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Let H be a finite group and p be a prime dividing the order of H. Then H is of characteristic

p if CH(Op(H)) ≤ Op(H); and H is of local characteristic p if every p-local subgroup of H is

of characteristic p. Moreover, H is a Kp-group if the simple sections of the p-local subgroups are

”known” simple groups1.

Every group with a self-centralizing cyclic Sylow p-subgroup, as for example the alternating

group Ap, is of local characteristic p, and these groups are particular examples of groups with a

strongly p-embedded subgroup. Apart from such groups, all groups of Lie type in characteristic

p of rank at least 2 and some sporadic groups (for suitably chosen p) have local characteristic p.

Therefore it would be a major contribution to a revision of the classification of the finite simple

groups to give a classification of all finite groups of local characteristic p that do not have a

strongly p-embedded subgroup. This is the goal of a project initiated by U. Meierfrankenfeld. For

an overview of this project see [MSS1].

The part of the project our paper deals with uses the following hypothesis:

Q!-Hypothesis. H is a finite Kp-group of local characteristic p, S ∈ Sylp(H) and Z :=

Ω1(Z(S)). There exists a maximal p-local subgroup C̃ of H with NH(Z) ≤ C̃ such that for

Q := Op(C̃)

CH(x) ≤ C̃ for every 1 6= x ∈ Z(Q). (Q-Uniqueness)

In the subdivision given in [MSS1] this hypothesis refers to the E!-case, see [MSS1, Lemma

2.4.2], and we will prove the P !-Theorem, as it was announced in section 2.4.2 of [MSS1]. To state

this result we need some further notation.

1 Which means, they are groups of prime order, groups of Lie type, alternating groups or one of
the 26 sporadic groups.
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Throughout this paper S ∈ Sylp(H), and Z, C̃ and Q are as in the above hypothesis. Moreover

C := CH(Z), B(T ) := Ω1(Z(J(T ))) (T a p-subgroup), X0 := 〈QX〉 (X a subgroup).

A subgroup P ≤ H is called minimal parabolic (with respect to p), if P is not p-closed and every

Sylow p-subgroup of P is contained in a unique maximal subgroup of P .

Let X and M be subgroups of H, and let T be a p-subgroup of H:

LocM (X) := {U ≤M | X ≤ U and CM (Op(U)) ≤ Op(U)},

MM (X) is the set of maximal elements of LocM (X).

LM (T ) := {U ∈ LocM (T ) | T ∈ Sylp(U)},

PM (T ) := {P ∈ LM (T ) | P is minimal parabolic},

According to (1.2) below every element U ∈ LocM (X) contains a unique maximal elementary

abelian normal subgroup YU satisfying Op(U/CU (YU )) = 1.

Let P ∈ PH(S) and B(P ) := 〈B(S)P 〉. Then P is said to be of type L3, if p is odd,

Op(P ) = YP ≤ B(S), B(P )/YP ∼= SL2(pm), and YP is a natural SL2(pm)-module for B(P )/YP .

Hypothesis I. The Q!-Hypothesis holds, and there exists P ∈ PH(S) such that P 6≤ C̃ and

YM ≤ Q for every M ∈MH(P ).

In this paper we prove:

P!-Theorem. Assume Hypothesis I. Let P ∗ := P 0Op(P ) and Z0 := Ω1(Z(S ∩ P ∗)). Then

the following hold:

(a) P ∗/Op(P ) ∼= SL2(pm) and YP is a natural SL2(pm)-module for P ∗/Op(P ).

(b) Z0 is normal in C̃; in particular P ∩ C̃ is the unique maximal subgroup of P containing S.

(c) Then either P is the unique element of PH(S) not in C̃, or every element of PH(S)\P
C̃

(S)

is of type L3.

The proof of the P!-Theorem uses the Structure Theorem, which was proved in [MSS2]. To

state this result we need some further notation. Let

LH(S) := {U ∈ LH(S) | CH(YU ) ≤ U}.
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For U, Ũ ∈ LH(S) define

U << Ũ ⇐⇒ U = (U ∩ Ũ)CU (YU ).

Then (1.5) below shows that << is a partial order on LH(S). Let

L∗H(S) = {L ∈ LH(S) | L is maximal with respect to <<}.

Note that MH(S) ⊆ LH(S) and L∗H(S) ⊆MH(S), if H has local characteristic p.

Structure-Theorem. Assume the Q!-Hypothesis. Suppose that there exists M ∈ L∗H(S) \

{C̃} such that YM ≤ Q. Then for M0 := M0CS(YM ) and M := M/CM (YM ) one of the following

holds:

(a) F ∗(M) = M
′
0, M0 ∼= SLn(pm), n ≥ 2, Sp2n(pm), n ≥ 2, or Sp4(2)′ (and p = 2), and

[YM ,M0] is the corresponding natural module for M0. Moreover, either CM0(YM ) = Op(M0) or

p = 2 and M0/Op(M0) ∼= 3Sp4(2)′.

(b) P1 := M0S ∈ PH(S), YM = YP1 , and there exists a a normal subgroup P ∗1 ≤ P1 containing

CP1(YP1) but not Q such that

(i) P
∗
1 = K1 × · · · ×Kr, Ki

∼= SL2(pm), YM = V1 × · · · × Vr, where Vi := [YM ,Ki] is a natural

Ki-module,

(ii) Q permutes the components Ki of (i) transitively,

(iii) Op(P ∗1 ) = Op(M0), and P ∗1CM (YM ) is normal in M ,

(iv) CP1(YP1) = Op(P1), or r > 1, Ki
∼= SL2(2) (and p = 2) and CP1(YP1)/O2(P1) is a 3-group.

We will refer to property (b) (ii) of the Structure Theorem as Q-transitivity. As a corollary

of the Structure- and the P!-Theorem we get:

Corollary. Assume Hypothesis I. Then for every L ∈ LocH(P ) the following hold, where

L := L/CL(YL) and L0 = L0CS(YL):

(a) F ∗(L) = L
′
0, L0 ∼= SLn(pm), Sp2n(pm) or Sp4(2)′ (and p = 2), and [YL, L0] is the

corresponding natural module.

(b) Either CL0(YL) = Op(L0), or p = 2, L0/Op(L0) ∼= 3Sp4(2)′ and LCH(YL) ∈ L∗H(S).

Acknowledgement. We would like to thank A. Chermak for pointing out a mistake in a

previous version of Lemma (3.7) and also the referee for his helpful suggestions.
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1. Elementary Properties.

(1.1) Let X = Sk and V be the non-central irreducible constituent of the GF (2)-permutation

module for X.

(a) Let k = 2m + 1 and set ti := (2i − 1, 2i) and di = (2i − 1, 2i, k), i = 1, ...,m. Then

X = 〈ti, di | i = 1, ...,m〉.

(b) Let t be a transposition of X and x ∈ X such that [V, t, x] = 0. Then k = 4 or tx = t.

(c) Let k 6= 4, t1, ..., tm be a maximal set of commuting transpositions and V0 = CV (t1, ..., tm).

Then CX(V0) = 〈t1, ..., tm〉.

Proof. (a): It is well known that Ω := {(k, k + 1) | k = 1, ..., 2m} is a generating set for X.

Thus the claim follows from the fact that

tdmm = (2m, 2m+ 1) and t
didi+1
i = (2i, 2i+ 1), i = 1, ...,m− 1.

(b): Let W = 〈v1, ..., vk〉 be the GF (2)-permutation module for X with basis {v1, ..., vk}, where

vix := vix for x ∈ X. Set

W0 := 〈
k∑
i=1

vi〉, W1 := 〈vi + vj | i, j ∈ {1, ..., k}〉 and W 1 := (W1 +W0)/W0.

Then V = W 1. Let t = (i, j) and tx = (r, s), so

〈vi + vj〉 = [W 1, t] = [W 1, t
x] = 〈vr + vs〉.

It follows that vi + vj + vr + vs ∈W0, and either {i, j} = {r, s} and t = tx, or k = 4.

(c): This is a direct consequence of (b).

(1.2) Let U be a finite group of characteristic p, T ∈ Sylp(U) and T ≤ Ũ ≤ U . Then the

following hold:

(a) There exists a unique maximal elementary abelian normal p-subgroup YU of U such that

Op(U/CU (YU )) = 1.

(b) Y
Ũ
≤ YU .

(c) Ω1(Z(T )) ≤ YU .
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(d) If U = ŨCU (YU ) then YU = Y
Ũ

.

(e) If Op(U) = CT (YU ) then YU = Ω1(Z(Op(U))).

Proof. (a): Let Ω be the set of all elementary abelian normal p-subgroups X of U satisfying

Op(U/CU (X)) = 1. For the existence of a unique maximal element in Ω it suffices to show that

the product of two elements of Ω is again in Ω.

Let A1, A2 ∈ Ω and A = A1A2. Then A ≤ CU (A1)∩CU (A2) and thus A is elementary abelian.

Let CU (A) ≤ D ≤ U such that D/CU (A) = Op(U/CU (A)). Then DCU (Ai)/CU (Ai) is a p-group

since CU (A) ≤ CU (Ai). Hence D ≤ CU (A1) ∩ CU (A2) = CU (A).

(b): Set V = 〈(Y
Ũ

)U 〉. By the definition of Y
Ũ

, Op(U) ≤ CU (Y
Ũ

) and so Y
Ũ
≤ Ω1(Z(Op(U)))

as U is of characteristic p. Hence also V is in Ω1(Z(Op(U))); i.e. V is elementary abelian.

Let CU (V ) ≤ D ≤ U such that D/CU (V ) = Op(U/CU (V )). Then

D = (D ∩ T )CU (V ) ≤ (D ∩ T )CU (Y
Ũ

).

Hence Op(Ũ/CŨ (Y
Ũ

)) = 1 gives T ∩ D ≤ CU (Y
Ũ

) and thus D = CU (V ). Since V is elementary

abelian we conclude that V ∈ Ω and thus Y
Ũ
≤ V ≤ YU .

(c): This follows from (b) with Ũ := T .

(d): According to (b) it suffices to show that YU ≤ Y
Ũ

. But this is clear since U/CU (YU ) ∼=

Ũ/C
Ũ

(YU ) and thus Op(Ũ/CŨ (YU )) = 1.

(e): Let Y := Ω1(Z(Op(U))). Then YU ≤ Y by the definition of YU . Let CU (Y ) ≤ D ≤ U

such that D/CU (Y ) = Op(U/CU (Y )). Since CU (Y ) ≤ CU (YU ) we get DCU (YU )/CU (YU ) ≤

Op(U/CU (YU )) = 1, and so D ≤ CU (YU ). It follows that D/Op(U) is a p′-group and

Op(U/CU (Y )) = 1, so Y ≤ YU .

(1.3) Let U be a finite group of characteristic p, T ∈ Sylp(U) and P ∈ PU (T ). Then the

following hold:

(a) U = 〈PU (T )〉NU (T ).

(b) For every normal subgroup N of P either Op(P ) ≤ N or T ∩N ≤ Op(P ).

(c) For every normal subgroup T0 of T either T0 ≤ Op(P ) or Op(P ) = [Op(P ), T0].

(d) YP = Ω1(Z(Op(P ))) or [Ω1(Z(Op(P ))), Op(P )] = 1.
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Proof. (a): We proceed by induction on |U |. Set U0 = 〈PU (T )〉NU (T ), and note that NU (T )

normalizes 〈PU (T )〉, so U0 is a subgroup of U . By induction all proper subgroups of U containing

T are in U0. If U 6= U0, then U0 is the unique maximal subgroup of U containing T . But then

U ∈ PU (T ) and thus U = U0, a contradiction.

(b): By the Frattini argument P = NP (N ∩T )N . As T is in a unique maximal subgroup of P

at least one of NT and NP (N ∩ T ) is not a proper subgroup of P . This gives (b).

(c): Let P0 = [Op(P ), T0] and P1 = [Op(P ), T0]T0. Then P1 is normal in P . Hence, by (b)

either Op(P ) ≤ P1 and thus P0 ≤ Op(P1) = Op(P ) ≤ P0, or T0 ≤ Op(P ).

(d): If CT (YP ) = Op(P ), then YP = Ω1(Z(Op(P )) follows from (1.2)(e). In the other case (c)

gives [Ω1(Z(Op(P ))), Op(P )] = 1.

Hypothesis and Notation. For the rest of this section the Q!-Hypothesis holds. We use the

notation given in the introduction. For L1, L2 ∈ LH(S) we define

L1 << L2 ⇐⇒ L1 = (L1 ∩ L2)CL1(YL1).

(1.4) Let L, L̃ ∈ LH(S) such that L << L̃. Then L0 ≤ L̃0.

Proof. Note that CL(YL) ≤ C̃. Hence CL(YL) normalizes Q and QL = QL∩L̃.

(1.5) << is a partial ordering on LH(S).

Proof. By (1.2) L1 = (L1 ∩ L2)CL1(YL1) implies that YL1 = YL1∩L2 ≤ YL2 . This gives the

reflexivity and anti-symmetry. Assume now that L1 << L2 and L2 << L3. Then

L1 ∩ L2 ≤ (L2 ∩ L3)CL2(YL2) and YL1 ≤ YL2 .

It follows that CL2(YL2) ≤ CH(YL1) = CL1(YL1) and thus L2 = (L2 ∩ L3)CL2(YL1). Hence

L1 ∩ L2 = (L1 ∩ L2 ∩ L3)CL2(YL1).

This shows L1 = (L1 ∩ L3)CL1(YL1) and the transitivity of <<.

(1.6) Every p-subgroup of H contains at most one conjugate of Q; in particular Q is the only

conjugate in C̃.
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Proof. Let g ∈ H and Qg ≤ S. It suffices to show that Qg = Q. As Z ≤ C
C̃g

(Qg) = Z(Qg),

Q-Uniqueness shows that S ≤ C̃g, so S ≤ C̃ ∩ C̃g. Now Sylow’s Theorem shows that C̃ and C̃g are

conjugate by an element of NH(S). As by the definition of C̃, NH(S) ≤ NH(Z) ≤ C̃ we conclude

that C̃ = C̃g and thus also Q = Qg.

(1.7) Let P be a subgroup of H with Q ≤ Op(P ). Then P ≤ C̃.

Proof. This is a direct consequence of (1.6).
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2. Pushing Up

Hypothesis and Notation. In this section the Q!-Hypothesis holds. In addition, P ≤ H is

a minimal parabolic subgroup of characteristic p and T ∈ Sylp(P ). We set P := P/CP (YP ) and

B(T ) := CT (Ω1(Z(J(T )))) and Z0 := Ω1(Z(J(T ))),

U(P ) := {A | A ≤ P,A an elem. abelian p-group, and |A/CA(YP )| ≥ |YP /CYP (A)|},

U(P ) := 〈A | A ∈ U(P )〉 and B(P ) := 〈B(T )P 〉.

Moreover K(P ) denotes the set of all B(T )-invariant subgroups K ≤ P satisfying:

(i) K is normal in U(P ),

(ii) L := KB(T ) is minimal parabolic of characteristic p and Op(P ) ≤ T ∩ L ∈ Sylp(L),

(iii) K ∼= SL2(pm) and [YP ,K]/C[YP ,K](K) is a natural SL2(pm)-module for K, or p = 2,

K ∼= S2n+1 and [YP ,K] is a natural S2n+1-module for K.

Note that trivially CP (YP ) ∈ U(P ) and so CP (YP ) ≤ U(P ). Then recall from (1.3) that either

U(P ) = CP (YP ) or P = U(P )T and similarly B(P ) = B(T ) ≤ Op(P ) or P = B(P )T .

Let K = SL2(pm) and V be an irreducible GF (p)K-module. Set F := EndK(V ). By Schur’s

Lemma, F is a finite field, so V is an FK-module. We say that V is a natural SL2(pm)-module

for K if dimF (V ) = 2.

(2.1) Suppose that U(P ) 6= 1 and A ∈ U(P ). Then there exist subgroups U1, ..., Ur of U(P )

such that the following hold:

(a) U(P ) = U1 × · · · × Ur, U i ∼= SL2(pm) or S2n+1 (and p = 2).

(b) Either [YP , Ui]/C[YP ,Ui](U(P )) is a natural SL2(pm)-module for U i, or [YP , Ui] is a natural

S2n+1-module for U i, i = 1, ..., r.

(c) YP = CYP (U(P ))
∏r
i=1[YP , Ui] and [YP , Ui, Uj ] = 1 for i 6= j.

(d) T acts transitively on {U1, ..., Ur}.

(e) [YP , A,A] = 1 and |A| = |YP /CYP (A)|. In particular |E| ≤ |YP /CYP (E)| for every

elementary abelian p-group E ≤ P .

(f) A = A ∩ U1 × · · · ×A ∩ Ur and A ∩ UiCP (YP ) ∈ U(P ), i = 1, ..., r.

(g) A ∩ Ui ∈ Sylp(U i) if U i ∼= SL2(pm) and A ∩ Ui 6= 1.

(h) A ∩ Ui is generated by a set of commuting transpositions if U i ∼= S2n+1.
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Proof. See [Cher].

(2.2) A(T ) ⊆ U(P ) and J(T ) = B(T ) ≤ U(P ).

Proof. Assume that J(T ) ≤ CP (YP ). Then clearly A(T ) ⊆ U(P ) and YP ≤ Z0; in particular

B(T ) ≤ CP (YP ) and 1 = J(T ) = B(T ) ≤ U(P ).

Assume now that J(T ) 6≤ CP (YP ). Let A ∈ A(T ) such that A 6= 1. The maximality of A gives

CYP (A) = A ∩ YP . Hence

|CA(YP )||YP ||CYP (A)|−1 = |CA(YP )||YP ||A ∩ YP |−1 = |CA(YP )YP | ≤ |A|

and A ∈ U(P ); in particular J(T ) ≤ U(P ) 6= 1.

We now use the notation given in (2.1). In addition we set Yi := [YP , Ui] and ỸP :=

YP /CYP (U(P )). Then (2.1)(c) implies

(∗) ỸP = Ỹ1 × · · · × Ỹr and [Yi, Uj ] = 1 for i 6= j.

Assume first that U i ∼= SL2(pm). Then (2.1)(f) and (g) show that J(T ) ∈ Sylp(U(P )), and (2.1)(b),

(e) and (f) that [Yi, J(T )] ≤ Yi ∩ Z0 and |Yi/Yi ∩ Z0| = pm; in particular Yi ∩ Z0 6≤ CYi(Ui). As

B(T ) centralizes Yi ∩ Z0, we get from (∗) that B(T ) ≤ NP (U i).

Let F := EndUi(Ỹi). Then the elements of NP (U i) induce field automorphisms on F and

semi-linear transformations on Ỹi. As ˜Yi ∩ Z0 is a 1-dimensional F -subspace centralized by B(T ),

we conclude that the elements of B(T ) act F -linear on Ỹi, so B(T ) ≤ (J(T )∩U i)CP (U i) by (2.1)(g).

It follows that B(T ) ≤ J(T ) since CP (U(P )) ≤ U(P ), whence B(T ) = J(T ).

Assume now that U i ∼= S2n+1. Recall that any two transpositions of Sm commute if they

generate a 2-group. Hence, by (2.1)(h) J(T ) ∩ U i is generated by a maximal set of commuting

transpositions, and as above, by (2.1)(e) and (f) [Yi, J(T )] ≤ Yi ∩ Z0 and B(T ) ≤ NP (U i). Now

(1.1)(c) shows that B(T ) ≤ (J(T ) ∩ U i)CP (U i) and, again as above, B(T ) = J(T ).

(2.3) Suppose that U(P ) 6= 1. Then K(P ) 6= ∅, and for every K ∈ K(P ) and L := KB(T ):

(a) U(L)/CL(YL) 6= 1; i.e. L satisfies the hypothesis of (2.1).

(b) YL ≤ YP and [YL,K] = [YP ,K].

(c) B(T ) ≤ Op(P ) or L = [K,B(T )](T ∩ L).
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(d) There exists Ui as in (2.1) such that K = U i.

Proof. We first show that K(P ) 6= ∅. Let U1, ..., Ur be as in (2.1) and fix U ∈ {U1, ..., Ur}.

By (2.1) and (2.2) J(T ) = B(T ) ≤ NP (U) and B(T ) ≤ NP (UCP (YP )). Among all subgroups

K0 ≤ UCP (YP ), which are B(T )-invariant and satisfy

(∗) K0 = U and Op(P ) ≤ T ∩K0B(T ) ∈ Sylp(K0B(T )),

we choose K minimal and set L = KB(T ). According to (2.1)(a) there exists CL(YP )(T∩L) ≤ L0 ≤

L such that L0 is the unique maximal subgroup of L containing T ∩ L. Hence, the minimality of K

implies that L0 is the unique maximal subgroup of L containing T ∩ L, so L is minimal parabolic.

Moreover, L is of characteristic p since Op(P ) ≤ Op(L). This shows that K ∈ K(P ).

Now let K ∈ K(P ). Then (d) follows from (2.1)(a). Let L = KB(T ). From (1.3)(d) we

get Ω1(Z(Op(L))) = YL ≤ Ω1(Z(Op(P ))) = YP , so YL = CYP (Op(L)). Since [K,Op(L)] = 1 the

P ×Q-Lemma gives [YL,K] 6= 1 and thus by (2.1)(b) [YL,K] = [YP ,K]. This is (b).

From (1.3)(c) we get either L = [K,B(T )](T ∩ L) or B(T ) ≤ Op(L). In the latter case

[K,B(T )] = 1, and (2.1)(d) implies B(T ) ≤ CT (YP ). This shows (c) since CT (YP ) = Op(P ) by

(1.3)(c).

According to (2.1)(d) and (f) there exists A ∈ U(P ) such that A 6= 1 and A ≤ T ∩K. Since

CT (YP ) = Op(P ) ≤ L and A is a p-group we may assume that A ≤ T ∩ L. Set A0 = CA(YL). By

(2.1)(e)

|A0| ≤ |YP /CYP (A0)| ≤ |YP /YLCYP (A)| = |YP /CYP (A)||YL/CYL(A)|−1 = |A||YL/CYL(A)|−1

and |YL/CYL(A)| ≤ |A/A0|. It follows that U(L) 6= CL(YL), and (a) holds.

(2.4) Suppose that U(P ) 6= 1. Let A ∈ U(P ) and A1 ≤ P such that [YP , A,A1] = 1. Then

[YP , A1] ≤ [YP , A][CYP (A), A1].

Proof. We apply (2.1) and choose the subgroups U1, ..., Ur as in (2.1). Let Vi := [YP , Ui]. By

(2.1)(c)

[YP , A1] = [CYP (A), A1]
r∏
i=1

[Vi, A1].
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Hence, it suffices to show that

(∗) [Vi, A1] ≤ [Vi, A][CYP (A), A1].

If A ∩ Ui = 1, then by (2.1)(c) and (f) Vi ≤ CYP (A), and (∗) is obvious. Hence, we may assume

that A ∩ Ui 6= 1. Then [Vi, A,A1] = 1 shows that A1 normalizes Ui and Vi.

Assume first that U i ∼= SL2(pm). By (2.1)(g) A ∩ Ui ∈ Sylp(U i), so [Vi, A,A1] = 1 implies

A1 ≤ ACP (Vi), and (∗) follows.

Assume now that U i ∼= S2n+1. By (2.1)(h) A ∩ Ui = 〈t1, ..., ts〉, t1, ..., ts commuting transpo-

sitions of S2n+1; in particular

CUi(A) = CUi(A ∩ Ui) = 〈t1, ..., ts〉 ×X, X ∼= S2n+1−2s and [Vi, X] = [CVi(A), X].

Since [Vi, tj , A1] = 1 for j = 1, ..., s we get A1 ≤ CUi(A)CP (Vi). Hence,

[Vi, A1] ≤ [Vi, A][CVi(A), A1] ≤ [Vi, A][CYP (A), A1],

and again (∗) follows.

(2.5) Suppose that T = S, U(P ) 6= 1 and P 6≤ C̃. Let K ∈ K(P ). Then the following hold:

(a) Z(P ) = Z(U(P )) = 1.

(b) YP = ×{K|K∈K(P )}[YP ,K], and [YP ,K] is an natural K-module.

(c) Q acts transitively on {K | K ∈ K(P )}.

(d) K ∼= SL2(pm) or p = 2 and K = U(P ) ∼= S5.

(e) If K ∼= SL2(pm) and A ≤ P with [YP , A,A] = 1, then [YP ,K,A] = [YP ,K, a] for all

a ∈ A \ CP ([YP ,K]). Moreover, either |A/CA([YP ,K])| = 2 (= p) or A ≤ KCA(K).

Proof. (a): It suffices to show that CYP (U(P )) = 1 since Ω1(Z(P )) ≤ YP . If CYP (U(P )) 6= 1,

then there exists 1 6= x ∈ CYP (U(P )) ∩ Z(Q), and by Q-Uniqueness U(P ) ≤ CH(x) ≤ C̃. Since

also S ≤ C̃ we get that P = U(P )S ≤ C̃, a contradiction.

(b): This follows from (a) and (2.1)(c).

(c): By (b) and (2.1)(c),(d) together with (2.3)(d)

YP = [YP ,K1]× · · · × [YP ,Kr],
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where Ki ∈ K(P ) and Ω := {K | K ∈ K(P )} = {K1, ...,Kr}. Assume that Q is not transitive on

Ω. Then there exist 1 6= x ∈ Z(Q) ∩ YP and Ki ∈ {K1, ...,Kr} such that [Ki, x] = 1. Again by

Q-Uniqueness Ki ≤ C̃ and thus P = 〈Ki, S〉 ≤ C̃, a contradiction.

(d): We use (2.1) and (2.3)(d). Assume that K ∼= S2n+1, n ≥ 2 (and p = 2). The action of

U(P ) on YP shows that there exists 1 6= x ∈ Z(Q) ∩ YP such that CK(x) ∼= S2n . On the other

hand by Q-Uniqueness CH(x) ≤ C̃ and thus [CK(x), Q] ≤ Q. Since S2n is not a 2-group we get

K
Q

= K, and P ∼= S2n+1 follows with (c). Moreover Q is a normal 2-subgroup of CK(x).

If n = 2, then (d) follows. In the other cases Q = 1 and thus Q ≤ CS(YP ) = O2(P ). But this

contradicts (1.7).

(e): By (b) V := [YP ,K] is a natural SL2(pm)-module for K. Assume first that V A = V .

Then again (b) implies that K
A

= K. Since V is a faithful irreducible K-module we conclude that

CA(K) = CA(V ).

Let V0 := [V,A] and F := EndK(V ). Recall that the elements of A induce semi-linear

transformations on the F -vector space V . Thus, if V0 contains a 1-dimensional F -subspace, then

A ≤ KCP (K). In the other case no element of A
]

induces an F -linear transformation on V . As

ΓL(V )/GL(V ) has cyclic Sylow p-subgroups, we get in this case that |A/CA(V )| = p. Moreover,

the quadratic action of A on V shows that the elements of A] induce field automorphisms of order

2 in F , so p = 2.

Assume now that V A 6= V . Then the quadratic action of A gives

〈V A〉 = V × V a for a ∈ A \NA(V );

in particular |A/NA(K)| = p (= 2). Since

[V,NA(K)] ≤ CV (A) ≤ CV (a) = 1

we get NA(K) ≤ CA(V ) and |A/CA(V )| = p. Now again (e) is obvious.

(2.6) Suppose that neither Ω1(Z(T )) nor B(T ) is normal in P . Then B(P ) = U(P ) 6= 1 and

B(T ) = J(T ) 6= 1.

Proof. According to (1.3) CT (YP ) = Op(P ) since Ω1(Z(T )) is not normal in P . Hence B(T ) 6≤

CP (YP ) since also B(T ) is not normal in P . It follows with (2.2) that B(T ) = J(T ) ≤ U(P ) 6= 1,

and (2.1) gives B(P ) = U(P ).
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(2.7) Suppose that neither Ω1(Z(T )) nor B(T ) is normal in P . Then Z0 ≤ Ω1(Z(J(Op(P ))))

and

[Ω1(Z(J(Op(P )))), J(T )] ≤ Z0 ∩ YP ;

in particular [Ω1(Z(J(Op(P )))), O2(P )] ≤ YP . Moreover, if in addition K ∼= SL2(pm) for K ∈

K(P ), then B(T ) ∈ Sylp(Op(K)B(T )).

Proof. By (2.6) U(P ) 6= 1 and J(T ) = B(T ) 6= 1. Let A ∈ A(T ) such that A 6= 1 and Z1 :=

Ω1(Z(J(Op(P )))). Then by (2.1) [YP , A] ≤ CYP (J(T )) ≤ Z0, and (2.1)(e) gives YPCA(YP ) ∈ A(T ).

This shows that

YPCA(YP ) ∈ A(Op(P )) ⊆ A(T ).

Hence Z1 ≤ YPCA(YP ) and Z0 ≤ Z1. It follows that [Z1, A] ≤ YP∩Z0 and thus [Z1, J(T )] ≤ YP∩Z0.

Since Op(P ) ≤ 〈J(T )P 〉 by (1.3) we get [Z1, O
p(P )] ≤ YP .

Assume now that K ∼= SL2(pm), where K ∈ K(P ). By (2.2) and (2.1)(d), (g) we can choose

A such that A ∩K ∈ Sylp(K); in particular

〈A ∩K, (A ∩K)g〉 = K for some g ∈ K.

Set L = KB(T ), W = [YL,K], Z∗0 := Z0 ∩ Zg0 and L0 = CL(Z∗0 ). Then B(T ) ≤ L0 and L =

L0CL(YP ). Since L is minimal parabolic and by (1.3) CT (YP ) = Op(P ) we get

(1) L = L0Op(P ), and L0 is normal in L.

By (2.3) L satisfies the hypothesis of (2.1), and W = [YP ,K]. As [Z0,K] = [Z0,K,K] ≤ W ,

Z0W is normal in L, and (2.1)(b),(g), applied to L, gives Z0W = Z0Z
g
0 , CW (T ∩L) = W ∩Z0 and

|WZ0/Z0| = pm; in particular Z∗0 ∩W = CW (L). It follows that

|Z∗0W/Z∗0 | = |W/W ∩ Z∗0 | = p2m and |Z0W/Z
∗
0 | = |Z0Z

g
0/Z

∗
0 | ≤ p2m.

This shows that Z∗0W = Z0W and Z0 = Z∗0CW (T ∩ L); in particular

(2) B(T ) = CT∩L(Z0) = CT∩L(Z∗0 ).

By (1) and (2) B(T ) ∈ Sylp(L0) and Op(K) ≤ Op(L) ≤ L0, so B(T ) ∈ Sylp(Op(K)B(T )).

(2.8) Suppose that neither B(T ) nor Ω1(Z(T )) is normal in P and Z(P ) = 1. Then Op(P ) ≤

B(T ).
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Proof. By (2.7) Z0YP is normal in P . Hence, R := [Z0YP , Op(P )] is a normal subgroup of P

in Z0. But then by (2.6) and (1.3) Op(P ) centralizes R, and Z(P ) = 1 implies R = 1. This gives

Op(P ) ≤ B(T ).

(2.9) Suppose that neither B(T ) nor Ω1(Z(T )) is normal in P . Then there exist subgroups

L1, ..., Lk ≤ P such that for i = 1, ..., k and L̂i = Li/CLi(YLi):

(a) Li is minimal parabolic of characteristic p and Op(P )B(T ) ∈ Sylp(Li).

(b) L̂i ∼= SL2(pm), and YLi/CYLi (Li) is a natural SL2(pm)-module for L̂i.

(c) [YLi , O
p(Li)] = [YP , Op(Li)].

(d) L1, ..., Lk are conjugate under T , 〈L1, ..., Lk〉T = P , and ∩ki=1Op(Li) = Op(P ).

(e) [YP , B(P )] ∩ Z0 =
∏k
i=1[YLi , B(T )] and [YLi , B(T ), Lj ] = 1 for i 6= j.

Proof. By (2.6) U(P ) 6= 1, and we are allowed to apply (2.1) and (2.3) to P . Let K ∈ K(P ),

and set L = KB(T ) and L̂ = L/CL(YL). Then (2.3) shows that L satisfies (2.1) and [YL, Op(L)] =

[YP , Op(L)].

Assume first that K ∼= SL2(pm). Then (2.1)(f),(g) gives

L = K × C
B(T )(K) and B(T ) ∩K ∈ Sylp(K);

in particular Op(P )B(T ) ∈ Sylp(L) and [Op(L), Op(L)] ≤ Op(P ). Now (a) – (d) follow for k = 1,

and (e) is a consequence of (2.1)(b).

Assume now that K ∼= S2n+1 (and p = 2). Then K ∩B(T ) is generated by a maximal set

{t1, ..., t2n−1} of transpositions, where t1, ..., t2n−1 ∈ K. For every ti there exists di ∈ K such that

di has order 3 and

〈di,K ∩B(T )〉 = 〈di, ti〉 × 〈tj | i 6= j〉 and 〈di, ti〉 ∼= SL2(2).

Note that the subgroups 〈di, ti〉, i = 1, ..., 2n−1, are conjugate under T ∩K and that by (1.1)

〈di, ti | i = 1, ..., 2n−1〉 = K.

Note further that by (2.1)(b)

(∗) [YP ,K] ∩ Z0 = [YP , 〈t1, ..., t2n−1〉] and [YP , ti, dj ] = 1 for i 6= j.
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We now choose L1 ≤ 〈d1, B(T )〉 minimal with respect to

O2(P )B(T ) ≤ T1 := T ∩ L1 ∈ Syl2(L1) and L1 = 〈d1, B(T )〉.

Then L1 is a minimal parabolic subgroup of characteristic 2. Moreover O2(P )B(T ) = T1 and

[O2(L1), O2(L2)] ≤ O2(P ), and (a) follows for L1. Since YL1 ≤ Ω1(Z(O2(L1))) ≤ Ω1(Z(O2(P )))

we get from (1.3)(d) that YL1 ≤ YP . It follows that |[YL1 , L1]| = 4, and (b) and (c) hold for L1

since O2(L1) ∼= C3.

Finally, for every i ∈ {1, ..., 2n−1} there exists a T -conjugate Li of L1 with di ∈ Li, and

〈L1, ..., L2n−1〉B(T ) = L. Since L is minimal parabolic we get 〈L1, ..., L2n−1〉B(T ) = L. Similarly,

since P is minimal parabolic (2.1)(d) and (2.3)(d) imply (d); and (e) follows from (d) and (∗).

Notation. Let

P0 := PH(S) \ (PNH(B(S))(S) ∪ P
C̃

(S)) and P∗0 := {P g | P ∈ P0, g ∈ NH(B(S))},

and let P be the set of all subgroups X ≤ H satisfying:

(i) X is minimal parabolic of characteristic p and B(S) ∈ Sylp(X),

(ii) 〈X,S〉 = P for some P ∈ P0,

(iii) X/CX(YX) ∼= SL2(pm) and YX/CYX (X) is a natural SL2(pm)-module for X/CX(YX).

Let P∗ := {Xg | X ∈ P, g ∈ NH(B(S))}, G := 〈X | X ∈ P∗〉 and L := GNH(B(S)).

Theorem 1. One of the following holds:

(a) L ∈ LH(S) and PH(S) = PL(S) ∪ P
C̃

(S).

(b) PH(S) = PNH(B(S))(S) ∪ P
C̃

(S).

(c) Op(P ) = YP and Z(P ) = 1 for every P ∈ P∗.

Proof. We may assume that neither (a) nor (b) holds. Then P0 6= ∅ 6= P∗0 . Let P ∗ ∈ P∗0 and

set Z0 := Ω1(Z(B(S))) .

(1) P ∗ satisfies the hypotheses of (2.1), (2.8) and (2.9), and, after a suitable conjugation, also

that of (2.5).

By the definition of P∗0 there is P0 ∈ P0 and g ∈ NH(B(S)) such that P g0 = P ∗. Hence, it

suffices to show the claim for P0.
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From the choice of P0 and the definition of C̃ follows that neither B(S) nor Z is normal in

P0. Hence, P0 satisfies the hypotheses of (2.6) and (2.9), and by (2.6) also those of (2.1) and (2.5).

Finally, by (2.5) P0 satisfies the hypothesis of (2.8).

(2) Z(P ∗) = 1 and Op(P ∗) ≤ B(S).

This follows from (1), (2.5) and (2.8).

Let P0 ∈ P0. According to (2.9) and (2) there exists a subset

Ω(P0) := {L1, ..., Lk} ⊆ P

such that the subgroups L1, ..., Lk satisfy (2.9)(a) – (e) (with respect to P0 and S). We fix this

notation. From (2), (2.1)(c) and (2.9)(e) we get

(3) Z0 =
∏k
i=1[YLi , B(S)].

Next we prove:

(4) L = 〈NH(B(S)), P0 | P0 ∈ P0〉.

Let L̃ := 〈NH(B(S)), P0 | P0 ∈ P0〉. By the definition of P∗ we have L ≤ L̃. On the other

hand, for P0 ∈ P0 by (2.9)(d) P0 ≤ GS and so also L̃ ≤ L.

(5) Op(G) = 1 = Op(L).

From (4) we get

PH(S) = PL(S) ∪ P
C̃

(S).

Hence, Op(L) = 1 since (a) does not hold. As G is normal in L we also have Op(G) = 1.

In the following let

∆∗ := ∪P0∈P0Ω(P0).

We now apply the amalgam method to G with respect to the subgroups in P∗ and use the standard

notation, see for example [DS] or [KS]. For the convenience of the reader we repeat some of the

notation:

Γ = {Px | x ∈ G, P ∈ P∗} is the set of vertices, and two vertices are adjacent, if they

are different and have non-empty intersection. P∗ is a (maximal) set of pairwise adjacent vertices

(where the elements of P∗ are understood as cosets), and every pair of adjacent vertices is conjugate

(under G) to a pair of vertices from P∗. For a vertex δ ∈ Γ the stabilizer of δ in G is denoted by

Gδ. Moreover

Qδ = Op(Gδ) and Zδ = 〈Ω1(Z(X)) | X ∈ Sylp(Gδ)〉.
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A critical pair (δ, δ′) of vertices satisfies Zδ 6≤ Qδ with the distance d(δ, δ′) being minimal. This

distance is denoted by b.

Note that by (2.9)(b) Zδ = YGδ for every δ ∈ Γ. Since by (1.3)(b) CB(S)(YP ) = Op(P ) for

every P ∈ P∗ we get from (2.1)(g):

(6) ZαQα′ ∈ Sylp(Gα′ ∩Gα′−1) and Zα′Qα ∈ Sylp(Gα ∩Gα+1) for every critical pair (α, α′).

Let (α, α′) be a critical pair with Gα ∈ P∗. Then there exists T1 ∈ Sylp(Gα) such that

Gα = 〈T1, Zα′〉. Thus, possibly after conjugation in Gα, we may assume

(∗) (α, α′) is a critical pair such that Gα ∈ P∗ and Gα = 〈B(S), Zα′〉.

In the steps (7), (8) and (9) below (α, α′) is a critical pair satisfying (∗). Further we set Rρ :=

[Zρ, Qα] for every ρ ∈ P∗. Note that by (2.1)(e) and (g) Rρ ≤ Z(B(S)). We first show:

(7) Let ρ ∈ P∗ and b > 1 or Zρ ≤ Qα′−1. Then Rρ ≤ Z(Gα).

Assume first that Zρ ≤ Qα′−1. Then by (6) Zρ ≤ ZαQα′ and

[Zρ, Zα′ ] ≤ [Zα, Zα′ ] ≤ Zα.

Hence, ZρZα is normal in 〈B(S), Zα′〉 = Gα; so also [Zρ, Qα] = Rρ is normal in Gα. Since

Rρ ≤ Z(B(S)) we get Rρ ≤ Z(Gα).

Assume now that Zρ 6≤ Qα′−1. Then (ρ, α′ − 1) is a critical pair, and (6) gives [Zρ, Zα′−1] =

[Zρ, Qα] = Rρ. If b > 1, then Rρ is centralized by 〈B(S), Zα′〉 = Gα.

Next we show:

(8) Let ρ ∈ P∗. Suppose that b > 1 or Zρ ≤ Qα′−1. Then either Qα = Qρ or QαQρ = B(S).

Let T := QαQρ. Assume that Qα ≤ Qρ but Qα 6= Qρ. Then the action of Gα on Zα shows

that

Zρ ≤ CZα(T ) = Z0,

so B(S) ≤ Qρ, a contradiction. Hence, we may assume now that Qρ < T < B(S).

There exists x ∈ Gα such that (α + 1)x ∈ P∗ and (α, α′x) is a critical pair; so by (6) B(S) =

Zxα′Qα. If (ρ, α′x) is not a critical pair, we get Zxα′ ≤ Qρ and thus T = B(S), a contradiction.

Hence, also (ρ, α′x) is a critical pair, and by (6) B(S) = Zxα′Qρ and T = Qρ(Zxα′ ∩ T ).

Let t ∈ Zxα′ such that t ∈ T \ Qρ. Then there exists y ∈ Zρ such that [t, y] 6= 1, and by (7)

[t, y] ∈ Z(Gα). On the other hand, according to (6) (applied to (ρ, α′x) and (α, α′x)) there exists

y′ ∈ Zα such that [t, y] = [t, y′]. The action of Zxα′ on Zα gives [t, y′] 6∈ Z(Gα), a contradiction.
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We now let NH(B(S)) act on Γ in the following way: Let g ∈ NH(B(S)) and δ ∈ Γ, so δ = Py

for some P ∈ P∗ and y ∈ G. Then

g : δ 7→ δg := P gyg.

(9) For every P ∈ ∆∗ there exists a critical pair (δ, δ′) satisfying (∗) such that Gδ = P .

There exists P0 ∈ P0 such that P ∈ Ω(P0) ⊆ ∆∗. Hence, there exist δ1, ..., δk ∈ P∗ such that

Ω(P0) = {Gδ1 , ..., Gδk}.

Note that by (2.9)(d) the subgroups in Ω(P0) are conjugate under S. We will show that there exists

a critical pair (δi, δ′i) for some i ∈ {1, ..., k}. The (∗)-property then can be achieved by a suitable

conjugation in Gδi and the claim for the other δj by the action of S.

Hence, we may assume that Zδi ≤ Qα′−1 for all i = 1, ..., k. If there exists j ∈ {1, ..., k} such

that Qδj = Qα, then (δj , α′
x) is a critical pair, where x ∈ Gα such that B(S)x

−1 ≤ Gα+1. Thus,

we may also assume that Qα 6= Qδi for all i = 1, ..., k. Now (7) and (8) give

Rδi = [Zδi , B(S)] ≤ Z(Gα), i = 1, ..., k,

and by (3)

Z0 =
k∏
i=1

[Zδi , B(S)] =
k∏
i=1

Rδi ≤ Z(Gα),

a contradiction.

(10) There exists ρ ∈ P∗ and P ∈ ∆∗ such that Qqρ 6= Op(P ) for all q ∈ Q.

Assume that (10) does not hold. Let P0 ∈ P0 and Ω(P0) = {L1, ..., Lk}. By (2.9)(d)

∩ki=1Op(Li) = Op(P0).

Now let ρ ∈ P∗ and Li ∈ Ω(P0). Then there exists q ∈ Q such that Qqρ = Op(Li); in particular

Op(P0) ≤ Qqρ. Since Op(P0) is Q-invariant we get

Op(P0) ≤ Qρ for all ρ ∈ P∗ and all P0 ∈ P0.

Note that P∗ is invariant under NH(B(S)). Hence also

Op(P ∗) ≤ Qρ for all ρ ∈ P∗ and all P ∗ ∈ P∗0 .
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It follows that

Op(P ∗) ≤ ∩Li∈Ω(P0)Op(Li) = Op(P0) for all P0 ∈ P0 and all P ∗ ∈ P∗0 .

This shows that Op(P ∗) = Op(P0) for all P ∗ ∈ P∗0 and all P0 ∈ P0, and by (4) Op(P0) is normal in

L, a contradiction to (5).

By (10) there exists ρ ∈ P∗ and P ∈ ∆∗ such that Qqρ 6= Op(P ) for all q ∈ Q, and by (9)

there exists a critical pair (α, α′) satisfying (∗) such that Gα = P . We fix this notation with the

additional property that P0 := 〈P, S〉 ∈ P0 and P ∈ Ω(P0).

(11) There exists q ∈ Q such that (ρq, α) is a critical pair; in particular b = 1.

Suppose that b > 1 or Zρq ≤ Qα′−1 for all q ∈ Q. Then (8) shows that B(S) = QαQ
q
ρ for all

q ∈ Q. Hence [Zqρ , Qα] = [Zqρ , B(S)] and by (7)

R :=
∏
q∈Q

[Zqρ , B(S)] ≤ Z(Gα);

in particular R is a Q-invariant and non-trivial subgroup of Z(Gα). Hence, Q-Uniqueness gives

Gα = P ≤ C̃. But then also P0 ≤ C̃, which contradicts P0 ∈ P0. This shows that b = 1 and there

exists q ∈ Q such that (ρq, α) is a critical pair.

(12) Let γ ∈ P∗ such that Gγ ≤ P0. Then YGγ ≤ YP0 ; in particular Zα ≤ YP0 and no

Q-conjugate of Gρ is contained in P0.

Since by (2) Op(P0) ≤ B(S), we have Ω1(Z(Qγ)) ≤ Ω1(Z(Op(P0))). Hence (1.3)(d) and (2)

yield YGγ ≤ YP0 . This gives, together with (11), that there exists q ∈ Q such that Gqρ is not

contained in P0, and, since Q ≤ S ≤ P0, no Q-conjugate of Gρ is contained in P0.

Let µ := ρq be as in (11). Then (6) and b = 1 give

B(S) = ZµZα(Qα ∩Qµ);

in particular

Φ(Qα) = Φ(Qα ∩Qµ) = Φ(Qµ).

This gives [Qα, Zµ] = [Zα, Zµ] ≤ Zα. Hence (2), (1.3)(b) and (12) yield

[Op(P0), Op(Gα)] ≤ [Qα, Op(Gα)] ≤ [Qα, 〈ZGαµ 〉] ≤ Zα ≤ YP0 .
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FromGα ∈ Ω(P0) and (2.9)(d) we get [Op(P0), Op(P0)] ≤ YP0 . Now Z(P0) = 1 yields YP0 = Op(P0),

and (2.1) and (2.9) applied to P0 give B(S) = YP0〈ZSµ 〉. From (2.1) and (3) it follows that

Φ(B(S)) = Z0; in particular

Φ(Qα) = Φ(Qµ) ≤ Z(Gα) ∩ Z(Gµ).

Assume that Ω(P0) = {P}. Then Z(Gα) = 1 and Zα = Qα is a natural Gα/Qα-module. In

particular

B(S) = ZαZµ and Zα ∩ Zµ = Z0.

Thus, also Qµ = Zµ, and the action of Zα on Zµ also shows that Z(Gµ) = 1.

Let λ ∈ P∗. If Qqλ 6= Qα for all q ∈ Q, then, as for ρ and µ, Qλ = Zλ and Z(Gλ) = 1. If Qqλ =

Qα for some q ∈ Q, then Zα = Zqλ = Qqλ, and the action of Zµ shows that Z(Gqλ) = Z(Gλ) = 1.

Hence, (c) holds in the case Ω(P0) = {P}.

Assume now that Ω(P0) 6= {P} and choose Li ∈ Ω(P0)\{P}; i.e. Li = Gν for some α 6= ν ∈ P∗.

Since [Zµ, Qα] = [YP , B(S)] and by (2.9)(e) [YLi , B(S)] 6= [YP , B(S)] we get from b = 1 and (6)

that Zν ≤ Qµ ∩Qα. Hence,

R0 := [Zν , B(S)] = [Zν , Qα ∩Qµ] ≤ Z(Gα) ∩ Z(Gµ).

Let U = NH(R0). Then U is of characteristic p and 〈Gα, Gµ〉 ≤ CH(R0). Thus

Op(U) ∩Qµ = Op(U) ∩B(S) = Op(U) ∩Qα,

soOp(U)∩B(S) is normal inGα and [Op(U)∩B(S), Zµ] = 1. Note that [Op(U), Zµ] ≤ Op(U)∩B(S).

Since Op(Gα) ≤ 〈ZGαµ 〉 we get that [Op(U), Op(Gα), Op(Gα)] = 1. This contradicts the fact that

U is of characteristic p.

Corollary 1. Suppose that the cases (a) and (b) of Theorem 1 do not hold. Let P ∈

PH(S) \ P
C̃

(S) such that Ω1(Z(B(S))) is not normal in P . Then B(P ) ∼= SL2(pm), and Op(P ) is

a natural SL2(pm)-module for B(P ). Moreover, either NH(B(S)) ≤ NH(Op(P )), or P is of type

L3.

Proof. By the choice of P and the definition of C̃, P satisfies the hypothesis of (2.6). Hence

U(P ) 6= 1 and by (2.5)(a) Z(P ) = 1. Thus (2.8) gives Op(P ) ≤ B(S). Applying (2.9) and Theorem
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1 (c) we get that B(P ) ∼= SL2(pm) and that Op(P ) = YP is a natural SL2(pm)-module for B(P ).

Hence either P is of type L3 or p = 2.

Assume that p = 2. Suppose that NH(B(S)) is not contained in NH(YP ) and pick x ∈

NH(B(S)) \NH(YP ). Then B(S) = YPY
x
P and A(S) = {YP , Y xP }. Since NH(B(S)) acts on A(S)

we get O2(NH(B(S))) ≤ NH(YP ) and thus also NH(B(S)) ≤ NH(YP ), a contradiction.
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3. P-Uniqueness

Throughout this section we assume Hypothesis I. In particular, the Structure Theorem applies

to all M ∈ L∗H(S) with P ≤ M . In addition, among all P satisfying Hypothesis I we choose P

maximal (with respect to inclusion).

Local P!-Theorem. Let P ∗ = U(P ) and P ≤M ∈ L∗H(S). Then one of the following holds:

(a) Case (a) of the Structure Theorem holds for M , P ∗ = P ∩M0 and

(i) P ∗/Op(P ) ∼= SL2(pm) and YP is a natural SL2(pm)-module,

(ii) PM (S) = {P} ∪ P
M∩C̃(S),

(iii) M ∩ C̃ = NM (Ω1(Z(S ∩ P ∗))).

(b) Case (b) of the Structure Theorem holds for M , and

(i) PM (S) = PP (S) ∪ P
M∩C̃(S), in particular P = Op(M0)S,

(ii) M ∩ C̃ ≤ NM (Ω1(Z(S ∩ P ∗))),

(iii) MH(P ) = {M}.

Proof. We discuss the two cases of the Structure Theorem separately. Assume first that case (a)

of the Structure Theorem holds for M . Let M := M/CM (YM ), S0 := S∩M0 and Z0 := Ω1(Z(S0)).

The p-local structure of M0/Op(M0) shows:

(+) There exists a unique U ∈ PM0(S0) such that [Z0, U ] 6= 1; in particular PM0(S0) =

{U} ∪ P
M0∩C̃

(S0).

(++) U/Op(U) ∼= SL2(pm), and Y := CYM (Op(U)) is a natural SL2(pm)-module for U/Op(U).

Since Q ≤ S0 from (1.7) it follows NH(S0) ≤ C̃, hence (+) gives NH(S0) ≤ NH(U), in

particular S normalizes U .

Let P1 ∈ PM (S) such that P1 6≤ C̃. By (1.7) Q 6≤ Op(P1), and so by (1.3)(b) P1 = (P1)0S and

(P1)0S0 ≤M0. Since Op(M) ≤ Op((P1)0S0), (P1)0S0 has characteristic p, whence (1.3)(a) and the

uniqueness of U give

(P1)0S0 = 〈U, (P1)0S0 ∩ C̃〉.

Since P1 is a minimal parabolic subgroup not contained in C̃ we get that P1 = US; in particular

P = US, and (a)(ii) follows.
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From Op(U) ≤ Op(P ) and (1.2)(b) we get YP ≤ YM , thus YP ≤ Y and (++) yields YP = Y .

Now (2.1) gives P ∗ = UOp(P ) ≤M0, whence (a)(i) and P ∩M0 = P ∗ follow.

Note that M0CM (YM ) is a normal subgroup of M . It follows that

M ∩ C̃ = CM (YM )(M0 ∩ C̃)N
M∩C̃(S0) ≤ (M0 ∩ C̃)NM (Z0),

so (+) and (1.3)(a) yield M ∩ C̃ ≤ NM (Z0). On the other hand by Q-Uniqueness CM (Z0) ≤ C̃, so

by (1.6) Q is the unique conjugate of Q in CM (Z0). Hence NM (Z0) ≤ NM (Q) = M ∩ C̃.

By the Structure Theorem CS(YM ) = Op(M0) ∈ Sylp(CM0(YM )), whence by (1.2)(e) YM0 =

Ω1(Z(CS(YM ))) ≤ YM . This gives Z0 ≤ YM and thus Z0 = CYM (S0). From (++) it follows that

Z0 ≤ Y = Y ∩ Z(Op(P )), therefore S ∩ P ∗ = Op(P )S0 yields Z0 = Ω1(Z(S ∩ P ∗)). This shows

(a)(iii).

Assume now that case (b) of the Structure Theorem holds. Let P1 and P ∗1 be as given there and

set S0 := P ∗1 ∩ S and Z0 := Ω1(Z(S0)). Then P1 = M0S and by (2.1) P ∗1 = U(P1); moreover, by

(1.3)(c) and (1.7) PM (S) = PP1(S) ∪ P
M∩C̃(S). The maximality of P gives P = P1 and P ∗ = P ∗1 ,

and (b)(i)holds.

Since P ∗CM (YM ) is normal in M we get as above

M ∩ C̃ = CM (YM )(P ∗ ∩ C̃)N
M∩C̃(S0).

As P is a minimal parabolic subgroup, the structure of P ∗ and its action on YP show that NP (Z0)

is the unique maximal subgroup containing S. It follows that P ∗ ∩ C̃ ≤ NP (Z0) and thus M ∩ C̃ ≤

NM (Z0). This is (b)(ii).

Let P ≤ L ∈MH(S) and L << L̃ ∈ L∗H(S). Then L = (L ∩ L̃)CL(YL) and thus

P 0 ≤ L0 = (L ∩ L̃)0 ≤ L̃0.

It follows that P = P 0S ≤ L̃, and we are allowed to apply the Structure Theorem to L̃.

If case (a) of the Structure Theorem holds for L̃, then by case (a) of the Local P! Theorem

P ∩ L̃0 = P ∗ = U(P ). But then Q ≤ P ∗, a contradiction.

If case (b) of the Structure Theorem holds for L̃, then the maximality of P gives YP = Y
L̃

and

thus Y
L̃

= YM ; in particular M = L̃. This shows (b)(iii).
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Notation. We fix M , P and P ∗ as in the Local P!-Theorem. (Observe that in case (b)

of the Local P !-Theorem the definition of P ∗ differs from that given in the P !-Theorem. But it

will be shown in section 4 that this case does not occur.) Furthermore, we set P := P/CP (YP ),

S0 := S ∩ P ∗ and Z0 := Ω1(Z(S0)). Recall that P satisfies the hypotheses of (2.1) – (2.5) and if

B(S) 6≤ Op(P ) also those of (2.6) – (2.9). Later in the course of the amalgam method we will apply

these Lemmata not only to P but also to conjugates of P .

(3.1) P admits the decompositions

(D1) P
∗

= K1 × · · · ×Kr, Ki
∼= SL2(pm), and

(D2) YP = V1 × · · · × Vr, Vi a natural SL2(pm)-module for Ki.

Moreover, [YP , Q ∩ S0] = Z0 and either S0 = B(S) or B(S) ≤ Op(P ).

Proof. The decompositions D1 and D2 are from the Local P!-Theorem. Assume that B(S) 6≤

Op(P ). Since P ∗ = U(P ) (2.6), (2.1) and (2.8) show that S0 = B(S).

Remark. The next result, Theorem 2, establishes part (a) and (c) of the P !-Theorem if case

(a) of the Local P !-Theorem holds. We then embark on the proof of the main result of this section,

Theorem 3, where we show that Z0 is normal in C̃. This establishes part (b) of the P !-Theorem

in all cases. It then remains to treat case (b) of the Local P !-Theorem. This is done in the next

section, where the F !-Theorem eliminates this case.

Theorem 2. Assume Hypothesis I. Then either PH(S) = PP (S) ∪ P
C̃

(S), or the following

hold:

(a) Z0 is normal in C̃.

(b) Q = B(S) = S0.

(c) P̃ is of type L3 for every P̃ ∈ PH(S) \ P
C̃

(S).

Proof. Assume first that P is of type L3. Then by (2.2) YP ∈ A(S), B(S) = S0, and for every

A ∈ A(S) either

S0 = AYP or A = YP .

Moreover, YP ≤ Q by (1.2)(b) and Hypothesis I. It follows that also J(S) = S0 ≤ Q since YP is not

normal in C̃. But then J(S) = J(Q) and Z0 = Ω1(Z(S0)) = Ω1(Z(J(S))) is normal in C̃. On the
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other hand, NP (S0) is transitive on Z0 and by (1.7) contained in C̃, so Z0 ≤ Z(Q) and Q ≤ S0.

We conclude that Q = S0; in particular NH(B(S)) = C̃.

Let P̃ ∈ PH(S) \ P
C̃

(S). Then P̃ 6≤ NH(Ω1(Z(B(S)))), and Corollary 1 shows that also P̃ is

of type L3. Hence, Theorem 2 holds if P is of type L3.

We may assume now:

(1) P is not of type L3 and PH(S) 6= PP (S) ∪ P
C̃

(S).

By (1) there exists P̃ ∈ PH(S) such that

(2) P̃ 6≤ P and P̃ 6≤ C̃.

Assume that Op(〈P, P̃ 〉) 6= 1. Then there exists L ∈ LH(S) such that 〈P, P̃ 〉 := R ≤ L. Since

P = P 0S and P̃ = P̃ 0S, we also get R ≤ L0S. Now (1.4) shows that there exists M̃ ∈ L∗H(S) such

that R ≤ M̃ . The Local P!-Theorem applied to M̃ , together with the maximal choice of P , gives

P̃ ≤ P , which contradicts (2). We have shown:

(3) Op(〈P, P̃ 〉) = 1.

We now apply Theorem 1. Then (3) shows that the cases (a) and (b) of Theorem 1 do not

hold. Assume that B(S) is not normal in P , so by (1.3) also Ω1(Z(B(S))) is not normal in P .

Hence by Corollary 1 Op(P ) = YP and P ∗/YP ∼= SL2(pm), and Corollary 1 and (1) show that

NH(B(S)) ≤ NH(YP ). On the other hand, as above, YP ≤ Q implies B(S) = S0 = Q since YP is

not normal in C̃. Hence C̃ = NH(B(S)) ≤ NH(YP ), and YP is normal in C̃, a contradiction. We

have shown:

(4) P ≤ NH(B(S)).

By (3) and (4) Ω1(Z(B(S))) is not normal in P̃ . Hence again (3) and Corollary 1 show that P̃

is of type L3. In particular p 6= 2, and there exists an involution t ∈ N
P̃

(S) such that [S, t] = Y
P̃

.

Since Y
P̃
≤ B(S) and Y

P̃
= Op(P̃ ) we get YP ≤ Ω1(Z(B(S)) ≤ Y

P̃
. Hence YP = [YP , t], and t

inverts YP . This shows that [t, P ] ≤ CH(YP ) ∩NH(Op(P )) =: X, and P 0 normalizes 〈t〉X. Since

[〈t〉X,Q] ≤ Q ∩ 〈t〉X ≤ CS(YP ) = Op(P )

we conclude that [t, P 0] ≤ Op(P ) and thus also [t, P ] ≤ Op(P ). Hence, P normalizes 〈t〉Op(P )

and thus also Op(〈t〉Op(P )) = 〈t〉Y
P̃

. It follows that P normalizes Y
P̃

, which contradicts (3). This

completes the proof of Theorem 2.
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(3.2) Suppose that Op(P ) ≤ 〈x,A〉, where x is a p-element in P and A a normal subgroup of

S in Q. Then Op(P ) ≤ 〈x,A〉.

Proof. Let P0 = 〈x,A〉 and P1 = Op(P ). Note that P1 6≤ CP (YP ) by our choice of P , so P1 ≤

〈AP 〉 by (1.3)(b). Note further that [CP (YP ), A] ≤ Op(P ) since A ≤ Q and that P1 ≤ P0CP (YP ).

It follows that

P1 ≤ 〈AP 〉 = 〈AP1〉 ≤ 〈AP0〉Op(P ).

Since 〈AP0〉 is normal in P0Op(P ) we get that

P1 = Op(〈AP 〉) = Op(P0Op(P )) = Op(P0).

Hypothesis II. Assume Hypothesis I and PH(S) = PP (S) ∪ P
C̃

(S). Further assume that

there exists P̃ ∈ P
C̃

(S) such that (P, P̃ ) is an amalgam and N
P̃

(Z0) is a maximal subgroup of P̃ .

Our goal, which we will achieve in (3.9), is to prove that no group H satisfies Hypothesis II.

(3.3) Assume Hypothesis II. Let x ∈ P̃ and Op(P ) ≤ N
P̃

(Zx0 ). Then x ∈ N
P̃

(Z0).

Proof. Assume first that J(S) ≤ Op(P̃ ). Then J(S) is normal in P̃ and thus not normal in

P since (P, P̃ ) is an amalgam. Hence, by (3.1) S0 = B(S) and Z0 = Ω1(Z(J(S))). But then Z0 is

normal in P̃ , a contradiction. Thus, J(S) is not normal in P̃ . Since P̃ is minimal parabolic we get

that N
P̃

(J(S)) ≤ N
P̃

(Z0) and that N
P̃

(Z0) is self-normalizing.

Assume now that x 6∈ N
P̃

(Z0) but Op(P ) ≤ N
P̃

(Zx0 ), so N
P̃

(Z0) 6= N
P̃

(Zx0 ). We choose x in

addition such that |T | is maximal, where

Op(P ) ≤ T ∈ Sylp(NP̃ (Z0) ∩N
P̃

(Zx0 )).

Note that Op(P̃ ) ≤ T ∩ S.

After conjugation in N
P̃

(Op(P )) we may assume that T1 := NT (Op(P )) ≤ S, so T1 = T ∩ S.

Note that T 6∈ Sylp(P̃ ) since P̃ is minimal parabolic; in particular T is not a Sylow p-subgroup of

N
P̃

(Zx0 ). Hence, the maximality of T yields

(1) N
P̃

(T ) 6≤ N
P̃

(Z0).
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From (1) and N
P̃

(J(S)) ≤ N
P̃

(Z0) we get:

(2) J(S) 6= J(T ) and J(S) 6≤ T .

In particular J(S) 6≤ Op(P ), and (3.1) and (2.7) yield

(3) S0 = B(S) = J(S)Op(P ) and [Ω1(Z(J0)), J(S)] = Z0 = Ω1(Z(J(S))), where J0 :=

J(Op(P )).

Assume that J(T1) 6= J0. Since Q ≤ T1 the Q-transitivity and (2.1) imply

S0 = J(T1)Op(P ) ≤ T.

This contradicts (2) and (3). We have shown:

(4) J0 = J(T1).

Since (P, P̃ ) is an amalgam and Op(P̃ ) ≤ T1 we get from (4) J0 6≤ Op(P̃ ) and thus N
P̃

(J0) ≤

N
P̃

(Z0).

Set T2 := NT (J0) and note that J0 6= J(T2) by (1). There exists y ∈ N
P̃

(J0) such that

T2 ≤ Sy. From (3) we get

[Ω1(Z(J0)), J(S)y] = Z0,

in particular J(T2) ≤ NH(YP ) since YP ≤ Ω1(Z(J0)). Hence also T3 := 〈Op(P ), J(T2)〉 ≤ NH(YP ),

and Op(P ) = CT3(YP ) is normal in T3 since Op(P ) ∈ Sylp(NH(YP )). It follows that T3 ≤ T1 and

thus by (4) J0 = J(T2), a contradiction.

(3.4) Assume Hypothesis II. Let V = 〈Y P̃P 〉. Then V is abelian.

Proof. Set V0 = 〈ZP̃0 〉. By Hypothesis I and (1.2)(b) YP ≤ Q and thus V ≤ Op(P̃ ) ≤ S.

Assume that V is not abelian. Then there exists x ∈ P̃ such that A := Y xP 6≤ Op(P ). Then

(2.1) and the Q-invariance of A show that [V, YP ] = [A, YP ] = Z0 and AOp(P ) = V Op(P ) = S0.

Moreover V0 ≤ Z(V ) ≤ Op(P ), and Op
′
(C

P̃
(V0)) ≤ Op(P̃ ) since Z0 is not normal in P̃ .

There exists y ∈ P such that 〈V, V y〉CP∗(YP ) = P ∗. Since V is contained in Q and normal in

S (3.2) implies Op(P ) ≤ 〈V, V y〉. Hence Z(P ) = 1 gives Z(〈V, V y〉) = 1.

Note that V0 ≤ Op(P ) ≤ Sy and thus

[V0, V
y
0 ] ≤ V0 ∩ V y0 ≤ Z(〈V, V y〉) = 1.
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Let z′, z ∈ P̃ such that for A1 = Y zP and A2 = Y z
′

P

[A1, A2] = Zz0 6= Z0.

It follows that U := 〈A1, A2〉 ≤ Op(P ). In addition V y0 ≤ Op
′
(C

P̃
(V0)) ≤ C

Op(P̃ )(Z
z
0 ) and thus

[V y0 , U ] ≤ V y0 ∩ V0 = 1. Hence U ≤ C
Op(P̃y)(V

y
0 ) and thus [A1, A2, V

y] = 1. It follows that Zz0

centralizes V y and

Zz0 ≤ Z(〈V, V y〉) = 1,

a contradiction.

Notation. From now through (3.9) we will apply the amalgam method to the amalgam

(P, P̃ ). With one exception we will use the standard terminology (see [DS], [KS] and the proof

of Theorem 1). In particular we choose α, β, α′ ∈ Γ so that (α, α′) is a critical pair and so that

{Gα, Gβ} = {P, P̃}. The exception to standard notation is the definition of Zδ. For δ ∈ Γ we define

Zδ := YGδ .

In addition, we define for g ∈ G, δ = αg and λ = βg

Z∗λ = CZδ (O
p(Gλ)), Q̃λ = Qg, Z(δ, λ) = Zg0 , C̃λ = C̃g,

V ∗λ = 〈xh | h ∈ Gλ, x ∈ Zδ and [x, Sg] ≤ Z∗λ〉.

Note that Z∗λ is normal in Gλ and thus [V ∗λ , Qλ] ≤ Z∗λ. Note further that

V ∗λ = 〈(Zδ ∩ V ∗λ )Gλ〉.

(3.5) Assume Hypothesis II. Then Z = Y
P̃

and P̃ = Gβ .

Proof. Clearly Z = Y
P̃

implies P̃ = Gβ . Thus, we may assume that Z 6= Y
P̃

. Then by (1.3)(b)

CS(Y
P̃

) = Op(P̃ ) and [Zα, Zα′ ] 6= 1. Let 1 6= x ∈ [Zα, Zα′ ].

Assume that Gα = P̃ . Then Zα ≤ Y
C̃
≤ Z(Q) by (1.2)(b) and CH(x) ≤ C̃ by Q-Uniqueness.

Since Zα 6≤ Qα′ we get Gα′ 6≤ C̃. It follows that Gα′ is conjugate to P .

Hence, after switching to another critical pair we may assume that Gα = P . (3.4) shows that

b > 2. Let α − 1 ∈ ∆(α) such that 〈Gα−1 ∩ Gα, Zα′〉 = Gα and set A := Zα′−1(Zα′ ∩ Qα). Since

b > 2 we have

(∗) [Zα−1, A, Zα′ ] = 1.
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Assume first that [Zα−1, A] =: R 6= 1. As above CH(R) ≤ C̃α−1 since Gα−1 is conjugate to P̃ .

Hence (∗) gives

〈Gα−1, Zα′〉 = 〈Gα−1, Gα〉 ≤ C̃α−1,

a contradiction.

Assume now that [Zα−1, A] = 1. Then Zα−1 ≤ Gα′ and

Zα′ ∩Qα = CZα′ (Zα) ≤ CZα′ (Zα−1),

while (2.1) gives

|Zα/CZα(Zα′)| = |Zα′/CZα′ (Zα)|.

It follows that

(∗∗) |Zα′/CZα′ (ZαZα−1)| = |Zα′/CZα′ (Zα)| = |Zα/CZα(Zα′)| ≤ |ZαZα−1/CZαZα−1(Zα′)|.

According to (2.1)(e), this time applied to Gα′ , equality holds in (∗∗), so Zα−1 ≤ ZαQα′ and

[Zα−1, Zα′ ] ≤ [Zα, Zα′ ] ≤ Zα. Hence, Zα−1Zα and thus also [Zα−1, Qα] is normal in Gα. Now the

irreducibility of Zα and (1.2)(e) yield Zα−1 ≤ Zα. But then Qα ≤ Qα−1 and thus also Qα ≤ Qβ .

Since Zα′ ≤ Qβ (2.1) and (3.1) give S0 ≤ Qβ and S0 = B(S). Hence, Z0 is normal in P̃ , which

contradicts Hypothesis II.

(3.6) Assume Hypothesis II. Then [Zα, Zα′ ] = 1.

Proof. Asssume that [Zα, Zα′ ] 6= 1. From (3.5) we get that P̃ = Gβ and Zβ = Z. In particular

b is even, and Gα′ is conjugate to Gα. Moreover, (3.4) gives:

(1) Vβ is an elementary abelian subgroup of Qβ , and b ≥ 4.

Pick α′+ 1 ∈ ∆(α′) such that Z(α′, α′+ 1) 6= Z(α′, α′− 1). The Q̃α′+1-transitivity shows that

Op(Gα′) ≤ 〈Zα, Q̃α′+1〉CGα′ (Zα′). So (3.2) yields Op(Gα′) ≤ 〈Zα, Q̃α′+1〉.

(2) Zα ∩ V ∗β ≤ Z(α, β).

Note that S0 = Qα〈Z
Q̃β
α′ 〉 by (2.1) and Q-transitivity since Zα′ ∈ U(P ), so [Z∗β , S0] = 1. Hence

Z∗β ≤ Z(α, β). Moreover

D := [Zα ∩ V ∗β , S0] ≤ [Zα ∩ V ∗β , QαQβ ] ≤ [V ∗β , Qβ ] ≤ Z∗β .
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Note that D is Q-invariant. Hence, the action of S0 on Zα and the Q-transitivity either give D = 1,

or D = Z(α, β). The first case implies (2). In the second case Z(α, β) = Z∗β is normal in Gβ , which

contradicts Hypothesis II.

(3) V ∗α′+1 ≤ Qα+2.

This follows from (2) since Zα+2 centralizes Z(µ, α′ + 1) for all µ ∈ ∆(α′ + 1).

(4) Let A ≤ V ∗α′+1 such that Op(Gα′) ≤ NG(AZα′). Then A ≤ Z(α′, α′ + 1).

Since 〈AGα′∩Gα′+1〉 satisfies the hypothesis of (4) we may assume that A is (Gα′ ∩ Gα′+1)-

invariant; i.e. AZα′ is normal in Gα′ . Then also Y := [AZα′ , Qα′ ] is normal in Gα′ and Y ≤ V ∗α′+1.

If Y = 1, then (1.2)(e) shows that A ≤ Ω1(Z(Qα′)) = Zα′ since Gα′ is conjugate to P . Now (2)

yields A ≤ Z(α′, α′ + 1). If Y 6= 1, then the irreducibility of Zα′ gives Zα′ ≤ Y , which contradicts

(2).

(5) V ∗α′+1 6≤ Gα.

Assume that V ∗α′+1 ≤ Gα. As b > 2 and thus V ∗α′+1 ≤ Qα′ , (2.4) gives

[Zα, V ∗α′+1] ≤ [Zα, Zα′ ][Zα ∩Qα′ , V ∗α′+1] ≤ Zα′V ∗α′+1,

so Zα′V
∗
α′+1 is normal in 〈Zα, Gα′ ∩ Gα′+1〉 = Gα′ . Now (4) shows that V ∗α′+1 = Z(α′, α′ + 1),

which contradicts Hypothesis II.

By (1.3)(b) and Hypothesis II Qβ is the unique Sylow p-subgroup of ∩ρ∈∆(β)NGβ (Z(ρ, β)).

Hence, by (5) there exists ρ ∈ ∆(β) such that V ∗α′+1 6≤ NGβ (Z(ρ, β)). Note that by (3) and (3.3)

also 〈Q
V ∗
α′+1
ρ 〉 6≤ NGβ (Z(ρ, β)).

(6) Zρ ≤ Qα′ .

Assume that Zρ 6≤ Qα′ . Then (ρ, α′) is a critical pair, and Z(ρ, β) = 〈[Zρ, Zα′ ]Q̃β 〉 centralizes

〈Q
V ∗
α′+1
ρ 〉, a contradiction.

(7) Set R := [Zρ, V ∗α′+1]. Then |R| < |Z(ρ, β)|.

Note that by (3) and (6) R ≤ V ∗α′+1 ∩ Vβ and by (1) [R,Zα] = 1. Since [V ∗α′+1, Qα′+1] ≤

Z∗α′+1 ≤ Zα′ we get that RZα′ is normalized by 〈Zα, Qα′+1〉 anf thus by Op(Gα′). Now (4) shows

that R ≤ Z(α′, α′ + 1); and equality does not hold since Zα centralizes R but not Z(α′, α′ + 1).

We now derive a final contradiction. Let t ∈ V ∗α′+1\NGβ (Z(ρ, β)), U = 〈Qρ, t〉 and Y0 = CZρ(t).

Note that

|Zρ/Y0| ≤ |[Zρ, t]| ≤ |[Zρ, V ∗α′+1]|,
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so by (7) |Zρ/Y0| < |Z(ρ, β)|. On the other hand, by (3.1) |Zρ| = |Z(ρ, β)|2 and so |Y0| > |Z(ρ, β)|.

Set U0 := 〈QUρ 〉 and Y1 = CZρ(U0). By (3.3) U0 6≤ NGβ (Z(ρ, β)). Since Y0 ≤ Y1 we also have

|Y1| > |Z(ρ, β)|. Moreover, Y1 and U0 are Qβ-invariant.

Let x ∈ Gβ such that αx = ρ. As seen above Sx0 ≤ QβQρ, so Y1 is Sx0 -invariant. Moreover, since

|Y1| > |Z(ρ, β)| we also have [Y1, S
x
0 ] 6= 1. Now (3.1), applied to P x (= Gρ), and the Q-transitivity

yield

Z(ρ, β) = 〈[Y1, S
x
0 ]Q〉 ≤ Y1.

This contradicts U0 6≤ NGβ (Z(ρ, β)).

(3.7) Assume Hypothesis II. Let A ≤ P̃ and Y0 := [YP , A ∩ P ]. Suppose that A 6≤ N
P̃

(Z0)

and [Y0, A] = 1. Then either Y0 = 1, or the following hold:

(a) p = 2 and P ∼= S3 wr C2 or S5.

(b) |A ∩ P/A ∩O2(P )| = 2, |Y0| = |Z0| = 4 and CP∗(Y0) = O2(P ).

Proof. Set A0 := A ∩ P , U := 〈Op(P ), A〉, U0 := 〈Op(P )U 〉 and Y1 := CYP (U0). Note that

(1) Y0 ≤ Y1, and U0 is Q-invariant.

Hence Y1 is the largest Q-invariant subgroup of YP centralized by U0. By (3.3) U0 6≤ N
P̃

(Z0)

and thus

(2) Z0 6≤ Y1.

From now on we assume that Y0 6= 1 and use the notation of (3.1); in addition we set q := pm

and Ri := [Vi, A0], i = 1, ..., r. It is convenient to treat the following two cases separately:

(∗) There exists i ∈ {1, ..., r} such that 1 6= Ri ≤ Vi.

(∗∗) Ri 6≤ Vi for all i ∈ {1, ..., r} with Ri 6= 1.

Case (∗): We have A0 ≤ NH(Vi) and thus A0 ≤ NP (Ki). If A0 ≤ KiCP (Vi), then Ri =

Z0 ∩ Vi ≤ Y0, and (1) and the Q-transitivity give 〈RQi 〉 = Z0 ≤ Y1, which contradicts (2). Hence,

by (2.5)(e) |A0/CA0(Vi)| = 2 = p.

Assume that r > 1. Then there exists x ∈ Q such that Kx
i = Kj 6= Ki and

[Ki ∩ S, x]CP (Vi) = (Ki ∩ S)CP (Vi).

It follows that

[Ri,Ki ∩ S] = [Ri, [Ki ∩ S, x]] ≤ [Ri, Q],
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so by (1) [Ri,Ki ∩ S] = Z0 ∩ Vi ≤ Y1. Now as above the Q-transitivity yields Z0 ≤ Y1, which

contradicts (2). Hence r = 1. Thus |A0/A0 ∩ O2(P )| = 2; moreover |YP /CYP (A0)| = q and

CYP (A0) = Y0 since A0 acts as a field automorphism on P
∗
.

We have proved:

(3) In case (∗) r = 1, p = 2, CP∗(Y0) = O2(P ), |A0/A0 ∩O2(P )| = 2 and |YP /Y0| = q.

Case (∗∗): Fix i ∈ {1, .., r} such that Ri 6= 1. Then A0 6≤ NP (Vi) since Ri 6≤ Vi, and from

(2.5)(e) we get that |A0/CA0(Vi)| = 2(= p) and there exists j 6= i such that 〈V A0
i 〉 = Vi× Vj . Note

that

ViVj = Vi(Y1 ∩ ViVj) = Vj(Y1 ∩ ViVj).

Assume that r > 2. Then by the Q-transitivity there exists x ∈ Q such that V xi 6∈ {Vi, Vj}. In

particular, there exists b ∈ (Ki ×Kx
i ) ∩Q such that

Vi ∩ Z0 = [Vi, b] ≤ [ViVj , b] = [VjY1, b] = [Y1, b].

As above, (1) and the Q-transitivity give Z0 ≤ Y1, which contradicts (2). We have shown that

r = 2, so NA0(Vi) = CA0(Vi) implies |A0/A0 ∩O2(P )| = 2.

For every c ∈ P ∗ \ O2(P ) we have [Y0, c] 6= 1 since YP = Y0Vi for i = 1, 2. It follows that

CP∗(Y0) = O2(P ). Moreover Vi ∩ Y0 = 1 implies |Y0| = |Vi| = |YP /Y0| = q2. We have shown:

(4) In case (∗∗) r = 2 = p, CP∗(Y0) = O2(P ), |A0/A0 ∩O2(P )| = 2 and |YP /Y0| = q2.

Assume that case (a) of the Local P!-Theorem holds for P . Then r = 1, QO2(P ) = S0 and

[y,Q] = Z0 for every y ∈ YP \ Z0. As Y0 6≤ Z0 by (3), this gives Z0 ≤ Y1, which contradicts (2).

We have shown:

(5) Case (b) of the Local P!-Theorem holds for P ; in particular MH(P ) = {M}.

As a trivial consequence of (5) we get:

(6) NH(J(O2(P ))) ≤M .

Let O2(P ) ≤ T ∈ Syl2(U0) and T0 = NT (J(O2(P ))). Note that T0 ≤ M by (6). By (3.1)

J(S) ≤ S0 and by (2.1)(e)

A(O2(P )) ⊆ A(S),

so J(T0) ≤ Sx0 for some x ∈ M . According to (5) P ∗CM (YP ) is normal in M , hence J(T0) ≤

P ∗CM (YP ). Now by (1), (3) and (4) imply

J(T0) ≤ CM (Y0) ∩ P ∗CM (YP ) = CP∗(Y0)CM (YP ) = O2(P )CM (YP ) = CM (YP ).
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Since O2(P ) is a Sylow 2-subgroup of CM (YP ) we conclude that J(T0) = J(O2(P )) and thus

also J(T ) = J(O2(P )); in particular T = NT (J(O2(P ))) = T0 ≤ M . In addition, (3.3) implies

T ≤ N
P̃

(Z0) and (5) implies YP = YM . We have shown:

(7) J(T ) = J(O2(P )), and T normalizes YP and Z0.

According to (5), (6), (7) and (b)(ii) of the Local P!-Theorem NU0(T ) ≤ M ∩ C̃ ≤ NM (Z0).

Since U0 6≤ N
P̃

(Z0) there exists F ∈ PU0(T ) such that F 6≤ NH(Z0); see (1.3)(a). As O2(P̃ ) ≤

NH(U0) we get [U0, O2(P̃ )] ≤ O2(U0); in particular, F is O2(P̃ )-invariant and [F,O2(P̃ )] ≤ O2(F ).

In addition, (3.3) and (7) show O2(P ) 6≤ O2(F ) and thus by (1.3)(c)

(8) O2(F ) = [O2(F ), O2(P )] ≤ 〈O2(P )F 〉.

Set W = 〈Y FP 〉. Clearly [W,O2(F )] 6= 1 since by (7) O2(F ) 6≤ NH(Z0). Moreover, (3.4) shows

that W is elementary abelian. Assume that O2(P ) ∩O2(F ) is normal in F . Then by (8)

[O2(F ), O2(P̃ )] ≤ [〈O2(P )F 〉, O2(P̃ )] ≤ O2(P ) ∩O2(F )

and W = 〈Y O
2(F )

P 〉 ≤ Z(O2(P ) ∩ O2(F )) since YP ≤ Z(O2(P ) ∩ O2(P̃ )) by Hypothesis I and

(1.2)(b). The P ×Q-Lemma implies that [CW (O2(P̃ )), O2(F )] 6= 1; in particular [Y
P̃
, O2(P̃ )] 6= 1,

which contradicts (3.5). We have shown:

(9) O2(P ) ∩O2(F ) is not normal in F .

Note that F 6≤ M since M ∩ C̃ ≤ NM (Z0), so by (6) and (7) J(O2(P )) = J(T ) 6≤ O2(F ).

Assume that there exists only one non-central F -chief factor (in a given F -chief series) of W . As

by (9)

[O2(F ), O2(F )] 6≤ O2(F ) ∩O2(P ) and CO2(F )(W ) ≤ O2(F ) ∩O2(P ),

we get [O2(F ), O2(F ),W ] 6= 1. Thus by [Ste2, 3.3] there exists B ≤ O2(F ) such that

[YP , B,B] = 1 6= [YP , B] and |[YP , B]| ≤ |B/CB(YP )|.

The structure of P given in (3.1) shows that B ≤ P ∗. But then (1), (3) and (4) imply B ≤

CP∗(Y0) = O2(P ) = CP∗(YP ), a contradiction.

We have shown that there are at least two non-central F -chief factors inW . Let B1 ∈ A(O2(P ))

with B1 6≤ O2(F ). From (2.1) we get that

|B1/CB1(W ∗)| ≤ |W ∗/CW∗(B1)|
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for all non-central F -chief factors W ∗ of W .

We now apply the qrc-Lemma [Ste2, 3.1(c)] to F and B1 and get (q − 1)(rc − 1) ≤ 1 (where

q, r and c are the parameters defined in [Ste]). Since by [Cher] r ≥ 1 it follows that q ≤ 2. Hence,

there exists B ≤ O2(F ) such that

(+) |B/CB(YP )|2 ≥ |YP /CYP (B)|.

Again by (3) and (4) CP∗(Y0) = O2(P ) and thus B ∩ P ∗ ≤ O2(P ).

As above, we now treat the two cases (∗) and (∗∗) separately. It remains to prove the

isomorphism type of P .

Assume case (∗). Then B induces a field automorphism of order 2 on P
∗
. Hence (+) gives

|YP | = 42 and P ∼= S5.

Assume case (∗∗). Then YP = Y0Vi, i = 1, 2, and again |B| = 2 and |YP | = 42, so P ∼= S3 wr S2.

L-Lemma. Let X ∈ PH(S) and A ≤ S such that A 6≤ Op(X), and let M be the unique

maximal subgroup of X containing S. Then there exists a subgroup Op(X) ≤ L ≤ X with A ≤ L

satisfying:

(i) AOp(L) is contained in a unique maximal subgroup L0 of L, and L0 = L ∩Mg for some

g ∈ X.

(ii) L = 〈A,Ax〉Op(L) for every x ∈ L \ L0.

(iii) L is not contained in any X-conjugate of M .

Proof. For U ≤ X set

U∗ := 〈Ag | g ∈ X,Ag ≤ U〉.

Note that NX(U) ≤ NX(U∗); in particular NX(S∗) ≤M . Choose Y among all X-conjugates of M

such that Y 6= M and for T ∈ Sylp(Y ∩M)

|T ∗| is maximal.

Without loss of generality we may assume that T ≤ S. Let h ∈ X such that T ≤ Sh ≤ Y and set

N := NX(T ∗) and S1 := S ∩N . Then T 6= Sh since Y 6= M , so also T < NSh(T ) ≤ N ∩ Sh. As

T ∈ Sylp(Y ∩M) this gives N 6≤ M . Since NX(S∗) ≤ M this implies that T ∗ 6= S∗ and thus also
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T ∗ 6= S∗1 . Hence, there exists a conjugate B = Ag, g ∈ X, such that B ≤ S1 and B 6≤ T . Choose

z ∈ N \M such that L1 := 〈B, z〉T ∗ is minimal, and set L := Lg
−1

1 Op(X).

Since T ∗ 6= BT ∗ = (BT ∗)∗ the maximality of T ∗ shows that M is the unique conjugate

containing BT ∗. In particular, (iii) holds since L1 6≤ M . Moreover, the minimality of L1 gives

(i). Let x ∈ L1 \M . Then Mx is the unique conjugate of M containing BxT ∗ and M 6= Mx, so

Bx 6≤M and 〈B,Bx〉T ∗ = L1. This gives (ii).

(3.8) Assume Hypothesis II. Let A ≤ S such that [Vβ , A,A] = 1 and A 6≤ Qβ . Then there

exist τ ∈ ∆(β), T ∈ Sylp(Gβ ∩ Gτ ) and L ≤ Gβ such that for L(τ) := NL(Z(τ, β)), W := 〈ZLτ 〉

and W ∗ := 〈vh | v ∈ Zτ , h ∈ L, [v, T ] ≤ Z∗β〉 the following hold:

(a) Qβ ≤ AOp(L) ≤ T ∩ L ∈ Sylp(L(τ)), and L(τ) is a maximal subgroup of L.

(b) L = 〈y,Ax〉Op(L) for every x ∈ L and every y ∈ L \ L(τ)x.

(c) [W ∗, Op(L)] 6= 1 and [W,Op(L)] 6≤W ∗.

(d) Let U be a non-central L-chief factor of W . Then CU (A) = CU (a) for every a ∈ A\Op(L),

and |U/CU (A)| ≥ |A/A ∩Op(L)|.

Proof. According to (3.1), (3.4), (3.5) and (3.6) b ≥ 3 and α′ ∈ βG; in particular Qτ 6≤ Qβ

for all τ ∈ ∆(β) since Zα ≤ Qα′−1 and Zα 6≤ Qα′ . We apply the L-Lemma with Gβ in place of X.

Then there exists Qβ ≤ L ≤ Gβ and τ ∈ ∆(β) such that

(i) L(τ) is the unique maximal subgroup of L containing AOp(L), and AOp(L) ≤ T ∩ L ∈

Sylp(L(τ)) for some T ∈ Sylp(Gβ ∩Gτ ).

(ii) L = 〈A,Ax〉Op(L) for every x ∈ L \ L(τ).

(iii) 〈L, T0〉 = Gβ for every T0 ∈ Sylp(Gβ).

Claim (a) follows directly from (i).

Let y and x be as in (b). Then y′ := yx
−1 ∈ L \ L(τ) and by (ii)

L = 〈A,Ay
′
〉Op(L) = 〈A, y′〉Op(L).

This implies (b).

For the proof of (c) assume first that [W ∗, Op(L)] = 1. Then W ∗ ≤ Zτ and [W ∗, T ] ≤ Z∗β ≤W ∗

since L = Op(L)(T∩L). By (iii)W ∗ is normal in 〈L, T 〉 = Gβ . But this implies thatW ∗ = Z∗β = Zτ ,

a contradiction.
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Assume now that [W,Op(L)] ≤W ∗. Then W = W ∗Zτ and

Z∗β [W, Q̃β ] = Z∗β [Zτ , Q̃β ] ≤ Zτ .

Hence Z∗β [Zτ , Q̃β ] is normal in 〈T,L〉 = Gβ . On the other hand Qτ 6≤ Qβ and thus by (1.3)(b)

[Zτ , Q̃β ] ≤ Z∗β . Let g ∈ Gβ such that τ = αg. Then the action of P g on Zτ , as described in (3.1),

shows that

[Zτ , Q̃β ∩ Sg0 ] = Z(τ, β) ≤ Z∗β ,

which contradicts Hypothesis II. Hence, (c) is proved.

Note that L is minimal parabolic (with respect to T ∩ L and L(τ)). Hence by (1.3)(b)

CT∩L(U) = Op(L) for every non-central L-chief factor U in W . (2.1)(e) shows that

|U/CU (A)| ≥ |A/A ∩Op(L)|.

Let a ∈ A \ Op(L). Then by (1.3)(b) there exists x ∈ L such that a 6∈ L(τ)x. By (b) L =

〈a,Ax〉Op(L) and thus, together with the quadratic action of A on U ,

U = [U, a]× [U,Ax] = CU (a)× CU (Ax);

in particular CU (a) = [U, a] ≤ CU (A) and equality holds. This is (d).

(3.9) No group satisfies Hypothesis II.

Proof. Assume Hypothesis II. By (3.1), (3.4), (3.5) and (3.6) [Zα, Zα′ ] = 1 and b ≥ 3. In

particular, α′ ∈ βG and Vβ acts quadratically on Vα′ , and vice versa. We apply (3.8) with (Gα′ , Vβ)

in place of (Gβ , A) and choose the notation τ , L, T , W , W ∗ as there.

(1) Zµ 6≤ Gρ for every ρ ∈ ∆(β) and µ ∈ τL such that Zρ 6≤ L(µ).

Assume that there exist ρ ∈ ∆(β) and µ ∈ τL such that Zρ 6≤ L(µ) but Zµ ≤ Gρ. Let x ∈ L

such that µ = τx. Then, with the notation of (3.1) applied to Gρ, there exists a submodule Vi ≤ Zρ

such that Vi 6≤ L(µ). By (3.8)(b) 〈Vi, V xβ 〉Op(L) = L. On the other hand Zµ ≤ Gρ, and (3.1)

together with the quadratic action of Zµ on Zρ gives either

[Vi, Zµ ∩W ∗] = 1 or [Vi, Zµ] = [Vi, Zµ ∩W ∗].
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In the first case Zµ ∩W ∗ is normal in L. Hence W ∗ = Zµ ∩W ∗, and by (1.3)(b) [W ∗, Op(L)] = 1

since Vi 6≤ Op(L). In the second case [W,Op(L)] ≤ W ∗ since Op(L) ≤ 〈V Li 〉, so both cases

contradict (3.8)(c), and (1) is proved.

In particular, (1) together with Vβ 6≤ Op(L) gives W 6≤ Qβ . Hence, we are allowed to apply

(3.8) to (Gβ ,W ) in place of (Gβ , A). Again we use the notation of (3.8), but this time indicated

by ˜ to distinguish from the above notation, so τ̃ , L̃, T̃ , W̃ , W̃ ∗ are given as there. With the same

argument as above we get

(2) Z
µ̃
6≤ G

ρ̃
for every ρ̃ ∈ ∆(α′) and µ̃ ∈ τ L̃ such that Z

ρ̃
6≤ L̃(µ̃).

As above, (2) implies W̃ 6≤ Op(L). We now choose µ ∈ τL and µ̃ ∈ τ̃ L̃ such that W̃ 6≤ L(µ)

and W 6≤ L̃(µ̃). From (1) and (2) we get that Z
µ̃
6≤ Op(L) and Zµ 6≤ Op(L̃). Moreover, we may

assume that |W/W ∩Op(L̃)| ≤ |W̃/W̃ ∩Op(L)|, since the other case follows by the same argument

with the roles of W and W̃ reversed.

From (3.8)(c) we get that there exist two non-central L- chief factors U1 and U2 in W . As

Z
µ̃
6≤ Op(L) (3.8)(d) implies that CUi(Vβ) = CUi(Zµ̃), so, again by (3.8)(d),

|W̃/W̃ ∩Op(L)| ≤ |Vβ/Vβ ∩Op(L)| ≤ |Ui/CUi(Vβ)| = |Ui/CUi(Zµ̃)|.

Hence
|W̃/W̃ ∩Op(L)|2 ≤ |U1/CU1(Z

µ̃
)||U2/CU2(Z

µ̃
)| ≤ |W/CW (Z

µ̃
)|

≤ |W/W ∩Q
µ̃
| ≤ |W/W ∩Op(L̃)||W ∩G

µ̃
/W ∩Q

µ̃
|

≤ |W̃/W̃ ∩Op(L)||W ∩G
µ̃
/W ∩Q

µ̃
|.

On the other hand by (3.7), applied to G
µ̃

with A = W , we get |W ∩G
µ̃
/W ∩Q

µ̃
| ≤ 2. It follows

that

(3) |W/W ∩Op(L̃)| = |W̃/W̃ ∩Op(L)| = 2 = p and |Zµ| = |Zµ̃| = 16.

(4) |W/CW (Z
µ̃
)| = |W̃/C

W̃
(Zµ)| = 4.

As a consequence we get from (3)

(5) Z
µ̃
6≤ L(µ) and Zµ 6≤ L̃(µ̃).

Next we prove:

(6) L/CL(W ) ∼= L̃/C
L̃

(W̃ ) ∼= S3.

Let t ∈ Z
µ̃
\ O2(L) and x ∈ L such that µ = τx. Then by (3) and (5) L = 〈t, tx〉O2(L) and

thus O2(L) ≤ 〈tL〉. Hence, (3.8)(c) gives W ∗ 6≤ CW (t) and W ∗CW (t) 6= W , and (6) follows for L
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from |W/CW (Z
µ̃
)| = 4. A similar argument gives the claim for L̃.

Set W0 := W and Wi := [Wi−1, Q̃α′ ] for i ≥ 1, and note that Wi = 〈(Wi ∩ Zµ)L〉.

(7) Assume that (Wi ∩ Zµ)Wi+1 = Wi. Then Wi ≤ Zµ.

Note that Wi+1 = [Wi, Q̃α′ ] ≤ [ZµWi+1, Q̃α′ ] ≤ ZµWi+2. It follows that Wi = (Wi ∩ Zµ)Wk

for all k ≥ i+ 1 and thus Wi ≤ Zµ.

(8) [Z
µ̃
, Zµ ∩O2(L̃)] 6= 1.

Let A1 := Zµ ∩ O2(L̃),and assume that [Z
µ̃
, A1] = 1. By (6) L(µ) = (L(µ) ∩ Gµ)CL(W ).

Suppose that Zµ = A1(Zµ ∩W1). Then W = ZµW1 and by (7) W = Zµ. But then Zµ is normal in

〈L,Gα′ ∩Gµ〉 = Gα′ , a contradiction. We have shown that Zµ ∩W1 ≤ A1. It follows that Zµ ∩W1

is centralized by Z
µ̃

and thus normalized by L, so W1 ≤ A1 and [W1, O
2(L)] = 1. In particular

[Zµ, Q̃α′ ] is normalized by L and centralized by O2(L). Hence, by the L-Lemma (iii) it is also

normalized by Gα′ and centralized by O2(Gα′). Since Z(µ, α′) ≤ [Zµ, Qα′ ] we get that Z(µ, α′) is

normal in Gα′ , a contradiction to Hypothesis II.

(9) R := [Z
µ̃
∩O2(L), Zµ ∩O2(L̃)] 6= 1, and R is centralized by a Sylow 2-subgroup of G

µ̃
and

Gµ.

Let A := Zµ and A0 := A ∩ G
µ̃
. By (8) Y0 := [Z

µ̃
, A0] 6= 1, and by (5) A and G

µ̃
satisfy

the hypothesis of (3.7). Then (3.7) shows that |Y0| = 4 and |A0/A0 ∩ Qµ̃| = 2; in particular

A0 = A∩O2(L̃). Moreover, (3.7) gives |Z
µ̃
/CZ

µ̃

(A0)| = 4 and thus R 6= 1 since |Z
µ̃
/Z

µ̃
∩O2(L)| = 2.

The action of G
µ̃

on Z
µ̃

also shows that all elements of Y0 are centralized by a Syolw 2-subgroup

of G
µ̃
. This and the symmetric argument in Gµ yields the additional claim of (9).

We now derive a final contradiction. According to (9) there exist y ∈ G
µ̃

and z ∈ Gµ such

that R = Zyβ = Zzα′ . Then by (1.6) C̃yβ = C̃zα′ and thus Q̃yβ = Q̃zα′ . On the other hand, Hypothesis

I and (1.2)(b) yield Z
µ̃
≤ Q̃yβ , so Z

µ̃
≤ Q̃zα′ ≤ Gµ, which contradicts (2) and (5).

Theorem 3. Assume Hypothesis I. Then Z0 is normal in C̃.

Proof. Assume that Z0 is not normal in C̃. By the definition of C̃ NH(S) ≤ C̃. Hence,

NH(S) acts on PH(S) \ P
C̃

(S), and Theorem 2 implies that NH(S) ≤ NH(P ) and thus also

NH(S) ≤ NH(P ∗) since P ∗ = U(P ). It follows that NH(S) ≤ NH(S0) ≤ NH(Z0).

According to (1.3)(a) there exists P̃ ∈ P
C̃

(S) such that Z0 is not normal in P̃ . We choose |P̃ |
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minimal with this property. If (P, P̃ ) is an amalgam, then (P, P̃ ) satisfies Hypothesis II, which is

impossible by (3.9).

Thus, (P, P̃ ) is not an amalgam, and there exists L ∈ LH(S) such that 〈P, P̃ 〉 ≤ L. Let

L << M̃ ∈ L∗H(S). Then by (1.2) YL ≤ YM̃ and by (1.4) P 0 ≤ L0 ≤ M̃0 ≤ M̃ .

We now apply the Local P!-Theorem to M̃ . Assume that also P̃ ≤ M̃ . Then P̃ ≤ M̃ ∩ C̃ ≤

N
M̃

(Z0), a contradiction. Thus, we have P̃ 6≤ M̃ .

Assume first that case (a) of the Local P!-Theorem holds. Then Q ≤ S0, so Z0 ≤ Z(Q) and

thus also W := 〈ZP̃0 〉 ≤ Z(Q). Note that

Z0 ≤ YP = [YP , P 0] ≤ [YL, L0] and W ≤ [YL, L0]

by (1.2). It follows that W ≤ [Y
M̃
, M̃0] since YL ≤ Y

M̃
and L0 ≤ M̃0. In case (a) [Y

M̃
, M̃0] is

a natural SLn(pm)- or Sp2n(pm)′-module. In particular, C[Y
M̃
,M̃0](Q) = Z0 and so Z0 = W and

P̃ ≤ NH(Z0), a contradiction.

Assume finally that case (b) of the Local P!-Theorem holds for M̃ . Then P 0 = L0 = M̃0 and

P̃ ≤ NH(M̃0) = M̃ , which contradicts P̃ 6≤ M̃ .

Corollary 2. Assume Hypothesis I and p = 2. Then PH(S) = {P} ∪ P
C̃

(S).

Proof. We apply Theorem 2. Then PH(S) = PP (S)∪P
C̃

(S), and the structure of P , see (3.1),

implies PP (S) = {P} ∪ PNP (Z0)(S). Now Theorem 3 yields the assertion.

Corollary 3. Assume Hypothesis I. Suppose that case (b) of the Local P!-Theorem holds for

P ≤M ∈ L∗H(S). Then the following holds:

(a) p = 2 and MH(P ) = {M},

(b) P
∗

= K1 × · · · ×Kr, Ki
∼= SL2(2),

(c) YP = V1 × · · · × Vr, where Vi = [YP ,Ki] is a natural SL2(2)-module for Ki,

(d) r ≥ 4.

(e) Q is transitive on K1, ...,Kr.

Proof. We are in case (b) of the Structure Theorem. According to Theorem 3 Z0 is normal in

C̃. Hence

(∗) [NP (Z0), Q] ≤ Op(NP (Z0)).
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We apply (3.1). Then either P
∗ ∼= SL2(pm), or the Q-transitivity and (∗) show that NKi(Z0) is a

p-group and r ≥ 2.

In the first case YP is a natural SL2(pm)-module for P ∗. Thus, YP is an F -vector space for

F := EndP∗(YP ), and P induces semi-linear transformations on YP . As NP∗(Z0) is irreducible on

Z0, we get from (∗) that [Z0, Q] = 1, so Q centralizes a 1-dimensional F -subspace of YP . Hence, Q

induces F -linear transformations on YP , and Q ≤ P ∗. But this contradicts case (b) of the Structure

Theorem.

In the second case (a) – (c) and (e) are clear. For the proof of (d) note that Q-transitivity

yields r = 2 or (d). Assume r = 2, so P/CP (YP ) ∼= O+
4 (2) and |Z0| = 4. Hence, Theorem 3 shows

that C̃/C
C̃

(Z0) is a subgroup of S3. If all involutions in Z0 are conjugate in C̃, then Q-Uniqueness

implies that P ≤ C̃, which is not the case. It follows that C̃ = C
C̃

(Z0)S, in particular C
C̃

(Z0) 6≤M .

We conclude that CH(x) 6≤M for all 1 6= x ∈ YP . Now Theorem 3 of [MSS2] shows that YM 6≤ Q,

a contradiction.
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4. F-Uniqueness

In this section we treat the exceptional case described in Corollary 3, so in this section we

assume:

Hypothesis III. Hypothesis I and case (b) of the Local P!-Theorem holds for P ≤ M ∈

L∗H(S); in particular MH(P ) = {M}.

Notation. We use the notation given in Corollary 3 (and (3.1)). Set

F := C
C̃

(Z0) and Ω := {K1, ...,Kr}.

Recall that by Theorem 3 F is normal in C̃, and by Corollary 3

(∗) p = 2, Ki
∼= SL2(2), r ≥ 4, and Q is transitive on Ω.

We will use these facts without further reference.

(4.1) P ∗ ∩ C̃ = S0CP∗(YP ) and C̃ = C.

Proof. Assume that U := CP∗(YP )S0 < P ∗ ∩ C̃. Then by Corollary 3 (b) Ki ≤ [S0, P ∗ ∩ C̃]S0

for some i, and the Q-transitivity yields P ∗ ≤ C̃, which is not the case.

Let Z∗ = 〈ZC̃〉. By Theorem 3 Z∗ ≤ Z0 ∩ Z(Q), and by Q-uniqueness CP∗(z) ≤ P ∗ ∩ C̃ =

S0CP∗(YP ) for all 1 6= z ∈ Z∗. Now Corollary 3 (c) yields |Z∗| = 2, so C = C̃.

(4.2) NH(B(S)) ≤M .

Proof. It suffices to show that P and NH(B(S)) are contained in a 2-local subgroup of H since

MH(P ) = {M}. Assume that this is not the case; i.e. O2(〈P,NH(B(S))〉 = 1. Then B(S) is not

normal in P and by (3.1) B(S) = S0. Hence, NH(B(S)) = NH(S0) ≤ NH(Z0) = C̃. For every

i = 1, ..., r we choose Xi ≤ P ∗ minimal with respect to

B(S) ≤ Xi and Xi = KiB(S).

Then Xi ∈ PH(B(S)) and 〈Xi, S〉 = P . Moreover Vi = [YXi , O
2(Xi)] = [YP , O2(Xi)] since YXi ≤

Ω1(Z(O2(P ))) = YP .
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Suppose that there is a non-trivial characteristic subgroup A of B(S), which is normal in X1.

Then 〈S,X1, NH(B(S))〉 = 〈P,NH(B(S))〉 ≤ NH(A), which contradicts O2(〈P,NH(B(S))〉 = 1.

Hence, no non-trivial characteristic subgroup of B(S) is normal in X1. Now [Ste1] gives

[O2(X1), O2(X1)] = V1 ≤ YP . Hence also [O2(P ), O2(P )] ≤ YP , and Z(P ) = 1 yields

YP = O2(P ) = V1 × · · · × Vr.

Since Q is transitive on {V1, ..., Vr} and NH(B(S)) does not normalize YP there exists t ∈ NH(B(S))

such that R := [V1, V
t
1 ] 6= 1. It follows that also [V t1 , V

t2

1 ] 6= 1, so

Rt = [V t1 , V
t2

1 ] = [V t1 , V1] = R

since 〈V1, V
t2

1 〉 ≤ B(S) ≤ NP (V t1 ). As t ∈ C̃ and YP is normal in Q the Q-transitivity gives

(∗) S0 = YPY
t
P and YP ∩ Y tP = Z0.

Let U = NH(R) and W = O2(U). Then 〈t,X2, ..., Xr〉 ≤ U , and Vi ∩W is Xi-invariant for

every i ≥ 2. It follows that either there exists an i ≥ 2 such that Vi ≤ W , or Vi ∩W = 1 for

every i ≥ 2. The first case gives V ti ≤ W and so V ti ≤ O2(X2 · · ·Xr). On the other hand, by (∗)

[YP , V ti ] 6= 1, so we get that [V ti , V1] = R. But this implies that R ≤ V ti and R = Rt ≤ Vi, which is

impossible since V1 ∩ Vi = 1 for i > 1.

We have shown that Vi ∩ W = 1 for i > 1. It follows that [S0 ∩ W,O2(X2)] = 1. Since

S0 ∩W is normalized by X2 and W we get [(S0 ∩ X2)x,W ] ≤ S0 ∩W for every x ∈ X2. Hence

[W,O2(X2)] ≤ S0 ∩ W and [W,O2(X2), O2(X2)] = 1. But then U is not of characteristic 2, a

contradiction.

(4.3) Let S0 ≤ T , T a 2-subgroup of H. Then S0 is normal in NH(T ) and NH(T ) ≤M ∩ C̃.

Proof. Note that NH(T ) ≤ NH(B(S)) ≤ M by (3.1) and (4.2). Moreover, by the Structure

Theorem, case (b), YP = YM and P ∗CM (YM ) is normal in M , so T ∩ P ∗CM (YM ) = S0. Hence

Theorem 3 gives NM (T ) ≤ NM (S0) ≤M ∩ C̃.

(4.4) Let L̃ ∈ LH(S). Then either L̃ ≤ C̃, or P ≤ L̃ ≤M and F 6≤ L̃.
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Proof. Assume that L̃ 6≤ C̃. Then (1.3)(a) and the Corollaries 2 and 3 show that P ≤ L̃ ≤M .

If in addition F ≤ M , then the Frattini argument and (4.3) imply that C̃ = FNH(S0) ≤ M , a

contradiction.

(4.5) Suppose that S0 ≤ T ≤ S such that |S/T | = 2 and S = TQ. Let T ≤ L ≤ H and

O2(L) 6= 1. Then one of the following holds:

(a) L ≤M .

(b) L ≤ C̃.

(c) L ∈ LH(T ).

Proof. Let U = NH(O2(L)) and T ≤ T0 ∈ Syl2(U). By (4.3) T0 ≤ M ∩ C̃ and thus either

T = T0 or T0 ∈ Syl2(C̃) and Q ≤ T0. In the second case T0 = TQ = S, and (4.4) yields L ≤ U ≤M

or L ≤ U ≤ C̃. In the first case U ∈ LH(T ) and thus also L ∈ LH(T ).

Notation. From now on we fix a maximal subgroup T of S containing NS(K1). Recall that

B(S) ≤ S0 ≤ T . Let Q0 := T ∩Q and

L0(T ) := {U ∈ LH(T ) | U 6≤ C̃ and U ∩ C̃ 6≤M}.

By L0(T )∗ we denote the set of minimal elements of L0(T ).

(4.6) Let P
∗

:= P ∗/CP∗(YP ) and 1 6= K ≤ O2(P
∗
). Suppose that K is Q0-invariant. Then

K = O2(P
∗
) or K = ×X∈ΩiX

′ for some T -orbit Ωi of Ω; in particular [K,Q0] 6= 1.

Proof. Since K 6= 1 there exist Ki ∈ Ω and t ∈ S0 ∩Ki such that [K, t] = K ′i. Let q ∈ Q such

that Kq
i 6= Ki, and let q0 := [t, q] and R := [K, q0]. Then q0 ∈ S0∩Q ≤ Q0 and R ≤ (Ki×Kq

i )∩K

with [R, t] = K ′i.

Since r > 2 there exists x ∈ Q such that Kx
i 6∈ {Ki,K

q
i }. Let x0 = [t, x]. Then as above

x0 ∈ Q0 ∩ S0, while x0CS0
(Ki ×Kq

i ) = tCS0
(Ki ×Kq

i ). It follows that [R, x0] = K ′i ≤ K.

We have shown that K ′i ≤ K for every Ki ∈ Ω such that [K,Ki] 6= 1. Now the action of Q0

on K and Ω gives the desired structure of K. Moreover, r > 2 implies that [K,Q0] 6= 1.

(4.7) |S/T | = 2, S = TQ, and T has two orbits Ω1 and Ω2 on Ω such that for Zi :=

CΩ1(Z(T ))(Ωi) the following hold:
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(a) |Ωi| = r
2 and |Zi| = 2, i = 1, 2, and

(b) Ω1(Z(T )) = Z1 × Z2.

Proof. This is a direct consequence of the choice of T .

(4.8) L0(T ) 6= ∅.

Proof. Let L := CH(Z1), Z1 as in (4.7). Then L 6≤ C̃, and by (4.4) L∩C̃ 6≤M since F ≤ L∩C̃.

Now (4.5) shows that L ∈ L0(T ).

(4.9) Let L ∈ L0(T ). Then O2(〈O2(P ∗), L ∩ C̃〉) = 1.

Proof. Let L0 := 〈O2(P ∗), L∩ C̃〉 and assume that O2(L0) 6= 1. Let t ∈ Q \T . Then T 〈t〉 = S

since T has index 2 in S. Moreover, [t, L ∩ C̃] ≤ Q0 ≤ O2(L ∩ C̃). It follows that t normalizes L0.

Hence S ≤ L0〈t〉 and 1 6= O2(L0) ≤ O2(L0〈t〉). This contradicts (4.4) since L0 6≤M as L∩ C̃ 6≤M

and L0 6≤ C̃ as O2(P ∗) 6≤ C̃.

Theorem 4. Suppose that L ∈ L0(T ). Then

PL(T ) = PL∩M (T ) ∪ P
L∩C̃(T ).

Proof. Assume that there exists X ∈ PL(T ) such that X 6≤ M and X 6≤ C̃. By (4.2) and

(1.3)(b) neither B(S) nor Ω1(Z(T )) is normal in X. Hence, (2.9) implies that there exists a minimal

parabolic subgroup X0 of characteristic 2 in X such that X0 satisfies (2.9)(a) – (e) (in place of

Li); in particular X = 〈T,X0〉, O2(X)B(S) ∈ Syl2(X0) and X0/CX0(YX0) ∼= SL2(2k). We choose

X∗ ≤ X0 minimal with respect to

B(S) ≤ X∗ and X0 = X∗CX0(YX0).

Then X∗ is a minimal parabolic subgroup and X = 〈X∗, T 〉. Moreover B(S) ∈ Syl2(X∗) by (2.7)

applied to X∗.

Assume that there exists a non-trivial characteristic subgroup A of B(S) which is normal in

X∗. As A is also characteristic in S we get

(∗) X = 〈T,X∗〉 ≤ NH(A) and S ≤ NH(A).
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Hence by (4.4) NH(A) ≤ C̃ or NH(A) ≤M , which contradicts X ≤ NH(A).

Thus, no non-trivial characteristic subgroup of B(S) is normal in X∗. As X∗ is a minimal

parabolic subgroup the hypothesis of [Ste1] is satisfied. We get [O2(X∗), O2(X∗)] = [YX∗ , O2(X∗)]

and YX∗/CYX∗ (X∗) is a natural SL2(2k)-module for X∗/CX∗(YX∗), so [O2(X∗), O2(X∗)] ≤ YX .

Since [O2(X), B(S)] ≤ B(S) ∩O2(X) ≤ O2(X∗) we also get

[O2(X), O2(X∗)] ≤ YX and [O2(X), O2(X)] ≤ YX .

As in the proof of (4.9) pick t ∈ Q \ T . Then

(∗∗) [L ∩ C̃, t] ≤ Q ∩ T ≤ O2(L ∩ C̃).

Assume first that Y tX ≤ O2(X). Then

S ≤ 〈X, t〉 ≤ NH(YXY tX) ∈ LH(S),

and by (4.4) NH(YXY tX) ≤M or NH(YXY tX) ≤ C̃. But this contradicts X ≤ NH(YXY tX).

We have shown that Y tX 6≤ O2(X). As |YX/CYX (Y tX)| = |Y tX/CY tX (YX)| we get Y tX ∈ U(X)

(for the definition see section 2). Since Y tX is normal in T we conclude with (2.1) that Y tXO2(X) =

B(S)O2(X). In addition, (2.1) shows that B(S)CX(YX)/CX(YX) is self-centralizing in X/CX(YX).

It follows that O2(Xt) ≤ Y tXO2(X). Hence, for D := O2(X) ∩O2(Xt) we get O2(Xt) = Y tXD and

similarly O2(X) = YXD. This gives

Φ(O2(Xt)) = Φ(D) = Φ(O2(X));

in particular 〈X,S〉 ≤ NH(Φ(D)). Now as above (4.4) implies that Φ(D) = 1, so O2(X) = YX and

B(S) = YXY
t
X .

The action of T on B(S) shows that YX and Y tX are the only maximal T -invariant elementary

abelian normal subgroups of B(S); in particular YX = YL, and by (∗∗) L ∩ C̃ normalizes B(S).

Now (4.2) yields L ∩ C̃ ≤M , which contradicts L ∈ L0(T ).

(4.10) Let L ∈ L0(T )∗ and N be a normal subgroup of L that is minimal with respect to

N 6≤ C̃. Then N = [N,Q0] = O2(L).
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Proof. As N(L ∩ C̃) ∈ LH(T ) the minimality of L yields L = N(L ∩ C̃). Hence N0 := [N,Q0]

is a normal subgroup of L. Assume that N 6= N0. The the minimal choice of N gives N0 ≤ C̃,

so N0Q0 is a normal subgroup of L in C̃. It follows that Q0 ≤ O2(N0Q0) ≤ O2(L). But then

[Q,O2(L)] ≤ Q0 ≤ O2(L) and S = TQ ≤ NH(O2(L)), so (4.4) implies that L ≤ C̃ or L ≤M . This

contradicts the definition of L0(T ).

We have shown that N = N0. The minimality of N also gives that N = O2(N). Thus, it

remains to prove that L = NT . Assume now that L 6= NT . By Theorem 4

PNT (T ) ⊆ PM (T ) ∪ P
C̃

(T ).

Since NT 6≤ C̃ the minimality of L shows that NT ∩ C̃ ≤M . Thus PNT (T ) ⊆ PM (T ). As by (4.3)

also NL(T ) ≤M we conclude from (1.3)(a) that NT ≤M .

Now N = [N,Q0] ≤ P , and N = O2(N) implies N ≤ O2(P ∗). Since N is also S0-invariant we

get from (4.1) that [Z,N ] is normal in P ∗. On the other hand by (4.6) [Z,N ] = [Z,L], so [Z,L] is

normalized by L and P ∗. But this contradicts (4.9).

Corollary 4. Let L ∈ L0(T )∗. There exists a unique P1 ∈ PL(T ) such that P1 6≤ C̃. Moreover,

the following hold:

(a) Q0 6≤ O2(P1),

(b) O2(P1) ≤ O2(P ∗), and

(c) O2(P1)CP∗(YP )/CP∗(YP ) = K ′1 × · · · ×K ′s, where {K1, ...,Ks} is a T -orbit of Ω.

Proof. By (4.3) NL(T ) ≤ C̃, so by (1.3)(a) there exists P1 ∈ PL(T ) such that P1 6≤ C̃. Now

Theorem 4 gives P1 ≤ M and again by (4.3) S0 6≤ O2(P1). Since P ∗CM (YP ) is normal in M we

get from (1.3)(c) that O2(P1) = [O2(P1), S0] ≤ P ∗CM (YP ).

Let M := M/CM (YP ). Note that O2(P 1) 6= 1 and by (4.1) (a) and (c) hold. By (a) and

(1.3)(c) O2(P1) = [O2(P1), Q0] ≤ [M,Q] ≤M0 ≤ P , so also (b) holds.

Let P0 be another minimal parabolic in PL(T ), which is not in C̃. Then (a) – (c) hold for P0

in place of P1. By (4.6) either

O2(P0)O2(P1)CP∗(YP ) = O2(P ∗)CP∗(YP ) or O2(P0)CP∗(YP ) = O2(P1)CP∗(YP ).
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Note that [CP∗(YP ), Q0] ≤ O2(P ) ≤ T and Q0 is normal in S. Hence, in the first case (1.3)(c)

implies that O2(P ∗) = [O2(P ∗), Q0] ≤ O2(P0)O2(P1)O2(P ∗) ≤ L, which contradicts (4.9). In

the second case we conclude that O2(P0)O2(P ) = O2(P1)O2(P ) and thus O2(O2(P0)O2(P )) =

O2(P0) = O2(P1). Hence P0 = P1.

(4.11) Let X be a finite group and V a faithful GF (2)X-module, and let S ∈ Syl2(X) and

V0 = CV (S). Suppose that F ∗(X) is simple, V = 〈V X0 〉 6= V0, and

(∗) there exists an elementary abelian subgroup 1 6= A ≤ S such that |V/CV (A)| ≤ |A|.

Then there exists a minimal parabolic subgroup P1 containing S such that P1 6≤ CX(V0) and

(P1 ∩ F ∗(X))/O2(P1 ∩ F ∗(X)) ∼= SL2(2k) or S`.

Proof. A theorem of Gaschütz (see for example [Hu, I.17.4]), applied to the semidirect product

of V with X, shows that V = CV (X)[V,X]. Hence, there exists a X-submodule W such that

V := V/W is a faithful irreducible X-module. Moreover, property (∗) implies that|V /CV (A)| ≤ |A|.

Thus, the F-Module Theorem for K-groups, see [GM1] and [GM2], gives the conclusion.

F!-Theorem. No group satisfies the hypothesis of this section.

Proof. We will derive a contradiction using the previous results of this chapter. According to

(4.8) there exists L ∈ L0(T )∗. We fix the following additional notation:

CL = L ∩ C̃, V = 〈ZL〉, L = L/CL(V ).

As in Corollary 4 let P1 be the unique element of PL(T ) with P1 6≤ C̃. Then

(1) O2(P1) ≤ O2(P ∗) and O2(P1)CP∗(YP )/CP∗(YP ) = K ′1 × · · · ×K ′s,

where Ω1 := {K1, ...,Ks} is one of the two T -orbits of Ω. From (1.3)(b) and (1) we get

O2(P1) ∩ CP∗(YP ) = O2(O2(P1)) ≥ O2(P1) ∩ CL(V ),

in particular

(∗) O2(P 1)/O2(O2(P 1)) = K ′1 × · · · ×K ′s.

As in (4.10) let N be a normal subgroup of L that is minimal with respect to N 6≤ CL. Then

by (4.10)
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(2) N = [N,Q0] = O2(L).

Moreover, since by (4.1) every normal subgroup of L in CL centralizes V we get

(3) N is a minimal normal subgroup of L, and O2(L) = 1.

Next we show:

(4) CL(V ) ≤M , in particular L 6= (L ∩M)CL(V ).

Assume that CL(V ) 6≤M . Then the minimality of L yields L = CL(V )P1. It follows from (2)

that

N = N ∩ (O2(P1)CL(V )) = O2(P1)(N ∩ CL(V ))

and

L = NT = [N,Q0]T = O2(P1)T = P1 ≤M,

which contradicts the choice of L in L0(T ).

(5) N ∩ T 6= 1; in particular N is not abelian.

Assume that N ∩ T = 1. For every prime q the Frattini argument gives a Y q ∈ Sylq(N) such

that T ≤ NU (Y q) and N = 〈Y q | q ∈ π(N)〉.

Let Yq be the inverse image of Y q in L. From (1), (∗) and (1.3)(a) we get that Yq ≤ CL for

every q 6= 3. Hence N = Y 3CN (Q0), so by (2)

N = [N,Q0] = [Y 3CN (Q0), Q0] = [Y 3, Q0] ≤ Y 3.

Now (3) shows that N is elementary abelian, moreover N = O2(P 1). Thus (4) gives L ≤ M , a

contradiction. Hence, (5) is proved.

Let Ω2 be the T -orbit of Ω different from Ω1 = {K1, ...,Ks}. Then by (4.7)

Ω1(Z(T )) = Z1 × Z2, Zi := CYP (Ωi),

and P1 ≤ L1 := CL(Z2).

Assume that L1∩C̃ ≤M . Then L∩F ≤ L1∩C̃ ≤M since Ω1(Z(T )) ≤ Z0. Now (4.3) and the

Frattini argument imply CL ≤ NCL(S0)(L ∩ F ) ≤ M , which contradicts the choice of L ∈ L0(T ).

Thus L1 ∩ C̃ 6≤M , and the minimality of L yields:

(6) Z2 ≤ Z(L), in particular O2(P ∗) 6≤ L.

Next we show:
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(7) N is simple.

According to (3) and (5) there exist subgroups CL(V ) ≤ Ni ≤ NCL(V ), i = 1, ..., k such that

N = N1 × · · · ×Nk, and N1, ..., Nk are simple groups conjugate under T .

Assume first that N i ∩CL ≤ T , i = 1, ..., k. The projection Ci of N ∩CL in N i is a subgroup

of N i that normalizes N i ∩ T . Hence by (5) CL(C1 × · · · ×Ck) is a proper subgroup of L, and the

minimality of L implies that Ci ≤ CL ∩N i, so N ∩ T = N ∩ CL. Now (4) yields CL ≤ M , which

contradicts the choice of L ∈ L0(T ).

Assume now that there exists a component N1 such that N1 ∩ CL is not a 2-group. Then

O2(N1 ∩ CL) = O2((N1 ∩ CL)O2(N ∩ CL)) 6= 1 and

[N1 ∩ CL, Q0] ≤ O2(CL) ∩N ≤ O2(N ∩ CL),

so Q0 normalizes O2(N ∩ CL) and thus also N1. It follows:

(∗∗) Q0 normalizes every component of N .

Among all T -invariant subgroups U ≤ N satisfying

(i) U = U1 × · · · × Uk, Ui ≤ Ni, and

(ii) O2(P1) ≤ U

we choose U to be minimal. Then U ∩Ni is the projection of O2(P 1) into N i. From (∗) and (3)

we conclude that UT 6= L. The minimality of L implies that UT ∩ C̃ ≤ M and thus by (1.3)(a)

and (4.3) UT ≤M . On the other hand the minimality of U yields U = [U,Q0] = O2(U). It follows

that U is a Q0-invariant subgroup of O2(P ∗). Now (4.6) and (6) show that

U = [U,Q0] = O2(P 1) = U i × · · · × Uk.

By (∗∗) U1 is Q0-invariant. Hence, another application of (4.6) shows that O2(P 1) ≤ N1. As

O2(P 1) is T -invariant, also N1 is. Since the groups N1, ..., Nk are conjugate under T we conclude

that k = 1.

(6) J(S) 6≤ CL(V ).

Assume that J(S) ≤ CL(V ). Then V ≤ Ω1(Z(J(S))) and thus also B(S) ≤ CL(V ). Now the

Frattini argument and (4.2) yield L = NL(B(S))CL(V ) = (L ∩M)CL(V ), which contradicts (4).

We now derive a final contradiction. According to (8) there exists A ∈ A(S) such that A 6= 1.

Hence, the maximality of A implies that |V/CV (A)| ≤ |A|, so by (7) we can apply (4.11) to L. Thus,

49



there exists CL(V )T ≤ P0 ≤ L such that P 0 is a minimal parabolic subgroup of L, P 0 6≤ CL(V0),

where V0 := CV (T ) = Ω1(Z(T )), and

(∗ ∗ ∗) (P 0 ∩N)/O2(P 0 ∩N) ∼= SL2(2k) or S`.

Since by (6) V0 = Z2 × Z ≤ Z(L)Z we get CL = CL(V0), P0 6≤ CL and P1 ≤ P0. Now (∗) and

(∗ ∗ ∗) show that s = 1 and r = 2, which contradicts r ≥ 4.

The proof of the P !-Theorem and the Corollary. Let P ≤ M ∈ L∗H(S). Then the F !-

Theorem and Corollary 3 show that case (a) of the Local P !-Theorem and case (a) of the Structure

Theorem hold for M . The P !-Theorem now follows from Theorem 2 and Theorem 3.

For the proof of the Corollary let L ∈ LocH(P ). We may assume that CH(YL) ≤ L. By (1.5)

there exists M ∈ L∗H(S) such that

P = P 0S ≤ L0S ≤M.

Hence, M satisfies case (a) of the Structure Theorem. In particular, we get from the structure of

M/CM (YM ) and its action on YM :

(i) (L∩M0)/CL∩M0(YL) ∼= SLk(pm) or Sp2k(pm), and [YL, L∩M0] is the corresponding natural

module.

(ii) L0 = (L ∩M0)CS(YL) and CL0(YL) = CS(YL)CL0(YM ).

This gives claim (a) of the Corollary.

Assume that CL0(YL) 6= Op(L0). Then CL0(YM ) 6= Op(M0), and we get M0/O2(M0) ∼= Sp4(2)′

(and p = 2). But then L0 = M0 since otherwise L0/O2(L0) ∼= SL2(2) and CL0(YL) = O2(L0).
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