] = [C, D_{\gamma\delta}] \leq Z_{\gamma\beta}$

contradicting 1). This completes the proof of 3).

Suppose that $B \neq C$, that is $B \nleq Q_{\gamma}$. By 3) $[B, D_{\delta\gamma}] \leq [B, Z_{\gamma}] \leq Z_{\gamma}$ and so $B \leq N_{G_{\gamma}}(D_{\delta\gamma}Z_{\gamma})$. In particular, B normalizes $C_{Q_{\gamma}}(D_{\delta\gamma})$. Let $\rho \in \beta^{G_{\gamma}}$ with $[Q_{\beta} \cap Q_{\gamma}, D_{\rho\gamma}] = 1$. Then

$$[Q_{\gamma}, B] \le [Q_{\gamma}, Q_{\beta}] \le Q_{\beta} \cap Q_{\gamma} \le C_{Q_{\gamma}}(D_{\rho\gamma})$$

So *B* normalizes $C_{Q_{\gamma}}(D_{\rho\gamma})$. It follows that *B* normalizes $C_{Q_{\gamma}}(D_{\tau\gamma})$ for all $\tau \in \beta^{G_{\gamma}}$. Since $B \not\leq Q_{\gamma}$ we conclude that $C_{Q_{\gamma}}(D_{\beta\gamma})$ is normal in $\langle B^{G_{\gamma}} \rangle Q_{\beta\gamma} = G_{\gamma}$. But then

$$Q_{\beta} \cap Q_{\gamma} \le C_{Q_{\gamma}}(D_{\beta\gamma}) = C_{Q_{\gamma}}(D_{\beta\delta})$$

a contradiction.

Thus B = C. So B centralizes $Z_{\gamma}, Z_{\gamma} \leq Z_{\beta}B$ and by 2) $D_{\delta\gamma} \leq Z_{\beta}B$. Since A centralizes B, we conclude that A normalizes $Z_{\gamma}Z_{\beta}$ and $D_{\delta\gamma}Z_{\beta}$. But then A also normalizes $Q_{\gamma} \cap Q_{\beta}$ and $[Q_{\gamma} \cap Q_{\beta}, D_{\delta\gamma}Z_{\beta}]$. Since this latter group is A_{γ} we get a contradiction to 1).

Lemma 5.8 [zalpha offender] Let (α, β) and (γ, δ) be edges in Γ such that $Z_{\alpha}Z_{\delta} \leq Q_{\alpha\beta} \cap Q_{\delta\gamma}$ and $[Z_{\alpha}, Z_{\delta}] \neq 1$. Then

- (a) [a] Z_{α} is an offender on Z_{δ} and vice versa.
- (b) [b] $|Z_{\alpha}Q_{\delta}/Q_{\delta}| = |Z_{\delta}Q_{\alpha}/Q_{\alpha}|.$
- (c) $[\mathbf{c}] \quad G_{\alpha} = \langle Z_{\delta}^{G_{\alpha}} \rangle Q_{\alpha}.$

Proof: (a) and (b) follows from the fact that $Q_{\alpha\beta}$ contains no over-offender on Z_{α} .

Note that $O^p(G_\alpha)Q_\alpha = G_\alpha$ unless $\overline{G}_\alpha \cong SL_2(2), SL_2(3), Sp_4(2)$ or $G_2(2)$. In each of the four exceptionell case $O^p(G_\alpha)Q_\alpha$ has index p in G_α and $Q_{\alpha\beta} \cap O^p(G_\alpha)Q_\alpha$ contains no non-trivial offender on Z_α . Thus (c) follows from (a).

Lemma 5.9 [critical pairs] Let (α, β) and (γ, δ) be edges in Γ such that $Z_{\alpha}Z_{\delta} \leq Q_{\alpha\beta} \cap Q_{\delta\gamma}$ and $[Z_{\alpha}, Z_{\delta}] \neq 1$.

Then $q := q_{\alpha} = q_{\beta}$ and one of the following holds.

- 1. [1] $\overline{G}_{\alpha} \cong \overline{G}_{\delta} \cong G_2(q)$.
- 2. **[2**]

- (a) [a] $\overline{G}_{\alpha} \cong Sp_{2n_{\alpha}}(q) \text{ and } \overline{G}_{\delta} \cong Sp_{2n_{\delta}}(q)$ (b) [b] $|Z_{\alpha}Q_{\delta}/Q_{\delta}| = |Z_{\delta}Q_{\alpha}/Q_{\alpha}| = q.$ (c) [c] $[Z_{\alpha}, [Z_{\delta}, Q_{\gamma\delta}]] = 1 \text{ and } [Z_{\delta}, [Z_{\alpha}, Q_{\alpha\beta}]] = 1.$
- *3.* **[3**]
 - (a) [a] $\overline{G}_{\alpha} \cong Sp_{2n_{\alpha}}(q), \ \overline{G}_{\delta} \cong Sp_{2n_{\delta}}(q), \ n_{\alpha}, n_{\delta} \ge 2,$
 - (b) [b] $|Z_{\alpha}Q_{\delta}/Q_{\delta}| = |Z_{\delta}Q_{\alpha}/Q_{\alpha}| = q^2$,
 - (c) $[\mathbf{c}] [X_{\alpha\beta}, X_{\delta\gamma}] = 1.$
 - (d) $[\mathbf{d}]$ One of the following holds:
 - 1. [1] $[X_{\alpha\beta}, Z_{\delta}] = [X_{\delta\gamma}, Z_{\alpha}], U_{\alpha}$ is the natural module for G_{α} and U_{δ} is the natural module for G_{δ} .
 - 2. [2] q = 2, $[X_{\alpha\beta}, Z_{\delta}] \neq [X_{\delta\gamma}, Z_{\alpha}]$ and $U_{\alpha} \cap Z(G_{\alpha}) = U_{\delta} \cap Z(G_{\delta})$
- *4.* **[4**]
 - (a) [a] $\overline{G}_{\alpha} \cong SL_{n_{\alpha}}(q)$ and $\overline{G}_{\delta} \cong SL_{n_{\delta}}(q)$ (b) [b] $||Z_{\alpha}, Z_{\delta}|| = q.$
- 5. [5] After interchanging (α, β) with (δ, γ) if necessary:
 - (a) [a] $\overline{G}_{\alpha} \cong SL_{n_{\alpha}}(q), n_{\alpha} > 2 \text{ and } \overline{G}_{\delta} \cong Sp_{2n_{\delta}}(q), n_{\beta} > 1$
 - (b) [b] $|Z_{\alpha}Q_{\delta}/Q_{\delta}| = |Z_{\delta}Q_{\alpha}/Q_{\alpha}| = q,$
 - (c) $[\mathbf{c}] [X_{\delta\gamma}, Z_{\alpha}] = 1$
 - (d) $[\mathbf{d}] |[Z_{\alpha}, Z_{\gamma}]| = q$

Proof:

Let $I_{\alpha\delta} = \{ |[Z_{\alpha}, y]| \mid 1 \neq y \in Z_{\delta}Q_{\alpha}/Q_{\alpha} \text{ and } J_{\alpha\delta} = \{ |[x, Z_{\delta}]| \mid x \in Z_{\alpha} \setminus C_{Z_{\alpha}}(Z_{\delta}) \}$

By ??(??) implies $|[Z_{\alpha}, y]| = |\widetilde{Z_{\alpha}}, y]|$ and $|[\widetilde{x}, Z_{\delta}]|$, for all $y \in Z_{\delta}$ and $x \in Z_{\alpha}$. definitionine the positive integer $k_{\alpha\delta}$ by $|\widetilde{Z_{\alpha}}/C_{\widetilde{Z_{\alpha}}}(Z_{\delta})| = q_{\alpha}^{k_{\alpha}\delta}$ and note that

$$q_{\alpha}^{k_{\alpha\delta}} = |Z_{\alpha}Q_{\delta}/Q_{\delta}| = Z_{\delta}Q_{\alpha}/Q_{\alpha}| = q_{\delta}^{k_{\delta\alpha}}$$

Also Z_{δ} is a quadratic offender on Z_{α} and the action of $\overline{G_{\alpha}}$ on $\widetilde{Z_{\alpha}}$ implies:

$\overline{G_{lpha}}$	$I_{\alpha\delta}$	$J_{lpha\delta}$
$G_2(q_{lpha})$	$\{q_{\alpha}^2,q_{\alpha}^3\}$	$\{q_{\alpha}^2,q_{\alpha}^3\}$
$SL_{n_{\alpha}}(q_{\alpha})$	$\{q_{\alpha}\}$	$\{q_{\alpha}\}$
$Sp_{2n_{\alpha}}(q_{\alpha}), k_{\alpha\delta} = 1$	$\{q_{\alpha}\}$	$\{q_{\alpha}\}$
$Sp_{2n_{\alpha}}(q_{\alpha}), k_{\alpha\delta} > 1$	$\{q_{\alpha}, q_{\alpha}^2\}$	$\{q_{\alpha}, q_{\alpha}^{k_{\alpha\delta}}\}$

Note that the definitions of $I_{\alpha\delta}$ and $J_{\alpha\delta}$ imply $I_{\alpha\delta} = J_{\delta\alpha}$. This allows as to relate \overline{G}_{α} and \overline{G}_{δ} . In particular we see that

$$q := q_{\alpha} = q_{\delta}$$
 and $k := k_{\alpha\delta} = k_{\delta\alpha}$.

Furthermore, $\overline{G}_{\alpha} \cong G_2(q_{\alpha})$ we conclude that also $\overline{G}_{\delta} \cong G_2(q_{\delta})$ So (a) holds in this case.

If $\overline{G}_{\alpha} \cong SL_{n_{\alpha}}(q_{\alpha})$ and $n_{\alpha} > 2$, we get $\overline{G}_{\alpha} \cong SL_{n_{\delta}}(q_{\delta})$ or $Sp_{2n_{\delta}}(q_{\delta})$. In the latter cae we get k = 1. In any case since $n_{\alpha} > 2$, $|[Z_{\alpha}, Z_{\gamma}]| = q$ and so (4) or (5) holds.

If $\overline{G}_{\alpha} \cong Sp_{2n_{\alpha}}(q)$ and $\overline{G}_{\delta} \cong Sp_{n_{\alpha}}(q)$ we get $k \in \{1, 2\}$. If k = 1, (2) holds.

So suppose that k = 2. Then clearly $n_{\alpha}, n_{\delta} > 2$. We will show that (3) holds. We already prived (3)(a) and (b). Also both $[X_{\alpha\beta}, Z_{\delta}]$ and $[X_{\delta\gamma}, Z_{\alpha}]$ have order q. It follows that $X_{\alpha\beta}Q_{\delta}/Q_{\delta}$ is the unique full transvection group in $Q_{\gamma\delta}/Q_{\delta}$ and thus (3)(c) holds.

If q > 2, then $|[X_{\delta\gamma}, Z_{\alpha}]| = q$ implies that U_{α} is a natural module and so also $[X_{\alpha\beta}, Z_{\delta}] = [Z_{\alpha}, X_{\delta\gamma}] = U_{\alpha} \cap Z_{\alpha\beta}$. Thus (3) holds in this case.

So suppose that q = 2. Note that $U_{\alpha} \cap Z_{\alpha\beta} = [X_{\alpha\beta}, Z_{\delta}][Z_{\alpha}, X_{\delta\gamma}]$. If $[X_{\alpha\beta}, Z_{\delta}] = [Z_{\alpha}, X_{\delta\gamma}]$ we conclude that U_{α} is a natural module and (3) holds. If $[X_{\alpha\beta}, Z_{\delta}] \neq [Z_{\alpha}, X_{\delta\gamma}]$ we get that $U_{\alpha} \cap Z(G_{\alpha})$ is the unique subgroup of order two in $[X_{\alpha\beta}, Z_{\delta}][Z_{\alpha}, X_{\delta\gamma}]$ distinct from $[X_{\alpha\beta}, Z_{\delta}]$ and $[Z_{\alpha}, X_{\delta\gamma}]$. The same is true for $U_{\delta} \cap Z(G_{\delta})$ and again (3) holds.

Lemma 5.10 [q=2 for g2(q)] Let $(\alpha, \beta, \gamma, \delta)$ be as in Case 1. of 5.9. Then q = 2 and $U_{\alpha} \cap Z(G_{\alpha}) = U_{\delta} \cap Z(G_{\delta})$.

Proof: The following argument is taken from [MS].

Let $R = [Z_{\alpha}, Z_{\delta}]$ and $X = R \setminus \{[x, y] \neq 1 \mid x \in Z_{\alpha}, y \in Z_{\delta}]\}$. Then it is not too difficult to see that $X = C_{U_{\alpha}}(G_{\alpha}) = C_{U_{\delta}}(G_{\delta})$. We will compare the actions of U_{α}/X on U_{δ}/X as seen in G_{δ} with the action of U_{δ}/X on U_{α}/X as seen in G_{α} . Let $\mathbb{F}_{\alpha} = \operatorname{End}_{G_{\alpha}}(U_{\alpha}/X)$. Then \mathbb{F}_{α} is a field isomorphic to GF(q).

Let

$$K_{\delta\alpha} = \{ C_{U_{\delta}}(y) \mid y \in Z_{\alpha}, U_{\delta} \cap Q_{\alpha} < C_{U_{\delta}}(y) < U_{\delta} \}.$$

and similarly define $K_{\alpha\delta}$. If $A \in K_{\delta\alpha}$ then $C_{U_{\alpha}}A \neq U_{\alpha} \cap Q_{\delta}$ and $C_{U_{\alpha}}(A)/R$ is a 1-dim. \mathbb{F}_{α} -subspace of U_{α}/R . Also $C_{U_{\alpha}}(A) = C_{U_{\alpha}}(a)$ for all $a \in A \setminus Q_{\alpha}$. So $C_{U_{\alpha}}(A) \in K_{\alpha\delta}$ and we obtained a bijection between $K_{\alpha\delta}$ and $K_{\delta\alpha}$. Moreover, \overline{A} is a long root subgroup of \overline{G}_{α} . Let $t \in Z_{\alpha}$ with $[t, A] \neq 1$.

We show next that

(*) [t, A]X/X is a 1-dim. \mathbb{F}_{α} and \mathbb{F}_{δ} subspace of R/X and a

Clearly it is a 1-dim \mathbb{F}_{δ} - subspace. Let $P = C_{G_{\alpha}}(\overline{A})$. Then $W := U_{\alpha}/C_{U_{\alpha}}(A)$ is a natural module for $P/O_p(P) \cong SL_2(q)$. Let t^* be the image of t in W. Then $S := C_P(\tilde{t}^*)$ is a Sylow p-subgroup of P and so of G_{α} . Since S centalizes [t, A] we conclude that $[t, A]X/X = C_{U_{\alpha}/X}(S)$, which is a 1-dim. \mathbb{F}_{α} -space.

The preceeding argument also shows that every 1-dim. \mathbb{F}_{α} subspace of $[U_{\alpha}, A]X/X$ is of the form [t, A] for some $t \in Z_{\alpha}$. Moreover each 1-dim. \mathbb{F}_{α} subspace of R/X is contained in $[U_{\alpha}, A]X/X$ for some $A \in K_{\delta\alpha}$. Thus (*) implies

(**) The \mathbb{F}_{α} and \mathbb{F}_{δ} subspaces in R/X coincide.

Let $W_{\alpha\beta} = [U_{\alpha}, O_p(P_{\alpha\beta})]X$ and $U_{\alpha\beta} = C_{U_{\alpha}}(O_p(P_{\alpha\beta}))$. Then $U_{\alpha\beta}/X$ is a 1-dim. \mathbb{F}_{α} subspace of R/X. Moreover, $U_{\alpha\delta} \leq [U_{\alpha}, A]X$ for all $A \in K_{\delta\alpha}$. Considering the action of $U_{\alpha}Q_{\delta}/Q_{\delta}$ on U_{δ}/X we conclude that $U_{\alpha\beta} = U_{\gamma\delta}$.

Fix $z \in U_{\alpha} \setminus W_{\alpha\beta}$ and define $Y/U_{\delta\gamma} := C_{U_{\delta}/U_{\delta\gamma}}(z)$. Then Y/R is 1dimensional \mathbb{F}_{δ} subspace of U_{δ}/R . Since $[Y, z] \leq U_{\delta\gamma} = U_{\alpha\delta}$ we also have $[Y, \mathbb{F}_{\alpha} zX/X] \leq U_{\alpha\delta}$. Since $[z, Q_{\alpha\beta}]R = W_{\alpha\beta}$, the Frattin-argument shows that $L := C_{P_{\alpha\beta}}(zR/R)$ has a quotient $SL_2(q)$. Since L normalizes Y, we conclude that YQ_{α}/Q_a is a short root subgroup of \overline{G}_{α} .

Hence there exists a subgroup M of \overline{G}_{α} with $YQ_{\alpha}/Q_{\alpha} \leq M$ and $M \cong SL_2(q)$. Note that for all $t \in Y_{\alpha}$, [t, Y]X/X is an \mathbb{F}_{δ} -submodule of R/X. Hence [t, Y]X/X is also an \mathbb{F}_{α} -submodule of U_{α}/X . But this implies that U_{α}/X is as an $\mathbb{F}_{\alpha}M$ -module the direct sum three isomorphic natural module. But this implies q = 2. (For example let P be a minimal parabolic of G_{α}/Q_a with M as a Levi complement, $V_1 = C_{U_{\alpha}/X}(O_p(P))$ and $V_2 = [U_{\alpha}/X, O_p(P)]/V_1$. Then $O_p(P)/\Phi(O_p(P))$ is isomorphic to a \mathbb{F}_p -submodule of $\operatorname{Hom}_{\mathbb{F}_{\alpha}}(V_2, V_1)$. Since V_2 and V_1 are isomorphic $\mathbb{F}_{\alpha}M$ modules, we conclude that every composition factor for M in $O_p(P)$ is either natural or trivial. Thus q = 2.

Comment: a quote from [BBSM] would be more appropriate \Box

Lemma 5.11 [b=1 sigma=2] Suppose that $|\Sigma| = 2$, $\Sigma = \{\alpha, \beta\}$ and $[Z_{\alpha}, Z_{\beta}] \neq 1$. Then for $\gamma \in \Sigma$ there exists $K_{\gamma} \leq \Omega_1 Z(G_{\gamma})$ and $L_{\gamma} \leq G_{\gamma}$ such that $G_{\gamma} = K_{\gamma} \times L_{\gamma}$ and one of the following holds.

- 1. [1] $L_{\alpha} \sim L_{\beta} \sim q^n SL_n(q)$ and $|K_{\alpha}| = K_{\beta}| \leq q$.
- 2. [2] p = 2 and (after interchanging α and β if necessary), $G_{\alpha} = L_{\alpha} \sim q^{1+2n} Sp_{2n}(q), G_{\beta} = L_{\beta} \sim q^{1+2+2 \cdot (2n-2)} SL_2(q).$
- 3. **[3**] p = 2, $L_{\alpha} \sim L_{\beta} \sim 2^6 G_2(2)$ and $|K_{\alpha}| = |K_{\beta}| \le 2^3$.
- 4. [4] p = 2 and $G_{\alpha} = L_{\alpha} \sim G_{\beta} = L_{\beta} \sim q^{1+6+8} Sp_6(q)$.
- 5. [5] $p \neq 2, L_{\alpha} \sim L_{\beta} \sim q^{2n} Sp_{2n}(q), n \geq 2 \text{ and } |K_{\alpha}| = |K_{\beta}| \leq q.$
- 6. [6] q = 2, $G_{\alpha} \sim 2^{1+2n} Sp_{2n}(2)$ and $G_{\beta} \sim 2^{1+2+1 \cdot m+1 \cdot m+2 \cdot k} SL_2(2)$ for some m, k with m + k = n 2 and k even.
- 7. [7] who knows

Proof:

By assumption, $[Z_{\alpha}, Z_{\beta}] \neq 1$. Clearly $Z_{\alpha}Z_{\beta} \leq Q_{\alpha\beta}$ and we can apply 5.9 with $(\delta, \gamma) = (\beta, \alpha)$.

For $\{\gamma, \delta\} = \{\alpha, \beta\}$ define $H_{\gamma} = \langle Z_{\delta}^{G_{\gamma}} \rangle$. Let $R = [Z_{\alpha}, Z_{\beta}], I = \{1 \neq [x, y] \mid x \in Z_{\alpha}, y \in Z_b\}$ and $D_{\gamma} = C_{Q_{\gamma}}(O^p(G_{\gamma}))$. We devide the proof in a series of Steps.

we devide the proof in a series of step

Step 1 [da cap db] $D_{\alpha} \cap D_{\beta} = 1$.

Proof: This holds since $D_{\alpha} \cap D_{\beta}$ is normalized by $G_{\alpha} = O^p(G_{\alpha})Q_{\alpha\beta}$ and $G_{\beta} = O^p(G_{\beta})Q_{\alpha\beta}$.

We call α non-abelian if α is symplectic, $p \neq 2$ and $n_{\alpha} \geq 2$. Otherwise α is called abelian.

Step 2 [abelian]

- (a) [a] α is abelian if only if $Q_{\alpha\beta}/Q_{\alpha}$ is elementary abelian.
- (b) [b] If α is abelian, then $\Phi(Q_{\beta}) \leq D_{\beta}$.
- (c) [c] If α and β are abelian, then $Q_{\alpha} \cap Q_{b}$ is elementary abelian.

Proof: (a) is obvious. If $\Phi(Q_{\beta}) \leq Q_{\alpha}$, then Z_{α} centralizes $\Phi(Q_{\beta})$ and so $\Phi(Q_{\beta}) \leq D_{\alpha}$. Thus (b) holds.

Since
$$\Phi(Q_{\alpha} \cap Q_{\beta}) \leq \Phi(Q_{\alpha}) \cap \Phi(Q_{\beta})$$
, Step 1 and (b) imply (c).

Step 3 [b=1 case 1] Suppose that 5.9(1) holds. Then 5.11(3) holds.

Proof: Note first that $Q_{\alpha} \leq Q_{\alpha\beta} = Z_{\alpha}Q_{\beta}$. Thus $Q_{\alpha} = Z_{\alpha}(Q_{\alpha} \cap Q_{\beta})$ and Step 2(c) implies that Q_{α} is elementary abelian. Thus by 5.3(a), $Q_{\alpha} = Z_{\alpha}$. By 5.10, q = 2 and

$$U_{\alpha} \cap Z(G_{\alpha}) = U_{\beta} \cap Z(G_{\beta}) \le D_{\alpha} \cap D_{\beta} = 1$$

Thus $|U_{\alpha}| = 2^{6}$.

By [Schur, Schur Multiplier] we get $O^2(G_\alpha)/U_a \cong G_2(2)'$. Since $G_\alpha = Q_\alpha Z_\beta O^2(G_\alpha)$ and $[Q_\alpha, Z_\beta] \leq [U_\alpha, Z_\beta] \leq U_\alpha \leq O^2 * G_\alpha)$ we get that $G_\alpha/O^2(G_\alpha)$ is elementary abelian. Hence there exists $L_\alpha \leq G_\alpha$ with $G_\alpha = D_\alpha \times L_\alpha$ and $L_\alpha \sim 2^6 G_2(2)$. Since $D_\alpha \leq Z_{\alpha\beta}$ and $D_\alpha \cap D_\beta = 1$ we have $|D_\alpha| \leq |Z_{\alpha\beta}/D_\beta| = 2^3$, a the proof of Step 3 is complete.

Step 4 [b=1 case 2] Suppose that 5.9(2) holds. Then

Proof:

Let $D_{\alpha\beta} = [Z_{\alpha}, Q_{\alpha\beta}]$ and $A_{\alpha\beta} = [D_{\alpha\beta}, Q_{\alpha\beta}] \le Z_{\alpha\beta}$. We will show first

1) [6] $[D_{\beta\alpha}, Q_{\alpha}] \leq \Omega_1 \mathbb{Z}(G_{\alpha})$. In particular, either $D_{\beta\alpha} \leq Z_{\alpha}$ or $A_{\beta\alpha} \leq \Omega_1 \mathbb{Z}(G_{\alpha})$.

Choose $\delta \in \beta^{G_{\alpha}}$ with $[Z_{\delta\alpha}, Z_{\beta}] \neq 1$. If $[D_{\delta\alpha}, D_{\beta\alpha}] \neq 1$, then

$$[D_{\beta\alpha}, Q_{\alpha}] \le A_{\beta\alpha} = [D_{\beta\alpha}, D_{\delta\alpha}] \le Z_{\alpha\beta} \cap Z_{\alpha\delta} \le \Omega_1 \mathbb{Z}(G_a)$$

So suppose that $[D_{\delta\alpha}, D_{\beta\alpha}] = 1$. Then $[D_{\delta\alpha}, Z_{\beta} \leq Z_{\alpha\beta} \leq Z_{\alpha}$ and so $D_{\beta\alpha}Z_{\alpha}$ is normal in $G_{\alpha} = \langle Q_{\alpha\delta}, Z_{\beta} \rangle$. Hence also $[D_{\beta\alpha}, Q_{\alpha}]$ is normal in G_{α} . Since $Q_{\alpha\beta}$ centralizes $D_{\beta\alpha}$ and $G_{\alpha} = \langle Q_{\alpha\beta}^{G_{\alpha}} \rangle$, the first statement in 1) hold. If $[D_{\beta\alpha}, Q_{\alpha}] = 1$ then since $\Omega_1 \mathbb{Z}(Q_{\alpha}) = 1$ we get $D_{b\alpha} \leq Z_{\alpha}$. If $D_{\beta\alpha}, Q_{\alpha}] \neq 1$, then $A_{\beta\alpha} = [D_{\beta\alpha}, Q_{\alpha}] \leq \Omega_1 \mathbb{Z}(G_{\alpha})$, completing the proof of 1).

Next we prove:

2) [7] If $[D_{\beta\alpha}, Q_{\alpha}] = 1$, then $D_{\beta\alpha} \leq Z_{\alpha} \cap Q_{\beta} = D_{\alpha\beta}Z_{\alpha\beta}3.4$ implies.

By 5.3, $D_{\beta\alpha} \leq Z_{\alpha}$. Also $D_{\beta\alpha} \leq Z_{\beta} \leq Q_{\beta}$ and so 2) holds.

3) [8] If p is odd, then 1. or 5 of 5.11 holds.

If $[D_{\beta\alpha}, Q_{\alpha}] \neq 1$, then by 1), $R = A_{\beta\alpha} = [D_{\beta\alpha}, Q_{\alpha}] \leq Z(G_{\alpha})$ a contradiction. Thus $[D_{\beta\alpha}, Q_{\alpha}] = 1$ and by 2) $D_{\beta\alpha} \leq D_{\alpha\beta}Z_{\alpha\beta}$. By symmetry $D_{\alpha\beta} \leq D_{\beta\alpha}Z_{\alpha\beta}$. Hence $Z_{\alpha} \cap Z_{\beta} = Z_{\alpha} \cap Q_{\beta} = Z_{\beta} \cap Q_{\alpha}$. Thus $Z_{\alpha} \cap Z_{\beta}/Z_{\alpha\beta} = q^{2n_{\alpha}-2}$ and $n_{\alpha} = n_b$. Since $Q_{\alpha} \leq Z_{\alpha}Q_{\beta}$ we get that $Q_{\alpha} \cap Q_{\beta}$ is elementary abelian, $Q_{\alpha} = Z_{\alpha}$ and $Q_{\beta} = Z_{b}$. Also $D_{\alpha} \leq Z(G_{\alpha}), D_{\alpha} \leq Z_{\alpha\beta}$ and $D_{\alpha} \cap D_{\beta} = 1$. Thus $|D_{\alpha}| \leq q$. Hence 5. holds and 3) is proved.

We may assume from now on that p = 2. Set $D = D_{\alpha\beta}D_{\beta\alpha}$ and $T = C_{Q_{\alpha\beta}}(D)$. By ?? $Q_{\alpha} \cap Q_{\beta}$ is elementary abelian. Since $C_{Q_{\alpha\beta}}(D_{\alpha\beta} = Z_{\beta}Q_{\alpha})$ we have $T = Z_{\alpha}Z_{\beta}(Q_{\alpha} \cap Q_{\beta})$. Since p = 2 we conclude that

4) [10] $\mathcal{A}(T) = \{Z_{\alpha}(Q_{\alpha} \cap Q_{\beta}), Z_{\beta}(Q_{\alpha} \cap Q_{\beta})\}$

Let $A \in \mathcal{A}(Q_{\alpha\beta})$. Then $C_A(D_{\alpha\beta})D_{\alpha\beta}$ is in $\mathcal{A}(Q_{\alpha\beta})$. Then $C_A(D) \in \mathcal{A}(T)$ and so $C_A(D)D = Z_{\gamma}(Q_{\alpha} \cap Q_b)$ for some $\gamma \in \{\alpha, \beta\}$. In particular, $C_A(D)D \leq Q_{\gamma}$. Let $\{\alpha, \beta\} = \{\gamma, \delta\}$. Since $E := C_A(D_{\delta\gamma})D_{\delta\gamma} \in \mathcal{A}(Q_{\alpha\beta}, E$ is an offender on Z_{γ} . Moreover, $C_E(D) \leq C_A(D)D \leq Q_{\gamma}$, the action of $Q_{\gamma\delta}$ on Z_{γ} implies $E \leq Q_{\gamma}$. Since $E \in \mathcal{A}(Q_{\alpha\beta}$ we conclude, $Z_{\gamma} \leq E$. Thus $[Z_{\gamma}, A] \leq [E, A] \leq [D_{\delta\gamma}, A]$. Suppose that $[Z_{\gamma}, A] \neq 1$, then also $[Z_{\gamma}, A] \not\leq Z(G_{\gamma})$ and 1) implies $[D_{\delta\gamma}, Q_{\gamma}] = 1$. By 2), we get $D_{\delta\gamma} \leq D_{\gamma\delta}Z_{\gamma\delta}$, so $Z_{\gamma} \leq AD_{\gamma\delta}Z_{\gamma\delta}$ and thus $Z_{\gamma} = C_{Z_{\gamma}}(A)D_{\gamma\delta}$. This implies $[Z_{\gamma}, A] = 1$. So $[Z_{\gamma}, A] = 1$ and $A \leq Q_{\gamma}$. Hence

5) [11] $\mathcal{A}(Q_{\alpha\beta}) = \mathcal{A}(Q_{\alpha}) \cup \mathcal{A}(Q_{\beta}).$

Since $Q_{\alpha\beta} = J(Q_{\alpha\beta})$ we conclude $Q_{\alpha\beta} = J(Q_{\alpha})J(Q_{\beta})$. In particular $Q_{\alpha} \leq J(Q_{\alpha})Q_{\beta}$ and so $Q_{\alpha} = J(Q_{\alpha})(Q_{\alpha} \cap Q_{\beta})$. Since $Z_{\alpha}(Q_{\alpha} \cap Q_{\beta}) \in \mathcal{A}(Q_{\alpha\beta})$ we get $Q_{\alpha} = J(Q_{\alpha})$. Thus

6) [12] $Q_{\alpha} = J(Q_{\alpha}), Q_{\beta} = J(Q_b) \text{ and } Q_{\alpha\beta} = Q_{\alpha}Q_{\beta}.$

Let $A \in \mathbb{A}(Q_{\alpha})$. Then $Z_{\alpha} \leq A$ and $C_A(D_{\beta\alpha})D_{\beta\alpha} = Z_{\alpha}(Q_{\alpha} \cap Q_{\beta})$. Thus $Q_{\alpha} \cap Q_{\beta} = (A \cap Q_{\beta})D_{\beta\alpha}$ and $[Q_{\alpha} \cap Q_{\beta}, A] = [D_{\beta\alpha}, A] \leq A_{\beta\alpha} \leq Z_{\beta}$. So

7) [13]
$$[Q_{\alpha} \cap Q_{\beta}, Q_{\beta}] \leq A_{\alpha\beta} \text{ and } [Q_{\alpha} \cap Q_{\beta}, Q_{\alpha\beta} \leq A_{\alpha\beta}A\beta\alpha \leq Z_{\alpha\beta}$$

Let $\widehat{Q}_{\beta} = Q_{\beta}/Z_{\beta}$. We conclude that

8) [14]
$$[(Q_{\alpha} \cap Q_{\beta})Z_{\beta}, Q_{\alpha}] = 1 \text{ and } [\widehat{Q_{\beta}}, Q_{\alpha}] \leq \widehat{Q_{\alpha} \cap Q_{\beta}}$$

We will now prove

9) [**9**] Suppose p = 2, and $D_{\beta\alpha}Z_{\alpha}$ is normal in G_{α} , then 1. or 2, of 5.11 holds.

Since $[Q_{\alpha}, Z_{\beta}] \leq D_{\beta\alpha}$ and $[D_{\beta\alpha}, Z_{\beta}] = 1$ we get $[Q_{\alpha}, O^{p}(G_{\alpha})] \leq Z_{\alpha}$. Let $\overline{Q}_{\alpha} = Q_{\alpha}/D_{\alpha}$. Then Q_{α} centralizes $\overline{Q}_{\alpha}, C_{\overline{Q}_{\alpha}}(O^{p}(G_{\alpha})) = 1$ and $[\overline{Q}_{\alpha}, O^{p}(G_{\alpha})] = \overline{U_{\alpha}}$ is a natural module. Thus the stucture of \overline{Q}_{α} is determined by 3.4. From $[Q_{\alpha} \cap Q_{\beta}, Z_{\beta}] = 1, \ Q_{\alpha}Q_{\beta} = Q_{\alpha\beta}$ and (*) we get $\overline{Q_{\alpha} \cap Q_{\beta}} = \overline{D}_{\alpha\beta}$. Hence $Q_{\alpha} \cap Q_{\beta} \leq D_{\alpha}D_{\alpha\beta}$ and so

$$Q_{\alpha} \cap \beta = (D_{\alpha} \cap Q_{\beta}) D_{\alpha\beta}$$

Since $[D_{\alpha} \cap Q_{\beta}, Q_{\beta}] \leq D_{\alpha} \cap D_{\beta} = 1$ we have $D_{\alpha} \cap Q_{\beta} \leq Z_{\beta}$. As Z_{α} centralizes $D_{\alpha}, D_{\alpha} \cap Q_{\beta} \leq Z_{\beta} \cap Q_{\alpha} = D_{\beta\alpha}Z_{\alpha\beta}$. We conclude

$$Q_{\alpha} \cap Q_{\beta} = D_{\alpha\beta}D_{\beta\alpha}Z_{\alpha\beta}$$
 and $T = Z_{\alpha}Z_{\beta} = U_{\alpha}Z_{\beta}$

Since Q_{β} centralizes $D_{\beta\alpha}$, 3.4 implies $D_{\beta\alpha} \leq D_{\alpha} Z_{\alpha\beta}$ and so

$$D_{\beta\alpha}Z_{\alpha\beta} = (D_{\alpha} \cap (D_{\beta\alpha}Z_{\alpha\beta})Z_{\alpha\beta})$$

. Note that $r := |Q_{\alpha}/D_{\alpha}U_{\alpha}| \leq q$. Let $F = O^{p}(G_{\alpha}) \cap Q_{\alpha\beta}$. Then $U_{\alpha} \leq F$ and $|Q_{\alpha\beta}/Q_{\alpha}F| = e$, where e = 2 if $(n_{\alpha}, q) = (2, 2)$ or (1, 2) and e = 1otherwise. Since $D_{\beta\alpha} \leq D_{\alpha}Z_{\alpha}$, F centralizes $D_{\beta\alpha}$ and so $F \leq U_{\alpha}Q_{\beta}$ and $F = U_{\alpha}(F \cap Q_{\beta})$. Let $F_{1} = C_{F}(D_{\alpha\beta})$. Since F centralizes $D_{\beta\alpha}$, $F_{1} \leq T = U_{\alpha}Z_{\beta}$. Since $U_{\alpha} \leq F_{1}$, $F_{1} = U_{\alpha}(F_{1} \cap Z_{\beta})$.

Suppose that $G_{\alpha}/Q_{\alpha} \cong Sp_2(2)$. Then $Q_{\alpha} = D_a \times U_{\alpha}$. Moreover $Q_{\beta} \leq Z_{\beta}Q_{\alpha}$ and $Q_{\beta} = Z_{\beta}(Q_{\alpha} \cap Q_{\beta}) = Z_{\beta}D_{\alpha\beta} = Z_{\beta}$. Since $[D_{\alpha}, Z_{\beta}] \leq R \cap D_{\alpha} = 1$, $D_{\alpha} \leq Z_{\beta}$. Thus D_{α} is abelian and D_{α} is centralized by $D_{\alpha}U_{\alpha}Z_{\beta} = Q_{\alpha\beta}$. Thus $D_{\alpha} \leq Z_{\alpha\beta}$ and $Q_{\alpha} = Z_{\alpha}$. Hence $Z_{\beta} \cap Q_{\alpha} = Z_{\alpha\beta}$ and so $G_{\beta}/Q_{\beta} \cong Sl_2(2)$. Thus 1. or 2. of ?? holds in this case.

Suppose that $G_{\alpha}/Q_{\alpha} \notin \{Sp_2(2), Sp_4(2)\}$. Then $F_1 \cap Z_{\beta} \notin Q_{\alpha}$. Since D_{α} centralizes $F_1 \cap Z_{\beta}$ we conclude that $D_{\alpha} \leq Q_{\beta}$. Since $|Q_{\alpha\beta}/D_{\alpha}(F \cap Q_{\beta})Z_{\beta} \leq rq \leq q^2$ we get $|Q_{\alpha\beta}/Q_{\beta}| \leq q^2$ and so $n_{\beta} = 1$. Thus $D_{\beta\alpha} \leq Z_{\alpha\beta}$ and so $Q_{\alpha} \cap Q_{\beta} = D_{\alpha\beta}Z_{\alpha\beta} = Z_{\alpha} \cap Q_{\beta}$. Moreover, $Q_{\alpha} \leq U_{\alpha}Q_{\beta}$ and so $Q_{\alpha} = U_{\alpha}(Q_{\alpha} \cap Q_{\beta}) = Z_{\alpha}$. Assume that $(Z_{\alpha} \cap Q_{\beta})Z_{\beta}$ is normal in

 G_{β} . If $G_{\beta}/Q_{\beta} \cong SL(2)$, the preceding paragraph gives a contradiction. If $G_{\beta}/Q_b \cong Sp_4(2)$??? And if $G_{\beta}/Q_{\beta} \notin \{Sp_2(2), Sp_4(2)\}$, the first half of this paragraph applied with the roles of α and β reversed, gives $n_{\alpha} = 1$. But then case (1) or (2) holds. Assume now that $(Z_{\alpha} \cap Q_{\beta})$ is not normal in G_{β} . Let $W = (Z_{\alpha} \cap Q_{\beta})Z_{\beta}, V = \langle W^{G_{\beta}} \rangle$ and $U = \bigcap_{g \in G_{\beta}} W^g$. Since $[W, Q_{\beta}] \leq Z_{\beta} \leq U$ and $[V, Q_{\alpha}] \leq Q_{\alpha} \cap Q_{\beta} \leq W$ we have $[V, Q_{\alpha\beta} \leq W$ and $[W, Q_{\alpha\beta} \leq U$. Thus we can apply 3.3 to V/U and conclude that $W = [Z_{\alpha}, V]U$. Hence

$$Z_{\alpha} \cap Q_{\beta} = [Z_{\alpha}, V](Z_{\alpha} \cap U$$

We claim that $Z_{\alpha} \cap U = C_{Z_{\alpha}}(V)$. Indeed, $U \leq Z(V)$ and so $Z_{\alpha} \cap V \leq C_{Z_{\alpha}}(V)$. For the converse let $g \in G_{\beta}$. Then $[C_{Z_{\alpha}}(V), Z_{\alpha}^g] \leq R^g \leq Z_{\alpha}$ and so $C_{Z_{\alpha}}(V)Z_{\beta}$ is normal in G_{β} . Thus $C_{Z_{\alpha}}(V) \leq U$. This proves the claim and so

$$Z_{\alpha} \cap Q_{\beta} = [Z_{\alpha}, V]C_{Z_{\alpha}}(V).$$

The action of $Q_{\alpha\beta}$ on Z_{α} implies $[Z_{\alpha}, V] \cap C_{Z_{\alpha}}(V) \leq Z_{\alpha\beta}$. Let $V^* = [V, H_{\beta}]$. Since H_{β} is generated by two conjugates of Z_{α} we derive

$$V/Z_{\beta} = V^*/Z_{\beta} \times U/Z_{\beta}$$

 $U \leq X \leq Z(V)$ with $[X, Q_{\alpha\beta} \leq U$. Then $X \leq W$ and so $X = Z_{\beta}(X \cap Z_{\alpha})$. Since $Z(V) \cap Z_{\alpha} \leq U$ we conclude that $X \leq Z(V)$. Since $Q_{\alpha\beta}$ normalizes Z(V)/U we get U = Z(V). Since $[W, Q_{\beta}] = A_{\alpha\beta}$ and $\Phi(Q_{\beta} \leq D_{\beta})$ we get that $A_{\beta} := A_{\alpha\beta} \leq Z(G_{\beta})$ and $A_{\beta} = [V, Q_{\beta}]$. Hence also $[V^*, Q_{\beta}] = A_{\alpha}$. Put $D^* = C_{Q_{\beta}}(V^*)$. Then Q_{β}/D^* is dual to V^*/Z_{β} as G_{β} module. Hence $Q_{\beta} = V^*D^*$. Note that $[D^*, O^p(G_{\beta}) \leq Z_{\beta}$. Suppose that $q \neq 2$. Then

$$[Z_{\alpha}, Q_{\beta}] \leq ([D^*V^*O^p(G_{\beta}), D^*] \cap Z_{\alpha})[Z_{\alpha}, V] \leq (D_{\beta} \cap Z_{\alpha})[Z_{\alpha}, V]$$

But $D_{\beta} \cap Z_{\alpha}$ is \Box

For $\alpha \in \Sigma$ let

$$\Sigma_1(\alpha) = \{\beta \in \Sigma \mid [Z_\alpha, Z_\beta] \neq 1\}$$

and

$$\Sigma_2(\alpha) = \{\beta \in \Sigma \mid [Z_\alpha, Z_\beta] = 1 \neq [Z_\alpha, V_\beta^\alpha]\}$$

Lemma 5.12 Let $\alpha \in \Sigma$ and $\beta \in \Sigma_1(\alpha)$. definitionine $L := \langle G_\alpha, G_\beta \rangle$, $L^* := \langle \Omega_1 Z(R)^L \rangle$, $K := O_R(\{G_\alpha, G_\beta\})$ and $\widetilde{L} := L/K$. For $\{\alpha, \beta\} = \{\gamma, \delta\}$, put $K_\gamma = C_{Q_\gamma}(\langle Z_\delta^{G_\gamma} \rangle)$. Then for $\gamma \in \{\alpha, \beta\}$ there exists a normal subgroup L_γ of G_γ such that

- (a) $[\mathbf{a}] [K, L^*] = 1.$
- (b) [b] $K = K_{\alpha} \cap K_{\beta}$ and $\Phi(K_{\alpha}K_{\beta}) \leq K$.
- (c) $[\mathbf{c}] \quad G_{\alpha} = K_{\alpha}L_{\alpha} \text{ and } G_{\beta} = K_{\beta}L_{\beta}.$
- (d) [d] Interchanging α and β if necessary one of the following holds (where q is a power of p.
 - 1. [1] $\widetilde{L}_{\alpha} \sim \widetilde{L}_{b} \sim q^{n} SL_{n}(q).$
 - 2. [2] p = 2, $\widetilde{L}_{\alpha} \sim q^{1+2n} Sp_{2n}(q)$, and $\widetilde{L}_{\beta} \sim q^{1+2+2 \cdot (2n-2)} SL_2(q)$.
 - 3. [3] p = 2 and $\widetilde{L}_{\alpha} \sim \widetilde{L}_{\beta} \sim 2^6 G_2(2)$
 - 4. [4] p = 2 and $\widetilde{L}_{\alpha} \sim \widetilde{L}_{\beta} \sim q^{1+6+8} Sp_6(q)$.
 - 5. [5] Who knows.

Proof: Note that K is normal in L and $K \leq R$, indeed K is the largest normal subgroup of L contained in R. Let $g \in K$ then

$$[\Omega_1 \mathbf{Z}(R)^g, K] = [\Omega_1 \mathbf{Z}(R)^g, K^g = [\Omega_1 \mathbf{Z}(R), K]^g = 1.$$

Thus (a) holds.

Let $H_{\gamma} = \langle Z_{\delta}^{G_{\gamma}} \rangle$, $R = [Z_{\alpha}, Z_{\beta}]$ and $D_{\beta\alpha} = [Z_{\beta}, Q_{\alpha\beta}]$. Note that by (a), $K \leq K_{\alpha} \cap K_{\beta}$ also $K_{\alpha} \cap K_{\beta}$ is normalized by

$$\langle O^2(G_\alpha), O^2(G_\beta), Q_{\alpha\beta} \rangle = L$$

Thus $K = K_{\alpha} \cap K_b$. So the first part of (b) holds. By definition $[K_{\alpha}, Z_{\beta}] = 1$ and so $K_a \leq Q_{\beta}$. Thus $\Phi(K_{\alpha}) \leq \Phi(Q_{\beta}) \cap K_{\alpha}$. Note that $\Phi(Q_{\beta}) \leq \Phi(Q_{\alpha\beta})$. Since $Q_{\alpha\beta}/Q_{\alpha}$ is elementary abelian, unless α is symplectic, $n_{\alpha} > 1$ and $p \neq 2$, we get

(*) $\Phi(K_{\alpha}) \leq K$ and $[\Phi(Q_{\beta}), H_{\beta}] = 1$, unless α is symplectic, $n_{\alpha} > 1$ and $p \neq 2$.

Note that by definition of $\Sigma_1(\alpha)$, $[Z_{\alpha}, Z_{\beta}] \neq 1$. Clearly $Z_{\alpha}Z_b \leq Q_{\alpha\beta}$ and we can apply 5.9 with $(\delta, \gamma) = (\beta, \alpha)$.

Suppose that Case c.1 of 5.9 holds. Then $Q_{\alpha} \leq Q_{\alpha\beta} = Z_{\alpha}Q_{\beta}$. Since Q_{α} normalizes Z_{β} , H_{α} is generated by two conjugates of Z_{β} . Thus $|Q_{\alpha}/K_{\alpha}| \leq q^6$ and so $Q_{\alpha} = K_{\alpha}U_{\alpha}$. By 5.10, q = 2 and $U_{\alpha} \cap Z(G_{\alpha}) = U_{\beta} \cap Z(G_{\beta})$. Thus $U_{\alpha} \cap Z(G_{\alpha}) \leq K$ and $|\widetilde{U}_{\alpha}| = 2^6$. Using [Schur, Schur Multiplier] we get $O^2(G_{\alpha})/U_a \cong G_2(2)'$ also by (*) $G_{\alpha}/O^2(G_{\alpha})K$ is elementary abelian. Hence there exists $L_{\alpha} \leq G_{\alpha}$ with $O^2(G_{\alpha})K \leq L$, $G_{\alpha} = K_{\alpha}L_{\alpha}$ and $L_{\alpha} \cap K_{\alpha} = K$. Thus d.3 holds in this case.

Suppose next that Case c.2 of 5.9 holds.

Suppose that $n_{\beta} = 1$. Then $[Q_{\alpha}, Z_{\beta}] \leq [Z_{\alpha}, Z_{\beta}] \leq U_{\alpha}$ and so $[Q_{\alpha}, H_{\alpha}] \leq U_{\alpha}$. Also $\Phi(Q_{\alpha}) \leq Q_{\beta}$ and so $[\Phi(Q_{\alpha}), H_{\alpha}] = 1$. Suppose that also $n_{\alpha} = 1$. Then H_{α} is generated by two conjugates of Z_{β} and we conclude that $|Q_{\alpha}/K_{\alpha}| = q^2$ and $Q_{\alpha} = K_{\alpha}U_{\alpha}$. Let $I = \{1 \neq [x, y] \mid x \in Z_{\alpha}, y \in Z_b\}$. If $q \leq |[Z_{\alpha}, Z_{\beta}]| < q^2$ then $U_{\alpha} \cap Z(G_{\alpha}) = [Z_{\alpha}, Z_b] \setminus I = U_{\beta} \cap Z(G_{\beta})$ and thus d.1 holds. If $|[Z_{\alpha}, Z_{\beta}]| = q^2$, then $[Z_{\alpha}, Z_b] \setminus I$ contains exactly two subgroups of order q and these two subgroups have trivial intersection. Hence either $U_{\alpha} \cap Z(G_{\alpha}) = U_{\beta} \cap Z(G_{\beta})$ and d.1 holds; or $U_{\alpha} \cap Z(G_{\alpha}) \cap U_{\beta} \cap Z(G_{b}) = 1$ and d.2 holds.

Suppose next that $n_{\beta} > 1$ and that $D_{\beta\alpha}Z_{\alpha}$ is normal in G_{α} . Then $A_{\alpha} := [D_{\beta\alpha}, Q_{\alpha\beta} = [D_{\beta\alpha}Z_{\alpha}, Q_{\alpha}]$ is normal in G_{α} . Since $Q_{\alpha\beta}$ centralizes A_{α} we get $A_{\alpha} \leq Z(G_{\alpha})$. Let $D_{\alpha} := C_{Q_{\alpha}}(O^{p}(G_{\alpha}))$. We conclude that $D_{\alpha\beta} \leq U_{\alpha}D_{\alpha}$ and $D_{\alpha\beta} \leq D_{\alpha}Z_{\alpha\beta}$. Note that $[Q_{\alpha}, Z_{\beta}] \leq D_{\beta\alpha}$ and so $[Q_{\alpha}, H_{\alpha}] \leq U_{\alpha}D_{\alpha}$.

Note that $|RA_{\alpha}/A_a| \geq q$ and so p = 2 and $|U_{\beta} \cap Z(G_{\beta})| = q$. By (*) $[\Phi(Q_{\alpha}), H_{\alpha}] = 1$. Thus $|Q_{\alpha}/U_{\alpha}D_{\alpha}| \leq q$. Note that $O^2(G_{\alpha}) \cap Q_{\alpha\beta}$ centralizes $D_{\alpha}Z_{\alpha\beta}$ and so we have $O^2(G_{\alpha}) \cap Q_{\alpha\beta} \leq C_{Q_{\alpha\beta}}(D_{\beta}\alpha) = Z_{\alpha}Q_b$. Note also that $Z_{\beta} \leq Q_{\beta}, G_{\alpha} = O^2(G_a)Z_{\beta}$ and $Z_{\alpha} \leq Q_{\alpha}$. Thus $Q_{\alpha\beta} = Q_{\alpha}Q_{\beta}$.

If q > 2, then $A_a \leq R$ and we conclude that $A_\alpha = U_\alpha \cap Z(G_\alpha)$. Let $\gamma \in \beta^{G_\alpha}$ with $[Z_{\gamma\alpha}, Z_\beta] \neq 1$.

Lemma 5.13 [sigma symmetric] Let $\alpha, \beta \in \Sigma$ and $i \in \{1, 2\}$. Then $\alpha \in \Sigma_i(\beta)$ if and only if $\beta \in \Sigma_i(\alpha)$.

Proof: For i = 1 this is obvious. Suppose now that $\beta \in \Sigma_2(\alpha)$ but $\alpha \notin \Sigma_2(\beta)$. The $Z_a Z_\beta \leq Q_\alpha \cap Q_b$, $V_\beta^\alpha \not\leq Q_\alpha$ and $V_\alpha^\beta \leq Q_\beta$.

Lemma 5.14 [vdelta non abelian] There exists an edge (γ, δ) in Γ such that $\langle Z_{\delta}^{G_{\gamma}} \rangle$ is not abelian.

Proof: Suppose not. Let $V = \langle Z_L \rangle L \in \Sigma$ and $Q = \bigcap O_p(L) \mid L \in \Sigma$. Then $V \leq Q$ and so $Q \neq 1$. Let $L \in \Sigma$. Then $Q = \bigcap (O_p(L) \cap O_p(H) \mid L \neq H \in \Sigma)$ and so by 5.7 Q is normal in L. Hence Q is a non-trivial subgroup of R which is normal in all the $L\Sigma$, a contradiction.

Some ideas on the rest of the proof. definitionine a relation \approx on Σ by $L \approx H$ if $\langle Z_L^H \rangle$ is not abelian or if $Z_L = Z_H$. This should be an equivalence relation and $L \approx H$ if and only if $O_p(L) \cap O_p(H)$ is not normal in L. If $L \not\approx H$ we should have $[(R \cap O^p(L), O^p(H)] = 1$. b = 2 (that is $L \approx H$ and $Z_L \leq O_p(H)$) seems to occur only for the $G_2(3^k)$ situation, and $2^{1+4+6}L_4(2)$

What still needs to be discussed in this section is the consequences of 5.1 for the sets \mathcal{PU}_i , i = 1, 2, 4. There are some interesting cases: for example an amalgam if Z_L is the 6-dimensional module for $L/O_2(L) \cong 3Alt(6)$ then $L \in \mathcal{PU}_4(R)$. Same for Alt(6) or Alt(7) on the four dimensional module.

Also it seems possile to enlarge the set \mathcal{PU}_3 without having to change the "b < 3" part of the proof of 5.1. Namely can drop the assumption on $N_L(R)$ containing a point stabilizor one can allow $[Z_L, L]$ to be the four dimensionnal module for $SL_3(2)$, This would be usefull for the $\neg E!$ case. Other exceptional FF-modules could be included to. The properties one really needs is: no over-offenders and good commutator control. For example Alt(n) on the natural module should be o.k. This also would be o.k for $D_10(q)$ on the 16-dimensional spinmodule and $L_n(q), n \ge 5$ on the exterior square. But the choice of $a \in A$ will cause some problems. Might not be so important though, maybe we only need $\bigcap_{a \in A} Z^a_{\gamma} \le \Omega_1 \mathbb{Z}(G_{\delta})$.

6 The C(G,T)-Theorem

Suppose that G fullfills CGT. Then S is contained in unique maximal subgroup M of G, but there exists $L \in \mathcal{L}(S)$ such that $L \nleq M$ and $|L \cap M|_p \neq$ 1. Choose such an L such that $|H \cap L|_p$ is maximal. Let T be a Sylow psubgroup of $H \cap T$. Without loss $T \leq S$. If T = S we get that $L \in \mathcal{L}(S)$ contradicting our assumption M is the unique maximal p-local subgroup of M. Thus $T \neq S$. Let C be a non-trivial characteristic subgroup of S. Then $N_S(T) \leq N_G(C)$ and so $|M \cap N_G(C)|_p > |M \cap L|$ Hence the maximal choice of $|M \cap L|_p$ implies $N_G(C) \leq M$. In particular, $N_L(C) \leq M \cap L$. For C = Swe conclude that $T \in \text{Syl}_p(T)$. Then we can apply the

Theorem 6.1 (Local C(G,T)-Theorem) [local CGT] Let L be a finite \mathcal{K}_p group of characteristicp, T a Sylow p-subgroup of L, and suppose that

 $C(L,T) := \langle N_L(C) \mid 1 \neq C \text{ a characteristic subgroup of } S \rangle$

is a proper subgroup of L. Then there exists a L-invariant set \mathcal{D} of subnormal subgroup of L such that

(a) [a] $L = \langle \mathcal{D} \rangle C(L,T)$

- (b) $[\mathbf{b}] \ [D_1, D_2] = 1 \text{ for all } D_1 \neq D_2 \in \mathcal{D}.$
- (c) [c] Let $D \in \mathcal{D}$, then $D \nleq C(L,T)$ and one of the following holds:
 - 1. [1] D/Z(D) is the semidirect product of $SL_2(p^k)$ with a natural module for $SD_2(p^k)$. Moreover $O_p(D) = [O_p(D), D]$ is elementary abelian.
 - 2. [2] p = 2 and D is the the semidirect product of $Sym(2^k + 1)$ with a natural module for $Sym(2^k + 1)$.
 - 3. [3] p = 3, D is the semidirect product of $O_3(D)$ and $SD_2(3^k)$, $Z(D) = O_p(D)$ has order 3^k and both $[Z(O_3(D)), D]$ and $O_3(D)/Z(O_3(D))$ are natural $SL_2(3^k)$ modules for D.

For p = 2 the local C(G, T)-theorem was proved by Aschbacher in [Asch]. For general p by GLS?. For us it will be consequence of the ??.

Back to G. Case 3 can be rules out using that $N_S(T)/T$ is odd. Let $m = |\mathcal{D}|$ and suppose that m > 1. Let $g \in N_S(T) \setminus T$. Then there exists $X, Y \in \mathcal{D}$ such that $R := [[V, X], [V, Y]^g] \neq 1$. Let $H = N_G(R)$. Then for all $Z \in \mathcal{D}$ with $D \neq D$, $D \leq N_G(R)$ and since $[[V, D], V^g] \neq 1$, $[V, D] \not\leq O_p(N_{L^g}(R))$. Thus $[V, D] \not\leq O_p(H)$. Let $U = O_p(H)$. We conclude that $[Q \cap T, D] = 1$. Since H is of characteristic p, D acts non-trivially on $Q/Q \cap T$.

Let $T^* \in \text{Syl}_p(H)$ with $N_T(R) \leq T^*$. The maximal choice of |T| implies $|T^*/N_T(R)| \leq |T/N_T(R)| = T/N_T(X)$. In particular $|U/U \cap T| \leq |T/N_T(X)$. Thus T does not normalize X. Let $e := |T/N_T(X)|$. Then there are at least e - 1 choices for D, each two of which commute and each acting non-trivialy on $U/U \cap T$ which has order at most e. This is impossible.

Hence there exists a unique $D \in \mathcal{D}$.

Suppose that case 2. holds and $n \geq 3$. Then $O_2(M \cap L) = O_2(L)$. Let $Q = O_2(M)$. Then $T \cap Q \leq O_2(M \cap L) \leq O_2(L)$. On the other hand the maximality of |T| implies $N_Q(O_2(L)) \leq T$. Thus $N_Q(O_2(L)) \leq O_2(L)$ and so $Q \leq O_2(L)$.

If Q is not elementary abelian that $[\Phi(Q), D] = 1$ implies $D \leq M$, a contradiction. Hence Q is elementary abelian.

Since $[Q, O_2(D)] = 1$ and M is of characteritic p we conclude $O_2(D) \leq Q$. Thus $[Q, D] \leq [O_2(L), D] \leq O_2(D) \leq Q$ and so $D \leq N_G(Q) \leq M$. Thus also $L = D(M \cap L) \leq M$, a contradiction.

Suppose that case 2 holds and n = 2. Then we can choose $x \in [V, D]$ so that $R := [V^g, x]$ has order two. Also $C_D(x)$ is divisible by 3 and $[V, O^2(C_D(x))], C_{D^g}(x)]$ is not a 2-group. Argue as above we get $C_D(x)$ acts non trivially on $Q/Q \cap T$. But $|Q/Q \cap T|$ has order 2 a contradiction. Thus Case 1. holds. We have proved:

References

- [Asch] M. Aschbacher, A Factorization Theorem for 2-constrained Groups, Proc. London. Math. Soc. (3) 43 (1981), 450-477.
- [BBSM] B. Baumeister, A. Chermak, U. Meierfrankenfeld, G. Stroth, *The Big Book Of Small Modules*
- [Gor] D. Gorenstein, Finite Groups, Chelsea (1980) New York.
- [MS] U. Meierfrankenfeld, B. Stellmacher, Pushing Up Weak BN-Pairs of rank two, Comm. in Algebra, 21(3), 825-934 (1993).
- [Schur] Some Schurmultipliers