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1 Introduction

2 The Kieler Lemma and Pointsstabilzers

An elementary abelian normal subgroup V of a finite group L is called p-
reduced if any subnormal subgroup of L which acts unipotently on V has
to act trivially. Note that this is equivalent to Op(L/CL(V )) = 1. Here are
the basic properties of p-reduced normal subgroups.
Comment:due to Thompson? check history

Lemma 2.1 [YL] Let L be a finite group of characteritic p and T ∈ Sylp(L)

(a) [a] There exists a unique maximal p-reduced normal subgroup YL of L.

(b) [b] Let T ≤ R ≤ L and X a p-reduced normal subgroup of R. Then
〈XL〉 is a p-reduced normal subgroup of L. In particular, YR ≤ YL.

(c) [c] Let TL = CT (YL) and Lf = NG(TL). Then L = LfCL(YL), TL =
Op(Lf ) and YL = Ω1Z(TL).

(d) [d] YT = Ω1Z(T ), ZL := 〈Ω1Z(T )L〉 is p-reduced for L and Ω1Z(T ) ≤
ZL ≤ YL.

Now let L be any finite group and T ∈ Sylp(L). definitionine PL(T ) :=
Op
′
(CL(Ω1Z(T ))). Then PL(T ) is called a point stabilizer of L. The follow-

ing lemma ist the principal tool for working with point stabilzers.

Lemma 2.2 [kieler lemma] Let H be a finite group of local characteristic
p, T ∈ Sylp(H) and L a subnormal subgroup of H. Then
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(a) [a] [Kieler Lemma] CL(Ω1Z(T )) = CL(Ω1Z(T ∩ L))

(b) [b] PL(T ∩ L) = Op
′
(PH(T ) ∩ L)

(c) [c] CL(YL) = CL(YH)

(d) [d] Suppose L = 〈L1, L2〉 for some subnormal subgroups L1, L2 of H.
Then

(a) [da] PL(T ∩ L) = 〈PL1(T ∩ L1), PL2(T ∩ L2)〉.
(b) [db] For i = 1, 2 let Pi be a point stabilizer of Li. Then 〈P1, P2〉

contains a point stabilizer of L.

The proof of the above lemma is elementary and does not require any
K-group assumption assumption.
Comment: not all parts of this lemma are really needed

Lemma 2.3 [minimal overgroups] Let H be a finite group and F < H.

(a) [a] Let IH(F ) be the set of all I with F < I ≤ H such that F lies in a
unique maximal subgroup of I. Then H = 〈IH(F )〉.

(b) [b] Let JH(F ) = {I ∈ IG(F ) | F 5 I}. Then H = 〈JH(F )〉NH(F ).

Proof: By induction on |H|. Suppose that F lies in two different maximal
subgroups M1,M2 of H. By induction, Mi = 〈IMi(F )〉 = 〈JMi(F )〉NMi(F ).
Thus H = 〈M1,M2〉 = 〈IH(F )〉 = 〈JH(F )〉NH(F ).

So suppose F lies in a unique maximal subgroup of H. Then H ∈ I
and H = 〈I〉. Moreover either F is normal in H or H ∈ J . In any case
H = 〈J 〉NH(F ). �

Lemma 2.4 (Schur multipliers) [schur multipliers]

Proof: [Schur] �

2



3 Modules

Lemma 3.1 (Point Stabilizer Theorem) [the point stabilizer theorem]
Let H be a finite group, V a FpH-module, L a point stabilizer for H on V
and A ≤ Op(L).

(a) [a] If V is p-reduced, then |V/CV (A)| ≥ |A/CA(V )|.

(b) [b] If V is irreducible, F ∗(H) is quasi-simple, H = 〈AH〉 and A is a
non-trivial offender on V , then M ∼= SLn(q), Sp2n(q), G2(q) or Sym(n),
where p = 2 in the last two cases.

Proof: [BBSM] �

Lemma 3.2 (FF-modules for miminal parabolics) [ff-modules for miminal parabolics]

Proof: [BBSM] �

Lemma 3.3 [spin module] Let H = Sp2n(q), V a FpH-module, P a point
stabilizer for H on the natural module, T = Op(P ), Z = Z(P ) and W an
FpT submodule of V . Suppose that

(i) [i] V = 〈WH〉.

(ii) [ii] [V, T, T ] = 1.

(iii) [iii] [V, Z] ≤W ≤ CV (T ).

Let U =
⋂
h∈HW

h[V, T ]h and V = V/U . Let h ∈ H with Z 6≤ P h. Then

(a) [a] V = [V, Z]CV (T h) = W [V, T ]h, W = [W,T ] = C
V

(T ) = C
V

(Z)

and V = W ×W h.

(b) [b] If [W,H] 6= 1, then |V | ≥ q2n and |V/CV (T )| ≥ q2n−1
.

Proof: Let Y = W [V, T ]. Then Y ≤ CV (T ). Note that H = 〈Z, T h〉.
Since [V, Z] ≤ W we conclude that H normalizes W [V, T ]h and so by (i),
V = W [V, T ]h. Also H also normalizes [V, Z]Y h and since W h ≤ Y h we
conclude V = [V, Z]Y h = [V, Z]CV (T h). Let X/U = C

V
(Z). Then U ≤

X ∩ Y h. Thus H = 〈Z, T h〉 normalizes X ∩ Y h and so X ∩ Y h = U . Thus
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V = X×Y h. Since V = [V, Z]Y h we also get V = [V ,Z]×Y h. This implies
[V ,Z] = X = C

V
(Z).

Note that

[V ,Z] ≤ [V , T ] ≤ Y ≤ C
V

(T ) ≤ C
V

(Z)

Now all the inequalities in the preceeding inequalities have to be equal-
ities. So (a) is proved.

To prove (b) suppose that [W,H] 6= 1. By (a) also [W,H] = 1 and so
we may assume that U = 1.

Suppose first that n = 1 and 1 6= z ∈ Z. Since H = 〈z, T h〉, CY h(z) ≤
U = 1. Let 1 6= y ∈ Y h. We conclude that |[y, Z]| ≥ |Z| = q and so |W | ≥ q
and |V | ≥ q2.

Suppose next that n > 1 and let H∗ = CH(〈Z,Zh〉. Then H∗ ∼=
Sp2n−2(q) and Z∗ := Zk ≤ H∗ for some k ∈ H. Then P ∗ := P k ∩ H∗
is a point stabilizer for H∗ on its natural module, T ∗ := T k ∩H∗ = Op(P ∗)
and Z∗ = Z(P ∗). Since W = CV (Z) and H∗ ≤ CG(Z), W is a FpH∗
submodule of W . Suppose that [W,Z∗,H∗] = 1. Let h∗ ∈ H∗ with
Z∗h

∗ 6≤ P ∗. Then [W,Z∗] ≤ [V, Z∗] ∩ [V, Z∗h
∗
] = 1 and so [W,Z∗] = 1.

Thus CV (Z) = W = CW (Z∗) and so P and P ∗ normalize W , a contradci-
tion since H = 〈P, P ∗〉. Thus [W,Z∗,H∗] 6= 1. Let V ∗ = 〈[W,Z∗]H∗〉. Then
by induction |V ∗| ≥ q2n−1

. Since V ∗ ≤W and |V | = |W |2 we get |V | ≥ q2n .
�

We remark that ( for example by [BBSM]), V from the preceeding lemma
must be a direct sum of spin-modules for H.

Lemma 3.4 (H1 of natural modules) [h1]

Proof: [BBSM] �

4 The Baumann subgroup

For a p-group R we let PU1(R) be the class of all finite groups L containing
R such

(a) [a] L is of characteristic p,

(b) [b] R = Op(NL(R))

(c) [c] NL(R) contains a point stabilizer of L.
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Let PU2(R) be the class of all finite groups L containg R such that L is
of characteristic p and

L = 〈NL(R),H | R ≤ H ≤ L,H ∈ PU1(R)〉.

Let PU3(R) be the class of all finite groups L such that

(a) [a] L is of characteristic p.

(b) [b] R ≤ L and L = 〈RL〉

(c) [c] L/CL(YL) ∼= SLn(q), Sp2n(q) or G2(q), where q is a power of p and
p = 2 in the last case.

(d) [d] YL/CYL(L) is the corresponding natural module.

(e) [e] Op(L) ≤ R and NL(R) contains a point stabilizer of L.

(f) [f] If L/CL(YL) 6∼= G2(q) then R = Op(NL(R).

Let PU4(R) be the class of all finite groups L containg R such that L is
of characteristic p and

L = 〈NL(R),H | R ≤ H ≤ L,H ∈ PU3(R)〉.

Let B(R) = CR(Ω1Z(J(R))), the Baumann subgroup of R. Recall that
a finite group F is p-closed if O′F = Op(F ).

Lemma 4.1 (Baumann Argument) [baumann argument] Let L be a
finite group, R a p-sugroup of L, V := Ω1Z(Op(L)), K := 〈B(R)L〉, Ṽ =
V/CV (Op(K)), and suppose that each of the following holds:

(i) [i] Op(L) ≤ R and L = 〈J(R)L〉NL(J(R)).

(ii) [ii] CK(Ṽ ) is p-closed.

(iii) [iii] |Ṽ /CV (A)| ≥ |A/CA(Ṽ )| for all elementary abelian subgroups A
of R.

(iv) [iv] If U is L/Op(L) module with Ṽ ≤ U and U = CU (B(R))Ṽ , then
U = CU (Op(K))Ṽ .

Then Op(K) ≤ B(R).
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Proof: Let T = Op(L), L = L/CL(V ) and Y = Ω1ZJ(R). Let A ∈
A(R). Since A ∈ A(R) and V ≤ T ≤ R, |V/CV (A)| ≤ |A/CA(V ). By (ii)
CA(Ṽ ) = A∩T and so also CA(V ) = A∩T . Thus (iii) implies |V/CV (A)| =
|A| = |A/A ∩ T | and so V (A ∩ T ) ∈ A(R) ∩ A(T ). Thus Y ≤ V (A ∩ T ) ≤
T . Put W = 〈Y L〉V . We conclude that W ≤ Ω1Z(J(T )) and so W is
elementary abelian and (A ∩ T )V centralizes W . Hence W ≤ (A ∩ T )V
and W = V (A ∩W ) = V CW (A). It follows that A centralizes W/V . Since
A was arbitray in A(R), 〈J(R)L〉 centralizes W/V . Since Y = Ω1Z(J(R),
NL(J(R)) normalizes Y . So by (i) also L normalizes Y V . Thus W = Y U
and [W,T ] = [Y, T ] ≤ Y . Since L normalizes [W,T ] we get[W,T ] ≤ CW (K).
Let D = CW (Op(K)) and U = W/D. Then T centralizes U . Since Ṽ ∼=
V D/D and U = Y V/D, we can apply (iv) to conclude that W = DV and
U ∼= Ṽ . Since A ∈ A(R), |W/W ∩ A| ≤ |A/CA(W )| = |A/A ∩ T |. One the
otherhand by (iii), |A/A ∩ T | ≤ |Ṽ /CeV (A)| = |U/CU (A)| ≤ |W/CW (A)D|.
Thus |W/CW (A)| ≤ |W/CW (A)D| and D ≤ CW (A). Hence [D,A] = 1,
D ≤ Y and [D,K] = 1. Therefore [W,Op(K)] ≤ [D,K][V, T ] = 1 and so
Op(K) ≤ CR(Y ) = B(R). �

Lemma 4.2 [pu2(R) in pu4(B(R))] Let R be a p-group. Then PU2(R) ⊆
PU4(B(R)).

Proof: Let L ∈ PU2(R). Since NL(R) ≤ NL(B(R)) we may assume that
L ∈ PU1(R). Set P = NL(R). If P < H ≤ L, then clearly H ∈ PU1(R).
By 2.3(a) L is generated by the H ≤ L such that P is contained in a unique
maximal subgroup of H. If H ∈ PU4(B(R)) for all such H, then by the
definition of PU4 also L ∈ PU4(B(R)). Hence we may assume from now on
that

1) [1] P is contained in unique maximal subgroup H of L.

LetD be the largest normal subgroup of L contained in P . Then [D,R] ≤
[P,R] ≤ R and so [D,R] ≤ Op(D) ≤ Op(L).

Choose T ∈ Sylp(L) with PL(T ) ≤ P . ThenR ≤ Op(PL(T ) ≤ Op(CL(Ω1Z(T ))
and [R,CL(ZL)] ≤ Op(CL(ZL)) = Op(L) ≤ R. Thus CL(ZL) ≤ NL(R) ≤ P .
We proved:

2) [2] [D, 〈RL〉] ≤ Op(L) and CL(ZL) ≤ D

If J(R) ≤ D, then J(R) = J(Op(D)) and so J(R) E H. Thus [ZL, J(R)] =
1 and so also [ZL,B(R)] = 1. So by rr2, B(R) ≤ D and B(R) = B(Op(D)).
Thus B(R) E H and so H ∈ PU4(B(R)).
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So we may assume that J(R) � D and so by rr2 [ZL, J(R)] 6= 1. Let
K = 〈J(R)L〉, L = L/CL(ZL) and Z̃L = ZL/CZL(Op(K)). By ?? there
exists a L-invariant set of normal subgroups Ki, 1 ≤ i ≤ l, in K such that

(3-i) Ki = Op
′
(Ki),

(3-ii) K = K1 ×K2 × . . .×Kl,

(3-iii) Z̃L = [Z̃L,K1]× [Z̃L,K2]× [Z̃L,Kl],

(3-iv) Ki
∼= SLn(q), Sp2n(q), G2(q) or Sym(n), where q is a power of p, p = 2

in the last two cases and n ≡ 2, 3 mod 4 in the last case,

(3-v) [Z̃L,Ki] is the natural module for Ki,

(3-vi) J(R) = (J(R) ∩K1)× . . .× (J(R) ∩Kl)

It is now easy to see that L = KN
L

(J(R)
By rr2Op(CL(ZL)J(R)) = Op(L)J(R) and so J(R) = J(Op(CL(ZL)J(R))).

Thus NL(J(R)) = N
L

(J(R) and so

3) [4] L = KNL(J(R)).

Suppose that K ≤ H. Then by rr1 and rr4 J(R) is normal in L and
J(R) ≤ Op(L) ≤ D, a contradiction to the assumptions.

Thus K � H. Pick j with Kj 6≤ H. Then by 1) L = 〈Kj , P 〉 = 〈KP
j 〉P .

Thus 〈KP
j 〉J(R) is normal in L. So P acts transitively on {Ki | 1 ≤ i ≤ l},

and L = KP . By 2) [CL(ZL), J(R)] ≤ Op(L) and so CL(ZL),K] ≤ Op(L).
Hence CK(ZL) is p-closed. Also CK(ZL) = CK(Z̃L).

Note also that B(R) ≤ KOp(L) and so 〈B(R)L〉 = K B(R).
Suppose that B(R)Op(L) = Op(P ∩KOp(L)) or that Kj

∼= G2(q). Then
it is easy to see that the assumptions of 4.1 are fulfiled. We conclude that
Op(K B(R)) ≤ B(R). Moreover, either Kj

∼= G2(q) or B(R) = Op(P ∩
K B(R)). By 2.2(a)

CKi(Ω1Z(T ∩Kj B(R))) = CKj (Ω1Z(T ∩Ki)) = CKj (Ω1Z(T ))

and we conclude that P ∩ Kj B(R) contains a point stabilizer of KiB(R).
Suppose in addition that K̄j 6∼= Sym(n), n ≥ 7. ThenKi B(R) ∈ PU3(B(R)).
Also P ≤ NL(B(R)) and L = 〈P,Ki B(R) | 1 ≤ i ≤ l〉 and so L ∈
PU4(B(R)).

Suppose now that Kj � G2(q) and either B(R)Op(L) 6= Op(P ∩KOp(L))
or K̄i

∼= Sym(n), n ≥ 7. Put q := 2 in the second case. Then Ki
∼= Sp2n(q)
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or Sym(n) and |B(R)/Op(Ki B(R)| = q. Hence there exists a subgroup Di of
Ki B(R) with B(R) ≤ Di, Di = 〈B(R)Di〉 and Di/Op(Di) ∼= SL2(q). By 4.1
B(R) ∈ Sylp(Di). Thus Di ∈ PU3(B(R)). Moreover, Ki = 〈Di, NKi(B(R))〉
and so L = 〈Di, NL(B(R)) | 1 ≤ i ≤ n. Thus again L ∈ PU4(B(R). �

Lemma 4.3 [P(T) in PU4(B(T))] Let P be a finite group of characteris-
tic p. Let T ∈ Sylp(T ) and suppose that T lies in a unique maximal subgroup
of P . Then either ZL = Ω1Z(L) or P ∈ P4(B(T )).

Proof: Suppose that [J(T ), ZL] = 1. Then also [B(T ), ZL] = 1 and so by
the Frattinargument L = CL(ZL)NL(B(T )). Since L is minimal parabolic,
L = CL(ZL)S or B(T ) is normal in L. In the first case ZL = Ω1Z(L) and in
the second case L ∈ PU4(T ).

So we may assume that [B(T ), ZL] 6= 1. Using 3.2 we can argue just as
in 4.2. �

5 A solution to the principal amalgam problem

Let R be a group and Σ a set of groups containing R. Then

OR(Σ) = 〈N ≤ R | N E L ∀L ∈ Σ〉

So OR(Σ) is the largest subgroup of R which is normal in all the L ∈ Σ.

Theorem 5.1 [simultanous pushing up] Let R be a finite p-group with
R = B(R) and Σ a subset of PU3(R). If OR(Σ) = 1, then one of the
following holds

(a) [a] who knows

The proof will be achieved in a long sequence of lemmas. Let G∗ be the
free amalgameted product of the Σ over R. We view L ∈ Σ as a subgroup
of G∗. Let Γ be the graph with vertices G∗ and edges (L1g, L2g), g ∈ G∗,
L1 6= L2 ∈ Σ. Note that G∗ acts on Γ by right multiplication. For α ∈ Γ let
Gα = {g ∈ G∗ | α = αg}, Qα = Op(Gα) and Zα = ZGα and Uα = [Zα, Gα].
For an edge (α, β) let Qαβ = Gα ∩ Gβ and Zαβ = Ω1Z(Qαβ . Let ∆(α) be
the set of neigbors of α and G

(1)
α = Gα ∩

⋂
β∈∆(α)Gβ. Let Uα = [Zα, Gα].

Then by definition of Γ and of PU3(R).
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Lemma 5.2 [basics of pushing up]

(a) [a] Gα = Lg for some L ∈ Σ and g ∈ G∗, and Gα is of characteristic
p.

(b) [b] Gα := Gα/CGα(Zα) ∼= SLnα(qα), Sp2n(qα) or G2(qα), qα a power
of p.

(c) [c] Z̃α := Zα/CZα(Gα) is a natural module.

(d) [d] Qαβ = B(Qαβ) and Gα = 〈QGααβ 〉

(e) [e] Pαβ := NGα(Qαβ) contains a point stabilzer of Gα.

(f) [f] If Gα 6∼= G2(q) then Qαβ = Op(Pαβ).

Next we show

Lemma 5.3 [more basics of pushing up]

(a) [a] Zαβ ≤ Zα = Ω1Z(Qα)

(b) [b] CGα(Zα) = Qα.

(c) [c] Qα = G
(1)
α .

(d) [d] One of the following holds:

1. [1] Uα ∩ Ω1Z(Gα) = 1, that is Uα is the natural module.

2. [2] Gα ∼= Sp2n(q) or G2(q) and Uα is a quotient of the natural
O2n+1(q)-module for Gα, (where n = 3 in the G2(q)-case).

(e) [e] For all H ≤ Gα, CfZα(H) = ĈZα(H).

(f) [f] Let T ∈ Sylp(Pαβ) and x ∈ Ω1Z(T ) with x /∈ Ω1Z(Gα). Then
CGα(x) = Op

′
(Pαβ).

(a) follows from 5.2(d),(e) and 3.1.
Let T ∈ Sylp(Pαβ). Since CGα(Zα) ≤ CGα(Ω1Z(T )) ≤ Pαβ = NGα(Qαβ)

we get

[CGα(Zα), Qαβ ] ≤ CGα(Zα) ∩Qαβ ] ≤ Op(CGα(Ω1Z(T ))) ≤ Qα

9



Thus 5.2(d), [CGα(Zα), Gα] ≤ Qα. we proved this before, should have been
recorded

Thus (b) follows from 2.4 and 5.2 (d).
By 5.2(f) Qα ≤ Qαβ = Gα ∩Gβ. So (c) holds.
(d) follows from 3.4, and (e) follows from (d). Finally (f) follows from

(b),(e), and 5.2 (c),(e). �
We say that β ∈ Γ is symplectic if Gβ ∼= Sp2n(q) with n ≥ 2, β is linear

if Gβ ∼= SLn(q) and β is a hex if Gβ ∼= G2(q). Let α ∈ ∆(β). definitionine

Xαβ :=

{
[Zα, Qαβ] if α is symplectic.
Zα otherwise.

Put
Aαβ = [Xαβ , Qαβ ]

Lemma 5.4 [agammadelta] Let (α, β) be an edge in Γ. Then Aαβ ≤
Ω1Z(Qαβ) ≤ Ω1Z(Qβ) ≤ Zβ and Aαβ 6≤ Z(Gα).

Proof: Readily verfied. �

Lemma 5.5 [offenders on xgammadelta] Let (α, β) be an edge in Γ,
D = Xαβ or D = Zα and B ≤ Qαβ be a non-trivial offender on D

(a) [a] |D/CD(B)| = |B/CB(D)|.

(b) [b] One of the following holds:

1. [1] [D,Qαβ ] ≤ [D,B].

2. [2] α is a symplectic, D = Zα and [D,CQαβ (Xαβ)] ≤ [D,B].

(c) [c] One of the following holds

1. [1] [D,B,Qαβ] = 1.

2. [2] α is symplectic, D = Zα, [Xαβ , B] 6= 1 and [D,Qαβ , Qαβ ] = Aαβ.

Proof: This follows easily from the action of Qαβ on D �

Lemma 5.6 [agd in zgd] Let (α, β) be an edge in Γ and suppose that Zβ ≤
Qα.

10



(a) [a] If Xαβ � Zβ then Aαβ ≤ Z(Gβ).

(b) [b] Suppose α is symplectic and that N is a normal p-subgroup of Gβ
with [Xαβ , N ] = 1. Then [Zα, N ] ≤ Z(Gβ).

Proof: For the proof of (b) we may assume (a) has been proved and that
[Zα, N ] 6= 1.

We prove (a) and (b) simultaneously. For the proof of (a) let Dα = Xαβ

and U = Qβ. Note that Dα also depends on β but β will be fixed throughout
the proof. For the proof of (b) let Dα = Zα and U = N . Let Aα = [Dα, U ].
From the definition of Aα we obtain:

1) [1] Aα ≤ Zαβ

Next we show:

2) [2] Let B ≤ Qαβ and suppose that B is a non-trivial offender on Dα.
Then Aα ≤ [Dα, B] ∩ Zαβ.

By 1) we only need to show that Aα ≤ [Dα, B]. We apply 5.5(b) with
Dα. If 1. holds we have Aα = [Dα, U ] ≤ [Dα, Qαβ ] ≤ [Dα, B] and we are
done. Suppose that 2.holds. Then Dα 6= Xαβ and so we must be in the
proof of (b). So U = N ≤ CQαβ (Xαβ) and again Aα ≤ [Dα, B].

3) [3] Let B ≤ Qβ and suppose that B is a non-trivial offender on Dα.
[Dα, B,Qαβ ] ≤ Ω1Z(Gβ).

We apply 5.5(c). If 1. holds we are done. So suppose 2. holds. Then
we are in the proof of (b), [Xαβ , B] 6= 1 and [Dα, B,Qαβ ] = Aαβ . Since
B ≤ Qβ, we get Xαβ � Zβ and so by (a) Aαβ ≤ Ω1Z(Gβ) and 3) is proved.

Since Qαβ = B(Qαβ) and CGβ (Zβ) = Qβ we have [Zβ, J(Qαβ)] 6= 1.
Thus there exists A ∈ A(Qαβ) with A � Qβ. Let a ∈ A with a /∈ Qβ. If β
is a hex we choose a such that in addition CZβ (a) = Zαβ. Let γ ∈ αGβ with
Zαβ ∩ Zγβ = Ω1Z(Gβ) and a /∈ Pβγ . The choice of a implies

4) [4] Zγβ ∩ Zaγβ = Ω1Z(Gβ)

Suppose first that
(∗) [Dγ , D

a
γ ] 6= 1.
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Then by 5.5 Da
γ is an offender on Dγ and vice versa. So by 2) applied to

(Da
γ , γ) in place of (B,α)

Aγ ≤ [Dγ , D
a
γ ] ∩ Zγβ

By 3) applied to (Dγ , γ
a) in place of (B,α) we have [[Dγa , Dγ ], Qaγβ] ≤

Z(Gβ). Hence 5.3(f) implies Zβ ∩ [Dγa , Dγ ] ≤ Zaγβ and thus

Aγ ≤ [Dγa , Dγ ] ∩ Zγβ) ≤ Zγβ ∩ Zaγβ ≤ Ω1Z(Gβ)

and we are done in this case.
Suppose next that

(∗∗) [Dγ , D
a
γ ] = 1.

Set B := A ∩ Qβ and C := CB(Dγ). Then ZβB ∈ A(Qβ) ⊆ A(Qαβ).
Since Zβ centralizes Zγ , B is an offender on Dγ . Since A is abelian and
C ≤ B ≤ A we have B = Ba and C = Ca. Thus C = CB(Da

γ) and C
centralizes Da

γ . Since by assumption Zβ ≤ Qα we get Zβ ≤ Qaγ . Thus by
(**) ZβDγC centralizes Da

γ . By 1) ZβDαC ∈ A(Qβ) and we conclude that
Da
γ ≤ ZβDγC. By symmetry in γ and γa we conclude ZβDγC = ZβD

a
γC.

Thus
[Dγ , B] = [Da

γ , B].

Suppose that B does not centralize Dγ . Then by 2) applied to γ in place
of α, Aγ ≤ [Dγ , B] ∩ Zγβ. From [Dγ , B] = [Da

γ , B] and 3) applied to γa in
place of α we get [Dγ , B,Q

a
γβ] ≤ Z(Gβ) Now as in the (*) case Aγ ≤ Z(Gβ)

and we are done.
Suppose next that B centralizes Dγ . Then also ZβB centralizes Dγ and

so Dγ ≤ ZγB. Since a centralizes B we conclude that DγZβ = Da
γZβ. Hence

Aγ = [Dγ , U ] = [DγZβ, U ] = [Da
γ , U ] = Aγa ≤ Zγβ ∩ Zaγβ ≤ Ω1Z(Gβ)

and we are also done in this final case. �
For adjacent vertices α, β let V β

α = 〈ZGαβ 〉.

Lemma 5.7 [qgamma cap qdelta normal] Let (β, α) be an edge of Γ
and suppose that V β

α and V α
β are abelian. Then Qα ∩Qβ is normal in Gα.

Proof: Choose A, a and γ as in the proof of 5.6. Assume that Qα ∩ Qβ
is not normal in Gα. By conjugation Qγ ∩ Qβ is not normal in Gγ and so
Qγ ∩Qβ 6= Qδ ∩Qγ for some δ ∈ βGγ . Then [Qγ ∩Qβ, Zδ] 6= 1.
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If possible, choose δ such that [Qγ ∩ Qβ, Xδγ ] 6= 1. In this case put
Dδγ = Xδγ .

If not possible, put N = 〈(Qα∩Qβ)Gγ 〉 and Dδγ = Zδ. Then [Xβγ , N ] =
1.

Note that Zγ ≤ V γ
β and so Zγ ≤ Qβ. Thus we can apply 5.6 and to (β, γ)

in place of (α, β). We conclude that Aγ := [Dδγ , Qα∩Qβ] ≤ Ω1Z(Gγ). Since
Aγ � Ω1Z(Gδ) and δ ∈ βGγ we get Aγ � Ω1Z(Gβ). Since Za

−1

γβ ∩ Zγβ ≤
Ω1Z(Gβ) we have

1) [1] Aγ ≤ Ω1Z(Gγ) and Za
−1

γβ � Aγ � Zaγβ.

From the definition of Dδγ and 5.5(b) we deduce

2) [2] Let F ≤ Qδγ be an offender on Dδγ, then Aγ ≤ [Dδγ , F ].

Let B = A∩Qβ and C = B∩Qγ . Then ZβB and ZβZγC are in A(Qβγ).
Next we show

3) [3] Dδγ ≤ ZβZγC for all δ ∈ βGγ with [Qβ ∩Qγ , Dγδ] 6= 1.

Assume that [C,Dδγ ] = 1. Since V β
γ is abelian, ZγZβ centralizes Zδ and

so also Dδγ . Since ZβZγC ∈ A(Qβγ) we conclude that 3) holds in this case.
So assume for a contradiction that [C,Dδγ ] 6= 1 and put D = CC(Dδγ).
Then by 2), Aγ ≤ [C,Dδγ ] and by 5.5(a) E := ZβZγDδγD ∈ A(Qγ).

We will show that [E,Da
δγ ] = 1. Since V β

γa is abelian, Da
δγ centralizes Zβ.

Suppose that [Da
δγ , Zγ ] 6= 1. Since V γ

β is abelian, Zγ ≤ Qβ ∩ Qaγ . From
5.5(a) we conclude that Zγ is an offender on Dδγ and vice versa. By 2)
Aaγ = [Da

δγ , Zγ ] ≤ Zγβ, a contradiction to 1).
Thus [Da

δγ , Zγ ] = 1 and Da
δγ ≤ Qβ ∩Qγ . By symmetry Dδγ ≤ Qβ ∩Qaγ .

Hence by 5.5(a) Dδγ and Da
δγ are offenders on each other.

Suppose that [Dδγ , D
a
δγ ] 6= 1. Then by 2) Aγ ≤ [Dδγ , D

a
δγ ] ≤ Zaγβ, again

a contradiction to 1).
Thus [Dδγ , D

a
δγ ] = 1. Since D centralizes Dδγ and since D = Da, D

centralizes Da
δγ . Thus E centralizes Da

γδ and so Da
γδ ≤ E. Note that C is a

non-trivial offender on Dδγ and so by 2) Aγ ≤ [C,Dδγ . Since a centralizes
C we get

Aaγ ≤ [C,Da
δγ ] ≤ [C,E] = [C,Dγδ] ≤ Zγβ

contradicting 1). This completes the proof of 3).
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Suppose that B 6= C, that is B � Qγ . By 3) [B,Dδγ ] ≤ [B,Zγ ] ≤ Zγ and
so B ≤ NGγ (DδγZγ). In particular, B normalizes CQγ (Dδγ). Let ρ ∈ βGγ
with [Qβ ∩Qγ , Dργ ] = 1. Then

[Qγ , B] ≤ [Qγ , Qβ] ≤ Qβ ∩Qγ ≤ CQγ (Dργ)

So B normalizes CQγ (Dργ) . It follows that B normalizes CQγ (Dτγ) for
all τ ∈ βGγ . Since B 6≤ Qγ we conclude that CQγ (Dβγ) is normal in
〈BGγ 〉Qβγ = Gγ . But then

Qβ ∩Qγ ≤ CQγ (Dβγ) = CQγ (Dβδ)

a contradiction.
Thus B = C. So B centralizes Zγ , Zγ ≤ ZβB and by 2) Dδγ ≤ ZβB.

Since A centralizes B, we conclude that A normalizes ZγZβ and DδγZβ.
But then A also normalizes Qγ ∩Qβ and [Qγ ∩Qβ, DδγZβ]. Since this latter
group is Aγ we get a contradiction to 1). �

Lemma 5.8 [zalpha offender] Let (α, β) and (γ, δ) be edges in Γ such
that ZαZδ ≤ Qαβ ∩Qδγ and [Zα, Zδ] 6= 1. Then

(a) [a] Zα is an offender on Zδ and vice versa.

(b) [b] |ZαQδ/Qδ| = |ZδQα/Qα|.

(c) [c] Gα = 〈ZGαδ 〉Qα.

Proof: (a) and (b) follows from the fact that Qαβ contains no over-offender
on Zα.

Note that Op(Gα)Qα = Gα unless Gα ∼= SL2(2), SL2(3), Sp4(2) or
G2(2). In each of the four exceptionell case Op(Gα)Qα has index p in Gα and
Qαβ ∩ Op(Gα)Qα contains no non-trivial offender on Zα. Thus (c) follows
from (a). �

Lemma 5.9 [critical pairs] Let (α, β) and (γ, δ) be edges in Γ such that
ZαZδ ≤ Qαβ ∩Qδγ and [Zα, Zδ] 6= 1.

Then q := qα = qβ and one of the following holds.

1. [1] Gα ∼= Gδ ∼= G2(q).

2. [2]
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(a) [a] Gα ∼= Sp2nα(q) and Gδ ∼= Sp2nδ(q)

(b) [b] |ZαQδ/Qδ| = |ZδQα/Qα| = q.

(c) [c] [Zα, [Zδ, Qγδ]] = 1 and [Zδ, [Zα, Qαβ ]] = 1.

3. [3]

(a) [a] Gα ∼= Sp2nα(q), Gδ ∼= Sp2nδ(q), nα, nδ ≥ 2,

(b) [b] |ZαQδ/Qδ| = |ZδQα/Qα| = q2,

(c) [c] [Xαβ , Xδγ ] = 1.

(d) [d] One of the following holds:

1. [1] [Xαβ, Zδ] = [Xδγ , Zα], Uα is the natural module for Gα and
Uδ is the natural module for Gδ.

2. [2] q = 2, [Xαβ , Zδ] 6= [Xδγ , Zα] and Uα ∩ Z(Gα) = Uδ ∩ Z(Gδ)

4. [4]

(a) [a] Gα ∼= SLnα(q) and Gδ ∼= SLnδ(q)

(b) [b] |[Zα, Zδ]| = q.

5. [5] After interchanging (α, β) with (δ, γ) if necessary:

(a) [a] Gα ∼= SLnα(q), nα > 2 and Gδ ∼= Sp2nδ(q), nβ > 1

(b) [b] |ZαQδ/Qδ| = |ZδQα/Qα| = q,

(c) [c] [Xδγ , Zα] = 1

(d) [d] |[Zα, Zγ ]| = q

Proof:
Let Iαδ = {|[Zα, y]| | 1 6= y ∈ ZδQα/Qα and Jαδ = {|[x,Zδ]| | x ∈

Zα \ CZα(Zδ)
By ??(??) implies |[Zα, y]| = |Z̃α, y]| and |[x̃, Zδ]|, for all y ∈ Zδ and

x ∈ Zα. definitionine the positive integer kαδ by |Z̃α/CfZα(Zδ)| = qkαδα and
note that

qkαδα = |ZαQδ/Qδ| = ZδQα/Qα| = qkδαδ

Also Zδ is a quadratic offender on Zα and the action of Gα on Z̃α implies:
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Gα Iαδ Jαδ

G2(qα) {q2
α, q

3
α} {q2

α, q
3
α}

SLnα(qα) {qα} {qα}

Sp2nα(qα), kαδ = 1 {qα} {qα}

Sp2nα(qα), kαδ > 1 {qα, q2
α} {qα, qkαδα }

Note that the definitions of Iαδ and Jαδ imply Iαδ = Jδα. This allows as
to relate Gα and Gδ. In particular we see that

q := qα = qδ and k := kαδ = kδα.

Furthermore, Gα ∼= G2(qα) we conclude that also Gδ ∼= G2(qδ) So (a) holds
in this case.

If Gα ∼= SLnα(qα) and nα > 2, we get Gα ∼= SLnδ(qδ) or Sp2nδ(qδ). In
the latter cae we get k = 1. In any case since nα > 2, |[Zα, Zγ ]| = q and so
(4) or (5) holds.

If Gα ∼= Sp2nα(q) and Gδ ∼= Spnα(q) we get k ∈ {1, 2}. If k = 1, (2)
holds.

So suppose that k = 2. Then clearly nα, nδ > 2. We will show that (3)
holds. We already prived (3)(a) and (b). Also both [Xαβ , Zδ] and [Xδγ , Zα]
have order q. It follows that XαβQδ/Qδ is the unique full transvection group
in Qγδ/Qδ and thus (3)(c) holds.

If q > 2, then |[Xδγ , Zα]| = q implies that Uα is a natural module and so
also [Xαβ, Zδ] = [Zα, Xδγ ] = Uα ∩ Zαβ. Thus (3) holds in this case.

So suppose that q = 2. Note that Uα ∩ Zαβ = [Xαβ , Zδ][Zα, Xδγ ]. If
[Xαβ, Zδ] = [Zα, Xδγ ] we conclude that Uα is a natural module and (3) holds.
If [Xαβ , Zδ] 6= [Zα, Xδγ ] we get that Uα ∩ Z(Gα) is the unique subgroup of
order two in [Xαβ , Zδ][Zα, Xδγ ] distinct from [Xαβ , Zδ] and [Zα, Xδγ ]. The
same is true for Uδ ∩ Z(Gδ) and again (3) holds. �

Lemma 5.10 [q=2 for g2(q)] Let (α, β, γ, δ) be as in Case 1. of 5.9.
Then q = 2 and Uα ∩ Z(Gα) = Uδ ∩ Z(Gδ).

Proof: The following argument is taken from [MS].
Let R = [Zα, Zδ] and X = R \ {[x, y] 6= 1 | x ∈ Zα, y ∈ Zδ]}. Then it is

not too difficult to see that X = CUα(Gα) = CUδ(Gδ). We will compare the
actions of Uα/X on Uδ/X as seen in Gδ with the action of Uδ/X on Uα/X
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as seen in Gα. Let Fα = EndGα(Uα/X). Then Fα is a field isomorphic to
GF (q).

Let
Kδα = {CUδ(y) | y ∈ Zα, Uδ ∩Qα < CUδ(y) < Uδ}.

and similarly define Kαδ. If A ∈ Kδα then CUαA) 6= Uα∩Qδ and CUα(A)/R
is a 1-dim. Fα-subspace of Uα/R. Also CUα(A) = CUα(a) for all a ∈
A \ Qα. So CUα(A) ∈ Kαδ and we obtained a bijection between Kαδ and
Kδα. Moreover, A is a long root subgroup of Gα. Let t ∈ Zα with [t, A] 6= 1.

We show next that

(*) [t, A]X/X is a 1-dim. Fα and Fδ subspace of R/X and a

Clearly it is a 1-dim Fδ- subspace. Let P = CGα(A). Then W :=
Uα/CUα(A) is a natural module for P/Op(P ) ∼= SL2(q). Let t∗ be the image
of t in W . Then S := CP (t̃∗) is a Sylow p-subgroup of P and so of Gα.
Since S centalizes [t, A] we conclude that [t, A]X/X = CUα/X(S), which is
a 1-dim. Fα-space.

The preceeding argument also shows that every 1-dim. Fα subspace of
[Uα, A]X/X is of the form [t, A] for some t ∈ Zα. Moreover each 1-dim. Fα
subspace of R/X is contained in [Uα, A]X/X for some A ∈ Kδα. Thus (*)
implies

(**) The Fα and Fδ subspaces in R/X coincide.

Let Wαβ = [Uα, Op(Pαβ)]X and Uαβ = CUα(Op(Pαβ). Then Uαβ/X is a
1-dim. Fα subspace of R/X. Moreover, Uαδ ≤ [Uα, A]X for all A ∈ Kδα.
Considering the action of UαQδ/Qδ on Uδ/X we conclude that Uαβ = Uγδ.

Fix z ∈ Uα \ Wαβ and define Y/Uδγ := CUδ/Uδγ (z). Then Y/R is 1-
dimensional Fδ subspace of Uδ/R. Since [Y, z] ≤ Uδγ = Uαδ we also have
[Y,FαzX/X] ≤ Uαδ. Since [z,Qαβ ]R = Wαβ, the Frattin-argument shows
that L := CPαβ (zR/R) has a quotient SL2(q).. Since L normalizes Y , we
conclude that Y Qα/Qa is a short root subgroup of Gα.

Hence there exists a subgroup M of Gα with Y Qα/Qα ≤ M and M ∼=
SL2(q). Note that for all t ∈ Yα, [t, Y ]X/X is an Fδ-submodule of R/X.
Hence [t, Y ]X/X is also an Fα-submodule of Uα/X. But this implies that
Uα/X is as an FαM -module the direct sum three isomorphic natural mod-
ule. But this implies q = 2. ( For example let P be a mimimal parabolic
of Gα/Qa with M as a Levi complement, V1 = CUα/X(Op(P )) and V2 =
[Uα/X,Op(P )]/V1. Then Op(P )/Φ(Op(P )) is isomorphic to a Fp-submodule
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of HomFα(V2, V1). Since V2 and V1 are isomorphic FαM modules, we con-
clude that every composition factor for M in Op(P ) is either natural or
trivial. Thus q = 2.
Comment: a quote from [BBSM] would be more appropriate �

Lemma 5.11 [b=1 sigma=2] Suppose that |Σ| = 2, Σ = {α, β} and
[Zα, Zβ] 6= 1. Then for γ ∈ Σ there exists Kγ ≤ Ω1Z(Gγ) and Lγ ≤ Gγ
such that Gγ = Kγ × Lγ and one of the follwing holds.

1. [1] Lα ∼ Lβ ∼ qnSLn(q) and |Kα| = Kβ| ≤ q.

2. [2] p = 2 and (after interchanging α and β if necessary), Gα = Lα ∼
q1+2nSp2n(q), Gβ = Lβ ∼ q1+2+2·(2n−2)SL2(q).

3. [3] p = 2, Lα ∼ Lβ ∼ 26G2(2) and |Kα| = |Kβ| ≤ 23.

4. [4] p = 2 and Gα = Lα ∼ Gβ = Lβ ∼ q1+6+8Sp6(q).

5. [5] p 6= 2, Lα ∼ Lβ ∼ q2nSp2n(q), n ≥ 2 and |Kα| = |Kβ| ≤ q.

6. [6] q = 2, Gα ∼ 21+2nSp2n(2) and Gβ ∼ 21+2+1·m+1·m+2·kSL2(2) for
some m, k with m+ k = n− 2 and k even.

7. [7] who knows

Proof:
By assumption, [Zα, Zβ] 6= 1. Clearly ZαZβ ≤ Qαβ and we can apply

5.9 with (δ, γ) = (β, α).
For {γ, δ} = {α, β} define Hγ = 〈ZGγδ 〉. Let R = [Zα, Zβ], I = {1 6=

[x, y] | x ∈ Zα, y ∈ Zb} and Dγ = CQγ (Op(Gγ)).
We devide the proof in a series of Steps.

Step 1 [da cap db] Dα ∩Dβ = 1.

Proof: This holds since Dα ∩Dβ is normalized by Gα = Op(Gα)Qαβ and
Gβ = Op(Gβ)Qαβ . �

We call α non-abelian if α is symplectic, p 6= 2 and nα ≥ 2. Otherwise
α is called abelian.

Step 2 [abelian]
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(a) [a] α is abelian if only if Qαβ/Qα is elementary abelian.

(b) [b] If α is abelian, then Φ(Qβ) ≤ Dβ.

(c) [c] If α and β are abelian, then Qα ∩Qb is elementary abelian.

Proof: (a) is obvious. If Φ(Qβ) ≤ Qα, then Zα centralizes Φ(Qβ) and so
Φ(Qβ) ≤ Dα. Thus (b) holds.

Since Φ(Qα ∩Qβ) ≤ Φ(Qα) ∩ Φ(Qβ), Step 1 and (b) imply (c). �

Step 3 [b=1 case 1] Suppose that 5.9(1) holds. Then 5.11(3) holds.

Proof: Note first that Qα ≤ Qαβ = ZαQβ. Thus Qα = Zα(Qα ∩Qβ) and
Step 2(c) implies that Qα is elementary abelian. Thus by 5.3(a), Qα = Zα.
By 5.10, q = 2 and

Uα ∩ Z(Gα) = Uβ ∩ Z(Gβ) ≤ Dα ∩Dβ = 1.

Thus |Uα| = 26.
By [Schur, Schur Multiplier] we get O2(Gα)/Ua ∼= G2(2)′. Since Gα =

QαZβO
2(Gα) and [Qα, Zβ] ≤ [Uα, Zβ] ≤ Uα ≤ O2 ∗ Gα) we get that

Gα/O
2(Gα) is elementary abelian. Hence there exists Lα ≤ Gα with Gα =

Dα × Lα and Lα ∼ 26G2(2). Since Dα ≤ Zαβ and Dα ∩ Dβ = 1 we have
|Dα| ≤ |Zαβ/Dβ| = 23, a the proof of Step 3 is complete. �

Step 4 [b=1 case 2] Suppose that 5.9(2) holds. Then

Proof:
Let Dαβ = [Zα, Qαβ ] and Aαβ = [Dαβ , Qαβ ] ≤ Zαβ .
We will show first

1) [6] [Dβα, Qα] ≤ Ω1Z(Gα). In particular, either Dβα ≤ Zα or Aβα ≤
Ω1Z(Gα).

Choose δ ∈ βGα with [Zδα, Zβ] 6= 1. If [Dδα, Dβα] 6= 1, then

[Dβα, Qα] ≤ Aβα = [Dβα, Dδα] ≤ Zαβ ∩ Zαδ ≤ Ω1Z(Ga)

So suppose that[Dδα, Dβα] = 1. Then [Dδα, Zβ ≤ Zαβ ≤ Zα and so
DβαZα is normal in Gα = 〈Qαδ, Zβ〉. Hence also [Dβα, Qα] is normal in Gα.
Since Qαβ centralizes Dβα and Gα = 〈QGααβ 〉, the first statement in 1) hold.
If [Dβα, Qα] = 1 then since Ω1Z(Qα) = 1 we get Dbα ≤ Zα. If Dβα, Qα] 6= 1,
then Aβα = [Dβα, Qα] ≤ Ω1Z(Gα), completing the proof of 1).

Next we prove:
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2) [7] If [Dβα, Qα] = 1, then Dβα ≤ Zα ∩Qβ = DαβZαβ3.4 implies .

By 5.3, Dβα ≤ Zα. Also Dβα ≤ Zβ ≤ Qβ and so 2) holds.

3) [8] If p is odd, then 1. or 5 of 5.11 holds.

If [Dβα, Qα] 6= 1, then by 1), R = Aβα = [Dβα, Qα] ≤ Z(Gα) a con-
tradiction. Thus [Dβα, Qα] = 1 and by 2) Dβα ≤ DαβZαβ . By sym-
metry Dαβ ≤ DβαZαβ. Hence Zα ∩ Zβ = Zα ∩ Qβ = Zβ ∩ Qα. Thus
Zα∩Zβ/Zαβ = q2nα−2 and nα = nb. Since Qα ≤ ZαQβ we get that Qα∩Qβ
is elementary abelian, Qα = Zα and Qβ = Zb. Also Dα ≤ Z(Gα), Dα ≤ Zαβ
and Dα ∩Dβ = 1. Thus |Dα| ≤ q. Hence 5. holds and 3) is proved.

We may assume from now on that p = 2. Set D = DαβDβα and T =
CQαβ (D). By ?? Qα ∩Qβ is elementary abelian. Since CQαβ (Dαβ = ZβQα
we have T = ZαZβ(Qα ∩Qβ). Since p = 2 we conclude that

4) [10] A(T ) = {Zα(Qα ∩Qβ), Zβ(Qα ∩Qβ)}

Let A ∈ A(Qαβ). Then CA(Dαβ)Dαβ is in A(Qαβ . Then CA(D) ∈
A(T ) and so CA(D)D = Zγ(Qα ∩ Qb) for some γ ∈ {α, β}. In particular,
CA(D)D ≤ Qγ . Let {α, β} = {γ, δ}. Since E := CA(Dδγ)Dδγ ∈ A(Qαβ ,
E is an offender on Zγ . Moreover, CE(D) ≤ CA(D)D ≤ Qγ , the action
of Qγδ on Zγ implies E ≤ Qγ . Since E ∈ A(Qαβ we conclude, Zγ ≤ E.
Thus [Zγ , A] ≤ [E,A] ≤ [Dδγ , A]. Suppose that [Zγ , A] 6= 1, then also
[Zγ , A] 6≤ Z(Gγ) and 1) implies [Dδγ , Qγ ] = 1. By 2), we get Dδγ ≤ DγδZγδ,
so Zγ ≤ ADγδZγδ and thus Zγ = CZγ (A)Dγδ. This implies [Zγ , A] = 1. So
[Zγ , A] = 1 and A ≤ Qγ . Hence

5) [11] A(Qαβ) = A(Qα) ∪ A(Qβ).

Since Qαβ = J(Qαβ) we conclude Qαβ = J(Qα)J(Qβ). In particular
Qα ≤ J(Qα)Qβ and so Qα = J(Qα)(Qα∩Qβ). Since Zα(Qα∩Qβ) ∈ A(Qαβ)
we get Qα = J(Qα). Thus

6) [12] Qα = J(Qα), Qβ = J(Qb) and Qαβ = QαQβ.

Let A ∈ A(Qα). Then Zα ≤ A and CA(Dβα)Dβα = Zα(Qα ∩Qβ). Thus
Qα ∩Qβ = (A ∩Qβ)Dβα and [Qα ∩Qβ, A] = [Dβα, A] ≤ Aβα ≤ Zβ.

So

7) [13] [Qα ∩Qβ, Qβ] ≤ Aαβ and [Qα ∩Qβ, Qαβ ≤ AαβAβα ≤ Zαβ
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Let Q̂β = Qβ/Zβ. We conclude that

8) [14] [ \(Qα ∩Qβ)Zβ, Qα] = 1 and [Q̂β, Qα] ≤ \Qα ∩Qβ
We will now prove

9) [9] Suppose p = 2, and DβαZα is normal in Gα, then 1. or 2, of
5.11 holds.

Since [Qα, Zβ] ≤ Dβα and [Dβα, Zβ] = 1 we get [Qα, Op(Gα)] ≤ Zα. Let
Qα = Qα/Dα. ThenQα centralizesQα, C

Qα
(Op(Gα)) = 1 and [Qα, Op(Gα)] =

Uα is a natural module. Thus the stucture of Qα is determined by 3.4. From
[Qα ∩ Qβ, Zβ] = 1, QαQβ = Qαβ and (*) we get Qα ∩Qβ = Dαβ . Hence
Qα ∩Qβ ≤ DαDαβ and so

Qα ∩ β = (Dα ∩Qβ)Dαβ

Since [Dα ∩ Qβ, Qβ] ≤ Dα ∩ Dβ = 1 we have Dα ∩ Qβ ≤ Zβ. As Zα
centralizes Dα, Dα ∩Qβ ≤ Zβ ∩Qα = DβαZαβ. We conclude

Qα ∩Qβ = DαβDβαZαβ and T = ZαZβ = UαZβ

Since Qβ centralizes Dβα, 3.4 implies Dβα ≤ DαZαβ and so

DβαZαβ = (Dα ∩ (DβαZαβ)Zαβ .

. Note that r := |Qα/DαUα| ≤ q. Let F = Op(Gα) ∩ Qαβ . Then Uα ≤ F
and |Qαβ/QαF | = e, where e = 2 if (nα, q) = (2, 2) or (1, 2) and e = 1
otherwise. Since Dβα ≤ DαZα, F centralizes Dβα and so F ≤ UαQβ and
F = Uα(F ∩ Qβ). Let F1 = CF (Dαβ). Since F centralizes Dβα, F1 ≤ T =
UαZβ. Since Uα ≤ F1, F1 = Uα(F1 ∩ Zβ).

Suppose that Gα/Qα ∼= Sp2(2). Then Qα = Da × Uα. Moreover Qβ ≤
ZβQα and Qβ = Zβ(Qα∩Qβ) = ZβDαβ = Zβ. Since [Dα, Zβ] ≤ R∩Dα = 1,
Dα ≤ Zβ. Thus Dα is abelian and Dα is centralized by DαUαZβ = Qαβ .
Thus Dα ≤ Zαβ and Qα = Zα. Hence Zβ ∩ Qα = Zαβ and so Gβ/Qβ ∼=
Sl2(2). Thus 1. or 2. of ?? holds in this case.

Suppose that Gα/Qα /∈ {Sp2(2), Sp4(2)}. Then F1 ∩ Zβ � Qα. Since
Dα centralizes F1 ∩ Zβ we conclude that Dα ≤ Qβ. Since |Qαβ/Dα(F ∩
Qβ)Zβ ≤ rq ≤ q2 we get |Qαβ/Qβ| ≤ q2 and so nβ = 1. Thus Dβα ≤ Zαβ
and so Qα ∩ Qβ = DαβZαβ = Zα ∩ Qβ). Moreover, Qα ≤ UαQβ and
so Qα = Uα(Qα ∩ Qβ) = Zα. Assume that (Zα ∩ Qβ)Zβ is normal in
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Gβ. If Gβ/Qβ ∼= SL(2), the preceeding paragraph gives a contradiction. If
Gβ/Qb ∼= Sp4(2) ??? And if Gβ/Qβ /∈ {Sp2(2), Sp4(2)}, the first half of this
paragraph applied with the roles of α and β reversed, gives nα = 1. But then
case (1) or (2) holds. Assume now that (Zα ∩Qβ) is not normal in Gβ. Let
W = (Zα ∩Qβ)Zβ, V = 〈WGβ 〉 and U =

⋂
g∈Gβ W

g. Since [W,Qβ] ≤ Zβ ≤
U and [V,Qα] ≤ Qα ∩ Qβ ≤ W we have [V,Qαβ ≤ W and [W,Qαβ ≤ U .
Thus we can apply 3.3 to V/U and conclude that W = [Zα, V ]U . Hence

Zα ∩Qβ = [Zα, V ](Zα ∩ U

We claim that Zα ∩ U = CZα(V ). Indeed, U ≤ Z(V ) and so Zα ∩ V ≤
CZα(V ). For the converse let g ∈ Gβ. Then [CZα(V ), Zgα] ≤ Rg ≤ Zα and
so CZα(V )Zβ is normal in Gβ. Thus CZα(V ) ≤ U . This proves the claim
and so

Zα ∩Qβ = [Zα, V ]CZα(V ).

The action of Qαβ on Zα implies [Zα, V ]∩CZα(V ) ≤ Zαβ . Let V ∗ = [V,Hβ].
Since Hβ is generated by two conjugates of Zα we derive

V/Zβ = V ∗/Zβ × U/Zβ
.

U ≤ X ≤ Z(V ) with [X,Qαβ ≤ U . Then X ≤ W and so X = Zβ(X ∩
Zα). Since Z(V ) ∩ Zα ≤ U we conclude that X ≤ Z(V ). Since Qαβ
normalizes Z(V )/U we get U = Z(V ). Since [W,Qβ] = Aαβ and Φ(Qβ ≤ Dβ

we get that Aβ := Aαβ ≤ Z(Gβ) and Aβ = [V,Qβ]. Hence also [V ∗, Qβ] =
Aα. Put D∗ = CQβ (V ∗). Then Qβ/D

∗ is dual to V ∗/Zβ as Gβ module.
Hence Qβ = V ∗D∗. Note that [D∗, Op(Gβ) ≤ Zβ. Suppose that q 6= 2.
Then

[Zα, Qβ] ≤ ([D∗V ∗Op(Gβ), D∗] ∩ Zα)[Zα, V ] ≤ (Dβ ∩ Zα)[Zα, V ]

But Dβ ∩ Zα is � �

For α ∈ Σ let

Σ1(α) = {β ∈ Σ | [Zα, Zβ] 6= 1}

and

Σ2(α) = {β ∈ Σ | [Zα, Zβ] = 1 6= [Zα, V α
β ]}
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Lemma 5.12 Let α ∈ Σ and β ∈ Σ1(α). definitionine L := 〈Gα, Gβ〉,
L∗ := 〈Ω1Z(R)L〉, K := OR({Gα, Gβ}) and L̃ := L/K. For {α, β} = {γ, δ},
put Kγ = CQγ (〈ZGγδ 〉). Then for γ ∈ {α, β} there exists a normal subgroup
Lγ of Gγ such that

(a) [a] [K,L∗] = 1.

(b) [b] K = Kα ∩Kβ and Φ(KαKβ) ≤ K.

(c) [c] Gα = KαLα and Gβ = KβLβ.

(d) [d] Interchanging α and β if necessary one of the following holds (
where q is a power of p.

1. [1] L̃α ∼ L̃b ∼ qnSLn(q).

2. [2] p = 2, L̃α ∼ q1+2nSp2n(q), and L̃β ∼ q1+2+2·(2n−2)SL2(q).

3. [3] p = 2 and L̃α ∼ L̃β ∼ 26G2(2)

4. [4] p = 2 and L̃α ∼ L̃β ∼ q1+6+8Sp6(q).

5. [5] Who knows.

Proof: Note that K is normal in L and K ≤ R, indeed K is the largest
normal subgroup of L contained in R. Let g ∈ K then

[Ω1Z(R)g,K] = [Ω1Z(R)g,Kg = [Ω1Z(R),K]g = 1.

Thus (a) holds.
Let Hγ = 〈ZGγδ 〉, R = [Zα, Zβ] and Dβα = [Zβ, Qαβ .
Note that by (a), K ≤ Kα ∩Kβ also Kα ∩Kβ is normalized by

〈O2(Gα), O2(Gβ), Qαβ〉 = L.

Thus K = Kα∩Kb. So the first part of (b) holds. By definition [Kα, Zβ] = 1
and so Ka ≤ Qβ. Thus Φ(Kα) ≤ Φ(Qβ) ∩Kα. Note that Φ(Qβ) ≤ Φ(Qαβ).
Since Qαβ/Qα is elementary abelian, unless α is symplectic, nα > 1 and
p 6= 2, we get

(*) Φ(Kα) ≤ K and [Φ(Qβ),Hβ] = 1, unless α is symplectic, nα > 1
and p 6= 2.

Note that by definition of Σ1(α), [Zα, Zβ] 6= 1. Clearly ZαZb ≤ Qαβ and
we can apply 5.9 with (δ, γ) = (β, α).
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Suppose that Case c.1 of 5.9 holds. Then Qα ≤ Qαβ = ZαQβ. Since Qα
normalizes Zβ, Hα is generated by two conjugates of Zβ. Thus |Qα/Kα| ≤ q6

and so Qα = KαUα. By 5.10, q = 2 and Uα ∩ Z(Gα) = Uβ ∩ Z(Gβ). Thus
Uα ∩ Z(Gα) ≤ K and |Ũα| = 26. Using [Schur, Schur Multiplier] we get
O2(Gα)/Ua ∼= G2(2)′ also by (*) Gα/O2(Gα)K is elementary abelian. Hence
there exists Lα ≤ Gα with O2(Gα)K ≤ L, Gα = KαLα and Lα ∩Kα = K.
Thus d.3 holds in this case.

Suppose next that Case c.2 of 5.9 holds.
Suppose that nβ = 1. Then [Qα, Zβ] ≤ [Zα, Zβ] ≤ Uα and so [Qα,Hα] ≤

Uα. Also Φ(Qα) ≤ Qβ and so [Φ(Qα),Hα] = 1. Suppose that also nα =
1. Then Hα is generated by two conjugates of Zβ and we conclude that
|Qα/Kα| = q2 and Qα = KαUα. Let I = {1 6= [x, y] | x ∈ Zα, y ∈ Zb}. If
q ≤ |[Zα, Zβ]| < q2 then Uα ∩ Z(Gα) = [Zα, Zb] \ I = Uβ ∩ Z(Gβ) and thus
d.1 holds. If |[Zα, Zβ]| = q2, then [Zα, Zb]\I contains exactly two subgroups
of order q and these two subgroups have trivial intersection. Hence either
Uα ∩ Z(Gα) = Uβ ∩ Z(Gβ) and d.1 holds; or Uα ∩ Z(Gα) ∩ Uβ ∩ Z(Gb) = 1
and d.2 holds.

Suppose next that nβ > 1 and that DβαZα is normal in Gα. Then Aα :=
[Dβα, Qαβ = [DβαZα, Qα] is normal in Gα. Since Qαβ centralizes Aα we get
Aα ≤ Z(Gα). Let Dα := CQα(Op(Gα)). We conclude that Dαβ ≤ UαDα

and Dαβ ≤ DαZαβ . Note that [Qα, Zβ] ≤ Dβα and so [Qα,Hα] ≤ UαDα.
Note that |RAα/Aa| ≥ q and so p = 2 and |Uβ ∩ Z(Gβ)| =q. By (*)

[Φ(Qα),Hα] = 1. Thus |Qα/UαDα| ≤ q. Note that O2(Gα)∩Qαβ centralizes
DαZαβand so we have O2(Gα)∩Qαβ ≤ CQαβ (Dβα) = ZαQb. Note also that
Zβ ≤ Qβ, Gα = O2(Ga)Zβ and Zα ≤ Qα. Thus Qαβ = QαQβ.

If q > 2, then Aa ≤ R and we conclude that Aα = Uα ∩ Z(Gα).
Let γ ∈ βGα with [Zγα, Zβ] 6= 1.

Lemma 5.13 [sigma symmetric] Let α, β ∈ Σ and i ∈ {1, 2}. Then
α ∈ Σi(β) if and only if β ∈ Σi(α).

Proof: For i = 1 this is obvious. Suppose now that β ∈ Σ2(α) but α 6∈
Σ2(β). The ZaZβ ≤ Qα ∩Qb, V α

β 6≤ Qα and V β
α ≤ Qβ.

Lemma 5.14 [vdelta non abelian] There exists an edge (γ, δ) in Γ such
that 〈ZGγδ 〉 is not abelian.

Proof: Suppose not. Let V = 〈ZL〉L ∈ Σ and Q =
⋂
Op(L) | L ∈ Σ. Then

V ≤ Q and so Q 6= 1. Let L ∈ Σ. Then Q =
⋂

(Op(L)∩Op(H) | L 6= H ∈ Σ
and so by 5.7 Q is normal in L. Hence Q is a non-trivial subgroup of R
which is normal in all the LΣ, a contradiction. �
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Some ideas on the rest of the proof. definitionine a relation ≈ on Σ by
L ≈ H if 〈ZHL 〉 is not abelian or if ZL = ZH . This should be an equivalence
relation and L ≈ H if and only if Op(L) ∩ Op(H) is not normal in L. If
L 6≈ H we should have [(R ∩Op(L), Op(H)] = 1. b = 2 ( that is L ≈ H and
ZL ≤ Op(H)) seems to occur only for the G2(3k) situation, and 21+4+6L4(2)

What still needs to be discussed in this section is the consequences of 5.1
for the sets PU i, i = 1, 2, 4. There are some interesting cases: for example
an amalgam if ZL is the 6-dimensional module for L/O2(L) ∼= 3Alt(6) then
L ∈ PU4(R). Same for Alt(6) or Alt(7) on the four dimensional module.

Also it seems possile to enlarge the set PU3 without having to change
the ”b < 3” part of the proof of 5.1. Namely can drop the assumption on
NL(R) containing a point stabilizor one can allow [ZL, L] to be the four
dimensionnal module for SL3(2), This would be usefull for the ¬E! case.
Other exceptional FF -modules could be included to. The properties one
really needs is: no over-offenders and good commutator control. For example
Alt(n) on the natural module should be o.k. This also would be o.k for
D10(q) on the 16-dimensional spinmodule and Ln(q), n ≥ 5 on the exterior
square. But the choice of a ∈ A will cause some problems. Might not be so
important though, maybe we only need

⋂
a∈A Z

a
γ ≤ Ω1Z(Gδ).

6 The C(G,T)-Theroem

Suppose that G fullfills CGT . Then S is contained in unique maximal
subgroupM ofG, but there exists L ∈ L(S) such that L �M and |L∩M |p 6=
1. Choose such an L such that |H ∩ L|p is maximal. Let T be a Sylow p-
subgroup of H ∩ T . Without loss T ≤ S. If T = S we get that L ∈ L(S)
contradicting our assumption M is the unique maximal p-local subgroup of
M . Thus T 6= S. Let C be a non-trivial characteristic subgroup of S. Then
NS(T ) ≤ NG(C) and so |M ∩NG(C)|p > |M ∩L| Hence the maximal choice
of |M ∩L|p implies NG(C) ≤M . In particular, NL(C) ≤M ∩L. For C = S
we conclude that T ∈ Sylp(T ). Then we can apply the

Theorem 6.1 (Local C(G,T)-Theorem) [local CGT] Let L be a finite
Kp group of characteristicp, T a Sylow p-subgroup of L, and suppose that

C(L, T ) := 〈NL(C) | 1 6= C a characteristic subgroup of S〉

is a proper subgroup of L. Then there exists a L-invariant set D of subnormal
subgroup of L such that

(a) [a] L = 〈D〉C(L, T )
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(b) [b] [D1, D2] = 1 for all D1 6= D2 ∈ D.

(c) [c] Let D ∈ D, then D � C(L, T ) and one of the following holds:

1. [1] D/Z(D) is the semidirect product of SL2(pk) with a natural
module for SD2(pk). Moreover Op(D) = [Op(D), D] is elementary
abelian.

2. [2] p = 2 and D is the the semidirect product of Sym(2k + 1) with a
natural module for Sym(2k + 1).

3. [3] p = 3, D is the semidirect product of O3(D) and SD2(3k),
Z(D) = Op(D) has order 3k and both [Z(O3(D)), D] and O3(D)/Z(O3(D))
are natural SL2(3k) modules for D.

For p = 2 the local C(G,T )-theorem was proved by Aschbacher in [Asch].
For general p by GLS?. For us it will be consequence of the ??.
Back to G. Case 3 can be rules out using that NS(T )/T is odd. Let m =

|D| and suppose that m > 1. Let g ∈ NS(T )\T . Then there exists X,Y ∈ D
such that R := [[V,X], [V, Y ]g] 6= 1. Let H = NG(R). Then for all Z ∈ D
with D 6= D, D ≤ NG(R) and since [[V,D], V g] 6= 1, [V,D] 6≤ Op(NLg(R).
Thus [V,D] 6≤ Op(H). Let U = Op(H). We conclude that [Q ∩ T,D] = 1.
Since H is of characteristic p, D acts non-trivially on Q/Q ∩ T .

Let T ∗ ∈ Sylp(H) with NT (R) ≤ T ∗. The maximal choice of |T | im-
plies |T ∗/NT (R)| ≤ |T/NT (R)| = T/NT (X). In particular |U/U ∩ T | ≤
|T/NT (X). Thus T does not normalize X. Let e := |T/NT (X)|. Then there
are at least e− 1 choices for D, each two of whcih commute and each acting
non-trivialy on U/U ∩ T whci has order at most e. This is impossible.

Hence there exists a unique D ∈ D.
Suppose that case 2. holds and n ≥ 3. Then O2(M ∩ L) = O2(L). Let

Q = O2(M). Then T ∩ Q ≤ O2(M ∩ L) ≤ O2(L). On the otherhand the
maximality of |T | implies NQ(O2(L)) ≤ T . Thus NQ(O2(L)) ≤ O2(L) and
so Q ≤ O2(L).

If Q is not elementary abelian that [Φ(Q), D] = 1 implies D ≤ M , a
contradiction. Hence Q is elementary abelian.

Since [Q,O2(D)] = 1 and M is of characteritic p we conclude O2(D) ≤ Q.
Thus [Q,D] ≤ [O2(L), D] ≤ O2(D) ≤ Q and so D ≤ NG(Q) ≤ M . Thus
also L = D(M ∩ L) ≤M , a contradiction.

Suppose that case 2 holds and n = 2. Then we can choose x ∈ [V,D]
so that R := [V g, x] has order two. Also CD(x) is divisible by 3 and
[V,O2(CD(x))], CDg(x)] is not a 2-group. Argue as above we get CD(x)
acts non trivially on Q/Q ∩ T . But |Q/Q ∩ T has order 2 a contradiction.
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Thus Case 1. holds. We have proved:
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