The P!-Theorem

Ch.W. Parker, University of Birmingham
G. Parmeggiani, University of Padova
B. Stellmacher, University of Kiel

Let H be a finite group and p be a prime dividing the order of H. Then H is of characteristic p if $C_{H}\left(O_{p}(H)\right) \leq O_{p}(H)$; and H is of local characteristic p if every p-local subgroup of H is of characteristic p. Moreover, H is a \mathcal{K}_{p}-group if the simple sections of the p-local subgroups are "known" simple groups ${ }^{1}$.

Every group with a self-centralizing cyclic Sylow p-subgroup, as for example the alternating group A_{p}, is of local characteristic p, and these groups are particular examples of groups with a strongly p-embedded subgroup. Apart from such groups, all groups of Lie type in characteristic p of rank at least 2 and some sporadic groups (for suitably chosen p) have local characteristic p. Therefore it would be a major contribution to a revision of the classification of the finite simple groups to give a classification of all finite groups of local characteristic p that do not have a strongly p-embedded subgroup. This is the goal of a project initiated by U. Meierfrankenfeld. For an overview of this project see [MSS1].

The part of the project our paper deals with uses the following hypothesis:

Q!-Hypothesis. H is a finite \mathcal{K}_{p}-group of local characteristic $p, S \in \operatorname{Syl}_{p}(H)$ and $Z:=$ $\Omega_{1}(Z(S))$. There exists a maximal p-local subgroup \widetilde{C} of H with $N_{H}(Z) \leq \widetilde{C}$ such that for $Q:=O_{p}(\widetilde{C})$

$$
C_{H}(x) \leq \widetilde{C} \text { for every } 1 \neq x \in Z(Q) . \quad(\mathbf{Q} \text {-Uniqueness) }
$$

In the subdivision given in [MSS1] this hypothesis refers to the E!-case, see [MSS1, Lemma 2.4.2], and we will prove the P !-Theorem, as it was announced in section 2.4.2 of [MSS1]. To state this result we need some further notation.

[^0]Throughout this paper $S \in S y l_{p}(H)$, and Z, \widetilde{C} and Q are as in the above hypothesis. Moreover

$$
C:=C_{H}(Z), B(T):=\Omega_{1}(Z(J(T)))(T \text { a } p \text {-subgroup }), X^{0}:=\left\langle Q^{X}\right\rangle(X \text { a subgroup }) .
$$

A subgroup $P \leq H$ is called minimal parabolic (with respect to p), if P is not p-closed and every Sylow p-subgroup of P is contained in a unique maximal subgroup of P.

Let X and M be subgroups of H, and let T be a p-subgroup of H :

$$
\begin{aligned}
& \operatorname{Loc}_{M}(X):=\left\{U \leq M \mid X \leq U \text { and } C_{M}\left(O_{p}(U)\right) \leq O_{p}(U)\right\}, \\
& \mathcal{M}_{M}(X) \text { is the set of maximal elements of } \operatorname{Loc}_{M}(X) . \\
& \mathcal{L}_{M}(T):=\left\{U \in \operatorname{Loc}_{M}(T) \mid T \in \operatorname{Syl}_{p}(U)\right\}, \\
& \mathcal{P}_{M}(T):=\left\{P \in \mathcal{L}_{M}(T) \mid P \text { is minimal parabolic }\right\},
\end{aligned}
$$

According to (1.2) below every element $U \in \operatorname{Loc}_{M}(X)$ contains a unique maximal elementary abelian normal subgroup Y_{U} satisfying $O_{p}\left(U / C_{U}\left(Y_{U}\right)\right)=1$.

Let $P \in \mathcal{P}_{H}(S)$ and $B(P):=\left\langle B(S)^{P}\right\rangle$. Then P is said to be of type L_{3}, if p is odd, $O_{p}(P)=Y_{P} \leq B(S), B(P) / Y_{P} \cong S L_{2}\left(p^{m}\right)$, and Y_{P} is a natural $S L_{2}\left(p^{m}\right)$-module for $B(P) / Y_{P}$.

Hypothesis I. The Q!-Hypothesis holds, and there exists $P \in \mathcal{P}_{H}(S)$ such that $P \not \subset \widetilde{C}$ and $Y_{M} \leq Q$ for every $M \in \mathcal{M}_{H}(P)$.

In this paper we prove:

P!-Theorem. Assume Hypothesis I. Let $P^{*}:=P^{0} O_{p}(P)$ and $Z_{0}:=\Omega_{1}\left(Z\left(S \cap P^{*}\right)\right)$. Then the following hold:
(a) $P^{*} / O_{p}(P) \cong S L_{2}\left(p^{m}\right)$ and Y_{P} is a natural $S L_{2}\left(p^{m}\right)$-module for $P^{*} / O_{p}(P)$.
(b) Z_{0} is normal in \widetilde{C}; in particular $P \cap \widetilde{C}$ is the unique maximal subgroup of P containing S.
(c) Then either P is the unique element of $\mathcal{P}_{H}(S)$ not in \widetilde{C}, or every element of $\mathcal{P}_{H}(S) \backslash \mathcal{P}_{\widetilde{C}}(S)$ is of type L_{3}.

The proof of the P!-Theorem uses the Structure Theorem, which was proved in [MSS2]. To state this result we need some further notation. Let

$$
\overline{\mathcal{L}}_{H}(S):=\left\{U \in \mathcal{L}_{H}(S) \mid C_{H}\left(Y_{U}\right) \leq U\right\} .
$$

For $U, \widetilde{U} \in \overline{\mathcal{L}}_{H}(S)$ define

$$
U \ll \widetilde{U} \Longleftrightarrow U=(U \cap \widetilde{U}) C_{U}\left(Y_{U}\right)
$$

Then (1.5) below shows that \ll is a partial order on $\overline{\mathcal{L}}_{H}(S)$. Let

$$
\mathcal{L}_{H}^{*}(S)=\left\{L \in \overline{\mathcal{L}}_{H}(S) \mid L \text { is maximal with respect to } \ll\right\} .
$$

Note that $\mathcal{M}_{H}(S) \subseteq \overline{\mathcal{L}}_{H}(S)$ and $\mathcal{L}_{H}^{*}(S) \subseteq \mathcal{M}_{H}(S)$, if H has local characteristic p.

Structure-Theorem. Assume the Q!-Hypothesis. Suppose that there exists $M \in \mathcal{L}_{H}^{*}(S) \backslash$ $\{\widetilde{C}\}$ such that $Y_{M} \leq Q$. Then for $M_{0}:=M^{0} C_{S}\left(Y_{M}\right)$ and $\bar{M}:=M / C_{M}\left(Y_{M}\right)$ one of the following holds:
(a) $F^{*}(\bar{M})=\bar{M}_{0}^{\prime}, \bar{M}_{0} \cong S L_{n}\left(p^{m}\right), n \geq 2, S p_{2 n}\left(p^{m}\right), n \geq 2$, or $S p_{4}(2)^{\prime}$ (and $p=2$), and $\left[Y_{M}, M_{0}\right]$ is the corresponding natural module for \bar{M}_{0}. Moreover, either $C_{M_{0}}\left(Y_{M}\right)=O_{p}\left(M_{0}\right)$ or $p=2$ and $M_{0} / O_{p}\left(M_{0}\right) \cong 3 S p_{4}(2)^{\prime}$.
(b) $P_{1}:=M_{0} S \in \mathcal{P}_{H}(S), Y_{M}=Y_{P_{1}}$, and there exists a a normal subgroup $P_{1}^{*} \leq P_{1}$ containing $C_{P_{1}}\left(Y_{P_{1}}\right)$ but not Q such that
(i) $\bar{P}_{1}^{*}=K_{1} \times \cdots \times K_{r}, K_{i} \cong S L_{2}\left(p^{m}\right), Y_{M}=V_{1} \times \cdots \times V_{r}$, where $V_{i}:=\left[Y_{M}, K_{i}\right]$ is a natural K_{i}-module,
(ii) Q permutes the components K_{i} of (i) transitively,
(iii) $O^{p}\left(P_{1}^{*}\right)=O^{p}\left(M_{0}\right)$, and $P_{1}^{*} C_{M}\left(Y_{M}\right)$ is normal in M,
(iv) $C_{P_{1}}\left(Y_{P_{1}}\right)=O_{p}\left(P_{1}\right)$, or $r>1, K_{i} \cong S L_{2}(2)$ (and $p=2$) and $C_{P_{1}}\left(Y_{P_{1}}\right) / O_{2}\left(P_{1}\right)$ is a 3-group.

We will refer to property (b) (ii) of the Structure Theorem as Q-transitivity. As a corollary of the Structure- and the P!-Theorem we get:

Corollary. Assume Hypothesis I. Then for every $L \in \operatorname{Loc}_{H}(P)$ the following hold, where $\bar{L}:=L / C_{L}\left(Y_{L}\right)$ and $L_{0}=L^{0} C_{S}\left(Y_{L}\right):$
(a) $F^{*}(\bar{L})=\bar{L}_{0}^{\prime}, \bar{L}_{0} \cong S L_{n}\left(p^{m}\right), S p_{2 n}\left(p^{m}\right)$ or $S p_{4}(2)^{\prime}$ (and $p=2$), and $\left[Y_{L}, L_{0}\right]$ is the corresponding natural module.
(b) Either $C_{L_{0}}\left(Y_{L}\right)=O_{p}\left(L_{0}\right)$, or $p=2, L_{0} / O_{p}\left(L_{0}\right) \cong 3 S p_{4}(2)^{\prime}$ and $L C_{H}\left(Y_{L}\right) \in \mathcal{L}_{H}^{*}(S)$.

Acknowledgement. We would like to thank A. Chermak for pointing out a mistake in a previous version of Lemma (3.7) and also the referee for his helpful suggestions.

1. Elementary Properties.

(1.1) Let $X=S_{k}$ and V be the non-central irreducible constituent of the $G F(2)$-permutation module for X.
(a) Let $k=2 m+1$ and set $t_{i}:=(2 i-1,2 i)$ and $d_{i}=(2 i-1,2 i, k), i=1, \ldots, m$. Then $X=\left\langle t_{i}, d_{i} \mid i=1, \ldots, m\right\rangle$.
(b) Let t be a transposition of X and $x \in X$ such that $[V, t, x]=0$. Then $k=4$ or $t^{x}=t$.
(c) Let $k \neq 4, t_{1}, \ldots, t_{m}$ be a maximal set of commuting transpositions and $V_{0}=C_{V}\left(t_{1}, \ldots, t_{m}\right)$. Then $C_{X}\left(V_{0}\right)=\left\langle t_{1}, \ldots, t_{m}\right\rangle$.

Proof. (a): It is well known that $\Omega:=\{(k, k+1) \mid k=1, \ldots, 2 m\}$ is a generating set for X. Thus the claim follows from the fact that

$$
t_{m}^{d_{m}}=(2 m, 2 m+1) \text { and } t_{i}^{d_{i} d_{i+1}}=(2 i, 2 i+1), i=1, \ldots, m-1 .
$$

(b): Let $W=\left\langle v_{1}, \ldots, v_{k}\right\rangle$ be the $G F(2)$-permutation module for X with basis $\left\{v_{1}, \ldots, v_{k}\right\}$, where $v_{i} x:=v_{i x}$ for $x \in X$. Set

$$
W_{0}:=\left\langle\sum_{i=1}^{k} v_{i}\right\rangle, W_{1}:=\left\langle v_{i}+v_{j} \mid i, j \in\{1, \ldots, k\}\right\rangle \text { and } \bar{W}_{1}:=\left(W_{1}+W_{0}\right) / W_{0} .
$$

Then $V=\bar{W}_{1}$. Let $t=(i, j)$ and $t^{x}=(r, s)$, so

$$
\left\langle\bar{v}_{i}+\bar{v}_{j}\right\rangle=\left[\bar{W}_{1}, t\right]=\left[\bar{W}_{1}, t^{x}\right]=\left\langle\bar{v}_{r}+\bar{v}_{s}\right\rangle .
$$

It follows that $v_{i}+v_{j}+v_{r}+v_{s} \in W_{0}$, and either $\{i, j\}=\{r, s\}$ and $t=t^{x}$, or $k=4$.
(c): This is a direct consequence of (b).
(1.2) Let U be a finite group of characteristic $\mathrm{p}, T \in \operatorname{Syl}_{p}(U)$ and $T \leq \widetilde{U} \leq U$. Then the following hold:
(a) There exists a unique maximal elementary abelian normal p-subgroup Y_{U} of U such that $O_{p}\left(U / C_{U}\left(Y_{U}\right)\right)=1$.
(b) $Y_{\widetilde{U}} \leq Y_{U}$.
(c) $\Omega_{1}(Z(T)) \leq Y_{U}$.
(d) If $U=\widetilde{U} C_{U}\left(Y_{U}\right)$ then $Y_{U}=Y_{\widetilde{U}}$.
(e) If $O_{p}(U)=C_{T}\left(Y_{U}\right)$ then $Y_{U}=\Omega_{1}\left(Z\left(O_{p}(U)\right)\right)$.

Proof. (a): Let Ω be the set of all elementary abelian normal p-subgroups X of U satisfying $O_{p}\left(U / C_{U}(X)\right)=1$. For the existence of a unique maximal element in Ω it suffices to show that the product of two elements of Ω is again in Ω.

Let $A_{1}, A_{2} \in \Omega$ and $A=A_{1} A_{2}$. Then $A \leq C_{U}\left(A_{1}\right) \cap C_{U}\left(A_{2}\right)$ and thus A is elementary abelian. Let $C_{U}(A) \leq D \leq U$ such that $D / C_{U}(A)=O_{p}\left(U / C_{U}(A)\right)$. Then $D C_{U}\left(A_{i}\right) / C_{U}\left(A_{i}\right)$ is a p-group since $C_{U}(A) \leq C_{U}\left(A_{i}\right)$. Hence $D \leq C_{U}\left(A_{1}\right) \cap C_{U}\left(A_{2}\right)=C_{U}(A)$.
(b): Set $V=\left\langle\left(Y_{\widetilde{U}}\right)^{U}\right\rangle$. By the definition of $Y_{\widetilde{U}}, O_{p}(U) \leq C_{U}\left(Y_{\widetilde{U}}\right)$ and so $Y_{\widetilde{U}} \leq \Omega_{1}\left(Z\left(O_{p}(U)\right)\right)$ as U is of characteristic p. Hence also V is in $\Omega_{1}\left(Z\left(O_{p}(U)\right)\right)$; i.e. V is elementary abelian.

Let $C_{U}(V) \leq D \leq U$ such that $D / C_{U}(V)=O_{p}\left(U / C_{U}(V)\right)$. Then

$$
D=(D \cap T) C_{U}(V) \leq(D \cap T) C_{U}\left(Y_{\widetilde{U}}\right)
$$

Hence $O_{p}\left(\widetilde{U} / C_{\widetilde{U}}\left(Y_{\widetilde{U}}\right)\right)=1$ gives $T \cap D \leq C_{U}\left(Y_{\widetilde{U}}\right)$ and thus $D=C_{U}(V)$. Since V is elementary abelian we conclude that $V \in \Omega$ and thus $Y_{\widetilde{U}} \leq V \leq Y_{U}$.
(c): This follows from (b) with $\widetilde{U}:=T$.
(d): According to (b) it suffices to show that $Y_{U} \leq Y_{\widetilde{U}}$. But this is clear since $U / C_{U}\left(Y_{U}\right) \cong$ $\widetilde{U} / C_{\widetilde{U}}\left(Y_{U}\right)$ and thus $O_{p}\left(\widetilde{U} / C_{\widetilde{U}}\left(Y_{U}\right)\right)=1$.
(e): Let $Y:=\Omega_{1}\left(Z\left(O_{p}(U)\right)\right)$. Then $Y_{U} \leq Y$ by the definition of Y_{U}. Let $C_{U}(Y) \leq D \leq U$ such that $D / C_{U}(Y)=O_{p}\left(U / C_{U}(Y)\right)$. Since $C_{U}(Y) \leq C_{U}\left(Y_{U}\right)$ we get $D C_{U}\left(Y_{U}\right) / C_{U}\left(Y_{U}\right) \leq$ $O_{p}\left(U / C_{U}\left(Y_{U}\right)\right)=1$, and so $D \leq C_{U}\left(Y_{U}\right)$. It follows that $D / O_{p}(U)$ is a p^{\prime}-group and $O_{p}\left(U / C_{U}(Y)\right)=1$, so $Y \leq Y_{U}$.
(1.3) Let U be a finite group of characteristic $p, T \in \operatorname{Syl}_{p}(U)$ and $P \in \mathcal{P}_{U}(T)$. Then the following hold:
(a) $U=\left\langle\mathcal{P}_{U}(T)\right\rangle N_{U}(T)$.
(b) For every normal subgroup N of P either $O^{p}(P) \leq N$ or $T \cap N \leq O_{p}(P)$.
(c) For every normal subgroup T_{0} of T either $T_{0} \leq O_{p}(P)$ or $O^{p}(P)=\left[O^{p}(P), T_{0}\right]$.
(d) $Y_{P}=\Omega_{1}\left(Z\left(O_{p}(P)\right)\right)$ or $\left[\Omega_{1}\left(Z\left(O_{p}(P)\right)\right), O^{p}(P)\right]=1$.

Proof. (a): We proceed by induction on $|U|$. Set $U_{0}=\left\langle\mathcal{P}_{U}(T)\right\rangle N_{U}(T)$, and note that $N_{U}(T)$ normalizes $\left\langle\mathcal{P}_{U}(T)\right\rangle$, so U_{0} is a subgroup of U. By induction all proper subgroups of U containing T are in U_{0}. If $U \neq U_{0}$, then U_{0} is the unique maximal subgroup of U containing T. But then $U \in \mathcal{P}_{U}(T)$ and thus $U=U_{0}$, a contradiction.
(b): By the Frattini argument $P=N_{P}(N \cap T) N$. As T is in a unique maximal subgroup of P at least one of $N T$ and $N_{P}(N \cap T)$ is not a proper subgroup of P. This gives (b).
(c): Let $P_{0}=\left[O^{p}(P), T_{0}\right]$ and $P_{1}=\left[O^{p}(P), T_{0}\right] T_{0}$. Then P_{1} is normal in P. Hence, by (b) either $O^{p}(P) \leq P_{1}$ and thus $P_{0} \leq O^{p}\left(P_{1}\right)=O^{p}(P) \leq P_{0}$, or $T_{0} \leq O_{p}(P)$.
(d): If $C_{T}\left(Y_{P}\right)=O_{p}(P)$, then $Y_{P}=\Omega_{1}\left(Z\left(O_{p}(P)\right)\right.$ follows from (1.2)(e). In the other case (c) gives $\left[\Omega_{1}\left(Z\left(O_{p}(P)\right)\right), O^{p}(P)\right]=1$.

Hypothesis and Notation. For the rest of this section the Q!-Hypothesis holds. We use the notation given in the introduction. For $L_{1}, L_{2} \in \mathcal{L}_{H}(S)$ we define

$$
L_{1} \ll L_{2} \Longleftrightarrow L_{1}=\left(L_{1} \cap L_{2}\right) C_{L_{1}}\left(Y_{L_{1}}\right)
$$

(1.4) Let $L, \widetilde{L} \in \mathcal{L}_{H}(S)$ such that $L \ll \widetilde{L}$. Then $L^{0} \leq \widetilde{L}^{0}$.

Proof. Note that $C_{L}\left(Y_{L}\right) \leq \widetilde{C}$. Hence $C_{L}\left(Y_{L}\right)$ normalizes Q and $Q^{L}=Q^{L \cap \widetilde{L}}$.
(1.5) \ll is a partial ordering on $\overline{\mathcal{L}}_{H}(S)$.

Proof. By (1.2) $L_{1}=\left(L_{1} \cap L_{2}\right) C_{L_{1}}\left(Y_{L_{1}}\right)$ implies that $Y_{L_{1}}=Y_{L_{1} \cap L_{2}} \leq Y_{L_{2}}$. This gives the reflexivity and anti-symmetry. Assume now that $L_{1} \ll L_{2}$ and $L_{2} \ll L_{3}$. Then

$$
L_{1} \cap L_{2} \leq\left(L_{2} \cap L_{3}\right) C_{L_{2}}\left(Y_{L_{2}}\right) \text { and } Y_{L_{1}} \leq Y_{L_{2}}
$$

It follows that $C_{L_{2}}\left(Y_{L_{2}}\right) \leq C_{H}\left(Y_{L_{1}}\right)=C_{L_{1}}\left(Y_{L_{1}}\right)$ and thus $L_{2}=\left(L_{2} \cap L_{3}\right) C_{L_{2}}\left(Y_{L_{1}}\right)$. Hence

$$
L_{1} \cap L_{2}=\left(L_{1} \cap L_{2} \cap L_{3}\right) C_{L_{2}}\left(Y_{L_{1}}\right) .
$$

This shows $L_{1}=\left(L_{1} \cap L_{3}\right) C_{L_{1}}\left(Y_{L_{1}}\right)$ and the transitivity of \ll.
(1.6) Every p-subgroup of H contains at most one conjugate of Q; in particular Q is the only conjugate in \widetilde{C}.

Proof. Let $g \in H$ and $Q^{g} \leq S$. It suffices to show that $Q^{g}=Q$. As $Z \leq C_{\widetilde{C}_{g}}\left(Q^{g}\right)=Z\left(Q^{g}\right)$, Q-Uniqueness shows that $S \leq \widetilde{C}^{g}$, so $S \leq \widetilde{C} \cap \widetilde{C}^{g}$. Now Sylow's Theorem shows that \widetilde{C} and \widetilde{C}^{g} are conjugate by an element of $N_{H}(S)$. As by the definition of $\widetilde{C}, N_{H}(S) \leq N_{H}(Z) \leq \widetilde{C}$ we conclude that $\widetilde{C}=\widetilde{C}^{g}$ and thus also $Q=Q^{g}$.
(1.7) Let P be a subgroup of H with $Q \leq O_{p}(P)$. Then $P \leq \widetilde{C}$.

Proof. This is a direct consequence of (1.6).

2. Pushing Up

Hypothesis and Notation. In this section the Q!-Hypothesis holds. In addition, $P \leq H$ is a minimal parabolic subgroup of characteristic p and $T \in \operatorname{Syl}_{p}(P)$. We set $\bar{P}:=P / C_{P}\left(Y_{P}\right)$ and

$$
\begin{aligned}
& B(T):=C_{T}\left(\Omega_{1}(Z(J(T)))\right) \text { and } Z_{0}:=\Omega_{1}(Z(J(T))), \\
& \mathcal{U}(P):=\left\{A \mid A \leq P, \bar{A} \text { an elem. abelian } p \text {-group, and }\left|A / C_{A}\left(Y_{P}\right)\right| \geq\left|Y_{P} / C_{Y_{P}}(A)\right|\right\}, \\
& U(P):=\langle A \mid A \in \mathcal{U}(P)\rangle \text { and } B(P):=\left\langle B(T)^{P}\right\rangle .
\end{aligned}
$$

Moreover $\mathcal{K}(P)$ denotes the set of all $B(T)$-invariant subgroups $K \leq P$ satisfying:
(i) \bar{K} is normal in $\overline{U(P)}$,
(ii) $L:=K B(T)$ is minimal parabolic of characteristic p and $O_{p}(P) \leq T \cap L \in \operatorname{Syl}_{p}(L)$,
(iii) $\bar{K} \cong S L_{2}\left(p^{m}\right)$ and $\left[Y_{P}, K\right] / C_{\left[Y_{P}, K\right]}(K)$ is a natural $S L_{2}\left(p^{m}\right)$-module for \bar{K}, or $p=2$, $\bar{K} \cong S_{2^{n}+1}$ and $\left[Y_{P}, K\right]$ is a natural $S_{2^{n}+1}$-module for \bar{K}.

Note that trivially $C_{P}\left(Y_{P}\right) \in \mathcal{U}(P)$ and so $C_{P}\left(Y_{P}\right) \leq U(P)$. Then recall from (1.3) that either $U(P)=C_{P}\left(Y_{P}\right)$ or $P=U(P) T$ and similarly $B(P)=B(T) \leq O_{p}(P)$ or $P=B(P) T$.

Let $K=S L_{2}\left(p^{m}\right)$ and V be an irreducible $G F(p) K$-module. Set $F:=E n d_{K}(V)$. By Schur's Lemma, F is a finite field, so V is an $F K$-module. We say that V is a natural $S L_{2}\left(p^{m}\right)$-module for K if $\operatorname{dim}_{F}(V)=2$.
(2.1) Suppose that $\overline{U(P)} \neq 1$ and $A \in \mathcal{U}(P)$. Then there exist subgroups U_{1}, \ldots, U_{r} of $U(P)$ such that the following hold:
(a) $\overline{U(P)}=\bar{U}_{1} \times \cdots \times \bar{U}_{r}, \bar{U}_{i} \cong S L_{2}\left(p^{m}\right)$ or $S_{2^{n}+1}($ and $p=2)$.
(b) Either $\left[Y_{P}, U_{i}\right] / C_{\left[Y_{P}, U_{i}\right]}(U(P))$ is a natural $S L_{2}\left(p^{m}\right)$-module for \bar{U}_{i}, or $\left[Y_{P}, U_{i}\right]$ is a natural $S_{2^{n}+1^{-} \text {-module for }} \bar{U}_{i}, i=1, \ldots, r$.
(c) $Y_{P}=C_{Y_{P}}(U(P)) \prod_{i=1}^{r}\left[Y_{P}, U_{i}\right]$ and $\left[Y_{P}, U_{i}, U_{j}\right]=1$ for $i \neq j$.
(d) \bar{T} acts transitively on $\left\{\bar{U}_{1}, \ldots, \bar{U}_{r}\right\}$.
(e) $\left[Y_{P}, A, A\right]=1$ and $|\bar{A}|=\left|Y_{P} / C_{Y_{P}}(A)\right|$. In particular $|E| \leq\left|Y_{P} / C_{Y_{P}}(E)\right|$ for every elementary abelian p-group $E \leq \bar{P}$.
(f) $\bar{A}=\overline{A \cap U_{1}} \times \cdots \times \overline{A \cap U_{r}}$ and $A \cap U_{i} C_{P}\left(Y_{P}\right) \in \mathcal{U}(P), i=1, \ldots, r$.
(g) $\overline{A \cap U_{i}} \in S y l_{p}\left(\bar{U}_{i}\right)$ if $\bar{U}_{i} \cong S L_{2}\left(p^{m}\right)$ and $\overline{A \cap U_{i}} \neq 1$.
(h) $\overline{A \cap U_{i}}$ is generated by a set of commuting transpositions if $\bar{U}_{i} \cong S_{2^{n}+1}$.

Proof. See [Cher].
(2.2) $\mathcal{A}(T) \subseteq \mathcal{U}(P)$ and $\overline{J(T)}=\overline{B(T)} \leq \overline{U(P)}$.

Proof. Assume that $J(T) \leq C_{P}\left(Y_{P}\right)$. Then clearly $\mathcal{A}(T) \subseteq \mathcal{U}(P)$ and $Y_{P} \leq Z_{0}$; in particular $B(T) \leq C_{P}\left(Y_{P}\right)$ and $1=\overline{J(T)}=\overline{B(T)} \leq \overline{U(P)}$.

Assume now that $J(T) \notin C_{P}\left(Y_{P}\right)$. Let $A \in \mathcal{A}(T)$ such that $\bar{A} \neq 1$. The maximality of A gives $C_{Y_{P}}(A)=A \cap Y_{P}$. Hence

$$
\left|C_{A}\left(Y_{P}\right)\right|\left|Y_{P}\right|\left|C_{Y_{P}}(A)\right|^{-1}=\left|C_{A}\left(Y_{P}\right)\right|\left|Y_{P}\right|\left|A \cap Y_{P}\right|^{-1}=\left|C_{A}\left(Y_{P}\right) Y_{P}\right| \leq|A|
$$

and $A \in \mathcal{U}(P)$; in particular $\overline{J(T)} \leq \overline{U(P)} \neq 1$.
We now use the notation given in (2.1). In addition we set $Y_{i}:=\left[Y_{P}, U_{i}\right]$ and $\widetilde{Y}_{P}:=$ $Y_{P} / C_{Y_{P}}(U(P))$. Then (2.1)(c) implies

$$
\text { (*) } \widetilde{Y}_{P}=\widetilde{Y}_{1} \times \cdots \times \widetilde{Y}_{r} \text { and }\left[Y_{i}, U_{j}\right]=1 \text { for } i \neq j .
$$

Assume first that $\bar{U}_{i} \cong S L_{2}\left(p^{m}\right)$. Then (2.1)(f) and (g) show that $\overline{J(T)} \in S y l_{p}(\overline{U(P)})$, and (2.1)(b), (e) and (f) that $\left[Y_{i}, J(T)\right] \leq Y_{i} \cap Z_{0}$ and $\left|Y_{i} / Y_{i} \cap Z_{0}\right|=p^{m}$; in particular $Y_{i} \cap Z_{0} \not \leq C_{Y_{i}}\left(U_{i}\right)$. As $B(T)$ centralizes $Y_{i} \cap Z_{0}$, we get from $(*)$ that $\overline{B(T)} \leq N_{\bar{P}}\left(\bar{U}_{i}\right)$.

Let $F:=\operatorname{End}_{\bar{U}_{i}}\left(\widetilde{Y}_{i}\right)$. Then the elements of $N_{\bar{P}}\left(\bar{U}_{i}\right)$ induce field automorphisms on F and semi-linear transformations on \widetilde{Y}_{i}. As $Y_{i} \widetilde{\cap} Z_{0}$ is a 1-dimensional F-subspace centralized by $B(T)$, we conclude that the elements of $B(T)$ act F-linear on \widetilde{Y}_{i}, so $\overline{B(T)} \leq\left(\overline{J(T)} \cap \bar{U}_{i}\right) C_{\bar{P}}\left(\bar{U}_{i}\right)$ by (2.1)(g). It follows that $\overline{B(T)} \leq \overline{J(T)}$ since $C_{\bar{P}}(\overline{U(P)}) \leq \overline{U(P)}$, whence $\overline{B(T)}=\overline{J(T)}$.

Assume now that $\bar{U}_{i} \cong S_{2^{n}+1}$. Recall that any two transpositions of S_{m} commute if they generate a 2-group. Hence, by $(2.1)(\mathrm{h}) \overline{J(T)} \cap \bar{U}_{i}$ is generated by a maximal set of commuting transpositions, and as above, by (2.1)(e) and (f) $\left[Y_{i}, J(T)\right] \leq Y_{i} \cap Z_{0}$ and $\overline{B(T)} \leq N_{\bar{P}}\left(\bar{U}_{i}\right)$. Now (1.1)(c) shows that $\overline{B(T)} \leq\left(\overline{J(T)} \cap \bar{U}_{i}\right) C_{\bar{P}}\left(\bar{U}_{i}\right)$ and, again as above, $\overline{B(T)}=\overline{J(T)}$.
(2.3) Suppose that $\overline{U(P)} \neq 1$. Then $\mathcal{K}(P) \neq \emptyset$, and for every $K \in \mathcal{K}(P)$ and $L:=K B(T)$:
(a) $U(L) / C_{L}\left(Y_{L}\right) \neq 1$; i.e. L satisfies the hypothesis of (2.1).
(b) $Y_{L} \leq Y_{P}$ and $\left[Y_{L}, K\right]=\left[Y_{P}, K\right]$.
(c) $B(T) \leq O_{p}(P)$ or $L=[K, B(T)](T \cap L)$.
(d) There exists U_{i} as in (2.1) such that $\bar{K}=\bar{U}_{i}$.

Proof. We first show that $\mathcal{K}(P) \neq \emptyset$. Let U_{1}, \ldots, U_{r} be as in (2.1) and fix $U \in\left\{U_{1}, \ldots, U_{r}\right\}$. By (2.1) and (2.2) $\overline{J(T)}=\overline{B(T)} \leq N_{\bar{P}}(\bar{U})$ and $B(T) \leq N_{P}\left(U C_{P}\left(Y_{P}\right)\right)$. Among all subgroups $K_{0} \leq U C_{P}\left(Y_{P}\right)$, which are $B(T)$-invariant and satisfy
$(*) \bar{K}_{0}=\bar{U}$ and $O_{p}(P) \leq T \cap K_{0} B(T) \in \operatorname{Syl}_{p}\left(K_{0} B(T)\right)$,
we choose K minimal and set $L=K B(T)$. According to (2.1)(a) there exists $C_{L}\left(Y_{P}\right)(T \cap L) \leq L_{0} \leq$ L such that \bar{L}_{0} is the unique maximal subgroup of \bar{L} containing $\overline{T \cap L}$. Hence, the minimality of K implies that L_{0} is the unique maximal subgroup of L containing $T \cap L$, so L is minimal parabolic. Moreover, L is of characteristic p since $O_{p}(P) \leq O_{p}(L)$. This shows that $K \in \mathcal{K}(P)$.

Now let $K \in \mathcal{K}(P)$. Then (d) follows from (2.1)(a). Let $L=K B(T)$. From (1.3)(d) we get $\Omega_{1}\left(Z\left(O_{p}(L)\right)\right)=Y_{L} \leq \Omega_{1}\left(Z\left(O_{p}(P)\right)\right)=Y_{P}$, so $Y_{L}=C_{Y_{P}}\left(O_{p}(L)\right)$. Since $\left[\bar{K}, \overline{O_{p}(L)}\right]=1$ the $P \times Q$-Lemma gives $\left[Y_{L}, K\right] \neq 1$ and thus by (2.1)(b) $\left[Y_{L}, K\right]=\left[Y_{P}, K\right]$. This is (b).

From (1.3)(c) we get either $L=[K, B(T)](T \cap L)$ or $B(T) \leq O_{p}(L)$. In the latter case $[\bar{K}, \overline{B(T)}]=1$, and $(2.1)(\mathrm{d})$ implies $B(T) \leq C_{T}\left(Y_{P}\right)$. This shows (c) since $C_{T}\left(Y_{P}\right)=O_{p}(P)$ by (1.3)(c).

According to (2.1)(d) and (f) there exists $A \in \mathcal{U}(P)$ such that $\bar{A} \neq 1$ and $\bar{A} \leq \overline{T \cap K}$. Since $C_{T}\left(Y_{P}\right)=O_{p}(P) \leq L$ and \bar{A} is a p-group we may assume that $A \leq T \cap L$. Set $A_{0}=C_{A}\left(Y_{L}\right)$. By (2.1)(e)

$$
\left|\bar{A}_{0}\right| \leq\left|Y_{P} / C_{Y_{P}}\left(A_{0}\right)\right| \leq\left|Y_{P} / Y_{L} C_{Y_{P}}(A)\right|=\left|Y_{P} / C_{Y_{P}}(A)\right|\left|Y_{L} / C_{Y_{L}}(A)\right|^{-1}=|\bar{A}|\left|Y_{L} / C_{Y_{L}}(A)\right|^{-1}
$$

and $\left|Y_{L} / C_{Y_{L}}(A)\right| \leq\left|A / A_{0}\right|$. It follows that $U(L) \neq C_{L}\left(Y_{L}\right)$, and (a) holds.
(2.4) Suppose that $\overline{U(P)} \neq 1$. Let $A \in \mathcal{U}(P)$ and $A_{1} \leq P$ such that $\left[Y_{P}, A, A_{1}\right]=1$. Then

$$
\left[Y_{P}, A_{1}\right] \leq\left[Y_{P}, A\right]\left[C_{Y_{P}}(A), A_{1}\right] .
$$

Proof. We apply (2.1) and choose the subgroups U_{1}, \ldots, U_{r} as in (2.1). Let $V_{i}:=\left[Y_{P}, U_{i}\right]$. By (2.1)(c)

$$
\left[Y_{P}, A_{1}\right]=\left[C_{Y_{P}}(A), A_{1}\right] \prod_{i=1}^{r}\left[V_{i}, A_{1}\right]
$$

Hence, it suffices to show that
(*) $\left[V_{i}, A_{1}\right] \leq\left[V_{i}, A\right]\left[C_{Y_{P}}(A), A_{1}\right]$.
If $\overline{A \cap U_{i}}=1$, then by (2.1)(c) and (f) $V_{i} \leq C_{Y_{P}}(A)$, and (*) is obvious. Hence, we may assume that $\overline{A \cap U_{i}} \neq 1$. Then $\left[V_{i}, A, A_{1}\right]=1$ shows that A_{1} normalizes U_{i} and V_{i}.

Assume first that $\bar{U}_{i} \cong S L_{2}\left(p^{m}\right)$. By $(2.1)(\mathrm{g}) \overline{A \cap U_{i}} \in S y l_{p}\left(\bar{U}_{i}\right)$, so $\left[V_{i}, A, A_{1}\right]=1$ implies $A_{1} \leq A C_{P}\left(V_{i}\right)$, and ($*$) follows.

Assume now that $\bar{U}_{i} \cong S_{2^{n}+1}$. By (2.1)(h) $\overline{A \cap U_{i}}=\left\langle t_{1}, \ldots, t_{s}\right\rangle, t_{1}, \ldots, t_{s}$ commuting transpositions of $S_{2^{n}+1}$; in particular

$$
C_{\bar{U}_{i}}(\bar{A})=C_{\bar{U}_{i}}\left(\overline{A \cap U_{i}}\right)=\left\langle t_{1}, \ldots, t_{s}\right\rangle \times X, X \cong S_{2^{n}+1-2 s} \text { and }\left[V_{i}, X\right]=\left[C_{V_{i}}(A), X\right] .
$$

Since $\left[V_{i}, t_{j}, A_{1}\right]=1$ for $j=1, \ldots, s$ we get $\bar{A}_{1} \leq C_{\bar{U}_{i}}(\bar{A}) C_{\bar{P}}\left(V_{i}\right)$. Hence,

$$
\left[V_{i}, A_{1}\right] \leq\left[V_{i}, A\right]\left[C_{V_{i}}(A), A_{1}\right] \leq\left[V_{i}, A\right]\left[C_{Y_{P}}(A), A_{1}\right],
$$

and again (*) follows.
(2.5) Suppose that $T=S, \overline{U(P)} \neq 1$ and $P \nsubseteq \widetilde{C}$. Let $K \in \mathcal{K}(P)$. Then the following hold:
(a) $Z(P)=Z(U(P))=1$.
(b) $Y_{P}=\times_{\{\bar{K} \mid K \in \mathcal{K}(P)\}}\left[Y_{P}, \bar{K}\right]$, and $\left[Y_{P}, \bar{K}\right]$ is an natural \bar{K}-module.
(c) Q acts transitively on $\{\bar{K} \mid K \in \mathcal{K}(P)\}$.
(d) $\bar{K} \cong S L_{2}\left(p^{m}\right)$ or $p=2$ and $\bar{K}=\overline{U(P)} \cong S_{5}$.
(e) If $\bar{K} \cong S L_{2}\left(p^{m}\right)$ and $A \leq P$ with $\left[Y_{P}, A, A\right]=1$, then $\left[Y_{P}, K, A\right]=\left[Y_{P}, K, a\right]$ for all $a \in A \backslash C_{P}\left(\left[Y_{P}, K\right]\right)$. Moreover, either $\left|A / C_{A}\left(\left[Y_{P}, K\right]\right)\right|=2(=p)$ or $\bar{A} \leq \bar{K} C_{\bar{A}}(\bar{K})$.

Proof. (a): It suffices to show that $C_{Y_{P}}(U(P))=1$ since $\Omega_{1}(Z(P)) \leq Y_{P}$. If $C_{Y_{P}}(U(P)) \neq 1$, then there exists $1 \neq x \in C_{Y_{P}}(U(P)) \cap Z(Q)$, and by Q-Uniqueness $U(P) \leq C_{H}(x) \leq \widetilde{C}$. Since also $S \leq \widetilde{C}$ we get that $P=U(P) S \leq \widetilde{C}$, a contradiction.
(b): This follows from (a) and (2.1)(c).
(c): By (b) and (2.1)(c),(d) together with (2.3)(d)

$$
Y_{P}=\left[Y_{P}, K_{1}\right] \times \cdots \times\left[Y_{P}, K_{r}\right],
$$

where $K_{i} \in \mathcal{K}(P)$ and $\Omega:=\{\bar{K} \mid K \in \mathcal{K}(P)\}=\left\{\bar{K}_{1}, \ldots, \bar{K}_{r}\right\}$. Assume that Q is not transitive on Ω. Then there exist $1 \neq x \in Z(Q) \cap Y_{P}$ and $K_{i} \in\left\{K_{1}, \ldots, K_{r}\right\}$ such that $\left[K_{i}, x\right]=1$. Again by Q-Uniqueness $K_{i} \leq \widetilde{C}$ and thus $P=\left\langle K_{i}, S\right\rangle \leq \widetilde{C}$, a contradiction.
(d): We use (2.1) and (2.3)(d). Assume that $\bar{K} \cong S_{2^{n}+1}, n \geq 2$ (and $p=2$). The action of $U(P)$ on Y_{P} shows that there exists $1 \neq x \in Z(Q) \cap Y_{P}$ such that $\overline{C_{K}(x)} \cong S_{2^{n}}$. On the other hand by Q-Uniqueness $C_{H}(x) \leq \widetilde{C}$ and thus $\left[C_{K}(x), Q\right] \leq Q$. Since $S_{2^{n}}$ is not a 2-group we get $\bar{K}^{Q}=\bar{K}$, and $\bar{P} \cong S_{2^{n}+1}$ follows with (c). Moreover \bar{Q} is a normal 2-subgroup of $\overline{C_{K}(x)}$.

If $n=2$, then (d) follows. In the other cases $\bar{Q}=1$ and thus $Q \leq C_{S}\left(Y_{P}\right)=O_{2}(P)$. But this contradicts (1.7).
(e): By (b) $V:=\left[Y_{P}, K\right]$ is a natural $S L_{2}\left(p^{m}\right)$-module for \bar{K}. Assume first that $V^{A}=V$. Then again (b) implies that $\bar{K}^{\bar{A}}=\bar{K}$. Since V is a faithful irreducible \bar{K}-module we conclude that $C_{\bar{A}}(\bar{K})=C_{\bar{A}}(V)$.

Let $V_{0}:=[V, A]$ and $F:=\operatorname{End}_{\bar{K}}(V)$. Recall that the elements of \bar{A} induce semi-linear transformations on the F-vector space V. Thus, if V_{0} contains a 1 -dimensional F-subspace, then $\bar{A} \leq \bar{K} C_{\bar{P}}(\bar{K})$. In the other case no element of \bar{A}^{\sharp} induces an F-linear transformation on V. As $\Gamma L(V) / G L(V)$ has cyclic Sylow p-subgroups, we get in this case that $\left|A / C_{A}(V)\right|=p$. Moreover, the quadratic action of A on V shows that the elements of A^{\sharp} induce field automorphisms of order 2 in F, so $p=2$.

Assume now that $V^{A} \neq V$. Then the quadratic action of A gives

$$
\left\langle V^{A}\right\rangle=V \times V^{a} \text { for } a \in A \backslash N_{A}(V) ;
$$

in particular $\left|A / N_{A}(K)\right|=p(=2)$. Since

$$
\left[V, N_{A}(K)\right] \leq C_{V}(A) \leq C_{V}(a)=1
$$

we get $N_{A}(K) \leq C_{A}(V)$ and $\left|A / C_{A}(V)\right|=p$. Now again (e) is obvious.
(2.6) Suppose that neither $\Omega_{1}(Z(T))$ nor $B(T)$ is normal in P. Then $\overline{B(P)}=\overline{U(P)} \neq 1$ and $\overline{B(T)}=\overline{J(T)} \neq 1$.

Proof. According to (1.3) $C_{T}\left(Y_{P}\right)=O_{p}(P)$ since $\Omega_{1}(Z(T))$ is not normal in P. Hence $B(T) \not \leq$ $C_{P}\left(Y_{P}\right)$ since also $B(T)$ is not normal in P. It follows with (2.2) that $\overline{B(T)}=\overline{J(T)} \leq \overline{U(P)} \neq 1$, and (2.1) gives $\overline{B(P)}=\overline{U(P)}$.
(2.7) Suppose that neither $\Omega_{1}(Z(T))$ nor $B(T)$ is normal in P. Then $Z_{0} \leq \Omega_{1}\left(Z\left(J\left(O_{p}(P)\right)\right)\right)$ and

$$
\left[\Omega_{1}\left(Z\left(J\left(O_{p}(P)\right)\right)\right), J(T)\right] \leq Z_{0} \cap Y_{P}
$$

in particular $\left[\Omega_{1}\left(Z\left(J\left(O_{p}(P)\right)\right)\right), O^{2}(P)\right] \leq Y_{P}$. Moreover, if in addition $\bar{K} \cong S L_{2}\left(p^{m}\right)$ for $K \in$ $\mathcal{K}(P)$, then $B(T) \in \operatorname{Syl}_{p}\left(O^{p}(K) B(T)\right)$.

Proof. By (2.6) $\overline{U(P)} \neq 1$ and $\overline{J(T)}=\overline{B(T)} \neq 1$. Let $A \in \mathcal{A}(T)$ such that $\bar{A} \neq 1$ and $Z_{1}:=$ $\Omega_{1}\left(Z\left(J\left(O_{p}(P)\right)\right)\right)$. Then by $(2.1)\left[Y_{P}, A\right] \leq C_{Y_{P}}(J(T)) \leq Z_{0}$, and (2.1)(e) gives $Y_{P} C_{A}\left(Y_{P}\right) \in \mathcal{A}(T)$. This shows that

$$
Y_{P} C_{A}\left(Y_{P}\right) \in \mathcal{A}\left(O_{p}(P)\right) \subseteq \mathcal{A}(T)
$$

Hence $Z_{1} \leq Y_{P} C_{A}\left(Y_{P}\right)$ and $Z_{0} \leq Z_{1}$. It follows that $\left[Z_{1}, A\right] \leq Y_{P} \cap Z_{0}$ and thus $\left[Z_{1}, J(T)\right] \leq Y_{P} \cap Z_{0}$. Since $O^{p}(P) \leq\left\langle J(T)^{P}\right\rangle$ by (1.3) we get $\left[Z_{1}, O^{p}(P)\right] \leq Y_{P}$.

Assume now that $\bar{K} \cong S L_{2}\left(p^{m}\right)$, where $K \in \mathcal{K}(P)$. By (2.2) and (2.1)(d), (g) we can choose A such that $\bar{A} \cap \bar{K} \in \operatorname{Syl}_{p}(\bar{K})$; in particular

$$
\left\langle\bar{A} \cap \bar{K},(\bar{A} \cap \bar{K})^{\bar{g}}\right\rangle=\bar{K} \text { for some } g \in K
$$

Set $L=K B(T), W=\left[Y_{L}, K\right], Z_{0}^{*}:=Z_{0} \cap Z_{0}^{g}$ and $L_{0}=C_{L}\left(Z_{0}^{*}\right)$. Then $B(T) \leq L_{0}$ and $L=$ $L_{0} C_{L}\left(Y_{P}\right)$. Since L is minimal parabolic and by (1.3) $C_{T}\left(Y_{P}\right)=O_{p}(P)$ we get
(1) $L=L_{0} O_{p}(P)$, and L_{0} is normal in L.

By (2.3) L satisfies the hypothesis of (2.1), and $W=\left[Y_{P}, K\right]$. As $\left[Z_{0}, K\right]=\left[Z_{0}, K, K\right] \leq W$, $Z_{0} W$ is normal in L, and (2.1)(b),(g), applied to L, gives $Z_{0} W=Z_{0} Z_{0}^{g}, C_{W}(T \cap L)=W \cap Z_{0}$ and $\left|W Z_{0} / Z_{0}\right|=p^{m} ;$ in particular $Z_{0}^{*} \cap W=C_{W}(L)$. It follows that

$$
\left|Z_{0}^{*} W / Z_{0}^{*}\right|=\left|W / W \cap Z_{0}^{*}\right|=p^{2 m} \text { and }\left|Z_{0} W / Z_{0}^{*}\right|=\left|Z_{0} Z_{0}^{g} / Z_{0}^{*}\right| \leq p^{2 m} .
$$

This shows that $Z_{0}^{*} W=Z_{0} W$ and $Z_{0}=Z_{0}^{*} C_{W}(T \cap L)$; in particular
(2) $B(T)=C_{T \cap L}\left(Z_{0}\right)=C_{T \cap L}\left(Z_{0}^{*}\right)$.

By (1) and (2) $B(T) \in S y l_{p}\left(L_{0}\right)$ and $O^{p}(K) \leq O^{p}(L) \leq L_{0}$, so $B(T) \in \operatorname{Syl}_{p}\left(O^{p}(K) B(T)\right)$.
(2.8) Suppose that neither $B(T)$ nor $\Omega_{1}(Z(T))$ is normal in P and $Z(P)=1$. Then $O_{p}(P) \leq$ $B(T)$.

Proof. By (2.7) $Z_{0} Y_{P}$ is normal in P. Hence, $R:=\left[Z_{0} Y_{P}, O_{p}(P)\right]$ is a normal subgroup of P in Z_{0}. But then by (2.6) and (1.3) $O^{p}(P)$ centralizes R, and $Z(P)=1$ implies $R=1$. This gives $O_{p}(P) \leq B(T)$.
(2.9) Suppose that neither $B(T)$ nor $\Omega_{1}(Z(T))$ is normal in P. Then there exist subgroups $L_{1}, \ldots, L_{k} \leq P$ such that for $i=1, \ldots, k$ and $\hat{L}_{i}=L_{i} / C_{L_{i}}\left(Y_{L_{i}}\right)$:
(a) L_{i} is minimal parabolic of characteristic p and $O_{p}(P) B(T) \in S y l_{p}\left(L_{i}\right)$.
(b) $\hat{L}_{i} \cong S L_{2}\left(p^{m}\right)$, and $Y_{L_{i}} / C_{Y_{L_{i}}}\left(L_{i}\right)$ is a natural $S L_{2}\left(p^{m}\right)$-module for \hat{L}_{i}.
(c) $\left[Y_{L_{i}}, O^{p}\left(L_{i}\right)\right]=\left[Y_{P}, O^{p}\left(L_{i}\right)\right]$.
(d) L_{1}, \ldots, L_{k} are conjugate under $T,\left\langle L_{1}, \ldots, L_{k}\right\rangle T=P$, and $\cap_{i=1}^{k} O_{p}\left(L_{i}\right)=O_{p}(P)$.
(e) $\left[Y_{P}, B(P)\right] \cap Z_{0}=\prod_{i=1}^{k}\left[Y_{L_{i}}, B(T)\right]$ and $\left[Y_{L_{i}}, B(T), L_{j}\right]=1$ for $i \neq j$.

Proof. By (2.6) $\overline{U(P)} \neq 1$, and we are allowed to apply (2.1) and (2.3) to P. Let $K \in \mathcal{K}(P)$, and set $L=K B(T)$ and $\hat{L}=L / C_{L}\left(Y_{L}\right)$. Then (2.3) shows that L satisfies (2.1) and $\left[Y_{L}, O^{p}(L)\right]=$ $\left[Y_{P}, O^{p}(L)\right]$.

Assume first that $\bar{K} \cong S L_{2}\left(p^{m}\right)$. Then (2.1)(f),(g) gives

$$
\bar{L}=\bar{K} \times C_{\overline{B(T)}}(\bar{K}) \text { and } \overline{B(T)} \cap \bar{K} \in \operatorname{Syl}_{p}(\bar{K}) ;
$$

in particular $O_{p}(P) B(T) \in \operatorname{Syl}_{p}(L)$ and $\left[O_{p}(L), O^{p}(L)\right] \leq O_{p}(P)$. Now (a) - (d) follow for $k=1$, and (e) is a consequence of $(2.1)(\mathrm{b})$.

Assume now that $\bar{K} \cong S_{2^{n}+1}$ (and $p=2$). Then $\overline{K \cap B(T)}$ is generated by a maximal set $\left\{\bar{t}_{1}, \ldots, \bar{t}_{2^{n-1}}\right\}$ of transpositions, where $t_{1}, \ldots, t_{2^{n-1}} \in K$. For every t_{i} there exists $d_{i} \in K$ such that \bar{d}_{i} has order 3 and

$$
\left\langle\bar{d}_{i}, \overline{K \cap B(T)}\right\rangle=\left\langle\bar{d}_{i}, \bar{t}_{i}\right\rangle \times\left\langle\bar{t}_{j} \mid i \neq j\right\rangle \text { and }\left\langle\bar{d}_{i}, \bar{t}_{i}\right\rangle \cong S L_{2}(2) .
$$

Note that the subgroups $\left\langle\bar{d}_{i}, \bar{t}_{i}\right\rangle, i=1, \ldots, 2^{n-1}$, are conjugate under $\overline{T \cap K}$ and that by (1.1)

$$
\left\langle\bar{d}_{i}, \bar{t}_{i} \mid i=1, \ldots, 2^{n-1}\right\rangle=\bar{K}
$$

Note further that by (2.1)(b)
(*) $\left[Y_{P}, K\right] \cap Z_{0}=\left[Y_{P},\left\langle t_{1}, \ldots, t_{2^{n-1}}\right\rangle\right]$ and $\left[Y_{P}, t_{i}, d_{j}\right]=1$ for $i \neq j$.

We now choose $L_{1} \leq\left\langle d_{1}, B(T)\right\rangle$ minimal with respect to

$$
O_{2}(P) B(T) \leq T_{1}:=T \cap L_{1} \in \operatorname{Syl}_{2}\left(L_{1}\right) \text { and } \bar{L}_{1}=\left\langle\bar{d}_{1}, \overline{B(T)}\right\rangle .
$$

Then L_{1} is a minimal parabolic subgroup of characteristic 2. Moreover $O_{2}(P) B(T)=T_{1}$ and $\left[O_{2}\left(L_{1}\right), O^{2}\left(L_{2}\right)\right] \leq O_{2}(P)$, and (a) follows for L_{1}. Since $Y_{L_{1}} \leq \Omega_{1}\left(Z\left(O_{2}\left(L_{1}\right)\right)\right) \leq \Omega_{1}\left(Z\left(O_{2}(P)\right)\right)$ we get from (1.3)(d) that $Y_{L_{1}} \leq Y_{P}$. It follows that $\left|\left[Y_{L_{1}}, L_{1}\right]\right|=4$, and (b) and (c) hold for L_{1} since $O^{2}\left(\bar{L}_{1}\right) \cong C_{3}$.

Finally, for every $i \in\left\{1, \ldots, 2^{n-1}\right\}$ there exists a T-conjugate L_{i} of L_{1} with $d_{i} \in L_{i}$, and $\left\langle\bar{L}_{1}, \ldots, \bar{L}_{2^{n-1}}\right\rangle \overline{B(T)}=\bar{L}$. Since L is minimal parabolic we get $\left\langle L_{1}, \ldots, L_{2^{n-1}}\right\rangle B(T)=L$. Similarly, since P is minimal parabolic $(2.1)(\mathrm{d})$ and (2.3)(d) imply (d); and (e) follows from (d) and (*).

Notation. Let

$$
\mathcal{P}_{0}:=\mathcal{P}_{H}(S) \backslash\left(\mathcal{P}_{N_{H}(B(S))}(S) \cup \mathcal{P}_{\widetilde{C}}(S)\right) \text { and } \mathcal{P}_{0}^{*}:=\left\{P^{g} \mid P \in \mathcal{P}_{0}, g \in N_{H}(B(S))\right\},
$$

and let \mathcal{P} be the set of all subgroups $X \leq H$ satisfying:
(i) X is minimal parabolic of characteristic p and $B(S) \in \operatorname{Syl}_{p}(X)$,
(ii) $\langle X, S\rangle=P$ for some $P \in \mathcal{P}_{0}$,
(iii) $X / C_{X}\left(Y_{X}\right) \cong S L_{2}\left(p^{m}\right)$ and $Y_{X} / C_{Y_{X}}(X)$ is a natural $S L_{2}\left(p^{m}\right)$-module for $X / C_{X}\left(Y_{X}\right)$.

Let $\mathcal{P}^{*}:=\left\{X^{g} \mid X \in \mathcal{P}, g \in N_{H}(B(S))\right\}, G:=\left\langle X \mid X \in \mathcal{P}^{*}\right\rangle$ and $L:=G N_{H}(B(S))$.

Theorem 1. One of the following holds:
(a) $L \in \mathcal{L}_{H}(S)$ and $\mathcal{P}_{H}(S)=\mathcal{P}_{L}(S) \cup \mathcal{P}_{\widetilde{C}}(S)$.
(b) $\mathcal{P}_{H}(S)=\mathcal{P}_{N_{H}(B(S))}(S) \cup \mathcal{P}_{\widetilde{C}}(S)$.
(c) $O_{p}(P)=Y_{P}$ and $Z(P)=1$ for every $P \in \mathcal{P}^{*}$.

Proof. We may assume that neither (a) nor (b) holds. Then $\mathcal{P}_{0} \neq \emptyset \neq \mathcal{P}_{0}^{*}$. Let $P^{*} \in \mathcal{P}_{0}^{*}$ and set $Z_{0}:=\Omega_{1}(Z(B(S)))$.
(1) P^{*} satisfies the hypotheses of $(2.1),(2.8)$ and (2.9), and, after a suitable conjugation, also that of (2.5).

By the definition of \mathcal{P}_{0}^{*} there is $P_{0} \in \mathcal{P}_{0}$ and $g \in N_{H}(B(S))$ such that $P_{0}^{g}=P^{*}$. Hence, it suffices to show the claim for P_{0}.

From the choice of P_{0} and the definition of \widetilde{C} follows that neither $B(S)$ nor Z is normal in P_{0}. Hence, P_{0} satisfies the hypotheses of (2.6) and (2.9), and by (2.6) also those of (2.1) and (2.5). Finally, by (2.5) P_{0} satisfies the hypothesis of (2.8).
(2) $Z\left(P^{*}\right)=1$ and $O_{p}\left(P^{*}\right) \leq B(S)$.

This follows from (1), (2.5) and (2.8).
Let $P_{0} \in \mathcal{P}_{0}$. According to (2.9) and (2) there exists a subset

$$
\Omega\left(P_{0}\right):=\left\{L_{1}, \ldots, L_{k}\right\} \subseteq \mathcal{P}
$$

such that the subgroups L_{1}, \ldots, L_{k} satisfy (2.9)(a) - (e) (with respect to P_{0} and S). We fix this notation. From (2), (2.1)(c) and (2.9)(e) we get
(3) $Z_{0}=\prod_{i=1}^{k}\left[Y_{L_{i}}, B(S)\right]$.

Next we prove:
(4) $L=\left\langle N_{H}(B(S)), P_{0} \mid P_{0} \in \mathcal{P}_{0}\right\rangle$.

Let $\widetilde{L}:=\left\langle N_{H}(B(S)), P_{0} \mid P_{0} \in \mathcal{P}_{0}\right\rangle$. By the definition of \mathcal{P}^{*} we have $L \leq \widetilde{L}$. On the other hand, for $P_{0} \in \mathcal{P}_{0}$ by (2.9)(d) $P_{0} \leq G S$ and so also $\widetilde{L} \leq L$.
(5) $O_{p}(G)=1=O_{p}(L)$.

From (4) we get

$$
\mathcal{P}_{H}(S)=\mathcal{P}_{L}(S) \cup \mathcal{P}_{\widetilde{C}}(S)
$$

Hence, $O_{p}(L)=1$ since (a) does not hold. As G is normal in L we also have $O_{p}(G)=1$.
In the following let

$$
\Delta^{*}:=\cup_{P_{0} \in \mathcal{P}_{0}} \Omega\left(P_{0}\right) .
$$

We now apply the amalgam method to G with respect to the subgroups in \mathcal{P}^{*} and use the standard notation, see for example [DS] or $[\mathrm{KS}]$. For the convenience of the reader we repeat some of the notation:
$\Gamma=\left\{P x \mid x \in G, P \in \mathcal{P}^{*}\right\}$ is the set of vertices, and two vertices are adjacent, if they are different and have non-empty intersection. \mathcal{P}^{*} is a (maximal) set of pairwise adjacent vertices (where the elements of \mathcal{P}^{*} are understood as cosets), and every pair of adjacent vertices is conjugate (under G) to a pair of vertices from \mathcal{P}^{*}. For a vertex $\delta \in \Gamma$ the stabilizer of δ in G is denoted by G_{δ}. Moreover

$$
Q_{\delta}=O_{p}\left(G_{\delta}\right) \text { and } Z_{\delta}=\left\langle\Omega_{1}(Z(X)) \mid X \in \operatorname{Syl}_{p}\left(G_{\delta}\right)\right\rangle
$$

A critical pair (δ, δ^{\prime}) of vertices satisfies $Z_{\delta} \not \leq Q_{\delta}$ with the distance $d\left(\delta, \delta^{\prime}\right)$ being minimal. This distance is denoted by b.

Note that by (2.9)(b) $Z_{\delta}=Y_{G_{\delta}}$ for every $\delta \in \Gamma$. Since by (1.3)(b) $C_{B(S)}\left(Y_{P}\right)=O_{p}(P)$ for every $P \in \mathcal{P}^{*}$ we get from $(2.1)(\mathrm{g})$:
(6) $Z_{\alpha} Q_{\alpha^{\prime}} \in \operatorname{Syl}_{p}\left(G_{\alpha^{\prime}} \cap G_{\alpha^{\prime}-1}\right)$ and $Z_{\alpha^{\prime}} Q_{\alpha} \in \operatorname{Syl}_{p}\left(G_{\alpha} \cap G_{\alpha+1}\right)$ for every critical pair (α, α^{\prime}).

Let $\left(\alpha, \alpha^{\prime}\right)$ be a critical pair with $G_{\alpha} \in \mathcal{P}^{*}$. Then there exists $T_{1} \in \operatorname{Syl}_{p}\left(G_{\alpha}\right)$ such that $G_{\alpha}=\left\langle T_{1}, Z_{\alpha^{\prime}}\right\rangle$. Thus, possibly after conjugation in G_{α}, we may assume
$(*)\left(\alpha, \alpha^{\prime}\right)$ is a critical pair such that $G_{\alpha} \in \mathcal{P}^{*}$ and $G_{\alpha}=\left\langle B(S), Z_{\alpha^{\prime}}\right\rangle$.
In the steps (7), (8) and (9) below $\left(\alpha, \alpha^{\prime}\right)$ is a critical pair satisfying (*). Further we set $R_{\rho}:=$ [Z_{ρ}, Q_{α}] for every $\rho \in \mathcal{P}^{*}$. Note that by (2.1)(e) and (g) $R_{\rho} \leq Z(B(S))$. We first show:
(7) Let $\rho \in \mathcal{P}^{*}$ and $b>1$ or $Z_{\rho} \leq Q_{\alpha^{\prime}-1}$. Then $R_{\rho} \leq Z\left(G_{\alpha}\right)$.

Assume first that $Z_{\rho} \leq Q_{\alpha^{\prime}-1}$. Then by (6) $Z_{\rho} \leq Z_{\alpha} Q_{\alpha^{\prime}}$ and

$$
\left[Z_{\rho}, Z_{\alpha^{\prime}}\right] \leq\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right] \leq Z_{\alpha} .
$$

Hence, $\quad Z_{\rho} Z_{\alpha}$ is normal in $\left\langle B(S), Z_{\alpha^{\prime}}\right\rangle=G_{\alpha}$; so also $\left[Z_{\rho}, Q_{\alpha}\right]=R_{\rho}$ is normal in G_{α}. Since $R_{\rho} \leq Z(B(S))$ we get $R_{\rho} \leq Z\left(G_{\alpha}\right)$.

Assume now that $Z_{\rho} \not \leq Q_{\alpha^{\prime}-1}$. Then $\left(\rho, \alpha^{\prime}-1\right)$ is a critical pair, and (6) gives $\left[Z_{\rho}, Z_{\alpha^{\prime}-1}\right]=$ $\left[Z_{\rho}, Q_{\alpha}\right]=R_{\rho}$. If $b>1$, then R_{ρ} is centralized by $\left\langle B(S), Z_{\alpha^{\prime}}\right\rangle=G_{\alpha}$.

Next we show:
(8) Let $\rho \in \mathcal{P}^{*}$. Suppose that $b>1$ or $Z_{\rho} \leq Q_{\alpha^{\prime}-1}$. Then either $Q_{\alpha}=Q_{\rho}$ or $Q_{\alpha} Q_{\rho}=B(S)$.

Let $T:=Q_{\alpha} Q_{\rho}$. Assume that $Q_{\alpha} \leq Q_{\rho}$ but $Q_{\alpha} \neq Q_{\rho}$. Then the action of G_{α} on Z_{α} shows that

$$
Z_{\rho} \leq C_{Z_{\alpha}}(T)=Z_{0},
$$

so $B(S) \leq Q_{\rho}$, a contradiction. Hence, we may assume now that $Q_{\rho}<T<B(S)$.
There exists $x \in G_{\alpha}$ such that $(\alpha+1)^{x} \in \mathcal{P}^{*}$ and $\left(\alpha, \alpha^{\prime x}\right)$ is a critical pair; so by (6) $B(S)=$ $Z_{\alpha^{\prime}}^{x} Q_{\alpha}$. If ($\rho, \alpha^{\prime x}$) is not a critical pair, we get $Z_{\alpha^{\prime}}^{x} \leq Q_{\rho}$ and thus $T=B(S)$, a contradiction. Hence, also ($\rho, \alpha^{\prime x}$) is a critical pair, and by (6) $B(S)=Z_{\alpha^{\prime}}^{x} Q_{\rho}$ and $T=Q_{\rho}\left(Z_{\alpha^{\prime}}^{x} \cap T\right)$.

Let $t \in Z_{\alpha^{\prime}}^{x}$ such that $t \in T \backslash Q_{\rho}$. Then there exists $y \in Z_{\rho}$ such that $[t, y] \neq 1$, and by (7) $[t, y] \in Z\left(G_{\alpha}\right)$. On the other hand, according to (6) (applied to $\left(\rho, \alpha^{\prime x}\right)$ and $\left.\left(\alpha, \alpha^{\prime x}\right)\right)$ there exists $y^{\prime} \in Z_{\alpha}$ such that $[t, y]=\left[t, y^{\prime}\right]$. The action of $Z_{\alpha^{\prime}}^{x}$ on Z_{α} gives $\left[t, y^{\prime}\right] \notin Z\left(G_{\alpha}\right)$, a contradiction.

We now let $N_{H}(B(S))$ act on Γ in the following way: Let $g \in N_{H}(B(S))$ and $\delta \in \Gamma$, so $\delta=P y$ for some $P \in \mathcal{P}^{*}$ and $y \in G$. Then

$$
g: \delta \mapsto \delta^{g}:=P^{g} y^{g} .
$$

(9) For every $P \in \Delta^{*}$ there exists a critical pair (δ, δ^{\prime}) satisfying (*) such that $G_{\delta}=P$.

There exists $P_{0} \in \mathcal{P}_{0}$ such that $P \in \Omega\left(P_{0}\right) \subseteq \Delta^{*}$. Hence, there exist $\delta_{1}, \ldots, \delta_{k} \in \mathcal{P}^{*}$ such that

$$
\Omega\left(P_{0}\right)=\left\{G_{\delta_{1}}, \ldots, G_{\delta_{k}}\right\}
$$

Note that by (2.9)(d) the subgroups in $\Omega\left(P_{0}\right)$ are conjugate under S. We will show that there exists a critical pair ($\delta_{i}, \delta_{i}^{\prime}$) for some $i \in\{1, \ldots, k\}$. The $(*)$-property then can be achieved by a suitable conjugation in $G_{\delta_{i}}$ and the claim for the other δ_{j} by the action of S.

Hence, we may assume that $Z_{\delta_{i}} \leq Q_{\alpha^{\prime}-1}$ for all $i=1, \ldots, k$. If there exists $j \in\{1, \ldots, k\}$ such that $Q_{\delta_{j}}=Q_{\alpha}$, then $\left(\delta_{j}, \alpha^{\prime x}\right)$ is a critical pair, where $x \in G_{\alpha}$ such that $B(S)^{x^{-1}} \leq G_{\alpha+1}$. Thus, we may also assume that $Q_{\alpha} \neq Q_{\delta_{i}}$ for all $i=1, \ldots, k$. Now (7) and (8) give

$$
R_{\delta_{i}}=\left[Z_{\delta_{i}}, B(S)\right] \leq Z\left(G_{\alpha}\right), i=1, \ldots, k,
$$

and by (3)

$$
Z_{0}=\prod_{i=1}^{k}\left[Z_{\delta_{i}}, B(S)\right]=\prod_{i=1}^{k} R_{\delta_{i}} \leq Z\left(G_{\alpha}\right),
$$

a contradiction.
(10) There exists $\rho \in \mathcal{P}^{*}$ and $P \in \Delta^{*}$ such that $Q_{\rho}^{q} \neq O_{p}(P)$ for all $q \in Q$.

Assume that (10) does not hold. Let $P_{0} \in \mathcal{P}_{0}$ and $\Omega\left(P_{0}\right)=\left\{L_{1}, \ldots, L_{k}\right\}$. By (2.9)(d)

$$
\cap_{i=1}^{k} O_{p}\left(L_{i}\right)=O_{p}\left(P_{0}\right) .
$$

Now let $\rho \in \mathcal{P}^{*}$ and $L_{i} \in \Omega\left(P_{0}\right)$. Then there exists $q \in Q$ such that $Q_{\rho}^{q}=O_{p}\left(L_{i}\right)$; in particular $O_{p}\left(P_{0}\right) \leq Q_{\rho}^{q}$. Since $O_{p}\left(P_{0}\right)$ is Q-invariant we get

$$
O_{p}\left(P_{0}\right) \leq Q_{\rho} \text { for all } \rho \in \mathcal{P}^{*} \text { and all } P_{0} \in \mathcal{P}_{0} .
$$

Note that \mathcal{P}^{*} is invariant under $N_{H}(B(S))$. Hence also

$$
O_{p}\left(P^{*}\right) \leq Q_{\rho} \text { for all } \rho \in \mathcal{P}^{*} \text { and all } P^{*} \in \mathcal{P}_{0}^{*}
$$

It follows that

$$
O_{p}\left(P^{*}\right) \leq \cap_{L_{i} \in \Omega\left(P_{0}\right)} O_{p}\left(L_{i}\right)=O_{p}\left(P_{0}\right) \text { for all } P_{0} \in \mathcal{P}_{0} \text { and all } P^{*} \in \mathcal{P}_{0}^{*}
$$

This shows that $O_{p}\left(P^{*}\right)=O_{p}\left(P_{0}\right)$ for all $P^{*} \in \mathcal{P}_{0}^{*}$ and all $P_{0} \in \mathcal{P}_{0}$, and by (4) $O_{p}\left(P_{0}\right)$ is normal in L, a contradiction to (5).

By (10) there exists $\rho \in \mathcal{P}^{*}$ and $P \in \Delta^{*}$ such that $Q_{\rho}^{q} \neq O_{p}(P)$ for all $q \in Q$, and by (9) there exists a critical pair $\left(\alpha, \alpha^{\prime}\right)$ satisfying $(*)$ such that $G_{\alpha}=P$. We fix this notation with the additional property that $P_{0}:=\langle P, S\rangle \in \mathcal{P}_{0}$ and $P \in \Omega\left(P_{0}\right)$.
(11) There exists $q \in Q$ such that $\left(\rho^{q}, \alpha\right)$ is a critical pair; in particular $b=1$.

Suppose that $b>1$ or $Z_{\rho^{q}} \leq Q_{\alpha^{\prime}-1}$ for all $q \in Q$. Then (8) shows that $B(S)=Q_{\alpha} Q_{\rho}^{q}$ for all $q \in Q$. Hence $\left[Z_{\rho}^{q}, Q_{\alpha}\right]=\left[Z_{\rho}^{q}, B(S)\right]$ and by (7)

$$
R:=\prod_{q \in Q}\left[Z_{\rho}^{q}, B(S)\right] \leq Z\left(G_{\alpha}\right)
$$

in particular R is a Q-invariant and non-trivial subgroup of $Z\left(G_{\alpha}\right)$. Hence, Q-Uniqueness gives $G_{\alpha}=P \leq \widetilde{C}$. But then also $P_{0} \leq \widetilde{C}$, which contradicts $P_{0} \in \mathcal{P}_{0}$. This shows that $b=1$ and there exists $q \in Q$ such that $\left(\rho^{q}, \alpha\right)$ is a critical pair.
(12) Let $\gamma \in \mathcal{P}^{*}$ such that $G_{\gamma} \leq P_{0}$. Then $Y_{G_{\gamma}} \leq Y_{P_{0}}$; in particular $Z_{\alpha} \leq Y_{P_{0}}$ and no Q-conjugate of G_{ρ} is contained in P_{0}.

Since by (2) $O_{p}\left(P_{0}\right) \leq B(S)$, we have $\Omega_{1}\left(Z\left(Q_{\gamma}\right)\right) \leq \Omega_{1}\left(Z\left(O_{p}\left(P_{0}\right)\right)\right)$. Hence (1.3)(d) and (2) yield $Y_{G_{\gamma}} \leq Y_{P_{0}}$. This gives, together with (11), that there exists $q \in Q$ such that G_{ρ}^{q} is not contained in P_{0}, and, since $Q \leq S \leq P_{0}$, no Q-conjugate of G_{ρ} is contained in P_{0}.

Let $\mu:=\rho^{q}$ be as in (11). Then (6) and $b=1$ give

$$
B(S)=Z_{\mu} Z_{\alpha}\left(Q_{\alpha} \cap Q_{\mu}\right)
$$

in particular

$$
\Phi\left(Q_{\alpha}\right)=\Phi\left(Q_{\alpha} \cap Q_{\mu}\right)=\Phi\left(Q_{\mu}\right)
$$

This gives $\left[Q_{\alpha}, Z_{\mu}\right]=\left[Z_{\alpha}, Z_{\mu}\right] \leq Z_{\alpha}$. Hence (2), (1.3)(b) and (12) yield

$$
\left[O_{p}\left(P_{0}\right), O^{p}\left(G_{\alpha}\right)\right] \leq\left[Q_{\alpha}, O^{p}\left(G_{\alpha}\right)\right] \leq\left[Q_{\alpha},\left\langle Z_{\mu}^{G_{\alpha}}\right\rangle\right] \leq Z_{\alpha} \leq Y_{P_{0}}
$$

From $G_{\alpha} \in \Omega\left(P_{0}\right)$ and (2.9)(d) we get $\left[O_{p}\left(P_{0}\right), O^{p}\left(P_{0}\right)\right] \leq Y_{P_{0}}$. Now $Z\left(P_{0}\right)=1$ yields $Y_{P_{0}}=O_{p}\left(P_{0}\right)$, and (2.1) and (2.9) applied to P_{0} give $B(S)=Y_{P_{0}}\left\langle Z_{\mu}^{S}\right\rangle$. From (2.1) and (3) it follows that $\Phi(B(S))=Z_{0}$; in particular

$$
\Phi\left(Q_{\alpha}\right)=\Phi\left(Q_{\mu}\right) \leq Z\left(G_{\alpha}\right) \cap Z\left(G_{\mu}\right)
$$

Assume that $\Omega\left(P_{0}\right)=\{P\}$. Then $Z\left(G_{\alpha}\right)=1$ and $Z_{\alpha}=Q_{\alpha}$ is a natural G_{α} / Q_{α}-module. In particular

$$
B(S)=Z_{\alpha} Z_{\mu} \text { and } Z_{\alpha} \cap Z_{\mu}=Z_{0}
$$

Thus, also $Q_{\mu}=Z_{\mu}$, and the action of Z_{α} on Z_{μ} also shows that $Z\left(G_{\mu}\right)=1$.
Let $\lambda \in \mathcal{P}^{*}$. If $Q_{\lambda}^{q} \neq Q_{\alpha}$ for all $q \in Q$, then, as for ρ and $\mu, Q_{\lambda}=Z_{\lambda}$ and $Z\left(G_{\lambda}\right)=1$. If $Q_{\lambda}^{q}=$ Q_{α} for some $q \in Q$, then $Z_{\alpha}=Z_{\lambda}^{q}=Q_{\lambda}^{q}$, and the action of Z_{μ} shows that $Z\left(G_{\lambda}^{q}\right)=Z\left(G_{\lambda}\right)=1$. Hence, (c) holds in the case $\Omega\left(P_{0}\right)=\{P\}$.

Assume now that $\Omega\left(P_{0}\right) \neq\{P\}$ and choose $L_{i} \in \Omega\left(P_{0}\right) \backslash\{P\}$; i.e. $L_{i}=G_{\nu}$ for some $\alpha \neq \nu \in \mathcal{P}^{*}$. Since $\left[Z_{\mu}, Q_{\alpha}\right]=\left[Y_{P}, B(S)\right]$ and by (2.9)(e) $\left[Y_{L_{i}}, B(S)\right] \neq\left[Y_{P}, B(S)\right]$ we get from $b=1$ and (6) that $Z_{\nu} \leq Q_{\mu} \cap Q_{\alpha}$. Hence,

$$
R_{0}:=\left[Z_{\nu}, B(S)\right]=\left[Z_{\nu}, Q_{\alpha} \cap Q_{\mu}\right] \leq Z\left(G_{\alpha}\right) \cap Z\left(G_{\mu}\right)
$$

Let $U=N_{H}\left(R_{0}\right)$. Then U is of characteristic p and $\left\langle G_{\alpha}, G_{\mu}\right\rangle \leq C_{H}\left(R_{0}\right)$. Thus

$$
O_{p}(U) \cap Q_{\mu}=O_{p}(U) \cap B(S)=O_{p}(U) \cap Q_{\alpha},
$$

so $O_{p}(U) \cap B(S)$ is normal in G_{α} and $\left[O_{p}(U) \cap B(S), Z_{\mu}\right]=1$. Note that $\left[O_{p}(U), Z_{\mu}\right] \leq O_{p}(U) \cap B(S)$. Since $O^{p}\left(G_{\alpha}\right) \leq\left\langle Z_{\mu}^{G_{\alpha}}\right\rangle$ we get that $\left[O_{p}(U), O^{p}\left(G_{\alpha}\right), O^{p}\left(G_{\alpha}\right)\right]=1$. This contradicts the fact that U is of characteristic p.

Corollary 1. Suppose that the cases (a) and (b) of Theorem 1 do not hold. Let $P \in$ $\mathcal{P}_{H}(S) \backslash \mathcal{P}_{\widetilde{C}}(S)$ such that $\Omega_{1}(Z(B(S)))$ is not normal in P. Then $\overline{B(P)} \cong S L_{2}\left(p^{m}\right)$, and $O_{p}(P)$ is a natural $S L_{2}\left(p^{m}\right)$-module for $\overline{B(P)}$. Moreover, either $N_{H}(B(S)) \leq N_{H}\left(O_{p}(P)\right)$, or P is of type L_{3}.

Proof. By the choice of P and the definition of \widetilde{C}, P satisfies the hypothesis of (2.6). Hence $\overline{U(P)} \neq 1$ and by (2.5)(a) $Z(P)=1$. Thus (2.8) gives $O_{p}(P) \leq B(S)$. Applying (2.9) and Theorem

1 (c) we get that $\overline{B(P)} \cong S L_{2}\left(p^{m}\right)$ and that $O_{p}(P)=Y_{P}$ is a natural $S L_{2}\left(p^{m}\right)$-module for $\overline{B(P)}$. Hence either P is of type L_{3} or $p=2$.

Assume that $p=2$. Suppose that $N_{H}(B(S))$ is not contained in $N_{H}\left(Y_{P}\right)$ and pick $x \in$ $N_{H}(B(S)) \backslash N_{H}\left(Y_{P}\right)$. Then $B(S)=Y_{P} Y_{P}^{x}$ and $\mathcal{A}(S)=\left\{Y_{P}, Y_{P}^{x}\right\}$. Since $N_{H}(B(S))$ acts on $\mathcal{A}(S)$ we get $O^{2}\left(N_{H}(B(S))\right) \leq N_{H}\left(Y_{P}\right)$ and thus also $N_{H}(B(S)) \leq N_{H}\left(Y_{P}\right)$, a contradiction.

3. P-Uniqueness

Throughout this section we assume Hypothesis I. In particular, the Structure Theorem applies to all $M \in \mathcal{L}_{H}^{*}(S)$ with $P \leq M$. In addition, among all P satisfying Hypothesis I we choose P maximal (with respect to inclusion).

Local P!-Theorem. Let $P^{*}=U(P)$ and $P \leq M \in \mathcal{L}_{H}^{*}(S)$. Then one of the following holds:
(a) Case (a) of the Structure Theorem holds for $M, P^{*}=P \cap M_{0}$ and
(i) $P^{*} / O_{p}(P) \cong S L_{2}\left(p^{m}\right)$ and Y_{P} is a natural $S L_{2}\left(p^{m}\right)$-module,
(ii) $\mathcal{P}_{M}(S)=\{P\} \cup \mathcal{P}_{M \cap \widetilde{C}}(S)$,
(iii) $M \cap \widetilde{C}=N_{M}\left(\Omega_{1}\left(Z\left(S \cap P^{*}\right)\right)\right)$.
(b) Case (b) of the Structure Theorem holds for M, and
(i) $\mathcal{P}_{M}(S)=\mathcal{P}_{P}(S) \cup \mathcal{P}_{M \cap \widetilde{C}}(S)$, in particular $P=O^{p}\left(M_{0}\right) S$,
(ii) $M \cap \widetilde{C} \leq N_{M}\left(\Omega_{1}\left(Z\left(S \cap P^{*}\right)\right)\right)$,
(iii) $\mathcal{M}_{H}(P)=\{M\}$.

Proof. We discuss the two cases of the Structure Theorem separately. Assume first that case (a) of the Structure Theorem holds for M. Let $\bar{M}:=M / C_{M}\left(Y_{M}\right), S_{0}:=S \cap M_{0}$ and $Z_{0}:=\Omega_{1}\left(Z\left(S_{0}\right)\right)$. The p-local structure of $M_{0} / O_{p}\left(M_{0}\right)$ shows:
$(+)$ There exists a unique $U \in \mathcal{P}_{M_{0}}\left(S_{0}\right)$ such that $\left[Z_{0}, U\right] \neq 1$; in particular $\mathcal{P}_{M_{0}}\left(S_{0}\right)=$ $\{U\} \cup \mathcal{P}_{M_{0} \cap \widetilde{C}}\left(S_{0}\right)$.
$(++) U / O_{p}(U) \cong S L_{2}\left(p^{m}\right)$, and $Y:=C_{Y_{M}}\left(O_{p}(U)\right)$ is a natural $S L_{2}\left(p^{m}\right)$-module for $U / O_{p}(U)$.
Since $Q \leq S_{0}$ from (1.7) it follows $N_{H}\left(S_{0}\right) \leq \widetilde{C}$, hence $(+)$ gives $N_{H}\left(S_{0}\right) \leq N_{H}(U)$, in particular S normalizes U.

Let $P_{1} \in \mathcal{P}_{M}(S)$ such that $P_{1} \notin \widetilde{C}$. By (1.7) $Q \not \leq O_{p}\left(P_{1}\right)$, and so by (1.3)(b) $P_{1}=\left(P_{1}\right)^{0} S$ and $\left(P_{1}\right)^{0} S_{0} \leq M_{0}$. Since $O_{p}(M) \leq O_{p}\left(\left(P_{1}\right)^{0} S_{0}\right),\left(P_{1}\right)^{0} S_{0}$ has characteristic p, whence (1.3)(a) and the uniqueness of U give

$$
\left(P_{1}\right)^{0} S_{0}=\left\langle U,\left(P_{1}\right)^{0} S_{0} \cap \widetilde{C}\right\rangle
$$

Since P_{1} is a minimal parabolic subgroup not contained in \widetilde{C} we get that $P_{1}=U S$; in particular $P=U S$, and (a)(ii) follows.

From $O_{p}(U) \leq O_{p}(P)$ and (1.2)(b) we get $Y_{P} \leq Y_{M}$, thus $Y_{P} \leq Y$ and $(++)$ yields $Y_{P}=Y$. Now (2.1) gives $P^{*}=U O_{p}(P) \leq M_{0}$, whence (a)(i) and $P \cap M_{0}=P^{*}$ follow.

Note that $M_{0} C_{M}\left(Y_{M}\right)$ is a normal subgroup of M. It follows that

$$
M \cap \widetilde{C}=C_{M}\left(Y_{M}\right)\left(M_{0} \cap \widetilde{C}\right) N_{M \cap \widetilde{C}}\left(S_{0}\right) \leq\left(M_{0} \cap \widetilde{C}\right) N_{M}\left(Z_{0}\right),
$$

so (+) and (1.3)(a) yield $M \cap \widetilde{C} \leq N_{M}\left(Z_{0}\right)$. On the other hand by Q-Uniqueness $C_{M}\left(Z_{0}\right) \leq \widetilde{C}$, so by (1.6) Q is the unique conjugate of Q in $C_{M}\left(Z_{0}\right)$. Hence $N_{M}\left(Z_{0}\right) \leq N_{M}(Q)=M \cap \widetilde{C}$.

By the Structure Theorem $C_{S}\left(Y_{M}\right)=O_{p}\left(M_{0}\right) \in \operatorname{Syl}_{p}\left(C_{M_{0}}\left(Y_{M}\right)\right.$), whence by (1.2)(e) $Y_{M_{0}}=$ $\Omega_{1}\left(Z\left(C_{S}\left(Y_{M}\right)\right)\right) \leq Y_{M}$. This gives $Z_{0} \leq Y_{M}$ and thus $Z_{0}=C_{Y_{M}}\left(S_{0}\right)$. From (++) it follows that $Z_{0} \leq Y=Y \cap Z\left(O_{p}(P)\right)$, therefore $S \cap P^{*}=O_{p}(P) S_{0}$ yields $Z_{0}=\Omega_{1}\left(Z\left(S \cap P^{*}\right)\right)$. This shows (a)(iii).

Assume now that case (b) of the Structure Theorem holds. Let P_{1} and P_{1}^{*} be as given there and set $S_{0}:=P_{1}^{*} \cap S$ and $Z_{0}:=\Omega_{1}\left(Z\left(S_{0}\right)\right)$. Then $P_{1}=M^{0} S$ and by (2.1) $P_{1}^{*}=U\left(P_{1}\right)$; moreover, by (1.3)(c) and (1.7) $\mathcal{P}_{M}(S)=\mathcal{P}_{P_{1}}(S) \cup \mathcal{P}_{M \cap \widetilde{C}}(S)$. The maximality of P gives $P=P_{1}$ and $P^{*}=P_{1}^{*}$, and (b)(i)holds.

Since $P^{*} C_{M}\left(Y_{M}\right)$ is normal in M we get as above

$$
M \cap \widetilde{C}=C_{M}\left(Y_{M}\right)\left(P^{*} \cap \widetilde{C}\right) N_{M \cap \widetilde{C}}\left(S_{0}\right)
$$

As P is a minimal parabolic subgroup, the structure of P^{*} and its action on Y_{P} show that $N_{P}\left(Z_{0}\right)$ is the unique maximal subgroup containing S. It follows that $P^{*} \cap \widetilde{C} \leq N_{P}\left(Z_{0}\right)$ and thus $M \cap \widetilde{C} \leq$ $N_{M}\left(Z_{0}\right)$. This is (b)(ii).

Let $P \leq L \in \mathcal{M}_{H}(S)$ and $L \ll \widetilde{L} \in \mathcal{L}_{H}^{*}(S)$. Then $L=(L \cap \widetilde{L}) C_{L}\left(Y_{L}\right)$ and thus

$$
P^{0} \leq L^{0}=(L \cap \widetilde{L})^{0} \leq \widetilde{L}^{0} .
$$

It follows that $P=P^{0} S \leq \widetilde{L}$, and we are allowed to apply the Structure Theorem to \widetilde{L}.
If case (a) of the Structure Theorem holds for \widetilde{L}, then by case (a) of the Local P! Theorem $P \cap \widetilde{L}_{0}=P^{*}=U(P)$. But then $Q \leq P^{*}$, a contradiction.

If case (b) of the Structure Theorem holds for \widetilde{L}, then the maximality of P gives $Y_{P}=Y_{\widetilde{L}}$ and thus $Y_{\widetilde{L}}=Y_{M}$; in particular $M=\widetilde{L}$. This shows (b)(iii).

Notation. We fix M, P and P^{*} as in the Local P!-Theorem. (Observe that in case (b) of the Local $P!$-Theorem the definition of P^{*} differs from that given in the $P!$-Theorem. But it will be shown in section 4 that this case does not occur.) Furthermore, we set $\bar{P}:=P / C_{P}\left(Y_{P}\right)$, $S_{0}:=S \cap P^{*}$ and $Z_{0}:=\Omega_{1}\left(Z\left(S_{0}\right)\right)$. Recall that P satisfies the hypotheses of (2.1) - (2.5) and if $B(S) \not \leq O_{p}(P)$ also those of (2.6) - (2.9). Later in the course of the amalgam method we will apply these Lemmata not only to P but also to conjugates of P.
(3.1) P admits the decompositions

$$
\begin{aligned}
& \left(\mathcal{D}_{1}\right) \quad \bar{P}^{*}=K_{1} \times \cdots \times K_{r}, \quad K_{i} \cong S L_{2}\left(p^{m}\right), \text { and } \\
& \left(\mathcal{D}_{2}\right) \quad Y_{P}=V_{1} \times \cdots \times V_{r}, \quad V_{i} \text { a natural } S L_{2}\left(p^{m}\right) \text {-module for } K_{i} .
\end{aligned}
$$

Moreover, $\left[Y_{P}, Q \cap S_{0}\right]=Z_{0}$ and either $S_{0}=B(S)$ or $B(S) \leq O_{p}(P)$.

Proof. The decompositions \mathcal{D}_{1} and \mathcal{D}_{2} are from the Local P!-Theorem. Assume that $B(S) \not \leq$ $O_{p}(P)$. Since $P^{*}=U(P)(2.6),(2.1)$ and (2.8) show that $S_{0}=B(S)$.

Remark. The next result, Theorem 2, establishes part (a) and (c) of the P !-Theorem if case (a) of the Local P!-Theorem holds. We then embark on the proof of the main result of this section, Theorem 3, where we show that Z_{0} is normal in \widetilde{C}. This establishes part (b) of the $P!$-Theorem in all cases. It then remains to treat case (b) of the Local $P!$-Theorem. This is done in the next section, where the F !-Theorem eliminates this case.

Theorem 2. Assume Hypothesis I. Then either $\mathcal{P}_{H}(S)=\mathcal{P}_{P}(S) \cup \mathcal{P}_{\widetilde{C}}(S)$, or the following hold:
(a) Z_{0} is normal in \widetilde{C}.
(b) $Q=B(S)=S_{0}$.
(c) \widetilde{P} is of type L_{3} for every $\widetilde{P} \in \mathcal{P}_{H}(S) \backslash \mathcal{P}_{\widetilde{C}}(S)$.

Proof. Assume first that P is of type L_{3}. Then by (2.2) $Y_{P} \in \mathcal{A}(S), B(S)=S_{0}$, and for every $A \in \mathcal{A}(S)$ either

$$
S_{0}=A Y_{P} \text { or } A=Y_{P} .
$$

Moreover, $Y_{P} \leq Q$ by (1.2)(b) and Hypothesis I. It follows that also $J(S)=S_{0} \leq Q$ since Y_{P} is not normal in \widetilde{C}. But then $J(S)=J(Q)$ and $Z_{0}=\Omega_{1}\left(Z\left(S_{0}\right)\right)=\Omega_{1}(Z(J(S)))$ is normal in \widetilde{C}. On the
other hand, $N_{P}\left(S_{0}\right)$ is transitive on Z_{0} and by (1.7) contained in \widetilde{C}, so $Z_{0} \leq Z(Q)$ and $Q \leq S_{0}$. We conclude that $Q=S_{0}$; in particular $N_{H}(B(S))=\widetilde{C}$.

Let $\widetilde{P} \in \mathcal{P}_{H}(S) \backslash \mathcal{P}_{\widetilde{C}}(S)$. Then $\widetilde{P} \not \leq N_{H}\left(\Omega_{1}(Z(B(S)))\right)$, and Corollary 1 shows that also \widetilde{P} is of type L_{3}. Hence, Theorem 2 holds if P is of type L_{3}.

We may assume now:
(1) P is not of type L_{3} and $\mathcal{P}_{H}(S) \neq \mathcal{P}_{P}(S) \cup \mathcal{P}_{\widetilde{C}}(S)$.

By (1) there exists $\widetilde{P} \in \mathcal{P}_{H}(S)$ such that
(2) $\widetilde{P} \not \subset P$ and $\widetilde{P} \not \subset \widetilde{C}$.

Assume that $O_{p}(\langle P, \widetilde{P}\rangle) \neq 1$. Then there exists $L \in \overline{\mathcal{L}}_{H}(S)$ such that $\langle P, \widetilde{P}\rangle:=R \leq L$. Since $P=P^{0} S$ and $\widetilde{P}=\widetilde{P}^{0} S$, we also get $R \leq L^{0} S$. Now (1.4) shows that there exists $\widetilde{M} \in \mathcal{L}_{H}^{*}(S)$ such that $R \leq \widetilde{M}$. The Local P!-Theorem applied to \widetilde{M}, together with the maximal choice of P, gives $\widetilde{P} \leq P$, which contradicts (2). We have shown:
(3) $O_{p}(\langle P, \widetilde{P}\rangle)=1$.

We now apply Theorem 1. Then (3) shows that the cases (a) and (b) of Theorem 1 do not hold. Assume that $B(S)$ is not normal in P, so by (1.3) also $\Omega_{1}(Z(B(S)))$ is not normal in P. Hence by Corollary $1 O_{p}(P)=Y_{P}$ and $P^{*} / Y_{P} \cong S L_{2}\left(p^{m}\right)$, and Corollary 1 and (1) show that $N_{H}(B(S)) \leq N_{H}\left(Y_{P}\right)$. On the other hand, as above, $Y_{P} \leq Q$ implies $B(S)=S_{0}=Q$ since Y_{P} is not normal in \widetilde{C}. Hence $\widetilde{C}=N_{H}(B(S)) \leq N_{H}\left(Y_{P}\right)$, and Y_{P} is normal in \widetilde{C}, a contradiction. We have shown:
(4) $P \leq N_{H}(B(S))$.

By (3) and (4) $\Omega_{1}(Z(B(S)))$ is not normal in \widetilde{P}. Hence again (3) and Corollary 1 show that \widetilde{P} is of type L_{3}. In particular $p \neq 2$, and there exists an involution $t \in N_{\widetilde{P}}(S)$ such that $[S, t]=Y_{\widetilde{P}}$. Since $Y_{\widetilde{P}} \leq B(S)$ and $Y_{\widetilde{P}}=O_{p}(\widetilde{P})$ we get $Y_{P} \leq \Omega_{1}\left(Z(B(S)) \leq Y_{\widetilde{P}}\right.$. Hence $Y_{P}=\left[Y_{P}, t\right]$, and t inverts Y_{P}. This shows that $[t, P] \leq C_{H}\left(Y_{P}\right) \cap N_{H}\left(O_{p}(P)\right)=: X$, and P^{0} normalizes $\langle t\rangle X$. Since

$$
[\langle t\rangle X, Q] \leq Q \cap\langle t\rangle X \leq C_{S}\left(Y_{P}\right)=O_{p}(P)
$$

we conclude that $\left[t, P^{0}\right] \leq O_{p}(P)$ and thus also $[t, P] \leq O_{p}(P)$. Hence, P normalizes $\langle t\rangle O_{p}(P)$ and thus also $O^{p}\left(\langle t\rangle O_{p}(P)\right)=\langle t\rangle Y_{\widetilde{P}}$. It follows that P normalizes $Y_{\widetilde{P}}$, which contradicts (3). This completes the proof of Theorem 2.
(3.2) Suppose that $O^{p}(\bar{P}) \leq\langle\bar{x}, \bar{A}\rangle$, where x is a p-element in P and A a normal subgroup of S in Q. Then $O^{p}(P) \leq\langle x, A\rangle$.

Proof. Let $P_{0}=\langle x, A\rangle$ and $P_{1}=O^{p}(P)$. Note that $P_{1} \not 又 C_{P}\left(Y_{P}\right)$ by our choice of P, so $P_{1} \leq$ $\left\langle A^{P}\right\rangle$ by (1.3)(b). Note further that $\left[C_{P}\left(Y_{P}\right), A\right] \leq O_{p}(P)$ since $A \leq Q$ and that $P_{1} \leq P_{0} C_{P}\left(Y_{P}\right)$. It follows that

$$
P_{1} \leq\left\langle A^{P}\right\rangle=\left\langle A^{P_{1}}\right\rangle \leq\left\langle A^{P_{0}}\right\rangle O_{p}(P)
$$

Since $\left\langle A^{P_{0}}\right\rangle$ is normal in $P_{0} O_{p}(P)$ we get that

$$
P_{1}=O^{p}\left(\left\langle A^{P}\right\rangle\right)=O^{p}\left(P_{0} O_{p}(P)\right)=O^{p}\left(P_{0}\right) .
$$

Hypothesis II. Assume Hypothesis I and $\mathcal{P}_{H}(S)=\mathcal{P}_{P}(S) \cup \mathcal{P}_{\widetilde{C}}(S)$. Further assume that there exists $\widetilde{P} \in \mathcal{P}_{\widetilde{C}}(S)$ such that (P, \widetilde{P}) is an amalgam and $N_{\widetilde{P}}\left(Z_{0}\right)$ is a maximal subgroup of \widetilde{P}.

Our goal, which we will achieve in (3.9), is to prove that no group H satisfies Hypothesis II.
(3.3) Assume Hypothesis II. Let $x \in \widetilde{P}$ and $O_{p}(P) \leq N_{\widetilde{P}}\left(Z_{0}^{x}\right)$. Then $x \in N_{\widetilde{P}}\left(Z_{0}\right)$.

Proof. Assume first that $J(S) \leq O_{p}(\widetilde{P})$. Then $J(S)$ is normal in \widetilde{P} and thus not normal in P since (P, \widetilde{P}) is an amalgam. Hence, by (3.1) $S_{0}=B(S)$ and $Z_{0}=\Omega_{1}(Z(J(S)))$. But then Z_{0} is normal in \widetilde{P}, a contradiction. Thus, $J(S)$ is not normal in \widetilde{P}. Since \widetilde{P} is minimal parabolic we get that $N_{\widetilde{P}}(J(S)) \leq N_{\widetilde{P}}\left(Z_{0}\right)$ and that $N_{\widetilde{P}}\left(Z_{0}\right)$ is self-normalizing.

Assume now that $x \notin N_{\widetilde{P}}\left(Z_{0}\right)$ but $O_{p}(P) \leq N_{\widetilde{P}}\left(Z_{0}^{x}\right)$, so $N_{\widetilde{P}}\left(Z_{0}\right) \neq N_{\widetilde{P}}\left(Z_{0}^{x}\right)$. We choose x in addition such that $|T|$ is maximal, where

$$
O_{p}(P) \leq T \in \operatorname{Syl}_{p}\left(N_{\widetilde{P}}\left(Z_{0}\right) \cap N_{\widetilde{P}}\left(Z_{0}^{x}\right)\right) .
$$

Note that $O_{p}(\widetilde{P}) \leq T \cap S$.
After conjugation in $N_{\widetilde{P}}\left(O_{p}(P)\right)$ we may assume that $T_{1}:=N_{T}\left(O_{p}(P)\right) \leq S$, so $T_{1}=T \cap S$. Note that $T \notin \operatorname{Syl}_{p}(\widetilde{P})$ since \widetilde{P} is minimal parabolic; in particular T is not a Sylow p-subgroup of $N_{\widetilde{P}}\left(Z_{0}^{x}\right)$. Hence, the maximality of T yields
(1) $N_{\widetilde{P}}(T) \not \leq N_{\widetilde{P}}\left(Z_{0}\right)$.

From (1) and $N_{\widetilde{P}}(J(S)) \leq N_{\widetilde{P}}\left(Z_{0}\right)$ we get:
(2) $J(S) \neq J(T)$ and $J(S) \not \leq T$.

In particular $J(S) \not \leq O_{p}(P)$, and (3.1) and (2.7) yield
(3) $S_{0}=B(S)=J(S) O_{p}(P)$ and $\left[\Omega_{1}\left(Z\left(J_{0}\right)\right), J(S)\right]=Z_{0}=\Omega_{1}(Z(J(S)))$, where $J_{0}:=$ $J\left(O_{p}(P)\right)$.

Assume that $J\left(T_{1}\right) \neq J_{0}$. Since $Q \leq T_{1}$ the Q-transitivity and (2.1) imply

$$
S_{0}=J\left(T_{1}\right) O_{p}(P) \leq T
$$

This contradicts (2) and (3). We have shown:
(4) $J_{0}=J\left(T_{1}\right)$.

Since (P, \widetilde{P}) is an amalgam and $O_{p}(\widetilde{P}) \leq T_{1}$ we get from (4) $J_{0} \not \leq O_{p}(\widetilde{P})$ and thus $N_{\widetilde{P}}\left(J_{0}\right) \leq$ $N_{\widetilde{P}}\left(Z_{0}\right)$.

Set $T_{2}:=N_{T}\left(J_{0}\right)$ and note that $J_{0} \neq J\left(T_{2}\right)$ by (1). There exists $y \in N_{\widetilde{P}}\left(J_{0}\right)$ such that $T_{2} \leq S^{y}$. From (3) we get

$$
\left[\Omega_{1}\left(Z\left(J_{0}\right)\right), J(S)^{y}\right]=Z_{0},
$$

in particular $J\left(T_{2}\right) \leq N_{H}\left(Y_{P}\right)$ since $Y_{P} \leq \Omega_{1}\left(Z\left(J_{0}\right)\right)$. Hence also $T_{3}:=\left\langle O_{p}(P), J\left(T_{2}\right)\right\rangle \leq N_{H}\left(Y_{P}\right)$, and $O_{p}(P)=C_{T_{3}}\left(Y_{P}\right)$ is normal in T_{3} since $O_{p}(P) \in \operatorname{Syl}_{p}\left(N_{H}\left(Y_{P}\right)\right)$. It follows that $T_{3} \leq T_{1}$ and thus by (4) $J_{0}=J\left(T_{2}\right)$, a contradiction.
(3.4) Assume Hypothesis II. Let $V=\left\langle Y_{P}^{\widetilde{P}}\right\rangle$. Then V is abelian.

Proof. Set $V_{0}=\left\langle Z_{0}^{\widetilde{P}}\right\rangle$. By Hypothesis I and (1.2)(b) $Y_{P} \leq Q$ and thus $V \leq O_{p}(\widetilde{P}) \leq S$. Assume that V is not abelian. Then there exists $x \in \widetilde{P}$ such that $A:=Y_{P}^{x} \notin O_{p}(P)$. Then (2.1) and the Q-invariance of A show that $\left[V, Y_{P}\right]=\left[A, Y_{P}\right]=Z_{0}$ and $A O_{p}(P)=V O_{p}(P)=S_{0}$. Moreover $V_{0} \leq Z(V) \leq O_{p}(P)$, and $O^{p^{\prime}}\left(C_{\widetilde{P}}\left(V_{0}\right)\right) \leq O_{p}(\widetilde{P})$ since Z_{0} is not normal in \widetilde{P}.

There exists $y \in P$ such that $\left\langle V, V^{y}\right\rangle C_{P^{*}}\left(Y_{P}\right)=P^{*}$. Since V is contained in Q and normal in S (3.2) implies $O^{p}(P) \leq\left\langle V, V^{y}\right\rangle$. Hence $Z(P)=1$ gives $Z\left(\left\langle V, V^{y}\right\rangle\right)=1$.

Note that $V_{0} \leq O_{p}(P) \leq S^{y}$ and thus

$$
\left[V_{0}, V_{0}^{y}\right] \leq V_{0} \cap V_{0}^{y} \leq Z\left(\left\langle V, V^{y}\right\rangle\right)=1
$$

Let $z^{\prime}, z \in \widetilde{P}$ such that for $A_{1}=Y_{P}^{z}$ and $A_{2}=Y_{P}^{z^{\prime}}$

$$
\left[A_{1}, A_{2}\right]=Z_{0}^{z} \neq Z_{0}
$$

It follows that $U:=\left\langle A_{1}, A_{2}\right\rangle \leq O_{p}(P)$. In addition $V_{0}^{y} \leq O^{p^{\prime}}\left(C_{\widetilde{P}}\left(V_{0}\right)\right) \leq C_{O_{p}(\widetilde{P})}\left(Z_{0}^{z}\right)$ and thus $\left[V_{0}^{y}, U\right] \leq V_{0}^{y} \cap V_{0}=1$. Hence $U \leq C_{O_{p}\left(\widetilde{P}^{y}\right)}\left(V_{0}^{y}\right)$ and thus $\left[A_{1}, A_{2}, V^{y}\right]=1$. It follows that Z_{0}^{z} centralizes V^{y} and

$$
Z_{0}^{z} \leq Z\left(\left\langle V, V^{y}\right\rangle\right)=1,
$$

a contradiction.

Notation. From now through (3.9) we will apply the amalgam method to the amalgam (P, \widetilde{P}). With one exception we will use the standard terminology (see $[\mathrm{DS}],[\mathrm{KS}]$ and the proof of Theorem 1). In particular we choose $\alpha, \beta, \alpha^{\prime} \in \Gamma$ so that (α, α^{\prime}) is a critical pair and so that $\left\{G_{\alpha}, G_{\beta}\right\}=\{P, \widetilde{P}\}$. The exception to standard notation is the definition of Z_{δ}. For $\delta \in \Gamma$ we define

$$
Z_{\delta}:=Y_{G_{\delta}} .
$$

In addition, we define for $g \in G, \delta=\alpha^{g}$ and $\lambda=\beta^{g}$

$$
\begin{aligned}
& Z_{\lambda}^{*}=C_{Z_{\delta}}\left(O^{p}\left(G_{\lambda}\right)\right), \widetilde{Q}_{\lambda}=Q^{g}, Z(\delta, \lambda)=Z_{0}^{g}, \widetilde{C}_{\lambda}=\widetilde{C}^{g}, \\
& \left.V_{\lambda}^{*}=\left\langle x^{h}\right| h \in G_{\lambda}, x \in Z_{\delta} \text { and }\left[x, S^{g}\right] \leq Z_{\lambda}^{*}\right\rangle .
\end{aligned}
$$

Note that Z_{λ}^{*} is normal in G_{λ} and thus $\left[V_{\lambda}^{*}, Q_{\lambda}\right] \leq Z_{\lambda}^{*}$. Note further that

$$
V_{\lambda}^{*}=\left\langle\left(Z_{\delta} \cap V_{\lambda}^{*}\right)^{G_{\lambda}}\right\rangle .
$$

(3.5) Assume Hypothesis II. Then $Z=Y_{\widetilde{P}}$ and $\widetilde{P}=G_{\beta}$.

Proof. Clearly $Z=Y_{\widetilde{P}}$ implies $\widetilde{P}=G_{\beta}$. Thus, we may assume that $Z \neq Y_{\widetilde{P}}$. Then by (1.3)(b) $C_{S}\left(Y_{\widetilde{P}}\right)=O_{p}(\widetilde{P})$ and $\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right] \neq 1$. Let $1 \neq x \in\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right]$.

Assume that $G_{\alpha}=\widetilde{P}$. Then $Z_{\alpha} \leq Y_{\widetilde{C}} \leq Z(Q)$ by (1.2)(b) and $C_{H}(x) \leq \widetilde{C}$ by Q-Uniqueness. Since $Z_{\alpha} \not \leq Q_{\alpha^{\prime}}$ we get $G_{\alpha^{\prime}} \nsubseteq \widetilde{C}$. It follows that $G_{\alpha^{\prime}}$ is conjugate to P.

Hence, after switching to another critical pair we may assume that $G_{\alpha}=P$. (3.4) shows that $b>2$. Let $\alpha-1 \in \Delta(\alpha)$ such that $\left\langle G_{\alpha-1} \cap G_{\alpha}, Z_{\alpha^{\prime}}\right\rangle=G_{\alpha}$ and set $A:=Z_{\alpha^{\prime}-1}\left(Z_{\alpha^{\prime}} \cap Q_{\alpha}\right)$. Since $b>2$ we have

$$
\text { (*) } \quad\left[Z_{\alpha-1}, A, Z_{\alpha^{\prime}}\right]=1 .
$$

Assume first that $\left[Z_{\alpha-1}, A\right]=: R \neq 1$. As above $C_{H}(R) \leq \widetilde{C}_{\alpha-1}$ since $G_{\alpha-1}$ is conjugate to \widetilde{P}. Hence (*) gives

$$
\left\langle G_{\alpha-1}, Z_{\alpha^{\prime}}\right\rangle=\left\langle G_{\alpha-1}, G_{\alpha}\right\rangle \leq \widetilde{C}_{\alpha-1}
$$

a contradiction.
Assume now that $\left[Z_{\alpha-1}, A\right]=1$. Then $Z_{\alpha-1} \leq G_{\alpha^{\prime}}$ and

$$
Z_{\alpha^{\prime}} \cap Q_{\alpha}=C_{Z_{\alpha^{\prime}}}\left(Z_{\alpha}\right) \leq C_{Z_{\alpha^{\prime}}}\left(Z_{\alpha-1}\right),
$$

while (2.1) gives

$$
\left|Z_{\alpha} / C_{Z_{\alpha}}\left(Z_{\alpha^{\prime}}\right)\right|=\left|Z_{\alpha^{\prime}} / C_{Z_{\alpha^{\prime}}}\left(Z_{\alpha}\right)\right| .
$$

It follows that

$$
(* *) \quad\left|Z_{\alpha^{\prime}} / C_{Z_{\alpha^{\prime}}}\left(Z_{\alpha} Z_{\alpha-1}\right)\right|=\left|Z_{\alpha^{\prime}} / C_{Z_{\alpha^{\prime}}}\left(Z_{\alpha}\right)\right|=\left|Z_{\alpha} / C_{Z_{\alpha}}\left(Z_{\alpha^{\prime}}\right)\right| \leq\left|Z_{\alpha} Z_{\alpha-1} / C_{Z_{\alpha} Z_{\alpha-1}}\left(Z_{\alpha^{\prime}}\right)\right| .
$$

According to (2.1)(e), this time applied to $G_{\alpha^{\prime}}$, equality holds in (**), so $Z_{\alpha-1} \leq Z_{\alpha} Q_{\alpha^{\prime}}$ and $\left[Z_{\alpha-1}, Z_{\alpha^{\prime}}\right] \leq\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right] \leq Z_{\alpha}$. Hence, $Z_{\alpha-1} Z_{\alpha}$ and thus also $\left[Z_{\alpha-1}, Q_{\alpha}\right]$ is normal in G_{α}. Now the irreducibility of Z_{α} and (1.2)(e) yield $Z_{\alpha-1} \leq Z_{\alpha}$. But then $Q_{\alpha} \leq Q_{\alpha-1}$ and thus also $Q_{\alpha} \leq Q_{\beta}$. Since $Z_{\alpha^{\prime}} \leq Q_{\beta}$ (2.1) and (3.1) give $S_{0} \leq Q_{\beta}$ and $S_{0}=B(S)$. Hence, Z_{0} is normal in \widetilde{P}, which contradicts Hypothesis II.
(3.6) Assume Hypothesis II. Then $\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right]=1$.

Proof. Asssume that $\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right] \neq 1$. From (3.5) we get that $\widetilde{P}=G_{\beta}$ and $Z_{\beta}=Z$. In particular b is even, and $G_{\alpha^{\prime}}$ is conjugate to G_{α}. Moreover, (3.4) gives:
(1) V_{β} is an elementary abelian subgroup of Q_{β}, and $b \geq 4$.

Pick $\alpha^{\prime}+1 \in \Delta\left(\alpha^{\prime}\right)$ such that $Z\left(\alpha^{\prime}, \alpha^{\prime}+1\right) \neq Z\left(\alpha^{\prime}, \alpha^{\prime}-1\right)$. The $\widetilde{Q}_{\alpha^{\prime}+1}$-transitivity shows that $O^{p}\left(G_{\alpha^{\prime}}\right) \leq\left\langle Z_{\alpha}, \widetilde{Q}_{\alpha^{\prime}+1}\right\rangle C_{G_{\alpha^{\prime}}}\left(Z_{\alpha^{\prime}}\right)$. So (3.2) yields $O^{p}\left(G_{\alpha^{\prime}}\right) \leq\left\langle Z_{\alpha}, \widetilde{Q}_{\alpha^{\prime}+1}\right\rangle$.
(2) $Z_{\alpha} \cap V_{\beta}^{*} \leq Z(\alpha, \beta)$.

Note that $S_{0}=Q_{\alpha}\left\langle Z_{\alpha^{\prime}}^{\widetilde{Q}_{\beta}}\right\rangle$ by (2.1) and Q-transitivity since $Z_{\alpha^{\prime}} \in \mathcal{U}(P)$, so $\left[Z_{\beta}^{*}, S_{0}\right]=1$. Hence $Z_{\beta}^{*} \leq Z(\alpha, \beta)$. Moreover

$$
D:=\left[Z_{\alpha} \cap V_{\beta}^{*}, S_{0}\right] \leq\left[Z_{\alpha} \cap V_{\beta}^{*}, Q_{\alpha} Q_{\beta}\right] \leq\left[V_{\beta}^{*}, Q_{\beta}\right] \leq Z_{\beta}^{*} .
$$

Note that D is Q-invariant. Hence, the action of S_{0} on Z_{α} and the Q-transitivity either give $D=1$, or $D=Z(\alpha, \beta)$. The first case implies (2). In the second case $Z(\alpha, \beta)=Z_{\beta}^{*}$ is normal in G_{β}, which contradicts Hypothesis II.
(3) $V_{\alpha^{\prime}+1}^{*} \leq Q_{\alpha+2}$.

This follows from (2) since $Z_{\alpha+2}$ centralizes $Z\left(\mu, \alpha^{\prime}+1\right)$ for all $\mu \in \Delta\left(\alpha^{\prime}+1\right)$.
(4) Let $A \leq V_{\alpha^{\prime}+1}^{*}$ such that $O^{p}\left(G_{\alpha^{\prime}}\right) \leq N_{G}\left(A Z_{\alpha^{\prime}}\right)$. Then $A \leq Z\left(\alpha^{\prime}, \alpha^{\prime}+1\right)$.

Since $\left\langle A^{G_{\alpha^{\prime}} \cap G_{\alpha^{\prime}+1}}\right\rangle$ satisfies the hypothesis of (4) we may assume that A is $\left(G_{\alpha^{\prime}} \cap G_{\alpha^{\prime}+1}\right)$ invariant; i.e. $A Z_{\alpha^{\prime}}$ is normal in $G_{\alpha^{\prime}}$. Then also $Y:=\left[A Z_{\alpha^{\prime}}, Q_{\alpha^{\prime}}\right]$ is normal in $G_{\alpha^{\prime}}$ and $Y \leq V_{\alpha^{\prime}+1}^{*}$.

If $Y=1$, then $(1.2)(\mathrm{e})$ shows that $A \leq \Omega_{1}\left(Z\left(Q_{\alpha^{\prime}}\right)\right)=Z_{\alpha^{\prime}}$ since $G_{\alpha^{\prime}}$ is conjugate to P. Now (2) yields $A \leq Z\left(\alpha^{\prime}, \alpha^{\prime}+1\right)$. If $Y \neq 1$, then the irreducibility of $Z_{\alpha^{\prime}}$ gives $Z_{\alpha^{\prime}} \leq Y$, which contradicts (2).
(5) $V_{\alpha^{\prime}+1}^{*} \not \subset G_{\alpha}$.

Assume that $V_{\alpha^{\prime}+1}^{*} \leq G_{\alpha}$. As $b>2$ and thus $V_{\alpha^{\prime}+1}^{*} \leq Q_{\alpha^{\prime}},(2.4)$ gives

$$
\left[Z_{\alpha}, V_{\alpha^{\prime}+1}^{*}\right] \leq\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right]\left[Z_{\alpha} \cap Q_{\alpha^{\prime}}, V_{\alpha^{\prime}+1}^{*}\right] \leq Z_{\alpha^{\prime}} V_{\alpha^{\prime}+1}^{*}
$$

so $Z_{\alpha^{\prime}} V_{\alpha^{\prime}+1}^{*}$ is normal in $\left\langle Z_{\alpha}, G_{\alpha^{\prime}} \cap G_{\alpha^{\prime}+1}\right\rangle=G_{\alpha^{\prime}}$. Now (4) shows that $V_{\alpha^{\prime}+1}^{*}=Z\left(\alpha^{\prime}, \alpha^{\prime}+1\right)$, which contradicts Hypothesis II.

By (1.3)(b) and Hypothesis II Q_{β} is the unique Sylow p-subgroup of $\cap_{\rho \in \Delta(\beta)} N_{G_{\beta}}(Z(\rho, \beta))$. Hence, by (5) there exists $\rho \in \Delta(\beta)$ such that $V_{\alpha^{\prime}+1}^{*} \not \leq N_{G_{\beta}}(Z(\rho, \beta))$. Note that by (3) and (3.3) also $\left\langle Q_{\rho}^{V_{\alpha^{\prime}+1}^{*}}\right\rangle \not \leq N_{G_{\beta}}(Z(\rho, \beta))$.
(6) $Z_{\rho} \leq Q_{\alpha^{\prime}}$.

Assume that $Z_{\rho} \not \leq Q_{\alpha^{\prime}}$. Then $\left(\rho, \alpha^{\prime}\right)$ is a critical pair, and $Z(\rho, \beta)=\left\langle\left[Z_{\rho}, Z_{\alpha^{\prime}}\right]^{\widetilde{Q}_{\beta}}\right\rangle$ centralizes $\left\langle Q_{\rho}^{V_{\alpha^{\prime}+1}^{*}}\right\rangle$, a contradiction.
(7) Set $R:=\left[Z_{\rho}, V_{\alpha^{\prime}+1}^{*}\right]$. Then $|R|<|Z(\rho, \beta)|$.

Note that by (3) and (6) $R \leq V_{\alpha^{\prime}+1}^{*} \cap V_{\beta}$ and by (1) $\left[R, Z_{\alpha}\right]=1$. Since $\left[V_{\alpha^{\prime}+1}^{*}, Q_{\alpha^{\prime}+1}\right] \leq$ $Z_{\alpha^{\prime}+1}^{*} \leq Z_{\alpha^{\prime}}$ we get that $R Z_{\alpha^{\prime}}$ is normalized by $\left\langle Z_{\alpha}, Q_{\alpha^{\prime}+1}\right\rangle$ anf thus by $O^{p}\left(G_{\alpha^{\prime}}\right)$. Now (4) shows that $R \leq Z\left(\alpha^{\prime}, \alpha^{\prime}+1\right)$; and equality does not hold since Z_{α} centralizes R but not $Z\left(\alpha^{\prime}, \alpha^{\prime}+1\right)$.

We now derive a final contradiction. Let $t \in V_{\alpha^{\prime}+1}^{*} \backslash N_{G_{\beta}}(Z(\rho, \beta)), U=\left\langle Q_{\rho}, t\right\rangle$ and $Y_{0}=C_{Z_{\rho}}(t)$. Note that

$$
\left|Z_{\rho} / Y_{0}\right| \leq\left|\left[Z_{\rho}, t\right]\right| \leq\left|\left[Z_{\rho}, V_{\alpha^{\prime}+1}^{*}\right]\right|,
$$

so by (7) $\left|Z_{\rho} / Y_{0}\right|<|Z(\rho, \beta)|$. On the other hand, by (3.1) $\left|Z_{\rho}\right|=|Z(\rho, \beta)|^{2}$ and so $\left|Y_{0}\right|>|Z(\rho, \beta)|$.
Set $U_{0}:=\left\langle Q_{\rho}^{U}\right\rangle$ and $Y_{1}=C_{Z_{\rho}}\left(U_{0}\right)$. By (3.3) $U_{0} \not \leq N_{G_{\beta}}(Z(\rho, \beta))$. Since $Y_{0} \leq Y_{1}$ we also have $\left|Y_{1}\right|>|Z(\rho, \beta)|$. Moreover, Y_{1} and U_{0} are Q_{β}-invariant.

Let $x \in G_{\beta}$ such that $\alpha^{x}=\rho$. As seen above $S_{0}^{x} \leq Q_{\beta} Q_{\rho}$, so Y_{1} is S_{0}^{x}-invariant. Moreover, since $\left|Y_{1}\right|>|Z(\rho, \beta)|$ we also have $\left[Y_{1}, S_{0}^{x}\right] \neq 1$. Now (3.1), applied to $P^{x}\left(=G_{\rho}\right)$, and the Q-transitivity yield

$$
Z(\rho, \beta)=\left\langle\left[Y_{1}, S_{0}^{x}\right]^{Q}\right\rangle \leq Y_{1}
$$

This contradicts $U_{0} \not \leq N_{G_{\beta}}(Z(\rho, \beta))$.
(3.7) Assume Hypothesis II. Let $A \leq \widetilde{P}$ and $Y_{0}:=\left[Y_{P}, A \cap P\right]$. Suppose that $A \not \leq N_{\widetilde{P}}\left(Z_{0}\right)$ and $\left[Y_{0}, A\right]=1$. Then either $Y_{0}=1$, or the following hold:
(a) $p=2$ and $\bar{P} \cong S_{3} w r C_{2}$ or S_{5}.
(b) $\left|A \cap P / A \cap O_{2}(P)\right|=2,\left|Y_{0}\right|=\left|Z_{0}\right|=4$ and $C_{P^{*}}\left(Y_{0}\right)=O_{2}(P)$.

Proof. Set $A_{0}:=A \cap P, U:=\left\langle O_{p}(P), A\right\rangle, U_{0}:=\left\langle O_{p}(P)^{U}\right\rangle$ and $Y_{1}:=C_{Y_{P}}\left(U_{0}\right)$. Note that
(1) $Y_{0} \leq Y_{1}$, and U_{0} is Q-invariant.

Hence Y_{1} is the largest Q-invariant subgroup of Y_{P} centralized by U_{0}. By (3.3) $U_{0} \not \leq N_{\widetilde{P}}\left(Z_{0}\right)$ and thus
(2) $Z_{0} \not \leq Y_{1}$.

From now on we assume that $Y_{0} \neq 1$ and use the notation of (3.1); in addition we set $q:=p^{m}$ and $R_{i}:=\left[V_{i}, A_{0}\right], i=1, \ldots, r$. It is convenient to treat the following two cases separately:
$(*)$ There exists $i \in\{1, \ldots, r\}$ such that $1 \neq R_{i} \leq V_{i}$.
(**) $R_{i} \not \leq V_{i}$ for all $i \in\{1, \ldots, r\}$ with $R_{i} \neq 1$.
Case (*): We have $A_{0} \leq N_{H}\left(V_{i}\right)$ and thus $\bar{A}_{0} \leq N_{\bar{P}}\left(K_{i}\right)$. If $\bar{A}_{0} \leq K_{i} C_{\bar{P}}\left(V_{i}\right)$, then $R_{i}=$ $Z_{0} \cap V_{i} \leq Y_{0}$, and (1) and the Q-transitivity give $\left\langle R_{i}^{Q}\right\rangle=Z_{0} \leq Y_{1}$, which contradicts (2). Hence, by $(2.5)(\mathrm{e})\left|A_{0} / C_{A_{0}}\left(V_{i}\right)\right|=2=p$.

Assume that $r>1$. Then there exists $x \in Q$ such that $K_{i}^{\bar{x}}=K_{j} \neq K_{i}$ and

$$
\left[K_{i} \cap \bar{S}, \bar{x}\right] C_{\bar{P}}\left(V_{i}\right)=\left(K_{i} \cap \bar{S}\right) C_{\bar{P}}\left(V_{i}\right)
$$

It follows that

$$
\left[R_{i}, K_{i} \cap \bar{S}\right]=\left[R_{i},\left[K_{i} \cap \bar{S}, \bar{x}\right]\right] \leq\left[R_{i}, \bar{Q}\right]
$$

so by (1) $\left[R_{i}, K_{i} \cap \bar{S}\right]=Z_{0} \cap V_{i} \leq Y_{1}$. Now as above the Q-transitivity yields $Z_{0} \leq Y_{1}$, which contradicts (2). Hence $r=1$. Thus $\left|A_{0} / A_{0} \cap O_{2}(P)\right|=2$; moreover $\left|Y_{P} / C_{Y_{P}}\left(A_{0}\right)\right|=q$ and $C_{Y_{P}}\left(A_{0}\right)=Y_{0}$ since \bar{A}_{0} acts as a field automorphism on \bar{P}^{*}.

We have proved:
(3) In case (*) $r=1, p=2, C_{P^{*}}\left(Y_{0}\right)=O_{2}(P),\left|A_{0} / A_{0} \cap O_{2}(P)\right|=2$ and $\left|Y_{P} / Y_{0}\right|=q$.

Case ($* *$): Fix $i \in\{1, . ., r\}$ such that $R_{i} \neq 1$. Then $A_{0} \not \leq N_{P}\left(V_{i}\right)$ since $R_{i} \not \leq V_{i}$, and from (2.5)(e) we get that $\left|A_{0} / C_{A_{0}}\left(V_{i}\right)\right|=2(=p)$ and there exists $j \neq i$ such that $\left\langle V_{i}^{A_{0}}\right\rangle=V_{i} \times V_{j}$. Note that

$$
V_{i} V_{j}=V_{i}\left(Y_{1} \cap V_{i} V_{j}\right)=V_{j}\left(Y_{1} \cap V_{i} V_{j}\right) .
$$

Assume that $r>2$. Then by the Q-transitivity there exists $x \in Q$ such that $V_{i}^{x} \notin\left\{V_{i}, V_{j}\right\}$. In particular, there exists $\bar{b} \in\left(K_{i} \times K_{i}^{\bar{x}}\right) \cap \bar{Q}$ such that

$$
V_{i} \cap Z_{0}=\left[V_{i}, b\right] \leq\left[V_{i} V_{j}, b\right]=\left[V_{j} Y_{1}, b\right]=\left[Y_{1}, b\right] .
$$

As above, (1) and the Q-transitivity give $Z_{0} \leq Y_{1}$, which contradicts (2). We have shown that $r=2$, so $N_{A_{0}}\left(V_{i}\right)=C_{A_{0}}\left(V_{i}\right)$ implies $\left|A_{0} / A_{0} \cap O_{2}(P)\right|=2$.

For every $c \in P^{*} \backslash O_{2}(P)$ we have $\left[Y_{0}, c\right] \neq 1$ since $Y_{P}=Y_{0} V_{i}$ for $i=1,2$. It follows that $C_{P^{*}}\left(Y_{0}\right)=O_{2}(P)$. Moreover $V_{i} \cap Y_{0}=1$ implies $\left|Y_{0}\right|=\left|V_{i}\right|=\left|Y_{P} / Y_{0}\right|=q^{2}$. We have shown:
(4) In case (**) $r=2=p, C_{P^{*}}\left(Y_{0}\right)=O_{2}(P),\left|A_{0} / A_{0} \cap O_{2}(P)\right|=2$ and $\left|Y_{P} / Y_{0}\right|=q^{2}$.

Assume that case (a) of the Local P!-Theorem holds for P. Then $r=1, Q O_{2}(P)=S_{0}$ and $[y, Q]=Z_{0}$ for every $y \in Y_{P} \backslash Z_{0}$. As $Y_{0} \not \leq Z_{0}$ by (3), this gives $Z_{0} \leq Y_{1}$, which contradicts (2). We have shown:
(5) Case (b) of the Local P!-Theorem holds for P; in particular $\mathcal{M}_{H}(P)=\{M\}$.

As a trivial consequence of (5) we get:
(6) $N_{H}\left(J\left(O_{2}(P)\right)\right) \leq M$.

Let $O_{2}(P) \leq T \in \operatorname{Syl}_{2}\left(U_{0}\right)$ and $T_{0}=N_{T}\left(J\left(O_{2}(P)\right)\right)$. Note that $T_{0} \leq M$ by (6). By (3.1) $J(S) \leq S_{0}$ and by (2.1)(e)

$$
\mathcal{A}\left(O_{2}(P)\right) \subseteq \mathcal{A}(S)
$$

so $J\left(T_{0}\right) \leq S_{0}^{x}$ for some $x \in M$. According to (5) $P^{*} C_{M}\left(Y_{P}\right)$ is normal in M, hence $J\left(T_{0}\right) \leq$ $P^{*} C_{M}\left(Y_{P}\right)$. Now by (1), (3) and (4) imply

$$
J\left(T_{0}\right) \leq C_{M}\left(Y_{0}\right) \cap P^{*} C_{M}\left(Y_{P}\right)=C_{P^{*}}\left(Y_{0}\right) C_{M}\left(Y_{P}\right)=O_{2}(P) C_{M}\left(Y_{P}\right)=C_{M}\left(Y_{P}\right)
$$

Since $O_{2}(P)$ is a Sylow 2-subgroup of $C_{M}\left(Y_{P}\right)$ we conclude that $J\left(T_{0}\right)=J\left(O_{2}(P)\right)$ and thus also $J(T)=J\left(O_{2}(P)\right)$; in particular $T=N_{T}\left(J\left(O_{2}(P)\right)\right)=T_{0} \leq M$. In addition, (3.3) implies $T \leq N_{\widetilde{P}}\left(Z_{0}\right)$ and (5) implies $Y_{P}=Y_{M}$. We have shown:
(7) $J(T)=J\left(O_{2}(P)\right)$, and T normalizes Y_{P} and Z_{0}.

According to (5), (6), (7) and (b)(ii) of the Local P!-Theorem $N_{U_{0}}(T) \leq M \cap \widetilde{C} \leq N_{M}\left(Z_{0}\right)$. Since $U_{0} \not \leq N_{\widetilde{P}}\left(Z_{0}\right)$ there exists $F \in \mathcal{P}_{U_{0}}(T)$ such that $F \not \leq N_{H}\left(Z_{0}\right)$; see (1.3)(a). As $O_{2}(\widetilde{P}) \leq$ $N_{H}\left(U_{0}\right)$ we get $\left[U_{0}, O_{2}(\widetilde{P})\right] \leq O_{2}\left(U_{0}\right)$; in particular, F is $O_{2}(\widetilde{P})$-invariant and $\left[F, O_{2}(\widetilde{P})\right] \leq O_{2}(F)$. In addition, (3.3) and (7) show $O_{2}(P) \not \leq O_{2}(F)$ and thus by (1.3)(c)
(8) $O^{2}(F)=\left[O^{2}(F), O_{2}(P)\right] \leq\left\langle O_{2}(P)^{F}\right\rangle$.

Set $W=\left\langle Y_{P}^{F}\right\rangle$. Clearly $\left[W, O^{2}(F)\right] \neq 1$ since by (7) $O^{2}(F) \not \leq N_{H}\left(Z_{0}\right)$. Moreover, (3.4) shows that W is elementary abelian. Assume that $O_{2}(P) \cap O_{2}(F)$ is normal in F. Then by (8)

$$
\left[O^{2}(F), O_{2}(\widetilde{P})\right] \leq\left[\left\langle O_{2}(P)^{F}\right\rangle, O_{2}(\widetilde{P})\right] \leq O_{2}(P) \cap O_{2}(F)
$$

and $W=\left\langle Y_{P}^{O^{2}(F)}\right\rangle \leq Z\left(O_{2}(P) \cap O_{2}(F)\right)$ since $Y_{P} \leq Z\left(O_{2}(P) \cap O_{2}(\widetilde{P})\right)$ by Hypothesis I and (1.2)(b). The $P \times Q$-Lemma implies that $\left[C_{W}\left(O_{2}(\widetilde{P})\right), O^{2}(F)\right] \neq 1$; in particular $\left[Y_{\widetilde{P}}, O^{2}(\widetilde{P})\right] \neq 1$, which contradicts (3.5). We have shown:
(9) $O_{2}(P) \cap O_{2}(F)$ is not normal in F.

Note that $F \not \leq M$ since $M \cap \widetilde{C} \leq N_{M}\left(Z_{0}\right)$, so by (6) and (7) $J\left(O_{2}(P)\right)=J(T) \not \leq O_{2}(F)$. Assume that there exists only one non-central F-chief factor (in a given F-chief series) of W. As by (9)

$$
\left[O^{2}(F), O_{2}(F)\right] \not \leq O_{2}(F) \cap O_{2}(P) \text { and } C_{O_{2}(F)}(W) \leq O_{2}(F) \cap O_{2}(P)
$$

we get $\left[O^{2}(F), O_{2}(F), W\right] \neq 1$. Thus by $[\operatorname{Ste} 2,3.3]$ there exists $B \leq O_{2}(F)$ such that

$$
\left[Y_{P}, B, B\right]=1 \neq\left[Y_{P}, B\right] \text { and }\left|\left[Y_{P}, B\right]\right| \leq\left|B / C_{B}\left(Y_{P}\right)\right| .
$$

The structure of P given in (3.1) shows that $B \leq P^{*}$. But then (1), (3) and (4) imply $B \leq$ $C_{P^{*}}\left(Y_{0}\right)=O_{2}(P)=C_{P^{*}}\left(Y_{P}\right)$, a contradiction.

We have shown that there are at least two non-central F-chief factors in W. Let $B_{1} \in \mathcal{A}\left(O_{2}(P)\right)$ with $B_{1} \not \leq O_{2}(F)$. From (2.1) we get that

$$
\left|B_{1} / C_{B_{1}}\left(W^{*}\right)\right| \leq\left|W^{*} / C_{W^{*}}\left(B_{1}\right)\right|
$$

for all non-central F-chief factors W^{*} of W.
We now apply the $q r c$-Lemma $\left[\operatorname{Ste} 2,3.1\right.$ (c)] to F and B_{1} and get $(q-1)(r c-1) \leq 1$ (where q, r and c are the parameters defined in [Ste]). Since by [Cher] $r \geq 1$ it follows that $q \leq 2$. Hence, there exists $B \leq O_{2}(F)$ such that

$$
(+) \quad\left|B / C_{B}\left(Y_{P}\right)\right|^{2} \geq\left|Y_{P} / C_{Y_{P}}(B)\right|
$$

Again by (3) and (4) $C_{P^{*}}\left(Y_{0}\right)=O_{2}(P)$ and thus $B \cap P^{*} \leq O_{2}(P)$.
As above, we now treat the two cases $(*)$ and $(* *)$ separately. It remains to prove the isomorphism type of \bar{P}.

Assume case (*). Then \bar{B} induces a field automorphism of order 2 on \bar{P}^{*}. Hence (+) gives $\left|Y_{P}\right|=4^{2}$ and $\bar{P} \cong S_{5}$.

Assume case ($* *$). Then $Y_{P}=Y_{0} V_{i}, i=1,2$, and again $|\bar{B}|=2$ and $\left|Y_{P}\right|=4^{2}$, so $\bar{P} \cong S_{3}$ wr S_{2}.

L-Lemma. Let $X \in \mathcal{P}_{H}(S)$ and $A \leq S$ such that $A \not \leq O_{p}(X)$, and let M be the unique maximal subgroup of X containing S. Then there exists a subgroup $O_{p}(X) \leq L \leq X$ with $A \leq L$ satisfying:
(i) $A O_{p}(L)$ is contained in a unique maximal subgroup L_{0} of L, and $L_{0}=L \cap M^{g}$ for some $g \in X$.
(ii) $L=\left\langle A, A^{x}\right\rangle O_{p}(L)$ for every $x \in L \backslash L_{0}$.
(iii) L is not contained in any X-conjugate of M.

Proof. For $U \leq X$ set

$$
U^{*}:=\left\langle A^{g} \mid g \in X, A^{g} \leq U\right\rangle .
$$

Note that $N_{X}(U) \leq N_{X}\left(U^{*}\right)$; in particular $N_{X}\left(S^{*}\right) \leq M$. Choose Y among all X-conjugates of M such that $Y \neq M$ and for $T \in \operatorname{Syl}_{p}(Y \cap M)$

$$
\left|T^{*}\right| \text { is maximal. }
$$

Without loss of generality we may assume that $T \leq S$. Let $h \in X$ such that $T \leq S^{h} \leq Y$ and set $N:=N_{X}\left(T^{*}\right)$ and $S_{1}:=S \cap N$. Then $T \neq S^{h}$ since $Y \neq M$, so also $T<N_{S^{h}}(T) \leq N \cap S^{h}$. As $T \in \operatorname{Syl}_{p}(Y \cap M)$ this gives $N \not \leq M$. Since $N_{X}\left(S^{*}\right) \leq M$ this implies that $T^{*} \neq S^{*}$ and thus also
$T^{*} \neq S_{1}^{*}$. Hence, there exists a conjugate $B=A^{g}, g \in X$, such that $B \leq S_{1}$ and $B \notin T$. Choose $z \in N \backslash M$ such that $L_{1}:=\langle B, z\rangle T^{*}$ is minimal, and set $L:=L_{1}^{g^{-1}} O_{p}(X)$.

Since $T^{*} \neq B T^{*}=\left(B T^{*}\right)^{*}$ the maximality of T^{*} shows that M is the unique conjugate containing $B T^{*}$. In particular, (iii) holds since $L_{1} \notin M$. Moreover, the minimality of L_{1} gives (i). Let $x \in L_{1} \backslash M$. Then M^{x} is the unique conjugate of M containing $B^{x} T^{*}$ and $M \neq M^{x}$, so $B^{x} \not \pm M$ and $\left\langle B, B^{x}\right\rangle T^{*}=L_{1}$. This gives (ii).
(3.8) Assume Hypothesis II. Let $A \leq S$ such that $\left[V_{\beta}, A, A\right]=1$ and $A \not \leq Q_{\beta}$. Then there exist $\tau \in \Delta(\beta), T \in \operatorname{Syl}_{p}\left(G_{\beta} \cap G_{\tau}\right)$ and $L \leq G_{\beta}$ such that for $L(\tau):=N_{L}(Z(\tau, \beta)), W:=\left\langle Z_{\tau}^{L}\right\rangle$ and $W^{*}:=\left\langle v^{h} \mid v \in Z_{\tau}, h \in L,[v, T] \leq Z_{\beta}^{*}\right\rangle$ the following hold:
(a) $Q_{\beta} \leq A O_{p}(L) \leq T \cap L \in \operatorname{Syl}_{p}(L(\tau))$, and $L(\tau)$ is a maximal subgroup of L.
(b) $L=\left\langle y, A^{x}\right\rangle O_{p}(L)$ for every $x \in L$ and every $y \in L \backslash L(\tau)^{x}$.
(c) $\left[W^{*}, O^{p}(L)\right] \neq 1$ and $\left[W, O^{p}(L)\right] \not \leq W^{*}$.
(d) Let U be a non-central L-chief factor of W. Then $C_{U}(A)=C_{U}(a)$ for every $a \in A \backslash O_{p}(L)$, and $\left|U / C_{U}(A)\right| \geq\left|A / A \cap O_{p}(L)\right|$.

Proof. According to (3.1), (3.4), (3.5) and (3.6) $b \geq 3$ and $\alpha^{\prime} \in \beta^{G}$; in particular $Q_{\tau} \not \leq Q_{\beta}$ for all $\tau \in \Delta(\beta)$ since $Z_{\alpha} \leq Q_{\alpha^{\prime}-1}$ and $Z_{\alpha} \not \leq Q_{\alpha^{\prime}}$. We apply the L-Lemma with G_{β} in place of X. Then there exists $Q_{\beta} \leq L \leq G_{\beta}$ and $\tau \in \Delta(\beta)$ such that
(i) $L(\tau)$ is the unique maximal subgroup of L containing $A O_{p}(L)$, and $A O_{p}(L) \leq T \cap L \in$ $\operatorname{Syl}_{p}(L(\tau))$ for some $T \in \operatorname{Syl}_{p}\left(G_{\beta} \cap G_{\tau}\right)$.
(ii) $L=\left\langle A, A^{x}\right\rangle O_{p}(L)$ for every $x \in L \backslash L(\tau)$.
(iii) $\left\langle L, T_{0}\right\rangle=G_{\beta}$ for every $T_{0} \in \operatorname{Syl}_{p}\left(G_{\beta}\right)$.

Claim (a) follows directly from (i).
Let y and x be as in (b). Then $y^{\prime}:=y^{x^{-1}} \in L \backslash L(\tau)$ and by (ii)

$$
L=\left\langle A, A^{y^{\prime}}\right\rangle O_{p}(L)=\left\langle A, y^{\prime}\right\rangle O_{p}(L) .
$$

This implies (b).
For the proof of (c) assume first that $\left[W^{*}, O^{p}(L)\right]=1$. Then $W^{*} \leq Z_{\tau}$ and $\left[W^{*}, T\right] \leq Z_{\beta}^{*} \leq W^{*}$ since $L=O^{p}(L)(T \cap L)$. By (iii) W^{*} is normal in $\langle L, T\rangle=G_{\beta}$. But this implies that $W^{*}=Z_{\beta}^{*}=Z_{\tau}$, a contradiction.

Assume now that $\left[W, O^{p}(L)\right] \leq W^{*}$. Then $W=W^{*} Z_{\tau}$ and

$$
Z_{\beta}^{*}\left[W, \widetilde{Q}_{\beta}\right]=Z_{\beta}^{*}\left[Z_{\tau}, \widetilde{Q}_{\beta}\right] \leq Z_{\tau}
$$

Hence $Z_{\beta}^{*}\left[Z_{\tau}, \widetilde{Q}_{\beta}\right]$ is normal in $\langle T, L\rangle=G_{\beta}$. On the other hand $Q_{\tau} \not \leq Q_{\beta}$ and thus by (1.3)(b) $\left[Z_{\tau}, \widetilde{Q}_{\beta}\right] \leq Z_{\beta}^{*}$. Let $g \in G_{\beta}$ such that $\tau=\alpha^{g}$. Then the action of P^{g} on Z_{τ}, as described in (3.1), shows that

$$
\left[Z_{\tau}, \widetilde{Q}_{\beta} \cap S_{0}^{g}\right]=Z(\tau, \beta) \leq Z_{\beta}^{*},
$$

which contradicts Hypothesis II. Hence, (c) is proved.
Note that L is minimal parabolic (with respect to $T \cap L$ and $L(\tau)$). Hence by (1.3)(b) $C_{T \cap L}(U)=O_{p}(L)$ for every non-central L-chief factor U in W. (2.1)(e) shows that

$$
\left|U / C_{U}(A)\right| \geq\left|A / A \cap O_{p}(L)\right| .
$$

Let $a \in A \backslash O_{p}(L)$. Then by (1.3)(b) there exists $x \in L$ such that $a \notin L(\tau)^{x}$. By (b) $L=$ $\left\langle a, A^{x}\right\rangle O_{p}(L)$ and thus, together with the quadratic action of A on U,

$$
U=[U, a] \times\left[U, A^{x}\right]=C_{U}(a) \times C_{U}\left(A^{x}\right) ;
$$

in particular $C_{U}(a)=[U, a] \leq C_{U}(A)$ and equality holds. This is (d).
(3.9) No group satisfies Hypothesis II.

Proof. Assume Hypothesis II. By (3.1), (3.4), (3.5) and (3.6) $\left[Z_{\alpha}, Z_{\alpha^{\prime}}\right]=1$ and $b \geq 3$. In particular, $\alpha^{\prime} \in \beta^{G}$ and V_{β} acts quadratically on $V_{\alpha^{\prime}}$, and vice versa. We apply (3.8) with $\left(G_{\alpha^{\prime}}, V_{\beta}\right)$ in place of $\left(G_{\beta}, A\right)$ and choose the notation τ, L, T, W, W^{*} as there.
(1) $Z_{\mu} \not \leq G_{\rho}$ for every $\rho \in \Delta(\beta)$ and $\mu \in \tau^{L}$ such that $Z_{\rho} \not \leq L(\mu)$.

Assume that there exist $\rho \in \Delta(\beta)$ and $\mu \in \tau^{L}$ such that $Z_{\rho} \not \leq L(\mu)$ but $Z_{\mu} \leq G_{\rho}$. Let $x \in L$ such that $\mu=\tau^{x}$. Then, with the notation of (3.1) applied to G_{ρ}, there exists a submodule $V_{i} \leq Z_{\rho}$ such that $V_{i} \not \leq L(\mu)$. By (3.8)(b) $\left\langle V_{i}, V_{\beta}^{x}\right\rangle O_{p}(L)=L$. On the other hand $Z_{\mu} \leq G_{\rho}$, and (3.1) together with the quadratic action of Z_{μ} on Z_{ρ} gives either

$$
\left[V_{i}, Z_{\mu} \cap W^{*}\right]=1 \text { or }\left[V_{i}, Z_{\mu}\right]=\left[V_{i}, Z_{\mu} \cap W^{*}\right] .
$$

In the first case $Z_{\mu} \cap W^{*}$ is normal in L. Hence $W^{*}=Z_{\mu} \cap W^{*}$, and by (1.3)(b) $\left[W^{*}, O^{p}(L)\right]=1$ since $V_{i} \not \leq O_{p}(L)$. In the second case $\left[W, O^{p}(L)\right] \leq W^{*}$ since $O^{p}(L) \leq\left\langle V_{i}^{L}\right\rangle$, so both cases contradict (3.8)(c), and (1) is proved.

In particular, (1) together with $V_{\beta} \not \leq O_{p}(L)$ gives $W \not \leq Q_{\beta}$. Hence, we are allowed to apply (3.8) to $\left(G_{\beta}, W\right)$ in place of $\left(G_{\beta}, A\right)$. Again we use the notation of (3.8), but this time indicated by ${ }^{\sim}$ to distinguish from the above notation, so $\widetilde{\tau}, \widetilde{L}, \widetilde{T}, \widetilde{W}, \widetilde{W}^{*}$ are given as there. With the same argument as above we get
(2) $Z_{\widetilde{\mu}} \not \leq G_{\widetilde{\rho}}$ for every $\widetilde{\rho} \in \Delta\left(\alpha^{\prime}\right)$ and $\widetilde{\mu} \in \tau^{\widetilde{L}}$ such that $Z_{\widetilde{\rho}} \not \leq \widetilde{L}(\widetilde{\mu})$.

As above, (2) implies $\widetilde{W} \not \leq O_{p}(L)$. We now choose $\mu \in \tau^{L}$ and $\widetilde{\mu} \in \widetilde{\tau}^{\widetilde{L}}$ such that $\widetilde{W} \not 又 L(\mu)$ and $W \not \leq \widetilde{L}(\widetilde{\mu})$. From (1) and (2) we get that $Z_{\widetilde{\mu}} \not \leq O_{p}(L)$ and $Z_{\mu} \not \leq O_{p}(\widetilde{L})$. Moreover, we may assume that $\left|W / W \cap O_{p}(\widetilde{L})\right| \leq\left|\widetilde{W} / \widetilde{W} \cap O_{p}(L)\right|$, since the other case follows by the same argument with the roles of W and \widetilde{W} reversed.

From $(3.8)(\mathrm{c})$ we get that there exist two non-central L - chief factors U_{1} and U_{2} in W. As $Z_{\widetilde{\mu}} \not \leq O_{p}(L)(3.8)(\mathrm{d})$ implies that $C_{U_{i}}\left(V_{\beta}\right)=C_{U_{i}}\left(Z_{\widetilde{\mu}}\right)$, so, again by $(3.8)(\mathrm{d})$,

$$
\left|\widetilde{W} / \widetilde{W} \cap O_{p}(L)\right| \leq\left|V_{\beta} / V_{\beta} \cap O_{p}(L)\right| \leq\left|U_{i} / C_{U_{i}}\left(V_{\beta}\right)\right|=\left|U_{i} / C_{U_{i}}\left(Z_{\tilde{\mu}}\right)\right|
$$

Hence

$$
\begin{aligned}
\left|\widetilde{W} / \widetilde{W} \cap O_{p}(L)\right|^{2} & \leq\left|U_{1} / C_{U_{1}}\left(Z_{\widetilde{\mu}}\right)\right|\left|U_{2} / C_{U_{2}}\left(Z_{\widetilde{\mu}}\right)\right| \leq\left|W / C_{W}\left(Z_{\widetilde{\mu}}\right)\right| \\
& \leq\left|W / W \cap Q_{\widetilde{\mu}}\right| \leq\left|W / W \cap O_{p}(\widetilde{L})\right|\left|W \cap G_{\widetilde{\mu}} / W \cap Q_{\widetilde{\mu}}\right| \\
& \leq\left|\widetilde{W} / \widetilde{W} \cap O_{p}(L)\right|\left|W \cap G_{\widetilde{\mu}} / W \cap Q_{\widetilde{\mu}}\right|
\end{aligned}
$$

On the other hand by (3.7), applied to $G_{\widetilde{\mu}}$ with $A=W$, we get $\left|W \cap G_{\widetilde{\mu}} / W \cap Q_{\tilde{\mu}}\right| \leq 2$. It follows that
(3) $\left|W / W \cap O_{p}(\widetilde{L})\right|=\left|\widetilde{W} / \widetilde{W} \cap O_{p}(L)\right|=2=p$ and $\left|Z_{\mu}\right|=\left|Z_{\tilde{\mu}}\right|=16$.
(4) $\left|W / C_{W}\left(Z_{\widetilde{\mu}}\right)\right|=\left|\widetilde{W} / C_{\widetilde{W}}\left(Z_{\mu}\right)\right|=4$.

As a consequence we get from (3)
(5) $Z_{\widetilde{\mu}} \not \leq L(\mu)$ and $Z_{\mu} \not \leq \widetilde{L}(\widetilde{\mu})$.

Next we prove:
(6) $L / C_{L}(W) \cong \widetilde{L} / C_{\widetilde{L}}(\widetilde{W}) \cong S_{3}$.

Let $t \in Z_{\tilde{\mu}} \backslash O_{2}(L)$ and $x \in L$ such that $\mu=\tau^{x}$. Then by (3) and (5) $L=\left\langle t, t^{x}\right\rangle O_{2}(L)$ and thus $O^{2}(L) \leq\left\langle t^{L}\right\rangle$. Hence, (3.8)(c) gives $W^{*} \not \leq C_{W}(t)$ and $W^{*} C_{W}(t) \neq W$, and (6) follows for L
from $\left|W / C_{W}\left(Z_{\widetilde{\mu}}\right)\right|=4$. A similar argument gives the claim for \widetilde{L}.
Set $W_{0}:=W$ and $W_{i}:=\left[W_{i-1}, \widetilde{Q}_{\alpha^{\prime}}\right]$ for $i \geq 1$, and note that $W_{i}=\left\langle\left(W_{i} \cap Z_{\mu}\right)^{L}\right\rangle$.
(7) Assume that $\left(W_{i} \cap Z_{\mu}\right) W_{i+1}=W_{i}$. Then $W_{i} \leq Z_{\mu}$.

Note that $W_{i+1}=\left[W_{i}, \widetilde{Q}_{\alpha^{\prime}}\right] \leq\left[Z_{\mu} W_{i+1}, \widetilde{Q}_{\alpha^{\prime}}\right] \leq Z_{\mu} W_{i+2}$. It follows that $W_{i}=\left(W_{i} \cap Z_{\mu}\right) W_{k}$ for all $k \geq i+1$ and thus $W_{i} \leq Z_{\mu}$.
(8) $\left[Z_{\widetilde{\mu}}, Z_{\mu} \cap O_{2}(\widetilde{L})\right] \neq 1$.

Let $A_{1}:=Z_{\mu} \cap O_{2}(\widetilde{L})$, and assume that $\left[Z_{\widetilde{\mu}}, A_{1}\right]=1$. By (6) $L(\mu)=\left(L(\mu) \cap G_{\mu}\right) C_{L}(W)$. Suppose that $Z_{\mu}=A_{1}\left(Z_{\mu} \cap W_{1}\right)$. Then $W=Z_{\mu} W_{1}$ and by (7) $W=Z_{\mu}$. But then Z_{μ} is normal in $\left\langle L, G_{\alpha^{\prime}} \cap G_{\mu}\right\rangle=G_{\alpha^{\prime}}$, a contradiction. We have shown that $Z_{\mu} \cap W_{1} \leq A_{1}$. It follows that $Z_{\mu} \cap W_{1}$ is centralized by $Z_{\widetilde{\mu}}$ and thus normalized by L, so $W_{1} \leq A_{1}$ and $\left[W_{1}, O^{2}(L)\right]=1$. In particular [$Z_{\mu}, \widetilde{Q}_{\alpha^{\prime}}$] is normalized by L and centralized by $O^{2}(L)$. Hence, by the L-Lemma (iii) it is also normalized by $G_{\alpha^{\prime}}$ and centralized by $O^{2}\left(G_{\alpha^{\prime}}\right)$. Since $Z\left(\mu, \alpha^{\prime}\right) \leq\left[Z_{\mu}, Q_{\alpha^{\prime}}\right]$ we get that $Z\left(\mu, \alpha^{\prime}\right)$ is normal in $G_{\alpha^{\prime}}$, a contradiction to Hypothesis II.
(9) $R:=\left[Z_{\widetilde{\mu}} \cap O_{2}(L), Z_{\mu} \cap O_{2}(\widetilde{L})\right] \neq 1$, and R is centralized by a Sylow 2-subgroup of $G_{\widetilde{\mu}}$ and G_{μ}.

Let $A:=Z_{\mu}$ and $A_{0}:=A \cap G_{\widetilde{\mu}}$. By (8) $Y_{0}:=\left[Z_{\widetilde{\mu}}, A_{0}\right] \neq 1$, and by (5) A and $G_{\widetilde{\mu}}$ satisfy the hypothesis of (3.7). Then (3.7) shows that $\left|Y_{0}\right|=4$ and $\left|A_{0} / A_{0} \cap Q_{\widetilde{\mu}}\right|=2$; in particular $A_{0}=A \cap O_{2}(\widetilde{L})$. Moreover, (3.7) gives $\left|Z_{\widetilde{\mu}} / C_{Z_{\tilde{\mu}}}\left(A_{0}\right)\right|=4$ and thus $R \neq 1$ since $\left|Z_{\widetilde{\mu}} / Z_{\widetilde{\mu}} \cap O_{2}(L)\right|=2$.

The action of $G_{\widetilde{\mu}}$ on $Z_{\widetilde{\mu}}$ also shows that all elements of Y_{0} are centralized by a Syolw 2-subgroup of $G_{\tilde{\mu}}$. This and the symmetric argument in G_{μ} yields the additional claim of (9).

We now derive a final contradiction. According to (9) there exist $y \in G_{\widetilde{\mu}}$ and $z \in G_{\mu}$ such that $R=Z_{\beta}^{y}=Z_{\alpha^{\prime}}^{z}$. Then by (1.6) $\widetilde{C}_{\beta}^{y}=\widetilde{C}_{\alpha^{\prime}}^{z}$ and thus $\widetilde{Q}_{\beta}^{y}=\widetilde{Q}_{\alpha^{\prime}}^{z}$. On the other hand, Hypothesis I and (1.2)(b) yield $Z_{\widetilde{\mu}} \leq \widetilde{Q}_{\beta}^{y}$, so $Z_{\widetilde{\mu}} \leq \widetilde{Q}_{\alpha^{\prime}}^{z} \leq G_{\mu}$, which contradicts (2) and (5).

Theorem 3. Assume Hypothesis I. Then Z_{0} is normal in \widetilde{C}.

Proof. Assume that Z_{0} is not normal in \widetilde{C}. By the definition of $\widetilde{C} N_{H}(S) \leq \widetilde{C}$. Hence, $N_{H}(S)$ acts on $\mathcal{P}_{H}(S) \backslash \mathcal{P}_{\widetilde{C}}(S)$, and Theorem 2 implies that $N_{H}(S) \leq N_{H}(P)$ and thus also $N_{H}(S) \leq N_{H}\left(P^{*}\right)$ since $P^{*}=U(P)$. It follows that $N_{H}(S) \leq N_{H}\left(S_{0}\right) \leq N_{H}\left(Z_{0}\right)$.

According to (1.3)(a) there exists $\widetilde{P} \in \mathcal{P}_{\widetilde{C}}(S)$ such that Z_{0} is not normal in \widetilde{P}. We choose $|\widetilde{P}|$
minimal with this property. If (P, \widetilde{P}) is an amalgam, then (P, \widetilde{P}) satisfies Hypothesis II, which is impossible by (3.9).

Thus, (P, \widetilde{P}) is not an amalgam, and there exists $L \in \mathcal{L}_{H}(S)$ such that $\langle P, \widetilde{P}\rangle \leq L$. Let $L \ll \widetilde{M} \in \mathcal{L}_{H}^{*}(S)$. Then by (1.2) $Y_{L} \leq Y_{\widetilde{M}}$ and by (1.4) $P^{0} \leq L^{0} \leq \widetilde{M^{0}} \leq \widetilde{M}$.

We now apply the Local P!-Theorem to \widetilde{M}. Assume that also $\widetilde{P} \leq \widetilde{M}$. Then $\widetilde{P} \leq \widetilde{M} \cap \widetilde{C} \leq$ $N_{\widetilde{M}}\left(Z_{0}\right)$, a contradiction. Thus, we have $\widetilde{P} \nsubseteq \widetilde{M}$.

Assume first that case (a) of the Local P!-Theorem holds. Then $Q \leq S_{0}$, so $Z_{0} \leq Z(Q)$ and thus also $W:=\left\langle Z_{0}^{\widetilde{P}}\right\rangle \leq Z(Q)$. Note that

$$
Z_{0} \leq Y_{P}=\left[Y_{P}, P^{0}\right] \leq\left[Y_{L}, L^{0}\right] \text { and } W \leq\left[Y_{L}, L^{0}\right]
$$

by (1.2). It follows that $W \leq\left[Y_{\widetilde{M}}, \widetilde{M}_{0}\right]$ since $Y_{L} \leq Y_{\widetilde{M}}$ and $L^{0} \leq \widetilde{M}^{0}$. In case (a) $\left[Y_{\widetilde{M}}, \widetilde{M}_{0}\right]$ is a natural $S L_{n}\left(p^{m}\right)$ - or $S p_{2 n}\left(p^{m}\right)^{\prime}$-module. In particular, $C_{\left[Y_{\widetilde{M}}, \widetilde{M}_{0}\right]}(Q)=Z_{0}$ and so $Z_{0}=W$ and $\widetilde{P} \leq N_{H}\left(Z_{0}\right)$, a contradiction.

Assume finally that case (b) of the Local P!-Theorem holds for \widetilde{M}. Then $P^{0}=L^{0}=\widetilde{M}^{0}$ and $\widetilde{P} \leq N_{H}\left(\widetilde{M^{0}}\right)=\widetilde{M}$, which contradicts $\widetilde{P} \not \leq \widetilde{M}$.

Corollary 2. Assume Hypothesis I and $p=2$. Then $\mathcal{P}_{H}(S)=\{P\} \cup \mathcal{P}_{\widetilde{C}}(S)$.

Proof. We apply Theorem 2. Then $\mathcal{P}_{H}(S)=\mathcal{P}_{P}(S) \cup \mathcal{P}_{\widetilde{C}}(S)$, and the structure of P, see (3.1), implies $\mathcal{P}_{P}(S)=\{P\} \cup \mathcal{P}_{N_{P}\left(Z_{0}\right)}(S)$. Now Theorem 3 yields the assertion.

Corollary 3. Assume Hypothesis I. Suppose that case (b) of the Local P!-Theorem holds for $P \leq M \in \mathcal{L}_{H}^{*}(S)$. Then the following holds:
(a) $p=2$ and $\mathcal{M}_{H}(P)=\{M\}$,
(b) $\bar{P}^{*}=K_{1} \times \cdots \times K_{r}, K_{i} \cong S L_{2}(2)$,
(c) $Y_{P}=V_{1} \times \cdots \times V_{r}$, where $V_{i}=\left[Y_{P}, K_{i}\right]$ is a natural $S L_{2}(2)$-module for K_{i},
(d) $r \geq 4$.
(e) Q is transitive on K_{1}, \ldots, K_{r}.

Proof. We are in case (b) of the Structure Theorem. According to Theorem $3 Z_{0}$ is normal in \widetilde{C}. Hence
$(*) \quad\left[N_{P}\left(Z_{0}\right), Q\right] \leq O_{p}\left(N_{P}\left(Z_{0}\right)\right)$.

We apply (3.1). Then either $\bar{P}^{*} \cong S L_{2}\left(p^{m}\right)$, or the Q-transitivity and (*) show that $N_{K_{i}}\left(Z_{0}\right)$ is a p-group and $r \geq 2$.

In the first case Y_{P} is a natural $S L_{2}\left(p^{m}\right)$-module for P^{*}. Thus, Y_{P} is an F-vector space for $F:=\operatorname{End}_{\bar{P}^{*}}\left(Y_{P}\right)$, and P induces semi-linear transformations on Y_{P}. As $N_{P^{*}}\left(Z_{0}\right)$ is irreducible on Z_{0}, we get from (*) that $\left[Z_{0}, Q\right]=1$, so Q centralizes a 1-dimensional F-subspace of Y_{P}. Hence, Q induces F-linear transformations on Y_{P}, and $Q \leq P^{*}$. But this contradicts case (b) of the Structure Theorem.

In the second case (a) - (c) and (e) are clear. For the proof of (d) note that Q-transitivity yields $r=2$ or (d). Assume $r=2$, so $P / C_{P}\left(Y_{P}\right) \cong O_{4}^{+}(2)$ and $\left|Z_{0}\right|=4$. Hence, Theorem 3 shows that $\widetilde{C} / C_{\widetilde{C}}\left(Z_{0}\right)$ is a subgroup of S_{3}. If all involutions in Z_{0} are conjugate in \widetilde{C}, then Q-Uniqueness implies that $P \leq \widetilde{C}$, which is not the case. It follows that $\widetilde{C}=C_{\widetilde{C}}\left(Z_{0}\right) S$, in particular $C_{\widetilde{C}}\left(Z_{0}\right) \not \leq M$. We conclude that $C_{H}(x) \not \leq M$ for all $1 \neq x \in Y_{P}$. Now Theorem 3 of [MSS2] shows that $Y_{M} \not \leq Q$, a contradiction.

4. F-Uniqueness

In this section we treat the exceptional case described in Corollary 3, so in this section we assume:

Hypothesis III. Hypothesis I and case (b) of the Local P!-Theorem holds for $P \leq M \in$ $\mathcal{L}_{H}^{*}(S) ;$ in particular $\mathcal{M}_{H}(P)=\{M\}$.

Notation. We use the notation given in Corollary 3 (and (3.1)). Set

$$
F:=C_{\widetilde{C}}\left(Z_{0}\right) \text { and } \Omega:=\left\{K_{1}, \ldots, K_{r}\right\}
$$

Recall that by Theorem $3 F$ is normal in \widetilde{C}, and by Corollary 3
$(*) p=2, K_{i} \cong S L_{2}(2), r \geq 4$, and Q is transitive on Ω.
We will use these facts without further reference.
(4.1) $P^{*} \cap \widetilde{C}=S_{0} C_{P^{*}}\left(Y_{P}\right)$ and $\widetilde{C}=C$.

Proof. Assume that $U:=C_{P^{*}}\left(Y_{P}\right) S_{0}<P^{*} \cap \widetilde{C}$. Then by Corollary 3 (b) $K_{i} \leq\left[\bar{S}_{0}, \overline{P^{*} \cap \widetilde{C}}\right] \bar{S}_{0}$ for some i, and the Q-transitivity yields $P^{*} \leq \widetilde{C}$, which is not the case.

Let $Z^{*}=\left\langle Z^{\widetilde{C}}\right\rangle$. By Theorem $3 Z^{*} \leq Z_{0} \cap Z(Q)$, and by Q-uniqueness $C_{P^{*}}(z) \leq P^{*} \cap \widetilde{C}=$ $S_{0} C_{P^{*}}\left(Y_{P}\right)$ for all $1 \neq z \in Z^{*}$. Now Corollary 3 (c) yields $\left|Z^{*}\right|=2$, so $C=\widetilde{C}$.
(4.2) $N_{H}(B(S)) \leq M$.

Proof. It suffices to show that P and $N_{H}(B(S))$ are contained in a 2-local subgroup of H since $\mathcal{M}_{H}(P)=\{M\}$. Assume that this is not the case; i.e. $O_{2}\left(\left\langle P, N_{H}(B(S))\right\rangle=1\right.$. Then $B(S)$ is not normal in P and by (3.1) $B(S)=S_{0}$. Hence, $N_{H}(B(S))=N_{H}\left(S_{0}\right) \leq N_{H}\left(Z_{0}\right)=\widetilde{C}$. For every $i=1, \ldots, r$ we choose $X_{i} \leq P^{*}$ minimal with respect to

$$
B(S) \leq X_{i} \text { and } \bar{X}_{i}=K_{i} \overline{B(S)}
$$

Then $X_{i} \in \mathcal{P}_{H}(B(S))$ and $\left\langle X_{i}, S\right\rangle=P$. Moreover $V_{i}=\left[Y_{X_{i}}, O^{2}\left(X_{i}\right)\right]=\left[Y_{P}, O^{2}\left(X_{i}\right)\right]$ since $Y_{X_{i}} \leq$ $\Omega_{1}\left(Z\left(O_{2}(P)\right)\right)=Y_{P}$.

Suppose that there is a non-trivial characteristic subgroup A of $B(S)$, which is normal in X_{1}. Then $\left\langle S, X_{1}, N_{H}(B(S))\right\rangle=\left\langle P, N_{H}(B(S))\right\rangle \leq N_{H}(A)$, which contradicts $O_{2}\left(\left\langle P, N_{H}(B(S))\right\rangle=1\right.$.

Hence, no non-trivial characteristic subgroup of $B(S)$ is normal in X_{1}. Now [Ste1] gives $\left[O_{2}\left(X_{1}\right), O^{2}\left(X_{1}\right)\right]=V_{1} \leq Y_{P}$. Hence also $\left[O_{2}(P), O^{2}(P)\right] \leq Y_{P}$, and $Z(P)=1$ yields

$$
Y_{P}=O_{2}(P)=V_{1} \times \cdots \times V_{r} .
$$

Since Q is transitive on $\left\{V_{1}, \ldots, V_{r}\right\}$ and $N_{H}(B(S))$ does not normalize Y_{P} there exists $t \in N_{H}(B(S))$ such that $R:=\left[V_{1}, V_{1}^{t}\right] \neq 1$. It follows that also $\left[V_{1}^{t}, V_{1}^{t^{2}}\right] \neq 1$, so

$$
R^{t}=\left[V_{1}^{t}, V_{1}^{t^{2}}\right]=\left[V_{1}^{t}, V_{1}\right]=R
$$

since $\left\langle V_{1}, V_{1}^{t^{2}}\right\rangle \leq B(S) \leq N_{P}\left(V_{1}^{t}\right)$. As $t \in \widetilde{C}$ and Y_{P} is normal in Q the Q-transitivity gives

$$
\text { (*) } S_{0}=Y_{P} Y_{P}^{t} \text { and } Y_{P} \cap Y_{P}^{t}=Z_{0} \text {. }
$$

Let $U=N_{H}(R)$ and $W=O_{2}(U)$. Then $\left\langle t, X_{2}, \ldots, X_{r}\right\rangle \leq U$, and $V_{i} \cap W$ is X_{i}-invariant for every $i \geq 2$. It follows that either there exists an $i \geq 2$ such that $V_{i} \leq W$, or $V_{i} \cap W=1$ for every $i \geq 2$. The first case gives $V_{i}^{t} \leq W$ and so $V_{i}^{t} \leq O_{2}\left(X_{2} \cdots X_{r}\right)$. On the other hand, by ($*$) $\left[Y_{P}, V_{i}^{t}\right] \neq 1$, so we get that $\left[V_{i}^{t}, V_{1}\right]=R$. But this implies that $R \leq V_{i}^{t}$ and $R=R^{t} \leq V_{i}$, which is impossible since $V_{1} \cap V_{i}=1$ for $i>1$.

We have shown that $V_{i} \cap W=1$ for $i>1$. It follows that $\left[S_{0} \cap W, O^{2}\left(X_{2}\right)\right]=1$. Since $S_{0} \cap W$ is normalized by X_{2} and W we get $\left[\left(S_{0} \cap X_{2}\right)^{x}, W\right] \leq S_{0} \cap W$ for every $x \in X_{2}$. Hence $\left[W, O^{2}\left(X_{2}\right)\right] \leq S_{0} \cap W$ and $\left[W, O^{2}\left(X_{2}\right), O^{2}\left(X_{2}\right)\right]=1$. But then U is not of characteristic 2, a contradiction.
(4.3) Let $S_{0} \leq T, T$ a 2-subgroup of H. Then S_{0} is normal in $N_{H}(T)$ and $N_{H}(T) \leq M \cap \widetilde{C}$.

Proof. Note that $N_{H}(T) \leq N_{H}(B(S)) \leq M$ by (3.1) and (4.2). Moreover, by the Structure Theorem, case (b), $Y_{P}=Y_{M}$ and $P^{*} C_{M}\left(Y_{M}\right)$ is normal in M, so $T \cap P^{*} C_{M}\left(Y_{M}\right)=S_{0}$. Hence Theorem 3 gives $N_{M}(T) \leq N_{M}\left(S_{0}\right) \leq M \cap \widetilde{C}$.
(4.4) Let $\widetilde{L} \in \mathcal{L}_{H}(S)$. Then either $\widetilde{L} \leq \widetilde{C}$, or $P \leq \widetilde{L} \leq M$ and $F \not \leq \widetilde{L}$.

Proof. Assume that $\widetilde{L} \nsubseteq \widetilde{C}$. Then (1.3)(a) and the Corollaries 2 and 3 show that $P \leq \widetilde{L} \leq M$. If in addition $F \leq M$, then the Frattini argument and (4.3) imply that $\widetilde{C}=F N_{H}\left(S_{0}\right) \leq M$, a contradiction.
(4.5) Suppose that $S_{0} \leq T \leq S$ such that $|S / T|=2$ and $S=T Q$. Let $T \leq L \leq H$ and $O_{2}(L) \neq 1$. Then one of the following holds:
(a) $L \leq M$.
(b) $L \leq \widetilde{C}$.
(c) $L \in \mathcal{L}_{H}(T)$.

Proof. Let $U=N_{H}\left(O_{2}(L)\right)$ and $T \leq T_{0} \in \operatorname{Syl}_{2}(U)$. By (4.3) $T_{0} \leq M \cap \widetilde{C}$ and thus either $T=T_{0}$ or $T_{0} \in S y l_{2}(\widetilde{C})$ and $Q \leq T_{0}$. In the second case $T_{0}=T Q=S$, and (4.4) yields $L \leq U \leq M$ or $L \leq U \leq \widetilde{C}$. In the first case $U \in \mathcal{L}_{H}(T)$ and thus also $L \in \mathcal{L}_{H}(T)$.

Notation. From now on we fix a maximal subgroup T of S containing $N_{S}\left(K_{1}\right)$. Recall that $B(S) \leq S_{0} \leq T$. Let $Q_{0}:=T \cap Q$ and

$$
\mathcal{L}_{0}(T):=\left\{U \in \mathcal{L}_{H}(T) \mid U \not \leq \widetilde{C} \text { and } U \cap \widetilde{C} \not \leq M\right\} .
$$

By $\mathcal{L}_{0}(T)_{*}$ we denote the set of minimal elements of $\mathcal{L}_{0}(T)$.
(4.6) Let $\bar{P}^{*}:=P^{*} / C_{P^{*}}\left(Y_{P}\right)$ and $1 \neq K \leq O^{2}\left(\bar{P}^{*}\right)$. Suppose that K is Q_{0}-invariant. Then $K=O^{2}\left(\bar{P}^{*}\right)$ or $K=\times_{X \in \Omega_{i}} X^{\prime}$ for some T-orbit Ω_{i} of Ω; in particular $\left[K, \bar{Q}_{0}\right] \neq 1$.

Proof. Since $K \neq 1$ there exist $K_{i} \in \Omega$ and $t \in S_{0} \cap K_{i}$ such that $[K, \bar{t}]=K_{i}^{\prime}$. Let $q \in Q$ such that $K_{i}^{q} \neq K_{i}$, and let $q_{0}:=[t, q]$ and $R:=\left[K, \bar{q}_{0}\right]$. Then $q_{0} \in S_{0} \cap Q \leq Q_{0}$ and $R \leq\left(K_{i} \times K_{i}^{q}\right) \cap K$ with $[R, \bar{t}]=K_{i}^{\prime}$.

Since $r>2$ there exists $x \in Q$ such that $K_{i}^{x} \notin\left\{K_{i}, K_{i}^{q}\right\}$. Let $x_{0}=[t, x]$. Then as above $x_{0} \in Q_{0} \cap S_{0}$, while $\bar{x}_{0} C_{\bar{S}_{0}}\left(K_{i} \times K_{i}^{q}\right)=\bar{t} C_{\bar{S}_{0}}\left(K_{i} \times K_{i}^{q}\right)$. It follows that $\left[R, \bar{x}_{0}\right]=K_{i}^{\prime} \leq K$.

We have shown that $K_{i}^{\prime} \leq K$ for every $K_{i} \in \Omega$ such that $\left[K, K_{i}\right] \neq 1$. Now the action of Q_{0} on K and Ω gives the desired structure of K. Moreover, $r>2$ implies that $\left[K, \bar{Q}_{0}\right] \neq 1$.
(4.7) $|S / T|=2, S=T Q$, and T has two orbits Ω_{1} and Ω_{2} on Ω such that for $Z_{i}:=$ $C_{\Omega_{1}(Z(T))}\left(\Omega_{i}\right)$ the following hold:
(a) $\left|\Omega_{i}\right|=\frac{r}{2}$ and $\left|Z_{i}\right|=2, i=1,2$, and
(b) $\Omega_{1}(Z(T))=Z_{1} \times Z_{2}$.

Proof. This is a direct consequence of the choice of T.
$(4.8) \mathcal{L}_{0}(T) \neq \emptyset$.

Proof. Let $L:=C_{H}\left(Z_{1}\right), Z_{1}$ as in (4.7). Then $L \notin \widetilde{C}$, and by (4.4) $L \cap \widetilde{C} \not \leq M$ since $F \leq L \cap \widetilde{C}$. Now (4.5) shows that $L \in \mathcal{L}_{0}(T)$.
(4.9) Let $L \in \mathcal{L}_{0}(T)$. Then $O_{2}\left(\left\langle O^{2}\left(P^{*}\right), L \cap \widetilde{C}\right\rangle\right)=1$.

Proof. Let $L_{0}:=\left\langle O^{2}\left(P^{*}\right), L \cap \widetilde{C}\right\rangle$ and assume that $O_{2}\left(L_{0}\right) \neq 1$. Let $t \in Q \backslash T$. Then $T\langle t\rangle=S$ since T has index 2 in S. Moreover, $[t, L \cap \widetilde{C}] \leq Q_{0} \leq O_{2}(L \cap \widetilde{C})$. It follows that t normalizes L_{0}. Hence $S \leq L_{0}\langle t\rangle$ and $1 \neq O_{2}\left(L_{0}\right) \leq O_{2}\left(L_{0}\langle t\rangle\right)$. This contradicts (4.4) since $L_{0} \not \leq M$ as $L \cap \widetilde{C} \not \leq M$ and $L_{0} \notin \widetilde{C}$ as $O^{2}\left(P^{*}\right) \not \subset \widetilde{C}$.

Theorem 4. Suppose that $L \in \mathcal{L}_{0}(T)$. Then

$$
\mathcal{P}_{L}(T)=\mathcal{P}_{L \cap M}(T) \cup \mathcal{P}_{L \cap \widetilde{C}}(T) .
$$

Proof. Assume that there exists $X \in \mathcal{P}_{L}(T)$ such that $X \not 又 M$ and $X \not 又 \widetilde{C}$. By (4.2) and (1.3)(b) neither $B(S)$ nor $\Omega_{1}(Z(T))$ is normal in X. Hence, (2.9) implies that there exists a minimal parabolic subgroup X_{0} of characteristic 2 in X such that X_{0} satisfies (2.9)(a) - (e) (in place of $\left.L_{i}\right)$; in particular $X=\left\langle T, X_{0}\right\rangle, O_{2}(X) B(S) \in S y l_{2}\left(X_{0}\right)$ and $X_{0} / C_{X_{0}}\left(Y_{X_{0}}\right) \cong S L_{2}\left(2^{k}\right)$. We choose $X^{*} \leq X_{0}$ minimal with respect to

$$
B(S) \leq X^{*} \text { and } X_{0}=X^{*} C_{X_{0}}\left(Y_{X_{0}}\right)
$$

Then X^{*} is a minimal parabolic subgroup and $X=\left\langle X^{*}, T\right\rangle$. Moreover $B(S) \in \operatorname{Syl}_{2}\left(X^{*}\right)$ by (2.7) applied to X^{*}.

Assume that there exists a non-trivial characteristic subgroup A of $B(S)$ which is normal in X^{*}. As A is also characteristic in S we get

$$
\text { (*) } \quad X=\left\langle T, X^{*}\right\rangle \leq N_{H}(A) \text { and } S \leq N_{H}(A) .
$$

Hence by (4.4) $N_{H}(A) \leq \widetilde{C}$ or $N_{H}(A) \leq M$, which contradicts $X \leq N_{H}(A)$.
Thus, no non-trivial characteristic subgroup of $B(S)$ is normal in X^{*}. As X^{*} is a minimal parabolic subgroup the hypothesis of [Ste1] is satisfied. We get $\left[O^{2}\left(X^{*}\right), O_{2}\left(X^{*}\right)\right]=\left[Y_{X^{*}}, O^{2}\left(X^{*}\right)\right]$ and $Y_{X^{*}} / C_{Y_{X^{*}}}\left(X^{*}\right)$ is a natural $S L_{2}\left(2^{k}\right)$-module for $X^{*} / C_{X^{*}}\left(Y_{X^{*}}\right)$, so $\left[O^{2}\left(X^{*}\right), O_{2}\left(X^{*}\right)\right] \leq Y_{X}$. Since $\left[O_{2}(X), B(S)\right] \leq B(S) \cap O_{2}(X) \leq O_{2}\left(X^{*}\right)$ we also get

$$
\left[O_{2}(X), O^{2}\left(X^{*}\right)\right] \leq Y_{X} \text { and }\left[O_{2}(X), O^{2}(X)\right] \leq Y_{X}
$$

As in the proof of (4.9) pick $t \in Q \backslash T$. Then

$$
(* *) \quad[L \cap \widetilde{C}, t] \leq Q \cap T \leq O_{2}(L \cap \widetilde{C}) .
$$

Assume first that $Y_{X}^{t} \leq O_{2}(X)$. Then

$$
S \leq\langle X, t\rangle \leq N_{H}\left(Y_{X} Y_{X}^{t}\right) \in \mathcal{L}_{H}(S),
$$

and by (4.4) $N_{H}\left(Y_{X} Y_{X}^{t}\right) \leq M$ or $N_{H}\left(Y_{X} Y_{X}^{t}\right) \leq \widetilde{C}$. But this contradicts $X \leq N_{H}\left(Y_{X} Y_{X}^{t}\right)$.
We have shown that $Y_{X}^{t} \not \leq O_{2}(X)$. As $\left|Y_{X} / C_{Y_{X}}\left(Y_{X}^{t}\right)\right|=\left|Y_{X}^{t} / C_{Y_{X}^{t}}\left(Y_{X}\right)\right|$ we get $Y_{X}^{t} \in \mathcal{U}(X)$ (for the definition see section 2). Since Y_{X}^{t} is normal in T we conclude with (2.1) that $Y_{X}^{t} O_{2}(X)=$ $B(S) O_{2}(X)$. In addition, (2.1) shows that $B(S) C_{X}\left(Y_{X}\right) / C_{X}\left(Y_{X}\right)$ is self-centralizing in $X / C_{X}\left(Y_{X}\right)$. It follows that $O_{2}\left(X^{t}\right) \leq Y_{X}^{t} O_{2}(X)$. Hence, for $D:=O_{2}(X) \cap O_{2}\left(X^{t}\right)$ we get $O_{2}\left(X^{t}\right)=Y_{X}^{t} D$ and similarly $O_{2}(X)=Y_{X} D$. This gives

$$
\Phi\left(O_{2}\left(X^{t}\right)\right)=\Phi(D)=\Phi\left(O_{2}(X)\right)
$$

in particular $\langle X, S\rangle \leq N_{H}(\Phi(D))$. Now as above (4.4) implies that $\Phi(D)=1$, so $O_{2}(X)=Y_{X}$ and $B(S)=Y_{X} Y_{X}^{t}$.

The action of T on $B(S)$ shows that Y_{X} and Y_{X}^{t} are the only maximal T-invariant elementary abelian normal subgroups of $B(S)$; in particular $Y_{X}=Y_{L}$, and by (**) $L \cap \widetilde{C}$ normalizes $B(S)$. Now (4.2) yields $L \cap \widetilde{C} \leq M$, which contradicts $L \in \mathcal{L}_{0}(T)$.
(4.10) Let $L \in \mathcal{L}_{0}(T)_{*}$ and N be a normal subgroup of L that is minimal with respect to $N \nsubseteq \widetilde{C}$. Then $N=\left[N, Q_{0}\right]=O^{2}(L)$.

Proof. As $N(L \cap \widetilde{C}) \in \mathcal{L}_{H}(T)$ the minimality of L yields $L=N(L \cap \widetilde{C})$. Hence $N_{0}:=\left[N, Q_{0}\right]$ is a normal subgroup of L. Assume that $N \neq N_{0}$. The the minimal choice of N gives $N_{0} \leq \widetilde{C}$, so $N_{0} Q_{0}$ is a normal subgroup of L in \widetilde{C}. It follows that $Q_{0} \leq O_{2}\left(N_{0} Q_{0}\right) \leq O_{2}(L)$. But then $\left[Q, O_{2}(L)\right] \leq Q_{0} \leq O_{2}(L)$ and $S=T Q \leq N_{H}\left(O_{2}(L)\right)$, so (4.4) implies that $L \leq \widetilde{C}$ or $L \leq M$. This contradicts the definition of $\mathcal{L}_{0}(T)$.

We have shown that $N=N_{0}$. The minimality of N also gives that $N=O^{2}(N)$. Thus, it remains to prove that $L=N T$. Assume now that $L \neq N T$. By Theorem 4

$$
\mathcal{P}_{N T}(T) \subseteq \mathcal{P}_{M}(T) \cup \mathcal{P}_{\widetilde{C}}(T)
$$

Since $N T \not \leq \widetilde{C}$ the minimality of L shows that $N T \cap \widetilde{C} \leq M$. Thus $\mathcal{P}_{N T}(T) \subseteq \mathcal{P}_{M}(T)$. As by (4.3) also $N_{L}(T) \leq M$ we conclude from (1.3)(a) that $N T \leq M$.

Now $N=\left[N, Q_{0}\right] \leq P$, and $N=O^{2}(N)$ implies $N \leq O^{2}\left(P^{*}\right)$. Since N is also S_{0}-invariant we get from (4.1) that $[Z, N]$ is normal in P^{*}. On the other hand by (4.6) $[Z, N]=[Z, L]$, so $[Z, L]$ is normalized by L and P^{*}. But this contradicts (4.9).

Corollary 4. Let $L \in \mathcal{L}_{0}(T)_{*}$. There exists a unique $P_{1} \in \mathcal{P}_{L}(T)$ such that $P_{1} \not \subset \widetilde{C}$. Moreover, the following hold:
(a) $Q_{0} \not \leq O_{2}\left(P_{1}\right)$,
(b) $O^{2}\left(P_{1}\right) \leq O^{2}\left(P^{*}\right)$, and
(c) $O^{2}\left(P_{1}\right) C_{P^{*}}\left(Y_{P}\right) / C_{P^{*}}\left(Y_{P}\right)=K_{1}^{\prime} \times \cdots \times K_{s}^{\prime}$, where $\left\{K_{1}, \ldots, K_{s}\right\}$ is a T-orbit of Ω.

Proof. By (4.3) $N_{L}(T) \leq \widetilde{C}$, so by (1.3)(a) there exists $P_{1} \in \mathcal{P}_{L}(T)$ such that $P_{1} \not \subset \widetilde{C}$. Now Theorem 4 gives $P_{1} \leq M$ and again by (4.3) $S_{0} \not \leq O_{2}\left(P_{1}\right)$. Since $P^{*} C_{M}\left(Y_{P}\right)$ is normal in M we get from (1.3)(c) that $O^{2}\left(P_{1}\right)=\left[O^{2}\left(P_{1}\right), S_{0}\right] \leq P^{*} C_{M}\left(Y_{P}\right)$.

Let $\bar{M}:=M / C_{M}\left(Y_{P}\right)$. Note that $O^{2}\left(\bar{P}_{1}\right) \neq 1$ and by (4.1) (a) and (c) hold. By (a) and (1.3)(c) $O^{2}\left(P_{1}\right)=\left[O^{2}\left(P_{1}\right), Q_{0}\right] \leq[M, Q] \leq M^{0} \leq P$, so also (b) holds.

Let P_{0} be another minimal parabolic in $\mathcal{P}_{L}(T)$, which is not in \widetilde{C}. Then (a) - (c) hold for P_{0} in place of P_{1}. By (4.6) either

$$
O^{2}\left(P_{0}\right) O^{2}\left(P_{1}\right) C_{P^{*}}\left(Y_{P}\right)=O^{2}\left(P^{*}\right) C_{P^{*}}\left(Y_{P}\right) \text { or } O^{2}\left(P_{0}\right) C_{P^{*}}\left(Y_{P}\right)=O^{2}\left(P_{1}\right) C_{P^{*}}\left(Y_{P}\right)
$$

Note that $\left[C_{P^{*}}\left(Y_{P}\right), Q_{0}\right] \leq O_{2}(P) \leq T$ and Q_{0} is normal in S. Hence, in the first case (1.3)(c) implies that $O^{2}\left(P^{*}\right)=\left[O^{2}\left(P^{*}\right), Q_{0}\right] \leq O^{2}\left(P_{0}\right) O^{2}\left(P_{1}\right) O_{2}\left(P^{*}\right) \leq L$, which contradicts (4.9). In the second case we conclude that $O^{2}\left(P_{0}\right) O_{2}(P)=O^{2}\left(P_{1}\right) O_{2}(P)$ and thus $O^{2}\left(O^{2}\left(P_{0}\right) O_{2}(P)\right)=$ $O^{2}\left(P_{0}\right)=O^{2}\left(P_{1}\right)$. Hence $P_{0}=P_{1}$.
(4.11) Let X be a finite group and V a faithful $G F(2) X$-module, and let $S \in S y l_{2}(X)$ and $V_{0}=C_{V}(S)$. Suppose that $F^{*}(X)$ is simple, $V=\left\langle V_{0}^{X}\right\rangle \neq V_{0}$, and
$(*)$ there exists an elementary abelian subgroup $1 \neq A \leq S$ such that $\left|V / C_{V}(A)\right| \leq|A|$.
Then there exists a minimal parabolic subgroup P_{1} containing S such that $P_{1} \not \leq C_{X}\left(V_{0}\right)$ and $\left(P_{1} \cap F^{*}(X)\right) / O_{2}\left(P_{1} \cap F^{*}(X)\right) \cong S L_{2}\left(2^{k}\right)$ or S_{ℓ}.

Proof. A theorem of Gaschütz (see for example [Hu, I.17.4]), applied to the semidirect product of V with X, shows that $V=C_{V}(X)[V, X]$. Hence, there exists a X-submodule W such that $\bar{V}:=V / W$ is a faithful irreducible X-module. Moreover, property $(*)$ implies that $\left|\bar{V} / C_{\bar{V}}(A)\right| \leq|A|$. Thus, the F-Module Theorem for \mathcal{K}-groups, see [GM1] and [GM2], gives the conclusion.

F!-Theorem. No group satisfies the hypothesis of this section.

Proof. We will derive a contradiction using the previous results of this chapter. According to (4.8) there exists $L \in \mathcal{L}_{0}(T)_{*}$. We fix the following additional notation:

$$
C_{L}=L \cap \widetilde{C}, V=\left\langle Z^{L}\right\rangle, \bar{L}=L / C_{L}(V) .
$$

As in Corollary 4 let P_{1} be the unique element of $\mathcal{P}_{L}(T)$ with $P_{1} \notin \widetilde{C}$. Then
(1) $O^{2}\left(P_{1}\right) \leq O^{2}\left(P^{*}\right)$ and $O^{2}\left(P_{1}\right) C_{P^{*}}\left(Y_{P}\right) / C_{P^{*}}\left(Y_{P}\right)=K_{1}^{\prime} \times \cdots \times K_{s}^{\prime}$, where $\Omega_{1}:=\left\{K_{1}, \ldots, K_{s}\right\}$ is one of the two T-orbits of Ω. From (1.3)(b) and (1) we get

$$
O^{2}\left(P_{1}\right) \cap C_{P^{*}}\left(Y_{P}\right)=O_{2}\left(O^{2}\left(P_{1}\right)\right) \geq O^{2}\left(P_{1}\right) \cap C_{L}(V)
$$

in particular
(*) $O^{2}\left(\bar{P}_{1}\right) / O_{2}\left(O^{2}\left(\bar{P}_{1}\right)\right)=K_{1}^{\prime} \times \cdots \times K_{s}^{\prime}$.
As in (4.10) let N be a normal subgroup of L that is minimal with respect to $N \not \leq C_{L}$. Then by (4.10)
(2) $N=\left[N, Q_{0}\right]=O^{2}(L)$.

Moreover, since by (4.1) every normal subgroup of L in C_{L} centralizes V we get
(3) \bar{N} is a minimal normal subgroup of \bar{L}, and $O_{2}(\bar{L})=1$.

Next we show:
(4) $C_{L}(V) \leq M$, in particular $L \neq(L \cap M) C_{L}(V)$.

Assume that $C_{L}(V) \not \leq M$. Then the minimality of L yields $L=C_{L}(V) P_{1}$. It follows from (2) that

$$
N=N \cap\left(O^{2}\left(P_{1}\right) C_{L}(V)\right)=O^{2}\left(P_{1}\right)\left(N \cap C_{L}(V)\right)
$$

and

$$
L=N T=\left[N, Q_{0}\right] T=O^{2}\left(P_{1}\right) T=P_{1} \leq M,
$$

which contradicts the choice of L in $\mathcal{L}_{0}(T)$.
(5) $\bar{N} \cap \bar{T} \neq 1$; in particular \bar{N} is not abelian.

Assume that $\bar{N} \cap \bar{T}=1$. For every prime q the Frattini argument gives a $\bar{Y}_{q} \in \operatorname{Syl}_{q}(\bar{N})$ such that $\bar{T} \leq N_{\bar{U}}\left(\bar{Y}_{q}\right)$ and $\bar{N}=\left\langle\bar{Y}_{q} \mid q \in \pi(\bar{N})\right\rangle$.

Let Y_{q} be the inverse image of \bar{Y}_{q} in L. From (1), (*) and (1.3)(a) we get that $Y_{q} \leq C_{L}$ for every $q \neq 3$. Hence $\bar{N}=\bar{Y}_{3} C_{\bar{N}}\left(\bar{Q}_{0}\right)$, so by (2)

$$
\bar{N}=\left[\bar{N}, \bar{Q}_{0}\right]=\left[\bar{Y}_{3} C_{\bar{N}}\left(\bar{Q}_{0}\right), \bar{Q}_{0}\right]=\left[\bar{Y}_{3}, \bar{Q}_{0}\right] \leq \bar{Y}_{3} .
$$

Now (3) shows that \bar{N} is elementary abelian, moreover $\bar{N}=O^{2}\left(\bar{P}_{1}\right)$. Thus (4) gives $L \leq M$, a contradiction. Hence, (5) is proved.

Let Ω_{2} be the T-orbit of Ω different from $\Omega_{1}=\left\{K_{1}, \ldots, K_{s}\right\}$. Then by (4.7)

$$
\Omega_{1}(Z(T))=Z_{1} \times Z_{2}, Z_{i}:=C_{Y_{P}}\left(\Omega_{i}\right),
$$

and $P_{1} \leq L_{1}:=C_{L}\left(Z_{2}\right)$.
Assume that $L_{1} \cap \widetilde{C} \leq M$. Then $L \cap F \leq L_{1} \cap \widetilde{C} \leq M$ since $\Omega_{1}(Z(T)) \leq Z_{0}$. Now (4.3) and the Frattini argument imply $C_{L} \leq N_{C_{L}}\left(S_{0}\right)(L \cap F) \leq M$, which contradicts the choice of $L \in \mathcal{L}_{0}(T)$. Thus $L_{1} \cap \widetilde{C} \nsubseteq M$, and the minimality of L yields:
(6) $Z_{2} \leq Z(L)$, in particular $O^{2}\left(P^{*}\right) \not \leq L$.

Next we show:
(7) \bar{N} is simple.

According to (3) and (5) there exist subgroups $C_{L}(V) \leq N_{i} \leq N C_{L}(V), i=1, \ldots, k$ such that $\bar{N}=\bar{N}_{1} \times \cdots \times \bar{N}_{k}$, and $\bar{N}_{1}, \ldots, \bar{N}_{k}$ are simple groups conjugate under \bar{T}.

Assume first that $\bar{N}_{i} \cap \bar{C}_{L} \leq \bar{T}, i=1, \ldots, k$. The projection \bar{C}_{i} of $\bar{N} \cap \bar{C}_{L}$ in \bar{N}_{i} is a subgroup of \bar{N}_{i} that normalizes $\bar{N}_{i} \cap \bar{T}$. Hence by (5) $\bar{C}_{L}\left(\bar{C}_{1} \times \cdots \times \bar{C}_{k}\right)$ is a proper subgroup of \bar{L}, and the minimality of L implies that $\bar{C}_{i} \leq \bar{C}_{L} \cap \bar{N}_{i}$, so $\bar{N} \cap \bar{T}=\bar{N} \cap \bar{C}_{L}$. Now (4) yields $C_{L} \leq M$, which contradicts the choice of $L \in \mathcal{L}_{0}(T)$.

Assume now that there exists a component \bar{N}_{1} such that $\bar{N}_{1} \cap \bar{C}_{L}$ is not a 2-group. Then $O^{2}\left(\bar{N}_{1} \cap \bar{C}_{L}\right)=O^{2}\left(\left(\bar{N}_{1} \cap \bar{C}_{L}\right) O_{2}\left(\bar{N} \cap \bar{C}_{L}\right)\right) \neq 1$ and

$$
\left[\bar{N}_{1} \cap \bar{C}_{L}, \bar{Q}_{0}\right] \leq O_{2}\left(\bar{C}_{L}\right) \cap \bar{N} \leq O_{2}\left(\bar{N} \cap \bar{C}_{L}\right)
$$

so \bar{Q}_{0} normalizes $O^{2}\left(\bar{N} \cap \bar{C}_{L}\right)$ and thus also \bar{N}_{1}. It follows:
(**) \bar{Q}_{0} normalizes every component of \bar{N}.
Among all T-invariant subgroups $U \leq N$ satisfying
(i) $\bar{U}=\bar{U}_{1} \times \cdots \times \bar{U}_{k}, U_{i} \leq N_{i}$, and
(ii) $O^{2}\left(P_{1}\right) \leq U$
we choose U to be minimal. Then $\overline{U \cap N_{i}}$ is the projection of $O^{2}\left(\bar{P}_{1}\right)$ into \bar{N}_{i}. From (*) and (3) we conclude that $U T \neq L$. The minimality of L implies that $U T \cap \widetilde{C} \leq M$ and thus by (1.3)(a) and (4.3) $U T \leq M$. On the other hand the minimality of U yields $U=\left[U, Q_{0}\right]=O^{2}(U)$. It follows that U is a Q_{0}-invariant subgroup of $O^{2}\left(P^{*}\right)$. Now (4.6) and (6) show that

$$
\bar{U}=\left[\bar{U}, \bar{Q}_{0}\right]=O^{2}\left(\bar{P}_{1}\right)=\bar{U}_{i} \times \cdots \times \bar{U}_{k} .
$$

By (**) \bar{U}_{1} is Q_{0}-invariant. Hence, another application of (4.6) shows that $O^{2}\left(\bar{P}_{1}\right) \leq \bar{N}_{1}$. As $O^{2}\left(\bar{P}_{1}\right)$ is \bar{T}-invariant, also \bar{N}_{1} is. Since the groups N_{1}, \ldots, N_{k} are conjugate under T we conclude that $k=1$.
(6) $J(S) \nsubseteq C_{L}(V)$.

Assume that $J(S) \leq C_{L}(V)$. Then $V \leq \Omega_{1}(Z(J(S)))$ and thus also $B(S) \leq C_{L}(V)$. Now the Frattini argument and (4.2) yield $L=N_{L}(B(S)) C_{L}(V)=(L \cap M) C_{L}(V)$, which contradicts (4).

We now derive a final contradiction. According to (8) there exists $A \in \mathcal{A}(S)$ such that $\bar{A} \neq 1$. Hence, the maximality of A implies that $\left|V / C_{V}(\bar{A})\right| \leq|\bar{A}|$, so by (7) we can apply (4.11) to \bar{L}. Thus,
there exists $C_{L}(V) T \leq P_{0} \leq L$ such that \bar{P}_{0} is a minimal parabolic subgroup of $\bar{L}, \bar{P}_{0} \not \leq C_{\bar{L}}\left(V_{0}\right)$, where $V_{0}:=C_{V}(T)=\Omega_{1}(Z(T))$, and

$$
(* * *) \quad\left(\bar{P}_{0} \cap \bar{N}\right) / O_{2}\left(\bar{P}_{0} \cap \bar{N}\right) \cong S L_{2}\left(2^{k}\right) \text { or } S_{\ell} .
$$

Since by (6) $V_{0}=Z_{2} \times Z \leq Z(L) Z$ we get $C_{L}=C_{L}\left(V_{0}\right), P_{0} \not \leq C_{L}$ and $P_{1} \leq P_{0}$. Now (*) and $(* * *)$ show that $s=1$ and $r=2$, which contradicts $r \geq 4$.

The proof of the P !-Theorem and the Corollary. Let $P \leq M \in \mathcal{L}_{H}^{*}(S)$. Then the F !Theorem and Corollary 3 show that case (a) of the Local P!-Theorem and case (a) of the Structure Theorem hold for M. The P!-Theorem now follows from Theorem 2 and Theorem 3.

For the proof of the Corollary let $L \in \operatorname{Loc}_{H}(P)$. We may assume that $C_{H}\left(Y_{L}\right) \leq L$. By (1.5) there exists $M \in \mathcal{L}_{H}^{*}(S)$ such that

$$
P=P^{0} S \leq L^{0} S \leq M
$$

Hence, M satisfies case (a) of the Structure Theorem. In particular, we get from the structure of $M / C_{M}\left(Y_{M}\right)$ and its action on Y_{M} :
(i) $\left(L \cap M_{0}\right) / C_{L \cap M_{0}}\left(Y_{L}\right) \cong S L_{k}\left(p^{m}\right)$ or $S p_{2 k}\left(p^{m}\right)$, and $\left[Y_{L}, L \cap M_{0}\right]$ is the corresponding natural module.
(ii) $L_{0}=\left(L \cap M_{0}\right) C_{S}\left(Y_{L}\right)$ and $C_{L_{0}}\left(Y_{L}\right)=C_{S}\left(Y_{L}\right) C_{L_{0}}\left(Y_{M}\right)$.

This gives claim (a) of the Corollary.
Assume that $C_{L_{0}}\left(Y_{L}\right) \neq O_{p}\left(L_{0}\right)$. Then $C_{L_{0}}\left(Y_{M}\right) \neq O_{p}\left(M_{0}\right)$, and we get $M_{0} / O_{2}\left(M_{0}\right) \cong S p_{4}(2)^{\prime}$ (and $p=2$). But then $L_{0}=M_{0}$ since otherwise $L^{0} / O_{2}\left(L^{0}\right) \cong S L_{2}(2)$ and $C_{L_{0}}\left(Y_{L}\right)=O_{2}\left(L_{0}\right)$.

References

[Bau] B. Baumann, Über endliche Gruppen mit einer zu $L_{2}\left(2^{n}\right)$ isomorphen Faktorgruppe, Proc. AMS 74 (1979), $215-222$.
[Cher] A. Chermak, Quadratic modules of degree less than 2 for finite groups of intrinsic rank 1, Preprint (1997).
[DS] A. Delgado, B. Stellmacher, Weak (B,N)-pairs of rank 2, in "Groups and Graphs: New results and Methods", Birkhäuser, 1985.
[Glau] G. Glauberman, Weakly closed elements of Sylow subgroups, MZ 107 (1968), 1 - 20.
[GM1] R. Guralnick, G. Malle, Classification of 2F-modules, I, to appear J. Alg.
[GM2] R. Guralnick, G. Malle, Classification of 2F-modules, II, in preparation.
[Hu] B. Huppert, Endliche Gruppen I, Springer 1967.
[KS] H. Kurzweil, B. Stellmacher, Theorie der endlichen Gruppen, Springer-Verlag, 1998.
[MSS1] U. Meierfrankenfeld, G. Stroth, B. Stellmacher, Finite groups of local characteristic p, an overview, Proc. Durham Conference (2001).
[MSS2] U. Meierfrankenfeld, G. Stroth, B. Stellmacher, The Structure Theorem, Preprint 2002.
[Ste1] B. Stellmacher, Pushing Up, Arch. Math. 46 (1986), 8 - 17.
[Ste2] B. Stellmacher, On the 2-local structure of finite groups, in "Groups, Combinatorics and Geometry" (Cambridge University Press, 1992), 159-182.

[^0]: ${ }^{1}$ Which means, they are groups of prime order, groups of Lie type, alternating groups or one of the 26 sporadic groups.

