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Abstract

Let p be a prime, M a finite group with Op(M) = 1 and V a faithful FpM -module. In
this paper we investigate the structure of M and V under various assumptions related to best
offenders and quadratic action.

Introduction

This paper is the last part of a series of papers ([MS1], [MS2], [MS3], [MS4]) which form together
with [GM1], [GM2], [Ch], [MeSt1] and [MeSt2] the module theoretic background for the classification
of the finite groups of local characteristic p outlined in [MSS1] and in particular, for the Structure
Theorem [MSS2].

Most of the results we present should be of independent interest since they give further insight
in the action of offenders or more generally quadratic subgroups on modules. The results we prove
come in two categories:

1) Consequences of the General FF-Module Theorem, the FF-Module Theorem and the Offender
Theorem (see [MS4, Theorems 1,2 and 3]): Like the Strong Dual FF-Module Theorem 3.1, the
Strong FF-Module Theorem 3.2, the General Point-Stabilizer Theorem 3.6, and the Q!FF-Module
Theorem 4.6.

2) Statements about modules with quadratically acting subgroups: Like the Quadratic L-Lemma
2.9, and the Minimal Asymmetric Module Theorem 5.5.

Let H be a finite group. A p-parabolic subgroup of H is a subgroup that contains a Sylow p-
subgroup of H; and we write parabolic subgroup if it is clear which prime p is meant. In contrast,
for a genuine group of Lie type the subgroups containing a Borel subgroup are called Lie parabolic.
For the definition of a genuine group of Lie type see [MS4]. Also the definitions for the various types
of offenders can be found in [MS4].

Let T ∈ Sylp(H) and V be an FpH-module. Then PH(V, T )) := Op′(CH(CV (T ))) is called the
point-stabilizer of H on V with respect to T .
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The quadratic action on modules will be in the center of the investigation. Therefore the reader
should be familiar with the basic properties of quadratic action, for example that a faithfully and
quadratically acting group on an Fp-vector space is an elementary abelian p-group (see [KS, 9.1.1]).

Several of the proofs require some knowledge of genuine groups of Lie type. So the reader should
also have some understanding of these groups; in particular of their Lie parabolic structure.

In the following GFMT stands for the General FF-Module Theorem and FMT for the FF-
Module Theorem and the Offender Theorem in [MS4]. The last two theorems we regard as one
reference, so a reference like FMT(7) refers to case (7) in the FF-Module Theorem, then the reader
is supposed to look up the properties of the offenders for this given case in the Offender Theorem.
The reader might feel the need to have the article [MS4] at hand while following the proofs.

Acknowledgment: We would like to thank the referee for his immense work, in particular for
all the comments and suggestions that helped us to bring the manuscript into a more readable form.

1 The Kieler Lemma

In this section we discuss a property of finite groups of local characteristic p that is relevant for
our investigations in Section 3. Recall that for p a prime, a finite group G has characteristic p if
CG(Op(G)) ≤ Op(G); and G has local characteristic p if every p-local subgroup has characteristic p.
We start with some elementary properties of groups of (local) characteristic p.

Lemma 1.1. Let G be a finite group. Then G has characteristic p if and only if F∗(G) = Op(G).

Proof. Suppose first that G has characteristic p. Put L = Op(G). Then CG(L) ≤ L. By [KS,
6.5.7(c)], E(G) = E(L)CE(G)(L) ≤ L. Also Op′(G) ≤ CG(L) ≤ L, and since F(G) is nilpotent,
F(G) = Op′(F(G))Op(G) ≤ L. Thus F∗(G) = E(G) F(G) ≤ L ≤ F(G) ≤ F∗(G) and F∗(G) = L.

Suppose next that F∗(G) = Op(G). By [KS, 6.5.8] CG(F∗(G)) ≤ F∗(G) and so G has character-
istic p.

Lemma 1.2. Let G be a finite group of characteristic p and S ∈ Sylp(G). Then the following hold:

(a) Every subnormal subgroup of G has characteristic p.

(b) Every subgroup containing S has characteristic p.

(c) G has local characteristic p.

Proof. (a): Let N EE G. Then F∗(N) ≤ F∗(G) by [KS, 6.5.7]. Now (a) follows from 1.1.

(b): Let S ≤ H ≤ G. Then Op(G) ≤ Op(H), and (b) follows.

(c): Let P be a p-subgroup of G with COp(G)(P ) ≤ P , and let Q be a p′-subgroup of CG(P ). Then
COp(G)(P ) ≤ COp(G)(Q) and so by Thompson’s P×Q-Lemma [KS, 8.2.8], Q ≤ CG(Op(G)) ≤ Op(G).
Thus Q = 1 and CG(P ) is a p-group.

Now let L be a p-local subgroup of G, so L = NG(R) for some non-trivial p-subgroup R ≤ G.
Set P := Op(L). Since R ≤ P ,

COp(G)(P ) ≤ COp(G)(R) ≤ L ∩Op(G) ≤ P.

It follows that CG(P ) is a p-group. Since CL(P ) ≤ CG(P ) and CL(P ) E L, we get that CL(P ) ≤
P .
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Lemma 1.3. Let G be a finite group. Then G has characteristic p if and only if Op(G) has
characteristic p.

Proof. If G has characteristic p, then Op(G) has characteristic p by 1.2(a).
Suppose Op(G) has characteristic p. Note that Op(F∗(G)) ≤ Op(G) ∩ F∗(G) and so by [KS,

6.5.7] Op(F∗(G)) ≤ F∗(Op(G)). Thus by 1.1, Op(F∗(G)) is a p-group. Hence F∗(G) is a p-group
and so G has characteristic p by 1.1.

Lemma 1.4. Let G be a finite group of local characteristic p.

(a) Let N EE G and L be a p-local subgroup of G. Then N ∩ L has characteristic p.

(b) Every subnormal subgroup of G has local characteristic p.

(c) Let S ∈ Sylp(G) and N E G. Then SN has local characteristic p.

Proof. (a): Let 1 6= P ≤ G be a p-subgroup. Then NG(P ) has characteristic p since G is of local
characteristic p. As NN (P ) is subnormal in NG(P ) we get from 1.2(a) that NN (P ) has characteristic
p.

(b): This follows from (a).
(c): Let 1 6= P ≤ S. By (a), NN (P ) has characteristic p. Since Op(NS) ≤ N , Op(NNS(P )) E

NN (P ). We conclude from 1.2(a) that Op(NNS(P )) has characteristic p and then by 1.3 that NNS(P )
has characteristic p.

Lemma 1.5 (Kieler Lemma). Let G be a finite group of local characteristic p and S ∈ Sylp(G),

and let E be a subnormal subgroup of G such that p
∣∣|E|. Then CE(Ω1Z(S)) = CE(Ω1Z(S ∩ E)).

Proof. If E = G, there is nothing to prove. Thus, we may assume that E 6= G. Put Z := Ω1Z(S) and
Z0 := Ω1Z(S ∩ E). We proceed by induction on |G/E||G|. Let M be a maximal normal subgroup
of G containing E. Then M < G, S ∩M ≤ Sylp(M), and by 1.4(b) M has local characteristic p, so
by induction

CE(Z0) = CE(Ω1Z(S ∩M)).

If E 6= M , then also by induction

CM (Ω1Z(S ∩M)) = CM (Z),

and the lemma follows. Thus, we may assume that E = M . By 1.4(c) ES has local characteristic
p, and so by induction we may assume

1◦. E is a maximal normal subgroup of G and G = ES.

Set C := CG(Z ∩ E). Since p divides |E|, S ∩ E 6= 1, and by (1◦) S ∩ E is normal in S,
so 1 6= Z ∩ E ≤ Z0 and CG(Z0) ≤ C. Note that |C/C ∩ E| ≤ |G/E| and that NG(Z ∩ E) has
characteristic p. Since C E NG(Z ∩ E) also C has characteristic p by 1.2(a). Hence, if |C| < |G|,
then by induction

CE(Z) = CC∩E(Z) = CC∩E(Z0) = CE(Z0),

and the lemma follows. Thus, we may assume G = CG(Z ∩ E) and so

2◦. Z ∩ E ≤ Z(G), and G has characteristic p.
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We now treat the cases Z ≤ E and Z � E separately.

Case 1: Z � E.

Put V := Ω1Z(Op(G)). By (2◦) Z ≤ CG(Op(G)) ≤ Op(G) and so Z ≤ V . By (1◦) G = EZ
and so V = (V ∩ E)Z. In particular, V = (V ∩ E)× Z1 for some Z1 ≤ Z. Since Z1 is S-invariant,
Gaschütz’ Theorem [KS, 3.3.2] also gives a G-invariant complement Z2 for V ∩ E in V . But then
Z2 ≤ Ω1Z(G), and G = EZ yields

Z = Z2 × (Z ∩ E) and S = Z2 × (S ∩ E).

It follows that Z0 = Z ∩ E and CE(Z) = CE(Z0), and the lemma is proved in this case.

Case 2: Z ≤ E.

Then Z ≤ Z0 and by (2◦)

3◦. Z ≤ Z(G).

Hence CE(Z) = E and it remains to show that E centralizes Z0. Put V := Ω1Z(Op(E)). By
1.2(a), E has characteristic p, and so Z0 ≤ CE(Op(E)) ≤ Op(E). Thus Z ≤ Z0 ≤ V and so also
〈ZG0 〉 ≤ V . We now investigate the homomorphism

π : Z0 −→ V with x 7→
∏

U∈E/S∩E

xU ,

where the product runs over all cosets U = (S ∩ E)t, t ∈ E and xU := xt. Note that xU is well
defined since S ∩ E centralizes x.

The following elementary properties of π are easy to check:

– (xπ)s = (xs)π for all x ∈ Z0 and s ∈ S.

– Z0π ≤ CV (E) ≤ Z0.

– π|CV (E) is the multiplication by |E/S ∩ E| and thus an automorphism.

– Ckerπ(S) ≤ Z ≤ CV (E) by (3◦).

Let x ∈ Z0. By the second property, xπ ∈ CV (E) and so by the third xπ = yπ for some y ∈ CV (E).
Then y−1x ∈ kerπ and so Z0 ≤ CV (E) kerπ. From the third property we get that kerπ∩CV (E) = 1.
and so Z0 = CV (E)× kerπ . Moreover, the first property implies that kerπ is S-invariant. Now the
last property shows that kerπ = 1 and Z0 = CV (E). Hence CE(Z) = E = CE(Z0) and the lemma
also holds in Case 2.

Corollary 1.6. Let H be a finite group, E EE H, and V be a finite dimensional FpH-module.
Then

CE(CV (T )) = CE(CV (T ∩ E)) = CE(C[V,E](T ∩ E)) for T ∈ Sylp(H).
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Proof. Observe that the corollary holds for H if and only if it holds for H/CH(V ). Thus, we may
assume that V is a faithful H-module.

Let G := V oH be the semidirect product of V and H, Ẽ := V o E and S := V o T . Then G
is of characteristic p since V is faithful, so G is also of local characteristic p by 1.2(c). Moreover,

CV (T ) = Ω1Z(S) and CV (T ∩ E) = Ω1Z(S ∩ Ẽ).

Hence 1.5 implies CE(CV (T )) = CE(CV (T ∩ E)). This is the first equality of 1.6.
Pick R ≤ CV (T ∩E) such that [V,E]+CV (T ∩E) = [V,E]⊕R. Then Gaschütz’ Theorem shows

that [V,E] +R = [V,E] + CV (E) and thus

CV (T ∩ E) = C[V,E]+CV (E)(T ∩ E) = C[V,E](T ∩ E) + CV (E).

Now also the second equality of 1.6 follows.

Lemma 1.7. Let H be a finite group, E EE H, and V be a finite dimensional FpH-module. Let
A ≤ T ∈ Sylp(H) such that A normalizes E and V0 ≤ CV (Op(E)). Put V := V/V0. Then the
following hold:

(a) PE(V, T ∩ E) = PE([V,E], T ∩ E) = PE([V,Op(E)], T ∩ E) = Op′(E ∩ PH(V, T )).

(b) PEA(V, T ∩ EA) = Op′(EA ∩ PH(V, T )).

(c) PE(V , T ∩ E) ≤ PE(V, T ∩ E) ≤ PH(V, T ) and Op(PH(V, T )) ∩ E ≤ Op(PE(V , T ∩ E)).

Proof. Note that for any two subgroups X and Y of a finite group, Op′(X ∩ Y ) = Op′(X ∩Op′(Y )).
In particular,

Op′(CE(CV (T )) = Op′(E ∩ PH(V, T )).

(a): By 1.6 Op′(CE(CV (T )) = PE(V, T ∩ E) = PE([V,E], T ∩ E) and so

PE(V, T ∩ E) = PE([V,E], T ∩ E) = Op′(E ∩ PH(V, T )).

From PE(V, T∩E) = PE([V,E], T∩E) and induction on i we have PE(V, T∩E) = PE([V,E, i], T∩E)
for all i ∈ Z+, where [V,E, 0] := V and [V,E, i] := [[V,E, i−1], E] for i > 0. Since E acts nilpotently
on V/[V,Op(E)] and since E/CE(V/[V,E, i]) is a p-group we have [V,Op(E)] = [V,E, k] for some
k ∈ Z+. Thus

PE(V, T ∩ E) = PE([V,E, k], T ∩ E) = PE([V,Op(E)], T ∩ E).

and so (a) holds.
(b): We again apply 1.6 to E E EA and E EE H. Then

CEA(CV ((T ∩ E)A)) = ACE(CV ((T ∩ E)A)) = ACE(CV (T ∩ E)) = ACE(CV (T )) = CEA(CV (T )),

and so

PEA(V, (T ∩ E)A) = Op′(CEA(CV ((T ∩ E)A))) = Op′(CEA(CV (T )))

= Op′(EA ∩ PH(V, T )).

(c): By (a) PE(V, T ∩ E) ≤ PH(V, T ) and so Op(PH(V, T )) ∩ E is normal in every subgroup of
PE(V, T ∩ E) containing T ∩ E. Thus, it suffices to show P := PE(V , T ∩ E) ≤ PE(V, T ∩ E).

Clearly Op(P ) centralizes CV (T ∩E)+V0/V0 and V0. Hence Op(P ) centralizes CV (T ∩E). From

P = Op(P )(T ∩ E) we conclude that P ≤ CE(CV (T ∩ E)) and P = Op′(P ) ≤ PE(V, T ∩ E).
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Lemma 1.8. Let G be a finite group and N an abelian normal subgroup of G with N ∩ Φ(G) = 1.
Then there exists a complement to N in G.

Proof. If |N | = 1 lemma clearly holds. So suppose that N 6= 1. Then there exists a maximal
subgroup M of G with N �M . Note that N∩M is normal in G = NM . Moreover, (N∩M)∩Φ(G) ≤
N∩Φ(G) = 1 and so by induction there exists a complement K to N∩M in G. Then G = (N∩M)K
and so M = (N ∩M)(M ∩K). Thus

G = NM = N(N ∩M)(M ∩K) = N(M ∩K)

and N ∩ (M ∩K) = (N ∩M) ∩K = 1. Hence M ∩K is a complement to N in G.

Lemma 1.9. Let G be a finite group and π be a set of primes. Suppose that Oπ(G) = 1. Then
Φ(G) = Φ(Oπ(G)).

Proof. Put L := Oπ(G). Since L E G, Φ(L) ≤ Φ(G). Since Φ(G) is nilpotent and Oπ(G) = 1,
Φ(G) is a π′-group and so Φ(G) ≤ L. Put G := G/Φ(L) and N := Φ(G). Then Φ(L) = 1 and
Φ(G) = N . Note that Φ(N) ≤ Φ(L) = 1 and since N is nilpotent, we conclude that N is abelian.
Also N ∩Φ(L) = 1, and so by 1.8 applied to N and L in place of N and G, there exists a complement
to N in L. Since N and G/L are coprime and N is abelian, Gaschütz’ theorem implies that there
exist a complement to N in G. Since N = Φ(G) this gives N = 1 and so Φ(G) = N = Φ(L).

2 Quadratic Modules

Lemma 2.1. Let H be a group and A,B,C be subgroups of H with [A,B,C] = 1.

(a) If C normalizes [B,C,A], then [C,A,B] ≤ [B,C,A].

(b) If C normalizes [B,C,A] and [A,C,B], then [C,A,B] = [B,C,A].

Proof. Recall first that [A,B] = [B,A] and [A,B] E 〈A,B〉.
(a) Without loss H = 〈A,B,C〉. Since [A,B] E 〈A,B〉 and C centralizes [A,B] we conclude that

[A,B] E H and that 〈CH〉 centralizes [A,B]. In particular, [[A,B], [B,C]] = 1. Since B normalizes
[B,C] we get

〈[B,C,A]B〉 = [B,C, 〈AB〉] = [[B,C], A[A,B]]] = [B,C,A].

Thus B normalizes [B,C,A]. Note that also A and C normalize [B,C,A] and so [B,C,A] E H.
Put H = H/[B,C,A]. Then [A,B,C] = 1 and [B,C,A] = 1. Thus [C,A,B] = 1 by the Three
Subgroups Lemma. So (a) holds.

(b) By (a) [C,A,B] ≤ [B,C,A], and by (a) with the roles of A and B interchanged, [C,B,A] ≤
[A,C,B]. Since [B,C,A] = [C,B,A] and [C,B,A] = [B,C,A] this gives [A,C,B] = [C,A,B].

Suppose that [A,B,C] = 1 for some subgroups A,B,C of H. Then the assumption in (a) holds if
A is a normal subgroup of H or if C is an abelian normal subgroups of H. Similarly the assumption
in (b) hold if A and B are normal subgroups of H or if C is an abelian normal subgroup of H.

We remark that in (a) [C,A,B] might be a proper subgroup of [B,C,A] (and so the conclusion in
(b) no longer has to hold if C does not normalize [C,A,B].) Indeed let H = Sym(4), A = 〈(12)(34)〉,
B = 〈(12)〉 and C = 〈(23)〉. Then [A,B] = 1 and so also [A,B,C] = 1. We have [C,A] = 〈(23)(14)〉,
[C,A,B] = 〈(12)(34)〉, [B,C] = 〈(123)〉 and [B,C,A] = 〈(12)(34), (13)(23)〉 = O2(H). So [B,C,A]
is normal in H and [C,A,B] is a proper subgroup of [B,C,A].
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Lemma 2.2. Let M be a group, K a field, V an KM -module and A ≤ M . Suppose that M is
generated by n conjugates of A in M .

(a) Suppose that dimK V/CV (A) ≤ r. Then dimK V/CV (M) ≤ nr. If, in addition V is a non-trivial
simple KM -module, then dimK V ≤ nr.

(b) Suppose that dimK[V,A] ≤ r. Then dimK[V,M ] ≤ nr. If, in addition V is a non-trivial simple
KM -module, then dimK V ≤ nr.

Proof. (a) Let A1, . . . An be conjugates of A in M with M = 〈Ai | 1 ≤ i ≤ n〉. Then

n⋂
i=1

CV (Ai) ≤ CV (M)

and dimK V/CV (Ai) ≤ r. Thus dimK V/CV (M) ≤ rn. If V is a non-trivial simple KM -module, then
CV (M) = 0 and so (a) is proved.

(b) follows from (a) applied the K-dual of V .

Lemma 2.3. Let M be a genuine group of Lie-type in characteristic p, V a simple FpM -module,
K := EndM (V ), S ∈ Sylp(M) and 1 6= z ∈ Ω1Z(S). Suppose that one of the following holds:

(i) There exists P ≤M with S ≤ P and [V, z,Op(P )Op(P )] = 0.

(ii) [V, z, S] = 0.

(iii) [V, z] is 1-dimensional over K.

Then M ∼= SLn(q),Spn(q) or SUn(q), and V is a corresponding natural module.

Proof. Suppose that (i) holds. Then [V, z,Op(P )] = 0 and so [V, z] ≤ CV (Op(P )). By Smith’s
Lemma [MS4, 4.2] CV (Op(P )) is a simple KP -module and thus [V, z] is a simple KP -module. Hence
[V, z,Op(P )] = 0 implies that [V, z, P ] = 0 and so dimK[V, z] = 1.

Suppose (ii) holds. Then [V, z] ≤ CV (S). By Steinberg ’s Lemma [MS4, 4.1] dimK CV (S) is
1-dimensional. Thus dimK[V, z] = 1. and (ii) implies (iii). We have proved that (i) and (ii) imply
(iii). So we may assume from now on that (iii) holds.

Without loss M is universal. Let K be the algebraic closure of K and V = K⊗K V . Let (M,σ)

be a σ-setup for M , see [GLS3, Definition 2.2.1]. So M = Op′(CM (σ)) and by [GLS3, 2.8.2], V
can be extended to rational KM -module. Then S lies in maximal unipotent subgroup S of M and
1 6= z ∈ Ω1Z(S).

Put B = NM (S). Then B is a Borel subgroup of M and since dim[V , z] is 1-dimensional (over
K), [V , z, S] = 0. Since by Steinberg ’s Lemma [MS4, 4.1] CV (S) is 1-dimensional we conclude that

[V , z] = CV (S). Thus also [V , 〈zB〉] = CV (S). Note that 〈zB〉 contains a root subgroup Z of M .
Then Z ≤ Ω1Z(S) and [V , Z] = CV (S) is 1-dimensional. Observe that one of the following holds:

(a) Z(S) is a long root subgroup.

(b) p = 3 and M ∼= G2(K), or p = 2, M ∼= F4(K) and Z(S) is the product of a long and a short root
subgroup.

(c) p = 2, M ∼= Bn(K) or M ∼= Cn(K) and Z(S) is the product of a long and a short root subgroup.

7



In case (b) we may apply the graph automorphism of M , if necessary, and assume that Z is a
long root subgroup. In case (c), since there exists an automorphism from Bn(K) to Cn(K) sending
long root groups to short root groups and vice versa, we also may assume that Z is a long root
subgroup. Thus in any case Z is a long root subgroup.

Suppose M = An−1(K) = SLn(K). Then M is generated by n-conjugates of Z (see for example
[MS4, 5.3]) and so by 2.2 m := dimK V ≤ n. By dimension reason we conclude that m = n and the
image of image of M in GLK(V ) is equal to SLK(V ). So V is a natural module for M . We conclude
that for M = SLn(q) or M = SUn(q), V is a corresponding natural module.

Suppose that M ∼= Cn(K) = Sp2n(K), n ≥ 2. Let P
∗

the minimal Lie-parabolic subgroup of

M with B ≤ P
∗

and Z 5 P
∗
. Put P := Op′(P

∗
). Then P/Op(P ) ∼= SL2(K). Let K be a Levi

complement to Op(P ) in P and R = S ∩K.
Note that R is a short root subgroup of M and so not conjugate to Z. Nevertheless we will show

that R acts quadratically on V . For this letN be the natural Sp2n(K)-module forM and U := [N,R].
Then [N,Z] is 1-dimensional, U is a 2-dimensional singular subspace of N and [N,Z] ≤ U . Put

D := CM (U
⊥

). Then D is abelian and Z R ≤ D ≤ S. Thus [V ,Z,D] = 0 since [V ,Z] = CV (S). It

follows from [MS4, 3.4] that D = 〈ZP 〉 and so [V ,D,D] = 〈[V , Z,D]P 〉 = 0. Thus D and so also R
acts quadratically on V .

By Smith’s Lemma [MS4, 4.2], W := CV (Op(P )) is a simple KP -module. Also [W,R] ≤
CW (ROp(P )) = CW (S) and so [W,R] is 1-dimensional. Hence W is a natural SL2(K)-module for

P . Put L = Op′(NM (Z)). Then L centralizes [V ,Z], and Smiths’ Lemma implies that CV (Op(L)) =
CV (L). Together with the Ronan-Smith’s Lemma [MS4, 4.3] we conclude that V is natural Sp2n(K)-
module for M . If M ∼= Sp2n(q) we conclude that V is a natural Sp2n(q)-module. Suppose
M ∼= 2B2(q). Then z is not a root element in M and so [dimV, z] = 2, a contradiction.

Suppose now that M ∼= G2(K) or B3(K). Let r = 2 and 3, respectively. Let Φ be a root system
for M , N/H the corresponding Weyl-group and Φl the set of long root in Φ. Then Φl is a root system
of type Ar. Also there exists t ∈ N \H with tH ∈ Z(N/H) and t induces a graph automorphism on
Φl and so also on the subgroup L of M generated by long root subgroups corresponding to Φl. Let
U be a non-trivial composition factor for KL〈t〉 on V . Since [V ,Z] is 1-dimensional, U is a simple
KL-module. Hence by the Ar(K)-case treated above, U is natural SLr+1(K) module for L. But this
contradicts the action of t on L.

Suppose M ∼= Bn(K) or Dn(K) for n ≥ 4. Then M has subgroup isomorphic to B3(K) generated
by long root subgroups, a contradiction to the B3(K)-case.

Suppose that M ∼= Er(K), 6 ≤ r ≤ 8. Then M has subgroups isomorphic to Dr−1(K) generated
by long root subgroups, a contradiction to the Dn(K)-case.

Suppose that M ∼= F4(K). Then the long roots form a root system of type D4(K), a contradiction
to the Dn(K)-case.

Definition 2.4. Let L be a group and A ≤ L. Then L is called A-minimal if L = 〈AL〉 and A is
contained in a unique maximal subgroup of L.

This definition has been motivated by the L-Lemma in [PPS], which says that in a p-minimal
group H every p-subgroup A ≤ H with A � Op(H) is contained in a subgroup L which is AOp(H)-
minimal.

Lemma 2.5. Let L be a finite group, A ≤ L and suppose that L is A-minimal. Let M be the
maximal subgroup of L containing A.

(a) Let K EE L with A ≤ K. Then K = L.
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(b) M is not subnormal in L and NL(M) = M .

(c) L = 〈A,Ax〉 for all x ∈ L \M .

(d) A is not subnormal in L. In particular, A � F(L), A 6= 1, A 6= L, and L is not nilpotent.

(e) If B � L with A ≤ B, then L is B-minimal and M is the unique maximal subgroup containing
B .

(f) If K E L with L 6= KA, then K ≤M and L/K is AK/K-minimal with M/K being the maximal
subgroup containing AK/K.

(g) If K E L such that L/K is nilpotent, then L = KA and so K �M .

(h) If A is a p-group, then L is p-minimal, M contains the normalizer of a Sylow p-subgroup and
Op(L) ≤

⋂
ML.

Proof. (a): Suppose that K 6= L. Then there exists a proper normal subgroup H of L with K ≤ H.
But then L = 〈AL〉 ≤ H, a contradiction.

(b): By (a) M is not subnormal in L. Thus M ≤ NL(M) � L and since M is a maximal subgroup
of L, NL(M) = M .

(c): By (b), M 6= Mx. Since M (Mx) is the unique maximal subgroups of L containing A (Ax),
we conclude that 〈A,Ax〉 is not contained in any maximal subgroup of L. Thus L = 〈A,Ax〉.

(d): If A EE L, then by (a) L = A and so A is not contained in any maximal subgroup of L,
which contradicts the definition of A-minimal. Since subgroups of nilpotent groups are subnormal,
A � F(L) and L is not nilpotent.

(e): Since A ≤ B � L we have B ≤ M and M is the unique maximal subgroup of L containing
B. Also L = 〈AL〉 ≤ 〈BL〉 and so L = 〈BL〉. Thus L is B-minimal.

(f): Put L = L/K. Since KA 6= L, KA ≤ M and so (e) shows that L is KA-minimal with
KA ≤ M . Hence M is the unique maximal subgroup of L containing A. Since L = 〈AL〉 implies

L = 〈AL〉, L is A-minimal.
(g): By (d) L/K is not AK/K-minimal. Hence (f) implies L = KA.
(h) Let S be a Sylow p-subgroups of L containing A. Then A EE S and so by (d), S 5 L. Thus

NL(S) ≤ M and S 6= L. By (e), L is S-minimal and so L is p-minimal. Also Op(L) ≤ S ≤ M and
hence Op(L) ≤

⋂
ML.

Lemma 2.6. Let H be a finite group. Suppose H has a quasisimple normal subgroup K such that
K/Z(K) is a sporadic simple group or U4(3). Then H is not 2-minimal and so H is not A-minimal
for any 2-subgroup A of H.

Proof. Replacing H by H/CH(K) we may assume that CH(K) = 1. Then K is simple and H is
isomorphic to a subgroup of Aut(K) containing K. Let S ∈ Syl2(H). Since in all cases Out(K) is
a 2-group, H = KS.

Suppose that K is a sporadic simple group. Then the list of maximal subgroups of K (for
example in the ATLAS) shows that there exist distinct S-invariant maximal parabolic subgroups
M1,M2 of K. Then M1S, M2S are distinct maximal subgroups of H and H is not 2-minimal.

Suppose K ∼= U4(3). Then K∩S is contained in exactly three maximal subgroup P1, P2, P3 of K.
Moreover, we can choose notation such that P1/Q1

∼= Sym(3) × Sym(3), P2/Q2
∼= P3/Q3

∼= Alt(6)
and P2 ∩ P3 � P1, where Qi = Op(Pi). If S normalizes P2 and P3, then P2S and P3S are distinct
maximal subgroups of H. If S interchanges P2 and P3, then P1S and (P2∩P3)S are distinct maximal
subgroups of H. So again H is not 2-minimal.
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We have proved that H is not 2-minimal and thus by 2.5(h), H is also not A-minimal for any
2-subgroup A of H.

The next lemma establishes some basic properties of the group L/Op(L) if L is A-minimal for
a p-subgroup A. For CK-groups L we will give the precise structure of L/Op(L) in 2.9 under the
hypothesis that L acts faithfully and A quadratically on an FpL-module V . Moreover, in 2.10 we
will give the structure of such a module V under the additional hypothesis that V is simple and one
of the cases 2.9(1) and (2) holds.

Lemma 2.7. Let L be a finite group with Op(L) = 1, and let 1 6= A ≤ L be a p-subgroup. Suppose
that L is A-minimal with M being the maximal subgroup of L containing A. Then the following
hold, where D :=

⋂
ML and H := Op(L):

(a) H �M and so L = HA and H � D.

(b) If |A| = 2, then L ∼= Drn , where r is an odd prime and n ∈ Z+.

(c) Let N E L. Then either N ≤ D, or L = NA, H ≤ N and N �M .

(d) D is a p′-group, and D = Φ(L) = Φ(H).

(e) CL(a) ≤M for 1 6= a ∈ Z(A).

(f) H/D is the unique minimal normal subgroup of L/D.

(g) Suppose A is elementary abelian. Then one of the following holds:

1. H/D is simple and p
∣∣|H/D|.

2. |A| = p, H is q-group, and H/D is an elementary abelian q-group for some prime q 6= p.

Proof. (a): L/H is a p-group and so nilpotent. Thus (a) follows from 2.5(g).
(b): By 2.5(c) L is generated by two conjugates of A and so is a dihedral group of order 2m, and

m is the power of an odd prime since L is A-minimal.
(c): If N ≤M , then N ≤ D since N E L. So suppose N �M . Then L = NA, L/N is a p-group

and H = Op(L) ≤ N .
(d): Let Q ∈ Sylp(D) with A ≤ NL(Q). Then by the Frattini argument L = DNL(Q). Since

D ≤M this implies NL(Q) �M and so L = NL(Q). Hence Q ≤ Op(L) = 1 and D is a p′-group.

Suppose that there exists a maximal subgroup M̃ of L not containing D. Then L = M̃D, so
M̃ contains a Sylow p-subgroup of L. Thus we may assume that A ≤ M̃ and so M = M̃ and
D ≤ M̃ , a contradiction. This shows that D ≤ Φ(L). Conversely Φ(L) ≤ M and so D = Φ(L).
Since Op(L) = 1, 1.9 gives Φ(L) = Φ(Op(L)) = Φ(H), and (d) is proved.

(e): Observe that A ≤ CL(a) and CL(a) 6= L.
(f): By (d) D ≤ H and by (a), H/D 6= 1. Hence (f) is a direct consequence of (c).
(g): Assume first that D = 1. By (f) H is a minimal normal subgroup of L. So either H is an

elementary abelian q-group (q a prime, q 6= p) or H is a direct product of non-abelian simple groups.
In the first case |A| = p since otherwise (e) and coprime action imply that H = 〈CH(a) | 1 6= a ∈
A〉 ≤M , a contradiction to (a). Thus (g:2) holds in this case.

In the second case let K be a component of H. Note that any A-invariant Sylow subgroup of H
is contained in M and so by coprime action H is not a p′-group. By (a) we have L = HA. Thus
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H = 〈KL〉 = 〈KA〉 and K is not a p′-group. In particular, if A normalizes K we are done since then
(g:1) holds. Thus we may assume that there exists a ∈ A with Ka 6= K. Put

E := 〈
∏
t∈〈a〉

kt | k ∈ K〉.

Then E ≤ CL(a) and by (e) E ≤M . On the other hand, by 2.5(h) M contains a Sylow p-subgroup
of L and since K is not a p′-group, M ∩K 6= 1. It follows that

[M ∩K,E] = [M ∩K,K] = K ≤M.

Hence H = 〈KA〉 ≤M , which contradicts (a). So (g) holds if D = 1.
Assume next that H/D is a q-group for some prime q (not necessarily distinct from p). Then

H = DQ for Q ∈ Sylq(H) and since D = Φ(H), H = Q. So H is a q-group and since Op(L) = 1,
q 6= p.

In the general case we conclude that H/D is not a p-group, and since by (f) H/D is the unique
minimal normal subgroup of L/D, Op(L/D) = 1. If |AD/D| = p, then also |A| = p since by (d),
A ∩D = 1. By 2.5(f), L := L/D is A-minimal with M being the maximal subgroup containing A.

In particular,
⋂
M

L
= 1 and we can apply (g) to L. We conclude that (g) also holds for L.

Notation 2.8. A finite group L is called a CK-group provided that each composition factor of L is
isomorphic to one of the known finite simple groups.1

Lemma 2.9 (Quadratic L-Lemma). Let L be a CK-group and V be a faithful FpL-module.
Suppose that there exists A ≤ L such that A acts quadratically on V and that L is AOp(L)-minimal.
Then one of the following holds for L = L/Op(L):

1. L ∼= SL2(pk).

2. p = 2 and L ∼= Sz(2k), k > 1.

3. p = 2 and L ∼= Drk , r an odd prime.

Proof. Observe that the faithful quadratic action of A implies that A is an elementary abelian p-
subgroup of L. Since by coprime action Op(L) is the intersection of the centralizers in L of the
non-trivial factors of an L-composition series of V , we also may replace V by the direct sum of the
non-trivial L-composition factors on V and L by L, so

1◦. Op(L) = 1, and V is a direct sum of non-trivial simple FpL-modules. In particular, CV (L) =
0 and V = [V,L].

We use the following notation: M is the unique maximal subgroup of L containing A, D :=
⋂
ML,

H := Op(L), and A ≤ T ∈ Sylp(L). Recall from 2.5(h) that NL(T ) ≤M and from 2.7(d) that

2◦. D = Φ(L) = Φ(H) is a p′-group.

Suppose that |A| = 2. Then 2.7(b) implies (3). Thus we may assume:

3◦. |A| > 2.

1This notion is weaker than that of a K-group often used in the literature since it does not assume anything about
sections.
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By 2.5(e) we may assume without loss that A is a maximal quadratic subgroup of L, so

4◦. A = CL([V,A]) ∩ CL(V/[V,A]).

Next we prove:

5◦. [V, a] = [V,A] = CV (A) = CV (a) for all 1 6= a ∈ A and |V | = |[V, b]|2 for all quadratic
elements b ∈ L#.

Let 1 6= b be a quadratic element in L. Since D is a p′-group there exists g ∈ L with bg /∈ M .
Then L = 〈A, bg〉 and so by (1◦) V = [V,L] = [V,A] + [V, bg] and CV (A) ∩ CV (bg) = CV (L) = 0.
Since [V,A] ≤ CV (A) and [V, b] ≤ CV (b) we conclude that V = [V,A]⊕ [V, bg], CV (A) = [V,A] and
CV (b) = [V, b]. In particular,

|[V, b]| = |V/CV (b)| = |V/[V, b]| and |V | = |[V, b]|2.

For a = b ∈ A we also get

[V, a] ≤ [V,A] ≤ CV (A) ≤ CV (a) = [V, a].

Now (5◦) follows.

6◦. A ∩Ah = 1 for all h ∈ L \NL(A).

Let h ∈ L and 1 6= b ∈ A ∩Ah. By (5◦) [V,A] = [V, b] = [V,Ah], and so by (4◦) A = Ah.

7◦. CL(a) ≤ NL(A) for all 1 6= a ∈ A

This follows from (6◦).

8◦. A ∩Mh = 1 for every h ∈ L \M .

Let h ∈ L with B := A∩Mh 6= 1, and let g ∈ L such that B ≤ T g ≤Mh. Then CV (T g) ≤ CV (B)
and so by (5◦) CV (T g) ≤ CV (A). Since CV (L) = 0 by (1◦) we get 〈A, T g〉 6= L. Thus T g ≤M and
so Ag ≤ T g ≤ M ∩Mh. Since Ag lies in a unique maximal subgroup of L this gives M = Mh and
so by 2.5(b), h ∈M , a contradiction.

9◦. If V is is not a simple FpL-module, then (1) or (2) hold.

Suppose that V is not simple. Let W be any simple FpL-submodule of V and put E = CL(W ).
Since CV (L) = 0, also CV (H) = 0 and so [W,H] 6= 0. Hence, H � E and by 2.7(c)

E ≤ D ≤ Φ(L) ≤ Op′(L).

In particular, E is a p′-group and A acts faithfully on W . By induction on dimV and by (3◦)
we get that L/E ∼= SL2(q) or Sz(q), q = pk > 2. It follows that Φ(L/E) ≤ Z(L/E) and so
[Φ(L), L] ≤ E = CL(W ). Since this holds for all simple FpL-submodules of V , (1◦) and the faithful
action of L on V yield [L,Φ(L)] = 1. Thus E ≤ Φ(L) ≤ Z(L). By 2.5, L = L′A and since E is
a p′-group, so E ≤ L′. By [Gr] the p′-part of the Schur multipliers of SL2(q) and Sz(q) is trivial.
Hence E = 1 and (1) or (2) holds.

10◦. Suppose that p is odd. Then (1) holds.
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By (5◦)
dim[V,A] = min{dim[V, b] | 1 6= b ∈ L, [V, b, b] = 0}

and by 2.5(c) L is generated by two conjugates of A. Observe that A acts quadratically on V
satisfying the above minimality condition for dim[V,A]. By (9◦) we may assume that V is a simple
FpL-module. Hence [Ho1, 4.3] (for |A| = 3), [Ho2, 4.2] (for p = 3 and |A| > 3) and [Ho3, 2.6] (for
p > 3) show that L ∼= SL2(pk).

We may assume from now on that p = 2.

11◦. D = Z(L).

Since by (2◦) D is a 2′-group, (3◦) and coprime action show that

D = 〈CD(a) | 1 6= a ∈ A〉 ≤ NL(A).

Then [D,A] ≤ D ∩ A = 1 and thus D ≤ Z(L) since L = 〈AL〉. Conversely, Z(L) ≤ D, and (11◦)
follows.

12◦. H is quasisimple.

By (11◦) and (2◦) Z(L) = D = Φ(H) ≤ H. Put K := H ′. Since H/Z(L) is simple by 2.7(g)
and (3◦), we conclude that H = Z(L)K and K is quasisimple. Since L/Z(L)K is a 2-group, L/K is
nilpotent and so by 2.5(e) L = KA and H ≤ K; in particular, H = K and H is quasisimple.

13◦. Suppose that p = 2. Then (1) or (2) holds.

Put L̃ := L/Z(L). Recall that H is quasisimple by (12◦). We discuss the possibilities for H using
that H̃ is a known simple group.

Suppose that H̃ is a group of Lie-type over a field in characteristic 2. Put S := T ∩H and let
∆ be the set of minimal Lie-parabolic subgroups of H̃ containing S̃. Since H � M , we can choose

P̃ ∈ ∆ with P̃ � M̃ . Then L̃ = 〈P̃ , Ã〉 and so H̃ = 〈P̃ Ã〉. It follows that A acts transitively on ∆
and |∆| ≤ 2. In particular, NL(S) is a maximal subgroup of L containing A, and so M = NL(S).

Suppose that H̃ ∼= SL2(2k). If A ≤ H, then (1) holds. So suppose that A � H and let a ∈ A \S.

Since Out(H̃) is cyclic and A is elementary abelian, |AH/H| = 2, k = 2l for some l ∈ Z+, and S is
elementary abelian with |CS(a)| = |CS(A)| = 2l. Thus all involutions in T \ S are conjugate under
S. Since S acts regularly on SL \ {S}, a Frattini argument gives M = S(M ∩Mx) and S ∩Mx = 1,
where x ∈ L \M . Thus T = S(T ∩Mx) and T ∩Mx has order 2. Since all involutions in T \ S are
conjugate under S, we can choose x such that A ∩Mx has order 2. But this contradicts (8◦).

Suppose next that H̃ ∼= Sz(2k). Then H has no outer automorphism of order 2, so A ≤ H and
(2) holds.

Finally suppose that H̃ ∼= U3(2k),L3(2k) or Sp4(2k). Assume that A ∩ Z(S) 6= 1. Then S ≤
CL(Z(S) ∩ A) ≤ NL(A) by (7◦), so [S,A] is elementary abelian. The action of T on S shows that
A ≤ S ≤ H. Hence H = L, and since A acts transitively on ∆, |∆| = 1 and L/Z(L) ∼= U3(2k). It
follows that A ≤ Ω1(S) = Ω1Z(S), and there exists U ≤ L with A ≤ Ω1Z(S) ≤ U and U ∼= SL2(2k).
But then U �M = NL(S) and U = L, a contradiction.

We have shown that A ∩ Z(S) = 1. Suppose that A ∩ H 6= 1 and let 1 6= a ∈ A ∩ H. Since
all involutions of H are 2-central, CH(a) contains a Sylow 2-subgroup S0 of H. Now (7◦) implies
S0 = S since M = NL(S), and so a ∈ A∩Z(S) = 1, a contradiction. Hence A∩H = 1. On the other
hand |A| ≥ 4 by (3◦), and so, since the Sylow 2-subgroups of Out(U3(2k)) are cyclic, H̃ ∼= L3(2k) or
Sp4(2k) and A0 := CA(∆) 6= 1.
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Let R be a root subgroup of H contained in Z(S). Then X := CR(A0) 6= 1 and again by
(7◦), [X,A] ≤ H ∩ A = 1. Thus A ≤ CL(X) ≤ NL(R). This rules out the Sp4(q)-case, so
H/Z(H) ∼= L3(q). It follows that R = Z(S) and |A/CA(R)| = 2. But then again by (7◦), 1 6=
[R,A] ≤ [CH(CA(R)), A] ≤ A ∩H = 1 a contradiction.

Suppose now that H̃ is not a group of Lie-Type over a field in characteristic 2. Since L is
A-minimal, 2.6 shows that H̃ is not a sporadic group. If H̃ is a group of Lie Type over a field
of odd characteristic, then by [MeSt1] H̃ ∼= U4(3). But then L is not 2-minimal by 2.6, again a
contradiction.

It remains to consider the case H̃ ∼= Alt(n), n ≥ 7. Since L is 2-minimal, n = 2k + 1, with

k ≥ 3 and M̃ ∩H ∼= Alt(2k). Let X be a non-trivial orbit for A on {1, . . . , n}. If |X| 6= 2k, then
A ≤ NL(X) � M , a contradiction. So |X| = 2k. Since A is elementary abelian we conclude that

A acts regularly on X, so |A| = 2k and Ã ≤ H̃. Moreover, Ã is uniquely determined in H̃ up to
conjugation under Sym(n). It follows that Ã is contained in a subgroup H̃0 of H̃ isomorphic to
L2(2k). But H̃0 � M̃ . This final contradiction completes the proof of 2.9.

Lemma 2.10. Let L ∼= SL2(q) or Sz(q), q = pk, where p = 2 in the latter case, and let V be a
non-trivial simple FpL-module. Suppose that L is A-minimal for some A ≤ L with [V,A,A] = 0.
Then V is a corresponding natural module.

Proof. Put K := EndL(V ). Then K is (isomorphic to) a subfield of Fq. Put W := Fq ⊗K V . Then
W is a simple FqL-module and [W,A,A] = 0. Let N be the natural FqL-module. Then N is
the only non-trivial basic module for L and so by Steinberg’s Tensor Product Theorem [St, 1.31],
W ∼=

⊗
σ∈ΣN

σ, where Σ is a subset of Aut(Fq). Since V is non-trivial, Σ 6= ∅.
Suppose for a contradiction that |Σ| ≥ 2. Then q > 2 and since L is A-minimal, |A| ≥ 3. Then

by [MS3, 6.5] |Σ| = 2. Let Σ = {µ, σ}. Replacing W by Wµ−1

we may assume that µ = idFq
. By

[MS3, 4.9] A acts λ-dependent on Nµ = N and on Nσ, where λ is a homomorphism from A to
(Fq,+). Since A acts λ-dependent on N , A acts λ ◦ σ-dependent on Nσ. Thus λ = λ ◦ σ. Let Fq0
be the fixed-field of σ. It follows that A is contained in a subgroup of L isomorphic to SL2(q0) and
Sz(q0), respectively, which contradicts the assumption that L is A-minimal.

Thus Σ = {σ} for some σ in Aut(F). Since N is a simple FpL-module we conclude that W , Nσ,
N and V all are isomorphic as FpL-modules.

Lemma 2.11. Let H be a finite group, LEH and M a parabolic subgroup of H with H = LM . Let V
be a finite FpH-module and W an FpM -submodule of V . Suppose that [X/Y,L] = 0 whenever X/Y
is a simple FpH-section of V with X ∩W � Y . Then [W,Op(L)] = 0, and W is an H-submodule of
V .

Proof. Note that L = (M ∩ L)Op(L) since H = LM and M is parabolic. Hence [W,Op(L)] = 0
implies that W is an H-module. Thus it suffices to show that [W,Op(L)] = 0. We do this using
induction on dimV .

We may assume V 6= 0 and so V has a minimal (non-zero) H-submodule U . Then W + U/U
and V/U in place of W and V satisfy the hypothesis. Thus by induction W + U is a H-submodule
of V and [W,Op(L)] ≤ U .

Suppose first thatW∩U 6= 0. As U is a simple FpH-section of V , we conclude that [U,Op(L)] = 0.
Thus [W,Op(L)] = [W,Op(L),Op(L)] ≤ [U,Op(L)] = 0.

Suppose next that W ∩U = 0. Again since M is parabolic, Gaschütz’ Theorem shows that there
exists an H-submodule D in W + U with W + U = D ⊕ U . Since [W + U,Op(L)] ≤ U we get that
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[D,Op(L)] ≤ D ∩ U = 0. On the other hand W + U/D is a simple FpH-section with W � D, so by
our hypothesis [W,Op(L)] ≤ D. Now similarly as above

[W,Op(L)] = [W,Op(L),Op(L)] ≤ [D,Op(L)] = 0.

The next two results describes situations in which dual offenders arise in a natural way. Compare
this, for example, with the case c = 1 in the qrc-Lemma [MS5, 4.6].

Lemma 2.12. Let H be a finite group, T ∈ Sylp(H) and R := [Op(H),Op(H)], and let V be an

FpH-module and Y be a T -submodule of V with V = 〈Y H〉 6= Y . Then one of the following holds:

1. [V,R] = 0 and COp(H)(Y ) EH.

2. R is a non-trivial strong dual offender on Y .

3. There exist Op(H)Op(H)-submodules Z1 ≤ X1 ≤ Z2 ≤ X2 such that for i = 1, 2, Xi/Zi is a
non-trivial simple Op(H)-module and Xi ∩ Y � Zi.

Proof. Suppose first that [Y,R] = 0. Since R is normal in H and V = 〈Y H〉 we get [V,R] = 0.
Moreover, [COp(H)(Y ),Op(H)] ≤ R ≤ COp(H)(Y ) and so H = TOp(H) normalizes COp(H)(Y ).
Thus (1) holds in this case. Hence, we may assume now:

1◦. [Y,R] 6= 0.

Let W be an Op(H)Op(H)-submodule of V . We want to apply 2.11 with H0 := Op(H)Op(H),
Op(H) and T ∩Op(H)Op(H) in place of H, L and M . If [V,Op(H)] 6≤W , then also [Y,Op(H)] �W
since V = 〈Y H〉. Hence 2.11, applied to V/W and Y + W/W in the roles of V and Y , gives
an H0-chieffactor X2/Z2 with W ≤ Z2 such that [X2, O

p(H)] � Z2 and Y ∩ X2 � Z2. If also
[Y ∩W,Op(H)] 6= 0, then 2.11, applied to W and Y ∩W in the roles of Y , gives an H0-chieffactor
X1/Z1 of W such that [X1, O

p(H)] � Z1 and Y ∩X2 � Z1. Hence (3) holds. Thus we may assume:

2◦. [V,Op(H)] ≤W or [Y ∩W,Op(H)] = 0 for every Op(H)Op(H)-submodule W .

For W0 := [V,Op(H)] this either gives [V,Op(H)] ≤W0 or [W0 ∩Y,Op(H)] = 0. In the first case
Y + W0 = V since V = 〈Y H〉 = 〈Y Op(H)〉, and so V/Y = [V/Y,Op(H)]. The nilpotent action of
Op(H) on V/Y gives V = Y , a contradiction. Hence

3◦. [W0 ∩ Y,Op(H)] = 0.

In particular, [Y,Op(H)] ≤ CY (Op(H)) ≤ CY (R). By (1◦) we can pick y ∈ Y \CY (R). It follows
that

4◦. [y,Op(H)] ≤ CY (Op(H)) ≤ CY (R).

Put U := 〈yH0〉. Then [Y ∩ U,Op(H)] 6= 0 and thus by (2◦):

5◦. [V,Op(H)] ≤ U . In particular, V = Y + U and [V,R] ≤ Y + [U,R].

15



By (4◦) [y,R] = [〈yOp(H)〉, R] = 〈[y,R]Op(H)〉 and [y,R] ≤ CY (Op(H)). Thus

[y,R] = 〈[y,R]H0〉 = [〈yH0〉, R] = [U,R].

Hence by (5◦), [[V,Op(H)], R] ≤ [U,R] = [y,R] ≤ Y , and again by (5◦), [V,R] ≤ Y and so [V,R] ≤
W0 ∩ Y . Now (3◦) implies [V,R,Op(H)] = 0, and 2.1 gives [Op(H), R, V ] = [V,Op(H), R]. Since by
coprime action R = [R,Op(H)],

[R, V ] = [Op(H), R, V ] = [V,Op(H), R] ≤ [y,R].

But then
[y,R] ≤ [V,R] ≤ [y,R].

We have shown that [Y,R] = [y,R] for all y ∈ Y \ CY (R), so R is a strong dual offender on Y , and
(2) holds.

Corollary 2.13. Let H be a finite group, V a FpH-module, M a maximal parabolic subgroup of H,
Y an M -submodule of V , and R := [Op(H),Op(H)]. Suppose that there exists a p-subgroup A ≤M
such that

(i) A acts quadratically on V ,

(ii) H is AOp(H)-minimal, and

(iii) V = 〈Y H〉 and Y 6= V .

Then one of the following holds:

1. [V,R] = 0 and COp(H)(Y ) EH.

2. R is a non-trivial dual offender on Y .

3. Let g ∈ H \M and A0 be an elementary abelian p-subgroup of H/Op(H) of maximal order. Then
|Y g/CY g (A)| ≥ |A0|2 ≥ |AOp(H)/Op(H)|2.

Proof. Since M is parabolic, M contains a Sylow p-subgroup T of H. In particular, Y is a T -
submodule and Op(H) ≤ M . Hence M is the unique maximal subgroup of H containing AOp(H),
and we can apply 2.12. If 2.12(1) or (2) holds, then (1) or (2) holds. So we may assume that 2.12(3)
holds. Choose Xi, Zi, 1 ≤ i ≤ 2, with the properties given in 2.12(3), and pick g ∈ H \M .

Case 1. |A0| = p.

Then |A/A∩Op(H)| ≤ |A0| = p by the maximality of A0, so |A/A∩Op(H)| = p since A � Op(H)

by (ii). Put B := Ag
−1

and let H0 be minimal in H with B ≤ H0 and H = Op(H)H0. Replacing A
by a conjugate under Op(H) we may assume that A ∈ BH0 . Pick a ∈ A \Op(H). Then

〈a,B〉Op(H) = 〈A,Ag
−1

〉Op(H) = H,

so H0 = 〈a,B〉 by the minimality of H0.
If |Y/CY (B)| ≥ p2, then (3) holds. So we may assume that |Y/CY (B)| ≤ p. Put D := CY (H0),

and let E be maximal in Y with [E, a] ≤ D. Then H0 = 〈a,B〉 normalizes CE(B). Since A and B
are conjugate in H0 we conclude that A centralizes CE(B) and so CE(B) = D. From |E/CE(B)| ≤
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|Y/CY (B)| = p we conclude |E/D| ≤ p. Since E/D = CY/D(a) and a acts quadratically on Y/D,
we get [Y, a] ≤ E and

|Y/D| = |CY/D(a)||[Y/D, a]| ≤ |E/D|2 ≤ p2.

Put L := Op(H)Op(H) and note that L = Op(L)(L ∩ H0). Thus Xi/Zi is a non-trivial simple
L ∩H0-module. It follows that Xi ∩D ≤ Zi for i = 1, 2. Since X1 ∩ Y � Z1, this gives

1◦. X1 ∩ Y � D.

Moreover, if X2 ∩ Y ≤ (Z2 ∩ Y ) +D then X2 ∩ Y = (Z2 ∩ Y ) + (X2 ∩D) ≤ Z2, a contradiction.
Thus

2◦. Y 6= (Z2 ∩ Y ) +D,

and D < D + (X1 ∩ Y ) ≤ D + (Z2 ∩ Y ) < Y . Hence |Y/D| = p2, |E/D| = p, and E = [Y,A] +D =
CY (A). In particular, there are p+ 1 hyperplanes of Y containing D, one of which is CY (A). Hence
A is transitive on the other p hyperplanes, one of which is CY (B). Therefore,

3◦. Y = CY (A) ∪
⋃

CY (B)A =
⋃
F∈AH0 CY (F ).

Set U :=
⋂
ZH2 . By (2◦) and (3◦) there exists F ∈ AH0 with [(Z2 ∩ Y ) +D,F ] = 0. Hence

Z2 ∩ Y ≤
⋂
ZF2 =

⋂
ZLF2 =

⋂
ZH2 = U ≤ Z2

and so

4◦. Z2 ∩ Y = U ∩ Y ; in particular Z2 ∩ Y is M -invariant.

Assume that [Z2∩Y,B] = 0. Then by (4◦), Z2∩Y is invariant under H = 〈M,B〉. So Z2∩Y ≤ D,
a contradiction to X1 ∩ Y ≤ Z2 ∩ Y and (1◦).

Thus [Z2∩Y,B] 6= 0. Since Z2∩Y = U ∩Y and |Y/CY (B)| = p this gives Y = (U ∩Y )+CY (B).
It follows that Y +U = CY (B) +U is invariant under 〈M,B〉 = H, and 〈BH〉 centralizes Y +U/U .
Thus

[X2 ∩ Y,Op(H)] ≤ [Y,Op(H)] ≤ U ≤ Z2,

a contradiction since X2∩Y � Z2 and X2/Z2 is a non-trivial simple Op(H)-module. This completes
the analysis of (Case 1).

Case 2. |A0| > p.

Put q := |A0|. Then by 2.9 H/Op(H) ∼= SL2(q) or Sz(q), and M is the normalizer of a Sylow
p-subgroup of H. In particular H = Op(H)Op(H) and by 2.10 Xi/Zi is a natural module. Set
Di := C(Y ∩Xi)+Zi/Zi

(Op(M)). Then Di has order q. Since H = 〈Op(M), B〉 we have CDi
(B) = 0.

Thus Y ∩ Xi/(Y ∩ Zi) + CY ∩Xi
(B) has order at least q and |Y/CY (B)| ≥ q2, so (3) holds. This

treats (Case 2) and the lemma is proved.
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3 Applications of the FF-Module Theorem

The purpose of this section is to derive some useful corollaries from GFMT and FMT. One idea
is to eliminate some or most of the cases of FMT assuming that the offenders or the modules have
particular properties. The properties we come up with play an important role in the classification
program of the finite simple groups of characteristic p, but are also of independent interest. A typical
example is the Strong Dual Offender Theorem below which can be applied in the situation described
in 2.12.

As already mentioned in the introduction, we assume the reader to familiar with the notation
used in GFMT and FMT.

Theorem 3.1 (Strong Dual FF-Module Theorem). Let M be a finite CK-group such that
K := F∗(M) is quasisimple, and let V be a faithful simple FpM -module. Suppose that A ≤ M is a
strong dual offender on V and M = 〈AM 〉. Then one of the following holds, where q is a power of
p:

1. M ∼= SLn(q) or Sp2n(q), and V is a corresponding natural module.

2. p = 2, M ∼= Alt(6) or Alt(7), V is a spin-module of order 24 and A ∼= 〈(12)(34), (13)(24)〉.
(Note that in the Alt(6) case, V might also be viewed as an natural Alt(6)-module with A ∼=
〈(12)(34), (34)(56)〉).

3. p = 2, M ∼= Oε
2n(2) or Sym(n), V is the corresponding natural module, and |A| = 2.

Proof. By [MS4, 1.5(c)] A is a quadratic best offender on V . Hence M = JM (V ) and K is a J-
component of M , so M satisfies the hypothesis of FMT. Let V ∗ be the dual of V . By [MS4, 1.5
(c)], A is also an offender on V ∗. By [MS4, 1.8(a) -(c)] |V ∗/CV ∗(A)| = |[V,A]| and so

(∗) |[V,A]| ≤ |A|.

We now discuss the cases given in FMT.

Case FMT (1),(2): M ∼= SLn(q) or Sp2n(q), and V is a natural module.

Then (1) holds.

Case FMT (3): M ∼= SUn(q), and V a is natural module.

Let f be the unitary form on V (with corresponding field automorphism α) left invariant by M .
Pick 0 6= u ∈ [V,A] and choose v ∈ V such that f(u, v) 6= 0 and f(u, v) +f(u, v)α 6= 0. Observe that
by [MS4, 3.2(c)] CV (A) = [V,A]⊥, so v 6∈ CV (A). Since A is a strong dual offender, there exists
a ∈ A such that [v, a] = u. Hence

f(v, v) = f(va, va) = f(v + u, v + u) = f(v, v) + f(u, u) + f(v, u) + f(v, u)α.

It follows that f(u, u) 6= 0. On the other hand, by [MS4, 3.2(e)] [V,A] is isotropic and thus f(u, u) =
0, a contradiction.

Case FMT (4): M ∼= Ωn(q)ε or p = 2 and M ∼= Oε
2n(q), and V is a natural module.
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Let h be the quadratic form on V left invariant by M and s be the corresponding symmetric
form. Suppose there exists a singular 0 6= u ∈ [V,A]. Choose v ∈ V such that s(u, v) 6= 0. As in the
previous case there exists a ∈ A such that [v, a] = u. Hence

h(v) = h(va) = h(v + u) = h(v) + h(u) + s(v, u) = h(v) + s(v, u),

so s(v, u) = 0, a contradiction.
We have shown that [V,A] is totally non-singular. On the other hand, by [MS4, 3.2(e)] [V,A] is

isotropic. Hence [MS4, 3.1] shows that dimK[V,A] = 1, and by [MS4, 3.4(e)] |A| = 2. As A is an
offender, also q = 2, and (3) holds.

Case FMT (5): p = 2, M ∼= G2(q) and V is a natural module.

Let A ≤ T ∈ Syl2(M). We have |A| = |V/CV (A)| = |CV (A)| = q3, CV (A) = [V,A], and
Z(T ) ≤ CG(A) ≤ A. Note that NM (A) and NM (Z(T )) are distinct maximal Lie parabolic subgroups
of M containing T . Thus NM (Z(T )) does not normalize CV (A) and so CV (Z(T )) 6= CV (A). Hence
A is not a strong offender. On the other hand, A is a strong dual offender with |[V,A]| = |CV (A)| =
q3 = |A| and so by [MS4, 1.5(d)], A is a strong offender, a contradiction.

Case FMT (6): M ∼= SLn(q), n ≥ 5, and V is the exterior square of a natural module.

In this case [V,A] = CV (A) and |V/CV (A)| = |A| = qn−1. Thus |[V,A]| = q(
n
2)

qn−1 = q(
n−1
2 ) and so

by (∗), q(
n−1
2 ) ≤ qn−1, a contradiction to n ≥ 5.

Case FMT (7): M ∼= Spin7(q), and V is a spin module.

Then |A| ≥ q4 and there exists an M -invariant quadratic form on V . By the orthogonal case
treated above |A| = 2, a contradiction.

Case FMT (8): M ∼= Spin+
10(q), and V is a half-spin module.

A similar argument as in the G2(q)-case gives a contradiction.

Case FMT (9): M ∼= 3.Alt(6) and |V | = 26.

We have |V/CV (A)| = |A| = 4 and |[V,A]| = 16, a contradiction to (∗).

Case FMT (10): M ∼= Alt(7) and |V | = 24.

In this case (2) holds.

Case FMT (11),(12): M ∼= Alt(n) or Sym(n), and V is a natural module.

Let W be the permutation module with basis (v1, v2, . . . , vn), W̃ := W/CW (M) and W0 :=
[W,M ]. Then V ∼= W̃0. So A is a strong dual offender on W̃0.

Suppose first that n 6= 2k. Then [v1 +vn, A] = 〈v1 +v2〉 and so [W̃0, A] = [ṽ1 + ṽn, A] = 〈ṽ1 + ṽ2〉.
Thus k = 1 and (3) holds.
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Suppose next that n = 2k. Then we are in one of the cases (12) (1) – (4) of FMT. In case (12)
(3) A does not act quadratically on V , so this case is not possible.

Assume case (12)(4). Then n = 8 = |A|. So M ∼= Ω+
6 (2) or O+

6 (2) and V is the corresponding
natural module, so the Case FMT (4) treated above gives a contradiction.

Thus, we are in case (12)(1) or (12)(2). In both cases all orbits of A on {1, 2, . . . , n} have length 1
or 2. Say the non-trivial orbits of A are {1, 2}, {3, 4}, . . . , {2k−1, 2k}. Then [W̃0, A] = [ṽ1 + ṽ3, A] ≤
〈ṽ1 + ṽ2, ṽ3 + ṽ4〉. It follows that k = 3 and n = 6. If A ≤ M ′ then M ∼= Alt(6) and (2) holds; and
if A �M ′ then M ∼= Sym(6) ∼= Sp4(2) and (1) holds.

Theorem 3.2 (Strong FF-Module Theorem). Let M be a finite CK-group such that K := F∗(M)
is quasisimple, and let V be a faithful simple FpK-module. Suppose that A ≤M is a strong offender
on V and M = 〈AM 〉. Then one of the following holds, where q is a power of p:

1. M ∼= SLn(q) or Sp2n(q) and V is a corresponding natural module.

2. p = 2, M ∼= Alt(6), 3.Alt(6) or Alt(7), |V | = 24, 26 or 24, respectively, and |A| = 4.

3. p = 2, M ∼= Oε
2n(2) or Sym(n), V is a corresponding natural module, and |A| = 2.

Proof. By [MS4, 1.6] A is a best offender on V and so we can apply FMT again.
Assume first that V and V ∗ are isomorphic as FpM -modules. By [MS4, 1.7] A is a strong dual

offender on V and we are done by 3.1.
So we may assume that V is not a selfdual FpM -module. In particular, (see for example [MS4,

3.2(a)]) there does not exists a non-degenerated M -invariant symplectic, symmetric or unitary form
on V . This excludes all cases but FMT (1),(6),(8),(9) and (10). The first and the last two of these
remaining cases appear in the theorem.

Suppose V is the exterior square of a natural SLn(q)-module W for n ≥ 5. Then A = CM (U)
for some hyperplane U of W . Let 1 6= t, s ∈ A, x ∈W \U , y := [x, t] and z := [x, s]. Since n > 2 we
can choose s such that Fqy 6= Fqz. Note that y ∈ U ≤ CW (A) and so

[x ∧ y, t] = y ∧ y = 0 and [x ∧ y, s] = z ∧ y 6= 0.

Thus CV (t) 6= CV (A), a contradiction.
Suppose that M ∼= Spin+

10(q) and V is the half-spin module. Let T ≤ A be a long root subgroup.
Then NM (T ) and NM (A) are distinct maximal Lie-parabolic subgroups of M and so CV (T ) 6=
CV (A), a contradiction.

Definition 3.3. Let M be a finite group and V faithful FpM -module. Then APM (V ) is the set of
non-trivial best offenders A of M on V such that A ≤ Op(P ) for some point-stabilizer P of M on
V .

The next lemma will be used in Theorem 3.5 to show that there are no over-offenders in the
radical of a point-stabilizer. This fact can be used nicely. For example, in pushing up problems for
the radical of a point stabilizer.

Lemma 3.4. Let V be an FA-module and suppose that [V,A] is 1-dimensional over F. If A is
an offender on V , then |V/CV (A)| = |A/CA(V )| and the canonical commutator map A/CA(V ) →
HomF(V/CV (A), [V,A]) is an isomorphism.

Proof. Clearly the commutator map is an injective homomorphism. Since [V,A] is 1-dimensional

|HomF(V/CV (A), [V,A])| = |V/CV (A)|.

Hence if A is an offender on V , then |V/CV (A)| ≤ |A/CA(V )| and the lemma holds.
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Theorem 3.5 (Point-Stabilizer Theorem). Let M be a finite CK-group with Op(M) = 1 and
let V be a faithful FpM -module. Suppose that M = 〈APM (V )〉 and that there exists a JM (V )-
component K with V = [V,K] and CV (K) = 0. Let A ∈ APM (V ) and let P be a point-stabilizer
for M on V with A ≤ Op(P ). Then the following hold:

(a) M ∼= SLn(q), Sp2n(q), G2(q) or Sym(n), q a power of p, where p = 2 in the last two cases, and
n ≡ 2, 3 (mod 4) in the last case.

(b) V is a corresponding natural module.

(c) Put F := EndM (V ), q := |F| and Z := CV (P ). Then Z is 1-dimensional over F, and one of the
following holds:

1. M ∼= SLn(q), [V,A] = Z, and A = CM (CV (A)) ∩ CM (V/Z).

2. M ∼= Sp2n(q), Z ≤ [V,A] ≤ Z⊥, and A = CM (CV (A)) ∩ CM (Z⊥/Z).

3. M ∼= G2(q), [V,A] = CV (A), |V/CV (A)| = |A| = q3, and AE P .

4. M ∼= Sym(n), n ≡ 2, 3 (mod 4), n > 6, |A| = 2, and AE P .

(d) |V/CV (A)| = |A|, and V is a simple FpK-module.

Proof. By [MS4, 2.2] either K ∼= C3 (and p = 2) or Q8 (and p = 3) and |V | = p2, or K is quasisimple.
In the first two cases M is isomorphic to SL2(2) and SL2(3), respectively, and the theorem follows
easily. Thus, we may assume that K is quasisimple. Since V = [V,K], GFMT implies that K is
the unique J-component of V and V is a semisimple FpM -module. Let T ∈ Sylp(P ) and note that
A ≤ Op(P ) ≤ T ∈ Sylp(M).

Let V1 be simple M -submodule of V . Then by GFMT(h) V is either a direct sum of copies of
V1, or M ∼= SLn(q), n ≥ 4, and V is a direct sum of copies of V1 and copies of V ∗1 .

Suppose for a contradiction that V is not a direct sum of copies of V1. So M ∼= SLn(q), n ≥ 4, V1

is a natural SLn(q)-module, and there exists a simple FpM submodule V2 of V with V2
∼= V ∗1 . Let

{1, 2} = {i, j}, Ui = CVi(T ) and Hi = [Vi, T ]. Note that Hi is the hyperplane of Vi corresponding
the 1-space Uj in Vj ∼= V ∗i . Then

P = PM (V1 ⊕ V2, T ) = Op′(CM (U1) ∩ CM (U2)) = CM (U1) ∩ CM (V1/H1) = CM (U2) ∩ CM (V2/H2).

It follows thatHi/Ui is a simple P -module, and so [Hi,Op(P )] = Ui, i = 1, 2. Recall that A ≤ Op(P ).
Let D ≤ A be a non-trivial minimal offender on V . Assume that [Hi, D] 6= 0. Then [Hi, D] = Ui,

and Ui is 1-dimensional over EndK(Vi). By 3.4 D is not an over-offender on Hi, so by [MS4, 1.3]
CD(Hi) = 1 and V = Hi + CV (D). But this is absurd since Vj � Vi + CV (D).

Thus [H1 + H2, D] = 0, so D centralizes a hyperplane in V1 and V ∗1 . Hence |D| ≤ q and
|V/CV (D)| ≥ q2, and D is not an offender, a contradiction.

We have shown that V is the direct direct sum of copies of V1. It follows that PM (V1, T ) = P .
So (M,V1, A) satisfies the hypothesis of Theorem 3.5. If the theorem holds for (M,V1, A), then
|V1/CV1(A)| = |A| and V = V1CV (A). Hence [V,K] ≤ [V, 〈AM 〉] ≤ V1 and V = V1, and we are done.

Thus, it suffices to prove 3.5 for (M,V1, A), in other words we are allowed to assume that V = V1,
so V is a simple M -module.

We now discuss the different possibilities for V and M as listed in FMT. Put U := CV (T ) and
F := EndM (V ).

FMT (1): Suppose that V is a natural SLn(q)-module. Then dimF U = 1 and U = [V,Op(P )].
Hence 3.4 gives (c:1) and (d).
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FMT (2)-(4): Suppose that V is a natural Sp2n(q)-, Ωεn(q)-,Oε
n(q)- or SUn(q)-module for M (with

p = 2 in the Oε
n(q)-case). Then |F| = q in the first two cases and |F| = q2 in the last. Moreover, from

the structure of these modules we get the following elementary facts: U is a 1-dimensional singular
F-subspace, [U⊥,Op(P )] ≤ U , and COp(P )(U

⊥) has order q, 1, 1, and q, respectively. Moreover,

CV (a) ≤ U⊥ for all a ∈ Op(P )]. Thus

|CA(U⊥)| ≤ q ≤ |F|,

and
|A| ≥ |V/CV (A)| = |V/U⊥||U⊥/CU⊥(A)| = |F||U⊥/CU⊥(A)|.

Now by 3.4 with U⊥ in place of V ,

|U⊥/CU⊥(A)| ≥ |A/CA(U⊥)| ≥ q−1|A|.

We conclude that equality holds in the three preceding equations. Hence |CA(U⊥)| = |F|, which
excludes the natural Ωεn(q)-, Oε

n(q)-, and SUn(q)-module. Thus (c:2) and (d) hold.

FMT (5): Suppose that V is a natural G2(q)-module for M . Then q3 = |V/CV (A)| = |A|,
CM (A) = A and A is quadratic on V . Put D = Z(Op(P )), then D ≤ CM (A) ≤ A. Since
|CV (D)| = q3 we conclude that CV (A) = CV (D) and then A = CM (CV (D)) E P . So (c:3) holds.

FMT (6): Suppose V is the exterior square of a natural SLn(q)-module W with n ≥ 5. Then
[W,A] is a hyperplane of W . On the other hand, P/Op(P ) ∼= SL2(q)× SLn−2(q) and [W,Op(P )] is
2-dimensional. Since A ≤ Op(P ) and n ≥ 5 we have a contradiction.

FMT (7),(8): Suppose that V is a spin module for Spin7(q) or a half-spin module for Spin+
10(q).

Let W be the natural Ω7(q)- and Ω+
10(q)-module, respectively, so |W⊥| = q if q is even in the

Spin7(q)-case, and W⊥ = 0 in all other cases.
We will show that |CW (A)/W⊥| ≤ q2. For this let A∗ ≤ M be a maximal best offender with

A ≤ A∗. Then by FMT |A∗/A| ≤ q and Op′(NM (A))/A∗ ∼= Sp4(q) and Spin+
8 (q), respectively. Thus

NM (A) = NM (U) for some 1-dimensional singular subspace U of W , and A ≤ A∗ ≤ Op(NM (A)).
Hence [U⊥, A] ≤ U and CW (A) ≤ U⊥. By 3.4 applied with V = U⊥,

|U⊥/CU⊥(A)| ≥ |A/CA(U⊥)|.

Suppose that M ∼= Spin7(q) and p is odd. Then |CA(U⊥)| = 1, |U⊥| = q6, |A| ≥ q4 and W⊥ = 0.
Thus

q4 ≤ |A| ≤ |U⊥/CU⊥(A)| and q4|CU⊥(A)| ≤ |U⊥| = q6,

so |CW (A)/W⊥| = |CW (A)| = |CU⊥(A)| ≤ q2.
Suppose that M ∼= Spin7(q) and p = 2. Then |CA(U⊥)| ≤ q, |U⊥| = q6 and |A| ≥ q4 and

|W⊥| = q. Thus

q3 ≤ |A/CA(U⊥)| ≤ |U⊥/CU⊥(A)| and q3|CU⊥(A)| ≤ |U⊥| = q6,

so |CW (A)/W⊥| = |CU⊥(A)/W⊥| ≤ q2.
Suppose that M ∼= Spin+

10(q). Then |CA(U⊥)| = 1, |U⊥| = q9, |A| = |A∗| = q8 and W⊥ = 0.
Thus

q8|CU⊥(A)| = |A||CU⊥(A)| ≤ |U⊥| = q9,
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and |CW (A)/W⊥| = |CW (A)| = |CU⊥(A)| ≤ q ≤ q2.
We prove that |CW (A)/W⊥| ≤ q2 in all cases. On the other hand CW (Op(P )) contains maximal

singular subspace of W and A ≤ Op(P ), so |CW (A)/W⊥| ≥ q3 a contradiction.

FMT (9): Suppose that p = 2 and M ∼= 3.Alt(6). Then |[V,Op(P )]| = 4 and |[V,A]| = 16, which
contradicts A ≤ Op(P ).

FMT (10): Suppose that M ∼= Alt(7), p = 2 and |V | = 24. Then P ∼= SL3(2) and Op(P ) = 1,
which contradicts A ≤ Op(P ).

FMT (11),(12): Suppose that p = 2 and V is a natural Alt(n)-module for K. Assume first that
n = 5 or 8. Then K ∼= Ω−4 (2) and Ω+

8 (2), respectively, and M ∼= O−4 (2) or O+
8 (2) if K 6= M . Thus,

these cases have been treated earlier in case FMT(2) – (4).
Hence, we may assume that n ≥ 6 and n 6= 8. Let (Ω1, . . . ,Ωl) be the orbits of T on Ω =

{1, . . . , n}. Note that |Ωi| 6= |Ωj | for i 6= j, so we may assume that |Ω1| < · · · < |Ωl|.
Suppose first that l = 1. Then P ∼=

(
Sym(n2 ) o C2

)
∩M , and since n 6= 8 and n ≥ 6, Op(P ) = 1,

which contradicts A ≤ Op(P ).

Suppose now that l 6= 1. Then P ∼=
(×l

i=1 Sym(Ωi)
)
∩M . Observe that O2(Sym(Ωi)) = 1

unless |Ωi| = 2 or 4. Thus |A| ≤ 8.
If A is generated by transpositions, then A = Sym(Ωj) for some j ∈ {1, 2} and |A| = 2. Thus

either j = 1 and n ≡ 2 mod 4, or |Ω1| = 1, j = 2, and n ≡ 3 mod 4. Hence (c:4) holds in this case,
and since |A| = 2 obviously also (d) holds.

If A is not generated by transpositions, then we are in case (12)(2) or (12)(3) of FMT. In both
cases |V/CV (A)| = |A|, so (d) holds. In the first case |A| = 2

n
2−1 ≤ 8, and so n = 6, since n is even

and n 6= 8. Hence |A| = 4, and A is conjugate to 〈(12), (34)(56)〉. Then M ∼= Sym(6) ∼= Sp4(2) and
(c:2) holds.

In the second case we get |A| = 2
n
2 ≤ 8 and so n = 6 and |A| = 8. But then A is conjugate to

〈(12), (34)(56), (35)(46)〉, and again (c:2) holds.

Theorem 3.6 (General Point-Stabilizer Theorem). Let M be a finite CK-group with Op(M) =
1 and let V be a faithful FpM -module. Put AP := APM (V ) and suppose that AP 6= ∅. Then there
exists an M -invariant set N of subnormal subgroups of M such that the following hold:

(a) 〈AP〉 =×N , and N = 〈A ∈ AP | A ≤ N〉 for all N ∈ N .

(b) For all N1 6= N2 ∈ N , [V,N1, N2] = 0.

(c) Put V = V/CV (N )). Then [V ,N ] =
⊕

N∈N [V ,N ].

(d) Let N ∈ N . Then (N, [V ,N ]) satisfies the hypothesis of 3.5 in place of (M,V ).

(e) For all N ∈ N , CV (N) = CV (Op(N)) and [V,Op(N)] = [V,N ].

(f) Let A ∈ AP. Then

(a) |V/CV (A)| = |A|,
(b) A =×N∈N A ∩N ,

(c) A ∩N ∈ AP for all N ∈ N with A ∩N 6= 1.
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Proof. Let A ∈ AP and let P be a point stabilizer of M on V with A ≤ Op(P ). Choose T ∈ Sylp(P )
with A ≤ T . Then P = PM (V, T ). Put M0 := 〈AP〉 and T0 := T ∩M0. Then by 1.7(a) P0 :=
PM0(V, T0) ≤ P and so A ≤ Op(P0). Thus replacing M by M0 we may assume that M = 〈AP〉. In
particular M = JM (V ).

Put
J := JM (V ), V := V/CV (J ) and W := [V,J ] + CV (J )/CV (J ),

and for K ∈ J ,
WK := [W,K] and M̃ := M/CM (WK).

Note that A normalizes K and thus also WK . An application of GFMT gives:

1◦. Op(M) = F∗(M) = 〈J 〉, and W is a faithful semisimple FpM -module.

2◦. W =
⊕

K∈J WK and so CW (A) =
⊕

K∈J CWK
(A).

3◦. F∗(M̃) = K̃ = Op(M̃).

4◦. A is a best offender on W .

By (4◦) and [MS4, 1.2] A is also a best offender on WK . Put P1 := PM (V , T ). By 1.7(c) (with
H = E := M) we have P1 ≤ P and A ≤ Op(P1). Put P2 := PKT (V , T ). Then clearly P2 ≤ P1 and
so A ≤ Op(P2). Since K = Op(KT ), 1.7(a) (with E := KT ) gives P2 = PKT (WK , T ). Since by

(3◦) K̃ = Op(M̃) we have M̃ = K̃T̃ and so P̃2 = P
M̃

(WK , T̃ ). So either Ã = 1 or Ã ∈ AP
M̃

(WK).

Moreover, the semisimplicity ofW given in (1◦) yieldsWK = [WK ,K], CWK
(K̃) = 0 and Op(M̃) = 1.

Thus:

5◦. If Ã 6= 1, then (M̃,WK , Ã) satisfies the hypothesis of 3.5.

In particular, by 3.5(d):

6◦. |WK/CWK
(A)| = |Ã| = |A/CA(WK)|.

Note that (6◦) also holds if Ã = 1.We now use the following additional notation for K ∈ J :

K⊥ :=
∏

E∈J\{K}

E, AK := CA([W,K⊥]).

From (6◦) and [MS4, 1.1] applied with W = {WK | K ∈ J } we conclude

7◦. |W/CA(W )| = |A/CA(W )| and A =×K∈J AK = AK × CA(WK).

Recall that A is a best offender on WK . Since A = AK ×CA(WK) and W = WK + CA(AK) we
have

8◦. AK is a best offender on WK and on W .

Since by (7◦) |W/CW (A)| = |A| and also |V/CV (A)| ≤ |A|, we conclude that CV (J ) ≤ CV (A)
and C[V,J ](A) = CW (A), and

9◦. CV (J ) ≤ CV (A) and C[V,J ](A) = CW (A), and |V/CV (A)| = |A|.

Let D be an offender in M on V such that D ≤ Op(P ). Let B ≤ D with |B||CV (B)| maximal.
Then B is a best offender on V . We claim that |B||CV (B)| = |V |. If B = 1, this is obvious and if
B 6= 1 this follows from (9◦) applied to B instead of A. Since D is an offender, |V | ≤ |D||CV (D)|
and so |B||CV (B)| = |V | ≤ |D||CV (D)|. Thus
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10◦. All offenders in Op(P ) are best offenders on V

From (9◦) andM = 〈AP〉, we have CV (J ) = CV (M) and |[V,K]+CV (A)/CV (A)| = |W/CW (A)| =
|A|, so V = [V,K] + CV (A) since A is an offender on V .

Put
MK := CM ([W,K⊥]), and N := {MK | K ∈ J },

so AK ≤MK and by (2◦) also K ≤MK . We will now show the statements of the conclusion for N .
Since K⊥ acts faithfully on [W,K⊥], [MK ,K

⊥] = 1. Thus the Three Subgroups Lemma implies
[V,K⊥,MK ] = 1 and so V = [V,K] + [V,K⊥] + CV (A) = [V,K] + CV (AK). It follows that
[V,K] = [V,MK ] and CV (K) = CV (MK). This gives (b), (c) and (e). Moreover, (f:a) and (f:b)
follow from (7◦) and (9◦), respectively. Note that CWK

(AK) = CWK
(A). So (9◦) implies that

|[V,K]/C[V,K](AK)| = |WK/CWK
(AK)|. Since V = [V,K] + CV (AK) and AK is an offender on WK

we conclude that AK an offender on V . Note that AK ≤ A ≤ Op(P ) and so by (10◦) AK is a best
offender on V . Thus (f:c) holds.

In particular, MK is generated by best offenders, so the second part of (a) holds. The first part
of (a) follows from (b) and the fact that M acts faithfully on W .

Note that MKCM (WK) = M . Hence (d) follows from (5◦), and all parts of the conclusion are
proved.

Corollary 3.7. Let M be a finite CK-group with Op(M) = 1 and V be a faithful FpM -module. Let
A be an offender in M on V such that A ≤ Op(P ) for some point stabilizer P for M on V . Then
A is a best offender.

Proof. This is Step 10◦ in 3.6.

Corollary 3.8. Let L ∼= SLn(q), q = pk, X be a natural FpSLn(q)-module for L, and P be a point
stabilizer of L on X. Put X∗ = HomFp(X,Fp), the dual of X. Suppose that V is a FpL-module
with 0 6= V = [V,L] and that there exists 1 6= A ≤ Op(P ) with |V/CV (A)| ≤ |A|. Then one of the
following holds:

1. V = V1 ⊕ . . .⊕ Vm where V1, . . . , Vm are isomorphic to X∗ and 1 ≤ m < n.

2. V is isomorphic X.

3. A = Op(P ), n = 3, q = 2, |V | = 24, and V/CV (L) ∼= X.

4. A = Op(P ), n = 2, q = 2k, V/CV (L) ∼= X, and V is a quotient of the natural Ω3(q)-module.

5. A = Op(P ), n ≥ 4, and V is isomorphic to the exterior square of X∗ over Fq. Moreover,
CV (A) = [V,A], and as an FpP -module A is a natural FpSLn−1(q)-module dual to X/CX(A),
V/CV (A)) is isomorphic to A, and CV (A) is isomorphic to the exterior square of A over Fq.

Proof. Observe that Op(P ) is elementary abelian, so A is an offender on V . Put V := V/CV (Op(L)).
Let 1 6= B ≤ A such that |B||CV (B)| is maximal. Then B is a best offender on A. Note that either
L is quasisimple or n = 2 and q = p ≤ 3. In any case we conclude that L = 〈BL〉 and so L = JL(V ).
Thus we can apply GFMT to L and V . In particular, since V = [V,L], V is a semisimple FpL-
module. Let Y be a simple FpL-submodule of V . By GFMT(d) B is a best offender on V and so
by [MS4, 1.2] B is a best offender on Y . Thus we can apply FMT also to (L, Y ). Only the cases
FMT(1), (4) (with n = 3 and ε = +) and (6) apply to our situation, since Ω+

6 (q) ∼= L4(q).
Suppose first that n ≥ 5 and Y is the exterior square of a natural SLn(q)-module Z. Then by

GFMT(g), Y = V , and B is the centralizer of an Fq-hyperplane in Z. Since B ≤ A ≤ Op(P ) this
shows that Z is dual to X and A = B = Op(P ). By [MS4, 6.1], CV (L) = 0 and so (5) holds.
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Suppose next that n = 4 and Y is a natural Ω+
6 (q)-module for L. Note that CY (Op(P )) =

[Y,Op(P )] is a 3-dimensional singular subspace of Y . Thus also [Y,B] is singular. Since Y is an
offender we conclude from [MS4, 3.4] that [Y,B] is 3-dimensional, A = B = Op(P ), and |Y/CY (B)| =
|B| = q3. Thus Y = V . Suppose that CY (L) 6= 0. Then by [MS4, 6.1], q = 2, and V is isomorphic
to a submodule of the permutation module for SL4(2) ∼= Alt(8). But B acts transitively on the eight
points permuted by Alt(8), and so CY (B) = CY (L) and |Y/CY (B)| = 26 > |B|, a contradiction.
Thus CV (L) = 0 and (5) holds.

Suppose that Y is isomorphic to X. Since A ≤ Op(P ) the Point Stabilizer Theorem 3.5 shows
that |Y/CY (B)| = |B|. Thus V = Y . If CV (L) = 0, (2) holds. So suppose CV (L) 6= 0. Then by
[MS4, 8.4] p = 2, |CY (L)| ≤ q, and either n = 2, or n = 3 and q = 2. In the first case (4) holds. So
suppose n = 3 and q = 2. Then by [MS4, 8.4] |B| = 4 and A = B = O2(L). Hence (3) holds.

It remains to treat the case where Y (and every other simple L-submodule of V ) is isomorphic
to the dual of X, so V is the direct sum of m natural modules dual to X, and by GFMT(g) n > 2.
Then qm = |V /CV (B)| ≤ |B| ≤ |Op(P )| = qn−1 and so m ≤ n − 1. If CV (L) = 0, then (1) holds.
So suppose CV (L) 6= 0. Since V = [V,L] there exists an FpL-submodule U of V with U = [U,L],
CU (L) 6= 0, and U simple. Then [MS4, 6.1] shows n = 3 and q = 2. Since B is an offender on U ,
[MS4, 8.4] shows that |B| = 4 and |[U,B]| = 2. But this is impossible, since B ≤ O2(P ) and U is
dual to X.

Theorem 3.9 (Rank 1 Theorem). Let M be a finite CK group with Op(M) = 1 and V be a
faithful finite dimensional FpM -module, and let K be JM (V )-component. Suppose that the point
stabilizers of K on V are p-groups. Then K ∼= SL2(q)′, q a power of p, and [V,K]/C[V,K](K) is a
natural SL2(q)′-module.

Proof. Let T ∈ Sylp(K) and P = PK(V, T ). By 1.7(a), P is also a point stabilizer of K on [V,K]
and so by 1.7(c) (applied with V := [V,K] and V0 := C[V,K](K)), P contains a point stabilizer P ∗

of K on X := [V,K]/C[V,K](K).
Suppose first that X is a homogeneous K-module, that is, X ∼= Y m for some simple FpK-module

Y . Then P ∗ is the point stabilizer of K on Y . Since P ∗ is a p-group we conclude from GFMT that
K ∼= SL2(q), Y is a natural SL2(q) module and X ∼= Y . So the theorem holds in this case.

Suppose next that X is not an homogeneous K-module. Then by GFMT K ∼= SLn(q), n ≥ 4,

and X ∼= Y r ⊕ Y ∗s, where Y is a natural SLn(q) and r, s ∈ Z+. Then P ∗ = Op′(CK(CY (T )) ∩
CK(Y/[Y, T ]) and so P ∗/Op(P

∗) ∼= SLn−2(q), a contradiction since P ∗ is p-group and n ≥ 4.

4 Q!-Modules

The results of this section are important for the investigation of finite groups G which possess a
large subgroup. Here a p-subgroup Q ≤ G is called large if

(∗) CG(Q) ≤ Q and NG(A) ≤ NG(Q) for all 1 6= A ≤ Z(Q).

Observe that most of the simple groups of Lie type in characteristic p possess a large subgroup,
namely Op(NG(Z)), where Z is a long root subgroup. The exceptions are the groups F4(2n), Sp4(2n)
and 2G2(3n).

For the investigation of p-local subgroups containing a large subgroup by means of their action
on elementary abelian p-subgroups the above property (∗) can be easily transformed into a property
of modules, so-called Q!-modules. We recall the definition here from [MS4, 6.2]:
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Definition 4.1. Let H be a finite group, V an FpH module, and Q a p-subgroup of H. Then V is
called a Q!-module for H if Q is not normal in H and

(Q!) QE NH(A) for all 1 6= A ≤ CV (Q).

In this section H is a finite group with Op(H) = 1, Q is a p-subgroup of H, and V a faithful
Q!-module for FpH. Put H◦ := 〈QH〉.

Recall that a p-subgroup A ≤ H is a weakly closed subgroup of H if A is the only conjugate of
A in T for some T ∈ Sylp(H).

Lemma 4.2. (a) Q is a weakly closed subgroup of H.

(b) H◦ = 〈Qh | h ∈ H◦〉.

(c) CH(H◦/Z(H◦)) = CH(H◦).

(d) Let H◦ ≤ L ≤ H and W be a non-zero L-submodule of V . Then CL(W ) ≤ CL(H◦). In
particular, CH◦(W ) is a p′-group.

(e) CV (H◦) = 0.

(f) Let Q ≤ L ≤ H with Q 5 L. Then V is Q!-module for FpL.

(g) Let L EE H with [L,Q] 6= 1. Then CV (〈LQ〉) = 0.

Proof. (a): Let Q ≤ T ∈ Sylp(H) and A := CV (T ). By Q!, Q E NH(A), in particular Q E NH(T ).

Thus, if Qh ≤ T then also Qh E NH(T ). By Burnside’s Theorem [Go, 7.2.1] any two normal
subgroups of T are conjugate in H if and only if they are conjugate in NH(T ). Hence Q = Qh.

(b): Let H0 := 〈Qh | h ∈ H◦〉. Then (a) shows that QH = QH0 and so H0 = H◦.
(c): Set D := CH(H◦/Z(H◦)). Note that Z(H◦) is a p′-group since Op(H) = 1 and that Z(H◦)

centralizes Q. Hence Q = Op(QZ(H◦)). Since [D,QZ(H◦)] ≤ Z(H◦) ≤ QZ(H◦) we conclude that
D normalizes QZ(H◦) and Q. So [D,Q] ≤ Q ∩ Z(H◦) = 1 and thus [D,H◦] = 1.

(d): Since CW (Q) 6= 0, Q! implies that CH◦(W ) ≤ NH(CW (Q)) ≤ NH(Q). Thus

[CH◦(W ), Q] ≤ Q ∩ CH◦(W ) ≤ Op(CH◦(W )) ≤ Op(H
◦) ≤ Op(H) = 1.

Now (b) implies CH◦(W ) ≤ Z(H◦). This shows the additional claim since Z(H◦) is a p′-group.
Moreover, [CL(W ), H◦] ≤ CH◦(W ) ≤ Z(H◦) and so by (c), CL(W ) ≤ CL(H◦).

(e): Since Q 5 H, Q 6= 1 and so CH◦(CV (H◦)) = H◦ is not a p′-group. Thus (d) implies
CV (H◦) = 0.

(f): This follows immediately from the definition of a Q!-module.
(g): Put L∗ = 〈LQ〉. Since L is subnormal in H, so is L∗. Thus Op(L

∗) ≤ Op(H) = 1. If
Q E QL∗ we get 1 6= [Q,L] ≤ [Q,L∗] ≤ Q ∩ L∗ ≤ Op(L

∗) = 1, a contradiction. Thus Q 5 L∗Q

and by (f), V is a Q!-module for L∗Q. By (e) applied to L∗Q, CV (〈QL∗Q〉) = 0. In particular,
CV (L∗Q) = 0 and so also CV (L∗) = 0.

Recall from [MS2] that an FpH-module U is called quasisimple if U = [U,H], U/CU (H) is a
simple H-module, and Op(H/CH(U)) = 1.

Lemma 4.3. Let K be a JH(V )-component such that [V,K] is a quasisimple K-module. Then
K ≤ [K,H◦] ≤ H◦.
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Proof. Otherwise [MS4, 2.10] implies [K,H◦] = 1. Put W = ([V,K] + CV (K))/CV (K). Then W
is a simple K-module. Since [K,Q] = 1, CW (Q) is a non-trivial K-submodule and so [W,Q] = 0.
By 4.2(b) H◦ = 〈QH◦〉 and thus [W,H◦] = 0 since H◦ normalizes W . Thus [V,K,H◦,K] = 0.
Since [H◦,K] = 1 the Three Subgroups Lemma gives [V,K,K,H◦] = 1. By 4.2, CV (H◦) = 0, thus
[V,K,K] = 0, a contradiction since [V,K] is quasisimple.

Lemma 4.4. Let Y be a p-subgroup of H with CY ([V, Y ]) 6= 1 and [H◦, Y ] 6= 1. Then CY (H◦) = 1.

Proof. Put X := CY (H◦) and Z := CY ([V, Y ])∩Z(Y ). Note that Z 6= 1. Suppose that X 6= 1. Then
[V,X] is a non-zero H◦Z-submodule of V . Since Z centralizes [V,X] we conclude from 4.2(d), that
Z centralizes H◦. Since [V, Y, Z] = 0 and [Z, Y ] = 0 the Three Subgroups Lemma gives [V,Z, Y ] = 0.
Thus [V,Z] is a non-zero H◦Y submodule centralized by Y and another application of 4.2(d) gives
[H◦, Y ] = 1, a contradiction.

Lemma 4.5. Suppose that one the following holds.

(i) F∗(H) ∼= Alt(n), n ≥ 5, and [V,H] is a natural FpAlt(n)-module for F∗(H), or

(ii) H ∼= Alt(7) and |[V,H]| = 24.

Then (i) holds, and either n = p or (n, p) is one of (5, 2), (6, 2), (8, 2), (6, 3).

Proof. Clearly every FpH-submodule of V is also a Q!-module, so we may assume that V = [V,H].
Since Q is not normal in H, Q 6= 1. Moreover, replacing H by H◦ we may assume that H = H◦

and so H = Op′(H).
If (ii) holds, then CH(v) ∼= L3(2) and so O2(CH(v)) = 1 for every 0 6= v ∈ V . For 0 6= v ∈ CV (Q)

this gives Q ≤ O2(CH(v)) = 1, a contradiction. Thus (i) holds.
Put K := F∗(H) ∼= Alt(n). Note that either Aut(K) ∼= Sym(n), or n = 6, |Aut(K)/Inn(K)| = 4.

For p 6= 2 this implies H = Op′(H) ∼= Alt(n). For p = 2 and n = 6, Sym(6) is the largest subgroup
of Aut(K) acting on the natural F2Alt(6)-module. So for p = 2, H ∼= Alt(6) or H ∼= Sym(n). In any
case we may assume that H ≤ Sym(n). Let Ω := {1, 2, . . . , n} and W be the permutation module
with basis (wi | i ∈ Ω); and for Ψ ⊆ Ω let wΨ :=

∑
i∈Ψ wi. Set W0 := [W,H] and W := W/CW (H).

Then W0
∼= V .

Assume first that Q does not act transitively on Ω. Let Ψ be any Q-invariant subset of Ω such
that Ψ 6= Ω, Q acts non-trivially on Ψ, and p

∣∣|Ψ|. Then wΨ ∈ W0 and wΨ 6= 0. Note that Alt(Ψ)
centralizes wΨ , so Q! implies that Alt(Ψ) normalizes the image of Q in Sym(Ψ). It follows that
either p = 2 and |Ψ| = 2 or 4, or p = 3 and |Ψ| = 3. In all cases Ψ is a non-trivial Q-orbit. Since
this holds for all possible choices of Ψ and n ≥ 5, Ω is the union of two non-trivial Q-orbits or of one
non-trivial Q-orbit and at most p− 1 fixed points of Q. This gives one of the following possibilities:

n = 2 + 4, n = 4 + 4, n = 4 + 1 for p = 2,

n = 3 + 3, n = 3 + 2 for p = 3.

Suppose p = 3 and n = 5. Say Q = 〈(1, 2, 3)〉. Then Q centralizes w := w1234 − w5. Observe
that w ∈ W0, w 6= 0 and CH(w) = Alt(4), a contradiction to Q!. So (n, p) 6= (5, 3) and the lemma
holds in the intransitive case.

Assume next that Q acts transitively on Ω. Let (Xi)i∈Fp
be a Q-invariant partition of Ω into p

sets of size n
p . Pick g ∈ Q with Xg

0 6= X0 and choose notation such that Xg
i = Xi+1 for all i ∈ Fp.

Define w0 =
∑
i∈Fp

iwXi
. Then
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wg0 =
∑
i∈Fp

iwi+1 =
∑
j∈Fp

(j − 1)wj =
∑
j∈Fp

jwj −
∑
j∈Fp

wj = w0 − wΩ

Thus Q centralizes w0 and w0 6= 0. Note that Alt(X0) centralizes w0 and so by Q!, Alt(X0)
normalizes Q. Thus [Alt(X0), Q] is a p-group. Since Alt(X0)g = Alt(X1) this implies that Alt(X0)
is p-group. Hence one of the following holds: |X0| = 1 and n = p; |X0| = 2 = p and n = 4;
or |X0| = 3 = p and n = 9. In the first case the lemma holds. Since n ≥ 5, the second case is
impossible. So suppose |X0| = 3 = p. Put D = (Sym(X0) × Sym(X1) × Sym(X2)) ∩ Alt(n) and
E = Alt(X0)× Alt(X1)× Alt(X2). Then D/E ∼= C2 × C2 and Q acts non-trivially on D/E. Thus
[D,Q] is a not 3-group, a contradiction to Q! and D ≤ CH(w0).

Theorem 4.6 (Q!FF-Module Theorem). Let H be a finite group with Op(H) = 1 and Q be
a p-subgroup of H, and let V be a faithful Q!-module for H. Put H◦ := 〈QH〉 and J := JH(V ).
Suppose that there exists an offender Y in H such that [H◦, Y ] 6= 1 and that one of the following
holds:

(i) Y is quadratic on V .

(ii) Y is a best offender on V .

(iii) CY ([V, Y ]) 6= 1.

(iv) CY (H◦) = 1.

Then one of the following holds, where q is a power of p:

1. There exists an H-invariant set K of subgroups of H such that:

(a) For all K ∈ K, K ∼= SL2(q) and [V,K] is a natural module for K,

(b) J =×K∈KK and V =
⊕

K∈K[V,K],

(c) Q acts transitively on K,

(d) H◦ = Op(J)Q.

2. Put R := F∗(J). Then

(a) R is quasisimple, R ≤ H◦, and either J = R or p = 2 and J ∼= O±2n(q), Sp4(2) or G2(2).

(b) CV (R) = 0, [V,R] is a semisimple J-module, and H acts faithfully on [V,R].

(c) Put J0 := J ∩H◦. Then one of the following holds:

1. (a) R = J0 ∼= SLn(q), n ≥ 3, Sp2n(q), n ≥ 3, SUn(q), n ≥ 8, or Ω±n (q), n ≥ 10.

(b) [V,R] is the direct sum of at least two isomorphic natural modules for R.

(c) H◦ = RCH◦(R).

(d) If V 6= [V,R] then R ∼= Sp2n(q), p = 2, and n ≥ 4.

2. (a) [V,R] is a simple R-module.

(b) Either H◦ = R = J0 or H◦ ∼= Sp4(2), 3.Sym(6), SU4(q).2 (∼= O−6 (q) and [V,R] the
natural SU4(q)-module), or G2(2).

(c) One of the cases FMT (1) - (9), (12) applies to (J, [V,R]), where n = 6 in case (12).

3. p = 2, J = R ∼= SL4(q), H◦/R has order two and induces a graph automorphism on R,
and V is the direct sum of two non-isomorphic natural modules.
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Proof. Note that (i) implies (iii), and by Timmesfeld’s Replacement Theorem [KS, 9.2.3], also (ii)
implies (iii). By 4.4, (iii) implies (iv). So in any case:

1◦. CY (H◦) = 1.

Let J be the set of J-components of H, and let X be a minimal offender in Y . By [MS4, 1.3] X
is a quadratic best offender and so X ≤ J . Now (1◦) implies

2◦. [H◦, X] 6= 1. In particular, [H◦, J ] 6= 1.

According to (2◦) and [MS4, 2.2(b)] there exists R ∈ J with R ≤ H◦. Next we prove:

3◦. [R,H◦] 6= 1.

Suppose that [R,H◦] = 1. SinceR ≤ H◦ it follows thatR is abelian. So [MS4, 2.2(d)] implies that
p = 2, R ∼= C3 and |[V,R]| = 4. Thus [V,R] is a simple R-module. Hence 4.3 gives R ≤ [R,H◦] = 1,
a contradiction.

According to (3◦) we may choose R such that [R,Q] 6= 1. Put R∗ := 〈RQ〉.

4◦. CV (R∗) = 0.

As a J-component, R is subnormal in H. Thus (4◦) follows from 4.2(g).

5◦. J = RQ, so R∗ = 〈J 〉.

Otherwise there exists R̃ ∈ J \RQ. Put U := [V, 〈R̃Q〉]. Since RQ ∩ R̃Q = ∅, [MS4, 2.2(f)] gives
[U, 〈RQ〉] = 0, which contradicts (4◦).

6◦. W := [V,R∗] is a semisimple, faithful J-module, and R∗ =×K∈J K = F∗(J) ≤ H◦.

By (4◦) CV (R∗) = 0. Hence (6◦) follows from (5◦) and [MS4, 8.3].

7◦. H acts faithfully on W .

Set D := CH([V,R∗]). Since W is a faithful J-module, R∗ ∩D ≤ J ∩D = 1. Thus [R∗, D] = 1,
and the Three Subgroups Lemma shows that [V,D,R∗] = 0. Now (7◦) follows from (4◦).

Let S be a Sylow p-subgroup of H with Q ≤ S. Since R and R∗ are subnormal in H, R∩ S and
R∗ ∩ S are Sylow p-subgroups of R and R∗, respectively. Since Q ≤ S, also R∗Q ∩ S is a Sylow
p-subgroup of R∗Q.

8◦. Let W0 be an R∗Q-submodule of W and Z0 := C[W0,R](S ∩R). Then CR(Z0) ≤ NH(Q).

From 1.6, applied to E = R, H = R∗Q, T = S ∩R∗ and W0, we get that CR(Z0) = CR(CW0(S ∩
R∗)). Since CW0(S ∩ R∗) ≤ CV (Q), the Q!-property gives CH(CW0(S ∩ R∗)) ≤ NH(Q). So (8◦)
holds.

Put Z := C[V,R](S ∩ R), P := CR(Z) and Ω := {v | 0 6= v ∈ CV (Qh), h ∈ H}. Note that
S ∩R ≤ P and by (8◦) P ≤ NH(Q); in particular [P,Q] ≤ Op(R

∗).

9◦. Suppose that R∗ acts transitively on Ω. Then H◦ = R∗Q.

Let v ∈ Ω such that [v,Q] = 0. By the Frattini argument H = R∗CH(v) and by Q!, CH(v) ≤
NH(Q). Thus H = R∗NH(Q), R∗Q is normal in H, and R∗Q ≤ H◦ ≤ R∗Q.
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Case 1. Suppose that J 6= {R}. Then (1) holds.

By (5◦) R∗ is the direct product of at least two Q-conjugates of R. On the other hand by (8◦)
[CR(Z), Q] ≤ Q. We conclude from the direct product that P is a p-group. By (6◦), C[V,R](R) = 0
and so the Rank 1 Theorem 3.9 shows that R ∼= SL2(q)′ and [V,R] is a natural module for R.

Then (5◦) implies (1:a) and (1:c). Moreover, GFMT gives the first part of (1:b). To show the sec-
ond part of (1:b) it suffices to show that V = [V,R]+CV (R). Let A be a minimal offender on V . Since
Q acts transitively on J we may assume [R,A] 6= 1. Since A is not an over-offender on [V,R] and A
is minimal we conclude from [MS4, 1.2] that CA([V,R]) = 1, |A| = q = |V/CV (A)|, [CV (R), A] = 0
and RA ∼= SL2(q). Thus RA is generated by two conjugates of A and so |V/CV (RA)| ≤ q2. Hence
V = [V,R] + CV (R) and (1:b) holds.

To prove (1:d) let Ω∗ be the set of elements in V such that [v, R̃] 6= 0 for all R̃ ∈ J . Since R
acts transitively on [V,R] and CV (R∗) = 0, and since we have already proved that V = [V,R∗], R∗

acts transitively on Ω∗. Since Q acts transitively on J we conclude that Ω = Ω∗. Thus by (9◦),
H◦ = R∗Q and (1:d) holds.

According to (Case 1) we may assume from now on that J = {R}. In particular, W = [V,R]
and CV (R) = 0.

Case 2. Suppose that R is solvable. Then (1) holds.

By [MS4, 2.2(d)]) (or FMT) p = 2 or 3, R ∼= SL2(p)′ and [V,R] is a natural SL2(p)′-module.
Since CV (R) = 0, [MS4, 8.4] (or coprime action) gives V = [V,R] and so (1) holds.

According to (Case 1) and (Case 2) we may assume from now on that R is quasisimple. We will
show that (2) holds.

Case 3. Suppose that W is not a homogeneous R-module. Then (2) and (2:c:3) hold.

By GFMT we have R ∼= SLn(q) and [V,R] ∼= Nr ⊕ N∗s, where N and N∗ are simple natural
R-submodule in W dual to each other. Moreover, r, s ≥ 1 and n ≥ 4.

Set U := CN (R ∩ S) and U∗ = CN∗(R ∩ S). Then U and U∗ are 1-dimensional over Fq and
P = CR(Z) = CR(U) ∩ CR(U∗). From (8◦) we get [P,Q] ≤ P ∩Q ≤ Op(P ).

Assume first that Q acts trivially on the Dynkin diagram of R. Put W0 := 〈NQ〉. Then
W0
∼= N t′ for some t′ ≤ r, and by (8◦) CR(U) ≤ NR(Q). By symmetry also CR(U∗) ≤ NR(Q).

Thus R = 〈CR(U),CR(U∗)〉 ≤ NM (Q). But then [R,Q] ≤ Q ∩ R ≤ Op(R) = 1, which contradicts
(3◦).

Assume now that Q acts non-trivially on the Dynkin diagram of R. Then clearly p = 2. Also
[P,Q] ≤ O2(P ) implies that n = 4 and that Q does not induce a non-trivial field or field graph
automorphism on R. By GFMT

√
r +
√
s ≤
√

4 = 2 and so r = s = 1. Thus W ∼= N ⊕ N∗. An
application of [MS4, 8.4] also gives W = V .

Let f : N ×N∗ → Fq be a surjective R-invariant Fq-bilinear map. Then R acts transitively on
Ω∗ = {n+ n∗ | f(n, n∗) = 0} and Ω = Ω∗. Thus by (9◦), H◦ = RQ and so (Case 3) is proved.

Case 4. Suppose that W is a homogeneous but not simple R-module. Then (2) and (2:c:1) hold.

GFMT shows that R is a genuine group of Lie-type of type An (n ≥ 2), Bn (n ≥ 5), Cn (n ≥ 3),
Dn (n ≥ 5), 2An (n ≥ 4), or 2Dn (n ≥ 5), and W ∼= Nr for some natural module N and some
r ≥ 2. Put U = CN (S ∩ R). Then P = CR(U), NR(U) is a maximal parabolic subgroup of R, and
P/Op(P ) is a group of Lie-type An−1, Bn−1, Cn−1, Dn−1, 2An−2 or 2Dn−2, respectively. Note that
[P,Q] ≤ Op(P ) . If R is of type An, P is not invariant under any graph automorphism of R, and if
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R is type Dn, any graph automorphism also induces a graph automorphism on P/Q. Thus Q does
not induce graph automorphisms on R. Also if R has roots of more than one length, so does P/Q.
Thus Q does not induces any field automorphism on R. Since Q is a p-group, Q does not induces
any diagonal automorphism on R and so Q ≤ RCH(R). Thus H◦ = RCH◦(R).

Suppose that V 6= [V,R]. We apply [MS4, 8.4]. Since CV (R) = 0 and [V,K] is not simple, we
are in case (f) of [MS4, 8.4], and R ∼= Sp2n(q), p = 2, and n ≥ 4.

Case 5. Suppose that W is a simple R-module.

Clearly we can apply FMT to (J,W ). In the cases (10) – (12) of FMT 4.5 shows that one of
the following holds:

J ∼= Sym(5) ∼= O−4 (2), J ∼= Alt(8) ∼= Ω+
6 (2), J ∼= Sym(8) ∼= O+

6 (2),
J ∼= Alt(6) ∼= Sp4(2)′, J ∼= Sym(6) ∼= Sp4(2),

and W is the corresponding natural orthogonal or symplectic module. Thus, one of the cases (1) –
(9) of FMT holds or J ∼= Alt(6). In particular, (2:a) holds. It remains to determine H◦. Observe
first that in all cases NR(P ) acts transitively on CW (P ). Also H = RNH(P ) and so the Frattini
argument gives H = RCH(v) ≤ RNH(Q), where 0 6= v ∈ CV (PQ). Thus H◦ = RQ and so
Op(RQ) ≤ Op(H) = 1.

If Q ≤ R, (2:c:2) holds. So suppose Q � R. Then some element of Q induces an outer automor-
phism on R. If R ∼= G2(2)′, then H◦ ∼= G2(2). If R ∼= Sp4(2)′ then R ∼= Sp4(2) and if R ∼= 3.Alt(6),
then H ∼= 3.Sym(6) since H◦ acts on W . Thus again (2:c:2) holds.

In all the remaining case R is genuine group of Lie-type in characteristic p. If R has Lie-rank
1, R ∼= SL2(q). Hence either W is a natural SL2(q)-module and (1) holds, or W is a natural
Ω−4 (2)-module. In the latter case P ∼= Alt(4), so [P,Q] ≤ O2(P ) implies Q ≤ R, which is not the
case.

Suppose now that R has rank at least two. Note that NR(P ) is a maximal parabolic subgroup

of R and P = Op′(NR(P )). Since [P,Q] ≤ Op(P ) and Q � R we can argue as in (Case 4) and
conclude that Q induces non-trivial field automorphisms on R. Moreover, R must have root groups
defined over two different fields (and so FMT implies R ∼= SUn(q), n ≥ 4, or R ∼= Ωε2n(q), 2n ≥ 6),
and Q can only centralize root groups defined over the smaller field. Since Q centralizes P/Op(P ),
this shows that all roots groups in P/Op(P ) must have order q .

The last condition rules out the natural Ωε2n(q)-module and shows that n = 4 if W is a natural
SUn(q)-module. Also Q induces a field automorphism of order 2 and so p = 2. Thus (2:c:2)
follows.

The next result is inspired by a situation that arises in applications of the quadratic L-lemma
2.9. Let L be a finite group, V be an elementary abelian normal p-subgroup with [V,Op(L)] = V ,
and A be an elementary abelian p-subgroup with A E AOp(L). Then Y and V normalize each other,
so V acts quadratically on Y , and vice versa.

Suppose that H := L/CL(V ) and A := Y CL(V )/CL(V ) satisfy the hypothesis of 2.9 and that
V/CV (Op(L)) is a simple L-module. Then H ∼= SL2(q), Sz(q) or D2r, and by 2.10 V/CV (Op(L)) is
a natural module for H. The structure of these modules shows that V is a strong offender on Y and

(∗) [Y, V ] = [Y,X] for all X ≤ V with |XCV (Y )/CV (Y )| ≥ 4.

In other words, the module Y possesses a non-trivial strong offender V with the additional property
(∗). Such modules are investigated in the next result, where as usual the module is called V rather
than Y .
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Theorem 4.7. Let H be a finite group with Op(H) = 1, and let V be a faithful Q!-module. Suppose
that there exists 1 6= W ≤ H such that

(i) W is a strong offender on V ; and

(ii) [X,W ] = [V,W ] for all X ≤ V with |X/CX(W )| > 2.

Put H◦ := 〈QH〉, K∗ := 〈WH〉, K := 〈WK∗〉 and K := KH . Then

K∗ =×K and [V,K∗] =
⊕
R∈K

[V,R].

Moreover, one of the following holds:

1. (a) K EH, H◦ = Op(K)Q, and CV (K) = 0.

(b) K ∼= SLn(q), n ≥ 3, Sp2n(q), Sp4(2)′, Oε
2n(2) or 3.Alt(6); q a power of p , p = 2 in the last

three cases; and [V,K] is a corresponding natural module.

(c) Either H◦ ≤ K or K ∼= Sp4(2)′ and H◦ ∼= Sp4(2) or K ∼= 3.Alt(6) and H◦ ∼= 3.Sym(6).

(d) If K ∼= Oε
2n(2), then |W | = 2.

2. (a) Q acts transitively on K, H◦ = Op(K∗)Q, and V = [V,K∗].

(b) K ∼= SL2(q), and [V,K] is a corresponding natural module.

3. (a) p = 2, K ∼= SLn(2), n ≥ 3, V = [V,K] is the direct sum of two isomorphic natural modules
for K, and |V/CV (W )| = 4.

(b) K EH, K ≤ H◦, and H◦ ∼= SLn(2) or SLn(2)× SL2(2).

4. (a) p = 2, K ∼= SLn(2), n ≥ 3, V = CV (K∗)⊕ [V,K∗], [V,K] is the direct sum of two isomorphic
natural modules for K, and |V/CV (W )| = 4.

(b) K∗ EH, [K∗, H◦] = 1 and H◦ ∼= SL2(2).

Proof. Set V := V/CV (K). Since W is a strong offender, [MS4, 1.6] implies that W is a quadratic
best offender on V and so K∗ = JK∗(V ). Set J = JK∗(V ) and JW = {J ∈ J | [J,W ] 6= 1}.
GFMT implies that 〈J 〉 =×J , J = [J,W ] for all J ∈ JW , and K∗/〈J 〉 is an elementary abelian
p-group. The latter fact shows that K = 〈JW 〉W and 〈JW 〉 = Op(K) = [Op(K),W ]. Pick J ∈ JW ,
and let Y be a minimal non-trivial J-submodule of V . By [MS4, 2.11] Y is a quasisimple and so
perfect as an K-module. Then [Y,W ] 6= 0, and by [MS4, 1.9] Y is K∗-invariant.

Case 1. Suppose [V,Op(K)] � Y .

Since Op(K) = [Op(K),W ] we conclude that [V,W ] � Y and [Y,W ] 6= [V,W ]. Now (ii) implies
that p = 2 and |Y/CY (W )| = 2. Moreover |V/CV (W )| ≥ 4 and since W is an offender, |W | ≥
4. Since W is a strong offender and [Y,W ] 6= 0, CW (Y ) = CW (V ) = 1. Thus 1 = CW (Y ) =
CW (J) = CW (Y ) by [MS4, 2.4], and W acts faithfully on Y . Since |Y /CY (W )| = 2, this gives
|[Y ,W ]| = |W | ≥ 4. In particular, Y is not a selfdual JW -module since (for example by [MS4, 1.8]),

|Y /CY (W )| = |[Y ∗,W ]. We now apply FMT. Then the properties |Y /CY (W )| = 2 < |[Y ,W ]| and
Y being not self-dual eliminates all cases apart from the case where K/CK(Y ) ∼= SLn(2), n ≥ 3,
|Y/CY (W )| = 2. Now an application of [MS4, 8.4] yields CY (K) = 0 and so:

1◦. K/CK(Y ) ∼= SLn(2), n ≥ 3, |Y/CY (W )| = 2, and Y is a natural SLn(2)-module.
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Assume that O2(K) 6= J . Then there exist J1 ∈ JW with J1 6= J and a simple J1-submodule
Y1 in V satisfying (1◦) in place of J and Y . Then |Y + Y1/CY+Y1

(W )| ≥ 4, and (ii) implies that
[V,W ] ≤ Y + Y1. Hence [V,K∗] = Y + Y1, Y = [V, J ] and Y1 = [V, J1]. By 4.3 JJ1 ≤ H◦ and so
[H◦,W ] 6= 1. Thus we can apply 4.6. But the only case in 4.6 with more than one JH(V )-component
is 4.6(1), where there JH(V )-components are isomorphic to SL2(q). This contradicts (1◦).

We have shown that O2(K) = J , so K = JW . Moreover, by (1◦) W induces inner automorphisms
in J . Since O2(K) ≤ O2(H) = 1, we conclude that

K = J, [V, J ] � Y and CJ([V, J ]) = 1,

in particular by (1◦) J ∼= SLn(2), n ≥ 3. Moreover, [MS4, 8.4] shows that V = CV (K) ⊕ [V,K].
Now

K∗ =×K, [V,K∗] =
⊕
J∈K

[V, J ] and V = CV (K∗)⊕ [V,K∗].

follow from [MS4, 2.2].
By GFMT, [V , J ] is semisimple J-module and so there exists a minimal non-trivial J-submodule

Y1 with Y 6= Y1. Put Y2 := Y . Then (1◦) applies to (Yi, J) for i = 1, 2. In particular, |Yi/CYi
(W )| =

2 and |[Yi,W ]| = |W | > 2 for i = 1, 2. Hence, Y1 is not isomorphic to the dual of Y2 and so Y1 and
Y2 are isomorphic natural modules. As above, (ii) implies [V,W ] ≤ Y1 + Y2 and [V, J ] = Y1 ⊕ Y2.

If [H◦,W ] 6= 1, we can apply 4.6. By (1◦), Case 1 of 4.6 does not hold. Hence by 4.6(2:b)
F∗(〈K〉) is quasisimple and so K = {J} and J E H. If [H◦,W ] = 1, we have [J,H◦] = 1. In
any case H◦ normalizes J and so also [V, J ]. Since [V, J ] = Y1 ⊕ Y2, the normalizer of the image
of J in Aut([V, J ]) is isomorphic to SLn(2) × SL2(2). Since O2(H◦) = 1 and H◦ is generated by
2-elements we conclude that H◦/CH◦([V, J ]) is isomorphic to SLn(2), SL2(2) or SLn(2) × SL2(2).
By 4.2(d), CH◦([V, J ]) ≤ Z(H◦), and by [Gr] the Schur multipliers of the above groups are 2-groups,
so CH◦([V, J ]) ≤ O2(H◦) = 1.

Suppose J ≤ H◦. Then K = J E H◦, [J,H◦] 6= 1 and by 4.2(g) CV (K) = CV (J) = 0. Hence
V = [V,K] and (3) holds.

Suppose that J � H◦. Then [J,H◦] = 1, J ∼= SLn(2) and H◦ ∼= SL2(2). It follows that also
[K∗, H◦] = 1, and (4) holds.

Case 2. [V,Op(K)] = Y .

In this case clearly Op(K) = J and so K = JW . By 4.3, J ≤ H◦. Thus [H◦,W ] 6= 1, and we
are allowed to apply 4.6. If J 5 H, 4.6 shows that (2) holds. So suppose J EH and so also K EH.
Comparing 4.6 with 3.2 we see that (1) holds if K 6∼= SL2(q). In the latter case we are in case (2)
with K = K∗.

Lemma 4.8. Let 1 6= A ≤ H be a strong dual offender on V . Put K∗ := 〈AH〉, K := 〈AK∗〉 and
K := KH . Then one of the following holds.

1. (a) K EH, H◦ = 〈QK〉 and CV (K) = 0.

(b) K ∼= SLn(q), n ≥ 3, Sp2n(q), Alt(6), or Oε
2n(2), q a power of p , p = 2 in the last two cases;

and [V,K] is a corresponding natural module.

(c) Either H◦ ≤ K or K ∼= Sp4(2)′ and H◦ ∼= Sp4(2).

(d) If K ∼= Oε
2n(2), then |W | = 2.

2. (a) Q acts transitively on K and H◦ ≤ 〈K〉Q
(b) V =

⊕
R∈K[V,R], K ∼= SL2(q), and [V,K] is a natural SL2(q)-module for K.
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Proof. By [MS4, 1.5] A is a quadratic best offender on V . Let J be a JH(V )-component with
[J,A] 6= 1 and W a quasisimple J-submodule of V . Then 1 6= [W,A] ≤W by [MS4, 2.6], and since A
is a strong dual offender, [V,A] = [W,A]. Thus J is the unique J(V )-component of H not centralized
by A and K = JA. Moreover, W = [V, J ] = [W,K] and so by 4.3, J ≤ H◦. Hence [H◦, A] 6= 1, and
the lemma follows from 4.6 and 3.1.

5 Minimal asymmetric modules

In this section H is a finite group and V is an FpH-module.

Definition 5.1. Let A and B be p-subgroups of H with A ≤ B. Then V is a minimal asymmetric
FpH-module (with respect to A ≤ B) provided that

(i) AE NH(B), and B is a weakly closed subgroup of H,

(ii) [V,A,B] = [V,B,A] = 0,

(iii) 〈AH〉 does not act nilpotently on V ,

(iv) 〈AF 〉 acts quadratically on V for every proper subgroup F of H with B ≤ F .

Note that conditions (i) and (iii) imply that A is non-trivial normal subgroup of B.
As many definitions in the previous section, the above definition is motivated be the investigation

of the p-local structure of finite groups of local characteristic p. Consider the following situation:
G is a finite group of characteristic p, S ∈ Sylp(G), and A is an abelian normal subgroup of S

with A � Op(G). Put B := CS(A). Then A ≤ B since A is abelian. Suppose that B is weakly closed
in G and that [A,Ag] = 1 for all g ∈ G such that 〈A,Ag〉 is p-group. Then for every A ≤ L ≤ G
with A ≤ Op(L), X := 〈AOp(G)L〉 is p-group and so abelian. In particular, X acts quadratically on
Op(G) and 〈ANG(B)〉 is abelian. So replacing A by 〈ANG(B)〉 we may assume that A E NG(B). Now
let H be a subgroup of G minimal with B ≤ H and A � Op(H), and let V be elementary abelian H-
invariant section of Op(G) not centralized by 〈Op(〈AH〉). Then V is a minimal asymmetric module
for H.

Lemma 5.2. Let V be a minimal asymmetric FpH-module with respect to the subgroups A ≤ B.
Suppose that CV (H) = 0. Then the following hold:

(a) AAg acts quadratically on V for every g ∈ H with [A,Ag] ≤ A ∩Ag.

(b) 〈AP 〉 acts quadratically on V for every P ≤ H with A ≤ Op(P ) ≤ NH(A).

Proof. (a): By 5.1(ii) A acts quadratically on V . Put F := 〈B,Bg〉. Suppose first that F = H.
Then [V,A,Ag] ≤ [V,A] ∩ [V,Ag] ≤ CV (〈B,Bg〉) = CV (H) = 0. By symmetry, [V,Ag, A] = 0 and
so AAg is quadratic.

Suppose next that F 6= H. By 5.1(iv), 〈AF 〉 acts quadratically on V . Since B is a weakly closed
subgroup of H there exists f ∈ F with Bgf = B. Since A E NG(B), this gives Agf = A. Thus
Ag ∈ AF , and AAg is quadratic.

(b): Note that Ag E Op(P ) for every g ∈ P . Hence (b) follows from (a).

Lemma 5.3. Let G be a group, T ≤ G, and g ∈ G with [T, T g] = 1. Then T ′ ≤ [T, 〈g〉].
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Proof. Note that T ≤ T g[T, 〈g〉] and so

T ′ = [T, T ] ≤ [T, T g[T, 〈g〉]] = [T, [T, 〈g〉]] ≤ [T, 〈g〉].

Lemma 5.4. Let V be a faithful simple minimal asymmetric FpH-module with respect to A ≤ B.
Put L := 〈AH〉 and K := F∗(H). Then H = KB, K = [K,A] ≤ L, L = KA, and one of the
following holds:

1. |B| = 2 and H = L ∼= D2r, r an odd prime.

2. |A| = 2, L ∼= SU3(2)′, B ∼= C4 or Q8, and V is a natural SU3(2)′-module for L.

3. |B| = 3, H = L ∼= SL2(3), and V is a natural SL2(3)-module for L.

4. K is quasisimple and not a p′-group, H = KB, V is a simple FpK-module, and H acts K-linearly
on V , where K = EndK(V ).

Proof. Let B ≤ T ∈ Sylp(NH(B)). From 5.1(ii) and the Three Subgroups Lemma we get that
[B,A, V ] = 0. Hence the faithful action of H and the quadratic action of A give A ≤ Ω1Z(B).
Moreover, T ∈ Sylp(H) since B is weakly closed in H. Thus we have:

1◦. A ≤ Ω1Z(B), A E T , and T ∈ Sylp(H).

Next we show:

2◦. Let R be a B-invariant subgroup of H with [R,A] � Op(R). Then H = RB and K ≤ R. In
particular, H = KB, K = [K,A], and L = KA.

Note that A � Op(RB); in particular 〈ARB〉 does not act quadratically on V . Thus by 5.1(iv),
RB = H and therefore Op(H) ≤ R. Since V is a faithful simple H-module, Op(H) = 1 and so
K = Op(K) ≤ Op(H) ≤ R.

Again since Op(H) = Op(K) = 1, [K,A,A] 6= 1 = Op([K,A]) and A � Op([K,A]B). Hence for
R = [K,A] we get H = [K,A]B and K = [K,A]. Since KA E KB = H also L = KA follows.

According to (2◦) the initial statements in the conclusion hold, so it remains to establish one of
(1) – (4).

Suppose that |B| = 2. By Baer’s Theorem there exists g ∈ H such that 〈B,Bg〉 is not a 2-
group. Choose 〈B,Bg〉 minimal with that property. Then 〈B,Bg〉 ∼= D2r, r a prime, and by (2◦)
〈B,Bg〉 = H, so (1) holds. Hence, we may assume from now on:

3◦. |B| > 2.

Let W be a simple FpL-submodule of V with [W,A] 6= 0. Then [W,A] ≤ CW (B). Since B
normalizes L, B also normalizes W , and since H = KB = LB, we get W = V . So:

4◦. V is a simple FpL-module.
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Now let W be a Wedderburn component for K on V 2 and suppose that V 6= W . Since L = KA,
(4◦) implies V = 〈WA〉. Hence A acts transitively on the set of Wedderburn components for K on
V and therefore WA = WB . By [MS3, 2.11] |WA| = 2 and since |B| > 2 we get NB(W ) 6= 1. But
[W,NB(W )] ≤ CW (A) = 0, and by (1◦) NB(W ) centralizes A. So NB(W ) ≤ CB(〈WA〉) = CB(V ) =
1, a contradiction.

Thus W = V , and V a is homogeneous FpK-module. It follows that the number of simple
FpK-submodules in V is not divisible by p, see for example [Go, 3.5.6]. Hence A normalizes a simple
FpK-submodule. Since L = KA, (4◦) implies that V is a simple FpK-module.

Put K = EndK(V ). Observe that by Schur’s Lemma and Wedderburn’s Theorem K is a finite
field. Moreover, H acts K-semilinearly on V . Suppose that A does not act K-linearly on V . Then
by [MS3, 2.14] 3, |A| = 2, and since the non-trivial element in A inverts an element in K \ {0},
CV (A) = [V,A]. Thus [V,B] ≤ CV (A) = [V,A] ≤ CV (B), and B acts quadratically on V . So using
[MS3, 2.14] one more time, |B| = 2, a contradiction. Thus A acts K-linearly on V and [V,A] is a
non-trivial K-subspace of V centralized by B. So also B acts K-linearly on V . Since H = KB, H
acts K-linearly on V . We have proved:

5◦. V is a simple FpK-module, K is a field, and H acts K-linearly on V .

Since the image of CH(K) in End(V ) is contained in K, (5◦) implies that CH(K) is a cyclic
p′-group and CH(K) = Z(H). Clearly Z(H) ≤ F∗(H) = K and so Z(H) ≤ Z(K). Thus

6◦. Z(K) = CH(K) = Z(H) is a cyclic p′-group. In particular, CB(K) = 1, and K is not abelian.

Case 1. Suppose that K is a p′-group.

By (2◦), A centralizes every proper B-invariant subgroup of K, and by (6◦) K is not abelian.
Hence [Go, 5.3.7] shows that K is special and that K/Φ(K) is a simple FrB-module. By (6◦) K is
extraspecial. Moreover, by coprime action CB(K/Z(K)) ≤ CB(K) = 1, and so K/Z(K) is a faithful
simple FrB-module. Hence Z(B) is cyclic and since A ≤ Ω1Z(B), |A| = p.

Suppose first that p is odd. Since A is quadratic and K = [K,A] we can apply [MS4, 7.1]. Hence
K ∼= Q8, KA ∼= SL2(3) and p = 3. As V is a simple F3K-module, it has dimension 2, and (3) holds.

Suppose next that p = 2. Then r is odd, and by [Go, 5.3.9(i) and 5.3.10] K has exponent r. Let
Y be a maximal abelian subgroup of K and put X = {X ≤ Y | Y = X × Z(K)}. Then K acts
transitively on X . Moreover CV (Z(K)) = 0, and coprime action shows that

(∗) V =
⊕
X∈X

CV (X).

Note that NK(X) = Y = XZ(K) for X ∈ X . Hence NK(X) acts as K-scalar multiplication on
CW (X). Then (∗) and the simplicity of W as an FpK-module yield dimK CW (X) = 1 for each
X ∈ X .

Let 1 6= t ∈ A and put Xt := [Y, t] and Vt := CV (Xt). Since t inverts K/Z(K) and centralizes
Z(K), Xt ∈ X , so dimK Vt = 1 and Vt ≤ CV (t). Moreover, t does not fix any other element in X , and
(∗) shows that CV (t) = Vt⊕ [V, t]. In particular, dimK CV (t)/[V, t] = 1 and [CV (t), B] ≤ [V, t]. Since
[V,A,B] = 0, B acts quadratically on V/[V, t] and CV (t); so B/CB(V/[V, t]) and B/CB(CV (t)) are
elementary abelian. Thus

[V,Φ(B), B] ≤ [V, t, B] = 0 and [V,B,Φ(B)] ≤ [CV (t),Φ(B)] = 0.

2i.e., a maximal homogeneous K-submodule of V
3Note the misprint in [MS3, 2.14]: Instead of ’|K| is a cubic EA-module’ it should read ’V is a cubic EA-module’
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Since B acts faithfully on V , the Three Subgroups Lemma yields Φ(B) ≤ Z(B), and the quadratic
action of Φ(B) on V shows that Φ(B) is elementary abelian. Since Z(B) is cyclic, this gives Φ(B) =
A. In particular, there exists f ∈ B with f2 = t.

On the other hand, f centralizes [V, t], so [V, t] ≤ CV (f). Put V0 := {v ∈ V | [v, f ] ∈ [V, t]}.
Then f acts quadratically on V0 and so V0 ≤ CV (t). Moreover, the map given by v 7→ [v, f ] + [V, t]
shows that V/V0

∼= [V, f ]/[V, t]. From [V, f ] ≤ CV (t) = Vt ⊕ [V, t] and dimK Vt = 1 we conclude that

1 ≤ dimK V/CV (t) ≤ dimK V/V0 = dimK[V, f ]/[V, t] ≤ 1.

So dimV/CV (t) = 1 = dimK[V, t] and dimK V = 3. In particular, |X | = 3 and |K| = 33. Thus (2)
holds in this case.

Case 2. K is not a p′-group.

By (2◦) [Op′(K), A] = 1 and K = [K,A], so Op′(K) ≤ Z(K) and by (6◦) Op′(K) ≤ Z(H). Since
K = F∗(K) and Op(H) = 1 we conclude that there exists a component E of K with p

∣∣|E/Z(E)|.
Since K = [K,A] we have [E,A] 6= 1 and by (2◦) K = 〈EB〉. Put F := CH(A) ∩ CH([V,A]). Note
that B ≤ F and by the Three Subgroups Lemma, [V, F,A] = 0. Since Z(E) ≤ Z(K), Z(E) acts as
K-scalar multiplication on V , and so F ∩ Z(E) = 1.

Suppose that E ∩ F 6= 1. Then E ∩ F � Z(E) and so A ≤ CH(E ∩ F ) ≤ NH(E). Let U be
a simple FpE-submodule of V . Since E E K and V is a simple K-module, CV (E) = 0 and thus
[U,E] 6= 0. As E is quasisimple this gives CU (E) ≤ Z(E). Then 0 6= [U,F ∩ E] ≤ CU (A) and so A
normalizes U . Hence A normalizes all simple FpE-submodules of V and since L = 〈AK〉, the same
is true for L. Thus U is L-invariant, and (4◦) shows that V = U . It follows that CH(E) is abelian,
so K = E and (4) holds.

Suppose next that E ∩ F = 1. Then E ∩ B = 1. If B ≤ NH(E), (4) holds. So we may assume
that B � NH(E). Pick b ∈ B with E 6= Eb. Then by 5.3 (E ∩T )′ ≤ [E ∩T, 〈b〉] ≤ [T,B] ≤ B. Since
E ∩B = 1 we conclude that E ∩ T is abelian. By Burnside’s Transfer Theorem,

(∗∗) E ∩ T � Z(NE(T ∩ E)),

and so NE(T ∩ E) is not a p-group. Put D = 〈ANH(T∩K)〉. Since B ≤ NH(T ∩ K) < H, 5.1(iv)
shows that D acts quadratically on V . Hence D is an elementary abelian p-group and D ≤ F .
Since NE(T ∩ E) ≤ NE(T ∩ K) we conclude that [NE(T ∩ E), A] is p-group. Since NE(T ∩ E)
is not a p-group this gives A ≤ NH(E) and so [NE(T ∩ E), A] ≤ D ∩ E ≤ F ∩ E = 1. Thus
NE(T ∩E) ≤ NH(A). Since B ≤ F and NH(A) normalizes F , this implies [NE(T ∩E), B] ≤ F . By
5.3 (NE(T ∩ E))′ ≤ [NE(T ∩ E), 〈b〉] ≤ F , and so E ∩ F = 1 implies that NE(T ∩ E) is abelian, a
contradiction to (∗∗).

Theorem 5.5 (Minimal Asymmetric Module Theorem). Let H be a CK-group, A ≤ B ≤ H
and V be a faithful simple FpH-module. Suppose that V is a minimal asymmetric FpM -module with
respect to A and B and that F∗(H) is quasisimple with p

∣∣|F∗(H)|. Then one of the following holds
for L := 〈AH〉:

1. L ∼= SLn(q),Sp2n(q),SUn(q), 3D4(q), Spin7(q), Spin−8 (q), G2(q)′ or Sz(q), where q is a power of
p, V is the corresponding natural module for L, and A is a long root subgroup of L.

2. L ∼= Sym(2k + 2), k ≥ 3, |A| = 2, A is generated by a transposition, and V is the corresponding
natural module.

3. L ∼= 3.Alt(6), |A| = 2 and |V | = 26.
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Proof. Observe that Op(H) = 1 since V is simple and faithful. Put K := F∗(H) and let S ∈ Sylp(H)
with B ≤ S.

1◦. B E S and AE S.

The first statement follows since B is a weakly closed subgroup of H. The second then follows
from the fact that A E NH(B).

2◦. A ≤ Op(U) for every B ≤ U < H.

Observe that 〈AU 〉 is quadratic on V , so 〈AU 〉 is an elementary abelian normal p-subgroup of U .

3◦. K = [K,A], H = KB and L = KA = 〈AL〉.

See 5.4.

4◦. V is a simple FpK-module.

See 5.4.

5◦. There exists g ∈ H such that AAg acts quadratically on V and |AAg| > 2.

If |A| > 2 we can choose g = 1. So suppose that |A| = 2. Then p = 2 and so by assumption |K|
has even order. Since K ≤ [H,A] we conclude from Glauberman’s Z∗-theorem [Gl] that there exists
g ∈ H with [A,Ag] = 1 and A 6= Ag. Now 5.2(a) shows that AAg is quadratic.

6◦. Suppose that A is a maximal quadratic subgroup of H. Then |A| > 2, and NM (A) is the
unique maximal subgroup of H containing B. In particular, H is B-minimal.

Since A is a maximal quadratic subgroup, (5◦) shows that |A| > 2.
Let B ≤ U < H. Then 〈AU 〉 is quadratic and so by the maximality of A, A = 〈AU 〉 and AE U .

Hence NH(A) is the unique maximal subgroup of H containing B. By (3◦) H = KB = 〈AL〉B =
〈BH〉 and so H is B-minimal.

Put H := H/Z(K).

Case 1. Suppose that p is odd and K is not a group of Lie type defined over a field of characteristic
p.

By [Ch, Theorem A] p = 3 and the maximal quadratic subgroups of H have order 3. In particular
|A| = p = 3, and A is a maximal quadratic subgroup of H. Moreover, L ∼= PGUn(2), Alt(n), n 6= 6,
D4(2), G2(4), Sp6(2), Co1, Sz, or J2. Observe that L has no outer automorphism of order 3, unless
L ∼= D4(2). In the D4(2)-case, CL(A) ∼= C3 × U4(2) and so the conjugacy class of A under L is not
invariant under the outer automorphism of order three. Hence in any case H = L.

According to [ATLAS] we can choose a subgroup U of H as in the following chart:

H PGUn(2) Alt(n), 3 - n Alt(3m), 3m ≥ 9 D4(2) G2(4)

U C3 oSym(n)/C3 Alt(n− 1) O3′(Sym(3) o Sym(m)) O3′(Sym(3) o Sym(4)) U3(3)

H Sp6(2) Co1 Sz J2

U Sym(3) o Sym(3) 36.2.Mat12 35Mat11 U3(3)

In each case U contains a Sylow 3-subgroup of H and Z(O3′(U)) = 1. So we may assume that

B ≤ U . Then by (6◦), A E U and so A ≤ Z(O3′(U)) = 1, a contradiction.
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Case 2. Suppose that p = 2 and K is not a group of Lie type defined over a field of characteristic
2.

By (5◦), [MeSt1, Theorem] and [MeSt2, Theorem 1] we have K ∼= Alt(n), n = 7 or n > 8, U4(3),
Mat12, Mat22, Mat24, J2, Sz, Co2 or Co1.

Suppose first that K ∼= Alt(n), n = 7 or n > 8. Then H ∼= Alt(n) or Sym(n). If B acts
transitively on Ω = {1, . . . , n}, then n > 8 and there exists B ≤ U ≤ H with U ∼= (Sym(n2 ) oC2)∩H.

But then O2(U) = 1, which contradicts (2◦).
Hence there exists a B-invariant proper subset Ψ of Ω. Put U := NH(Ψ). Then B ≤ U < H and

U ∼= (Sym(Ψ)× Sym(Ω \Ψ)) ∩H. Since A ≤ O2(U) by (2◦), we conclude that one of Ψ and Ω \Ψ,
say Ψ, has size 2 or 4. Since n is none of 4, 6 and 8, O2(Sym(Ω \Ψ)) = 1 and so A ≤ CH(Ω \Ψ).

Assume |Ψ| = 2. Then A = O2(U), and A is generated by a transposition. In particular,
A � O2(NH(∆)) for any ∆ ⊂ Ω \Ψ, so B acts transitively on Ω \Ψ. Hence (2) holds in this case.

So we may assume that B has no orbit of length less than 4. Then |Ψ| = 4, n > 8, and

〈AU 〉 = O2(U). Since n > 8 and Z(K) is a 2′-group, [Gr] shows that Z(K) = 1. Hence O2(U) acts
quadratically on V . This shows that V is not the natural module and so by [MeSt2, Theorem 4] V
is a spinmodule.

Note that there exists g ∈ H with Ψ ∩Ψg = ∅ since n > 8. Hence A ≤ CH(Ψg) and [A,Ag] = 1.
Now 5.2(a) shows that AAg acts quadratically on V . But AAg does not act quadratically on the
spinmodule by [MS4, 7.5].

Suppose that K ∼= U4(3). By [MS4, 7.7-7.9] there exists an elementary abelian subgroup Q
of order 24 in K such that NH(Q) contains a Sylow 2-subgroup of H, Q is not quadratic on V ,
NH(Q)/QZ(K) ∼= Alt(6) or Sym(6) and Q is the corresponding natural module for NH(Q). In
particular, Q is the unique non-trivial normal 2-subgroup of NH(Q). Since NH(Q) is contains a
Sylow 2-subgroup of H, we may assume that B ≤ NH(Q). Hence by (2◦) A ≤ O2(NH(Q)) and so
Q = 〈ANH(Q)〉. But then Q acts quadratically on V , a contradiction.

Suppose now that K is a sporadic group and so K ∼= Mat12, Mat22, Mat24, J2, Sz, Co2 or Co1.
Then by 2.6 H is not B-minimal, so by (6◦) A is not a maximal quadratic subgroup of H.

Assume that |A| ≥ 4. Then H possesses a quadratic subgroup of order at least eight. Thus, by
[MeSt2, Theorem 2] L = K ∼= 3.Mat22. Hence there exists S ≤ U ≤ H with U/O2(U) ∼= Sym(5).
As O2(U) ∩ K is the unique minimal normal subgroup of U , we get that 〈AU 〉 = O2(U) ∩ K, so
O2(U) ∩K is quadratic on V by 5.2. But this contradicts [MeSt2, Theorem 3].

Thus |A| = 2 and so A ≤ Z(S). In all the seven cases for K given above CS(S ∩K) = Z(S ∩K)
and |Z(S ∩ K)| = 2. Hence A = Z(S ∩ K) and L = K. Put U := CK(A). Then in all cases
there exists g ∈ K with Ag ≤ U but Ag � O2(U). Now 5.2 implies that AAg is quadratic and so
CU ([V,A]) � O2(U). But this contradicts the action of U on V , see [MeSt2, Theorem 3].

Case 3. Suppose that K is a group of Lie-type defined over a field of characteristic p.

Let ∆ be the set of minimal Lie-parabolic subgroups of K containing S ∩K and K := EndL(V ).
By (4◦), Schur’s Lemma and Wedderburn’s Theorem, K is a finite field.

7◦. Either L = K or L ∼= Sp4(2), G2(2) or 2G2(3).

Let M1,M2, . . . ,Mt be the maximal subgroups of H containing S. Then A ≤ Op(Mi). In
particular, [NK(S∩K), A] ≤ S∩K. Hence no element of A induces a non-trivial field automorphism
on K.

Suppose for a contradiction that A acts non-trivially on ∆. Then |∆| > 1 and there exists a
minimal Lie-parabolic P of K containing S ∩K with A � NH(P ). Put MP = 〈P,B〉. Suppose that
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A ≤ Op(MP ). Then [P,A] ≤ Op(MP ) ∩ K ≤ S ∩ K ≤ P , a contradiction to A � NH(P ). Thus
A � Op(MP ) and the definition of a minimal asymmetric module implies that MP = H and so B
acts transitively on ∆. It follows that p = 2, |∆| = 2, and K ∼= L3(q) or Sp4(q)′. Then S ∩ K
has exactly two maximal elementary abelian normal subgroups Q1 and Q2. Moreover, since A acts
non-trivially on ∆, A does not normalize Qi, i = 1, 2. It follows that [Q1Q2, A] is not elementary
abelian, a contradiction to [Q1Q2, A] ≤ [S,A] ≤ A.

We have shown that A acts trivially on ∆ and that no element of A induces a non-trivial field
automorphism. Hence either L = K or L ∼= Sp4(2), G2(2), 2F4(2) or 2G2(3). But in the 2F4(2)-case,
all involutions of L are contained in K, a contradiction since L = KA.

8◦. Suppose that B acts non-trivially on ∆. Then A ≤ Z(S ∩ L).

Suppose first that p = 2 and L ∼= L3(q) or Sp4(q)′. As above let Q1 and Q2 be the two maximal
elementary abelian normal subgroups of S ∩ L. Recall from the structure of L that

(i) all involutions of S ∩ L are contained in Q1 ∪Q2,

(ii) Q1 ∩Q2 = Z(S ∩ L), and

(iii) B is transitive on {Q1, Q2}.

The first property shows that there exists i, say i = 1, such that A ≤ Q1. Since B normalizes A,
(iii) shows that A ≤ Q1 ∩Q2 Now (ii) gives A ≤ Z(S ∩ L).

Suppose next that p = 2 and L ∼= F4(q). Set U := CL(Z(S ∩ L)). Then U/O2(U) ∼= Sp4(q)
and O2(U) ≤ O2(U). Since B acts non-trivially on ∆, B acts non-trivially on U/O2(U). Thus
O2(U) ≤ O2(U) = [O2(U), B] ≤ 〈BU 〉. Since [V,A ∩ Z(S ∩ L), B] = 0 we conclude that

0 6= [V,A ∩ Z(S ∩ L)] ≤ CV (O2(U)) ≤ CV (O2(U)).

Now 2.3 gives a contradiction.
Suppose finally that p = 2 and L ∼= Ln(q), n ≥ 4, Dn(q), n ≥ 4 or E6(q), or p = 3 and L ∼= D4(q).

Put Z := Z(S∩L), U := NH(Z) and Q := Op(U∩L). Then Z is a long root subgroup and Φ(Q) = Z.
Note also that A1 := 〈AU 〉 is an elementary abelian normal subgroup of U .

Assume that L 6∼= L4(q). Then U acts simply on Q/Z. It follows that all abelian normal p-
subgroups of U in Q are contained in Z and so A ≤ A1 ≤ Z.

So assume that L ∼= L4(q). Let P be the maximal subgroup of L with S ≤ P and P 6= U .
Then A ≤ O2(P ) and P acts simply on O2(P ). Thus O2(P ) = 〈AP 〉 acts quadratically on V . Since
S ∩ L ≤ 〈O2(P )U 〉 we conclude that [V,Z, S ∩ L] = 0. It follows from 2.3 that V is a natural
SLn(q)-module for L, a contradiction, since B interchanges the two isomorphism classes of natural
SLn(q)-modules for L.

9◦. Suppose that there exists a long root subgroup R in K such that A ≤ R, [V,A] = [V,R] and
CV (A) = CV (R). Then A = R.

Note that [V,R,B] = [V,A,B] = 0 and [V,B] ≤ CV (A) = CV (R). Hence the Three Subgroup
Lemma gives [R,B, V ] = 0, so since V is faithful, B ≤ CH(R). As B is a weakly closed subgroup of
H, a Frattini argument yields

NH(R) = CH(R)(NH(R) ∩NH(B)) ≤ NH(A).

Since NH(R) acts simply on R, we get R = A.

Case 4. Suppose that |∆| = 1.
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Then K ∼= L2(q), U3(q), Sz(q) or 2G2(q)′. As 2G2(q)′ has abelian Sylow 2-subgroups, this group
does not have any non-trivial quadratic module, see for example [Go, 3.8.4]. Hence this case is
excluded. Since K is not solvable we have q > 2, so L = K and A ≤ S ∩K by (7◦).

Put P := NH(L ∩ S) and Z := Z(S ∩K). Then L has the following properties:

(i) P acts simply on Z.

(ii) Either S ∩K = Z, or Z = Φ(S ∩K) and P acts simply on (S ∩K)/Z.

(iii) If L ∼= U3(q), then CP (Z) acts simply on (S ∩K)/Z.

(iv) S ∩K is a TI-subgroup and |Z| = q.

Since 〈AP 〉 is abelian we conclude from (i) and (ii) that Z = 〈AP 〉, so Z acts quadratically V .
Let Z ≤ U ≤ K such that U is minimal with respect to Z � Op(U). By (iv), Op(U) = 1 and

Z E NU (T ) for Z ≤ T ∈ Sylp(U). Thus 2.9 implies U ∼= SL2(q) or Sz(q) since |Z| = q > 2. If L = U
then by 2.10 V is a natural module, and (9◦) implies case (1) of the theorem.

So suppose L 6= U . Since 3 - |Sz(q)|, SL2(q) is not involved in Sz(q) and so L ∼= U3(q). Since
A � Op(U) and U 6= H, we have B � U . From (iii) we conclude that S ∩K ≤ 〈BCP (A)〉. Hence
[V,A, S ∩K] = 1, and Z = 〈AP 〉 gives [V,Z, S ∩K] = 1. So by 2.3 V is the natural module. Now
(9◦) implies case (1) of the theorem.

We assume from now on that |∆| > 1. Let Li, 1 ≤ i ≤ |∆| be the maximal subgroups of L

containing L ∩ S. Put Ai := 〈ALi〉 and Ei := Op′(Li).

10◦. Ai acts quadratically on V ; in particular Ai is an elementary abelian normal p-subgroup of
Li.

Suppose first that B acts trivially on ∆. Then Li is B-invariant. Since LiB is a proper subgroup,
the definition of a minimal asymmetric modules shows that Ai acts quadratically on V .

Suppose next that B acts non-trivially on ∆. Then by (8◦) A ≤ Z(S ∩ L) ≤ Op(Li). Since
Op(Li) ≤ S ∩ L ≤ NH(B) ≤ NH(A), 5.2(b) shows that Ai acts quadratically on V .

Case 5. Suppose that |∆| = 2.

Then K is isomorphic to one of the following groups:

L3(q), PSp4(q)′, U4(q), U5(q), G2(q)′, 2F4(q)′, 3D4(q).

Suppose that K ∼= Sp4(2)′ ∼= Alt(6). If Z(K) 6= 1, then [MS4, 7.4] shows that |V | = 26 and
A ≤ K. Since A ≤ Op(L1) ∩ Op(L2) we have |A| = 2 and so case (3) holds. If Z(K) = 1, then
[MeSt2, Theorem 4] shows that V is a natural Sp4(2)′-module for K. Choose notation such that
L1 is a point stabilizer for L on V . Then [V,A1] is a singular subspace of V invariant under L1

and so |[V,A1]| = 2. Thus |A1| = 2, L ∼= Sp4(2), A = A1, and A is a long root subgroup of L. So
case (1) of the theorem holds. Suppose that K ∼= G2(2)′. Then [MS4, 7.6] implies that V is natural
G2(q)′-module for K. Choose notation such that Z := Z(L1) 6= 1. Then Z is a long root subgroup
of K, |Z| = 2, Z ≤ K, and Z is the unique non-trivial elementary abelian normal subgroup of L1.
Thus Z = A1 = A, L = 〈ZM 〉 = K ∼= G2(2)′, and case (1) of the theorem holds.

Therefore, we may assume from now on that q > 2 in the PSp4(q)′- and G2(q)′-case. Hence by
(7◦) L = K.
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If Z(Ei) ≤ Z(K) for some i, we choose our notation such that Z(E2) ≤ Z(K). Otherwise we
choose our notation such that [A,E2] 6= 1. Then in any case A � Z(E2). Put

Z2 := [Z(Op(E2)), E2], Vi := CV (Op(Ei)),

and let Z be the root subgroup with Z ≤ Z(S ∩ L) and [Z,E2] 6= 1.
We use the following properties of the groups given above:

(i) Z2 is the unique normal subgroup of E2 minimal with respect to [Z2, E2] 6= 1.

(ii) Z ≤ Z2.

(iii) Either L ∼= L3(q) or [Z,E1] = 1.

(iv) If L ∼= PSp4(q), U4(q) or U5(q), then Op(E1)Op(E1) ≤ 〈ZE1
2 〉. Indeed E1 ≤ 〈ZE1

2 〉, except for
L ∼= U5(2).

All these properties can be found in [DS] by first going to the table on page 98 to get the value of
the parameter b and then to look up the properties in those chapters where this value of b is treated.

By (i) and (ii) Z ≤ Z2 ≤ A2. Suppose that L ∼= L3(q). Then Ai = Op(Ei), A ≤ A1 ∩ A2 ≤ Z,
and A1A2 = S ∩ L. Thus [V,A, S ∩ L] = 0. Hence by 2.3 V is a natural SL3(q)-module and by (9◦)
case (1) of the theorem holds.

Suppose now that L � L3(q). Then Z E E1 by (iii). Put W1 := 〈ZE1
2 〉. Since [V,Z, Z2] ≤

[V,A2, A2] and by (10◦) [V,A2, A2] = 0, we get

11◦. [V,Z,W1] = 0.

Suppose that L ∼= PSp4(q), U4(q) or U5(q). Then by (iv) Op(E1)Op(E1) ≤ W1 and thus
[V,Z,Op(E1)Op(E1)] = 0. So by 2.3 V is a natural module. The action of E1 on the natural module
reveals that any quadratic normal subgroup of E1 is contained in Z. Thus A ≤ A1 ≤ Z and by (9◦)
again case (1) of the theorem holds.

For the remaining cases
L ∼= G2(q), q > 2, 2F4(q)′, 3D4(q)

let Γ be the coset graph of L with respect to L1 and L2. All the properties of the action of L on Γ
we use here can be found in [DS], in Section 10 for G2(q) and 3D4(q), in Section 12 for 2F4(q)′. In
particular the value of b in these cases is 2, 2 and 3, respectively.

Choose a path (α1, α2, . . . αd) of minimal length d − 1 such that α1 = L1, α2 = L2 and Z �
Op(Ld), where Lj is the stabilizer of αj in L. Then d − 1 = b + 1. Note that for i = 1, 2 this is
compatible with our earlier notation since L1 = α1 and L2 = α2. Let ∆(αi) be the set of neighbors
of αi. Put

Ei := Op′(Li), Vi := CV (Op(Li)), Ji := 〈V Ei

k | 1 ≤ k ≤ d, αk ∈ ∆(αi)〉,

and, for i even, Zi := [Z(Op(Ei)), Ei]. Observe that Z ≤ Op(Ld−1) ≤ Ld and by (11◦) [Vd, Z,W1] =
0, so [Vd, Z] is centralized by R := 〈Op(Ld),W1〉.

Suppose that L ∼= G2(q), q > 2, or 3D4(q). Then d = 4, Z2 ≤ Op(L1), Z2 � Z(Op(E1))
and Z(Op(E1))/Φ(Op(E1)) is the unique maximal L1-submodule of Op(E1))/Φ(Op(E1)); in fact
Φ(Op(E1)) = Z(Op(E1)) and Op(E1)/Φ(Op(E1)) is a simple E1-module unless L ∼= G2(q) and
p = 3 or q = 4. Since L1 = (L1 ∩ L2)E2, L1 normalizes W1. It follows that W1 = Op(E1) and
R = 〈E2, E3〉 = L. So CV (R) = 0 and [V4, Z] = 0. Thus [V4, E4] = 0 and so also [V2, E2] = 0.
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Now Steinberg’s Lemma shows that V2 is 1-dimensional over K and V2 = CV (S ∩ K). Moreover,
W1 = Op(E1) and (11◦) imply that [V,Z] ≤ V1.

Since Z2 ≤ Op(E1), Z2 centralizes V1 and so [J2, Z2] = 0. Since by definition of Γ, α4 and α2

are conjugate under L we conclude that [J4, Z4] = 0. Then also [Z,Z4, J4] = 0 since Z ≤ L4 and
Z4 E L4. Hence the Three Subgroup Lemma gives [J4, Z, Z4] = 0. Since also Op(E1) centralizes
[Z, J4], we conclude that E2 = 〈Op(E1), Z4〉 centralizes [J4, Z]. Thus [J4, Z] ≤ V2, so also [J4, Z] is
1-dimensional.

Let 1 6= z ∈ Z and α5 be a neighbor of α4 in Γ different from α3. Then 0 6= [V5, z] ≤ [J4, Z] ≤ V2,
so [V5, z] and thus also V5/CV5(z) are 1-dimensional over K. Observe that

CV5
(z) ≤ V5 ∩ V z5 ≤ CV (〈Op(E5),Op(E5)z〉 = CV (E4) = V4.

Thus V5/V4 is 1-dimensional. So also V1/V2 is 1-dimensional. Since V2 is 1-dimensional, we get
that V1 is 2-dimensional over K. Hence V1 is a natural SL2(qε)-module for E1, where ε = 1 in the
G2(q)-case and ε = 3 in 3D4(q)-case. Note also that E2 centralizes V2. By Ronan-Smith’s Lemma
[MS4, 4.3] this determines V up to isomorphism and it follows that V is the natural module for L.
According to (9◦), in order to establish that (1) holds, it remains to show in these cases that A ≤ Z.

If L ∼= G2(q), q not a power of 3 or L ∼= 3D4(q), then Z is the unique maximal elementary abelian
normal subgroup of E1 and so A ≤ A1 ≤ Z. Suppose K ∼= G2(3k) and A � Z. Then also [A,E1] 6= 1
and the set-up is symmetric in 1 and 2. As we have seen above, V2 = CV (S ∩K) = CV (E2), so by
symmetry also V1 = CV (S ∩K) = CV (E1) and V1 = V2, a contradiction.

Suppose finally that L ∼= 2F4(q)′. Then W1 is abelian, W1 ≤ Op(E2) and d = 5. Let X1 =⋂
α∈∆(α1) Op(Lα), so W1 ≤ X1. Observe that X1 centralizes J1, so X7 centralizes J7 since α1 and

α7 are conjugate. Thus by (11◦), E5 = 〈W1, X7〉 centralizes [J7, Z]. It follows that [J7, Z] = V5,
[V5, E5] = 1 and [J7, Z] is 1-dimensional over K. Observe that Op(L7) does not centralize J7 and so
there exists a composition factor W for KL7 on J7 not centralized by Op(E7). But E7/Op(E7) ∼=
Sz(q). Thus by 2.3 dimK[W,Z] > 1, a contradiction.

Case 6. Suppose that |∆| = t > 2.

According to (7◦) L = K. We divide the groups under consideration into two classes:

(I) K ∼= PSp2n(q), q odd and n ≥ 3, PSUn(q), n ≥ 6,
F4(q), q odd, 2E6(q), E6(q), E7(q), E8(q).

(II) K ∼= Ln(q), n ≥ 4, P Ωn(q), n ≥ 7, F4(q), q even.

We first discuss the groups in (I). They all have the following properties in common:

(i) Z := Z(S ∩K) is a long root subgroup of L.

(ii) NL(Z) is a maximal subgroup of L (and we choose Lt = NL(Z)).

(iii) Φ(Op(Lt)) = Z.

(iv) Op(Lt)/Z is a simple Et-module.

(v) Et/Op(Et) is quasisimple.
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Since NL(S ∩K) acts simply on Z we have Z ≤ Ai for i = 1, . . . , t. Observe that by (iii) and (iv),

At = Z, and so A ≤ Z. Put L̃t := Lt/Op(Lt)Z(K) and R := 〈ALt
1 〉. If K ∼= PSp2n(q) or PSUn(q)

choose L1 to be the normalizer of a maximal singular subspace (of the natural module). Then

A1 � Op(Et) and by (v) R̃ = Ẽt. In the other cases of (I) except K ∼= E7(q), choose L1 such that
E1/Op(E1) ∼= Ωεm(q), (E1∩Et)/Op(E1∩Et) ∼= Ωεm−2(q), and Z1 := 〈ZE1〉 is a natural Ωεm(q)-module.

For K ∼= E7(q) choose L1 such that E1/Op(E1) ∼= E6(q) and so (E1 ∩Et)/Op(E1 ∩Et) ∼= Spin+
10(q),

and Z1 := 〈ZE1〉 is a simple E1-module of order q27. Since Z ≤ A1, we get Z1 ≤ A1 and thus

[A1,Op(Et)] � Z since [Z1,Op(Et)] � Z. Hence (iii) shows that A1 � Op(Et) and so by (v) R̃ = Ẽt.

We have shown Ẽt = R̃. Hence (iii) and (iv) imply

(∗) Et = R.

As Z ≤ Ai and Ai is quadratic on V , we get that [V,Z,R] = 0. Hence (∗) implies that [V,Z,Et] = 0.
So by 2.3 K ∼= Sp2n(q) or SUn(q), and V is the natural module. Hence (9◦) implies case (1) of the
theorem.

We now discuss the groups in (II). Suppose K ∼= Ln(q), n > 3. Let P1 and P2 be the p-minimal
subgroups of H with S ∩ K ≤ Pi and Z := Z(S ∩ K) not normal in Pi. As n > 3, P1 and P2

commute. Put P = P1P2 and D = 〈AP 〉. Then Z ≤ D and [V,Z,D] = 0, so D ≤ NL(Z) but

D � Op(NL(Z)), and 〈DNL(Z)〉 = Op′(NL(Z)). Hence [V,Z,Op′(NL(Z))] = 0 and by 2.3 V is a
natural module. Let L1 and L2 be the normalizers of a 1-dimensional subspace and hyperplane,
respectively. Then A ≤ Op(L1) ∩Op(L2) = Z, and (9◦) implies case (1) of the theorem holds.

Suppose K ∼= P Ωεn(q), n ≥ 7. Let d be the dimension of a maximal singular subspace (of the
natural module) and for i = 1, 2, d choose notation such that Li normalizes a singular i-subspace.
Set Z2 := Z(E2), Bi := 〈ZLi

2 〉 and, if p = 2 and n is odd, Z1 := Z(E1). We will use the following
properties:

(i) If p is odd or n is even, then Z(S ∩ K) = Z2, and if p = 2 and n is odd, then Z1 and Z2

are non-conjugate root subgroups with Z(S ∩K) = Z1Z2. Moreover, Z2 = Bd ∩ Z(S ∩K) =
Bd ∩ Z(Op(L2)).

(ii) Bd is the unique minimal normal subgroup of Ld in Op(Ld).

(iii) Bd = Op(Ld) or Op(Ld)/Bd is a simple Ld-module.

(iv) If Bd 6= Op(Ld) and Op(Ld) is abelian, then p = 2 and n is odd.

(v) B1 = Op(L1)

(vi) If d ≥ 4 and K � Ω+
8 (q) then L2 = 〈(B1Bd)

L2〉.

(vii) If K ∼= Ω+
8 (q), then L3 normalizes a singular 4-space and L2 = 〈(B1B3B4)L2〉.

(viii) L2 acts simply on Op(L2)/Z(Op(L2)).

Suppose first that Ad 6= Bd. Then Bd 6= Op(Ld), Ad = Op(Ld), and Op(Ld) is elementary

abelian. Thus p = 2 and n is odd. Then Z1 is a root subgroup and Z1 ≤ Ad � O2(E1), E1 = 〈AE1

d 〉,
and [V,Z1, E1] = 0. Hence by 2.3 V is a natural Spn−1(q)-module. In particular, Z1 is the unique
maximal quadratic normal subgroup of L1 and so A ≤ A1 ≤ Z1. Now (9◦) implies that case (1) of
the theorem holds.

45



Suppose that Ad = Bd. Then A ≤ Bd and so 1 6= A ∩ Z(S ∩K) ≤ Bd ∩ Z(S ∩K) = Z2. Since
NK(S ∩K) acts simply on Z2, Z2 = 〈(A ∩ Z(S ∩K))NK(S∩K)〉 and therefore Z2 ≤ A1 ∩ Ad. Since
Op(L1) = B1 = 〈ZL1

2 〉 we get A1 = Op(L1). Thus [MS4, 7.11] implies that V is a (half-)spin-module.
If d ≥ 4 and K � Ω+

8 (q) then L2 = 〈(B1Bd)
L2〉 = 〈(A1Ad)

L2〉 and so [V,Z2, L2] = 0, a contradiction
to 2.3. If K ∼= Ω+

8 (q), then A3 = B3, L2 = 〈(B1B3B4)Ld〉 = 〈(A1A3A4)L2〉, and we obtain the
same contradiction. Thus d = 3. Suppose that A � Z2. Since A3 ∩ Z(Op(L2)) = Z2 we conclude
that A � Z(Op(L2)). Since L2 acts simply on Op(L2)/Z(Op(L2)) we get Op(L2) = A2Z(Op(L2)), a
contradiction since A2 is abelian. Hence A ≤ Z2 and (9◦) yields case (1) of the theorem.

Suppose finally that K ∼= F4(q) and p = 2. Let Z1 and Z2 be the two root subgroups with
Z(S∩K) = Z1Z2. For i = 1, 2 let Li := NL(Zi). Since Z1∩Z2 = 1 we can choose notation such that
A∩Z(S ∩K) � Z1. Then Y1 := Ω1Z(O2(E1)) ≤ 〈(A∩Z(S ∩K))E1〉 ≤ A1, and so Y1 is quadratic on

V . Note that Z2 ≤ Y1, Y1 � O2(E2) and E2/O2(E2) is quasisimple. We conclude that E2 ≤ 〈Y E2
1 〉

and [V,Z2, E2] = 0, which contradicts 2.3.
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