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1 Introduction

2 The Kieler Lemma and Pointsstabilzers

An elementary abelian normal subgroup V of a finite group L is called p-
reduced if any subnormal subgroup of L which acts unipotently on V has
to act trivially. Note that this is equivalent to O,(L/Cr(V)) = 1. Here are
the basic properties of p-reduced normal subgroups.

Comment:due to Thompson? check history

Lemma 2.1 [YL] Let L be a finite group of characteritic p and T' € Syl (L)
(a) [a] There exists a unique mazximal p-reduced normal subgroup Yr, of L.

(b) [b] Let T < R < L and X a p-reduced normal subgroup of R. Then
(XY is a p-reduced normal subgroup of L. In particular, Ygr < YT.

(¢) [c] Let Tr, = Cr(Yy) and LY = Ng(Ty,). Then L = LyCr(Yy), Tr, =
Op(LY) and Y, = 01 Z(T7).

(d) [d] Yr = WZ(T), Zy := (WZ(T)") is p-reduced for L and QZ(T) <
Zr <Yr.

Now let L be any finite group and T' € Syl,(L). definitionine P (T') :=

OP' (CL(QZ(T))). Then Py (T) is called a point stabilizer of L. The follow-
ing lemma ist the principal tool for working with point stabilzers.

Lemma 2.2 [kieler lemma] Let H be a finite group of local characteristic
p, T € Syl,(H) and L a subnormal subgroup of H. Then



(a) [a] [Kieler Lemma] C(QZ(T)) = Cr(Z(T N L))
(b) [b] Pr(TNL)=O"(Py(T)NL)

(c) [e] Cr(Yr)=Cr(Yn)

(d) [}i}]b Suppose L = (L, La) for some subnormal subgroups L1, Ly of H.

(a) [da] PL(TﬂL) = (PLl(TﬁLl),PLQ(TﬂLQ».

(b) [db] For i = 1,2 let P; be a point stabilizer of L;. Then (P, Py)
contains a point stabilizer of L.

The proof of the above lemma is elementary and does not require any
KC-group assumption assumption.
Comment: not all parts of this lemma are really needed

Lemma 2.3 [minimal overgroups| Let H be a finite group and F < H.

(a) [a] Let Iy (F') be the set of all I with F < I < H such that F lies in a
unique mazimal subgroup of I. Then H = (Zy(F')).

(b) [b] Let Ju(F)={I € I¢(F) | F 4 1}. Then H = (Ju(F))Ng(F).

Proof: By induction on |H|. Suppose that F lies in two different maximal
subgroups Mj, Ms of H. By induction, M; = (Zy;, (F')) = (T, (F)) N, (F).

So suppose F' lies in a unique maximal subgroup of H. Then H € 7
and H = (Z). Moreover either F' is normal in H or H € J. In any case
H = (J)Nu(F). O

Lemma 2.4 (Schur multipliers) [schur multipliers]

Proof: [Schur] O



3 Modules

Lemma 3.1 (Point Stabilizer Theorem) [the point stabilizer theorem)]
Let H be a finite group, V a FpH-module, L a point stabilizer for H on V
and A < Opy(L).

(a) [a] IfV is p-reduced, then |V/Cy(A)| > |A/Ca(V)].

(b) [b] If V is irreducible, F*(H) is quasi-simple, H = (A) and A is a
non-trivial offender on V', then M = SL,(q), Span(q), G2(q) or Sym(n),
where p = 2 in the last two cases.

Proof: [BBSM] O

Lemma 3.2 (FF-modules for miminal parabolics) [ff-modules for miminal parabolics]

Proof: [BBSM] O

Lemma 3.3 [spin module| Let H = Spa,(q), V a F,H-module, P a point
stabilizer for H on the natural module, T = O,(P), Z = Z(P) and W an
F,T submodule of V. Suppose that

(i) [i] Vv =WH).
(ii) [ii] [V,T,T]=1.
(iii) [iii] [V,Z] <W < Cy(T).
Let U = ey WMV, T)" and V = V/U. Let h € H with Z £ P". Then
(a) [a] V = [V.Z]Cy(T") = WV, T]", W = [W,T] = C3(T) = Cy(2)
and V=T x W".
(b) [b] If W, H] # 1, then |V| > ¢*" and |V/Cy(T)| > ¢*" .

Proof: Let Y = W[V,T]. Then Y < Cy(T). Note that H = (Z,T").
Since [V, Z] < W we conclude that H normalizes W[V, T]" and so by (i),
V = WV, T]". Also H also normalizes [V, Z]Y" and since W" < Y" we
conclude V' = [V, Z]Y" = [V, Z]Cy(T"). Let X/U = Cy7(Z). Then U <
X NY" Thus H = (Z, T") normalizes X N Y" and so X NY" = U. Thus



ZZ X xzh. Since V = [V, Z]Y" we also get V = [V, Z] x Y". This implies
V,Z|=X = CV(Z)'
Note that

V,Z] <[V, T|<Y < CV(T) < CV(Z)

Now all the inequalities in the preceeding inequalities have to be equal-
ities. So (a) is proved.

To prove (b) suppose that [W, H] # 1. By (a) also [W, H] = 1 and so
we may assume that U = 1.

Suppose first that n = 1 and 1 # z € Z. Since H = (2, T"), Cyn(z) <
U=1.Let 1 #y¢cY" We conclude that |[y, Z]| > |Z| = q and so |W| > ¢
and |V| > ¢2.

Suppose next that n > 1 and let H* = Cy({Z,Z"). Then H* =
Spon—2(q) and Z* = Zk < H* for some k € H. Then P* := PFn H*
is a point stabilizer for H* on its natural module, T* := T* N H* = O,(P*)
and Z* = Z(P*). Since W = Cy(Z) and H* < Cg(Z), W is a F,H*
submodule of W. Suppose that [W,Z* H*] = 1. Let h* € H* with
Z*h" £ pP*. Then [W,Z*] < [V,Z*]N[V,Z*"] = 1 and so [W, Z*] = 1.
Thus Cy(Z) = W = Cw(Z*) and so P and P* normalize W, a contradci-
tion since H = (P, P*). Thus [W, Z*, H*] # 1. Let V* = ([W, Z*]%"). Then
by induction [V*| > ¢"'. Since V* < W and |V| = [W|? we get [V| > ¢*".
O

We remark that ( for example by [BBSM]), V' from the preceeding lemma
must be a direct sum of spin-modules for H.

Lemma 3.4 (H1 of natural modules) [hl]

Proof: [BBSM] O

4 The Baumann subgroup

For a p-group R we let PU1(R) be the class of all finite groups L containing
R such

(a) [a] L is of characteristic p,
(b) [b] R = Op(NL(R))

(c) [c] NL(R) contains a point stabilizer of L.



Let PU2(R) be the class of all finite groups L containg R such that L is
of characteristic p and

L=(Ny(R),H|R<H<L,H e PU(R)).
Let PU3(R) be the class of all finite groups L such that

(a) [a] L is of characteristic p.
(b) [b] R< L and L = (RL)

(c) [e] L/CL(YL) = SLn(q), Sp2n(q) or G2(q), where g is a power of p and
p = 2 in the last case.

(d) [d] YL/Cy, (L) is the corresponding natural module.
(e) [e] Op(L) < R and Np(R) contains a point stabilizer of L.
(1) | If L/CL(YL) % Ga(q) then R = Op(Ny(R).

Let PU4(R) be the class of all finite groups L containg R such that L is
of characteristic p and

L= (Ny(R),H | R < H < L, H e PlUs(R)).

Let B(R) = Cr(11Z(J(R))), the Baumann subgroup of R. Recall that
a finite group F is p-closed if O'F = O,(F).

Lemma 4.1 (Baumann Argument) [baumann argument]| Let L be a
finite group, R a p-sugroup of L, V := Q7Z(0,(L)), K := (B(R)F), V =
V/Cy(OP(K)), and suppose that each of the following holds:

(i) )] Op(L) < R and L= (J(R))NL(I(R)).
(i) [ii] Cx (V) is p-closed.

(ii) [iii] |V /Cy(A)| > |A/CA(V)| for all elementary abelian subgroups A
of R.

(iv) [iv] IfU is L/O,(L) module with V < U and U = Cyy(B(R))V, then
U = Cy(OP(K))V.

Then Op(K) < B(R).



Proof: Let T = Op(L), L = L/C(V) and Y = Q1 ZJ(R). Let A €
A(R). Since A € A(R) and V <T < R, |V/Cy(A)| < |A/C4(V). By (ii)
CA(V) = ANT and so also C4(V) = ANT. Thus (iii) implies |V/Cy (4)| =
|A] = JAJANT|and so V(ANT) € AR)NA(T). Thus Y < V(ANT) <
T. Put W = (YX)V. We conclude that W < QZ(J(T)) and so W is
elementary abelian and (A NT)V centralizes W. Hence W < (ANT)V
and W =V(ANW) =VCy(A). It follows that A centralizes W/V. Since
A was arbitray in A(R), (J(R)Y) centralizes W/V. Since Y = 0 Z(J(R),
Nr(J(R)) normalizes Y. So by (i) also L normalizes YV. Thus W = YU
and [W,T] = [Y,T] <Y. Since L normalizes [W,T] we get[W,T] < Cy (K).
Let D = Cy(OP(K)) and U = W/D. Then T centralizes U. Since V 2
VD/D and U = YV/D, we can apply (iv) to conclude that W = DV and
U=2V. Since A € A(R), [W/W N A| <|A/Ca(W)| =|A/ANT|. One the
otherhand by (iii), |[A/ANT| < |V/Ce(A)| = |U/Cy(A)| < [W/Cw(A)D].
Thus |W/Cw(A)| < |W/Cw(A)D| and D < Cw(A). Hence [D,A] =1
D <Y and [D,K| = 1. Therefore [W,0,(K)] < [D,K][V,T] =1 and so
O,(K) < Cr(Y) = B(R). O

Lemma 4.2 [pu2(R) in pu4(B(R))] Let R be a p-group. Then PU(R) C
PUL(B(R)).

Proof: Let L € PU2(R). Since Ni(R) < NL(B(R)) we may assume that
L € PUi(R). Set P = Ni(R). If P < H < L, then clearly H € PU;(R).
By 2.3(a) L is generated by the H < L such that P is contained in a unique
maximal subgroup of H. If H € PU4(B(R)) for all such H, then by the
definition of PU,4 also L € PU4(B(R)). Hence we may assume from now on
that

1) [1] P is contained in unique mazximal subgroup H of L.

Let D be the largest normal subgroup of L contained in P. Then [D, R] <
[P,R] < R and so [D, R] < Op(D) < Oy(L).

Choose T' € Syl,(L) with Pr(T) < P. Then R < Op(Pr(T) < Op(Cr(MZ(T))
and [R,CL(Z1)] < O,(CL(Z1)) = Op(L) < R. Thus Cr(Z1) < Ni(R) < P.
We proved:

2) [2] [D,{RE)] < O,(L) and C(Z) < D

If J(R) < D, then J(R) = J(Op(D)) andso J(R) 4 H. Thus [Z,J(R)] =
1 and so also [Zr,B(R)] = 1. So by 112, B(R) < D and B(R) = B(O,(D)).
Thus B(R) < H and so H € PU4(B(R)).



So we may assume that J(R) ¢« D and so by 112 [Zr,J(R)] # 1. Let
K = (J(R)Y), L = L/CL(ZL) and Z, = Z1/Cz, (OP(K)). By ?7 there
exists a L-invariant set of normal subgroups K;, 1 <4 <[, in K such that

(3-) K; = O¥(K;),

(3-ii) K = K1 x K3 x ... x K,

(3-iii) Zp, = [Z1, K1) x [Z1, K2 x [Z1, K],
) K

(3-iv = SLn(q), Span(q), G2(q) or Sym(n), where g is a power of p, p = 2

in the last two cases and n = 2,3 mod 4 in the last case,

(3-v) [Z1, K] is the natural module for K;,

(3-vi) T(7) = (R N ) % ... x (W N K
It is now easy to see that L = FNZ(W
By 112 Op(CL(ZL)J(R)) = Op(L)J(R) and so J(R) = J(Op(CL(ZL)I(R))).
Thus N7 (J(R)) = NZ(J(R) and so
3) [4] L =KNr(J(R)).

Suppose that K < H. Then by rrl and rr4 J(R) is normal in L and
J(R) < Op(L) < D, a contradiction to the assumptions.

Thus K ¢ H. Pick j with K; £ H. Then by 1) L = (K;, P) = (K")P.
Thus <KJP)J(R) is normal in L. So P acts transitively on {Kj |
and L = KP. By 2) [CL(Z1),J(R)] < Op(L) and so Cr(Zr), K
Hence Ck(Zr) is p-closed. Also Ck(Z1) = C’K(ZVL)

Note also that B(R) < KO,(L) and so (B(R)¥) = K B(R).

Suppose that B(R)O,(L) = O,(PN KO,(L)) or that K; = G2(g). Then
it is easy to see that the assumptions of 4.1 are fulfiled. We conclude that
O,(K B(R)) < B(R). Moreover, either K; = Ga(q) or B(R) = O,(P N
K B(R)). By 2.2(a)

CKZ-(QIZ(T N Kj B(R))) = CKj (le(T N Kz)) = CKj (91Z(T))

and we conclude that P N K; B(R) contains a point stabilizer of K;B(R).
Suppose in addition that K; % Sym(n ) n > 7. Then K; B(R) € PU3(B(R)).
Also P < Np(B(R)) and L = (P,K;B(R) | 1 < i < [) and so L €
PU4(B(R)). o

Suppose now that K; 2 G(q) and either B(R)O,(L) # O,(PNKO,(L))
or K; = Sym(n), n > 7. Put ¢ := 2 in the second case. Then K; = Spa,(q)



or Sym(n) and |B(R)/O,(K; B(R)| = q. Hence there exists a subgroup D; of
B(R) € Syl,(D;). Thus D; € PU3(B(R)). Moreover, K; = (D;, Nk,(B(R)))
and so L = (D;, N..(B(R)) | 1 <i <n. Thus again L € PU4(B(R). O

Lemma 4.3 [P(T) in PU4(B(T))| Let P be a finite group of characteris-
ticp. LetT € Sylp(T) and suppose that T lies in a unique maximal subgroup
of P. Then either Z;, = Q1Z(L) or P € Py(B(T)).

Proof: Suppose that [J(T'), Zr] = 1. Then also [B(T), Z1] = 1 and so by
the Frattinargument L = CL(Z)Nr(B(T)). Since L is minimal parabolic,
L =Cr(Z1)S or B(T) is normal in L. In the first case Z, = Q;Z(L) and in
the second case L € PU4(T).

So we may assume that [B(T), Zr] # 1. Using 3.2 we can argue just as
in 4.2. O

5 A solution to the principal amalgam problem

Let R be a group and 3 a set of groups containing R. Then

Or(2) = (N <R|N<ALVLeY)
So Or(X) is the largest subgroup of R which is normal in all the L € .

Theorem 5.1 [simultanous pushing up| Let R be a finite p-group with
R = B(R) and ¥ a subset of PUz(R). If Or(X) = 1, then one of the
following holds

(a) [a] who knows

The proof will be achieved in a long sequence of lemmas. Let G* be the
free amalgameted product of the ¥ over R. We view L € ¥ as a subgroup
of G*. Let I" be the graph with vertices G* and edges (L1g, L2g), g € G*,
L1 # Lo € 3. Note that G* acts on I' by right multiplication. For o € T let
Go={9€G |a=0a%}, Qo =0,(G,) and Z, = Zg, and U, = [Z,, G4
For an edge (a, ) let Qo = Go NGg and Zyp = Q1 Z(Qap. Let A(a) be
the set of neigbors of o and GQ) =Gy N ﬂBEA(a) Gg. Let Uy = [Za, Gal.
Then by definition of T and of PU3(R).



Lemma 5.2 [basics of pushing up]

(a) [a] Go = LY for some L € ¥ and g € G*, and G4 is of characteristic
p.

(b) [b] Go = GQ/CGQ(ZOA) = SLna(Qa)>Sp2n(Qa) or G2(Qa); da @ power
of p.

(¢) [¢] Za:=Za/Cz,(Ga) is a natural module.
(4) [d] Qap = B(Qap) and Go = (QL5)
(¢) [e] Pag:= Ng,(Qup) contains a point stabilzer of Ga.
(f) [f] If Go 2 Ga(q) then Qap = Op(Pag).
Next we show

Lemma 5.3 [more basics of pushing up]

(a) [&] Zap < Zo = NZ(Qa)

(b) [b] Cg.(Za) = Qa-

(c) [c] Qu=GY.

(d) [d] One of the following holds:

1. 1] UaNZ(Gy) =1, that is Uy is the natural module.

2. [2] Go = Span(q) or Ga(q) and U, is a quotient of the natural
O2n+1(q)-module for Gy, (where n = 3 in the Ga(q)-case).

(¢) [e] Forall H<Ga, Cg(H)=Cyz,(H).

(f) f] Let T € Syl,(Pap) and v € DZ(T) with x ¢ NWZ(Gy). Then
Ca, (x) = OV (Pag).

(a) follows from 5.2(d),(e) and 3.1.
Let T € Sylp(Paﬁ). Since CGQ(Za) < 000(91Z(T)) < Pag = NGQ(Qaﬁ)
we get

[Ca(Za), Qapl < Ci.(Za) N Qap) < Op(Ca, (MZ(T))) < Qa



Thus 5.2(d), [Ca, (Za), Ga] < Qu. we proved this before, should have been
recorded

Thus (b) follows from 2.4 and 5.2 (d).

By 5.2(f) Qo < Qup = Go N Gg. So (c) holds.

(d) follows from 3.4, and (e) follows from (d). Finally (f) follows from
(b),(e), and 5.2 (c),(e). O

We say that 8 € I is symplectic if Gg = Spa,,(g) with n > 2, 3 is linear
if Gg = SL,(g) and (3 is a hex if Gz = G2(q). Let a € A(3). definitionine

o [Za, Qap)  if v is symplectic.
B = Za otherwise.

Put

Aa,B = [Xa67 Qaﬁ]

Lemma 5.4 [agammadelta] Let («,3) be an edge in I'. Then Ayp <
91Z(Qa5) < le(Qﬁ) < Zﬁ and Aaﬁ ﬁ Z(Ga).

Proof: Readily verfied. O
Lemma 5.5 [offenders on xgammadelta] Let (o, 3) be an edge in T,
D =X, or D= Z, and B < Q.g be a non-trivial offender on D

(a) [a] |[D/Cp(B)|=|B/Cp(D)|.

(b) [b] One of the following holds:

1. 1] [D,Qug] < [D, B).
2. 2] «ais a symplectic, D = Z, and [D, Cq,,(Xap)] < [D, B].

(¢) [c] One of the following holds

1. 1] [D,B,Qap) = 1.
2. 2] «ais symplectic, D = Z, [Xop, B] # 1 and [D, Qap, Qapl = Aas-

Proof: This follows easily from the action of @, on D O

Lemma 5.6 [agd in zgd| Let (o, B) be an edge in I' and suppose that Zg <
Qa-

10



(a) [a] If Xop £ Zs then App < Z(Gp).

(b) [b] Suppose « is symplectic and that N is a normal p-subgroup of G
with [Xop, N| = 1. Then [Z,, N| < Z(Gp).

Proof: For the proof of (b) we may assume (a) has been proved and that
[Zo, N # 1.

We prove (a) and (b) simultaneously. For the proof of (a) let Dy = Xo3
and U = Qg. Note that D, also depends on 3 but 3 will be fixed throughout
the proof. For the proof of (b) let D, = Z, and U = N. Let Ay = [D,,U].
From the definition of A, we obtain:

1) [1] Ao < Zag
Next we show:

2) [2]  Let B < Qqp and suppose that B is a non-trivial offender on D,,.
Then Ay < [Dq, Bl N Zyg.

By 1) we only need to show that A, < [Dg, B]. We apply 5.5(b) with
D,. If 1. holds we have A, = [Dq,U] < [Dq,Qag) < [Da, B] and we are
done. Suppose that 2.holds. Then D, # X, and so we must be in the
proof of (b). So U = N < Cq,,(Xag) and again A, < [Da, B].

3) [38] Let B < Qg and suppose that B is a non-trivial offender on D,,.
[DOM Ba QO&,@] S le(Gﬁ)

We apply 5.5(c). If 1. holds we are done. So suppose 2. holds. Then
we are in the proof of (b), [Xo3,B] # 1 and [Dg, B, Qas] = Asp. Since
B < Qg, we get Xog £ Zg and so by (a) Aag < Z(Gg) and 3) is proved.

Since Qo3 = B(Qap) and CGﬁ(Zg) = Qp we have [Z3,J(Qq8)] # 1.
Thus there exists A € A(Qqp) with A £ Q3. Let a € A with a ¢ Qp. If 8
is a hex we choose a such that in addition Cz,(a) = Zag. Let v € a8 with
Zop N Zyg = 7Z(Gg) and a ¢ Pg,. The choice of a implies

4) [4] Z,5 N 2% = M Z(Gp)

Suppose first that
(+) [Dy, DY) # 1.

11



Then by 5.5 Dj is an offender on D. and vice versa. So by 2) applied to
(D3,7) in place of (B, )

Ay < [Dy,D5IN Zyp5

By 3) applied to (D,,v*) in place of (B,«) we have [[D'y“aDw]?Q%] <
Z(Gp). Hence 5.3(f) implies Zg N [Dya, Dy] < Z95 and thus

Ay < [DW‘l?D’Y] N Zvﬁ) < Zyg N Z% < QIZ(GB)

and we are done in this case.
Suppose next that
(xx) [Dy,DJ] = 1.

Set B :== ANQp and C := Cg(D,). Then ZgB € A(Qp) € A(Qup)-

Since Zg centralizes Z,, B is an offender on D,. Since A is abelian and
C < B < Awehave B= B%and C = C®* Thus C = C’B(Dg) and C
centralizes DfJ. Since by assumption Zg < Qq we get Zg < Q7. Thus by
(**) ZsD,C centralizes D. By 1) ZgD,C € A(Qp) and we conclude that
DY < Z3D,C. By symmetry in v and v* we conclude ZgD,C = ZgD5C.
Thus

(D, B] = [Dy, B].

Suppose that B does not centralize D. Then by 2) applied to v in place
of a, Ay < [Dy, BN Z,5. From D, B] = [DS, B] and 3) applied to 7% in
place of a we get [D,, B, Q% 5] < Z(Gg) Now as in the (*) case Ay < Z(Gp)
and we are done.

Suppose next that B centralizes D,. Then also ZgB centralizes D, and
so D, < Z,B. Since a centralizes B we conclude that D,Zg = Dng. Hence

Ay =[Dy, U] = [DyZ3,U] = [ng Ul = Aye < Zyp 0 nylﬁ < Z(Gp)
and we are also done in this final case. O
For adjacent vertices a, 3 let V4 = <Z6G‘*>.

Lemma 5.7 [qgamma cap qdelta normal] Let (§,«) be an edge of T
and suppose that Vaﬁ and Vﬁa are abelian. Then Qo N Qg is normal in Gq.

Proof: Choose A, a and ~y as in the proof of 5.6. Assume that Q. N Qg
is not normal in G. By conjugation ), N Qg is not normal in G, and so

QN Qs # Qs N Q- for some § € . Then [Q, N Qp, Zs) # 1.

12



If possible, choose ¢ such that [Q, N Qg, X5,] # 1. In this case put
Dy = Xg,.
If not possible, put N = ((Qq ﬁQg)Gw and Ds, = Zs. Then [Xg,, N] =

Note that Z,, < Vg and so Z, < Qg. Thus we can apply 5.6 and to (3, 7)
in place of (o, ). We conclude that A, := [Ds,, QaNQg| < 1 Z(G,). Since
Ay £ MZ(Gs) and 6 € B9 we get A, £ QZ(Gp). Since Z%' N Zyy <
MZ(Gp) we have

1) 1] A, <NZ(Gy) and Z5;4 z Ay £ Z8

From the definition of D, and 5.5(b) we deduce

2) [2] Let F < Qs be an offender on Dsy, then Ay < [Ds., F.

Let B=ANQgand C = BNQ,. Then ZgB and ZgZ,C are in A(Qs,).
Next we show

3) [3] Dsy < Z[gZ’yC for all b € ﬂG“f with [Q/g N Q’WDWS] # 1.

Assume that [C, Ds,] = 1. Since Vf is abelian, Z,Z3 centralizes Zs and
so also Ds,,. Since Z3gZ,C € A(Qs,) we conclude that 3) holds in this case.
So assume for a contradiction that [C, Ds,] # 1 and put D = Cc(Ds,).
Then by 2), A, < [C, Ds,| and by 5.5(a) E := ZgZ,Ds,D € A(Q~).

We will show that [E, Df | = 1. Since Vfa is abelian, Df. centralizes Zg.
Suppose that [D§. , Z,] # 1. Since Vg is abelian, Z, < Qg N Q5. From
5.5(a) we conclude that Z, is an offender on Ds, and vice versa. By 2)
AS =Dy, Zy] < Zyp, a contradiction to 1).

Thus [ng’ Zy] =1 and D, < QpN Q. By symmetry Ds, < Qp N QF.
Hence by 5.5(a) Dsy and Df are offenders on each other.

Suppose that [Ds,, D | # 1. Then by 2) A, < [Ds,, D§.| < Z15, again
a contradiction to 1).

Thus [Ds,, D§ ] = 1. Since D centralizes Ds, and since D = D?, D
centralizes Df . Thus E centralizes D75 and so DJ; < E. Note that C'is a
non-trivial offender on Ds, and so by 2) A, < [C DM Since a centralizes
C we get

Ai <[C, Dg'y] <[C,E]=C, D’Y5] < Zyp

contradicting 1). This completes the proof of 3).
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Suppose that B # C, that is B £ Q. By 3) [B, Ds,| < [B, Z,] < Z, and
so B < Ng. (DsyZ,). In particular, B normalizes Cg_(Djs,). Let p € 8%
with [Qg N Q~, Dpy] = 1. Then

[Q’WB] < [QwQﬁ] < Qﬁ N QW < CQ”/(DP'Y>

So B mnormalizes Cq,(D,y) . It follows that B normalizes Cq. (D) for
all 7 € 9. Since B £ Q, we conclude that Cq (Dg,) is normal in
(B“)Qg, = G~. But then

Qﬁ N Q’Y S CQ’V(Dﬁ'Y) = CQ'Y(D/B(;)

a contradiction.

Thus B = C. So B centralizes Z, Z, < ZgB and by 2) Ds., < ZgB.
Since A centralizes B, we conclude that A normalizes Z,Z3 and Ds,Zg.
But then A also normalizes QN Qg and [Q,NQg, DsyZg|. Since this latter
group is A, we get a contradiction to 1). [l

Lemma 5.8 [zalpha offender| Let («,3) and (v,d) be edges in T such
that ZoZs < Qap N Qsy and [(Zo, Zs] £ 1. Then

(a) [a] Z, is an offender on Zs and vice versa.
(b) [b] [ZaQs/Qs| = [Z5Qa/Qul-
(¢) [e] Ga=(Z§")Qa-

Proof: (a)and (b) follows from the fact that 0,3 contains no over-offender
on .

Note that OP(Gy)Qa = Go unless G, = SL(2),SL2(3),Spa(2) or
G2(2). In each of the four exceptionell case OP(Gy)Qq has index p in G, and
Qap N OP(Go)Qq contains no non-trivial offender on Z,. Thus (c) follows
from (a). O

Lemma 5.9 [critical pairs| Let (o, 3) and (v,9) be edges in I such that

VAVA IS Qaﬂ N Qéﬁ/ and [Zou Z§] 7é L.
Then q := qo = q3 and one of the following holds.

1. [1] Ga = Gs=Ga(q).
2. [2]
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(a) [a] Go = Spon,(q) and Gs = Span,(q)
(b) [b] |ZOcQ5/Q6| = |Z§Qa/Qa’ =4d.
(c) el [Za,[Zs; Qyell = 1 and [Zs, [ Za, Qapl] = 1

(a) [a] Ga = Span,(q), Gs = Spans(q), nayns > 2,
[b] 1Z0Qs/ Q5] = 125Q0/Qal = q2;

(©) [e] [Xag, Xa) = 1.

(d) [d] One of the following holds:

1. 1] [Xag, Zs] = [Xsy: Za), Ua is the natural module for G, and
Us is the natural module for Gs.

2. 2] q=2, [Xag, Zs) # [Xsy, Za) and Uy N Z(Ga) = Us N Z(G)

4. [4]
(a) [a] Go = SLy,(q) and Gs = SLy,(q)
(b) [b] |[Za, Zsl| = q.

5. [B] After interchanging (o, 3) with (8,7) if necessary:

(a) [a] Go = SLy, (q), na >2 and Gs = Spay,(q), ng > 1
(b) [b] |ZaQs/Qs| = |Z5Qa/Qal = q,

(c) [e] [Xsy,Za] =1
(d) [d] [[Za; 2] = q

Proof:

Let Ins = {|[Za,¥]l | 1 # y € Z5Qa/Qa and Jos = {|[z,Zs]| | = €
Za\ Cz,(Zs)

By ??(2?) implies |[Zq,y]| = |Za,y]| and |[Z, Zs]|, for all y € Zs and
T € Z,. definitionine the positive integer kas by [Za/Cy(Z5)| = g% and
note that

= ZaQs/Qs| = Z5Qa/Qul = g5

Also Zs is a quadratic offender on Z, and the action of G, on Z; implies:
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Ga Ia5 Ja5

Ga(4a) {az ao} | {a2 aa}
SLy,.(qa) {92} {qa}
Sp2na (Qa)a ka5 =1 {qOé} {qoé}

Spong (@) kas > 1| {da, 2} | {da, gk}

Note that the definitions of I,5 and J,s imply I,s = Jso. This allows as
to relate G, and Gs. In particular we see that

q:=qa=qs and k:=kas= ksq.

Furthermore, G, = G2(q,) we conclude that also G5 = Ga(gs) So (a) holds
in this case.

If Go & SLy,(ga) and ng > 2, we get Go = SLy,(qs) or Span,(gs). In
the latter cae we get k = 1. In any case since no > 2, |[Zq, Z,]| = ¢ and so
(4) or (5) holds.

If Go = Spon,(q) and Gs = Sp,, (q) we get k € {1,2}. If k =1, (2)
holds.

So suppose that k = 2. Then clearly nq,ns > 2. We will show that (3)
holds. We already prived (3)(a) and (b). Also both [X,3, Zs| and [Xsy, Za|
have order g. It follows that X,3Qs/Qs5 is the unique full transvection group
in Q,s/Qs and thus (3)(c) holds.

If ¢ > 2, then |[Xs,, Za]| = ¢ implies that U, is a natural module and so
also [Xag, Zs| = [Za, Xsy| = Ua N Zag. Thus (3) holds in this case.

So suppose that ¢ = 2. Note that Uy N Zog = [Xag, Z5)[Za, X54]. If
[(Xag: Zs| = [Za, Xs] we conclude that U, is a natural module and (3) holds.
If [Xog, Z5] # [Za, Xsy] we get that Uy N Z(Gy) is the unique subgroup of
order two in [Xag, Zs][Za, X54] distinct from [X,g, Zs] and [Z,, X5s,]. The
same is true for Us N Z(Gs) and again (3) holds. O

Lemma 5.10 [q=2 for g2(q)] Let (o, 3,7,0) be as in Case 1. of 5.9.
Then g =2 and Uy, N Z(Go) = Us N Z(Gs).

Proof: The following argument is taken from [MS].

Let R =[Zy,Zs) and X = R\ {[z,y] # 1 | v € Zy,y € Zs]}. Then it is
not too difficult to see that X = Cy, (Go) = Cy,(Gs). We will compare the
actions of U, /X on Us/X as seen in Gs with the action of Us/X on U,/ X
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as seen in G,. Let F,, = Endg, (U,/X). Then F, is a field isomorphic to
GF(q).
Let
Kso = {Cus;(y) | Yy € Za, Us N Qu < Cy;(y) < Us}.

and similarly define K,s5. If A € K, then Cy, A) # Uy NQs and Cy, (A)/R
is a 1-dim. Fy-subspace of U,/R. Also Cy,(A) = Cy,(a) for all a €
A\ Qn. So CUQLA) € K,s and we obtained a bijection between K,s and

Ksq. Moreover, A is a long root subgroup of G,,. Let t € Z, with [t, A] # 1.
We show next that

(*) [t,A]X/X is a 1-dim. F, and Fg subspace of R/X and a

Clearly it is a 1-dim Fs- subspace. Let P = Cg,(A). Then W :=
Ua/Cu, (A) is a natural module for P/O,(P) = SLy(q). Let t* be the image
of t in W. Then S := Cp(t*) is a Sylow p-subgroup of P and so of Gi.
Since S centalizes [t, A] we conclude that [t, A]JX/X = Cy,/x(S), which is
a 1-dim. F,-space.

The preceeding argument also shows that every 1-dim. FF, subspace of
[Ua, A]X/X is of the form [t, A] for some ¢t € Z,. Moreover each 1-dim. F,
subspace of R/X is contained in [U,, A]X/X for some A € Ks,. Thus (*)
implies

(**)  The F, and F; subspaces in R/X coincide.

Let Wog = [Ua,op(Pa@)]X and Uypg = CUQ(Op(PaB)' Then Uaﬁ/X is a
1-dim. F, subspace of R/X. Moreover, Uys < [Uy, A|X for all A € Kg,.
Considering the action of U,Qs/Qs on Us/X we conclude that Uyg = Usys.

Fix z € Uy \ Wap and define Y/Us, := Cy,y; (2). Then Y/R is 1-
dimensional Fs subspace of Us/R. Since [Y,z] < Usy = U,s we also have
Y,Fo2X/X] < Uys. Since [2,Qqp]R = Wy, the Frattin-argument shows
that L := Cp,,(2R/R) has a quotient SLa(q).. Since L normalizes Y, we
conclude that YQ,/Q, is a short root subgroup of G,.

Hence there exists a subgroup M of G, with YQ,/Qo < M and M =
SLy(q). Note that for all t € Y, [t,Y]X/X is an Fs-submodule of R/X.
Hence [¢t,Y]X/X is also an F,-submodule of U,/X. But this implies that
Uy/X is as an F,M-module the direct sum three isomorphic natural mod-
ule. But this implies ¢ = 2. ( For example let P be a mimimal parabolic
of Go/Qa with M as a Levi complement, Vi = Cy, /x(Op(P)) and Vo =
[Ua/X,0p(P)]/Vi. Then O,(P)/®(O,(P)) is isomorphic to a F,-submodule
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of Homgy, (V2, V7). Since V5 and Vj are isomorphic F,M modules, we con-
clude that every composition factor for M in O,(P) is either natural or
trivial. Thus ¢ = 2.

Comment: a quote from [BBSM] would be more appropriate [

Lemma 5.11 [b=1 sigma=2] Suppose that || = 2, ¥ = {«,[} and
[Za,Z3) # 1. Then for v € ¥ there exists K, < QWZ(Gy) and L, < G,
such that G = K x L, and one of the follwing holds.

1. [1] Lo~ Lg~ q"SLy(q) and |K.| = Kg| < q.

2. [2] p = 2 and (after interchanging o and [ if necessary), Go = Lo ~
q1+2nSp2n(q); Gg — Lﬁ ~ q1+2+2-(2n72)SL2(q>_

[4] p=2and Go = La ~ Gp = Ly ~ q" """ %Sps(q).

[5] p#2, Lo~ Lg~ q*"Span(q), n>2 and |K,| = |Ks| < q.

2B S S N

6] ¢ =2, Gy ~ 2728py,(2) and Gz ~ 21F2HLImALmA2k G, (2) for
some m, k with m+k=n—2 and k even.

7. [7] who knows

Proof:

By assumption, [Z,, Zg] # 1. Clearly Z,Zg < Qap and we can apply
5.9 with (0,7) = (5, «).

For {7,8} = {a, 8} define H, = (Z;"). Let R = [Za,Zg], I = {1 #
[z,y] | x € Za,y € Zp} and D, = Cq, (OP(G,)).

We devide the proof in a series of Steps.

Step 1 [da cap db] D, N Dg = 1.

Proof: This holds since D, N Dg is normalized by G, = OP(Go)Qqp and
Gp = OP(Gp)Qags- O

We call a non-abelian if « is symplectic, p # 2 and n, > 2. Otherwise
« is called abelian.

Step 2 [abelian]

18



(a) [a] o« is abelian if only if Qup/Qq is elementary abelian.
(b) [b] If a is abelian, then ®(Qg) < Dg.
(c) [c] If a and B are abelian, then QN Qy is elementary abelian.

Proof: (a) is obvious. If ®(Qs3) < Qq, then Z, centralizes ®(Q3) and so
®(Q4) < Dq. Thus (b) holds.
Since ®(Qo N Qp) < 2(Qu) N P(Qp), Step 1 and (b) imply (c). O

Step 3 [b=1 case 1] Suppose that 5.9(1) holds. Then 5.11(3) holds.

Proof: Note first that Qo < Qug = ZoQg. Thus Qn = Zo(Qa N Q) and
Step 2(c) implies that @, is elementary abelian. Thus by 5.3(a), Qn = Za.
By 5.10, ¢ = 2 and

Uy, N Z(Ga) = Uﬁ N Z(Gﬁ) < D,nN DB = 1.

Thus |U,| = 2°.

By [Schur, Schur Multiplier] we get O%(G,)/U, = G2(2)'. Since G, =
QaZ30%*(Gy) and [Qa, Zg] < [Ua,Zs] < Us < 0% x G,) we get that
Go/O?(G,) is elementary abelian. Hence there exists L, < Gy with G, =
Dy x Ly and Ly, ~ 2°G5(2). Since D, < Zag and Dy N Dg = 1 we have
|Da| < |Zap/Dg| = 23, a the proof of Step 3 is complete. O

Step 4 [b=1 case 2] Suppose that 5.9(2) holds. Then

Proof:

Let Da,@ = [Zou Qa,@] and Aaﬁ = [Daﬁa Qa,@] < Za,@-

We will show first
1) 6] [Dga,Qal < UZ(Gy). In particular, either Dgo, < Zo or Agy <
MZ(G,).

Choose 0 € % with [Zsa, Z] # 1. If [Dsa, Dga] # 1, then

[DﬁouQa] < Aﬂa = [DﬂaaDEa] < Zozﬁ N Za6 < le(Ga)

So suppose that[Dso, Dgo| = 1. Then [Dso,Zg < Zog < Zo and so
DgaZq is normal in G = (Qas, Zg). Hence also [Dgq, Q4] is normal in G,,.
Since Qqp centralizes Dg, and G, = <Qg§>, the first statement in 1) hold.
If [Dga, Qa] = 1 then since Q17Z(Qq) =1 we get Dy < Zo. If Do, Qo] # 1,
then Agy = [Dga, Qo) < Z(Gy), completing the proof of 1).

Next we prove:
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2) [7] If [Dga, Qo] =1, then Dgo < ZoaNQp = DapZnpg3.4 implies .
By 5.3, Dgo < Zo. Also Dg, < Z3 < @ and so 2) holds.
3) [8] Ifpis odd, then 1. or 5 of 5.11 holds.

If [Dga,Qa) # 1, then by 1), R = Agy = [Dga,Qal < Z(G4) a con-
tradiction. Thus [Dga,Qa] = 1 and by 2) Dgy < DogZag. By sym-
metry Dog < DgoZog. Hence Zo N Zg = Zo N Qg = Zg N Qn. Thus
ZaNZ3/Zap = q*™ 2 and ng = np. Since Qn < ZoQp we get that QnN Qg
is elementary abelian, Qo = Z, and Q3 = Z,. Also Dy < Z(Ga), Do < Zog
and D, N Dg =1. Thus |D,| < ¢. Hence 5. holds and 3) is proved.

We may assume from now on that p = 2. Set D = D,gDg, and T' =
CQ.s(D). By 77 Qo N Qg is elementary abelian. Since Cq,,(Dag = Z5Qa
we have T' = Z,Z3(Q4 N Q). Since p = 2 we conclude that

4) [10]  A(T) ={Za(QaNQp), Zs(Qa N Qp)}

Let A € A(Qap). Then Ca(Dyg)Dag is in A(Qap. Then Cy(D) €
A(T) and so Ca(D)D = Z,(Qa N Qp) for some v € {a, F}. In particular,
Ca(D)D < Q4. Let {a,B8} = {v,6}. Since E := C4(Dsy)Dsy € A(Qap:
E is an offender on Z,. Moreover, Cg(D) < Ca(D)D < @, the action
of Qs on Z, implies £ < Q,. Since E € A(Qqg we conclude, Z, < E.
Thus [Zy,A] < [E,A] < [Dsy, A]l. Suppose that [Z,, A] # 1, then also
[Zy,A] £ Z(Gy) and 1) implies [Dsy, Q] = 1. By 2), we get D5, < D525,
so Z, < AD.sZys and thus Z, = Cz (A)D,s. This implies [Z,, A] = 1. So
[Z,,A] =1and A < Q.. Hence

5) [11]  A(Qap) = A(Qa) U A(Qp).

Since Qup = J(Qap) we conclude Qg = J(Qa)J(Qp). In particular
Qa < J(QOL)QB and so Qa = J(Qoa)(QamQﬂ)~ Since Za(QaﬂQB) € A(Qaﬁ)
we get Qq = J(Qy). Thus

6) [12] Qo =J(Qu), Qs =J(Qp) and Qup = QuQp.
Let A € A(Qa). Then Z, < A and Ca(Dga)Dga = Zo(Qa N Qp). Thus

Qa N QB = (Aﬂ Qﬁ)Dﬁa and [Qa ﬂQ,@vA] = [D,Bch] < Aﬁa < Z,@-
So

7) [13] [Qa N Qﬁ> Qﬁ] < Aaﬁ and [Qa N Qﬁ: Qaﬁ < AaﬁAﬁa < Zozﬂ
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Let C/Q\g = Qp/Zs. We conclude that

8) [14]  [(Qu N Q5)Z5.Qal = 1 and [Q5,Qu] < Qo N Qs
We will now prove

9) [9] Suppose p = 2, and DgaZy is normal in G, then 1. or 2, of
5.11 holds.

 Since [Qa, Zg] < Dpga and [Dga, Zg] = 1 we get [Qa, OP(Ga)] < Zq. Let

Q,, = Qu/D4. Then Q, centralizes Q,, CQ—(OP(GQ)) = 1land [Qq, OP(Ga)]

U, is a natural module. Thus the stucture of Q) is determined by 3.4. From

[Qa NQp,Zg] =1, QaQp = Qup and (*) we get Qo N Qp = Dyp. Hence
QaNQp < DyD,ypg and so

Qa N 5 = (Da N QB)Daﬁ

Since [Dy N Qp, Q8] < Do N Dg =1 we have D, N Qp < Zg. As Z,
centralizes Dy, Do N Qg < Zg N Qo = DgaZas. We conclude

QO& N Qﬂ = DaﬁDﬂaZaﬁ and T' = ZaZﬂ = UaZﬂ

Since Qg centralizes Dg,, 3.4 implies Dg, < Dy Z,3 and so
DgaZop = (Do N (DgaZap)Zap-

. Note that r := |Qa/DaUs| < ¢q. Let F = OP(Go) N Qap. Then Uy < F
and |Qa3/QaF| = e, where e = 2 if (nqo,q) = (2,2) or (1,2) and e =1
otherwise. Since Dg, < DnZ,, F' centralizes Dg, and so F' < U,(Q)g and
F =Uy(FNQg). Let 1 = Cp(Dyg). Since F' centralizes Dgq, F1 < T =
UaZg. Since U, < Fy, F1 = Ua(Fl N Zﬂ)

Suppose that Go/Qq = Sp2(2). Then Qo = Dy x U,. Moreover Qg <
ZﬁQa and Qﬁ = Zﬁ(QaﬂQﬁ) = 23D, = Z3. Since [Da, Zﬁ] < RND, =1,
D, < Zg. Thus D, is abelian and D, is centralized by D UsZg = Qag3-
Thus Do < Zag and Qo = Z,. Hence Zg N Qo = Zop and so Gg/Qg =
Sl3(2). Thus 1. or 2. of ?? holds in this case.

Suppose that Go/Qa ¢ {Sp2(2),Spa(2)}. Then F1 N Zg % Qn. Since
D, centralizes F; N Zz we conclude that D, < Qg. Since |Qqa3/Da(F N
Qp)Zs < rq < ¢* we get |Qap/Qp| < ¢* and so ng = 1. Thus Dg, < Zug
and so Qo N Qg = DogZop = Zao N Qp). Moreover, Q. < UsQp and
50 Qo = Ua(Qa N QB) = Z,. Assume that (Z, N Qg)Zs is normal in
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Gpg. If Gg/Qp = SL(2), the preceeding paragraph gives a contradiction. If
Gp/Qp = Spa(2) 7?7 And if G3/Qp ¢ {Sp2(2), Spa(2)}, the first half of this
paragraph applied with the roles of o and 3 reversed, gives n, = 1. But then
case (1) or (2) holds. Assume now that (Z, N @p) is not normal in G. Let
W = (ZaNQp)Z, V = (W) and U = (g, W7. Since [W,Qp] < Z <
U and [V,Qq] < QaNQp < W we have [V,Qnp < W and [W,Qup < U.
Thus we can apply 3.3 to V/U and conclude that W = [Z,, V]U. Hence

ZaNQp = [Za,V)(Za NU

We claim that Z, NU = Cz, (V). Indeed, U < Z(V) and so Z, NV <
Cz., (V). For the converse let g € Gg. Then [Cyz, (V),Z5] < RI < Z, and
so Cz,(V)Zgs is normal in Gg. Thus Cy, (V) < U. This proves the claim
and so

Za N Qp = [Za, V]Cz. (V).

The action of Qug on Z, implies [Z,, VINCz, (V) < Z,3. Let V* = [V, Hg].
Since Hp is generated by two conjugates of Z, we derive

V/Zﬁ = V*/Zg X U/Zﬁ

U< X < Z(V) with [X,Qa <U. Then X <W and so X = Zg(X N
Zy). Since Z(V) N Zy, < U we conclude that X < Z(V). Since Qqp
normalizes Z (V) /U we get U = Z(V'). Since [W, Qg] = Aap and ®(Qs < Dg
we get that Ag := A,p < Z(Gg) and Ag = [V, Qp]. Hence also [V*,Qg] =
An. Put D* = Cq,(V*). Then Qp/D* is dual to V*/Zs as Gz module.
Hence Qg = V*D*. Note that [D*,OP(Gg) < Z. Suppose that ¢ # 2.
Then

[Za, Qpl < ([D*V*OP(Gp), D™ N Za)[Za, V] < (D N Za)[Za, V]

But Ds N Z, is O 0

For o € ¥ let

Yi(e) ={B € X | [Za, Z5] # 1}

and

Yo(a) ={B € X[ [Za, Zp] = 1 # [Za, V5'l}
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Lemma 5.12 Let o € ¥ and f € Yi(a). definitionine L := (G, Gp),

L* = (MZ(R)L), K := Or({Ga,Gs}) and L:=L/K. For{a,8} = {v,6},
put Ky = CQW(<Z5GV>). Then for v € {«, B} there exists a normal subgroup

L., of Gy such that

(a) [a] [K,L7]=1.

(b) [b] K=K,NKg and ®(K,Kp) < K.
(¢) [c] Go=KqLo and Gg = KgLg.

(d) [d] Interchanging o and (3 if necessary one of the following holds (
where q s a power of p.

. [1] Lo~ Ly ~ ¢"SLyn(q).

] [2] p= 2) Ly ~ q1+2"5p2n(q), and Lﬁ ~ q1+2+2'(2”_2)SL2(q).

. 8] p=2 and Za ~ Zﬁ ~ 26G5(2)

.4 p=2and Lo ~ Lg ~ g T8 Sps(q).

. [B] Who knows.

Gr . L v~

Proof: Note that K is normal in L and K < R, indeed K is the largest
normal subgroup of L contained in R. Let g € K then

[0Z(R)?, K] = [WZ(R)Y, K9 = [WZ(R), K]Y = 1.

Thus (a) holds.
G
Let H’Y = <Z5 ’Y>, R = [Za,Zﬁ] and D/@a = [Zﬁ,Qag.
Note that by (a), K < K, N Kp also K, N Kg is normalized by

<02(Ga)7 OZ(G/B)J Qaﬁ> = L.

Thus K = K,NKjp. So the first part of (b) holds. By definition [K,, Zg] = 1
and so K, < Q. Thus ®(K,) < ¢(Qp) N K. Note that ®(Qg) < P(Qap)-
Since Qnp/Qq is elementary abelian, unless « is symplectic, n, > 1 and
p # 2, we get

(*) ®(K,) < K and [®(Qp), Hg] = 1, unless « is symplectic, nq > 1
and p # 2.

Note that by definition of ¥ (), [Za, Zg] # 1. Clearly ZoZy < Qqap and
we can apply 5.9 with (§,v) = (5, @).
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Suppose that Case c.1 of 5.9 holds. Then Q, < Qup = ZoQ3. Since Q,
normalizes Zg, H, is generated by two conjugates of Zz. Thus [Qn/Ka| < ¢°
and so Qo = KoU,. By 5.10, ¢ =2 and U, N Z(G,) = UgN Z(Gp). Thus
Uy N Z(Gy) < K and |U,| = 25, Using [Schur, Schur Multiplier] we get
0?(Gy)/Uq = Go(2) also by (*) Go/O?(G4)K is elementary abelian. Hence
there exists Lo < Gy with O*(Go)K < L, Gy = KoLy and Ly, N K, = K.
Thus d.3 holds in this case.

Suppose next that Case c.2 of 5.9 holds.

Suppose that ng = 1. Then [Qq, Z3| < [Za, Zg) < Uq and 50 [Qq, Ha) <
Uy Also ®(Qq) < Qp and so [®(Qq), Hoa] = 1. Suppose that also n, =
1. Then H, is generated by two conjugates of Zg and we conclude that
1Qa/Kao| = ¢® and Qo = KoU,. Let I = {1 # [z,y] | 2 € Za,y € Zp}. If
q < |[Zas Zg]| < ¢* then Uy N Z(Go) = [Za, Zp) \ I = Ug N Z(Gp) and thus
d.1 holds. If |[Z,, Zg]| = ¢, then [Z,, Zp]\ I contains exactly two subgroups
of order ¢ and these two subgroups have trivial intersection. Hence either
UsNZ(Gy) =UsNZ(Gg) and d.1 holds; or Uy N Z(Go) NUz N Z(Gp) =1
and d.2 holds.

Suppose next that ng > 1 and that Dg,Z, is normal in G. Then A, :=
[Dga, Qap = [DpaZa, Qo) is normal in Gy. Since Q,p centralizes A, we get
Ao < Z(Ga). Let Dy := Cq,(OP(Gy)). We conclude that Dyg < UyDg
and Dog < DyZ,g. Note that [Qq, Zg] < Dgo and so [Qq, Ha] < UgDa.

Note that |[RA./As| > ¢ and so p = 2 and |Ug N Z(Gg)| =q. By (¥)
[®(Qn), Hy] = 1. Thus |Qa/UaDy| < g. Note that 02(GQ)HQO¢; centralizes
Do Zapand so we have O?(Go) NQap < Cq,,(Dpar) = ZoQy. Note also that
Z3 < Qp, Go = OQ(GCL)Zﬁ and Zy < Qq- Thus Qup = QulQp-

If ¢ > 2, then A, < R and we conclude that A, = U, N Z(G,).

Let v € 8% with [Zya, Z5] # 1.

Lemma 5.13 [sigma symmetric| Let o, € ¥ and i € {1,2}. Then
a € X(8) if and only if B € L;i(a).

Proof: For i = 1 this is obvious. Suppose now that 3 € ¥s(a) but a ¢
S2(B). The ZoZs < Qa N Q, V5 % Qa and VI < Q.

Lemma 5.14 [vdelta non abelian| There exists an edge (v,d) in I’ such
that (Zf”) is not abelian.

Proof: Supposenot. Let V = (Z)L € ¥ and Q = (Op(L) | L € 3. Then
V<QandsoQ#1. Let L eX. Then Q =((Op(L)NOp(H) | L# H € X
and so by 5.7 ) is normal in L. Hence @) is a non-trivial subgroup of R
which is normal in all the LY, a contradiction. O
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Some ideas on the rest of the proof. definitionine a relation ~ on X by
L~ H if (ZH) is not abelian or if Z, = Zy. This should be an equivalence
relation and L ~ H if and only if Op(L) N Op(H) is not normal in L. If
L % H we should have [(RNOP(L),OP(H)|=1. b=2 ( thatis L ~ H and
Z1, < Op(H)) seems to occur only for the Go(3%) situation, and 21 F4+6(2)

What still needs to be discussed in this section is the consequences of 5.1
for the sets PU;, i = 1,2,4. There are some interesting cases: for example
an amalgam if Z, is the 6-dimensional module for L/Oy(L) = 3Alt(6) then
L € PU4(R). Same for Alt(6) or Alt(7) on the four dimensional module.

Also it seems possile to enlarge the set PUs without having to change
the ”b < 3” part of the proof of 5.1. Namely can drop the assumption on
Np(R) containing a point stabilizor one can allow [Zr, L] to be the four
dimensionnal module for SL3(2), This would be usefull for the =E! case.
Other exceptional F'F-modules could be included to. The properties one
really needs is: no over-offenders and good commutator control. For example
Alt(n) on the natural module should be o.k. This also would be o.k for
D;10(q) on the 16-dimensional spinmodule and L,(g),n > 5 on the exterior
square. But the choice of a € A will cause some problems. Might not be so

important though, maybe we only need (,c 4 Z5 < 1Z(Gs).

6 The C(G,T)-Theroem

Suppose that G fullfills CGT. Then S is contained in unique maximal
subgroup M of G, but there exists L € £(.S) such that L <« M and |[LNM |, #
1. Choose such an L such that |H N L, is maximal. Let T" be a Sylow p-
subgroup of H NT. Without loss T' < S. If T' = S we get that L € L(S)
contradicting our assumption M is the unique maximal p-local subgroup of
M. Thus T # S. Let C be a non-trivial characteristic subgroup of .S. Then
Ns(T) < Ng(C) and so [M N Ng(C)|, > |M N L| Hence the maximal choice
of IM NL|, implies Ng(C) < M. In particular, Nr(C) < MNL. For C =S
we conclude that T € Sylp(T). Then we can apply the

Theorem 6.1 (Local C(G,T)-Theorem) [local CGT] Let L be a finite
KCp group of characteristicp, T' a Sylow p-subgroup of L, and suppose that

C(L,T) = (NL(C) | 1 # C a characteristic subgroup of S)

1s a proper subgroup of L. Then there exists a L-invariant set D of subnormal
subgroup of L such that

(¢) [a] L=(D)C(L,T)
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(b) [b] [Dl,DQ] =1 fOT all Dy 7é Dy € D.
(¢c) [c] Let D €D, then D &« C(L,T) and one of the following holds:

1. [1) D/Z(D) is the semidirect product of SLa(p*) with a natural
module for SDo(p*). Moreover O,(D) = [O,(D), D] is elementary
abelian.

2. [2] p=2 and D is the the semidirect product of Sym(2F +1) with a
natural module for Sym(2F + 1).

3. 18] p = 3, D is the semidirect product of O3(D) and SDs(3%),
Z(D) = Op(D) has order 3% and both [Z(0O3(D)), D] and O3(D)/Z(03(D))
are natural SLy(3%) modules for D.

For p = 2 the local C(G, T')-theorem was proved by Aschbacher in [Asch].

For general p by GLS?. For us it will be consequence of the 77?.

Back to G. Case 3 can be rules out using that Ng(7')/T is odd. Let m =
|D| and suppose that m > 1. Let g € Ng(T')\T'. Then there exists X,Y € D
such that R := [[V, X],[V,Y]9] # 1. Let H = Ng(R). Then for all Z € D
with D # D, D < Ng(R) and since [[V, D], V9] # 1, [V, D] £ Op(Nps(R).
Thus [V,D] £ Op(H). Let U = O,(H). We conclude that [Q NT, D] = 1.
Since H is of characteristic p, D acts non-trivially on Q/Q NT.

Let T* € Syl,(H) with Np(R) < T*. The maximal choice of |T'| im-
plies |T*/Np(R)| < |T/Nr(R)| = T/Np(X). In particular [U/U NT| <
|T/Np(X). Thus T does not normalize X. Let e := |T'/Np(X)|. Then there
are at least e — 1 choices for D, each two of whcih commute and each acting
non-trivialy on U/U N'T whci has order at most e. This is impossible.

Hence there exists a unique D € D.

Suppose that case 2. holds and n > 3. Then O2(M N L) = Oz(L). Let
Q = O2(M). Then TNQ < O2(MNL)< OzL). On the otherhand the
maximality of |T'| implies Ng(O2(L)) < T. Thus Ng(O2(L)) < O2(L) and
so Q < Oz(L).

If @ is not elementary abelian that [®(Q), D] = 1 implies D < M, a
contradiction. Hence @) is elementary abelian.

Since [@, O2(D)] = 1 and M is of characteritic p we conclude O3(D) < Q.
Thus [Q, D] < [0O2(L),D] < O3(D) < @ and so D < Ng(Q) < M. Thus
also L = D(M N L) < M, a contradiction.

Suppose that case 2 holds and n = 2. Then we can choose x € [V, D]
so that R := [V9,z] has order two. Also Cp(x) is divisible by 3 and
[V,0%(Cp(x))],Cps(x)] is not a 2-group. Argue as above we get Cp(x)
acts non trivially on Q/Q NT. But |Q/Q NT has order 2 a contradiction.
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Thus Case 1. holds. We have proved:
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