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Let H be a finite group and p be a prime dividing the order of H. Then H is of characteristic
p if Cy(Op(H)) < Op(H); and H is of local characteristic p if every p-local subgroup of H is
of characteristic p. Moreover, H is a K,-group if the simple sections of the p-local subgroups are
"known” simple groups!.

Every group with a self-centralizing cyclic Sylow p-subgroup, as for example the alternating
group A,, is of local characteristic p, and these groups are particular examples of groups with a
strongly p-embedded subgroup. Apart from such groups, all groups of Lie type in characteristic
p of rank at least 2 and some sporadic groups (for suitably chosen p) have local characteristic p.
Therefore it would be a major contribution to a revision of the classification of the finite simple
groups to give a classification of all finite groups of local characteristic p that do not have a
strongly p-embedded subgroup. This is the goal of a project initiated by U. Meierfrankenfeld. For
an overview of this project see [MSS1].

The part of the project our paper deals with uses the following hypothesis:

Q!-Hypothesis. H is a finite K,-group of local characteristic p, S € Syl,(H) and Z =
Q1(Z(S)). There exists a maximal p-local subgroup C of H with Ny (Z) < C such that for
Q= Op(é)

Cr(z) < C for every 1 #£ 2 € Z(Q). (Q-Uniqueness)

In the subdivision given in [MSS1] this hypothesis refers to the E!-case, see [MSS1, Lemma
2.4.2], and we will prove the P!-Theorem, as it was announced in section 2.4.2 of [MSS1]. To state

this result we need some further notation.

1 'Which means, they are groups of prime order, groups of Lie type, alternating groups or one of
the 26 sporadic groups.



Throughout this paper S € Syl,(H), and Z, C and Q are as in the above hypothesis. Moreover
C:=Cy(Z), B(T) :=Q(Z(J(T))) (T a p-subgroup), X° := (Q¥) (X a subgroup).

A subgroup P < H is called minimal parabolic (with respect to p), if P is not p-closed and every
Sylow p-subgroup of P is contained in a unique maximal subgroup of P.

Let X and M be subgroups of H, and let T be a p-subgroup of H:
Locy(X) :={U <M | X <U and Cp(O,(U)) < O,(U)},
M(X) is the set of maximal elements of Locps (X).
Ly(T) = {U € Locy(T) | T € Syl,p(U)},
Pu(T):={P € Ly(T)| P is minimal parabolic},
According to (1.2) below every element U € Locys(X) contains a unique maximal elementary
abelian normal subgroup Yy satistying O,(U/Cy (Yy)) = 1.
Let P € Pg(S) and B(P) := (B(S)Y). Then P is said to be of type Ls, if p is odd,
O,(P)=Yp < B(S), B(P)/Yp = SLy(p™), and Yp is a natural SLs(p™)-module for B(P)/Yp.

Hypothesis I. The Q!-Hypothesis holds, and there exists P € Py (S) such that P £ C and
Yy < Q for every M € My (P).

In this paper we prove:

P!-Theorem. Assume Hypothesis I. Let P* := P°0,(P) and Zy := Q1(Z(S N P*)). Then
the following hold:

(a) P*/O,(P) = SLy(p™) and Yp is a natural SLy(p™)-module for P*/O,(P).

(b) Zy is normal in C ; in particular PN C is the unique maximal subgroup of P containing S.

(c) Then either P is the unique element of Pz (S) not in C, or every element of P (S) \Pz(5)

is of type Ls.

The proof of the P!-Theorem uses the Structure Theorem, which was proved in [MSS2]. To

state this result we need some further notation. Let

Ly(S)={U € Lu(S)|Cu(Yv) < U}
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For U,U € Ly(S) define
U << (7 — U = (Uﬂﬁ)CUOfU)

Then (1.5) below shows that << is a partial order on Ly (S5). Let
L3(S)={L € Lyx(S)| L is maximal with respect to <<}.

Note that Mg (S) C Lg(S) and L£3,(S) € Mpy(S), if H has local characteristic p.

Structure-Theorem. Assume the Q!-Hypothesis. Suppose that there exists M € £},(S) \
{5} such that Yy, < Q. Then for My := M°Cs(Yys) and M := M/Cjp(Ya) one of the following
holds:

(a) F*(M) = My, Mo = SL,(p™), n > 2, Sp2a(p™), n > 2, or Spa(2)’ (and p = 2), and
[Yar, Mo] is the corresponding natural module for M. Moreover, either Cyy, (Yas) = O,(Mp) or
p =2 and My/O,(My) = 35p4(2)".

(b) Py := MyS € Pu(S), Yar = Yp,, and there exists a a normal subgroup P; < P; containing
Cp,(Yp,) but not @ such that

(i) Pi =Ky x- - x K., K; 2 SLy(p™), Yoy = Vi X -+ x V., where V; := [Y), K;] is a natural
K;-module,

(ii) @ permutes the components K; of (i) transitively,

(iii) OP(Py) = OP(My), and P;Cp(Yas) is normal in M,

(iv) Cp,(Yp,) = Op(Py),orr > 1, K; = SLy(2) (and p = 2) and Cp, (Yp,)/O2(Py) is a 3-group.

We will refer to property (b) (ii) of the Structure Theorem as Q-transitivity. As a corollary

of the Structure- and the P!-Theorem we get:

Corollary. Assume Hypothesis I. Then for every L € Locy(P) the following hold, where
L:=L/Cr(Yr) and Ly = L°Cs(Y1):

(a) F*(L) = fg, Lo =2 SL,(p™), Span(p™) or Sps(2) (and p = 2), and [Y7, Lo] is the
corresponding natural module.

(b) Either Cr, (Y1) = Op(Ly), or p =2, Ly/O,(Lo) = 3Sp4a(2)" and LCy (Y1) € L35(S).

Acknowledgement. We would like to thank A. Chermak for pointing out a mistake in a

previous version of Lemma (3.7) and also the referee for his helpful suggestions.
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1. Elementary Properties.

(1.1) Let X = S; and V' be the non-central irreducible constituent of the GF'(2)-permutation
module for X.

(a) Let k = 2m + 1 and set ¢; := (2¢ — 1,2i) and d; = (2i — 1,24,k), i« = 1,...,m. Then
X ={tj,d; |i=1,...,m).

(b) Let t be a transposition of X and x € X such that [V,¢,2] =0. Then k =4 or t* =t¢.

(c) Let k # 4, t1, ..., t,, be a maximal set of commuting transpositions and Vy = Cy (1, ..., tim ).

Then CX(VO) = <t1, ,tm>

Proof. (a): It is well known that Q := {(k,k +1) | K = 1,...,2m} is a generating set for X.

Thus the claim follows from the fact that

didiy1

= (2m,2m +1) and ¢t," =(24,2i4+1), i=1,...m— 1.

(b): Let W = (vy, ..., v) be the GF(2)-permutation module for X with basis {v1, ..., v}, where

v; T = v, for x € X. Set
k —_
Zvl Wi = (v +v; | 4,7 €{1,...,k}) and Wy := (W1 + Wy)/W.
i=1
Then V = W;. Let t = (i,j) and t* = (r,s), so
U +15) = [W1,t] = [W1,t"] = (0, 4+ Us).

It follows that v; + v; + v, + vs € Wy, and either {i,j} = {r,s} and t =t*, or k = 4.

(c): This is a direct consequence of (b).

(1.2) Let U be a finite group of characteristic p, T' € Syl,(U) and T < U < U. Then the
following hold:

(a) There exists a unique maximal elementary abelian normal p-subgroup Yy of U such that
0p(U/Cy(Yy)) = 1.

(b) Yz <Yu.

(¢) (Z(T)) < Y.



(d) If U = UCy (Yy) then Yy = Y.
(e) If O,(U) = Cp(Yy) then Yy = 4 (Z(0,(U))).

Proof. (a): Let £ be the set of all elementary abelian normal p-subgroups X of U satisfying
0,(U/Cy (X)) = 1. For the existence of a unique maximal element in € it suffices to show that
the product of two elements of 2 is again in Q.

Let Ay, As € Qand A = A1 Ay. Then A < Cpy(A1)NCpy(Az) and thus A is elementary abelian.
Let Cy(A) < D < U such that D/Cy(A) = O,(U/Cy(A)). Then DCy(A;)/Cu(A4;) is a p-group
since Cpy(A) < Cy(4;). Hence D < Cy (A1) NCy(Ag) = Cy(A).

(b): Set V= (( U) ). By the definition of Y5, O,(U) < Cy(Yy) and so Yz < Q1(Z(0,(U)))
as U is of characteristic p. Hence also V is in 1(Z(O,(U))); i.e. V is elementary abelian.

Let Cy(V) < D < U such that D/Cy(V) = O,(U/Cy(V)). Then
D=(DNT)Cy(V) < (DNT)Cu(Yy).

Hence Op(ﬁ/Cﬁ(Yﬁ)) =1 gives TN D < Cy(Yy) and thus D = Cy (V). Since V is elementary
abelian we conclude that V € Q and thus Y[~J <V <Yy.

(¢): This follows from (b) with U :=T.

(d): According to (b) it suffices to show that Yy < Y. But this is clear since U/Cy(Yy) =
U/C5(Yy) and thus O,(U/C5(Yy)) = 1.

(e): Let Y := Q1(Z(0,(U))). Then Yy <Y by the definition of Y. Let Cy(Y) < D < U
such that D/Cy(Y) = O,(U/Cy(Y)). Since Cy(Y) < Cuy(Yy) we get DCy(Yy)/Cu(Yu) <
0,(U/Cuy(Yy)) = 1, and so D < Cy(Yy). It follows that D/O,(U) is a p'-group and
O,(U/Cy(Y))=1,50Y < Yp.

(1.3) Let U be a finite group of characteristic p, T' € Syl,(U) and P € Py (7). Then the
following hold:

(2) U = (Py(T)) Nos(T).

(b) For every normal subgroup N of P either OP(P) < N or TN N < O,(P).

(c) For every normal subgroup Ty of T' either Ty < O,(P) or OP(P) = [OP(P), Tp).

(d) Y = 2 (Z(0,(P))) or [24(Z(0,(P))), 07(P)] = 1.
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Proof. (a): We proceed by induction on |U|. Set Uy = (Py(T'))Ny(T), and note that Ny (1)
normalizes (Py(T)), so Up is a subgroup of U. By induction all proper subgroups of U containing
T are in Uy. If U # Uy, then Up is the unique maximal subgroup of U containing 7. But then
U € Py(T) and thus U = Uy, a contradiction.

(b): By the Frattini argument P = Np(N NT)N. As T is in a unique maximal subgroup of P
at least one of NT and Np(N NT) is not a proper subgroup of P. This gives (b).

(c): Let Py = [OP(P),Tp] and P, = [OP(P),To]To. Then P; is normal in P. Hence, by (b)
either OP(P) < Py and thus Py < OP(P;) = OP(P) < Py, or Ty < O,(P).

(d): If Cr(Yp) = Op(P), then Yp = Q1(Z(O,(P)) follows from (1.2)(e). In the other case (c)
gives [24(Z(0,(P))), O"(P)] = 1.

Hypothesis and Notation. For the rest of this section the Q!-Hypothesis holds. We use the

notation given in the introduction. For Ly, Ly € Ly (S) we define

1 << Ly < L1 = (Ll N LQ)CLI (YLl)-

(1.4) Let L, L € £(S) such that L << L. Then L° < L°.
Proof. Note that Cp(Yy) < C. Hence Cr(Y) normalizes Q and QL = QU{LV.
(1.5) << is a partial ordering on Ly (S).

Proof. By (1.2) Ly = (L1 N Ly)Cr, (Yr,) implies that Yz, = Y7, A, < Yr,. This gives the

reflexivity and anti-symmetry. Assume now that L1 << Lo and Ly << L3. Then
LinLy <(LyNL3)CL,(Yr,) and Y, <Yi,.
It follows that Cr,(Yz,) < Cu(Yr,) = Cr,(Yr,) and thus Ly = (Lo N L3)Cr,(Yr,). Hence
LiNLy=(LiNLyNL3)Cp,(Yr,).
This shows Ly = (L1 N L3)Cr, (Yr,) and the transitivity of <<.

(1.6) Every p-subgroup of H contains at most one conjugate of @); in particular @ is the only

conjugate in C.



Proof. Let g € H and @9 < S. It suffices to show that Q7 = Q. As Z < C5,(Q7) = Z(Q7),
Q-Uniqueness shows that S < 59, s0 S < CNCY. Now Sylow’s Theorem shows that C and C9 are
conjugate by an element of Ny (S). As by the definition of C, Ny (S) < Nu(Z) < C we conclude
that C = C¥ and thus also Q= Q9.

(1.7) Let P be a subgroup of H with @ < Op,(P). Then P < C.

Proof. This is a direct consequence of (1.6).



2. Pushing Up

Hypothesis and Notation. In this section the Q!-Hypothesis holds. In addition, P < H is

a minimal parabolic subgroup of characteristic p and 7' € Syl,(P). We set P := P/Cp(Yp) and
B(T) := Cr(Qu(2(J(T))) and Zy == Q(Z(J(T)),
U(P) = {A| A < P, 4 an clem. abelian p-group, and |A/CA(Yp)| > |[Yp/Cy. (A},
U(P) = (A| A € U(P)) and B(P) := (B(T)").

Moreover K(P) denotes the set of all B(T')-invariant subgroups K < P satisfying;:

(i) K is normal in U(P),

(ii) L := KB(T) is minimal parabolic of characteristic p and O,(P) <T N L € Syl,(L),

(iii) K = SLy(p™) and [Yp, K]/Cly, k) (K) is a natural SLy(p™)-module for K, or p = 2,
K = Synyq and [Yp, K] is a natural Sy»1-module for K.

Note that trivially Cp(Yp) € U(P) and so Cp(Yp) < U(P). Then recall from (1.3) that either
U(P)=Cp(Yp) or P =U(P)T and similarly B(P) = B(T) < O,(P) or P = B(P)T.

Let K = SLa(p™) and V be an irreducible GF(p) K-module. Set F' := Endg (V). By Schur’s
Lemma, F' is a finite field, so V' is an FK-module. We say that V is a natural SLy(p™)-module

for K if dimp (V) = 2.

(2.1) Suppose that U(P) # 1 and A € U(P). Then there exist subgroups Uy, ..., U, of U(P)
such that the following hold:

(a) UP)=Uy x - x Uy, U; = SLy(p™) or Sonyy (and p = 2).

(b) Either [Yp, U;]/Cly, ;) (U(P)) is a natural SLy(p™)-module for U, or [Yp, U] is a natural
Sony1-module for U;, i = 1,...,7.

(¢) Yp = Cy, (UP))[I;-,[Yp,Ui] and [Yp,U;,U;| =1 for i # j.

(d) T acts transitively on {Uj,...,U,}.

(e) [Yp,A,A] = 1 and |A] = |Yp/Cy,(A)|. In particular |E| < |Yp/Cy,(E)| for every
elementary abelian p-group E < P.

() A=ANT; x - x ANU, and ANU;Cp(Yp) €UP), i =1,...,7.

(g) ANU; € Syl,(U;) if U; 2 SLy(p™) and ANT; # 1.

(h) ANTU; is generated by a set of commuting transpositions if U; & Son 1.
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Proof. See [Cher].

(2.2) A(T) CU(P) and J(T) = B(T) < U(P).

Proof. Assume that J(T') < Cp(Yp). Then clearly A(T) C U(P) and Yp < Zy; in particular

B(T) < Cp(Yp) and 1 = J(T) = B(T) <U(P).
Assume now that J(T) £ Cp(Yp). Let A € A(T) such that A # 1. The maximality of A gives
Cy,(A) = ANYp. Hence

[Ca(YP)IYPICy, (A)| 1 = [Ca(YP)I[YPIIANYp| ™! = [Ca(Yp)Yp| < |A]

and A € U(P); in particular J(T) < U(P) # 1.
We now use the notation given in (2.1). In addition we set Y; := [Yp,U;] and Yp :=

Yp/Cy, (U(P)). Then (2.1)(c) implies

(x) Yp=Yix---xVY, and [Y;,U;] = 1 for i # j.

Assume first that U; 22 SLa(p™). Then (2.1)(f) and (g) show that J(T) € Syl,(U(P)), and (2.1)(b),
(e) and (f) that [Y;, J(T)] < Y; N Zy and |Y;/Y; N Zy| = p™; in particular Y; N Zy £ Cy, (U;). As

B(T) centralizes Y; N Zy, we get from () that B(T) < Ny (U;).

Let F' := Endg, (Y;). Then the elements of N5(U;) induce field automorphisms on F and
semi-linear transformations on Y;. As Yi?rZo is a 1-dimensional F-subspace centralized by B(T),
we conclude that the elements of B(T) act F-linear on Y;, so B(T) < (J(T)NT;)C5(U;) by (2.1)(g).

It follows that B(T') < J(T) since C5(U(P)) < U(P), whence B(T) = J(T).

Assume now that U; = Sonyq. Recall that any two transpositions of S,, commute if they

generate a 2-group. Hence, by (2.1)(h) J(T) N U, is generated by a maximal set of commuting

transpositions, and as above, by (2.1)(e) and (f) [Y;, J(T)] < Y; N Zy and B(T) < N5(U;). Now

(1.1)(c) shows that B(T) < (J(T) N U;)C5(U;) and, again as above, B(T) = J(T).

(2.3) Suppose that U(P) # 1. Then K(P) # 0, and for every K € K(P) and L := KB(T):
(a) U(L)/CL(YL) # 1; i.e. L satisfies the hypothesis of (2.1).

(b) Y, < Yp and [y, K] = [Yp, K].

(¢c) B(T) < O,(P) or L = [K,B(T)|(T N L).
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(d) There exists U; as in (2.1) such that K = U;.

Proof. We first show that K(P) # 0. Let Uy,...,U, be as in (2.1) and fix U € {Uy,...,U,}.

By (2.1) and (2.2) J(T) = B(T') < N(U) and B(T) < Np(UCp(Yp)). Among all subgroups
Ky < UCp(Yp), which are B(T)-invariant and satisfy

(x) Ko =U and O,(P) < TN KoB(T) € Syl,(KoB(T)),
we choose K minimal and set L = K B(T"). According to (2.1)(a) there exists Cr(Yp)(T'NL) < Lo <
L such that Ly is the unique maximal subgroup of L containing T'N L. Hence, the minimality of K
implies that Ly is the unique maximal subgroup of L containing 7'M L, so L is minimal parabolic.
Moreover, L is of characteristic p since Op,(P) < Op(L). This shows that K € IC(P).

Now let K € K(P). Then (d) follows from (2.1)(a). Let L = KB(T). From (1.3)(d) we

get Q1(Z(0,(L))) =YL < D (Z(0p(P))) = Yp, so Yy, = Cy,(0,(L)). Since [K,0,(L)] = 1 the
P x Q-Lemma gives [Yy,, K] # 1 and thus by (2.1)(b) [Yz, K] = [Yp, K]. This is (b).
From (1.3)(c) we get either L = [K,B(T)|(T N L) or B(T) < Op(L). In the latter case

[K,B(T)] =1, and (2.1)(d) implies B(T) < Cp(Yp). This shows (c) since Cr(Yp) = O,(P) by
(1.3)(c).

According to (2.1)(d) and (f) there exists A € U(P) such that A # 1 and A <TNK. Since
Cr(Yp) = O,(P) < L and A is a p-group we may assume that A <T N L. Set Ay = Ca(YL). By
(2.1)(e)

[ Ao| < |Yp/Cyp(Ao)| < [YP/YLCyy (A)| = [Yp/Cy, (A)YL/Cy, (A)| 7" = [A||YL/Cy, (A)| 7

and |Y,/Cy, (A)] <|A/Ap|. It follows that U(L) # Cr(Y1), and (a) holds.

(2.4) Suppose that U(P) # 1. Let A € U(P) and A; < P such that [Yp, A, A1] = 1. Then

[Yp, A1] < [Yp, A][Cy, (A), Ar].

Proof. We apply (2.1) and choose the subgroups Uy, ...,U, as in (2.1). Let V; := [Yp,U;]. By
(2.1)(c)

T

[Yp, 1] = [Cyy (A), A [ [V, Au].
i=1
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Hence, it suffices to show that

(*) [Vi, Ar] < [V, A][Cy (A), A4

If ANU; = 1, then by (2.1)(c) and (f) V; < Cy,(A), and (x) is obvious. Hence, we may assume
that ANU; # 1. Then [V;, A, A1] = 1 shows that A; normalizes U; and V;.

Assume first that U; = SLa(p™). By (2.1)(g) ANU; € Syl,(U;), so [Vi, A, A1] = 1 implies
Ay < ACp(V;), and (x) follows.

Assume now that U; = Sony1. By (2.1)(h) ANU; = (t1,...,ts), t1,...,ts commuting transpo-

sitions of Son1; in particular

Cﬁz(A) = Cﬁz (Aﬂ Uz) = <t1,...,t5> X )(7 X = Sgn+1_25 and [‘/Z,X] = [CVZ(A),X]

Since [V;,t;, A1) = 1for j =1,...,s we get A; < Cp (A)CH(V;). Hence,

i

Vi, A] < [Vi, A][Cv;i (A), Ai] < [Vi, A][Cryp (A), Ad,
and again (x) follows.

(2.5) Suppose that T =S, U(P) # 1 and P £ C. Let K € K(P). Then the following hold:

N

(a) Z(P) = Z(U(P)) = 1.
(b) Yp = X{EKGIC(P)}[YP’F]’ and [Yp, K] is an natural K-module.

(c) Q acts transitively on {K | K € K(P)}.

(d) K =2 SLy(p™) or p=2and K = U(P) = Ss.

(e) If K = SLy(p™) and A < P with [Yp, A, A] = 1, then [Yp, K, A] = [Yp, K,a] for all

a € A\ Cp([Yp, K]). Moreover, cither |A/C4([Yp, K])| =2(=p) or A < KCx(K).

Proof. (a): It suffices to show that Cy, (U(P)) = 1 since Q;(Z(P)) < Yp. If Cy,.(U(P)) # 1,
then there exists 1 # z € Cy, (U(P)) N Z(Q), and by Q-Uniqueness U(P) < Cg(z) < C. Since
also S < C we get that P = U(P)S < C, a contradiction.

(b): This follows from (a) and (2.1)(c).

(¢): By (b) and (2.1)(c),(d) together with (2.3)(d)

Yp=[Yp, K1] X -+ x [Yp, K,],
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where K; € K(P) and Q := {K | K € K(P)} = {K1, ..., K,.}. Assume that Q is not transitive on
2. Then there exist 1 # x € Z(Q) NYp and K; € {Ky,..., K, } such that [K;,z] = 1. Again by
Q-Uniqueness K; < C and thus P = (K;,S) < C, a contradiction.

(d): We use (2.1) and (2.3)(d). Assume that K = Sony1, n > 2 (and p = 2). The action of
U(P) on Yp shows that there exists 1 # z € Z(Q) N Yp such that Cx(z) = Sy». On the other
hand by @-Uniqueness Cp(z) < C and thus [Ck(x),Q] < Q. Since Sy is not a 2-group we get
K° = K, and P = Syn 4 follows with (c). Moreover @ is a normal 2-subgroup of m

If n = 2, then (d) follows. In the other cases Q = 1 and thus Q < Cs(Yp) = O2(P). But this
contradicts (1.7).

(e): By (b) V := [Yp, K] is a natural SLy(p™)-module for K. Assume first that V4 = V.
Then again (b) implies that FZ = K. Since V is a faithful irreducible K-module we conclude that
C3(K) = Cz(V).

Let Vp = [V, A] and F := Endz(V). Recall that the elements of A induce semi-linear
transformations on the F-vector space V. Thus, if Vj contains a 1-dimensional F-subspace, then
A < KC5(K). In the other case no element of A" induces an F-linear transformation on V. As
I'L(V)/GL(V) has cyclic Sylow p-subgroups, we get in this case that |[A/C4 (V)| = p. Moreover,
the quadratic action of A on V shows that the elements of A* induce field automorphisms of order
2in F, sop=2.

Assume now that V4 # V. Then the quadratic action of A gives
(VA =V xVeforae A\ Ny(V);
in particular |[A/N4(K)| =p (= 2). Since
[V,Na(K)] < Cv(A) <Cv(a) =1

we get No(K) < Ca(V) and |A/C4(V)| = p. Now again (e) is obvious.

(2.6) Suppose that neither Q1 (Z(T")) nor B(T) is normal in P. Then B(P) = U(P) # 1 and

B(T) = J(T) # 1.

Proof. According to (1.3) Cp(Yp) = O,(P) since ©4(Z(T)) is not normal in P. Hence B(T') £

Cp(Yp) since also B(T') is not normal in P. It follows with (2.2) that B(T) = J(T') < U(P) # 1,

and (2.1) gives B(P) = U(P).
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(2.7) Suppose that neither €4 (Z(T)) nor B(T') is normal in P. Then Zy < Q1(Z(J(O,(P))))
and

[2:(Z(J(0p(P)))), J(T)] < Zo N Yp;

in particular [Q1(Z(J(0,(P)))),0?(P)] < Yp. Moreover, if in addition K 2 SLy(p™) for K €
K(P), then B(T) € Syl,(OP(K)B(T)).

Proof. By (2.6) U(P) # 1 and J(T) = B(T) # 1. Let A € A(T) such that A # 1 and Z; :=
Q1(Z(J(0,(P)))). Then by (2.1) [Yp, A] < Cy,.(J(T)) < Zo, and (2.1)(e) gives YpCu(Yr) € A(T).
This shows that

YpCu(Yp) € A(O,(P)) C A(T).

Hence Z; < YpC(Yp) and Zy < Z;. It follows that [Z1, A] < YpNZy and thus [Z1, J(T)] < YpNZ.
Since OP(P) < (J(T)F) by (1.3) we get [Z1,0P(P)] < Yp.
Assume now that K = SLy(p™), where K € K(P). By (2.2) and (2.1)(d), (g) we can choose

A such that AN K € Syl,(K); in particular

(ANK,(ANK)9) = K for some g € K.

Set L = KB(T), W = [Y1,K], Z§ == ZoN Z§ and Ly = Cr(Z;). Then B(T) < Lo and L =
LyCr(Yp). Since L is minimal parabolic and by (1.3) Cr(Yp) = O,(P) we get

(1) L = LoO,(P), and Lo is normal in L.

By (2.3) L satisfies the hypothesis of (2.1), and W = [Yp, K|. As [Zy, K] = [Zo, K, K| < W,
ZoW is normal in L, and (2.1)(b),(g), applied to L, gives ZoW = ZyZ§, Cw (T'NL) = W N Z, and
|\WZy/Zo| = p™; in particular ZF N W = Cy (L). It follows that

|ZoW/Z5| = |W/W 0 Z5| = p*™ and |Z0W/ Z5| = |Z0Z5 | Z5| < p*™.

This shows that ZiW = ZoW and Zy, = Z;Cw (T N L); in particular
(2) B(T') = Crnr(Zo) = Crr(Z5).
By (1) and (2) B(T) € Syl,(Lo) and OP(K) < OP(L) < Ly, so B(T) € Syl,(O?(K)B(T)).

(2.8) Suppose that neither B(T") nor Q4 (Z(T)) is normal in P and Z(P) = 1. Then O,(P) <
B(T).
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Proof. By (2.7) ZyYp is normal in P. Hence, R := [ZyYp, O,(P)] is a normal subgroup of P
in Zy. But then by (2.6) and (1.3) OP(P) centralizes R, and Z(P) = 1 implies R = 1. This gives
Op(P) < B(T).

(2.9) Suppose that neither B(T") nor £4(Z(T)) is normal in P. Then there exist subgroups
Lq,...,L; < P such that for i =1,...,k and L; = L;/CL,(YL,):

(a) L; is minimal parabolic of characteristic p and O,(P)B(T) € Syl,(L;).

(b) L; 2 SLy(p™), and Y7, /Cy, (L;) is a natural SLy(p™)-module for L;.

(¢) Yz, OP(Li)] = [Yp, OP(Li)].

(d) L1, ..., Ly are conjugate under T', (L1, ..., Ly)T = P, and N¥_,0,(L;) = O,(P).

(e) Ve, B(P)] 1 Zo = 15, [Y,, B(T)) and [Ye,, B(T), L;] = 1 for i £ j.

Proof. By (2.6) U(P) # 1, and we are allowed to apply (2.1) and (2.3) to P. Let K € K(P),
and set L = KB(T) and L = L/CL(Yy). Then (2.3) shows that L satisfies (2.1) and [Yz, OP(L)] =
[Yp, OP(L)].

Assume first that K =2 SLo(p™). Then (2.1)(f),(g) gives

L=KxC(C

By (K) and B(T) N K € Syl,(K);

in particular O,(P)B(T) € Syl,(L) and [O,(L),OP(L)] < O,(P). Now (a) — (d) follow for k = 1,
and (e) is a consequence of (2.1)(b).

Assume now that K = Syny; (and p = 2). Then K N B(T) is generated by a maximal set
{t1,...,tan—1} of transpositions, where t1,...,ton—1 € K. For every t; there exists d; € K such that

d; has order 3 and

(diy, KN B(T)) = (d;, t;) x (t; | i # j) and (d;, ;) = SLa(2).
Note that the subgroups (d;,%;), i = 1,...,2" !, are conjugate under TN K and that by (1.1)
<EZ,¥Z ‘ 1=1,.., 2n71> =K.

Note further that by (2.1)(b)

(*) [YP,K] NZy= [Yp, <t1, ...,t2n—1>] and [Yp,ti,dj] =1 for i # j.
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We now choose Ly < (dy, B(T)) minimal with respect to

O2(P)B(T) < Ty :=TnN Ly € Syla(L1) and Ly = (dy, B(T)).

Then L; is a minimal parabolic subgroup of characteristic 2. Moreover O2(P)B(T) = Ty and
[O2(L1),0?%(L2)] < O(P), and (a) follows for L;. Since Y7, < Q1(Z(02(L1))) < Q1(Z(02(P)))
we get from (1.3)(d) that Yz, < Yp. It follows that |[Y7,, L1]| = 4, and (b) and (c) hold for L,
since O?(L;) = Cs.

Finally, for every i € {1,...,2" '} there exists a T-conjugate L; of L with d; € L;, and
(L1, ..., Lon-1)B(T) = L. Since L is minimal parabolic we get (L1, ..., Lyn—1)B(T) = L. Similarly,
since P is minimal parabolic (2.1)(d) and (2.3)(d) imply (d); and (e) follows from (d) and (x).

Notation. Let
Py = Prr(8)\ (Puu((s) () UP5(S)) and P§ := {P¥ | P € Po, g € Nu(B(S))}.

and let P be the set of all subgroups X < H satisfying:
(i) X is minimal parabolic of characteristic p and B(S) € Syl,(X),
(i) (X,S) = P for some P € Py,
(iii) X/Cx(Yx) = SLa(p™) and Yx /Cy, (X) is a natural SLa(p™)-module for X/Cx (Yx).

Let P*:={X9| X € P, g€ Ng(B(9))}, G:=(X | X € P*) and L := GNg(B(9)).

Theorem 1. One of the following holds:

(a) L € Lu(S) and Pu(S) = Pr(S) UP5(5).
(b) Pr(S) = Pny(s(s)) (S) UPs(S).

(c¢) Op(P) =Yp and Z(P) =1 for every P € P*.

Proof. We may assume that neither (a) nor (b) holds. Then Py # 0 # Pg. Let P* € P§ and
set Zp := Q1 (Z(B(S))) -

(1) P* satisfies the hypotheses of (2.1), (2.8) and (2.9), and, after a suitable conjugation, also
that of (2.5).

By the definition of P§ there is Py € Py and g € Ny (B(S)) such that P§ = P*. Hence, it

suffices to show the claim for F,.
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From the choice of Py and the definition of C' follows that neither B(S) nor Z is normal in
Py. Hence, P, satisfies the hypotheses of (2.6) and (2.9), and by (2.6) also those of (2.1) and (2.5).
Finally, by (2.5) Py satisfies the hypothesis of (2.8).

(2) Z(P*) =1 and O,(P*) < B(S).

This follows from (1), (2.5) and (2.8).

Let Py € Py. According to (2.9) and (2) there exists a subset
Q(P()) = {Ll, ceey Lk} - P

such that the subgroups Lq, ..., Li satisfy (2.9)(a) — (e) (with respect to Py and S). We fix this
notation. From (2), (2.1)(c) and (2.9)(e) we get

(3) Zo = ITia [V, B(S))

Next we prove:

(4) L = (Nu(B(S)), Fo | Po € Po).

Let L := (Ng(B(S)), Py | Py € Po). By the definition of P* we have L < L. On the other
hand, for Py € Py by (2.9)(d) Py < GS and so also L < L.

(5) 0p(G) = 1 = O (L),

From (4) we get

Pu(S) = Pr(S) UPx(S).

Hence, O, (L) = 1 since (a) does not hold. As G is normal in L we also have O,(G) = 1.

In the following let
A" = Up,ep, Q).
We now apply the amalgam method to G with respect to the subgroups in P* and use the standard
notation, see for example [DS] or [KS]. For the convenience of the reader we repeat some of the
notation:

I' ={Px |z € G, P € P*} is the set of vertices, and two vertices are adjacent, if they
are different and have non-empty intersection. P* is a (maximal) set of pairwise adjacent vertices
(where the elements of P* are understood as cosets), and every pair of adjacent vertices is conjugate
(under G) to a pair of vertices from P*. For a vertex § € I" the stabilizer of ¢ in G is denoted by
Gs. Moreover

Q5 = 0,(Gs) and Z5 = (0 (Z(X)) | X € Syl,(Gs)).
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A critical pair (,0") of vertices satisfies Zs £ (s with the distance d(¢,0’) being minimal. This

distance is denoted by b.

Note that by (2.9)(b) Zs = Yg, for every § € I'. Since by (1.3)(b) Cp(s)(Yp) = O,(P) for
every P € P* we get from (2.1)(g):

(6) ZoQo € Syly(Gor NGo—1) and Zy Qo € Syl,(Go N Goq1) for every critical pair (o, o).

Let (o,a’) be a critical pair with G, € P*. Then there exists 71 € Syl,(Gy) such that
G = (T1, Z,). Thus, possibly after conjugation in G, we may assume

(%) (o, @’) is a critical pair such that G, € P* and G, = (B(S), Zu/).

In the steps (7), (8) and (9) below (a, ') is a critical pair satisfying (x). Further we set R, :=
[Z,, Q] for every p € P*. Note that by (2.1)(e) and (g) R, < Z(B(S)). We first show:

(7) Let pe P*and b>1or Z, < Qq—1. Then R, < Z(G,).

Assume first that Z, < Qa/—1. Then by (6) Z, < Z,Qq and

2y, Zor) < [Zs Zar) < Za.

Hence, Z,Z, is normal in (B(S),Zy) = Gq; so also [Z,,Q.] = R, is normal in G,. Since
R, < Z(B(S)) we get R, < Z(Ga).

Assume now that Z, £ Q4 —1. Then (p,o’ — 1) is a critical pair, and (6) gives [Z,, Zo/—1] =
[Z,,Qa) = R,. If b> 1, then R, is centralized by (B(S), Zo/) = Ga.

Next we show:

(8) Let p € P*. Suppose that b > 1 or Z, < Qq/—1. Then either Qo = Q, or Q.Q, = B(S5).

Let T := QaQ,. Assume that Q, < Q, but Qn # Q,. Then the action of G, on Z, shows
that

Z, < Cgz (T) = Zy,
so B(S) < @Q,, a contradiction. Hence, we may assume now that @, < T < B(S).

There exists x € G, such that (a +1)® € P* and (a, ’") is a critical pair; so by (6) B(S) =
Z%Qq. If (p,a’") is not a critical pair, we get Z%, < @, and thus 7' = B(S), a contradiction.
Hence, also (p,a’") is a critical pair, and by (6) B(S) = Z%,Q, and T = Q,(Z%, NT).

Let t € Z%, such that t € T'\ Q,. Then there exists y € Z, such that [t,y] # 1, and by (7)
[t,y] € Z(G,). On the other hand, according to (6) (applied to (p,a’") and (o,a’")) there exists

y' € Z, such that [t,y] = [t,y’]. The action of Z%, on Z, gives [t,y'] € Z(G,), a contradiction.
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We now let Ny (B(S)) act on I in the following way: Let g € Ng(B(S)) and § € T', so § = Py
for some P € P* and y € G. Then
g: 60— 07 :=PyI.

(9) For every P € A* there exists a critical pair (d, ") satisfying (*) such that G5 = P.
There exists Py € Py such that P € Q(FPy) C A*. Hence, there exist 1, ..., € P* such that

QPy) ={Gs,,...,Gs, }.

Note that by (2.9)(d) the subgroups in 2(FP,) are conjugate under S. We will show that there exists

7) for some ¢ € {1,...,k}. The (*)-property then can be achieved by a suitable

a critical pair (d;, 0
conjugation in G5, and the claim for the other ¢; by the action of S.

Hence, we may assume that Zs, < Q-1 for all ¢ = 1,..., k. If there exists j € {1,...,k} such
that Q5, = Qa, then (d;,a/") is a critical pair, where 2 € G, such that B(S)gc—1 < Gqi1- Thus,

we may also assume that Q. # Qs, for all i =1, ..., k. Now (7) and (8) give
Rs, = [Zs,,B(S)]) < Z(Ga), i =1,..., k,

and by (3)

a contradiction.

(10) There exists p € P* and P € A* such that Q% # Op(P) for all ¢ € Q.
Assume that (10) does not hold. Let Py € Py and Q(Py) = {L1,...,Li}. By (2.9)(d)

m?:lOp(Li) = Op(PO)-

Now let p € P* and L; € (). Then there exists ¢ € @ such that QF = O,(L;); in particular

Op(Po) < Q. Since Op(Fp) is Q-invariant we get
Op(Py) < Q) for all p € P* and all Py € Py.
Note that P* is invariant under Ny (B(S)). Hence also

Op(P*) < Q, for all p € P* and all P* € Py.
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It follows that
OP(P*) < mLieQ(po)Op(Li) = Op(Po) for all Py € Py and all P* € Pg

This shows that O,(P*) = O,(P) for all P* € P§ and all Py € Py, and by (4) O,(F) is normal in

L, a contradiction to (5).

By (10) there exists p € P* and P € A* such that Q% # O,(P) for all ¢ € Q, and by (9)
there exists a critical pair (a, ') satisfying () such that G, = P. We fix this notation with the
additional property that Py := (P, S) € Py and P € Q(F).

(11) There exists ¢ € @ such that (p?, ) is a critical pair; in particular b = 1.

Suppose that b > 1 or Zy« < Qq/—1 for all ¢ € Q. Then (8) shows that B(S) = Q.Qf for all
q € Q. Hence [Z],Q.] = [Z], B(S)] and by (7)

Ri=[]125, B(S)] < 2(Ga);
q€Q

in particular R is a Q-invariant and non-trivial subgroup of Z(G,). Hence, @-Uniqueness gives
Gyo=P< C. But then also Py < 6, which contradicts Py € Py. This shows that b = 1 and there

exists ¢ € @ such that (p?, «) is a critical pair.

(12) Let v € P* such that G, < Py. Then Yo, < Yp,; in particular Z, < Yp, and no
Q-conjugate of G, is contained in F.

Since by (2) O,(Py) < B(S), we have Q1(Z(Q~)) < Q1(Z(0p(Fp))). Hence (1.3)(d) and (2)
yield Yo, < Yp,. This gives, together with (11), that there exists ¢ € @ such that G is not

contained in Py, and, since Q < S < Py, no Q-conjugate of G, is contained in Fp.

Let p := p? be as in (11). Then (6) and b =1 give

B(S) = Z,Z0(Qa N Qu);

in particular

(I)<Qa) = (I)(Qa N Q,u) = (I)(Q/L)-

This gives [Qa, Zu] = [Za, Z,] < Z,. Hence (2), (1.3)(b) and (12) yield

[0p(Po), 07 (Ga)] < [Qa, OP(Ga)] < [Qa, (Z7°)] < Za < Y.
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From G, € Q(Fy) and (2.9)(d) we get [O,(Fy), OF(Py)] < Yp,. Now Z(Py) = 1yields Yp, = Op(Fp),
and (2.1) and (2.9) applied to Py give B(S) = Yp,(Z5). From (2.1) and (3) it follows that
®(B(S)) = Zo; in particular

D(Qu) = 2(Qu) < Z(Ga) N Z(G,).

Assume that Q(FPy) = {P}. Then Z(G,) =1 and Z, = Q, is a natural G,/Q,-module. In
particular

B(S) = ZoZ, and Zo N Z,, = Z.

Thus, also Q,, = Z,,, and the action of Z, on Z, also shows that Z(G,) = 1.

Let A € P*. If Q # Q, for all ¢ € Q, then, as for p and p, @y = Z) and Z(Gy) =1. f Q4 =
Q. for some ¢ € Q, then Z, = Z] = Qf, and the action of Z, shows that Z(G}) = Z(G») = 1.
Hence, (c) holds in the case Q(FPy) = {P}.

Assume now that Q(Py) # {P} and choose L; € Q(Py)\{P}; i.e. L; = G, for some o # v € P*.
Since [Z,,Qa] = [Yp, B(S)] and by (2.9)(e) [Yz,,B(S)] # [Yp,B(S)] we get from b = 1 and (6)
that Z, < Q, N Q.. Hence,

RO = [ZVaB(S)] = [le?Qa N QM] S Z(Ga) N Z(Gﬂ)
Let U = Ny (Ry). Then U is of characteristic p and (Gq,G,) < C(Rp). Thus
Op(U)NQu=0,(U) N B(S) = O0p(U) N Qa,

so Op(U)NB(S) is normal in G, and [O,(U)NB(S), Z,] = 1. Note that [O,(U), Z,] < O,(U)NB(S).
Since OP(Gy) < (Z7=) we get that [0, (U), OP(G,),0P(G4)] = 1. This contradicts the fact that

U is of characteristic p.

Corollary 1. Suppose that the cases (a) and (b) of Theorem 1 do not hold. Let P €

Pr(S) \ Pz(S) such that Q1(Z(B(S))) is not normal in P. Then B(P) = SLy(p™), and O,(P) is

a natural SLy(p™)-module for B(P). Moreover, either Ny (B(S)) < Ng(O,(P)), or P is of type
Ls.

Proof. By the choice of P and the definition of C , P satisfies the hypothesis of (2.6). Hence
U(P) # 1 and by (2.5)(a) Z(P) = 1. Thus (2.8) gives O,(P) < B(S). Applying (2.9) and Theorem
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1 (c) we get that B(P) = SLy(p™) and that O,(P) = Yp is a natural SLy(p™)-module for B(P).
Hence either P is of type L3 or p = 2.

Assume that p = 2. Suppose that Ny (B(S)) is not contained in Ny (Yp) and pick = €
Nu(B(S))\ Nu(Yp). Then B(S) = YpYE and A(S) = {Yp,YE}. Since Ny (B(S)) acts on A(S)
we get O%(Ng(B(S))) < Ng(Yp) and thus also Ng(B(S)) < Ny(Yp), a contradiction.

21



3. P-Uniqueness

Throughout this section we assume Hypothesis I. In particular, the Structure Theorem applies
to all M € L£3;(S) with P < M. In addition, among all P satisfying Hypothesis I we choose P

maximal (with respect to inclusion).

Local P!-Theorem. Let P* = U(P) and P < M € L3;(S). Then one of the following holds:
a) Case (a) of the Structure Theorem holds for M, P* = PN M, and
i) P*/Op(P) = SLy(p™) and Yp is a natural SLa(p™)-module,

ii) Par(S) = {PYUP,, &(5),

Mnd
iii) M1 G = Na(Q1(2(S N PY))).

i) Pu(S) =Pp(S)UP
ii) MnC < Ny (1 (Z(S N PY))),

S), in particular P = OP(M,)S,

(

(

(

(

(b) Case (b) of the Structure Theorem holds for M, and
( e

(

(

iii) Mg(P)={M}.

Proof. We discuss the two cases of the Structure Theorem separately. Assume first that case (a)
of the Structure Theorem holds for M. Let M := M/Cp(Yar), So := SN My and Zg := Q1(Z(So)).
The p-local structure of My/O, (M) shows:

(4+) There exists a unique U € Pay,(So) such that [Zp, U] # 1; in particular Py, (So) =
{UYUP,, ~&(50)-

(+4+) U/O,(U) =2 SLy(p™), and Y := Cy,, (0, (U)) is a natural SLo(p™)-module for U/O,(U).

Since Q < Sp from (1.7) it follows Ng(So) < C, hence (+) gives Ny (So) < Ny (U), in
particular S normalizes U.

Let P, € Ppr(S) such that P, £ C. By (1.7) Q £ O,(P,), and so by (1.3)(b) P, = (P,)°S and
(P1)°Sy < Mp. Since O,(M) < O,((P1)°Sp), (P1)°Sy has characteristic p, whence (1.3)(a) and the

uniqueness of U give

(P1)°Sy = (U, (P1)°Sy N C).

Since P; is a minimal parabolic subgroup not contained in C we get that P; = US; in particular

P =US, and (a)(ii) follows.

22



From O,(U) < Op(P) and (1.2)(b) we get Yp < Yy, thus Yp <Y and (++) yields Yp =Y.
Now (2.1) gives P* = UO,(P) < My, whence (a)(i) and P N My = P* follow.

Note that MyChs(Yas) is a normal subgroup of M. It follows that

MNC = Cu(Yu)(MonC)N,, ~(So) < (Mo N C) Ny (Zo),

so (+) and (1.3)(a) yield M N C < Np;(Zo). On the other hand by Q-Uniqueness Cp;(Zo) < C, so
by (1.6) Q is the unique conjugate of Q in Cps(Zo). Hence Ny (Zo) < Ny (Q) = M N C.

By the Structure Theorem Cg(Yar) = Op(Mo) € Sylp(Car, (Yar)), whence by (1.2)(e) Yaz, =
01 (Z(Cs(Yar))) < Yar. This gives Zy < Yy and thus Zy = Cy,, (Sp). From (++) it follows that
Zy <Y =Y NZ(O,(P)), therefore S N P* = O,(P)S, yields Zy = Q1(Z(S N P*)). This shows
(a) ().

Assume now that case (b) of the Structure Theorem holds. Let P; and P;* be as given there and
set So := Py NS and Zy := Q1(Z(S)). Then P, = M°S and by (2.1) P; = U(P;); moreover, by
(1.3)(c) and (1.7) Pum(S) = Pp,(S) UP,,5(5). The maximality of P gives P = P and P* = P,

and (b)(i)holds.

Since P*Ch(Yar) is normal in M we get as above

MNC =Cy(Ya)(P*NC)N,, =(S).

As P is a minimal parabolic subgroup, the structure of P* and its action on Yp show that Np(Zp)
is the unique maximal subgroup containing S. It follows that P*N C<N p(Zy) and thus M N C <
N (Zp). This is (b)(ii).

Let P <L e Mpg(S) and L << L € £3(S). Then L = (LN L)CL(Y) and thus

P°<L°=(LNL)° <O

It follows that P = P°S < E, and we are allowed to apply the Structure Theorem to L.

If case (a) of the Structure Theorem holds for L, then by case (a) of the Local P! Theorem
PN Ly = P*=U(P). But then Q < P*, a contradiction.

If case (b) of the Structure Theorem holds for Z, then the maximality of P gives Yp = Y7 and

thus Y5 = Yay; in particular M = L. This shows (b)(ii).
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Notation. We fix M, P and P* as in the Local P!-Theorem. (Observe that in case (b)
of the Local P!-Theorem the definition of P* differs from that given in the P!-Theorem. But it
will be shown in section 4 that this case does not occur.) Furthermore, we set P := P/Cp(Yp),
Sp := SN P*and Zy := 21(Z(Sy)). Recall that P satisfies the hypotheses of (2.1) — (2.5) and if
B(S) £ O,(P) also those of (2.6) — (2.9). Later in the course of the amalgam method we will apply

these Lemmata not only to P but also to conjugates of P.

(3.1) P admits the decompositions
(D) P =K x-xK, K;=SL(p"), and

(D2) Yp=Vix---xV,, V;anatural SLy(p™)-module for K;.
Moreover, [Yp,Q N Sy] = Zy and either Sy = B(S) or B(S) < O,(P).

Proof. The decompositions D; and Dy are from the Local P!-Theorem. Assume that B(S) £

O, (P). Since P* = U(P) (2.6), (2.1) and (2.8) show that Sy = B(S).

Remark. The next result, Theorem 2, establishes part (a) and (c) of the P!-Theorem if case
(a) of the Local P!-Theorem holds. We then embark on the proof of the main result of this section,
Theorem 3, where we show that Zg is normal in C. This establishes part (b) of the P!-Theorem
in all cases. It then remains to treat case (b) of the Local P!-Theorem. This is done in the next

section, where the F'!-Theorem eliminates this case.

Theorem 2. Assume Hypothesis I. Then either Py (S) = Pp(S) U P5(S), or the following
hold:

(a) Zy is normal in C.

(b) Q = B(S) = S

(¢) P is of type Lg for every P € Py(S) \ Px(5).

Proof. Assume first that P is of type Ls. Then by (2.2) Yp € A(S), B(S) = Sp, and for every
A € A(S) either
S() == AYP or A= Yp.
Moreover, Yp < @ by (1.2)(b) and Hypothesis I. It follows that also J(S) = Sy < @ since Yp is not

normal in C. But then J(S) = J(Q) and Zy = Q1(Z(Sy)) = Q1(Z(J(S))) is normal in C. On the
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other hand, Np(Sp) is transitive on Z and by (1.7) contained in C, so Zy < Z(Q) and Q < So.
We conclude that Q = Sp; in particular Ny (B(S)) = C.

Let P € Py(S) \ P(S). Then P £ Nu(Q(Z(B(S)))), and Corollary 1 shows that also P is
of type Lz. Hence, Theorem 2 holds if P is of type Ls.

We may assume now:

(1) P is not of type L3 and Py (S) # Pp(S) UP5(S).

By (1) there exists P € Py (S) such that

(2)PZPand P£C.

Assume that O, ((P, P)) # 1. Then there exists L € Ly(S) such that (P, P) := R < L. Since
P =P°S and P = P°S, we also get R < LS. Now (1.4) shows that there exists M e L3 (S) such
that R < M. The Local PI-Theorem applied to M , together with the maximal choice of P, gives
P < P, which contradicts (2). We have shown:

(3) O,((P, P)) = 1.

We now apply Theorem 1. Then (3) shows that the cases (a) and (b) of Theorem 1 do not
hold. Assume that B(S) is not normal in P, so by (1.3) also ©1(Z(B(S))) is not normal in P.
Hence by Corollary 1 O,(P) = Yp and P*/Yp = SLy(p™), and Corollary 1 and (1) show that
Ny (B(S)) < Ng(Yp). On the other hand, as above, Yp < @ implies B(S) = Sy = @ since Yp is
not normal in C. Hence C = Ny (B(S)) < Ny(Yp), and Yp is normal in C, a contradiction. We
have shown:

(4) P < Nu(B(9)).

By (3) and (4) Q1 (Z(B(S))) is not normal in P. Hence again (3) and Corollary 1 show that P
is of type Ls. In particular p # 2, and there exists an involution ¢t € N(S) such that [S,t] = Y5
Since Y5 < B(S) and Yz = Op(ls) we get Yp < Qi(Z(B(S)) < Y3. Hence Yp = [Vp,t], and ¢
inverts Yp. This shows that [t, P] < Cy(Yp) N Ng(O,(P)) =: X, and P° normalizes (t)X. Since

(10X, Q] < QN ()X < Cs(Yp) = Op(P)

we conclude that [t, P°] < O,(P) and thus also [t, P] < O,(P). Hence, P normalizes (t)O,(P)
and thus also OP((t)O,(P)) = (t)Y7. It follows that P normalizes Y7, which contradicts (3). This

completes the proof of Theorem 2.
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(3.2) Suppose that OP(P) < (z, A), where z is a p-element in P and A a normal subgroup of
Sin Q. Then OP(P) < (z, A).

Proof. Let Py = (x, A) and P, = OP(P). Note that P; £ Cp(Yp) by our choice of P, so P; <
(AF) by (1.3)(b). Note further that [Cp(Yp), A] < O,(P) since A < Q and that P; < PyCp(Yp).
It follows that

P < (A7) = (A™) < (A0)0,(P).

Since (A1) is normal in PyO,(P) we get that

Py = OF((A7)) = OP(Py0,(P)) = OP(Py).

Hypothesis II. Assume Hypothesis I and Py (S) = Pp(S) U P5(S). Further assume that

there exists P € P(5) such that (P, P) is an amalgam and N ~(Zo) is a maximal subgroup of P.
Our goal, which we will achieve in (3.9), is to prove that no group H satisfies Hypothesis II.
(3.3) Assume Hypothesis I Let 2 € P and O,(P) < N5(Z§). Then z € N5(Zo).

Proof. Assume first that J(5) < Op(ﬁ). Then J(S) is normal in P and thus not normal in
P since (P, P) is an amalgam. Hence, by (3.1) Sy = B(S) and Zy = Q1(Z(J(S))). But then Zj is
normal in P, a contradiction. Thus, J(S) is not normal in P. Since P is minimal parabolic we get
that Nz (J(5)) < N5(Zp) and that N5(Zp) is self-normalizing.

Assume now that © ¢ N5(Zo) but Op(P) < N5(Zf), so N5(Zo) # Nz(Z§). We choose x in

addition such that |T'| is maximal, where

0,(P) < T € Syly(N5(Zo) N Np(Z5).

Note that O,(P) <T'NS.

After conjugation in N(O,(P)) we may assume that T1 := Np(Op(P)) < S,s0 Ty =TNS.
Note that T & Sylp(]B) since P is minimal parabolic; in particular T is not a Sylow p-subgroup of
N5(Zg). Hence, the maximality of T' yields

(1) Np(T) £ N5(Zo).
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From (1) and N(J(S)) < N5(Zy) we get:
(2) J(S) # J(T) and J(S) £ T.
In particular J(S) £ O,(P), and (3.1) and (2.7) yield
(3) So = B(S) = J(S)0,(P) and [Q1(Z(Jo)), J(S)] = Zo = Qu(Z(J(S))), where J :=
J(0,(P)).

Assume that J(17) # Jo. Since @ < T the Q-transitivity and (2.1) imply
So = J(11)0,(P) < T.

This contradicts (2) and (3). We have shown:

(4) Jo = J(Th).

Since (P, P) is an amalgam and O,(P) < T} we get from (4) Jy £ O,(P) and thus Nz(Jo) <
Nz(Z).

Set Ty := Nr(Jo) and note that Jo # J(T2) by (1). There exists y € Nz(Jo) such that
Ty < SY. From (3) we get

[Q1(Z(Jo)), J(S)¥] = Zo,

in particular J(T%) < Ny (Yp) since Yp < Q:1(Z(Jy)). Hence also T5 := (O, (P), J(T2)) < Nu(Yp),
and O,(P) = Cr,(Yp) is normal in T3 since O,(P) € Syl,(Ng(Yp)). It follows that T5 < T; and

thus by (4) Jo = J(T»), a contradiction.
(3.4) Assume Hypothesis II. Let V = (Yf). Then V is abelian.

Proof. Set Vj = (Z(;};>. By Hypothesis I and (1.2)(b) Yp < @ and thus V < Op(ﬁ) < S.
Assume that V is not abelian. Then there exists # € P such that A := YE £ Op(P). Then
(2.1) and the Q-invariance of A show that [V,Yp] = [A,Yp| = Zy and AO,(P) = VO,(P) = Sp.
Moreover Vp < Z(V) < O,(P), and Op,(C'I;(VO)) < Op(JS) since Z is not normal in P.

There exists y € P such that (V,V¥)Cp«(Yp) = P*. Since V is contained in ) and normal in
S (3.2) implies OP(P) < (V,V¥). Hence Z(P) =1 gives Z((V,V¥)) = 1.

Note that Vy < O,(P) < SY and thus

Vo, Vil < VonVy < Z((V,VY)) = 1.
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Let 2/, z € P such that for Ay = Y7 and Ay = Y7
(A1, As) = Z§ # Zo.

It follows that U := (A;, A2) < O,(P). In addition Vy < Op/(C’g(Vo)) <C, (5)(

Vy) and thus [A;, A2, VY] = 1. It follows that Z§

Z§) and thus
[Voy’U] S ‘/Oy N VO = 1. Hence U S Cop(gy)(
centralizes V¥ and

Z5 < Z((V,V¥) =1,

a contradiction.

Notation. From now through (3.9) we will apply the amalgam method to the amalgam
(P, P). With one exception we will use the standard terminology (see [DS], [KS] and the proof
of Theorem 1). In particular we choose a, 3,a’ € T" so that (a,a’) is a critical pair and so that

{Ga,Gp} ={P, P}. The exception to standard notation is the definition of Zs. For § € T' we define
Z(g = Yrg(S .

In addition, we define for g € G, 6 = a9 and A = 39
Z5 = Cz,(OP(Gy)), Qxr=QY, Z(6,\) = 22, C\ = (9,
Vi = (z"|he Gy, x€ Zsand [x,89) < Z3).
Note that Z3 is normal in G and thus [V, Q\] < Z}. Note further that

Vi =((Zs N V)9,

(3.5) Assume Hypothesis II. Then Z = Y and P =G

Proof. Clearly Z = Y7 implies P= Gp. Thus, we may assume that Z # Y. Then by (1.3)(b)
Cs(Yz) = Op(P) and [Zy, Zor] # 1. Let 1 # @ € [Za, Zur).

Assume that Go = P. Then Z, < Y5 < Z(Q) by (1.2)(b) and Cy(x) < C by Q-Uniqueness.
Since Z, £ Qq we get Gy L C. Tt follows that G is conjugate to P.

Hence, after switching to another critical pair we may assume that G, = P. (3.4) shows that
b> 2. Let @ — 1 € A(a) such that (Go—1 N Ga, Zo) = Gy and set A 1= Zy—1(Zo N Qy). Since

b > 2 we have

(*) [Za—laA, Za/] =1.
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Assume first that [Z,_1,A] =: R # 1. As above Cy(R) < 5a_1 since G,_1 is conjugate to P.
Hence (%) gives

(ch—hZa’> - <Ga—17Ga> < 504—17

a contradiction.

Assume now that [Z,_1,A] = 1. Then Z,_1 < G, and
Zo/ N Qa = C1ZO(/ (Za) < CZQ/ (Zafl)’

while (2.1) gives

‘Za/CZa (Za’)| = |Z0c’/CZar (Za)|-

It follows that
() ‘Zo//CZQ/(ZaZa—l)’ = ’Za’/CZa/(Za)’ =12a/Cz2,(Zar)| £ Z0Zu-1/Cz0 20, (Zar)l.

According to (2.1)(e), this time applied to G/, equality holds in (xx), so Zo_1 < Z,Q. and
[Zo-1,Z0') <[ Zoy Zor] < Zo. Hence, Z,_17Z,, and thus also [Z,—_1,Q,] is normal in G,. Now the
irreducibility of Z, and (1.2)(e) yield Z,—1 < Z,. But then Q, < Q,—1 and thus also Q, < Qs.
Since Zo < Qp (2.1) and (3.1) give Sy < Qg and Sy = B(S). Hence, Z, is normal in P, which

contradicts Hypothesis II.
(3.6) Assume Hypothesis II. Then [Z,, Zo/| = 1.

Proof. Asssume that [Z,, Z,/] # 1. From (3.5) we get that P= Gp and Zg = Z. In particular
b is even, and G, is conjugate to G,. Moreover, (3.4) gives:

(1) Vp is an elementary abelian subgroup of Q3, and b > 4.

Pick o/ +1 € A(/) such that Z(o/, o’ +1) # Z(a/,o/ —1). The Qo 41-transitivity shows that
OP(Gar) < (Za Qu+1)C,, (Zar)- So (3.2) yields OP(Go) < {Za, Qur1)-

(2) ZoaNVj < Z(a,B).

Note that Sy = QQ<Z§B> by (2.1) and Q-transitivity since Z, € U(P), so [ZE, So] = 1. Hence

7% < Z(a, ). Moreover

D :=[Za NV}, 5] <[Za NV5,QaQp] < [V5,Qp] < Z5.
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Note that D is Q-invariant. Hence, the action of Sy on Z, and the Q-transitivity either give D = 1,
or D = Z(a, ). The first case implies (2). In the second case Z(a, 3) = Z} is normal in G g, which
contradicts Hypothesis II.

(3) Varir < Qava

This follows from (2) since Z,42 centralizes Z(u,a’ 4+ 1) for all u € A(a/ +1).

(4) Let A <V}, such that OP(Go/) < Ng(AZy). Then A < Z(o/, 0/ +1).

Since (A%aNGa'+1) satisfies the hypothesis of (4) we may assume that A is (Gor N Gary1)-
invariant; i.e. AZ, is normal in Go/. Then also Y := [AZ,/, Q] is normal in G and Y < V7, ;.

If Y =1, then (1.2)(e) shows that A < Q;(Z(Qa)) = Zo since G is conjugate to P. Now (2)
yields A < Z(o/,a/ +1). If Y # 1, then the irreducibility of Z, gives Z,» <Y, which contradicts
(2).

(5) Vi1 £ G

Assume that V3, | < Go. Asb>2and thus V| < Qu, (2.4) gives

[ch V;’—i—l] < [Zaa Za’HZa N Qa” Vof’—i—l] < Za'V;’-i-lv

80 ZoV}i y is mormal in (Zy,Gor N Garg1) = Gor. Now (4) shows that V., = Z(o/,a' + 1),
which contradicts Hypothesis II.

By (1.3)(b) and Hypothesis II Qs is the unique Sylow p-subgroup of N,ca3)Na,(Z(p, 5)).
Hence, by (5) there exists p € A(8) such that V, |, £ Ng,(Z(p,3)). Note that by (3) and (3.3)
also (Qy" ) £ N, (Z(p, B))-

(6) Z, < Qur.

Assume that Z, £ Q.. Then (p, ') is a critical pair, and Z(p, 8) = ([Z,, Za/]65> centralizes
<QX:/“ ), a contradiction.

(7) Set R := [Z,, V3 1]. Then |R| <|Z(p, ().

Note that by (3) and (6) R <V}, NVg and by (1) [R,Zs] = 1. Since [V}, Qarq1] <
Zk 1 < Zo we get that RZ, is normalized by (Za, Qas41) anf thus by OP(Go/). Now (4) shows
that R < Z(a/,a’ 4+ 1); and equality does not hold since Z,, centralizes R but not Z(a/, o’ + 1).

We now derive a final contradiction. Let t € V| \Ng,(Z(p,3)), U = (Q,,t) and Yy = Cz, (1).
Note that

12,/ Yol <1120t <1120 Vil

30



so by (7) |Z,/Yo| < |Z(p,)|- On the other hand, by (3.1) |Z,| = |Z(p, 8)|* and so |Yo| > |Z(p, B)|.

Set Up := (QY) and Y1 = Cz, (Up). By (3.3) Uy £ Ng,(Z(p,3)). Since Yy <Yy we also have
[Yi| > |Z(p, B)|. Moreover, Y; and Uy are @s-invariant.

Let x € Gg such that a® = p. Asseen above S§ < Q3Q,, so Y; is Sg-invariant. Moreover, since
|Yi| > |Z(p, B)| we also have [Y1,S§] # 1. Now (3.1), applied to P* (= G,), and the Q-transitivity
yield

Z(p, B) = (V1,319 < V3.

This contradicts Uy £ Na,(Z(p, 3)).

(3.7) Assume Hypothesis II. Let A < P and Yy := [Yp, AN P]. Suppose that A £ N5(2o)
and [Yp, A] = 1. Then either Yy = 1, or the following hold:

(a) p=2and P = S; wr Cy or Ss.

(b) |JANP/AN O2(P)| =2, |Yo| = |Zo| = 4 and Cp«(Yy) = O2(P).

Proof. Set Ag:= AN P, U := (O,(P),A), Uy := (O,(P)V) and Y; := Cy, (Up). Note that

(1) Yy < Y1, and Uy is Q-invariant.

Hence Y7 is the largest Q-invariant subgroup of Yp centralized by Uy. By (3.3) Uy € N };(Zg)
and thus

(2) Zp £ 1.

From now on we assume that Y # 1 and use the notation of (3.1); in addition we set g := p™
and R; := [V;, Ap], i = 1,...,r. It is convenient to treat the following two cases separately:

(%) There exists ¢ € {1,...,7} such that 1 # R; < V;.

(xx) R; £ V; for all ¢ € {1,...,r} with R; # 1.

Case (x): We have Ag < Ng(V;) and thus Ay < Ny(K;). If 4y < K;C5(V;), then R; =
ZyNV; < Yy, and (1) and the Q-transitivity give (R®) = Zy < Y3, which contradicts (2). Hence,
by (2:5)(e) |40/Cay (Vi) =2 = p.

Assume that r > 1. Then there exists z € Q such that K7 = K; # K; and

It follows that
[Ri, K;N S| = [Ri,[K;nS,7]] < [R;,Q),

31



so by (1) [Ri, K;NS] = ZoNV; < Y. Now as above the Q-transitivity yields Z; < Y7, which
contradicts (2). Hence r = 1. Thus |4g/Ao N O2(P)| = 2; moreover |Yp/Cy,(Ao)| = ¢ and
Cy,(Ag) = Yy since Ay acts as a field automorphism on P .

We have proved:

(3) In case (x) r=1,p=2, Cp«(Yy) = Oz2(P), |[Ao/Ao N O2(P)| =2 and |Yp/Yy| = q.

Case (xx): Fix ¢ € {1,..,r} such that R; # 1. Then Ay £ Np(V;) since R; £ V;, and from
(2.5)(e) we get that [Ag/Ca,(Vi)] = 2(= p) and there exists j # i such that (V;*°) = V; x V;. Note
that

ViV = Vi(Yi N ViV;) = V(i N Vi),
Assume that r > 2. Then by the Q-transitivity there exists € @ such that V* ¢ {V;,V;}. In
particular, there exists b € (K; x K¥) N Q such that
Vin Zo = Visb] < ViV, 0] = Ve, = Y0,
As above, (1) and the @Q-transitivity give Zy < Yj, which contradicts (2). We have shown that
r=2,80 Na,(Vi) = Ca,(V;) implies |Ag/Ao N O2(P)| = 2.

For every ¢ € P*\ O2(P) we have [Yy,c] # 1 since Yp = YyV; for i = 1,2. It follows that
Cp+(Yy) = Oa(P). Moreover V; N Yy = 1 implies |Yy| = |V;| = |Yp/Yo| = ¢*. We have shown:

(4) In case (xx) r = 2 = p, Cp«(Yo) = O2(P), |Ao/Ao N O2(P)| =2 and |Yp /Y| = ¢°.

Assume that case (a) of the Local P!-Theorem holds for P. Then r = 1, QO2(P) = Sp and
[y, Q] = Zy for every y € Yp \ Zy. As Yo £ Zy by (3), this gives Zy < Y3, which contradicts (2).
We have shown:

(5) Case (b) of the Local P!-Theorem holds for P; in particular Mg (P) = {M}.

As a trivial consequence of (5) we get:

(6) Nir(J(Os(P))) < M.

Let O3(P) < T € Syly(Uy) and Ty = Np(J(O2(P))). Note that Tp < M by (6). By (3.1)
J(S) < Sp and by (2.1)(e)

A(O:(P)) € A(S),
so J(Tp) < S§ for some x € M. According to (5) P*Chp(Yp) is normal in M, hence J(Tp) <
P*Cp(Yp). Now by (1), (3) and (4) imply

J(To) < Cu(Yo) N P*Cr(Yp) = Cp«(Yo)Crm(Yp) = O2(P)Cr(Yp) = Cr (Yp).
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Since O5(P) is a Sylow 2-subgroup of Cj/(Yp) we conclude that J(Tp) = J(O2(P)) and thus
also J(T') = J(O2(P)); in particular T = Np(J(O2(P))) = To < M. In addition, (3.3) implies
T< Ng(ZO) and (5) implies Yp = Yj;. We have shown:

(7) J(T) = J(O2(P)), and T normalizes Yp and Zj.

According to (5), (6), (7) and (b)(ii) of the Local P!-Theorem Ny, (T) < M NC < Ny (Zo).
Since Uy £ N5(Zo) there exists ' € Py, (T) such that F' £ Ny (Zo); see (1.3)(a). As 0,(P) <
Ny (Up) we get [Ug, O2(P)] < O4(Uyp); in particular, F is O(P)-invariant and [F, O2(P)] < Oy (F).
In addition, (3.3) and (7) show O3(P) £ O2(F) and thus by (1.3)(c)

(8) O*(F) = [0*(F), 02(P)] < (O2(P)").

Set W = (Y'). Clearly [W,0?(F)] # 1 since by (7) O?(F) £ Ng(Zp). Moreover, (3.4) shows

that W is elementary abelian. Assume that O3(P) N O2(F') is normal in F'. Then by (8)
[O(F), 05(P)] < [{O2(P)"), 02(P)] < O2(P) N Os(F)

and W = (Y9 ) < Z(0,(P) N O5(F)) since Yp < Z(05(P) N O5(P)) by Hypothesis I and
(1.2)(b). The P x Q-Lemma implies that [Cyy (O2(P)), 02(F)] # 1; in particular Y, 02(P)] # 1,
which contradicts (3.5). We have shown:

(9) O2(P) N O2(F) is not normal in F.

Note that F £ M since M N C < Ny (Zy), so by (6) and (7) J(O2(P)) = J(T) £ Os(F).
Assume that there exists only one non-central F-chief factor (in a given F-chief series) of W. As
by (9)

[0*(F), O2(F)] £ Oo(F) N O2(P) and Co,(ry(W) < O2(F) N O2(P),

we get [O%(F),O2(F), W] # 1. Thus by [Ste2, 3.3] there exists B < Oz(F) such that
[Yp,B,B] =1+ [Yp,B] and |[Yp, B]| < |B/Cp(Yp)|.

The structure of P given in (3.1) shows that B < P*. But then (1), (3) and (4) imply B <
Cp+(Yo) = O2(P) = Cp-(Yp), a contradiction.
We have shown that there are at least two non-central F-chief factorsin W. Let By € A(O2(P))

with By £ O2(F'). From (2.1) we get that

[B1/Cp, (W) < [W*/Cw-(B1)]
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for all non-central F-chief factors W* of W.
We now apply the gre-Lemma [Ste2, 3.1(c)] to F' and B; and get (¢ — 1)(rc¢ — 1) < 1 (where
q,  and c are the parameters defined in [Ste]). Since by [Cher] r > 1 it follows that ¢ < 2. Hence,

there exists B < O(F') such that
(+) |B/Ce(YP)I* = |Yp/Cy,(B)].

Again by (3) and (4) Cp«(Yy) = O2(P) and thus BN P* < Oy(P).

As above, we now treat the two cases (x) and (x*) separately. It remains to prove the
isomorphism type of P.

Assume case (). Then B induces a field automorphism of order 2 on P . Hence (+) gives
|Yp| =42 and P = S;.

Assume case (+*). Then Yp = YyV;, i = 1,2, and again |B| = 2 and |Yp| = 42, so P = S3 wr So.

L-Lemma. Let X € Py(S) and A < § such that A £ O,(X), and let M be the unique
maximal subgroup of X containing S. Then there exists a subgroup O,(X) < L < X with A <L
satisfying:

(i) AO,(L) is contained in a unique maximal subgroup Lo of L, and Ly = L N M9 for some
ge X.

(ii) L = (A, A*)O,(L) for every x € L\ L.

(iii) L is not contained in any X-conjugate of M.
Proof. For U < X set
U:=(A%]ge X, A9 <U).
Note that Nx (U) < Nx(U*); in particular Nx (S*) < M. Choose Y among all X-conjugates of M
such that Y # M and for T' € Syl,(Y N M)

|T*| is maximal.

Without loss of generality we may assume that T < S. Let h € X such that T < S" <Y and set
N := Nx(T*) and S; := SN N. Then T # S" since Y # M, so also T < Ngun(T) < NN S". As
T € Syl,(Y N M) this gives N £ M. Since Nx(S*) < M this implies that 7™ # S* and thus also
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T* # S7. Hence, there exists a conjugate B = A9, g € X, such that B < S; and B £ T'. Choose
z € N\ M such that Ly := (B, 2)T™ is minimal, and set L := Lﬁ’_lOp(X).

Since T* # BT* = (BT*)* the maximality of T shows that M is the unique conjugate
containing BT*. In particular, (iii) holds since L; £ M. Moreover, the minimality of L; gives
(i). Let = € Ly \ M. Then M? is the unique conjugate of M containing B*T* and M # M¥, so
B* £ M and (B, B*)T* = L,. This gives (ii).

(3.8) Assume Hypothesis II. Let A < S such that [Vg, A, A] =1 and A £ Q3. Then there
exist 7 € A(B), T € Syl,(GgN G,) and L < G such that for L(7) := Np(Z(1,3)), W := (ZL)
and W* := (v |v e Z,;, he L, [v,T] < Z7) the following hold:

(a) Qs < AOL(L) <TNL e Syl,(L(1)), and L(7) is a maximal subgroup of L.

(b) L = (y, A*)O,(L) for every x € L and every y € L\ L(1)".

(c) [W*,0P(L)] # 1 and [W,O0P(L)] £ W*.
(d) Let U be a non-central L-chief factor of W. Then Cy(A) = Cy(a) for every a € A\ O, (L),

and [U/Cp (A)] = [A/AN Op(L)|.

Proof. According to (3.1), (3.4), (3.5) and (3.6) b > 3 and o’ € %; in particular Q, £ Qg
for all 7 € A(p) since Z, < Q-1 and Z, £ Qo We apply the L-Lemma with G in place of X.
Then there exists Qg < L < Gg and 7 € A() such that
(i) L(7) is the unique maximal subgroup of L containing AO, (L), and AO,(L) < T NL €
Syl,(L(7)) for some T' € Syl,(Gg N G;).
(ii) L = (A, A%)O,(L) for every x € L\ L(1).
(iii) (L, To) = Gg for every Ty € Syl,(Gp).
Claim (a) follows directly from (i).

Let y and z be as in (b). Then 3/ :=y* € L\ L(7) and by (ii)
L = (4, A")0y(L) = (A,y/) Op(L).

This implies (b).
For the proof of (c) assume first that [W*,OP(L)] = 1. Then W* < Z, and [W*,T] < Z3 < W*
since L = OP(L)(TNL). By (iii) W* is normal in (L, T) = G. But this implies that W* = Z3 = Z;,

a contradiction.
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Assume now that [W,0P(L)] < W*. Then W = W*Z, and
Z3W, Qs] = Z5[Z-.Qs) < Z-.

Hence ZE[ZT,Qg] is normal in (T, L) = Gg. On the other hand @, £ Qg and thus by (1.3)(b)
Z:, @g] < Zj. Let g € G such that 7 = af. Then the action of P9 on Z;, as described in (3.1),
shows that

Z:,Qs N S§] = Z(r,B) < Z,

which contradicts Hypothesis II. Hence, (c) is proved.
Note that L is minimal parabolic (with respect to "N L and L(7)). Hence by (1.3)(b)

Crar(U) = Op(L) for every non-central L-chief factor U in W. (2.1)(e) shows that
U/Cu(A)| = |[A/ANOy(L)].

Let a € A\ Oy(L). Then by (1.3)(b) there exists € L such that a ¢ L(7)*. By (b) L =

(a, A*)Op,(L) and thus, together with the quadratic action of A on U,

U=[U,a] x[U A" = Cy(a) x Cy(A®);

in particular Cy(a) = [U,a] < Cy(A) and equality holds. This is (d).
(3.9) No group satisfies Hypothesis II.

Proof. Assume Hypothesis II. By (3.1), (3.4), (3.5) and (3.6) [Za,Zo]) = 1 and b > 3. In
particular, o’ € 3% and Vj acts quadratically on V,, and vice versa. We apply (3.8) with (G, Vj)
in place of (G, A) and choose the notation 7, L, T', W, W* as there.

(1) Z, £ G, for every p € A(B) and p € 7% such that Z, £ L(u).

Assume that there exist p € A(3) and pu € 7% such that Z, £ L(p) but Z, < G,. Let z € L
such that ¢ = 7. Then, with the notation of (3.1) applied to G, there exists a submodule V; < Z,
such that V; £ L(u). By (3.8)(b) (Vi, V§)Op(L) = L. On the other hand Z, < G,, and (3.1)

together with the quadratic action of Z,, on Z, gives either

Vi, Z,OW*| =1 or Vi, Z,] = Vi, Z, N W],
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In the first case Z, N W* is normal in L. Hence W* = Z,, N W*, and by (1.3)(b) [W*,0P(L)] =1
since V; £ Op,(L). In the second case [W,0P(L)] < W* since OP(L) < (V:F), so both cases
contradict (3.8)(c), and (1) is proved.

In particular, (1) together with V3 £ O,(L) gives W £ Q. Hence, we are allowed to apply
(3.8) to (G, W) in place of (Gg, A). Again we use the notation of (3.8), but this time indicated
by ~ to distinguish from the above notation, so 7, E, TV, W, W* are given as there. With the same
argument as above we get

(2) Z y G for every peA(d)and € L such that Z Z L(7).

As above, (2) implies W % O,(L). We now choose p € 7% and [i € 7L such that W £ L)
and W £ L(f). From (1) and (2) we get that Z £ Op(L) and Z,, £ Op(i). Moreover, we may
assume that |W/W N OP(Z)\ <|W/Wn Op(L)|, since the other case follows by the same argument
with the roles of W and W reversed.

From (3.8)(c) we get that there exist two non-central L- chief factors U; and Uy in W. As

Z £ 0,(L) (3.8)(d) implies that Cy, (Vs) = Cu;,(Z5), so, again by (3.8)(d),
W/W 0 O0,(L)| < |Vis/Vis N Op(L)| < U/ Cur, (V)| = |Us/Cur (Z)].
Hence o
W /W N0, (L) < |U1/Cu, (Z:)||Ua/Cu, (Z5)] < [W/Cw (Z)]
< [W/W N Qx| < [W/W N O, (L)W N G5/W N Q]
< |[W/W N0, (L)[[WNG/W Qx|
On the other hand by (3.7), applied to Gﬁ with A =W, we get |W N GZ/W N Qﬁ| < 2. Tt follows
that
(3) [W/W N Oy(L)| = |W/W NO,(L)| =2 = p and | Z,| = | Z| = 16.
(4) [W/Cw(Z3)| = (W [C5(Z)| = 4.
As a consequence we get from (3)
(5) Z; £ L) and Z,, £ L(i).
Next we prove:
(6) L/CL(W) 2= L/C3(W) = S5
Let t € Zx\ Oz(L) and z € L such that p = 7. Then by (3) and (5) L = (t,#")O(L) and
thus O2(L) < (t~). Hence, (3.8)(c) gives W* £ Cyy (t) and W*Cw (t) # W, and (6) follows for L
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from [W/Cw(Z;)| = 4. A similar argument gives the claim for L.

Set Wy := W and W; := [Wi_1, Qo] for i > 1, and note that W; = ((W; N Z,)h.

(7) Assume that (W; N Z,)W,; 1 = W;. Then W; < Z,,.

Note that W1 = [W;, Qur] < [Z,Wis1, Qu] < Z,Wira. Tt follows that Wi = (W; N Z,,) Wy
for all K > i+ 1 and thus W; < Z,,.

(8) [Z Zu Oo(L)] # 1.

Let A := Z, N Oy(L),and assume that [Zy, Ai] = 1. By (6) L(n) = (L(x) N G)Cr(W).
Suppose that Z, = A1(Z, NW;). Then W = Z,,W; and by (7) W = Z,,. But then Z,, is normal in
(L,Go NG) = Gy, a contradiction. We have shown that Z, NW; < A;. It follows that Z, N W,
is centralized by Zﬁ and thus normalized by L, so Wi < A; and [Wy, O%(L)] = 1. In particular
[Zu,éaf] is normalized by L and centralized by O?(L). Hence, by the L-Lemma (iii) it is also
normalized by G,/ and centralized by O%(Gy/). Since Z(u, ') < [Z,, Qo] we get that Z(u,a’) is
normal in G/, a contradiction to Hypothesis I1.

(9) R := [Z;ﬂ O2(L),Z, N 05(L)] # 1, and R is centralized by a Sylow 2-subgroup of G and
G-

Let A := Z, and 4¢ := ANG;. By (8) Yy = [Zﬁv Ap] # 1, and by (5) A and G, satisty
the hypothesis of (3.7). Then (3.7) shows that |Yy| = 4 and |Ao/Ap N Q;| = 2; in particular
Ay = ANO4(L). Moreover, (3.7) gives |Z;/CZ:(A0) = 4 and thus R # 1 since |Z;/ZJHOQ(L)| =2

The action of G; on Z; also shows that all elements of Yy are centralized by a Syolw 2-subgroup
of Gﬁ' This and the symmetric argument in G, yields the additional claim of (9).

We now derive a final contradiction. According to (9) there exist y € Gg and z € G, such
that R = Zj = Z7,. Then by (1.6) ég = 53, and thus é% = @g, On the other hand, Hypothesis
Tand (1.2)(b) yield Z; < QY, so Z» < QZ, < G,,, which contradicts (2) and (5).

Theorem 3. Assume Hypothesis I. Then Zj is normal in C.

Proof. Assume that Zg is not normal in C. By the definition of C' N u(S) < C. Hence,
Np(S) acts on Pu(S) \ P5(S5), and Theorem 2 implies that Ny (S) < Np(P) and thus also
Ny (S) < Ny (P*) since P* = U(P). It follows that Ny (S) < Ng(So) < Ng(Zp).

According to (1.3)(a) there exists P € P5(S) such that Zp is not normal in P. We choose | P|
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minimal with this property. If (P, ]5) is an amalgam, then (P, ﬁ) satisfies Hypothesis II, which is
impossible by (3.9).

Thus, (P,P) is not an amalgam, and there exists L € Lp(S) such that (P,P) < L. Let
L << M € L;;(S). Then by (1.2) Yz < Y5 and by (1.4) P° < L° < M° < M.

We now apply the Local P!-Theorem to M. Assume that also P < M. Then P < MnC <
N+~ (Zo), a contradiction. Thus, we have P £ M.

Assume first that case (a) of the Local P!-Theorem holds. Then @ < Sy, so Zy < Z(Q) and
thus also W := (ZO;> < Z(Q). Note that

Zy <Yp = [Yp, P’ <[Yy,L°] and W < [V}, L°]

by (1.2). It follows that W < [YM,MO] since Y, < Y~ and L° < MP°. In case (a) [YM,MO] is

a natural SL,(p™)- or Spa,(p™)’-module. In particular, C (Q) = Zp and so Zy = W and

[YA~47M0]
P < Ny(Z), a contradiction.
Assume finally that case (b) of the Local P-Theorem holds for M. Then P° = L9 = M° and

P < Ny (M) = M, which contradicts P £ M.
Corollary 2. Assume Hypothesis I and p = 2. Then P (5) = {P} UP5(S).

Proof. We apply Theorem 2. Then Py (S) = Pp(S)UPz(5), and the structure of P, see (3.1),

implies Pp(S) = {P} U Pny,(2,)(S). Now Theorem 3 yields the assertion.

Corollary 3. Assume Hypothesis I. Suppose that case (b) of the Local P!-Theorem holds for
P <M € £3(S). Then the following holds:

e) @ is transitive on K1, ..., K.

Proof. We are in case (b) of the Structure Theorem. According to Theorem 3 Z; is normal in

C. Hence
(*)  [Np(Zo), Q] < Op(Np(Zp)).
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We apply (3.1). Then either P~ 2 SLy(p™), or the Q-transitivity and (x) show that Nk, (Zo) is a
p-group and r > 2.

In the first case Yp is a natural SLo(p™)-module for P*. Thus, Yp is an F-vector space for
F := Endp-(Yp), and P induces semi-linear transformations on Yp. As Np«(Zp) is irreducible on
Zy, we get from (x) that [Zp, Q] = 1, so @ centralizes a 1-dimensional F-subspace of Yp. Hence, Q
induces F-linear transformations on Yp, and @ < P*. But this contradicts case (b) of the Structure
Theorem.

In the second case (a) — (c) and (e) are clear. For the proof of (d) note that Q-transitivity
yields r = 2 or (d). Assume r = 2, so P/Cp(Yp) = Of (2) and |Zy| = 4. Hence, Theorem 3 shows
that C / Cg(Zo) is a subgroup of S3. If all involutions in Z; are conjugate in C , then @Q-Uniqueness
implies that P < C, which is not the case. It follows that C' = Cx(20)S, in particular Cx(Zo) £ M.
We conclude that Cy(z) € M for all 1 # x € Yp. Now Theorem 3 of [MSS2| shows that Y £ @,

a contradiction.
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4. F-Uniqueness

In this section we treat the exceptional case described in Corollary 3, so in this section we

assuie:

Hypothesis III. Hypothesis I and case (b) of the Local P!-Theorem holds for P < M €
L3,(5); in particular Mg (P) = {M}.

Notation. We use the notation given in Corollary 3 (and (3.1)). Set
F .= Cg(Zo) and Q := {Kl, --~7K7’}-

Recall that by Theorem 3 F' is normal in C , and by Corollary 3
(x) p=2, K; 2 SLy(2), r > 4, and Q is transitive on €.

We will use these facts without further reference.

(4.1) P ﬂé = S()Cp*(Yp) and 6 = C

Proof. Assume that U := Cp-(Yp)Sy < P*NC. Then by Corollary 3 (b) K; < [So, P* N C]S,
for some i, and the Q-transitivity yields P* < C , which is not the case.

Let Z* = (ZC). By Theorem 3 Z* < Zy N Z(Q), and by Q-uniqueness Cp-(z) < P* N C =
SoCp-(Yp) for all 1 # z € Z*. Now Corollary 3 (c) yields |Z*| = 2, s0o C = C.

(4.2) Ny (B(S)) < M.

Proof. It suffices to show that P and Ny (B(S)) are contained in a 2-local subgroup of H since
My (P) ={M}. Assume that this is not the case; i.e. O2((P, Ny (B(S))) = 1. Then B(S) is not
normal in P and by (3.1) B(S) = Sy. Hence, Ny(B(S)) = Ny (So) < Nu(Zy) = C. For every

i=1,...,7 we choose X; < P* minimal with respect to

Then X; € Py(B(S)) and (X;,S) = P. Moreover V; = [Yx,, 0*(X;)] = [Yp, O?(X;)] since Yy, <
0 (Z(0u(P))) = Y.
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Suppose that there is a non-trivial characteristic subgroup A of B(S), which is normal in X;.
Then (S, X1, Ng(B(S))) = (P, Nu(B(S))) < Ny (A), which contradicts Oz((P, Ny (B(S))) = 1.
Hence, no non-trivial characteristic subgroup of B(S) is normal in X;. Now [Stel] gives

[02(X1),0%(X1)] = Vi < Yp. Hence also [O(P),0%(P)] < Yp, and Z(P) = 1 yields
YPZOQ(P):Vl X"'XVT.

Since @ is transitive on {V1, ..., V,.} and Ny (B(S)) does not normalize Yp there exists t € Ny (B(S5))
such that R := [V3, V{] # 1. Tt follows that also [V}, V}’'] # 1, so

R' = [V1t7v1t2] =[V/,Vi]=R
since (V1, Vi) < B(S) < Np(V{). Ast € C and Yp is normal in Q the Q-transitivity gives
(x) So=YpY}and Yp NY} = Z,.

Let U = Ny (R) and W = O3(U). Then (t, Xo,...,X,) < U, and V; N W is X;-invariant for
every ¢ > 2. It follows that either there exists an ¢ > 2 such that V; < W, or V, "W =1 for
every ¢ > 2. The first case gives V! < W and so V;! < O3(X5---X,). On the other hand, by (x)
[Yp, V] # 1, so we get that [V!, V4] = R. But this implies that R < V! and R = R' < V;, which is
impossible since Vi NV; =1 for ¢ > 1.

We have shown that V; N W = 1 for i > 1. It follows that [So N W,0?(X2)] = 1. Since
So N W is normalized by X5 and W we get [(Sp N X2)*, W] < Sy N W for every = € X5. Hence
(W,0%(X5)] < SoNW and [W,0%(X3),0%(X3)] = 1. But then U is not of characteristic 2, a

contradiction.
(4.3) Let Sy < T, T a 2-subgroup of H. Then Sy is normal in Ny (T) and Ny (T) < M N C.

Proof. Note that Ng(T) < Ny (B(S)) < M by (3.1) and (4.2). Moreover, by the Structure
Theorem, case (b), Yp = Y3 and P*Cy;(Yay) is normal in M, so T'N P*Ch(Yar) = So. Hence
Theorem 3 gives Ny (T) < N (So) < M N C.

(4.4) Let L € Ly(S). Then either L < C,or P<L <M and F £ L.
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Proof. Assume that L £ C. Then (1.3)(a) and the Corollaries 2 and 3 show that P < L < M.
If in addition F < M, then the Frattini argument and (4.3) imply that C = FNg(Sy) < M, a

contradiction.

(4.5) Suppose that Sy < T < S such that |S/T| =2 and S = TQ. Let T < L < H and
O2(L) # 1. Then one of the following holds:

(a) L < M.

by L<C.

(¢c) L e Ly(T).

Proof. Let U = Ny (O2(L)) and T < Ty € Syly(U). By (4.3) Ty < M N C and thus either
T=TyorTy e Sylg(a) and Q < Tp. In the second case Ty = TQ = S, and (4.4) yields L <U < M
or L <U < C. In the first case U € Lg(T) and thus also L € Ly (T).

Notation. From now on we fix a maximal subgroup T of S containing Ng(K7). Recall that

B(S) < So <T. Let Qo:=TNQ and
Lo(T):={U e Ly(T)|U£Cand UNC £ M}.

By Lo(T')« we denote the set of minimal elements of Lo(T").
(4.6) Let P* := P*/Cp-(Yp) and 1 # K < O2(P"). Suppose that K is Qo-invariant. Then
K =02%P") or K = xxeq,X' for some T-orbit Q; of ; in particular [K, Q] # 1.

Proof. Since K # 1 there exist K; € Q and ¢t € Sy N K; such that [K,{] = K|. Let ¢ € @ such
that K # K;, and let ¢ := [t,q] and R := [K,qy]. Then o € SoNQ < Qp and R < (K; x K/)NK
with [R, 7] = K.

Since r > 2 there exists z € @ such that K¥ ¢ {K;, K!}. Let o = [t,z]. Then as above
20 € Qo N Sy, while fngo(Ki x K1) = ZCgo(Ki x K1). It follows that [R,To] = K| < K.

We have shown that K/ < K for every K; € Q such that [K, K;] # 1. Now the action of Q)

on K and ( gives the desired structure of K. Moreover, 7 > 2 implies that [K, Q,] # 1.

(4.7) |S/T| = 2, S = TQ, and T has two orbits ; and Qs on Q such that for Z; :=
Ca, (z(1))(€4) the following hold:
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(a) || =% and |Z;] =2, i=1,2, and

2

(b) Ql(Z(T)) = Zl X ZQ.
Proof. This is a direct consequence of the choice of T'.

(4.8) Lo(T) # 0.

Proof. Let L := Cy(Z4), Z1 asin (4.7). Then L £ C, and by (4.4) LNC £ M since F < LNC.

Now (4.5) shows that L € Lo(T).
(4.9) Let L € Lo(T). Then O5((02(P*),LNC)) = 1.

Proof. Let Lo := (O%*(P*),LNC) and assume that Oy(Lo) # 1. Let t € Q\ T. Then T(t) = S
since T has index 2 in S. Moreover, [t, LN 6] < Qo < 0Ozx(LN C~’) It follows that ¢ normalizes L.
Hence S < Lo(t) and 1 # O4(Lg) < Oa(Lo(t)). This contradicts (4.4) since Ly £ M as LNC £ M
and Lo £ C as O*(P*) £ C.

Theorem 4. Suppose that L € Ly(T). Then

PrL(T) = Pram(T) UP,&(T).

nC

Proof. Assume that there exists X € Pp(T) such that X £ M and X £ C. By (4.2) and
(1.3)(b) neither B(S) nor Q4 (Z(T')) is normal in X. Hence, (2.9) implies that there exists a minimal
parabolic subgroup Xy of characteristic 2 in X such that X, satisfies (2.9)(a) — (e) (in place of
L;); in particular X = (T, Xg), O2(X)B(S) € Syla(Xy) and Xo/Cx,(Yx,) = SL2(2%). We choose

X* < Xy minimal with respect to
B(S) S X and XO = X*CXO(YXO)-

Then X* is a minimal parabolic subgroup and X = (X*,T'). Moreover B(S) € Syla(X*) by (2.7)
applied to X*.
Assume that there exists a non-trivial characteristic subgroup A of B(S) which is normal in

X*. As A is also characteristic in .S we get

(x) X =(T,X*) < Ng(A) and S < Ny (A).
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Hence by (4.4) Ny (A) < C or Ny (A) < M, which contradicts X < Ny (A).

Thus, no non-trivial characteristic subgroup of B(S) is normal in X*. As X* is a minimal
parabolic subgroup the hypothesis of [Stel] is satisfied. We get [O?(X*), O2(X*)] = [Vx+, O%(X™)]
and Yy-/Cy,.(X*) is a natural SLy(2¥)-module for X*/Cx-(Yx+), so [0?(X*),02(X*)] < Yx.
Since [02(X), B(S)] < B(S)N02(X) < O2(X™*) we also get

[02(X),0%(X*)] < Yx and [05(X),0*(X)] < Yx.
As in the proof of (4.9) pick t € Q \ T. Then
(#%) [LNC, 1] <QNT < 0y(LNC).
Assume first that Y& < Oy(X). Then
S < (X,t) < Ng(YxYi)e Ly(S),

and by (4.4) Ny (YxYL) < M or Ny(YxY%) < C. But this contradicts X < Ny (YxY%).

We have shown that Yy £ O2(X). As [Yx/Cyy (Yx)| = |[Y%/Cye (Yx)| we get Yy € U(X)
(for the definition see section 2). Since Y% is normal in T' we conclude with (2.1) that Y05 (X) =
B(S5)02(X). In addition, (2.1) shows that B(S)Cx (Yx)/Cx(Yx) is self-centralizing in X/Cx (Yx).
It follows that O2(X") < Y{O2(X). Hence, for D := O3(X) N O2(X") we get Oz2(X*) = Y{ D and
similarly O2(X) = YxD. This gives

©(02(X")) = ®(D) = ©(02(X));

in particular (X, S) < Ny (®(D)). Now as above (4.4) implies that ®(D) = 1, so O2(X) = Yx and
B(S) = Yx YL

The action of T' on B(S) shows that Yy and Y} are the only maximal T-invariant elementary
abelian normal subgroups of B(S); in particular Yx = Y, and by () L N C normalizes B(S).
Now (4.2) yields L N C < M, which contradicts L € Lo(T).

(4.10) Let L € Lo(T)« and N be a normal subgroup of L that is minimal with respect to
N £ C. Then N = [N, Qo] = O*(L).
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Proof. As N(LNC) € Ly (T) the minimality of L yields L = N(L N C). Hence Ny := [N, Qo]
is a normal subgroup of L. Assume that N # Ny. The the minimal choice of N gives Ny < C,
so NoQp is a normal subgroup of L in C. Tt follows that Qo < O2(NoQp) < Oz(L). But then
[Q,02(L)] < Qo < Oz(L) and S = TQ < Ny (O4(L)), so (4.4) implies that L < C or L < M. This
contradicts the definition of Ly(T).

We have shown that N = Ny. The minimality of N also gives that N = O?(NN). Thus, it

remains to prove that L = NT. Assume now that L # NT. By Theorem 4
Pnr(T) € Pu(T) UP(T).

Since NT £ C the minimality of L shows that NTNC < M. Thus Pyr(T) € Pu(T). As by (4.3)
also N1(T') < M we conclude from (1.3)(a) that NT < M.

Now N = [N, Qo] < P, and N = O%(N) implies N < O?(P*). Since N is also Sp-invariant we
get from (4.1) that [Z, N] is normal in P*. On the other hand by (4.6) [Z, N] = [Z, L], so [Z, L] is

normalized by L and P*. But this contradicts (4.9).

Corollary 4. Let L € Lo(T).. There exists a unique P, € Pr(T) such that P; £ C. Moreover,
the following hold:

(a) Qo £ O2(P1),

(b) 0°(Py) < O*(P*), and

(c) O*(P)Cp«(Yp)/Cp«(Yp) = K| x --+ x K., where {K;, ..., K} is a T-orbit of Q.

Proof. By (4.3) N.(T) < C, so by (1.3)(a) there exists P; € P (T) such that P, £ C. Now
Theorem 4 gives P; < M and again by (4.3) So € O2(Py). Since P*Cp(Yp) is normal in M we
get from (1.3)(c) that O?(Py) = [O%(Py), So] < P*Cuy(Yp).

Let M := M/Cp(Yp). Note that O?(P;) # 1 and by (4.1) (a) and (c) hold. By (a) and
(1.3)(c) O*(Py) = [02(P1), Qo] < [M,Q] < MY < P, so also (b) holds.

Let P, be another minimal parabolic in P, (T'), which is not in C. Then (a) — (c) hold for P,

in place of P;. By (4.6) either

O%(Py)O*(P,)Cp+(Yp) = O*(P*)Cp-(Yp) or O*(Py)Cp-(Yp) = O*(P,)Cp-(Yp).
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Note that [Cp«(Yp),Qo] < O2(P) < T and Qo is normal in S. Hence, in the first case (1.3)(c)
implies that O?(P*) = [0?(P*), Qo] < O*(Py)O?(P1)O2(P*) < L, which contradicts (4.9). In
the second case we conclude that O%(Py)O2(P) = O?(P;)O2(P) and thus O%(O?(Py)O2(P)) =
O?(Py) = O%*(P,). Hence Py = P;.

(4.11) Let X be a finite group and V a faithful GF(2)X-module, and let S € Syl(X) and
Vo = Cy(S). Suppose that F*(X) is simple, V = (V5X) # Vo, and

(%) there exists an elementary abelian subgroup 1 # A < S such that |[V/Cy (A)| < |A].
Then there exists a minimal parabolic subgroup P; containing S such that P, £ Cx(Vy) and
(P, N F*(X))/Oa(Py N F*(X)) & SLy(2%) or Sp.

Proof. A theorem of Gaschiitz (see for example [Hu, 1.17.4]), applied to the semidirect product
of V' with X, shows that V' = Cy(X)[V, X]. Hence, there exists a X-submodule W such that
V := V/W is a faithful irreducible X-module. Moreover, property (x) implies that|V /Cg(A)| < |A].

Thus, the F-Module Theorem for K-groups, see [GM1] and [GM2], gives the conclusion.
F!-Theorem. No group satisfies the hypothesis of this section.

Proof. We will derive a contradiction using the previous results of this chapter. According to

(4.8) there exists L € Lo(T),. We fix the following additional notation:
CL=LNC,V={(Z"TL=L/CL(V).

As in Corollary 4 let P; be the unique element of Pr(T') with P; £ C. Then
(1) O%(Py) < O*(P*) and O*(Py)Cp«(Yp)/Cp+(Yp) = K} x -+ x K/,
where Qy := {Kjy, ..., K5} is one of the two T-orbits of Q. From (1.3)(b) and (1) we get

O*(P)) N Cp-(Yp) = 02(0*(P1)) > O*(P)NCL(V),

in particular

(+) O2(P)/03(0*(Pr)) = K| x -+ x K.

As in (4.10) let N be a normal subgroup of L that is minimal with respect to N £ C. Then
by (4.10)
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(2) N =[N, Qo] = O*(L).

Moreover, since by (4.1) every normal subgroup of L in Cf, centralizes V we get

(3) N is a minimal normal subgroup of L, and Oy(L) = 1.

Next we show:

(4) Cr(V) < M, in particular L # (L N M)CL(V).

Assume that C(V) € M. Then the minimality of L yields L = C(V)P;. It follows from (2)
that

N = NN (O*(P)CL(V)) = O*(P)(NNCL(V))

and

L:NT:[NaQO]T:Oz(Pl)T:PISM7

which contradicts the choice of L in Lo(T).

(5) N NT # 1; in particular N is not abelian.

Assume that N N T = 1. For every prime ¢ the Frattini argument gives a Y, € Syl,(N) such
that T < Ni(Y,) and N = (Y, | ¢ € w(N)).

Let Y, be the inverse image of Y, in L. From (1), (x) and (1.3)(a) we get that Y, < Cy, for

every q # 3. Hence N = Y3C5(Q,), so by (2)

N =[N, Qo] = [Y3Cx(Q0), Qo] = [Y'3, Qo] < V3.

Now (3) shows that N is elementary abelian, moreover N = O?(P;). Thus (4) gives L < M, a
contradiction. Hence, (5) is proved.

Let Q5 be the T-orbit of Q different from Q; = {K;, ..., Ks}. Then by (4.7)
Ql(Z(T)) = Z1 X ZQ, ZZ = CYP(Qi)a

and Py < Ly := C(Zs).

Assume that Ly NC' < M. Then LNF < LiNC < M since Q1 (Z(T)) < Zy. Now (4.3) and the
Frattini argument imply Cp, < N¢, (So)(L N F) < M, which contradicts the choice of L € Lo(T).
Thus L; N C £ M, and the minimality of L yields:

(6) Zy < Z(L), in particular O?(P*) £ L.

Next we show:
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(7) N is simple.

According to (3) and (5) there exist subgroups Cp(V) < N; < NCL(V), i = 1,..., k such that
N =N; x---x N, and Ny, ..., Nj, are simple groups conjugate under 7.

Assume first that N;NCp <T, i =1,...,k. The projection C; of NN Cy, in N; is a subgroup
of N; that normalizes N; N T. Hence by (5) C(Cy x --- x C}) is a proper subgroup of L, and the
minimality of L implies that C; < Cp NN, s0o NNT = NN Cpr. Now (4) yields Cp < M, which
contradicts the choice of L € Ly(T).

Assume now that there exists a component N; such that N; N Cy, is not a 2-group. Then

OQ(Nl ﬂé[/) = 02((N1 ﬂéL)Og(NﬂéL)) # 1 and

[Nl ﬂéL,QO] < OQ(@L) NN < OQ(NQ CL),

so Qu normalizes O?(N N Cp) and thus also Ny. It follows:

(xx) @, normalizes every component of N.
Among all T-invariant subgroups U < N satisfying

() U=U; x---xUy, Uy < Ny, and

(i) 02(P) < U
we choose U to be minimal. Then U N Nj is the projection of O?(P;) into N;. From (*) and (3)
we conclude that UT # L. The minimality of L implies that UT' N C < M and thus by (1.3)(a)
and (4.3) UT < M. On the other hand the minimality of U yields U = [U, Qo] = O*(U). It follows
that U is a Qo-invariant subgroup of O?(P*). Now (4.6) and (6) show that

U:[U,QO] :OQ(ﬁl):Uix XUk;.

By (xx) U; is Qo-invariant. Hence, another application of (4.6) shows that O?(P;) < N;. As
O?(P;) is T-invariant, also N1 is. Since the groups Ni, ..., Nj are conjugate under T we conclude
that £ =1.

(6) J(S) £ CL(V).

Assume that J(S) < Cp(V). Then V < Q1(Z(J(S))) and thus also B(S) < CL(V). Now the
Frattini argument and (4.2) yield L = N5 (B(S))CL(V) = (LN M)CL(V), which contradicts (4).

We now derive a final contradiction. According to (8) there exists A € A(S) such that A # 1.

Hence, the maximality of A implies that |V/Cy (A)] < |A|, so by (7) we can apply (4.11) to L. Thus,
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there exists Cp (V)T < Py < L such that Py is a minimal parabolic subgroup of L, Py £ Cx(Vo),
where V) := Cy(T) = Q1 (Z(T)), and

(* * *) (PO mN)/O2(PO ﬂﬁ) = SLQ(Qk) or Sg.

Since by (6) Vo = Zy x Z < Z(L)Z we get Cp, = Cr(Vp), Py £ Cr, and P, < Py. Now (%) and

(% * %) show that s = 1 and r = 2, which contradicts r > 4.

The proof of the P!-Theorem and the Corollary. Let P < M € £j};(S). Then the F'!-
Theorem and Corollary 3 show that case (a) of the Local P!-Theorem and case (a) of the Structure
Theorem hold for M. The P!-Theorem now follows from Theorem 2 and Theorem 3.

For the proof of the Corollary let L € Locy(P). We may assume that Cy(Yz) < L. By (1.5)

there exists M € L3;(S) such that
P=P'S<L°S <M.

Hence, M satisfies case (a) of the Structure Theorem. In particular, we get from the structure of
M/Ch (YY) and its action on Yj:

(1) (LNMo)/Cran, (Yr) = SLi(p™) or Spax(p™), and [Y1, LNMy] is the corresponding natural
module.

(ii) Lo = (LN My)Cs(Yy) and Cr,(Yz) = Cs(Y)CL, (Yar).
This gives claim (a) of the Corollary.

Assume that Cp,(Y7) # Op(Lo). Then Cr,(Yar) # Op(My), and we get My/O2(My) = Spa(2)
(and p = 2). But then Ly = Mj since otherwise L°/O2(L") =2 SLy(2) and Cf, (Y1) = O2(Lo).
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