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Abstract

Let p be a prime, M a finite group with O,(M) = 1, V a faithful F, M-module and J the
subgroup of M generated by the best offenders on V. In this paper we determine structure of
J and the action of J on V.

Introduction

Let p be a prime, M a finite group and V' a finite dimensional F,M-module, where F, is the prime
field in characteristic p. A subgroup A < M is an offender on V if

1. A/C4(V) is an elementary abelian p-group, and
2. |[V/Cy(A)| < |A/Ca(V)I;

and A is a non-trivial offender on V| if in addition [V, A] # 0. Moreover, V is called an F F-module
for M if some subgroup of M is a non-trivial offender on V. Faithful simple F'F-modules for groups
of Lie type in equicharacteristic have been classified by Cooperstein [Co] (the case p = 2) and
Meixner [M] (the case p # 2) and for arbitrary nearly simple groups by Guralnick, R. Lawther and
G. Malle [GM1], [GM2], [GLM].

These results have been of great importance for the local theory of finite groups since such FF-
modules are closely related to the failure of the Thompson-factorization in groups of characteristic
p. In fact, for a finite group G and a normal elementary abelian p-subgroup X the elementary
abelian p-subgroups of maximal order in G provide examples for offenders on X; and so G possesses
non-trivial offenders on X if [X,J(S)] # 1, where S € Syl,(G). The action of such elementary
abelian subgroups have an additional property that is reflected in the following definition.

A subgroup A < M is a best offender on V if

(i) A/C4(V) is an elementary abelian p-group, and
(ii) |B]|Cv(B)| < |A||Cy(A)| for every subgroup B < A.

It is easy to see (using B := C4(V)) that every best offender is an offender. Indeed, a best
offender A on V is an offender on every A-submodule of V; and this property characterizes best

offenders (see [1.2).



In this paper we use this slightly stronger definition to derive a result about F F-modules that is
free from the restriction to simple modules. It includes the above mentioned F F-module theorems,
but also in these cases it gives more information about the size and action of offenders on V.

Most of the time we will treat groups like Alt(6) 2 Sp,(2)’, SU3(3) = G2(2)" and ?F,(2)’ together
with the groups of Lie-Type. We therefore use the following definition.

Definition. A genuine group of Lie-type in characteristic p is a group isomorphic to o” (Cx(0)),
where K is a semisimple F,-algebraic group, I, is the algebraic closure of IF,,, and o is Steinberg
endomorphism of K, see [GLS3), Definition 2.2.2] for details. A simple group of Lie-type in charac-
teristic p is a non-abelian composition factor of a genuine group of Lie-type in characteristic p.

Before stating our main result we give some further definitions.

Definition. The normal subgroup of M generated by the best offenders of M on V is denoted
by Jar (V). A non-trivial subgroup K of Jp (V) is a Jps (V) -component if K is minimal with respect
to K = [K,Jp(V)]. The set of these components we denote by Jar (V).

A finite group H is a called a CK-group provided that each composition factor of H is one of the
known finite simple groups.

Let S be a set of subgroups of M. We often write [V,S] and Cy (S) rather than [V, (S)] and
Cv ((S)). Similarly, we write X S rather than X , s A.

The F,M-module V is perfect if V = [V, M], simple if V' # 0 and 0 is the only proper F,M-
submodule of V, and quasisimple if V' is perfect, O,(M/Cp(V)) = 1 and V/Cy (M) is simple.
Moreover, M acts simply on V if V is a simple M-module; and M acts nilpotently on V if there
exists a finite series 0 = Vo < Vi < Vi_q < Vi = V of F,M-submodules of V' with [V;, M] < V;_
forall 1 <i<k.

Let A be a subgroup of M. Then

— A is a strong dual offender on V if A acts nilpotently on V and [V, A] = [v, A] for every
veV\Cy(A);

— Ais a strong offenderon V if A is an offender on V and Cy (A) = Cy (a) for every a € A\C4 (V)
(note that the last condition is equivalent to C4(V) = Ca(v) for all v € V' \ Cy (A));

— Ais an over-offender on V if A is an offender and |A/C4 (V)| > |V/Cy (4)].

Finally we call V' a natural F,, K-module for M if M/Cy (V) = K, and there exists a quadratic,
bilinear or sesquilinear form f on V' left invariant by M such that for K, K := Endy,(V), dimg V
and f one of the following cases holds:

K dimg V' K f

SLy.(p") n Fpx zero-form

Span (%) 2n Ik non-deg. symplectic

05, (p*) n ok non-deg. quadratic

Qs (p*) n IF, non-deg. quadratic

SU,(p%) n S non-deg. unitary

Go(2F 6 For  mnon-deg. symplectic

Sym(2n) 2n —2 Fy zero-form

Alt(2n) 2n — 2 Fo — 1l —
Sym(2n + 1) 2n Fy — 1=
Alt(2n 4+ 1) 2n Fy — Il —



In the last four cases V' is meant to be the simple composition factor of the Fo-permutation
module for Sym(2n) and Sym(2n + 1), respectively.

Note that in the above definition a non-degenerate quadratic form is a quadratic form that is non-
zero on every non-zero element in the radical of the associated symmetric form. Also observe that
O2,41(2%) = Sp,,,(2¥) and V is a central extension of a natural Sp,,, (2¥)-module. This extension
does not split if n > 1 or k& > 1.

In general, M can have more than one natural module. For example, for n = 5, Alt(5) = SLo(4) &
Q5 (2), so M has three natural modules, the natural SLy(4)-module, the natural Q2 (2)-module, and
the natural Alt(5)-module, the latter two being isomorphic.

In addition, M = SL,(q), n > 2, has two natural SL,(¢)-modules that are not isomorphic due
to the graph automorphism of SL,(q). Similarly, M = Sping (¢) has three natural QF (¢)-modules.
In the literature two of these are called half-spin modules depending which epimorphism from M to
Q7 (g) one chooses.

Theorem 1 (General FF-Module Theorem). Let M be a finite CIC-group with Op,(M) =1
and V' be a faithful finite dimensional F,M-module. Suppose that J := Jpy (V) # 1. Then for
T =Iu(V), W:=[V,J|+Cv(J)/Cv(T), K €T and J := J/C;([W, K]) the following hold:

(a) K is either quasisimple, or p =2 or 3 and K = SLa(p)’.

(b) [V,K,L| =0 for all K # L € J, and W = @ ,[W, K].

(c) JPJ =0P(J)=F"(J)= X J.

(d) W is a faithful semisimple F,J-module.

(e) If A< M is a best offender on V, then A is a best offender on W.

(f) K =F"(J)=0F(J) and C;([W,K]) = C;([V, K]).
(g9) Either [W, K] is a simple F, K-module, or one of the following holds, where q is a power of p:

1. J = SL,(q), n >3, and [W,K] = N" & N**, where N is a natural SL,,(q)-module, N* its
dual, and r, s are integers with 0 < r,s < n and /7 + /s < y/n.

2. J = Spy,,(q), m > 3, and [W, K| = N7, where N is a natural Sp,,(q)-module and r is a
positive integer with 2r < m + 1.

3. J = 8SU,(q), n > 8, and [W,K] = N", where N is a natural SU, (q)-module and r is a
positive integer with 4r < n.

4. J =2 Q¢ (q) with p odd if n is odd, or J = OF,(q) withp =2 and n even Moreover, n > 10 and
[W, K] 2 N", where N is a natural Q5 (q)-module and r is a positive integer with 4r < n — 2.

(h) If [W, K] is not a homogeneous F, K module, then holds with r # 0 # s and n > 4.

Theorem 2 (FF-Module Theorem). Let M # 1 be a finite CKC-group and V' be a faithful F, M-
module. Put

D :={A < M | there exists 1 # B < A such that [V, B, A] =0 and A and B are offenders on V} [

Suppose that V is a simple Fp, Jpr(V))-module and M = (D). Then one of the following holds, where
q is a power of p:

1The odd-dimensional orthogonal groups in characteristic 2 are covered in case l)
2 Note here that D contains all quadratic offenders and by the Timmesfeld Replacement Theorem [KS], 9.2.3], also
all best offenders in M on V.



1. M =SL,(q), n > 2, and V is a natural SL,(q)-module.
M = 8p,,(q), n>1, and V is a natural Sp,,, (¢)-module.
M = SU,(q), n >4, and V is a natural SU, (q)-module.
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M = QF (q) for 2n > 6, M = Q5 (q) forp=2 and 2n > 6, M = Q5 (q) for p odd and 2n > 8,
M 2= Qony1(q) for p odd and 2n+1 > 7, M =2 O, (2), or M = 05, (q) for p =2 and 2n > 6,
and V' is a corresponding natural module.

5. M = Ga(q), p=2, and V is a natural Ga(q)-module (of order ¢°).

6. M = SL,(q)/(—id" "), n>5, and V is the exterior square of a natural SLy,(q)-module.

7. M = Spin,(q), and V is a spin module of order ¢°.

8. M = Spinj,(q), and V is a half-spin module of order ¢'°.
9. M = 3.A1t(6), p =2 and |V| = 25.

10. M = Alt(7), p= 2, and |V| = 2*.

11. M = Sym(n), p=2, n odd, n >3, and V is a natural Sym(n)-module.

12. M = Alt(n) or Sym(n), p =2, n is even, n > 6, and V is a corresponding natural module.

Theorem 3 (Best Offender Theorem). Let M # 1 be a finite group, T € Syl,(M), and V be a
faithful F,M-module, and let A <T be an non-trivial offender on V.

(a) Suppose that M = Ga(q), p =2, and V is a natural Ga(q)-module. Then Np(A) is a mazimal
Lie-parabolic subgroup, |A| = |V/Cy(A)| = ¢, [V, A] = Cy(A), and Cr(A) = A.

(b) Suppose that M = SLy,(q)/(—id"™ 1), n. > 5, and V is the exterior square of the natural SLy,(q)-
module W. Let U be the (unique) T-invariant F,-hyperplane of W. Then A = Cy(U). In
particular, A is uniquely determined in T, Cp(A) = A, [V, A] = Cy(A) and |V/Cy(A)| = |A| =

n—1
g .

(c) Suppose that M = Spin,(q), and V is a spin module of order ¢®. Then Cy(A) = [V, A],
|V/Cv(A)] = ¢* < |A| < ¢°, and if A is mazimal, then |A| = ¢°, Cr(A) = A, O”l(NM(A))/A =
Sp4(q), and A is uniquely determined in T.

(d) Suppose that M = Spinf‘o(/q), and V is a half-spin module of order q'5. Then [V, A] = Cy(A),
® =|A| = |V/Cy(A)|, O (Np(A)/A) = Sping (q), and A is uniquely determined in T.

(e) Suppose that M = 3.A1t(6), p =2 and |V| = 25. Then [V, A] = Cy(A), |[V, A]| = |Cy(A)| = 16,
[V/Cy(A)| = |A| =4, and A is uniquely determined in T .

(f) Suppose that M = Alt(7), p = 2 and |V| = 2%. Then [V, A] = Cy(4), |[V,4]| = |Cv(4)| = 4,
|[V/Cy (A)| = |A| =4, and A is uniquely determined in T.

(9) Suppose that M = Sym(n), p = 2, n odd, and V is a natural Sym(n)-module. Then every
offender on V' is a quadratic best offender, A is generated by commuting transpositions and

[V/Cv (A)] = [V, Al = |A].



(h) Suppose that M = Alt(n) or Sym(n), p = 2, n is even, n > 6, and V is a corresponding
natural module. Then every offender on V' is a best offender, and there exists a set of pairwise
commuting transpositions tq,...,t, such that one of the following holds:

1. A = (t1,...,tx), and either n # 2k, [V, A] < Cy(A4) and |[V,A]| = |V/Cy(A4)| = |A]| or
n =2k, [V,A] = Cy(A4) and 2|V/Cy (A)| = |A|.

2. n =2k and A = (tita, tats ..., ti—1ts, tiy1, tiga, ..., ty) for some 2 <1 <k, [V,A] = Cy(4)
and |V/Cy (A)| = |A|.

3. n = 2k and A = (t1te, $182,t3,t4...,t;), where s1,82 are transpositions distinct from tq
and to and $182 moves the same four symbols as tita, A is not quadratic and |[V, A]| =
[V/Cv(A)] = |A].

4. n=8=1A|, A acts reqularly on {1,2,...,8}, [V, A] = Cy(4) and |V/Cy(4)| = |A|.

In particular, if A < Alt(n) and n # 8, then n = 2k and A = (t1ta,tats, ..., th—1tk).

Note that in all cases of the FF-Module Theorem M is generated by quadratic best offenders.

In the following list we give the module structure of A, V/Cy(A) and [V, A] considered as a
Nps(A)-modules in the cases (E[) — (d) of the Offender Theorem, as it can be deduced from the
action of M on V. Put P := OP (Nps(A)).

Case  P/O,(P) A [V, A] V/Cv(A) Remarks
a SLa(q) U U* U [U, P] a nat. SLy(g)-module
SL,,—1(q) U A (U) U U anat. SL,_1(g)-module
Sps(g)  nat. Qs(q) nat. Spy(q) nat. Spy(q) V/Cv(A) =V, A
A/Ca(P) 2 V/Cy(A)
@) Sping (¢) mnat. QF(q) nat. QF (¢) nat. QF(q) pairwise non-isom.

Acknowledgment: We would like to thank the referee for all his helpful comments and sugges-
tions that improved the readability of our manuscript considerably.

1 Linear Algebra and Offenders

In this section p is a prime, M a finite group and V' a finite dimensional IF, A/-module.

Lemma 1.1. Let A < M and W a set of A-submodules of V with V.= @W. Suppose that A
is a faithful offender on V' but not an over-offender on W for any W € W. Let W € W and put
Aw = Nwzrew Ca(U). Then

(a) |Al =|V/Cy(A)|.
(b) A= XWEWAW :AW X CA(W)
(c) |[A/Ca(W)| = |[W/Cw(A)| = [W/Cw(Aw)| = |[Aw|.



Proof. Since A is not an over-offender on W, |A/Cx(W)| < |W/Cw(A)|, and since V. = W,
V/Cv(A)| = [Twew IW/Cw(A)|. Since A is an offender on V' this gives

(%) Al > [V/Cy(A)| = T] W/Cw(A) = [T 14/CaW)l.
wew wew

Put B = Xy A/Ca(W) and let By = A/C4(W) be viewed as a subgroup of B. So B is
the internal direct product of the By, W € W. Consider the homomorphism
gf) A — B,a — (aCA(W))Wew.

Since V' is a faithful A-module and V= @W, ker¢ = (¢ Ca(W) = Ca(V) = 1 and ¢ is
injective. By (%) |A| > |B|. Thus ¢ is surjective and so an isomorphism. Moreover, equality holds
everywhere in (x). In particular, (b)) and the first equality in (d) hold.

Let a € A. Then a¢ € By if and only if a € C4(U) for all W #£ U € W and so if and only if
a € Aw. Thus Aw¢ = By. Also a € C4(W) if and only if the W-coordinate of a¢ is 1 and so if
and only if agp € X wvew Bw. Thus CaW)o =X wuew Bw. Since B = X wew Bw and ¢
is an isomorphism, (E[) holds.

From (b)) we get that Cyy(A) = Cw (Aw) and [Aw| = |A/C4(W)|. Hence the (already proved)
first equality in gives also the second and third equality in . O

Lemma 1.2. Let A < M. Then A is a best offender on V' if and only if A is an offender on every
A-submodule of V.

Proof. If A is a best offender, then by [MS1] 2.5] A is an offender on every A-submodule of V.
Conversely, suppose A is an offender on every A-submodule of V. Then A is an offender on V
and so elementary abelian. Let B < A and put W := Cy(B). Clearly

(%) B < Ca(W) and Cy (A) = Cy (A).
As A is an offender on W, [W/Cw (A)| < |A/C4(W)|, and () implies that
|B|[W| < |BJ|A/Ca(W)|[Cw (A)] < [A]|Cv(A)].
This shows that A is a best offender on V. O

Lemma 1.3. Suppose that B is a minimal offender on V and W is a B-submodule of V. Then B
is a quadratic best offender on W, and one of the following holds:

1. B is an over-offender on W.
2. [W,B] =0.
3. Ceg(W)=Cp(V) and V=W + Cy(B).
Proof. Let D < B. Since B is a minimal offender,
[D||Cv(D)| < [VIICp(V)] < V[ICa(V)| < [B]|Cv (B)]

and so B is a best offender. By the Timmesfeld Replacement Theorem [KS| 9.2.3], Cp([V, B]) is a
non-trivial offender on V' and so by minimality B = Cg([V, B]). Thus B is quadratic.



Assume that B is not an over-offender on W. Then |B/Cg(W)| = |W/Cw (B)| and
[V/Cy(B) + W| = |V/Cv(B)[|W/Cw(B)|™" < |B||B/Cp(W)|™! = [Cr(W)|.

Hence Cp(W) is an offender on V, and the minimality of B gives either B = Cg(W) or Cp(W) =
Cp(V). In the first case holds. In the second case

V=Cy(B)+W

and follows.

Lemma 1.4. Suppose that A < M acts nilpotently on V. Then the following are equivalent:
(a) A is a strong dual offender on V.

(b) Let 0 < U <Y <V be any chain of A-submodules with [Y/U, A] = 0. Then [V,A] < U or
Y <Cy(4).

(¢) A is a strong dual offender on V*.

Proof. Suppose @ holds. Let U and Y be as in and suppose that ¥ £ Cy(4). Pick v €
Y\ Cy(A). Then
V. Al = [v, 4] < [Y, A] < U.

Thus @ implies (]ED

Suppose next that (]EI) holds. To show that @ holds, let v € V' \ Cy(A) and put Y := (v4) and
U := [v, A]. Since [v*,a] = [v,a]* for all k € Z,a € A, U = [(v), A]. So Y and U are A-submodules,
U <Y and A centralizes Y/U. Since v € Y, Y £ Cy(A) and so (]ED implies that [V, A] < U. Hence
[v,A] = U = [V, A] and (@) holds.

By [L.8[[d), (b) holds for V' if and only if it holds for V* in place of V. Thus the above argument
with V* in place of V' shows that (]ED and are equivalent. O

Lemma 1.5. Let A be a strong dual offender on V. Then the following hold:
(a) A is quadratic on V.

(b) A is a strong dual offender on every A-submodule of V and V*.

(c) A is best offender on V and on V*.

(d) If |[V, A]| = |A|, then A is a strong offender on V.

Proof. Since by [I.4] A is also a strong dual offender on V* it suffices to prove the statements for V.
(a): Since A acts nilpotently on V' there exists v € V'\ Cy/(A4) with [v, A] < Cy (A). By definition
of a strong dual offender we conclude that [V, A] = [v, A] < Cy(A) and so A is quadratic.
(b): This follows immediately from the definition of a strong dual offender.
(c): Let v € V'\ Cy(A). Since A is quadratic on V, [v, A] = {[v,a] | a € A} and so

(%) [V, A]l = [[v, A]| = [A/Ca(v)] < |A].

Thus by [V*/Cy+(A)| < |A|. So A is an offender on V*. By (b) this is also true for any A-
submodule of V*. Thus by A is a best offender on V*. By symmetry, A is also a best offender
on V.



(d): Suppose |[V, A]| = |A|. Then by (x)
|A] < [A/Ca(v)| < [A] for every v € V'\ Cy (A).
Hence C4(v) = 1 and so Cy(a) = Cy(A) for all a € A*. O
Lemma 1.6. Let A be a strong offender on V. Then A is a quadratic best offender on V.
Proof. Let W be an A-submodule of V' with [W, A] # 0. Then C4(W) =1 and so
(W/Cw (A)] < [V/Cy(A)] < |A] = [4/Ca(W)].

Hence A is an offender on W and so by A is a best offender on V.

To show that A is quadratic we may assume that [V, A] # 0. Put B = C4([V,A]). By the
Timmesfeld Replacement Theorem [KS| 9.2.3], [V, B] # 0 and since A is a strong offender, Cy (B) =
Cy (A). Since [V, A, B] = 0 we conclude that [V, A, A] = 0 and so A is quadratic. O

Lemma 1.7. Let A be a subgroup of M. Suppose V is self-dual as an FpA-module. Then A is a
strong offender iff |V/Cy (A)| = |A| and A is a strong dual offender.

Proof. Suppose first that A is strong offender and let 1 # a € A. Then Cy(a) = Cy(A) and since
V is self-dual, [V,a] = [V, A] by [1.8{|c). Let v € V'\ Cy(A4). Then C4(v) =1 and so |[v, A]| > |A|.
Hence

Al < [[o, Al < [[V; A]| = |[V; al| = [V/Cv (a)] = [V/Cv (A)] < |A],

and equality holds everywhere. Thus [v, A] = [V| A] and so A is a strong dual offender.
Suppose now that |V/Cy(A)| = |A| and A is a strong dual offender. Since V is self-dual we get
[[V, 4]| = |A|. Thus by [L.5(|d), A is a strong offender. O

Lemma 1.8. Suppose that K is a field and V is a K-space. The following hold for A < GLg(V)
and U a K-subspace of V:

(a) dimg V = dimg V*.

(b) dimg U + dimg U+ = dimg V.

(c) [V, At = Cy«(A) and Cy(A)* = [V*, Al
(d) [V,A,A] =0 <= [V*, A A] =0.

(e) Cpr(Cy(A)) NCur(Cy=(A)) is the largest subgroup Y < M with Cy(Y) = Cy(A) and [V,Y] =
[V, A].

(f) If A is quadratic on V', then dimg[V, A] + dimg V/Cy (A) < dimg V.

Proof. @, (b) and are well-known and easy to prove statements from linear algebra; and (E[)
follows from (icf).
(d): [V, A, A] = 0iff [V, A] < Cy(A) iff Cy (A)F < [V, AJFiff [V, A] < Cy«(A) iff [V*, A, A] = 0.
(f): Since A is quadratic, [V, 4] < Cy(A). Thus



Lemma 1.9. Let F be a finite field of characteristic p, V a finite dimensional FH-module, and
N < H. Put K := Endpy (V) and suppose that V is a self-dual simple FN-module. Then the
following hold:

(a) There exists an N -invariant non-degenerate symmetric, symplectic or unitary K-form s on V.

(b) There exists a homomorphism p : H — Autp(K) with h — pp, such that h € H acts py-semi-
linearly on the right K-vector space V; i.e., (v + w)h = vh + wh and (vk)h = (vh)(kpn) for
v,w €V and k € K.

(c) There exists a map X\ : H — K* with h + X\, such that the map H — K* x Autp(K),h — Anpn
is a homomorphism and
(vh,wh)s = (v, w)s$Appp

for allv,w eV, he H.

(d) Let U be a K-subspace of V and put Ut = {v € V | (u,v)s = 0 for allu € U}. Then U™ is
Ny (U)-invariant.

(e) Let U be a non-zero K-subspace of V' such that Cy(U) acts simply on V/UL. Then U is 1-
dimensional over K.

(f) Put Hy = ker p. Then s is OF' (Hy)N -invariant.

Proof. Recall that K is a finite field of characteristic p since V is finite and simple. It is convenient
to write V in the following as a right K-vector space since we write the action of K on V' from the
right.

Put V* := Homg(V,K) and W := Homp(V,F). Let u : K — F be any non-zero F-linear map and
define

T7: V"> W byu—uopu.

(Recall that our mappings act from the right, so v(u o ) = (vu)p.)

Let 0 # u € V*. Then Vu = K and so there exists v € V with vu ¢ ker . Thus v.ur = vup # 0.
In particular ur # 0 and ker 7 = 0. Since 7 is F-linear and

dimm V= dim]F KdlmK V' = dlm]F K dimK V= dimF V= dimm w
we conclude that 7 is an F-isomorphism. For n € N, v € V and u € V* we have

VUNT = V.UN. L = vniluu =on Lur =vaurn

and so unt = urn. Thus 7 is an FN-isomorphism. Since V is self-dual as an F/N-module, this shows
that V and V* are isomorphic F/N-modules. Hence the set H of FN-isomorphisms from V to V* is
non-empty.

For k € K let

k:V* — V* defined by 2k : v+ vk.x (z€V*, veV).

Then k € Endpy (V*) =:Kand k — k induces an isomorphism of fields from K to K.
Let 8 € H. Then Boko B~ is F-linear and so

UBSK%KWithkP—)ﬂOEOIB71

is an F-linear automorphism of K. Since 8ok = kag o 3 we get



1°. [ is oﬁ_l—semi—linear.

Let 6 € H and put | = § o 37!, Then [ is FN-linear and so [ € K. Thus:
2°. For all 8,0 € H there exists | € K with § =10 .

It follows that

ka(;:éoEO(S_l=lOﬁOEOﬁ_1OZ_1=l0k‘050l_1.

Since K is commutative, this implies ko5 = kog. Thus o5 = o is independent from 5 € H. So we
just write o for og.

Let F be the set of all N-invariant non-zero functions s : V' x V' — K which are K-linear in the
first coordinate and F-linear in the second, where N-invariant means that (vn,wn)s = (v,w)s for
all v,w € V and n € N. Clearly, all these forms are non-degenerate since V is a simple F/N-module.

For € H define sg : V x V — K, (v,w) — v.wf. Then sg € F and so also F # (). Conversely,
for s € F define 85 : V — V* by v.wfs = (v,w)s. Then 85 € H, and applied to (s gives:

3°. FEach s € F is a 0~ '-sesquilinear K-form.

Define s* : VxV = K, (v,w) = (w,v)so. Then s* is N-invariant, K-linear in the first coordinate
and o-semi-linear in the second coordinate. In particular, s* € F and so implies. Hence

4°, o =01, and either 0 = idg or o has order 2.

We now will prove @ — @)

@: Put ¢t = s+ s*. Then t = t*. Suppose first that ¢t # 0. If o = idk, then ¢ is an N-invariant
symmetric K-form; and if |o| = 2, then ¢ is an N-invariant unitary K-form. So @ holds in this case.

Suppose next that ¢ = 0. Then s = —s*. Assume char K = 2, then s = s* and so s is a symmetric
or unitary K-form. Assume charK # 2. If ¢ = idg then s is a symplectic K-form. If |o| = 2 pick
x € K with 2 # zo and put y := z — zo. Then yo = —y. Hence (sy)* = s*.yo = sy and so sy is a
N-invariant unitary K-form on V. Again @ hold.

(@: Since N < H, it is readily verified that for ¥ € K and h € H the map V — V,v + vh™'kh
is in K. Thus pp, € Autp(K) where

v.kpp = vh™Ykh for all k € K, h € H.

A simple calculation shows that p : H — Autp(K) with A — p, is a homomorphism and h acts
pr-semi-linearly on V.

: Fix h € H and define
Sp : VxV— K, (v,w) — (Uh, wh)spgl_

Using that Aut(K) is abelian, it is straight forward to verify that s, € F. By , Bs,, = kn o s for
some kj, € K. Thus for all v,w € V

(vh,wh)sp,* = (v,w)sy, = vawfs, = vawkyBs = (v,wkp)s = (v, w)s.kpo
Define \p, = kjo, then
(vh,wh)s = (v, w)SAppPp-
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It is readily verified that the map H — K* x Autp(K), h — Aj,pp is a homomorphism.

(d): Let v e UL, h € Ny(U) and u € U. Then

(u,vh)s = (uh™,v)s\ppn = 0.

@: Let D be a 1-dimensional K-subspace of U. Then by @, D+ is Oy (U)-invariant. Since
U+ < Dt and Cy/(U) is simple on V/U~+ we get UL = D+ and U = D.

@ For a,b € Hy the homomorphism given in yields

AabPab = Aab = AaParopPr = AaXp.

Hence A |p, is a homomorphism from Hy in K% Since K is a p/-group, @) follows. O

2 J-Components

In this section p is a prime, M is a finite group with O,(M) = 1, and V is a finite dimensional
faithful F,M-module such that Ja; (V') # 1.

Notation 2.1. Put J :=Jpy (V) and J := T (V). Let T be the set of solvable J-components, K be
the set of perfect J-components, E := (K), and I := (Z).

Lemma 2.2. The following hold:

(a) Cr(J/Z(J)) = Cp(J).

(b) Let N be a J-invariant subgroup of M with [N, J] # 1. Then there exists K € J with K < N.
(c) T#0, T =TUK, and K is the set of components of J.

(d) Let K € T. Then either p = 2, K = C3 = SLy(2), and [V,K] = F3, orp =3, K = Qg =
SLa(3), and [V, K| = F%.

(e) W,K]| =W, K, K] for every K € J and every K-submodule W of V.
(f) [K,F]=1 and [V,K,F] =0 for every K,F € J with K # F.
(9) C;(IE)=7Z(J), orp=2 and C;(IE) = Z(J)I. So in both cases C;(IE) is an abelian p’-group.

(h) Let U < M and K € J. Then either [K,U] =1 or [W, K| < [W, [K,U]] for every K-submodule
W<V,

Proof. (a) Put R = Cp(J/Z(J)) and let T be a p-subgroup of J. Since Op(M) =1, O,(Z(J)) =1
and so Z(J) is a p’-group, Since [Z(J),T] = 1, we conclude that T = O,(Z(J)T). So, as [R,T] <
Z(J), R normalizes T and [R,T] < TNZ(J) = 1. Since J is generated by p-groups, this means
[R,J] =1and so R= Cp(J).

®): By (), [V,J] £ Z(J). So by [MSI] 3.1] there exists K € J with K < [N, J].

() and (d) follow from [MST} 3.2], and [MSI} 3.4], and (f) is The Other P(G,V)-Theorem in
[MST].
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@: By and @ K is generated by p’-elements. Hence (ED follows from elementary properties
of coprime action.

(g): Put C := C,;(IE). Clearly Z(J) < C. Hence, by (b) either C' = Z(J), or there exists a
J-component in C. Assume the latter case. Then by and @, p=2and I < C. The action of
C on [V,I] shows that C = IC¢([V,I]). But now again (), this time applied to Cc([V, I]), gives
Ce([V, 1)) < Z(J) and thus C = Z(J)I.

(h): Note that K[K,U] = K"[K,U] for every u € U. Assume first that U € Ny (K). Then
there exists u € U \ Ny(K), and by (f) [W, K] < Cw (K“). Now (g yields

[WaK] - [VV,KvK] < [‘/V’K7KH[K’ U” - [I/V’Kv [K7 UH < [VV’ [K’ U]]

Assume now that U < Nj(K), [K,U] # 1 and [W, K] # 0. Then 1 # [K,U] < K. By (c) and
@ K is a component, or K 2 C3, or K 2 Q. In the first case K < [K, U], and follows. In the
other two cases by (d) [W, K] = [V, K] is a faithful simple K-module, so [V, K] = [V, [K,U]]. O

Lemma 2.3. Let A be a best offender of M on'V and K € J. Then the following hold:
(a) [K,Al = K or [K,A] =1.

(b) If[K, A] # 1, then there exists a best offender Ay < A such that K = [K, Ao], [[V, K], Ao, A] =0,
and Ay is quadratic on [V, K].

Proof. @ is obvious since K < J and by either K is quasisimple or isomorphic to Cs or Qs.
(b): This is essentially [MS1] 3.3], but since our assumption is slightly weaker we repeat the proof:
By [K,A] = K and by R.2|[) [V, K] = [V, K, K], so [V, K, A] # 0. The Timmesfeld Replacement
Theorem [MSI], 2.7] with W := [V, K] gives a best offender Ay < A satisfying [W, Ag, A] = 0 and
[W, Ag] # 0. The first property shows that Ay is quadratic on W. Suppose that [K, Ag] = 1. Then
by [MST] 2.9], [W, Ag] = 0, a contradiction. Thus [K, Ag] # 1 and by (&), K = [K, A)]. O

Lemma 2.4. Let K € J and A be a subgroup of M such that [V, A, A] = 0 and [K, A] # 1. Suppose
that X is a perfect K-submodule of V and X is a non-zero K -factor module of X. Then

Ca(X) = Ca(K) = Ca(X).

Proof. Put L := [K,A]. The quadratic and faithful action of A shows that A is an elementary
abelian p-subgroup. Hence A := C4(K) centralizes (K, A) and so also L. The quadratic action of
A gives

[V, L] < [V, {A%)] = ([V, A]) < Cv (4p).

As [K, A] # 1,22.2(h) yields X = [X, K] < [X, L] < Cy(A4g) and Ay < C4(X) < Ca(X). Conversely,
[X,[K,Ca(X)]] # X since X # 0. Hence again [2.2((h]) implies that C4(X) < C4(K). O

Lemma 2.5. Let K € J and K := Endg (V). Suppose that V is a simple K-module and M is
generated by quadratic offenders on V. Then the following hold:

(a) K is a finite field.
(b) M acts K-linearly on 'V, or |[V| =4 and M = SLa(2).
(c) F*(M) = Z(M)K, and Cpr(K) = Z(M) if |V| > 4.
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Proof. : By Schur’s Lemma K is a finite division ring, so by Wedderburn’s Theorem K is a field.

@: Let A < M be a quadratic offender and suppose A does not act K-linearly on V. Then
by [MS3l 2.14], |A| = 2. Since |A] is an offender we get |V/Cy(A)] = 2. Since A does not act
K-linearly, there exists 0 # k € K which is inverted by a € A*; and since k acts fixed-point-freely on
V, |Cy(a)[? = [V|. This implies |[K| =4 = [V|. Hence M = SLy(2) and (b)) is proved.

(): Suppose K is solvable. Then by[2.2]|V| =4 or |[V| = 9 and (d) is obvious. So we may assume
that K is not solvable and so by K is a component of M; in particular F*(M) = KCp- ) (K).
By (]H) M acts K-linearly on V', so Cp(K) < Z(M), and F*(M) = KCp+(p)(K) = KZ(M). O

Lemma 2.6. Let K € J and X be a perfect K-submodule of V', and let A be a best offender of M
onV such that [K, A] # 1. Then A normalizes X.

Proof. By [2.3|[b) there exists a best offender Ay < A such that [K, A¢] = K, [V, K], Ay, A] = 0 and
Ay is quadratic on [V, K]. Clearly A normalizes K since K < J.

We will first show that A normalizes X. Note that by [1.2] Ag is a best offender on W := (X 40},
Let R := rad g (W), that is, the intersection of the maximal K-submodules of W, and put W := W/R.
Note that W = [W, K] and so byCAO (W) = Ca,(W) = Cyu,(K). Since Ay is a quadratic offender
on W, we conclude that Ag is also a quadratic offender on W. Thus there exists a quadratic best
offender A; < Ay on W such that [W, A;] # 0 and so by [K, A1) # 1.

Note that X is a semisimple K-module. Let Y be any simple K-submodule of X. By [MST], 2.10]
A; normalizes Y. Moreover, since X is a perfect K-module and [K, A;] # 1, gives [V, A;] # 0.
Now 0 # [V, 4;] < Cy(Ap) shows that also Ag normalizes Y. Hence, Ay normalizes X and W =
X+R, s0oW =X.

Thus Ap normalizes X. Let a € A. Then [X, Ag] < XNX*=: D. Since D is a K Ap-module and
[X, Ap] < D, we get from X =[X,K] <[X,[K,Ap]] < D and thus X* = X. So A normalizes
X. O

Lemma 2.7. Let K € J and X be a perfect K-submodule of V', and let B be a best offender of M
on V such that [K,B] = 0. Then [X,B] =0.

Proof. Let X be a counterexample such that dimp, X is minimal, and let W be a maximal K-
submodule of X. We use the following notation:

Y :=(XB), U:=[W,K], By:=Cp(Y),Y :=Y/Cy(K).

Note that [Y, K] =Y. Since [Y,Cp(Y), K] = 0 and [Cp(Y), K] < [B, K| = 1, the Three Subgroups
Lemma gives [Y,Cp(Y)] = [K,Y,Cp(Y)] = 0. It follows that

Cp(X) =By =Cp(Y) = Cp(X).

As B is a best offender on Y by B is an offender on Y.

Since U is a perfect K-module, the minimality of X gives [U, B] = 0. Thus [W, K, B] = 0 and
[K, B] = 0, and the Three Subgroups Lemma yields [W, B, K] = 0. Thus [W, B] = 0 and so C(b) =
W for every b € B\ By since X /W is simple. Hence [X,b] 2 X /Cx(b) = X/W = X/W :=I. This

shows that [X, B] is the direct sum of, say n, copies of I.
Put F := Endg (I). Let

kp: X — [X,B] withT+W — [z,b]. (b€ B)
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Then b — Ky, b € B, defines to a homomorphism from B to Homg(X/W,[X, B]) = F" whose
kernel is Cp(X) = Cp(X). It follows that [B/Cp(X)| < |F|". Since B is an offender on Y with
BO = CB(Y) and Cy(B) = W,

[F|* > |B/Bo| > [Y/Cy(B)| > [XC(B)/Cy(B)| = [X/W| = |1],
(+) dimg I < n.

According to and (b)) there exists a best offender A on V such that [K, A] = K and A is
quadratic on V. By|2.6{A normalizes X,Y and U and thus also W and X/W since W/U = Cx,y(K).

Let b € B\ Cp(X). Then [X,0] is a perfect K-submodule of Y, and so again by A normalizes
[X,b] and thus also [X,b]. Since I = X/W = [X,b] as K-module, D := Homg (I, [X,b]) is a non-

trivial p-group. Since A acts on D we get Cp(A) # 0 and so Homg 4(I,[X,b]) # 0. Thus [X,b] is
isomorphic to I as an K A-module.

By 24
(%) Ca(l) = Ca(K) = Ca(Y),
SO shows that A is a non-trivial quadratic offender on I. Hence by [2.5(|b) A acts F-linearly on
I or |I| = 4. In the latter case (x) implies |4/Ca(I)] =2 =|Y/Cy(4)|, |[K| =3 and [Y| =4. In
particular [Y, B] = 0.

- Aﬁumg now that é acts F-linearly on I. Let m = dimy [ and ¢ = dimp C;(A). Recall that
Y = X + [X, B] and [X, B] is the direct sum of n copies of K A-modules isomorphic to I. Hence

Since A acts quadratically on I, |A/CA(I)| < [Homg(I/Cr(A),Cr(A))], so |[A/Ca(I)] < |F|etm—e),
On the other hand, by (x) C4(I) = CA(Y) and so by (+)

|4/Ca(Y)| = A/Ca(D)] < B~ < [F|""=9) < |Y/Cy (A)],
a contradiction since A is an offender. O
Proposition 2.8. Let K € J and X be a perfect K-submodule of V. Then J normalizes X .

Proof. This follows from [2.6] and O

Lemma 2.9. Let K € J and let
X<V <X <Ys<X5...5Y, <X, <V

be a series of K -submodules such that X; = [X;, K], X;/Y; is a simple K-module, and [Y;, K] < X;_4
fori=1,...,n. Then the following hold for S := @& ,X;/Y;:

(a) J acts on S and Op(j) =1, where J := J/C(S).
(b) Every best offender on V is an offender on S; in particular J is generated by offenders on S.

(c) K is the unique J5(S)-component of J.
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Proof. (E[): By J normalizes every X; and Y; since Y;/X;_1 = Cx,/x, ,(K), so J acts on S.
Since X;/Y;, i > 1, is a simple K-module, we also get Op(j) =1.

(): Let A be a best offender on V. By [S, A] = 0 if [K, A] = 1. In the other case [2.4] shows
that

(+) CA(K) = Ca(X,) = Ca(X:/Y:), i=1,....n.

Hence in both cases C4(5) = C4(K).
By [L.2] 4 is a best offender on X,,. Hence

|Xn/Cx, (A)] < |A/Ca(Xn)| = [A/Ca(K)| = [4/Ca(S)|.
On the other hand,
|Xn| = |Xn/Yn‘|Yn/Xn—1HXn—1/Yn—l| T |X1/Y1||Y1|

and
1Cx,, (A)] < [Cx, v, (AYn/Xn1l|Cx,_, v, (A)] - [Cx, yvq (A)[ Y31,

SO

|4/Ca(S)| = [Xn/Cx, (A)] 2 [Xn/Yn/Cx, v, (A - [X1/Y1/Cx, vy (A)]| = [S/Cs(A)].

This shows that A is an offender on S.

(c): There exists a best offender A on V such that [K, A] # 1 and thus by () also [S, 4] # 0.
By (b) A is an offender on S so A contains a non-trivial bcst offcnder B on S. Again (x) yields
[K B] # 1. Hence by , K <J+ 7(S) and so K < J7(S). Now |2 and @ show that
Kisalsy 7(5)- -component of J. Moreover, since [S, K] = S 1mphes that K is the unique
J5(S)-component of J. O

Lemma 2.10. Let K € J and L be a normal subgroup of M with L = Opl(L). Then either
K<|[K,L|<Lor|[K,L]=1.

Proof. If K is a component of M, this is [KS| 6.5.2]. So suppose K is solvable. Then either p = 2
and K =2 Cs, or p=3 and K = Qs.

We may assume that [K, L] # 1. Since L = o (L), there exists a p-subgroup T of L with
[K,T] # 1. If If T normalizes K, the structure of Aut(K) shows that K = [K,T] < [K,L] < L.
So we may assume there exists t € T with K # K!. Put Ly := KK'N L. Then Ly < J,
and KK' = KLy = K'Lg since [K,t] < L. In particular [LO7 J] # 1 since K = [K,J] # K".
Hence, by [2 .1.) there exists a J-component K < Ly, so K < KKt. If K = K or K*, then
K < KK'= KLy < Ly < L. Suppose that K is different from K and K*. Then by.. (]ﬂ)

V,K]=[V,K,K] < [V,KK', K] =0,

a contradiction. O

Lemma 2.11. Let K € J, W a K-submodule of V, V :=V/W and U a K -submodule of V. Then
the following are equivalent:

(a) U is a perfect K-module and U/Cy(K) is a simple K-module.
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(b) U is a quasisimple K-module.
(c) U is a minimal non-trivial K -submodule of V.

Proof. () = (b):  Let N be the inverse image of Op(K/Ck(U)) in K. Then U # [U,N] and
since U is a perfect K-module, N # K. By K is quasisimple or K is p’-group. In the first case
N < Z(K) and since Op,(K) < O,(M) =1, N is a p’-group. So in any case N is a p’-group. Thus
N/Cg(U) =1 and so U is a quasisimple K-module.

) = (d: Let Y be non-zero K-submodule of U. By K = OP(K) and so Cy(K) =
Cy(OP(K)). Thus U/Cy(K) is a simple K-module. If Y ¢« Cy(K) we get U =Y + Cy(K) and
soU=[UK|=[Y,K] <Y and Y = U. Thus, either Y =U or Y < Cy(K), so Y is a minimal
non-trivial K-submodule of V.

= @: Since U is non-trivial, U # Cy(K). Let Y be a proper K-submodule of U with
Cy(K) <Y. Then [Y, K| = 0 by minimality of U. Thus Y = Cy(K) and so U/Cy(K) is a simple
K-module. Since K = OP(K), [U,K,K] # 1 and so U = [U, K] by minimality of U. Thus U is a
perfect K-module and (f]) holds. O

3 Maximal Quadratic Offenders in Classical Groups

In this section K is a field and V is an n-dimensional vector space over K. We assume that there exists
a sesquilinear form f on V' such that one of the following holds: (Recall here that f is non-degenerate
if for each 0 # v € V there exists w € V with f(v,w) # 0.)

i) £ =o.
(ii) f is a non-degenerate symplectic form on V; so f is bilinear and f(v,v) =0 for v € V.

(iii) f is a non-degenerate unitary form; so there exists a € Aut(K) such that o? = idg # «, f is
linear in the first component, and f(v,w) = f(w,v)a for v,w € V.

(iv) f is a symmetric bilinear form and there exists an associated non-degenerate quadratic form
h on V, that is a function h : V — K with

h(kiv + kow) = k?h(v) + k2h(w) + ki1ko f (v, w) for ki, ks € K, v,w € V.

(Recall here that h is non-degenerate if for each 0 # v € V with h(v) = 0 there exists w € V
with f(v,w) # 0.) Also if char K = 2, we assume that K is perfect and so for each k € K there

2
exists a unique element vk € K with vk~ = k.

By GL(V), Sp(V), GU(V), and O(V), respectively, we denote the group of automorphisms of V'
leaving invariant f (in the first three cases) and h in the fourth case. In the last three cases V is
called a non-degenerate symplectic, unitary and orthogonal space, respectively.

We also use the notation GL, (F), Sp,,(F), GU,(F), and O, (F), where n := dim V" and either
F = K or, in the unitary case, F = K, the subfield centralized by «. In the first three cases put
a =1idg, so F = K,. If F is finite, say |F| = ¢, we also write GL,(q), Sp,,(¢), etc.

An element v € V is called isotropic if f(v,v) = 0. A subspace U of V is called isotropic if
f luxu=10. An element v € V is called singular if v isotropic and (in the fourth case) h(v) = 0. A
subspace is called singular if it is isotropic and all its elements are singular.
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By V* we denote the vector space dual to V', so V* := Homg (V,K) and an element g € GL(V)
acts on V* via
xg: v (vg Nz (zeV* , veV).

We will use the notion of perpendicularity (and the symbol 1) with respect to f.

An a-sesquilinear form on V is a function g : V' x V' — K such that g is K-linear in the first
coordinate and a-semilinear in the second coordinate. We denote the set of a-sesquilinear forms on
V be Fo (V). Observe that F, (V) is vector space over K. Moreover, an element ¢t € GLg(V) acts
on Fo (V) via

gt : (u,v) = glut™' vt™h) w,veV.

Let n € {+}. An («,n)-sesquilinear form on V is an a-sesquilinear form g with g(v,w) = ng(w,v)«a
for all v,w € V. F,,(V) denotes the set all (o, n)-sesquilinear forms. Note that F, ,(V) is an
F-subspace of Fo (V). A, (V) denotes the set of symplectic forms on V' and S3(V') denotes the set
symmetric bilinear forms on V. So So(V) = Fiq + (V). Also A,(V) < Fig,— (V) with equality if
char K = 2.

Note that, if f # 0, then f is an («,€)-sesquilinear form, where ¢ = + for M = O(V) or
M =GU(V) and ¢ = — for M = Sp(V).

In the following M = GL(V), Sp(V), GU(V) and O(V), respectively. In this section we will
write the action of M on V' as right multiplication.

Lemma 3.1. Let U be an isotropic but not singular K-subspace of V. Let Uy be the set of singular
vectors in U. Then G = O(V), p = 2, Uy is K-subspace of U and dimg U/Uy = 1. In particular,
dimK VL S 1.

Proof. Since U is isotropic, f |yxu= 0, so all elements in U are isotropic. Since U is not singular,
there exists a non-singular element v in U. Since u is isotropic, we conclude that G = O(V) and
h(u) # 0. Then 4h(u) = h(2u) = h(u + u) = h(u) + f(u,u) + h(u) = 2h(u) and so p = 2. In
particular, K is perfect and for every k € K there exists a unique v/k such that \/E2 = k. Consider
the map

7:U — K with u — \/h(u).

Observe that Uy = ker 7. Since U is isotropic,

m(u+v) = /h(u = Vh(u) + f(u,v) + h(v) = V/h(u) + Vh(v) = 7(u) + 7(v).

for all u,v € Uy. Also

= V/h(ku) = \/E2h(u) = k7 (u),

and so 7 is K-linear. Thus Uy = ker 7 is K-subspace and dimg U/Uy = dimg K = 1. O]

Lemma 3.2. Suppose f#0. Let A< M and U be subspace of V.

(a) VUL and U/U N VL are isomorphic FNy (U)-modules. In particular, if f is non-degenerate,
then V and V* are isomorphic FM -modules.

(b) Cyyvi(A) = Cy(4)/V+.
(c) Cy(A) = [V, A+
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(d) Cp(V/U) < Cr(UL); in particular Car(V/U) < Cp(U) if U s isotropic.

(e) If A acts quadratically on V/V*, then A acts quadratically on V and [V, A] is an isotropic
subspace of V.

Proof. @: Replacing V by V/V+ and U by U + V+/V+ we may assume that V- = 0. For w € V
define w* : U — K, u — f(u,w). Since f is K-linear in the first coordinate, w* € U*. Define

¢: V—=U" v 0"

Since f is a-linear in the second coordinate, ¢ is a-linear and so F-linear. Moreover, ker ¢ = UL,
Hence dimV/U+t = dimV¢ < dimU* = dimU. This result applied to U+ gives dim V/U++ <
dim U+ and since U < U+,

dimU < dimU*++ < dim V/U+ < dim U.

So equality holds in the preceding inequalities. Therefore dim V¢ = dim U* and ¢ is surjective.
For g € Ny (U) and u € U:

u((we)g) = (ug™")(we) = flug™!,w) = f(u,wg) = u((wg)e),
so (we)g = (wg)$. Thus (a)) holds.

Put V := V/V+t and define f: V=2V K@+ Vhw+ V) = fv,w). Then f is a
non-degenerate form on V.

@: If V+ = 0, there is nothing to prove. So suppose V* # 0, that is G = O(V), charK = 2,
and n is odd. Let v € V with 7 € Cy+(A4) and g € A. Then vg = v + u for some u € V4, so

h(v) = h(vg) = h(v +u) = h(v) + f(u,v) + h(u) = h(v) + h(u).

Hence h(u) = 0. Since u € V+ and h is non-degenerate this gives u = 0 and so v € Cy(g). Thus

holds.

: By |1.8|c) and @ we have Cy(A) = [V, A]*. Observe that [V, A]* is the preimage of [V, A]*
in V. By (b)), Cv/(A) is the preimage of Ci7(A4) in V. Thus () holds.

@: Put C := Cp(V/U). Note that [V,C] < U and so by , Cy(C) = [V,C]*+ > U+. Hence
C < Cp(U). If U is, in addition, isotropic, U < U+ and so C < Cyp,(U).

(E[): Suppose that A is quadratic on V. Then [V, A] < Cy+(A) = Cy(A). Thus [V, A, A] = 0 and
[V, A] < Cy(A) = [V, A]* by . Hence [V, A] is isotropic. O

Lemma 3.3. Suppose that f # 0 and U is an isotropic subspace of V with U N VLt =0. Put
V.= V/UJ', D= CGL(V)(UJ') N CGL(V)(V/U) and

fa(®,y) = f(=,[y,d]) for alld € D, z,y € V.
Let d € D. Then
(a)

A:D—=Fuo(V),d— fq

is a ZN p (U)-module isomorphism.

(b) flxd,yd) = f(z,y) for all z,y € V if and only if fq € Fa,,E(V).

18



(c) Suppose M = Sp(V') then d € M if and only if fq € S2(V).
(d) Suppose M = GU(V), then d € M if and only if f4 € Fo (V).
(e) Suppose M = O(V) and U is singular, then d € M if and only if f4 € Ny(V)
(f) Suppose that M = O(V) and U is not singular. Then there exists a unique w € V such that
h(u) = f(w,u)?  for allu € U.
Moreover, d € M if and only if d € So(V) and
fa(@,7) = fo(w,7)* forallT V.

Proof. Observe that fq is well-defined and a-sesquilinear, so f4 € Fo (V). Note that [V, D] <U < U+
and so [V, D] = 0. Thus X is a homomorphism, and for d € D, g € Ny (U) and h € F(V)

(fa9)@,y) = fa(@g~ ', y97") = flzg™,[yg'.d]) = f(zg™*, —yg~' +yg~'d)
= f( v ,)( y+ylgtdg))g™") = flx,—y+y(g~'dg))
g (T, Y

To see that X is a ZN s (U)-module isomorphism it remains to show that A is bijective. The injectivity
follows from the fact that [V, D] < U and U NV+ = 0.

Let g € Fo(V). For u € U define ¢, € V' by Zgy, := f(x,u) for all z € V. Since UN VL =0,
the map U — V', u ~ ¢,, is an a-semilinear isomorphism. For w € V, the map t g(t,w) is
in V" and so there exists a unique u,, € U with T¢,, = f(z,uw) = g(T,w) for all z € V. Define
dg € GL(V) by dg(v) := v + ug. Clearly d, € D, and for all z,y € V:

fd_q (Tvy) = f((ﬂ, [yadg]) = f(xaug) = g(fvg)a

so fa, = g, and X is surjective. Thus @ holds.
To prove @ let d € D. We will determine necessary and sufficient conditions for d to be in M.
Since f is an (a, €)-sesquilinear form and U is isotropic,

flad,yd) = f(z,y) = f(z+ [z,d],y + [y, d]) — f(z,y) = f(z, [y, d]) + f([z.d],y) =
f(xv [yv d]) + ef(yv [xvd])a = fd(fv y) + efd(yvf)OL
Thus d preserves f if and only if
(1) fa(@,Y) = —efa(y,T)a  foral T,y € V.

That is, if and only if f4 € Fa,— (V). So (b) follows.

(c) and 1 ): These statements follow immediately from (]E[)

(d) and ( : So suppose that G = O(V) and let d € D such that (1) holds. Since ¢ = 1 and
a = idg, fg is a skew-symmetric form. Then

(2) h(zd) — h(z) = h(z + [z,d]) — h(z) = f(z,[z,d]) + h([z,d]) = fa(Z,T) + h([z,d]).
So

(3) d € O(V) if and only if d € Fiq_ (V) and f4(Z,7) = —h([z,d]) for all z € V.
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If U is singular, then A ([z,d] = 0 and we conclude that (d)) holds. So suppose U is not singular.
Then p = 2. Define § : U — K, u — /h(u), and observe that § is K-linear, so 6 € U*. On the other
hand the map

¢V = U, ¢*(0) : urs f(v,u)

is an isomorphism. Thus there exists a unique w € V with ¢*(w) = . This gives

h(u) = 6(u)? = f(w,u)? for all u € U.
Together with (3) we conclude that (g) holds. O
Lemma 3.4. Let U be an k-dimensional isotropic subspace of V and E := Cp(U) N Cpr (V/U).

(a) Suppose M = GL(V). Then E = U @k (V/U)*, |E| = [K|*"=F) and |V/Cy(E)| = |K|"~*.

k(k+1)

(b) Suppose M = Sp(V). Then E = So(U*), |E| = |K|~ 2 and |V/Cy(E)| = K.

(c) Suppose M = GU(V) Then E=F, _(U*), |E| = \IF‘|’“2 and |V/Cy (E)| = |F|?*.

k(k—1)

(d) Suppose M = O(V) and U is singular. Then E = \,(U*), |E| = [K] , |[V/Cv(B)| = Kk,

(e) Suppose M = O(V') and U is not singular. Put Uy := {u € U | h(u) = 0}, Ey := Cg(V/Uy), and
Ey = ENQ, (V). Thenp =2, By < Ey < E, Ey/Ey = Uy, By = \,(Ug), and |Ey| = [K|“5.
[FVEAU #0 then |V/Cy(E)| = K and E = Er. IFVENU =0 then [V/Cy(E)| = [K[*
and |E/Eq| = 2.

Here all the isomorphisms are ZN pr (U)-module isomorphisms.

Proof. Suppose first that f =0, so M = GL(V). Then clearly F =~ Homg(V/U,U) 2 U @k (V/U)*
and () holds.

Suppose next that f # 0 and U N V+ = 0. We apply with the notation introduced there.
Since [V, E] < U, gives Cy(E) = [V, E]* > Ut and so E < D. Thus E = DN M. So[3.3{([d),
@ and @ imply (b)), and @

Suppose that G = O(V) and U is not singular. Let d € D. By 3.3|[f) there exists w € V with
(2) h(u) = f(w,u)?> foralluec U.

and
(3) d € O(V) if and only if d € So(V) and fq4(%,T) = fq(w,T)? for all z € V

Recall from the proof of that the map ¢* : V. — U* with U¢* : u + f(v,u) is an isomorphism.
For § := w¢* we get from (3) that ker 6 = Uy = w' NU. Note that ¢* also induces an isomorphism
V/Kw — (ker6)* = (Up)*.

Consider the map 7 : E — V' defined by Zr(d) := f4(w,T). By (3) kert consists of all d € D
such that f; is a symplectic form on V with w € radfy. Also fq(w,z) = 0 iff f(w,[z,d]) = 0 and
(by (2)) iff h([z,d]) = 0. Thus d € ker 7 iff [V,d] < Uy. Hence kerT = Ey. As V /Kw = U we get

(5) Ey =kerT 2 /\Q(V/KE) = /\Q(Ug).

We claim that Im7 = X := {¢ € V" | ¢(w) € {0,1}}.
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If d € E then (3) applied with T = w gives fq(w,w) = f4(w,w)? and so f,(w,w)* € {0,1}.
Hence Im 7 < X;.

Conversely let ¢ € V" with #(w) = 1. Define g : V<V, (Z,7) — ¢(T)p(7). Then g is a symmetric
bilinear form on V, so by . Wlth dg = g\~ 1

fa,(0,T) = g(w,T) = ¢(T)p(W) = ¢(T)
and
fa,(@,T) = g(z,7) = 6(2)° = 9(w,T)* = f4,(W, 7).
Thus by (3), d € E and 7(dy) = ¢. Any ¢ € V' with ¢(w) = 0 can be written as a sum ¢; + ¢
where ¢; € V' and ¢;(w) = 1. It follow that 7(E) = X;.

Put Xo:={¢ € V" | ¢(w) = 0}. Then X, = (V/Kw)* = Upy. Also |X;/Xo| = 2 and so (EI) holds.
Thus we have proved all claims in the case VXN U = 0.

Suppose now that V- NU # 0. Then V is an orthogonal space and dim V=180Vt <U. Let
V be an orthogonal space of dlmensmn n+1with V<V and V+ = 0; in partlcular VinuU =o.
Put M = O(V) and E := C5(U) N Cy(V/U). Then @ holds for V, M and E.

Note that in V, V- = V. Smce VJ- < U, this gives E < C (V1) < N (V) and we obtain a
homomorphism  : E = E,ers eC 17(V). Note that ker 5 has order two, indeed the only non-trivial
element in ker 3 is the transvection associated to the l-space V. By Witt’s theorem, 3 is onto.
Also ker 3 is not contained in E N Q(V). Thus (EI) applied to M shows that E = Ey, and (EI) also
holds in this case. O

Lemma 3.5. Let U be a isotropic subspace of V, let Uy be the subspace of all singular elements of
U and put k = dimg Uy. Suppose that K is finite and k > 2. Put E := Cp(U) N Cp(V/U), and
P := 0" (N (U)), where p = charK.

(a) If M = GL(V) or GU(V) then E is a simple F,P-module.

(b) If M = Sp(V') and p is odd, then E is a simple F,P module.

(¢c) If M = O(V) and U is singular, then one of the following holds:
1. k>3 and E is a simple F, P-module.
2. k=2, P centralizes E and E is a simple F,Nyp (U)-module.

(d) Suppose M = Sp(V) and p =2 or M = O(V) and U is not singular. Then p = 2. Let Ey be
the sum of the simple Fo P-submodules of E. Then one of the following holds:

1. k>3, Ey is a simple FoP-module, and Ey = N\, Uj.

2. k=2, K| >2o0r VL £ U, Ey=Cg(P). |Eo| = |K| and Ny (U) acts simply on Ej.

3. k=2, Kl=2 M=Sp(V)orVt <U, and E is the direct sum of simple Fo P-modules of
order 2 and 4.

Proof. Let S be a Sylow p-subgroup of P and D be a simple F, P-submodule of E.

Assume first that M = GL(V) and put Sy := Cg(V/U)). Then Sy induces a Sylow p-subgroup
of GLg(U) on U. Hence [3.4] implies that C(Sy) = 2 ® (V/U)* for some 0 # x € U. Thus Cp(U)
acts simply on Cg(Sp) and so Cg(Sy) < D. Since Cp(V/U) acts simply on U, we conclude that
E = (Cg(Sy)°r(V/U)) < D. Thus E is a simple F, P-module.
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Assume next that f # 0 and UNV+ = 0. Put W := V/U' and note that dimW = dimU.
By Witt’s Theorem S induces a Sylow p-subgroup of GLg(U) on U and thus also on W. Thus
Cw(S) is 1-dimensional. By E is embedded into Fo _(W). Let 1 # = € Cp(S5), and let
fo €Fa_e(W), fy asin Then f, is invariant under S, so W/rad f, possesses a non-degenerate
(ar, —€) sesquilinear form invariant under a Sylow p-subgroup of GL(W/rad f,). If follows that either
W/rad f, is 1-dimensional or o = idg, —e = —1 and dim W/rad f, = 2.

Suppose that M = Sp(V) and p is odd or that M = GU(V), so dimg U = k. Then P induces
SLg(U) on U. Moreover dim W/rad f, = 1 and Np(S) acts simply on the subspace F f, of Fi, _.(W).
Also for any ¢ € Fo _(W) there exists a basis (z;)1<;<xr of W which is orthogonal with respect to
1, that is, ¢ (z;,2;) = 0 for ¢ # j. It follows that ¢ is a F-linear combination of conjugates of f,
under P and so D = E.

Suppose that M = O(V) and U is singular. Then P induces SLx(U) on U. ByB.4|d) E = A\, W
and f, is a symplectic form. Thus dim W/rad f, = 2. Let ¢» € A,(W). Then W has basis z;, y;, zs,
1<i<randl<s <t where ¥(x;,y;) = 1, ¥(y;, ;) = —1, and ¥(c,d) = 0 for any other pair of
basis elements.

Assume that k£ > 3. Then P acts transitively on the set of symplectic forms on W with radical
of codimension 2. Hence v is a sum of P-conjugates of f,. Thus D = E and holds in this case.
Assume that k = 2. Then P centralizes /\2 W. Also any scalar multiplication on W is induced by
an element of Ny (U) and so Ny (U) acts simply on A® W. Thus holds.

Suppose that M = O(V) and U is not singular. Put F = Cy;(V/Up). Note that F < Cp(Ug")
by, and so F' < E since U < Ug-. By the preceding case F' = A\, (U;) and either k = 3 and F
is a simple F, P-module or k = 2, [F, P] =1 and F' is a simple Ny (U)-module. Thus F' < Ey and
it suffices to show that Ey < F. Let w be as in B.3[f). The uniqueness of w show that w € Cy ().
Since dim W = dim U > dim Uy > 2 and dim W/radf, < 2 we have rad f, # 0. Hence Ciaqy, (S) # 0
and since Cy (59) is 1-dimensional, w € radf,. So shows that f, is symplectic and thus f, € F.
Since D is simple, D < F and Ey < F.

Suppose M = Sp(V) and p = 2. Then by E = S5(U*), and by W = U* so
So(U*) =2 So(W). Since p = 2, A\,(W) < S(W). Let F be the inverse image of A (W) in E.
Then F = A\,(W) = A,(U*). As seen in the case where U is singular either £ > 3 and Ej is a
simple F,P-module, or k = 2, [F,P] = 1 and Npy(U) acts simply on F. If |K| = 2 and k = 2,
then |U| = 4 and |E| = 8 and it is easy to see that holds. So suppose that |K| > 2 or k > 2.
We will show that D < F. For this we just need to show that there exists 1 # u € D such that
fu is a symplectic form. Fix a basis (v;) for W and for e € E let M. be the matrix (fc(v;,v;)).
Then M, is symmetric and e € F' if and only if all diagonal elements of M, are zero. Moreover,
dim W/rad f, = rankM,.. We may assume that f, is not symplectic and so there exists v € V with
fz(v,v) # 0. Since K is perfect we can choose v such that f,(v,v) = 1. Put s = dim W/radf,. Then
either s =1 and V = Kv + radf,, or s = 2, there exists w € W with f,(v,w) =0 and f,(w,w) =1
and V = Kv + Kw + radf;. So we can choose our basis such that fy(v;,v;) =1for1 <i=j<s
and fy(vi,v;) = 0 for all other 1, j.

Suppose s = 1. Note that
1 0 1 0 1 1 0 1
(0 0>+<0 0>+<1 1)_(1 0)

The three matrices on the left side of the equation all are symmetric of rank 1 and so conjugate
under SLy(KK) on it actions on Sy(IK?). The matrix on the right is symplectic. Thus (d¥) N F # 1
and so D < F.

Suppose that s = 2 and |K| > 2. Pick a,b € K\ {0,1} with a + b = 1. Note that
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(3G a) () -()

The three matrices on the left side of the equation are symmetric, not symplectic and have
determinant 1. So they are conjugate under SLy(K) on it actions on Sp(K?). The matrix on the
right is symplectic and so again D < F.

Suppose that s = 2, |[K| =2 and k > 3. We have

1 00 1 01 0 01
01 0J+Jj0 1 1] =(0 0 1
0 0 0 110 110

The two matrices on the left side of the equation are symmetric, not symplectic and have rank 2.
So they are conjugate under SL3(K) on it actions on So(K?3). The matrix on the right is symplectic
and so again D < F.

We have proved that D < F. So Ey = F' and or holds.

Assume finally that M = O(V), U is not singular and U N V+ # 0. Then p = 2 and M =
Sp(V/V1). Hence the case where M = Sp(V') applied to V/V+ and U/V+ shows that @ holds. O

4 Smith’s Lemma and Ronan-Smith’s Lemma

In this section we provide a few pieces from the theory of equicharacteristic representations of groups
of Lie-type. The material presented here essentially comes from [GLS?),Eection 2.8] except that we
are looking at representations over IF,, rather than its algebraic closure .

Lemma 4.1 (Steinberg’s Lemma). Let M be a genuine group of Lie-type defined over a finite
field of characteristic p. Let V' be a simple F,M-module, S € Syl,,(M), and B := Ny (S). Put K :=
Endp (V). Then Cy (S) is 1-dimensional over K, K is isomorphic to the subring of Endr, (Cy (S))
generated by the image of B, and Cy (S) is a simple F,B-module.

Proof. Choose an embedding ¢ : K — FT, and put V = IFT? ®g V. Then V is a simple EM—module.
Thus by [Stl Theorem 46] Cy+(S) is 1-dimensional over F,, and so Cy(S) is 1-dimensional over K.
Define A : B — K by v* = A(b)v for all b € B,v € Cy(S), and let E be the subfield of K generated
by A(B). Let p € Autg(F,). Then [St, Theorem 46] shows that V = V” as a KM-module. Thus
p centralizes K and so K = E. Since Cy(S) is 1-dimensional over K this implies that Cy (S5) is a
simple I, B-module. O

Let F be a finite field of characteristic p, M a finite group, V' a simple FAM-module and W a
simple F, M/-submodule. Recall that the field K := End; (W) is called the field of definition of the
FM-module W.

Theorem 4.2 (Smith’s Lemma). Let M be a genuine group of Lie-type defined over a finite
field of characteristic p. Let V' be a simple F,M-module, K := Endp(V), E a parabolic subgroup
of M, L := Op/(E) and P = Ny (L). Then L = OV (P), Op(E) = Op(P) = Oy(L), and P is a
Lie-parabolic subgroup of M. Moreover, Cy (O,(P)) is a simple F,P-module, an absolutely simple
KL-module, and an absolutely simple KE-module.

Proof. Let S € Syl,,(E) and B = Ny (S). Then P = BL = BE and so P is a Lie-parabolic subgroup
of M. Since B/S is a p’-group we conclude that E = OPI(P) and O,(E) = O,(L) = O,(P).
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Choose an embedding o : K — F,, and put V =TF, ®x V. Then V is a simple F,M-module. Put
U = Cy(0,(P)) and U = C+(0,(P)) =F, ®x U. By [Ti] U is a simple F, P-module.

Let Y be a simple F), L-submodule of U. Then Cy(S) # 0, and since by [Stl Theorem 46] Cy+(.5)
is 1-dimensional over FF,,, Cy+(S) < Y. Thus

U = (Cg(5)") = (Cg(5)7F) = (Cg(5)") <Y,

so U is simple EL. Thus, U is an absolutely simple KL-module, and since L < F, U is also an
absolutely simple KE-module.

Let X be a simple F,, P-submodule of U. Then again 0 # Cx (S) is B-invariant and since Cy (S)
is a simple F, B-module by Cy(S) < X. Since (Cy(S)F) is a K-submodule of U we conclude
that X =U. O

Theorem 4.3 (Ronan-Smith’s Lemma). Let M be a universal group of Lie-type defined over a
finite field of characteristic p, S a Sylow p-subgroup of M, Py, P,, ..., P, the minimal Lie-parabolic
subgroups of M containing S, and L; = OF (P;). Let V be the class of all tuples (K, Vi, Va,...V,)
such that

(i) K is a finite field of characteristic p.
(i) Fach V; is an absolutely simple KL;-module.
(i11)) K= (K, |1<1i<n), where K; is the field of definition of the KL;-module V;.

Define two elements (K, V1, Va,...Vy,) and (]Klffl, Va,... V) of V to be isomorphic if there exists
a field isomorphism o : K — K such that V; 2 V,? as an KL;-module for all 1 <i <n. Then the
map
V = (Endp (V), Cy (Op(Ly)), ... Cyv(0p(Lyp))) (V' a simple F, M-module)

induces a bijection between the isomorphism classes of simple F,M-modules and the isomorphism
classes of V.

Proof. Let V be a simple F, M-module and put K := Endps (V) and V; := Cy (O,(L;)). By Smith’s
Lemma [£:2] V; is an absolutely simple KL;-module. Let K; be the field of definition of the KL;-
module V;. Put B := Ny (5). ByK is generated by the image of B in Endg, (Cy (S)). Moreover,
each K; is generated by the image of BN L; in Cy(S). Since B = (BN L;,1 < i < n) we conclude
that K = (K; | 1 <i < n).

Clearly, if V is an F,M-module isomorphic to V, then the corresponding elements of V are
isomorphic.

Now let (K, V1, Va,...V,,) € V. Pick 0 # v; € Cy,(S) and define \;, n; and u; as in [St, Theorem
46] applied to the F,L;/O,(L;)-module V; = F, ®x V;. Since B/S = X ?:1(3 N L;)/S, there exists
a unique homomorphism A : B — IFT, with A |gnz,= Ai. Let V be the simple EM -module obtained
from [Stl Theorem 46]. Since Cy-(O,(V;)) is simple we conclude from [Stl Theorem 46] applied
to L; that Cy+(O0,(Vi)) = Vi. Let V be a simple [, M-submodule of V' and put E = End (V).
Then V = F, ® V as an FpyM-module. It is now easy to see that E = K, that V' is send to
(K, V1, Va,...V,) €V and that V is unique up to isomorphism with this property. O]

5 Generating Genuine Groups of Lie-type

Lemma 5.1. Let G be a simple genuine group of Lie Type over a field of characteristic p, PT a
Lie-parabolic subgroup of G and P~ an opposite Lie-parabolic. Then G = (O,(PT),0,(P7)).
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Proof. Put L = (O,(P*),0,(P7)). Since PT is opposite to P~, G = (P*,P~) and P¢ =
O,(P9)(Pt N P~). It follows that L < L(P* N P~) = (PT,P~) = G, and since G is simple,
G=1L. O

Lemma 5.2. Let G = Go(q), p = ¢°, P a Lie-parabolic subgroup of G with Z(OPI(P)) =1 and
A< P with |A| = ¢®. Then G = (A, A?) for some t € G.

Proof. Choose a root system ® for G such that P is a Lie-parabolic with respect to ® and let N/H
be the corresponding Weyl-group. Let R; ( Rs) be set root subgroups in G corresponding to the
long (short) roots in ®. Put L = (R;). Then L is a genuine group of Lie-type of type Ay and
PN L is a Lie-parabolic subgroup of L with LN A = O,(PNL). Since N/H = D1, we can choose
t € N\ H with [t, N] < H. Put K = (A, A"). Since (PN L)' is opposite to PN L in L, [5.1] implies
that L= (LNA,(LNA)"). Thus L < K . Since (NN L)H/H = Dg we have N = (LN H){t)H and
so N normalizes K. Since N acts transitive R and there exists R € Rs with R < A, (R;) < K.
Hence G = (R, Rs) < K and G = K. O

Lemma 5.3. Let G = SL,(K). Then G is generated by n root subgroups.

Proof. Let I ={1,...,n} and ® = {e; —e; | i,j € I,i # j} by the root system for G and for ¢ € ®
let Z,4 be the corresponding root subgroup. Then

(*) (Zei—e;s Zej—er) = Ze,—e,, for all distinct 4, 5, k in 1.

Put U:=(Ze,—e, ., |n#i€l})and L := (U, Ze,—c,). Let i,j € I with i < j.
We will first show by induction on j —i that Z, ., € U. If j —i = 1, this holds by definition of
U. So suppose j —i > 1 and by induction that Z, < U. Thus using (x),

iT€j—1

Ze,;—ej = [Zei—ej_l;Zej_l—ej] S U'

Next we will show by downwards induction on j — i, then Z., ., < L. If j —i =n — 1, then
j=mnand i =1 and so this holds by definition on L. So suppose j —i <n — 1.
Assume that ¢ > 1 and by induction that Z, < L. Then by (%)

jTei—1

Zﬁj—eq‘, - [Zej—ﬁi—17Z6i—l—ei] <U.

Assume that i = 1. Then j < n and by induction Z.,,, ., < U. So by (¥)
Zej—ei = [Zej—€j+17Z€j+1—67',] S U'
Thus L contains all Z4,¢ € ® and so L = M. O

Lemma 5.4. Let H be quasisimple with H/Z(H) = Alt(6) and |Z(H)||3. Let S € Syly(H), B =
Ng(S), and My and My be the two maximal subgroups of H containing B. Let K be a field of
characteristic 2, V be a faithful KH-module, U a simple KB-submodule of V and put U; := (UM:).
Suppose that

(i) V.= (U"),
(ii) U =Uy, and
(iii) dimg Us = 2 dimg U.
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Then the following hold:

(a) Suppose H = Alt(6), then V is a quotient of the natural even permutation module for H over
K. In particular, V/Cy (H) is a natural KAlt(6)-module for H, dimg Cy (H) < 1 and Cy(H) <
(U").

(b) Suppose H ~ 3-Alt(6). Let E be subring of Endgp (V') generated by the images of K and Z(H).
Then E is a field, E = K(E) for £ € E with |§] =3, dimg U = 1 and dimg V' = 3.

Proof. Since S < B and U is a simple Fo B-module, [U, S] = 0. As the Sylow 2-subgroups of Alt(6)
are self-normalizing, B = SZ(H), and so U is a simple KZ(H )-module.

Since V = (UM), Z(H) acts homogeneously on V and so the subring E of Endg (V) generated
by the images of K and Z(H) is a field. Moreover, E = K if Z(H) = 1 or K contains a non-trivial
third root of unity; in the other case E = K(¢) where £ € E\ K with €2 = 1. Also dimg U = 1 and
since dimg U = 2dimg U, dimg Uy = 2.

Let A be the natural FoAlt(6)-module for H with C4(M;) # 0. Then there exists an M-
equivariant bijection A* — UM a — U,. We now use the fact that Alt(6) = Sp4(2)’ and A is also a
natural Spy(2)’-module for H, so there exists an H-invariant non-degenerate symplectic form on A.

For B C A define Ug := (U, | b € B*) and Wg := Up., where B+ is the Fy-subspace of A
perpendicular to B with respect to the above mentioned symplectic form on A.

Let B be a singular 2-subspace of A. By Witt’s Theorem H acts transitively on the singular
2-subspaces of A and so Up is a conjugate of Us. In particular,

(%) Ug=Up,+U. and Uyy. < U, + U, for B = {(a,c).

Now let a € A*. Since dimp, A = 4, a* = (a) ® B, where B is a non-singular 2-subspace. Then
(a, by is singular for every b € B. Thus by (x)

(**) W, = EbEBjj U{a,b) =U, +Up.

Since |B¥| = 3, dimg Up < 3 and so dimg W, < 4.

Now let d € A\ a* and put B := a* Nd*. Then B is a non-singular 2-space, and by (#*) applied
toaand d, W, + Wy =U, +Upg + Uy. Thus dimg W, + W, < 5.

Put W := W, + W,;. We will show that V = W, that is U, < W for all b € Af. Certainly
U, <W if b € at Udt. So suppose b ¢ at and b ¢ d*.

Assume first that b # a + d. Then (b,d) # {(a,d) and so also b+ Nat # bt Nd+. Choose
eecbtnat \ d*; in particular U, < W,. Then e +b < b+ Nd*, so Uy, < Wy, and by (%)
UbSUe+Ue+b§Wa+Wd:W~ 5 B B

Assume next that b =a+d. Pick b€ A\ (a* Ud*) with b # b. Put ¢ = b+ b. By the previous
case Uy < W. Note that b € b* and ¢ € a*. Thus U, < W and by (x) Uy, < U; +U,. Hence U, < W.

We have shown that U, < W for all b € Af and so W = V', in particular dimg V' < 5.

Suppose now that H = Alt(6). Then Z(H) = 1 and E = K. Let V be the KH-module induced
from the trivial KM;-module Uy, and let U; be the image of U; in V. Put U, := <UlMQ>. Then
U, (/ESDU? (M) has dimension 2 over K. It follows that V := V/ (Cp, (M)™) fulfills the assumptions
of (ja]).

Choose a faithful action of H on I :={1,2,3,4,5,6} with

M; =Ny ({1,2}) and M, = Ny ({{{1,2},{3,4},{5,6}}.

Let }7 be the corresponding permutation module for H over K with K basis {b; | i € I}, and
let Vo := {D> ,crkibi | ki € K, > ,c; ki = 0} be the even permutation module. For J C I put
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by = ZjeJ bj. Then M; centralizes Kbsysg, (Kbévi%(i) = K(bsase, b1234) and Vp = K(bf..). Thus

f/[) and V are KH-quotients of V. Since dimK% — 5 and dimg V < 5 we conclude that V is
isomorphic to Vo. Thus V is isomorphic to a quotient of Vo. Observe that C% (H) = K{(b123456) and
biozass = bi2aa + biass + bi2as + baase € K(b31ks, b1ahs). So @ holds.

Suppose next that H ~ 3-Alt(6). Let R be a Sylow 3-subgroup of H. The R is extraspecial
of order 27. Let Y be any R-chief-factor of V. Then Z(H) = Z(R) acts non-trivially on ¥ and
so dimg Y = 3. Thus dimg V is a multiple of three and since dimg V' < 5, dimg V' = 3. So (]ED
holds. O
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6 Module Decompositions

Lemma 6.1. Let H be a finite group, V' an F,H-module, and K := Endg (V).
lists the dimension d := dimg(H'(H,V)) for various pairs (H,V).

The following table

H D \%4 Conditions d

Qs (pF),n >3 D Ve n=3,pF=2 1
” 7 ” n=23,p"=5 1

” ” ” n=4,e=—pF=3 2

" " " n=>5p°=3 1

" " " n=6e=+,pF=2 1

7 7 7 all others 0
Span(p®) p Vaat p=2,02n,p%) #(2,2) 1

7 7 7 all others 0
SL,(p*) P Vaat n=2p=2,k>1 1

" " " n=3,p=2k=1 1

7 ” 7 all others 0
SUn(pk)7n>3 p Vhat n:4’pk:2 1
7 ” 7 all others 0
Go(2F) 2 K6 - 1
Ca(ph)’ 2 K - 0
*Da(p") p K® — 0
Spins (p*) D (Half )-Spin n>7 0
3.Alt(6) 2 K3 — 0
Alt(n),n >5 2 Viat n even 1
” ” ” n odd 0
SLn(pk),n >95 p /\2(Vnat) - 0
SL,(p*),n >3 odd  Sym?(Viat) - 0
SL,(p*),n>3 D Vhat ® Vfakt n=3p*=4 2
7 7 7 all others 0
Es(p") P K> - 0
Mat,,22 <n <24 2 Todd n =24 1
” 7 ” n = 22,23 0
Mat,,,22 <n <24 2 Golay n =22 1
Mat,,,22 <n < 24 2 Golay n = 23,24 0
3.Mat22 2 Fg - 0
Mat11 3 Todd - 0
Matqq 3 Golay — 1
2.Mat12 3 Todd - 0
2.Mato 3 Golay — 0

Proof. Let T' € Syl (H) and W be an F, H-module with [W, H] <V and Cw (H) < V. Note that
by Gaschiitz’s Theorem, Cy (T) < V.

1°. Let C < H and A and B be normal p-subgroups of C with A < B, and let X,Y,Z be
C-submodules of W with X <Y < Z. Suppose that

(i) B centralizes Z/Y and Y/X.
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(i) A centralizes Z/X .
(i11) ®(B) < A.

Put U/X := Cyz/x(B). Then Z/U is isomorphic to a C-submodule of Homg, (B/A,Y/X). If in
addition C' centralizes Z /U, then Z/U embeds into Homp, c(B/A,Y/X).

For z € Z define
Z:BJ/A—Y/X with bA — [b, 2] + X.

Since B/A and Y/X are F,C-modules, for ¢ € C the element z¢ := ¢~ *Zc € Homg, (B/A,Y/X) is
defined, and
(bA)z° = bA(c3c) = (b° AZ)e= (b° 2]+ X)° = [b, 2] + X = bAz*.
Thus, the map
7 — Homg, (B/A,Y/X) with z — 3

is C-equivariant with kernel U. So the first statement holds. The second follows from the first.
Case 1. V is the dual of a natural module for H = Q¢ (q), n > 2 and q = p*.

This case is covered by [Po] and [JP].
Case 2. V is a natural module for H = Sp,,,(q).

See [JP].
Case 3. V is a natural module for H = SL,(q), ¢ = p*.

See [JP].
Case 4. V is a natural module for H = SU,(q), ¢ = p*, and n > 3.

If ¢ > 3 see [JP]. So assume that ¢ < 3. If H is solvable, then H = SU3(2), and Maschke’s
Theorem shows that the lemma holds. Thus, assume in addition that H # SUj3(2). Let V; be a
1-dimensional singular K-subspace of V., Vo = Vi <V, L = Cg(V}), and L* = Ng(V}).

Suppose for a contradiction that [V, O,(L)] £ Va. Since L centralizes W/V and V/V, we conclude
that O,(L) £ OP(L) and so n = 3 and ¢ = 3. In particular, L = O3(L) is extraspecial of exponent
3 and [W, ®(L)] < V. Hence, there exists g € L\ ®(L) with [W, g] € V2. Note that [v,g,g] # 0 for
every v € V'\ V4. On the other hand |g| = 3, so g acts cubically on W. This shows that [W, g] < V5,
which contradicts the choice of g. Thus
2. W,0,(L) < Vi,

Since [V2,0,(L)] < Vi we conclude that [IW,0,(L)"] < V1. Let W3 be maximal in W with
[W3,0,(L)] < Vi. In addition we use the following notation:

K* :=Cp-(L/Oy(L)), K := Cp-(Va/V1), X/Va := Cyyy, (K™).
Then K < K*, K*/O,(L) has order ¢> — 1 and K/O,(L) has order ¢ — 1. We will prove next:
3. [W,L] < Va.

By Maschke’s Theorem and (2°), W/Va = X/Va®V/Va. Since [X, L*] < XNV = V5 we conclude
that [IW, L] < Va.

4°.  PEither W =Wy +V orq=2,n=4 and |W/Wy + V| < 4.

29



Suppose that ¢ # 2. Then O,(L) = [O,(L), K] and so K = OP(K). Since [X, K] < V, and
[V2, K] < Vi we have [X, K] = [X,0P(K)] < V;. Thus X < Ws. Since W = X +V, holds in
this case.

So we may assume that ¢ = 2. Then n > 3 since we are assuming that H # SUj3(2). Put
Z :=0y(L). Then [Z,L] =1 and by {2°), [W,02(L), Z] < [V, Z] = 0. Since by W, L] < Va,
we conclude from that W/V, embeds into Homyp,(Oo(L)/Z, Va/V7).

Suppose that n > 4. Then L acts simply on O,(L)/Z and on V2/V; and thus

¢ = |V/Va| < [W/Va| < [Homp,(0,(L)/Z,V2/V1)| = ¢*.

We conclude that V = W, so holds in this case.

Suppose that n = 4. Since Vo < W5 and L* centralizes X/Va, L* centralizes X + W5/W5. So by
X + Wy /Wy embeds into Homp,«(O,(L)/Z,V2/V1). Since L* acts simply on O,(L)/Z and on
Vo /Vi we conclude as above that | X/ X NWs| = | X + Wo/Ws| < ¢® = 4. Now W/Va = X/Vo®V/Va
and Vo < Wy imply

[W/(X N Wa) + V| = |X + V/(X N Wa) + V] = |(X/Va)/(X 0 Wa/Va)| = [ X/X N Wa| =< 4,

SO also holds in this case.
5°. Put Wy .= CW2 (OP(L)) Then Wo =W1 + Vo and Wo +V =W + V.

Since [W2, O, (L)] < Vi < Cy(0,(L)) the Three Subgroups Lemma gives that [Ws, Z] = 0. So
by Wo /W1 embeds into Homg, (O,(L)/Z,V1). As an L-module Homg, (O,(L)/Z, V1) is a direct
sum of copies of the dual of O,(L)/Z. If n > 3 we conclude that W5 /W7 = [W5/Wi, L] and so by
Wy = W1+ Va. Thus holds in this case. So suppose n = 3. Let Y/Vi = Cyy, /v, (L*). Then
by Maschke’s Theorem, Wy =Y + V5.

Suppose that Y £ Wi. Then O,(L)/Z = V; as an L*-module. Since n = 3 we have ¢ > 2, and so

L* acts simply on Op,(L)/Z and on V. It follows that there exists 0 <1 < 2k with 222" = ' for
all 0 # A € F2x. Thus p?* —1 divides p! +p* —2. Hence either p! +p* —2 < 0 or p' +p* —2 > p?F —1.
Since p* = ¢ > 2 we have p! + p*¥ — 2 > 0. Moreover,

Ppf—2< 2l _g ok g o2k

a contradiction. Thus Y < Wy, and also holds for n = 3.
6°. Wi=Viand Wo+V =V.

Let g € H such that V; is not perpendicular to Vi in V, so Vi £ V4. Then by , (W, LNLI] <
Winvy <(WinV)nvy =vinVy =0. Thus W is centralizes by O,(L)(L N LY) = L and so
W1 < Cw(T) < V. Thus Wy = Vi, and implies .

From (4°) and we see that the lemma holds in (Case 4)).
Case 5. H = Ga(q), ¢g=1p"*, and eitherp=2 and V =K5 orp#2 and V =K".
See [JP].

Case 6. V is a natural module for H = 3Dy(q), q = p*.
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Fix a root system ®. With respect to @, let C be the Cartan subgroup, N/C the Weyl-group, and
L be the subgroup of H generated by the long root subgroups. Then L 2 SL3(g) and C normalizes
L.

Let K < H be the centralizer of a field automorphism of order 3 in H such that K = Ga(q),
each root subgroup with respect to ® intersects K in a root subgroup of K, and N = (N N K)C.
Then L < K and (K, C) contains all the root subgroups from ®. So (K,C) = H. In the case ¢ = 2,
the action of C' on the Lie-parabolic subgroups of H shows that also (0*(K),C) = H.

Note that V/Cy (K) is a 7-dimensional K-module (over K), which is a natural module for p odd
and a non-split central extension of a natural module for p = 2. By (Case 5), W = Cw (OP(K)) + V.
Moreover, the action of K on V shows that Cy (O (K)) = Cy (L(NNOP(K))). So also Cy (OP(K)) =
Cw(L(N N OP(K)). Note that C' acts fixed-point freely on Cy (L). Since C is a p’-group we get
Cw (L) =Cy (L) ® Cw(LC). Thus also W =V @& Cy (LC). Since N normalizes Cy (LC) we have

Cw (LC) = Cy (LN) < Cyy (L(N N OP(K))) < C (OP(K)).

Thus Cw (LC) < Cw ((C,0P(K))) =Cw(H) =0and so V =W.
Case 7. V is the (half)-spin-module for H = Spin’,(q),q = p*, n > 7.
See [JP].
Case 8. H = 3.A1t(6) and V = K3.
Since [V, Z(H)] # 0, Maschke’s Theorem implies that V = W.
Case 9. V is a natural module for H = Alt(n),n > 5, p = 2.
See [Asl page 74].
Case 10. V is the symmetric square of a natural module for H = SL,(q), ¢ = p*, p odd, n > 3.

Let Va := [V, T), L* := Ny (Va), L1 := Cp+(V/Va) and L := O (L*). Then L/O,(L) 2 SLy_1(q)
and |L;/L| = 2. Note that L = OP(L) unless n = 3 = ¢, in which case L1/0,(L1) = GL2(3). So in
any case Ly = OP(Ly) and thus

7. WL =Vo =W, L]

Let Vi := Cy(0p,(L)) = [Va,0,(L)]. Then V2/V; is a natural SL,_;(¢)-module for L/O,(L)
isomorphic to O,(L). Hence [Homp(O,(L), V2/Vi)| = q. Let Wy/Vi := Cyy/v, (Op(L)). Then by
W /W, embeds into Homy, (O, (L), V2/V41). Since |V/Va2| = g we conclude that
8°. W=Wy+V.

Let Wi /Vi := Cy, v, (L). By (Case 3) H'(L/O,(L), Va/V1) = 0 and so by
9°. Wo=Wi+Vaand W=W; +V.

Note that V4 is the symmetric square of a natural module for L/O,(L). In particular, V7 and
O, (L)) are non-isomorphic simple L/O,(L)-modules and so [Wi,0,(L)] = 1. Let Wy = Cw, (L).
Suppose that W7 # Wy @ V1. By induction on n and with we conclude that n = 3 and
g = 5. (Note here that for n = 3 V; is an orthogonal Q3(¢)-module for L/O,(L).)

Since T'/O5(L) is cyclic, the Jordan Form for T on V shows that T' does not act cubically on
Wi. Pick g € H with T = O5(L)(Os(L)Y N T). By (9°), Os(L) acts cubically on V and so T acts
cubically in W7, a contradiction.

Thus W7 =Wy + V1. As Wy < Cw (T') <V we have Wy < V| andby V=Ww.
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Case 11. V is the alternating square of a natural module for H = SL,(q), ¢ = p*, n > 5.
See [JP].

Case 12. H = Eg4(q), ¢ =pF, and V = K?7.
See [JP].

Case 13. H =~ SL,(¢%), ¢ = p*, and V is a simple F,H-submodule of N ®F,, N7, where N is
the natural F 2 H-module and o is the field automorphism of order 2 of F.

Let Ny := Cn(T), L* := Ng(Ny), and L := Cg(Ny), and let J < L* with L* = O,(L)J
and N = Ny @ [N,JNL]. Then JNL = SL,,_1(¢?) and J = GL,_1(¢?). Let V4 = Cy (L) and
Vo = [V,0,(L)]. Then V2/V; is a natural SL,_1(¢?)-module for L/O,(L) isomorphic to N/N; and
dual to Op(L). Also V/V3 is isomorphic to a simple F¢L/O,(L) submodule of N/Ny ®x_, N7/N7.
We first show:

10°. Suppose n =3 and q # 2. Then Z(J) acts fiz-point freely on V/Va, and O,(L) and Vo /V4
are not isomorphic as F,Z(J)-modules.

Let j € Z(J), then j acts as an F2-scalar A on N/Nj. It follows that j acts as A™2 on Ny, as A™3
on O,(L), as X972 on V,/V; and as A1 on V/Va. Since ¢ > 2 we conclude that Z(.J) is fixed-point
free on V/V,. Suppose that V2/Vi and O,(L) are isomorphic as F,Z(J)-modules. Then there exists

0 <1< 2k with A=37" = X972 for all 0 # A € F2 and so
p*r —1[3p' +pF —2.
Since p* = ¢ > 2, the right side is positive and so
PP 1<t 2 <3p ol ppb o< ap?hl _ g,
Thus p < 3. If p = 3 we have
<3l 3k 1 <2.3m 1,
where m = max{l + 1,k}. Hence m =1+ 1 = 2k. and so
3k —q3.3%tp3h—2=(3% —1)+3"— L.

Therefore 32 — 1|3¥ — 1, a contradiction.

Thus p = 2. If | = 0 we get 22 — 1 < 2¥ 4+ 1 and ¢ = 2¥ = 2, contradiction. Hence [ > 0 and
since 22¢ — 1 is odd,
2%k —1]3- 27 2R -1

So
22k <3. 2l71 + 2]671 — 2l + 2l71 4 2]671.

It follows that £k =1 =1 and ¢ = 2, a contradiction.
11°. Suppose n =3 and V£ W. Then ¢ =2 and |W/V| < 4.
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Since Op,(L) and V/V;, are non-isomorphic simple L-modules, [W,0,(L)] < V2. Let Wy /Vs =
Cw/v,(L). If ¢ # 2, then by Z(J) acts fixed-point-freely on V/V,, and if ¢ = 2, then by
, H'(L/O,(L),V/Va) = 0. So in any case W = W + V.

Let W1/Vi = Cwy, v, (Op(L)). Then Wy/W; embeds into Homp-(O,(L), V2/V1). By this
group is trivial for ¢ # 2. For ¢ = 2 it has order 4. So Wy = W if ¢ # 2 and |Wa/W1| < 4 if ¢ = 2.
It remains to show that W < V.

Let Wy = Cw, (Op(L)). Then W1 /Wy embeds into Homp, (O, (L), V1). The latter group is as an
L-module isomorphic to a direct sum of copies of the dual of O, (L). Hence [W; /Wy, L] = W1/W, and
so W1 = Wy+Va. Since WyNV = V; and L = OP(L) we have [Wy, L] = 0 and so Wy < Cy(T) < V.
Thus also W7 <V, and is proved.

12°. Suppose n. = 3 and ¢ = 2. Then |H'(H,V)| = 4, and GL3(4) acts fized-point freely on
H'(H,V).

By (11°) |H~1(H7 V)| < 4. Let I be the simple 11-dimensional Golay code-module for M = Matay
over Fy. Let H = Maty, = PSL3(4). Then [I, H] is simple of Fy-dimension 9 and C;(H) = 0.
Moreover, Ny (H) = PGL3(4) acts fixed-point freely on I/[I, H], so (12°) holds.

13°. Suppose n > 3. Then V =W.

Note that W/V5 and Op,(L*/Op(L)) satisfy for n—1, and note further that L* /O, (L) =
GL,_1(¢%). Moreover, for n — 1 = 3 the case described in (12°) does not occur since [W, L*] = V
Hence induction shows that H'(L*/O,(L),V/Va) = 0. By (Case 3), also H*(L*/O,(L),V/Va) =0
Since n > 3, V/V; and V2/V; are simple L*-modules not isomorphic to O, (L). Also since L = OP(L)
HY(L,V;) =0. Thus HY(L*,V) =0 and V = W.

By (11°), (12°) and (|13°)) the Lemma holds in case (Case 13)).

Case 14. p =2, and V is the simple Todd- or Golay code-module for H = Mat,,, n = 22,23, or
24.

Let P := Mat,_1 < H. Suppose first that H = Matoy and V is the Todd-module. Put
V1 :=Cy(T) and L := Cy (V7). Then L/Oo(L) = Sym(5), and Oz(L) is a natural I'SLy(4)-module
for L. Put Vo := [V,02(L)]. Then Oz(L) centralizes V5/V1, and V2/V; is an non-split extension
of a 1-dimensional module by a natural I'SLy(4)-module for L/O2(L). Moreover, V/V; is a natu-
ral Oy (2)-module for L. Since V/V; is not isomorphic to Oz(L) as an L-module, [W,05(L)] <
Vo. Put Wa/Va := Cyyy,(L). By W = Wy 4+ V. Since V5/V; is indecomposable,
Homyp, (O2(L),V2/V1) = 0 and so [Wa,02(L)] < V5. Let Wy = Cy,(O2(L)). Then Wo/W; em-
beds into Homp, (O2(L), V1 ). The latter is isomorphic to the dual of O(L) and so Wy = Wy + Va.
Note that [W,0%(L)] = 1 and W; NV has order 4 with L/O*(L) acting non-trivial on W7 N V. Tt
follows that Wy = Cy, (L) + (W1 NV) and so W1 < Cw(T) +V < V. Hence also W, < V and
W=V.

Suppose next that H = Matgy and V is the Golay code -module. Then [[V,P]| = 2° and
Cy(P) =0, so V is a non-split extension for P as in case . Thus (Case 13)) shows that
|W/V+ CW(P)| < 2. Let LO = Mat20 < Pand L = NH(LQ) ~ 24 Sym(5) Then Cv(Lo) =0 and
so Cw(P) < Cw(Lg) < Cw(L). Since L contains a Sylow 2-subgroup of H, Cy (L) < V and so
Cw(P)=0and |W/V| <2

Suppose next that H = Matez. Then P contains a Sylow 2-subgroup of H and so Cy (P) < V.
If V is the Todd-module, then V' = [V, P] and V/Cy (P) is the Todd-module for P = Matss. Since
P = 0*(P), the Matyy-case implies that W = Cy(P)+V = V.

)
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If V is the Golay code-module, then Cy (P) = 0 and [V, P] is the 10 dimensional Golay code
module for P. Thus by the Matos-case, W = Cy (L) +V = V.

Suppose that H = Matgy. Then V is simple as a P-module, so by the Matys-case, W =
Cw(P)+ V. Let w € Cy(P). Then (wf) is a quotient of the natural permutation module of
Matgg. If V' is the Golay code-module, we conclude that [w, H] =0 and so V = W. If V is the Todd
module and w # 0, we conclude that (wf) = (w) 4+ V is uniquely determined as an Fy H-module.
Since |K| = 2 this implies |W/V] < 2.

Case 15. V= IFZ and H = 3.Matos.
Since Z(H) # 1, we have V = W.
Case 16. p =3,V is the simple Todd- or Golay code-module for H = Maty1 or 2.Matqs.

If H = 2.Matys, we have W = Cw (Z(H)) @V and so V = W. Suppose H = Maty;.

Assume first that V is the Golay code-module. Let Ly = Matyp and L = Ly = Ly(9). Then
[V, L] is the natural Q2 (3)-module for L and Cy (L) = 0. Thus by 7 [W/V + Cw (L)| < 3.
Since L contains a Sylow 3-subgroup of H, Cy (L) <V and so [W/V| < 3.

Suppose next that V is the Todd-module. Let L = Ny (T). Then L/T is semidihedral of order
16. Let K € Syly,(L) and put Vo = [V,T] and Vi = Cy(T). Then |V/Vi| = 3 with D := Cg(V/V1)
dihedral of order 8. Moreover, Vo/V; has order 9 with K acting faithfully on V2/V;, and V; has
order 9 with |Cx(V1)| = 2. Since T' = [T, D], we have [W,T] < Va. Let Wa/Vi = Cyyv, (T).
Then W/W5 embeds into Homp (T, V2/V4). Since D acts simply on T and V,/V;, we conclude that
Homp (T, V2/V1) has order 3. Thus W = W5 + V. Let W1/Vi = Cy, v, (L). By Mascke’s Theorem,
Wy = Wiy 4+ Va. Since Vi is not isomorphic to T as an L-module, [W7,T] = 0 and so Wi <V and
V=w. O

Definition 6.2. Let H be a finite group, V an Fp,H-module and Q) a p-subgroup of H. Then V is
called a Q'-module for H if Q is not normal in H and

@) Q@ ANy (A) for all1 # A < Cy(Q).

Lemma 6.3. Let M = SL,(q), ¢ a power of p, n > 2, and let V' be an F,M-module. Suppose that
there exists an M -submodule I in V' such that the following hold:

(i) W :=V/I is a natural SL,(q)-module for M.
(ii) I = AZW as an F,M-module, where K := Endp (W).
(i) If H is a K-hyperplane in W and A := Cp(H) N Cp(W/H), then Cy(A) £ 1.

Then there exists v € V \ W with Cp(z) = Cpr(x + I/I). Moreover, V is not a Q!-module for
any p-subgroup Q of M.
Proof. Put U := Cy(A), L = Ny(H) N Cpy(W/H) and T € Syl,(L). Note T' € Syl,,(M). We will
first show:
1°.  Cy(T)£1.

The proof is by induction on n. If n = 2 then A = T and follows from . Suppose that
n > 3. Note that L/A = SL,,_1(¢q), H 2 U/U N[ is a natural module for L/A and UNIT = AZH.
Let g € M with H9 # H and put Ry := LN A9 and R := A(L N A9).
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Assume that n = 3. Then T'= R and I & W*. In particular
[UNWUI+1I),R =[I,R)NINU =0.

Since |[U N (U9 +I)| = ¢* while |U N I| = ¢, we conclude that Cy(R) = Cy(T) £ I, and (1°)) holds.

Suppose now that n > 3. Then C;(R) = Cynr(Ro) and so C;(R) has order q(n;z). On the
other hand, Cy (A) has index ¢" in V. Hence Cy ({4, A9)) has index at most ¢?" in V. Thus also
|V/Cyv(R)| < ¢®". Note that

|V/C[(R)| = qn+(v2b>_(”;2) = q?’”_?’ > q2”7

where the last inequality holds since n > 3.

Thus Cy (R) £ Cr(R) and since Cy (R) < U, CU(R UNI. Thus (U,UNI,L/A,HNHY9, R/A)
in place of (V,I, M, H, A) fulfills the assumptions ({i)-(iii) and so by induction Cy(T/A) £ U NI.
Thus holds.

Put Y := I + Cy(T) and Fy := Cp(Y/I). Then dimgY/I = 1, so Fy = Cpy(x + I/I) for
x € Cy(T)\I. Since T' € Syl,,(Fy), Gaschiitz’ Theorem implies that Y = @ X for some F-invariant
subspace X of Y. Then [X, F1] < XNI =0. Let 0 # 2 € X. Then F} < Cp, (z) < Cpp(z+1/I) = Fy,
and so the first statement in [6.3]is proved.

Suppose V is a Ql-module. If n = 2, then [I, M] = 0 and so @ < Cp(I) = M, a contradiction.
Thus n > 3. Without loss @ < T. Thus X < Cy(Q) and so by Q! we get that Q < Fy. Similar
Q < Fy := Ny (Cy(T)). Since Fy is the normalizer of a 2-dimensional subspace of W, we have
M = (Fy, F5) and so @ < M, a contradiction to the definition of a @!-module. O

Lemma 6.4. Let M = SLy(F), F a field, and let Z be a maximal unipotent subgroup of M and
B := Ny (Z). Suppose that X is an ZM-module with [X,Z,Z] = 0 and Y is a B-submodule of
Cx(2) with X = (YM). Then for every h € M \ B

X=Y+Y"4+Cx(M)=Y +Y"+[Y" Z] and Cx(Z) =Y +[Y",Z] =Y + Cx(M);
in particular Cx (M) <Y +[Y" Z].

Proof. Note that Z acts transitively on ZM \ {Z} and so ZM = {Z} U Z"? and YM = {Y}UY"Z
for all h € M \ B. Thus

(%) X=UM"M =y 4" =y +Y"+[Yh 7).

By the quadratic action of Z, [Y", Z] < Cx(Z). By assumption also Y < Cx(Z) and so Cx(Z) =
Y +[Y" Z]+Cyn(Z). Note that M = (ZM) = (Z, Z"%) = (Z, Z") and so Cyn(Z) < Cx((Z",Z)) <
Cx(M). Hence Cyn(Z) < Cyn(M) <Y andso Cx(Z2) =Y + [Y", Z].

Now by (¥) X = Y + Cx(Z) and thus Cx(Z") = Y" + Cx(Z) N Cx(Z") = Y" + Cx(M).
Hence Cx(Z) =Y +Cx(M) and X =Y" +Y + Cx(M).

O

Notation 6.5. Let
CL(p) := {SLwn(q), SUn(q), Spa,(q) (¢ 0dd), Q5,(q), O;,(q) (¢ even)},

where q is a power of p. Let H € CL(p) and A be the corresponding natural F,H-module. Put
A:= A/C;(H). Note that A is a simple F,,H-module. Also C;(H) = 0 unless H = Qa,,41(2%)), in
which case C 5(H) is 1-dimensional, H = Sp,,,(2%), and A is the natural Sp,,, (2%)-module for H.

Furthermore set K := OP(H) and K := Endy(A). Then A is also a KH-module, and A is
equipped with a natural sesquilinear form f if A is not the natural SL,,(q)-module.
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The groups Sp,,, (2¥) have been excluded from the list in since it will be more convenient for
us to treat Sp,, (2%) as Qa1 1(2%).

Lemma 6.6. Let H € CL(p), V be a faithful FpH-module with H-submodules Ag < B <V, and let
D < H. Suppose that

(i) [B,K] < Ag, A= Ay and V/B = A or A*,
(i) D is a non-trivial quadratic best offender on V.

Then there exists a K D-submodule C in V' such that Ag f CandV =B+ C.

Proof. Let D* be any non-trivial quadratic best offender on V' such that K D* < H. Then we may
assume by induction on H that V = B + C for a K D*-submodule C with Ay £ C. Since V/B is a
perfect K-module and K = OP(K), also V = B + [C, K] and [C, K| = [C, K, K|. Hence [2.6] shows
that C' is D-invariant, and we are done. Thus, we may assume

1°. H = KD* for every non-trivial quadratic best offender D* on V'; in particular H = KD.

Note that by [1.2] D is a best offender on [V, K] and that D is a quadratic offender on V/Cy (K),
so D contains a best offender on V/Cy (K). Hence we may assume that

2°.  V =[V,K] and Cy(K) = 0.

We will now compare the action of H on V with that on the natural module A. According to
we can choose D such that U := [A, D] is minimal with respect to . Observe that U is a
K-subspace. Put P := Ny (U) and E = Cy(U) N Cy(A/U). Note that D acts quadratically on A
and so also on A. By , D acts quadratically on A and U is isotropic. Thus D < E. Since E
acts quadratically on A, E is an elementary abelian p-group.

Pick D; < E such that first |D;||Cy (D7) is maximal among all subgroups of F and then that
|Dq| is maximal with that property. Since D < E, |D1]|Cy(D1)| > |D||Cy(D)| > |V| and so D is
a non-trivial best offender on V. By [MS1) 2.6] D; is uniquely determined in E and so D; < P. By
the Timmesfeld Replacement Theorem, Dy := Cp, ([V, D4]) is a non-trivial quadratic best offender
on V. Since [A, Dy] < [A, E] < U, the minimal choice of U and (1°) imply [A, Dy] = U, and so we
may assume

3°. DJ4P.

By our hypothesis
|D| = [A/Ca(D)||V/B/Cy/p(D)|.

Since A is self-dual if A is not the natural SL,(¢)-module, we get:

4°. |D| > |A/Ca(D)||A*/Ca~(D)| and A is the natural SL,,(q)-module, or |D| > |A/C(D)|?.
Let CL be the type of H, so CL € {SL, Sp,SU,Q¢, 0°} and H = CL,(K).

Case 1. Suppose CL = SL, SU or Sp.
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Recall that in these cases A = A and U = [A,D]. If dimg U = 1 we get |A/C4(D)| > |D,
a contradiction to . Thus dimg U > 2. By and since by assumption p is odd in the
symplectic case, P acts simply on F and so D = FE. Let U; be a 1-dimensional subspace of U.
If H = SL,(K) let U,_1 be a hyperplane of A containing U, Z := Cyx(A/U;) N Cy(Up—1) and
L:=Cyx(U)NCx(U/U,_1). In the other cases let U,,_; := Uj", Z := Cy(U{) and L := Cy(Uy).
In either case put W := U,,_;/U;. Then Z is a transvection group, Z < Z(L) N D, O,(L) = Cr(W)
and L/O,(L) induces CL,,_2(W) on W. Moreover, if CL = SL, O,(L)/Z is as an L/O,(L)-module
isomorphic to the direct sum of W and its dual. And if CL = Sp or SU, then O,(L)/Z = W as an
L-module. Let S € Syl,(L) and note that S € Syl,(H).

5°. [V,Z,L]=0.

Note that D = E induces Cqy, , i57)(U) N Coy, i) (W/U) on W. Since dimU > 2 we have
U # 0. Tt follows that either L = O,(L){D¥) or D < O,(L), CL =SL and U = U,,_1.

In the first case O,(L)/Z is a perfect L-module and Z < ®(0,(L)), so L = (D%). Since D is
quadratic on V and Z < D we have [V, Z, D] = 0, and since Z < Z(L), this implies [V, Z, (DL)] = 0
and so [V, Z, L] = 0.

Now suppose CL = SL and U = U,,_1, so |D| = ¢"~!. Since dimU > 2,
then |V/B/Cy,p(D)| = ¢"~* = |D|, a contradiction to (4°). Thus V/B
contradiction that Ay # B. Then by n =3 and ¢ = 2. So |D| =4. From

>3. IfV/Bx A",
A. Suppose for a

R s

V/B/Cy,;5(D)||B/Cp(D)| < |V/Cy (D)| < |D| = 4

we conclude that |B/Cp(D)| = 2. Since H (= GL3(2)) is generated by three conjugates of D, this
gives |B/Cp(H)| < 23 = |Ag|. Hence |Ag| < |B| implies Cp(H) # 0, which contradicts .

Hence Ag = B and thus |V/Cy(D)| = ¢. In particular |[V,z]| =¢? for 1 #2 € Z. Let h € H
with Z" < L, but Z" £ D. Note that Cy (D)+B/B = Cy,5(Z) and |[Ca(D), 2"]| = q. Since B and
V/B are isomorphic to A we conclude that |[Cy (D), z"]| = ¢%. Since |[V,z]| = ¢* we get [V, 2"] =
[Cy (D), z"] < Cv(D), so (DE") < Cy([V, Z"). In Cx([A, Z")) = Cu(UF) ~ ¢"*SL,_1(q) we see
that (DX") = Cy(UM). Since LM < Cy(UD), also L" < (DY") < Cy([V, Z"]), and so [V, Z", L"] = 0
and again holds.

Put L := Cy([V/B,Z]). Observe that [V/B,Z] is a 1-dimensional K-subspace of V/B and
S < L < L. Thus by , [V,Z] + B = Cy(S) + B = Y* @ B for some Y* < Cy(S). By
Gaschiitz’ Theorem there also exists a L-invariant complement Y to B in B + Cy (9), in particular
[Y,L] <YNB=0.Let W:= (Y and h € H.

6°. [Yh Z]1<Y.

If Z < L", then [Y", Z] = 0. So assume that Z £ L". Note that there exists h* € H with
Yh = Yh" and T := (Z"", Z) = SLy(q). Without loss h = h*. Put X := (YT). Then [6.4] and
give

Y+ Cx(T) =Y +[Y" Z] < Cy(L).

Note that T normalizes neither Uy nor U, _1, so T and L are not contained in a proper parabolic
subgroup. Hence H = (L,T) and Cy(H) = 0. Since Cx(T) < Cy (L), this gives Cx(T) = 0, and
we conclude that Y = [Y", Z].

From we get [W,Z] =Y. In particular A £ W, and the lemma holds in (Case 1.
Case 2. Suppose CL = Q¢ or O°.
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7e. If0# AL < U, then dimU >4 and n > 7. In the other cases dimU > 5 and n > 10.

Put k := dim U. Suppose ﬁrst that 0 # AL < U. By. ID| < |E| < ¢"“7 and |[A/CA(D)[? =
|AJUL 2 > ¢2¢+=D . Thus by (4 2 >2andso k> 4.

Suppose next that AX = 0 or AL £ U. By . |D| < |E| < 2q
|A/C (D )|2 |AJUL? > ¢%*. Thus by (o) 251 11> 2k, k(k —5) > —2 and k > 5.

k(k—1)
gz ! and

By (7°| , U contains a singular 2-space Us. Put
Z = CH(A/UQ), L = CH/(UQ)a and W = UQJ_/UQ

Then |Z| = ¢, Z is a long root subgroup of H in Z(L), and L induces Q¢_,(W) on W. Moreover,
CL(W) = O,(L), and O,(L)/Z is as an L-module the direct sum of two copies of W. Let Uy be
the singular radical of U and Ey := C 1(A/Uy). Then Z < E, and by 3 . Ey < D. In particular,
Z < D. If E+# Ey, we have [A Ey) =Uy # U and so Eyg < D.

8°. L= (D%).

From and we see that D acts non-trivially on W. Suppose n > 9. Then n —4 > 5 and
so L/O,(L) is simple and W = [W, L]. Tt follows that L = (DL)O,(L) and then L = (DT).

So suppose n < 9. Then implies that n = 7,0 # A+ < U, dimU = 4. By @) E/Ey = Uy,
and since Eo < D < P, [3.5]implies that D = E. Thus Cg(Us') < D. Also L/O,(L) 2 SLy(q) and so
L = (D%)O,(L). Since O,(L)/Cy(U™) is a direct sum of two copies of the natural SLz(g)-module
W/WL we again get that L = (DF).

9. [V,Z,L]=0.
This follows immediately from [V, Z, D] = 0 and .

Note that we can can embed [[1, Z] in a non-degenerate subspace Uy of A of dimension 4. Put
K = 0" (Ng(Ug) N Cr (UL)), L := Op/(NH( 7)), and let U; be a 1-subspace of Us.

Then Z < K and K = Opl(QZ( )) = SLa(q) * SLa(q). Moreover T* := (ZEK) = Sl,(q).
Since dim A > 7, Ny (Uys) induces OF (Us) on Uy and there exists h € Ng(Uy) N Ny (Uy) with
T :=T*" % T*. Then

K =TT*, T =SLy(q),L =TL, and [T, T*] = 1

Note that Uy = UsNUY = [A, Z, Z"] # 0. Put P := N (Uy), so P is the stabilizer of a 1-dimensional
singular subspace of A.

Since Uy # 0 also V; := [V, Z, Z"] # 0. Note that Vi is centralizes by LZ" and thus by a Sylow
p-subgroup of P. Again Gaschiitz’ Theorem gives a P-invariant complement Y to B in B + V.

Let s € T* \ N7« (Z). Then U; + U5 is a singular 2-space normalized by T* and U % Us-. Since
O, (L) is transitive on the singular 1-spaces of Us- 4+ U; not contained in Us-, and T is transitive
on Z/Uj‘, we get that T'L is transitive on the conjugates of P that do not contain Z. As in the

previous case, this gives
[(YH>ﬂ Z} = [<YSTL>7Z] = <[Ys7 Z]T>'

Observe that (L,T*) = H. Hence, implies (YT)y =Y +Y*. Since U} = U; we have Y" =Y.
Hence also (YT) =Y + Y*" since Th = T*, and so [(YH), Z] = Y + Y*". Then as in the previous
case [Ag, Z] £ [(YH), Z], s0 A £ (YH), and the lemma also follows in (Case 2). O
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7 Quadratic Modules

In this section M is a finite group, and V' is a finite dimensional I, A/-module.

Lemma 7.1. Let V be faithful. Suppose that p is odd, A < M with [V, A, A] =0, and R is an A-
invariant p’-subgroup of M satisfying R = [R, A] # 1. Then p =3 and R is a non-abelian 2-group.
If in addition |®(R)| = 2 and |A| = 3, then RA = SLy(3).

Proof. Observe that by coprime action for every prime divisor r of R there exists an A-invariant
Sylow r-subgroup S, in R. If [S,, A] # 1 then [KS| 9.1.3] implies that p = 3, »r = 2 and S, is not
abelian. It follows that R = Cg(A)S; and so R = [R, A] = [S2, A] < Ss.

Suppose now that |®(R)| = 2 and |A| = 3. Then A acts fixed-point freely on R := R/®(R).
Since A centralizes Z(R), this gives Z(R) = ®(R) and R is an extraspecial 2-group. Assume that
there exists an involution t € R\ ®(R). Then F := (t*) has order at most 8. Since |[F| =4 and F
contains an involution, we conclude that F' is abelian. But, as we have already seen, [F, A] has to
be non-abelian.

This contradiction shows that there are no involutions in R\ ®(R), and so R = Qs and RA =
SLa(3). O

Lemma 7.2. Let p = 2 and V be a faithful indecomposable M-module with Cy (M) = 0 and
[V,M] = V. Suppose that M = Alt(n), n > 5, and that A = ((12)(34), (13)(24)) acts quadratically
on V. Then {(123)) acts fized-point freely on V.. Moreover, one of the following holds:

1. V is the (simple) spin module for M.

2. 4 divides n and there exists an FoM-submodule in W such that W and V/W spin modules for
M and V/W = W" where h € Sym(n) \ Alt(n).

Proof. Let E = (123) and B = AE = Alt(4) and for 5 < i < nlet D; = Cp({1,2,3,4,i}). Then

(*) M = <D5,D6,...,Dn>.

Suppose there exists 0 # w € V with [w, B] = 0. Then (w”?) is a quotient of the natural
permutation module for D; = Alt(5) over Fy, and the quadratic action of A forces [w, D;] = 0. So
by (*) [w, M] = 0, which contradicts Cy (M) = 0.

Thus Cy(B) = 0. Since B/A = E is a 2'-group,

Cyv(4) = Cv(B) @ [Cv(A), B] = [Cv(A), B] = [Cv (A), E],

and so F acts fixed-point freely on Cy (A). This result applied to the dual of V' shows that E acts
fixed-point freely on V/[V, A]. Since A is quadratic, [V, A] < Cy (A4) and so E acts fixed-point freely
on V. Now [Mel, Theorem 2] shows that (I]) or (2 holds. O

Corollary 7.3. Let p = 2 and M = Alt(6). Suppose that all fours groups in M act quadratically
on V. Then [V, M] = 0.

Proof. Since M = 02(M ) we may assume for a contradiction that V' is a non-trivial simple module.
By (123) acts fix-point freely on V. Since there exists an automorphism of Alt(6) sending
(123) to (123)(456), the same results shows that (123)(456) acts fixpoint freely. So all non-trivial
elements of order three in the non-cyclic abelian 3-group ((123), (456)) act fixed-point freely on V|
a contradiction to coprime action. O
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Lemma 7.4. Let p =2 and V be faithful and simple, and let A < M with [V, A, A] =0 and |A| > 2.
Put L := ¥ (M). Suppose that M = (AM), L is quasisimple, Z(L) # 1, and L/Z(L) = Alt(n),
n > 5. Then one of the following holds:

1. M ~ 3.Alt(6) and |V| = 25.
2. M ~ 3.A1t(7), |V| =22, and AZ(L)/Z(L) is conjugate to {(12)(34), (13)(24)).

Proof. Since V is a faithful simple M-module, Oz(M) = O2(L) = 1. From [G1] we get that n = 6 or
7and |Z(L)| = 3. Put Z := Z(L) and let F be the subring of End(V') generated by the image of Z in
End(V). Then F is a field of order four and M acts semilinear on the F-module V. Now [V, A, A] =0
and |A| > 2 imply that A acts F-linearly on V, see for example [MS3, 2.15]. Thus [Z,A] = 1 and
Z = 7Z(M). Hence M = L or M/Z = Matyo. But M = (AM) is generated by involutions while
Matyq is not, so M = L. Since A is elementary abelian and |A| > 2 we have |A] = 4.

Note that there are two conjugacy classes of fours groups in L. In any case we can choose a
series of subgroups A < B < D < H < L with B = Alt(4), D = Alt(5) and H ~ 3.Alt(6). Let
E € Syls(B). Then E = C3 and B = AE. By Gaschiitz’ Theorem, the Sylow 3-subgroups of L are
not abelian and so the subgroups ' = Fi, Ea, E3 of order three in EZ other than Z are conjugate.
Since Z acts fixed-point freely on V' we have V = [V, Z] = @5:1 Cy(E;) and so |[V| = |Cy(E)]?. In
particular, Cy (E) # 0.

We claim that Cy(B) # 0 or [V,B] # V. If Cy(E) < Cy(A4), then 0 # Cy(E) < Cy(B).
So suppose Cy (E) £ Cy(A) and put V = V/Cy(A). Then 0 # Cy(E) < Cy(E). By coprime
actions, V = Cy+(E) ® [V, E] and so V # [V, E]. Since A centralizes V, this give V' # [V, B] and so
V # [V, B, proving the claim. Note further that by A is also quadratic on the dual module
V*. So replacing V by its dual, if necessary, we may assume that Cy (B) # 0.

Let W be 1-dimensional F-subspace of Cy/(B). Then (W?P) is a quotient of the natural permu-
tation module for D = Alt(5) over F. The quadratic action of A forces [W, D] = 0. Put U = (W#).
Then U = V/X, where V is the FH-module induced from the FZD-module W and X is a FH-
submodule of V. Note that dimp V = 6. Since A has a regular orbit on H/ZD, A does not act
quadratically on V. Thus U # V. Since H acts faithfully on V /X and on X and since H has no
faithful module of dimension less than 3, we conclude that dimg 1% / X =3 = dimp X.

If n =6, then H =L,V =U and holds. So suppose that n = 7. Choose a transitive action
of Lon I :={l,...,7}. Suppose first that A has an orbit J on I with |J| = 2. Put K := Cr(J)'.
Then K = Alt(5) and AK = Sym(5). Note that K is contained in a conjugate of H and that
all composition factors for FH on V are 3-dimensional. It follows that all non-trivial composition
factor for FK on V are 2-dimensional. Since A N K # 1, the quadratic action of A in V shows
that also the non-trivial composition factors for FK A on V' are 2-dimensional, a contradiction since
KAl > |K| = SLa(4)].

Thus A has no orbits of length 2 and so A has three fixed-points on I. Then D has two fixed-
points, say i and j. Put D* := 0% (NL({4,5}). Then D* = Sym(5) and D < D*. Recall from above
that W is a 1-dimensional subspace of Cy (D), so Cy (D) # 0 and thus also Cy (D*) # 0. Hence we
may and do choose W such that [W,D*] = 0. For k #1 € I and g € G with {k,I} = {i,5}9 put
Wiy = Wi, = W9, Since Np({i,j}) = ZD* < N (W), Wy, is well-defined. Let ¢ be the fixed-point
of H. Since (W) is 3-dimensional and H acts triple transitively on {W;; | 7 € I'\ i} we conclude
that for any distinct a,b,c,d € I, (WH) = Wy, + Wye + Weq. Since V = (WE) is now easy to see
that V.= Wy | 1 <k <1 <4). Thus V is at most 6-dimensional. By the action of H on V, dimp V/
is a multiple of 3, so dimg V = 3 or 6. Since ‘lkf’t(é))‘l = 8 and L3(4) 2 Alt(8), Alt(7) is not involved
in Lg(4). We conclude that dimp V' > 3 and so dimp V' = 6, and (2)) holds. O
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We remark that 3.Alt(7) has indeed a 6-dimensional quadratic module over Fy. One way to see
this is to use the embedding 3.Alt(7) < 3.Matgs < SUg(2) (thanks to J. Hall for pointing out this
embedding to us): Consider the block normalizer P ~ 3.2%.Alt(6) in 3.Matay. Then P has a unique
proper submodule on F§, namely a 3-dimensional one. In particular, Oz(P) acts quadratically.
Alt(7) has orbits of length 7 and 15 on the 22 points. Any three points from the 7 lie in a unique
block and so we can choose P to intersect 3.Alt(7) in B ~ 3.(Alt(4) x Alt(3)).2. It follows that
02(B) < O2(P) and so O(B) is a quadratic fours group.

Lemma 7.5. Let M = Alt(n) or Sym(n), n > 5, n £ 6, 8, and V be a simple spin module for Fo M.
Suppose that A is a mazimal quadratic subgroup of M on V with |A] > 2. Then |V| = |Cy(A)|?* and
[V,a] = [V, A] = Cy(A) = Cy(a) for all 1 #a € A. Moreover, one of the following holds:

1. A is conjugate to ((12)(34), (13)(24)).

2. M = Alt(9), |A| =8, |A] has a regular orbit of length 8 on {1,2,...,9} and, up to conjugation,
A is unique in M, with the conjugacy class depending on the isomorphism type of V.

Proof. Let I = {1,2,...,n} with M acting transitively on I. Let K < M with K = Alt(5) and K
fixing m — 5 points of I. Then V is a direct sum of natural SLy(4)-modules. From this we get for
B € Syl,(K): B is a quadratic fours group, and

V| = |Cy(B)|? and [V,b] = [V, B] = Cv(B) = Cy(b) for all 1 £ b € B.

Moreover, the non-trivial elements of odd order in K act fixed-point-freely on V.

Let 1 # z € B and let D be a quadratic subgroup with z € D. Then Cy(B) = Cy(z) = Cy (D)
and so DB is quadratic. In particular, DB is elementary abelian.

Let W be a simple FyM'-submodule of V. Since AN M’ # 1, then 0 # [W, AN M'] < Cyw(A).
Thus A normalizes W.

If n = 5 or 7 then all involutions in M’ are conjugate. Thus we may assume that z € A. If
n =75, then A < Cp(B) =B. If n =7, then Sym(7) does not act on W and so A < M’. Also B is
a Sylow 2-subgroup of Cj/(B) and again A < B. So the lemma holds for n =5 and 7.

Suppose next that n > 9. As in Section 4 of [MeSt2] define L, := O*(Cps(2)) and A, :=
02(CL(2)). Moreover, for t € M with |t| = 2 let K; be the subgroup generated by the quadratic
subgroups of M containing t. Observe that [V, ¢, K;] = 0, so every fours group of K; containing ¢ is
quadratic on V. Note further that A, = B and L, = Alt(n — 4).

According to [MeSt2, Lemma (4.3)] we have that L, £ K. Since K, < Cp(z) and L, is simple
this implies [L., K,] = 1. Since B = Cps(L,) we conclude that K, < B.

If z € A we conclude that A = B, and case of the lemma holds. So suppose zM N A = (). Let
1#ac€ A Then A< K,. If z € K,, then by the above observation, a € K, = B and so a € 2z,
contrary to the assumption. Thus zM N K, = 0.

Let k := |Cf(a)|, J = I\ Cs(a) and m := % We now choose 1 # a € M’ N A and so m is
even and m > 4. Let D be the largest subgroup of M’ which has the same orbits as @ on I. Put
X =Cy(I\J)and Y = Cp(J). Then D is elementary abelian of order 2™~ and Y < Cjy(a).
Suppose that YN A # 1 and let 1 #b € ANY. Then Alt(J) = (a®“®) < K and 2M N K, # 1,
a contradiction. Thus ANY =1 and A £ (a)Y. In particular, K, £ (a)Y. Since DN zM # @ we
have D £ K,. Also D = [D,X| = [DY,X] and so D £ K,Y and DY N K,Y = (a)Y.

Hence DY /{a)Y is not the only minimal normal subgroup of Cps(a)/(a)Y . Since

C(a)/(a)Y ~ 2™ Sym(m) or 2™ 2Sym(m)
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(with k < 1 and M = Alt(n) in the latter case) we conclude that m = 4, Cps(a)/(a)Y ~ 22Sym(4)
and M = Alt(9). Moreover, |K,/(a)| = 4 and Cjps(a) acts transitively on (K,/{a))f. Thus K,
is elementary abelian of order 8 and since K, N 2™ = (), K, acts regularly on J. It follows that
Ny (K,) acts transitively on K%. Since [V, a, K,] = 0 we conclude that K, acts quadratically on
V. Thus A = K, by the maximality of A. In particular, A is unique up to conjugacy. Also if
t € Csymo)(a) \ Alt(8), then A' # A = K,. So A" will not act quadratically on V, and A depends
on the isomorphism type of V. Let F' € Syl;(K). As seen above F' acts fixed-point freely on V,
and F' is inverted by a conjugate of a. Thus Cy(a) = [V, a] and the quadratic action of A forces
Cyv(a) = [V, A] = Cy (A); in particular |V| = |Cy (a)|*. O

Lemma 7.6. Let M = G2(2) or G2(2)!, and let V' be a non-trivial simple FoM-module. Suppose
there exists A < M with |A] > 2 and [V, A, A] = 0. Then V is a natural Go(2)- and G2(2)'-module,
respectively.

Proof. Since |A| > 2, there exists 1 # z € AN M’, and since M’ has a unique class of involutions, z
is 2-central. Put P; := Cyps(2), let S € Syl,(Py), and let P2 be the other minimal parabolic subgroup
containing S. Suppose for a contradiction that Cy (Pz) = 0.

Let I' = PE U P§ be the generalized hexagon associated to M. Let (Py, Py, Py, P;) be a path of
length 4 in T'. Put Z := (z). Then

Z < Py, Z ﬁ O2(Py), T := ZOo(Py) € Syly(Py), and Py = <ZP4>OQ(P4).
Since Cy (P;) = 0 and P, and Py are conjugate, we also have Cy (P4) = 0, so
X = [CV(OQ(P4))7Z] 7é 0.

Note that T' centralizes X, and since T is a maximal subgroup of P, Cp,(X) = T. Since P, and
P5 are the only maximal subgroups of M containing 7', it follows that Cp/(X) < Ps;. From Z < A
and [V, A, A] = 0 we get A < Cp(X) = P3. So A fixes all vertices of distance two from P;. But the
stabilizer in P; of these vertices is cyclic, a contradiction since |A| > 2 and A is elementary abelian.

Thus Cy (P) # 0. Let M < M* with M* = G5(2), and let V* be a simple quotient of the induced
FoM*-module VM and identify V with its image in V*. Let S* € Syly(M*) with S < S*. Put
Py = P;S*. Since |P; /P2| < 2 we get that Cy+(P5) # 0. By Smith’s lemma[1.2] V; := Cy« (02(P}))
is a simple P;*-module. It follows that V5 = Cy (Py) = Cy(S*) has order two, Cy+(P;) =0, and V4
is the unique non-trivial simple P;/O2(P;)-module, namely the natural SLy(2)-module. Thus by
Ronan-Smith’s Lemma V* is uniquely determined, and so V* is the natural G2(2)-module for
M*. Hence V = V* and the lemma is proved. O

Remark 7.7. Let L := F*(M) and suppose that O2(M) = 1, L is quasisimple and L/Z(L) = Uy(3).
Let M = M/Z(L), S € Sylo(M), and Z = QZ(S). In the following we use some information about
the structure of M which can be found for example in [ATLAS]. More precisely we use the following
facts:

There exists exactly two elementary abelian subgroups @ and Qo of order 2* in S, and for

P =Cr(Z), Q1:=02(P1), P :=Np(Q2), and P3 := N(Q3)
the following hold:

(a) Fori=1,2,3, P; is a mazimal subgroup of M and has characteristic 2.
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(b) P1/Q, = Sym(3) x Sym(3), Q; is extraspecial of order 2°, and Q1/Z is a simple P-module.
(c) Fori=1,2, P;/Q; = Alt(6), and Q; is a natural Alt(6)-module for P;.
(d) All involutions in L are conjugate.

(e) Suppose in addition that |Z(L)| =3, M # L, [Z(L), M] =1, M = Np(Q2)L, and that Ny (Q2)
induces inner automorphisms on Pa/Qa. Put P = Np(Q;) and QF = Oz(P}). Then

(a) M is unique up to isomorphism and |M/L| = 2.

(b) M has two classes of involutions in M \ L with representatives a and b in Qo such that
Cr(a) = Uy(2) and Cx(b) ~ 24.32.22.

(c) Py/Q3% = 3-Alt(6), and Q3 is the dual of the natural Q5(2)-module for Py.
(d) Q% = Q2 and Py/Q2 = C3 x Sym(6).
Lemma 7.8. Let p=2 and V be faithful Fo M -module, and let Z < M with |Z| = 2. Suppose that
(i) M is quasisimple, Oz(M) =1 and M/Z(M) = Uy(3).
(ii) Cu([V, 2]) £ Z.

(iii) Cy (M) =0, V = [V,M] and V is indecomposable, that is, V is not the sum of two proper
(non-zero) Fo M -submodules.

Put Py :=Np(Z) and Q1 := O2(P1), and let S € Syly(P1) and Q;, i = 2,3, be the two elementary
abelian subgroup of order 16 in S. Put P; := Nps(Q;), L; := OZl(Pi), Lig := (Q¥Y), L1z := (Q3),
and F :=End (V). Then we can choose {i,j} = {2,3} such that the following hold :

(a) V is a simple M-module, |F| = 4 and dimy V = 6.

(b) Cv(L;) =0 and Cv(Lj;) # 0.

(c) V is uniquely determined as a FQM-moduleﬂ

(d) There exists a non-degenerate M -invariant unitary F-form on V.

(e) @1 < Lk, L1x/@Q1 = Sym(3), k = 2,3, and L1/Q1 = L12/Q1 X L13/Q1 = Sym(3) x Sym(3).
(f) Lij = Cu([V, Z]), Cv(2) = [V, Q1] = [V, Lyj] and [V, Z] = Cy(Q1) = Cy (Ly;)-

(9) 1 < [V,Z] < Cy(Z1) <V is the unique chiefseries for Py on V', each of the factors is 2-
dimensional over F, Lq; centralizes Cy (Z)/[V, Z] and L1; centralizes [V, Z] and V/[V, Z].

(h) P, =L; and L;/Q; is quasisimple of shape 3-Alt(6).
(i) Qi acts quadratically on 'V and Cy (Q;) = [V, Q:].

(G) 1 <[V,Q;] <V is the unique chiefseries for P; on V', each of the factors is 3-dimensional over
F and faithful for P;/Q;. Moreover, V/[V,Q;] is as an FoP;-module isomorphic to the dual of
[V, Qil.

(k) L;/Q; is isomorphic to Alt(6).

3Note that 32 U4(3) has two quotients isomorphic to M and so has two modules which fulfill the hypothesis of
this lemma, except that the modules are not faithful.
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(1) Cv(8) = Cv(Q;) = Cv(L;) and [V,S] = [V, Q;] = [V, L;].
(m) 1 < Cy(Q;) <[V,Q,] <V is the unique chiefseries for P; on V, where Cy(Q;) and V/[V, Q]

are 1-dimensional over F and centralized by L; while [V, Q;]/Cv(Q;) is a 4-dimensional natural

FAlt(6)-module for L;.
Proof. Let M := M/Z(M), {k,1} = {2,3} and Py := P, N P.
1°.  V is an homogeneous FoZ(M)-module and Z(M) is cyclic.

Since O2(M) =1, Z(M) is an abelian 2’-group. Thus V is a semisimple FoZ(M )-module. Since
V is indecomposable, we conclude that V' is an homogeneous FoZ(M) module and so Z(M) is cyclic.

Thus holds.

In the following we will only use but no longer that V' is indecomposable. Moreover, we
make use of the properties listed in [7.7]

2°. V,Z,Q1] =0.

By (1°) Z(M) N Car([V, Z]) = 1 and so by (i) Car([V, Z]) £ Z. Note that Pi/Q; = Sym(3) x
Sym(3), Q1 is extra special of order 2% and P; acts simply on Q1/Z. Hence 1/Z is the unique
minimal normal subgroup of P; and we conclude that Q1 < Cp([V, Z]). Thus Q1 < Cp([V, Z]) and

holds.
3% [V,Qr,Qk, Li] = 1.

Observe that Pp/Qr = Alt(6), C37(Qx) = Qr and Qy is a natural Alt(6)-module for Py. Since
Py, = Np, (Z) we conclude that Pi;/O2(P1x) = Sym(3) and [Qg, Pix] is a hyperplane of Q. The
structure of Py shows that [O2(Pix), Pix] < @1 and so [Qg, Pix] < @1 and |Qr/Qr N Q1] < 2. In

particular, Pyj normalizes [V, Z, Q1Q%], and by V,Z,Q1Qk] = [V, Z, Qx].
Note that @; does not contain an elementary abelian subgroup of order 2*. So Qj £ @1 and

Q1NQg = [Qkaplk] Pick g € P, with Q. = (Ql n Qk)Zg. Then by

V. Z,Q] = [V, Z,(Q1 N Q) 2% = [V, Z,2°] < [V, 2] < Cv(QY).

It follows that [V, Z, Q] is normalized by (Pi, Q}) = Px. Thus [V, Z,Qx] = [V,
< ZP),Qx] = [V, Qx, Q4] and [V, Qx, Qx] is centralized by (Qf"*) = L.

4°.  [Cy(Qk),Q1,Q:1] = 0.
Let h € Py \ PLNP;. Then Q1 = (Q1NQk)(Q1NQY). Since Q1 normalizes Cy (Qy), implies
[Cv(Qr); @1, Q1] = [Cv(Qk), (@1 N Q) (Q1 N QY] < Cv(Qr) N[V, Qr, Qr]" < Cv(Qx) N Cy (L),

Since Ly, is a maximal subgroup of M and Q £ L we have M = (Qg, LT). So

Cv(Q1) NCy(Qr) < Cy(M) =0,
and is proved.

In the next step we regard Q, is a 4-dimensional symplectic space for Ly /Qx = Sp,(2)’.

5°. |QrQ:1/Qk| = 4 and QrQ # QrQ1. Moreover, Qr N Q; is a singular subgroup of order 4 in
Qr (and Q;), and Q. N Q; acts quadratically on V.
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Since Q) is elementary abelian of order 2¢ and no element in L, acts as a transvection on @y,
|QrQi/Qrl = 1Qi N Qk| =4, Qr N Qi = [Qr, Q1] = Cq,.(Q1)-

Hence [3.2{|c]) shows that Q; N Qk is a singular subspace of Q. Moreover, Z < Qr N Q; < Qr N Q1
and so by (2°), [V, Z,Qr N Q] = 1. Since |Qr N Q| = 4 and Z < Qr N Qy, this shows that Qr N Q,
is quadratic on V, and holds.

6°.  [Cv(Qk),Qi, Qi) =1
By Q= (Q:1NQr)(Q1N Q)7 for a suitable g € P, and (Q; N Q)Y acts quadratically on V.

Thus
[Cv(Qr),Q1, Q1] = [Cv(Qr), (QiNQk)?, (QiN Q)] =0,
and holds.

Since Cy (M) =0, M = (Ls, L) and Cy (S) < Cy(Q2) N Cy(Q3) we can choose i € {2,3} such
that [Cy(Q:), Li] # 0. Let {2,3} = {4, 5}

7°.  Pi=L;, Z(M)=7(L;) 2 Cs. L;/Q; is quasisimple of shape 3-Alt(6) and Cy (L;) = 0.

By [4°),(5°). all the fours groups in L;/Q; act quadratically on Cy (Q;). Since [Cy(Q;), L;] #
0, shows that L;/Q; % Alt(6). Hence Z(M) N L; # 1. By [Gr] and since Z(M) is a cyclic 2'-
group, Z(M) = Cs and so Z(M) < L;. So P, = L;, and Cy(L;) < Cy(Z(M)) = 0. Thus L;/Q; is
quasisimple of shape 3.Alt(6), and is proved.

In particular, holds.
8°. Q; acts quadratically on V.
By and (7°), [V, Qk, Qk] < Cv(Ly) =0.
9°. [Cv(Q:),Q;] < Cv(Lj) = Cv(Qj) and L;/Q; = Alt(6); in particular Cy (Lj;) # 0.

Let g € L; with Z9 £ Q; N Q,. Then Z9 < L; and Z9 £ Q,. Since L;/Q; is quasisimple, L; =
(Z9L)Q; and so [Cy (Q;), Z9] # 0. On the other hand [Cy (Q;), Z9] is centralized by (Q;,QY) = L;
and we conclude that 0 # [Cy(Q;), Q;] < Cv(L;). In particular, Z(M) £ L;j and so L;/Q; = Alt(6).

Thus Cy(L;) # 0. If [Cy(Q;), L;] # 0 we could apply (7°)) to j in place of ¢ and conclude that
Cy(Lj) =0, a contradiction. Thus [Cy(Q;), L;] = 0 and (9°) holds.

In particular, holds. Since Cy (L;) # 0, (]ED is proved.
10°. V= {(Cy(L)M).
By [Cv(Q:),Q;] < Cy(Lj). It follows that

[Cv(Qi), Li] = [Cv(Q:), (Q;7)] < (Cv(Ly)).

On the other hand, by Z(M) < Z(L;), so by L; does not have any central chieffactor in
Cy(Q;). Hence Cy (Q;) = (Cy (L;)%).

Since V = [V, M] and M = (QM), V = ([V,Q;]™). As Q; acts quadratically we conclude that
V = {(Cv(Qi)™M), and as Cy(Q;) = (Cy(L;)%i), this gives (10°).

11°.  Cy(Ly) =0.
By Cy(L1) < Cy(Ly). Since Cy (M) =0 and M = (L, L;), (11°) follows.
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12°.  [V,Z,Li;] =0, L1yQy, = O% (P1 N Py), and (d) holds.

Put P* := Cp,([V,Z]). Since Py normalizes [V,Z], P* < Pi. Moreover, by (11°) L; <
Cu([V,Z] N Cy(S)) and so Cu([V,Z] N Cy(S)) < Pj, since L; is a maximal subgroup of M.
It follows that P* < P, N P;.

Since Q; acts quadratically on V and Z < @, [V, Z,Q;] = 0. Hence Li; = <QZP1> < P* so
[V,Z,Ly;] = 0. Moreover, since Li; < Py, and Py acts simply on Q1/Z, also Q1 < Li;. Since
Lj ﬁPl/Qj = Sym(4) and Llj = <QiLlj>, we conclude that Llj/Ql = Sym(3) and Llej = 02/ (P1 N
P;). In particular [L1;,Q;] < Q1 and so [Lij, L1;] < Q1. Hence also Ly;/O2(L;;) = Sym(3) and
again by the simple action of P, on Q1/Z, Oz(L1;) = Q1. In addition, P;; < Np (Q;) and so
Li; = 0? (Py N P;) since by P, NP;/Q; = Cs x Sym(4). Hence and (EI) has been proved.
13°. Let E be the subring of F generated by the image of Z(M). Then E =2 Fy and [V, Z] is a
direct sum of 2-dimensional simple EL;-modules.

Since Z(M) = Cs, E = F,4. The second statement follows from (12°) (and (¢)) since L; =
CLI([‘/7 Z))7 Cv(Ll) =0 and Ll/Llj = Sym(3)

Let U; be a 1-dimensional E-subspace of Cy(L;). In the following we use the fact that has
already been proved, so we know that Li; = Cp, ([V, Z]) < P; and

L1/Q1 = L12/Q1 x L13/Q1 = Sym(3) x Sym(3);

in particular L1 /Cr,([V, Z]) = Sym(3).
Put Uy := (U]P1> and U; := (UJ-Pi), so [Uj, L] = 0 since Li; < Lj, and

Uy = (UY) = (U0

since U; is an E-space. As L1/Cpr, ([V, Z]) = Sym(3) and Cy (L) = 0 we conclude that dimg U; = 2.
Since P; N L; centralizes U; and Uy = (U f’ NPy lb and imply that dimg U; = 3. In particular,

Ui:<U1 : >

Put W, := (U-L1> and W, := <U1Lj). Since [U;, L1;] < Uy and Ly; < Ly we have

K2

(Wi, Ly] < Uy and Wy = (US) = (U7 Es) < W

Put Y; := Ciw,(L;) and W; := W;/U;. Then dimg Ty = 1, dimgU; = 2, and U; = (T, ).
Thus, we can apply (and ) with U = U;. This shows that Wj/C’Wj (Lj) is a natural EAlt(6)-
module and CWJ»(LJ‘) < (UiLlj> = Wy; in particular dimg WJ’/CW_,. (L;) = 4. Since L; = O*(L;)
and [U;, L;] = 0, we also have Cyz (L;) =Y.

Since Y; < Wy [Yj, Ly;] < [Wh, Ly;) < Ui. From Ly;L1; = Ly we conclude that [Y;Uy, L] < Us.
Note that [Y;Uy, Q1] = 0 and 0%(L1)/Q1 is a 2'-group. So coprime action implies

Y;Ui = Cy,u, (0%(L1))[Y;U1, O*(L1))-
Since Cy(L1) = 0 also Cy(O*(Ly)) = 0 and so Y;U; = U;. Thus Y; < Cp,(Q,) = U;. Hence
dimg W;/U; = 4 and since Wi < W;, dimg W1 /U; = 2. It follows that dimg W,;/W; = 1 and

PiﬂP]‘
W; =W, )
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Put W : <VV1 ‘) and W = W/U;. Then W; < W, dimg Wy, = 1 and dlmEW = 2. Hence
1 ) and [5.4 give dimg W = 3; in particular dlmE W/W; = 1. Since Pi; does not normalize W,
W = (WJ Pl). Since dimg W; /W1 = 1, [W;, Lq;] < Wi and so [W,Ly;] < W7 < W. Thus W
is normalized by L; and Li;L1; = L;. Hence W is an EM submodule of V, dimg W = 6 and
W= (UM).

Note that [U;, L;] = 0 and U; is the (up to isomorphism) unique non-trivial simple FyZ(M)
module. So Uj is uniquely determined as an [F; Pj-module. Let W be the FyM-module induced from
the Fo P; module U;. Put W= W/([W Z,Q1)M ) and let U; be the image of U; in W. Note that
Z (M ) acts fixed-point freely on W and so also on W. In particular, C (M ) =0, W = [W,M] and
[W Z,@Q1] = 0. Thus W fulfills the assumption on W in this proof. Since W = (UM> we conclude

that dimg W = 6. On the other hand W is as an Fo M-module an homomorphic image of W and so
also of W. It follows that W = W as an FyM-module and so W is unique up to isomorphism.

Up to now we only used . to determine W. Suppose now that V' is indecomposable. Then
by we can choose U; such that V' = (UM). Thus V = W and dimg V' = 6. Any non-trivial
FyM quotient of V' fulfills the same assumption and so is 6-dimensional over E. Thus V is a simple
Fo M-module.

Let V* be the F-dual of V. Then V* = [V*,Z(M)] = [V*, M] and 0 = Cy«(Z(M)) = Cy-(L}) =
Cy+(M) = 0. By[L§(d Q acts quadratically on V* and so Ca([V*, Z]) £ Z. Thus V* and i fulfill
the same assumption as V and i, and V and V* are isomorphic FeM-modules. Hence by
there exists a M-invariant non-degenerate symmetric, symplectic or unitary F-form on V*. In the
symmetric or symplectic case, V' would be selfdual as an FM-module and so also an EZ(M)-module,
a contradiction. Thus (d) holds.

Since L; acts simply on U; and V/U;, Cy(Q;) = U; = [V,Q;] and () and () hold. Note
that Z = Q/ centralizes V/[V,Q,Q]. Since @ centralizes V/W; and W7/U; we conclude that
V,Q,Q] = = [V, Z] and [V,Q] = W;. By a dual argument, Cy(Z) = W; and Cy(Q1) = Uy.
Also [Ul,Llj] =1 and dually [V, Ly;] < Wi. Thus (f) and (g)) are proved.

Cyv(Q;) < Cy(Z) =Wy < W; and since W, /U; is a simple EL;-module, Cy(Q;) = U;. Dually
[V,Q,;] = W; and so . ) and ( . hold Since |U | =4 and Cy(Q);) is an F-subspace, |F| < 4 and so
F=E. Smce W is unique up to isomorphism we conclude that @ and ( . hold.

O

Lemma 7.9. Put L := F*(M) and suppose that
(i) V is faithful and indecomposable Fo M -module, Cy (L) =0 and V = [V, L].
(i) M =(D<M|[V,D,D] =0,|D| > 2); and
(i1i) L is quasi-simple and Z(L) = Uy(3).
Put F :=Endy (V) and let A be a mazimal quadratic subgroup of M on V. Then
(a) V is a simple FoL-module and (L, V') fulfills the assumptions on (M,V) and so also the conclu-

sions in[7.8
(b) M = LA.
(¢) [AJANL| <2, [ANL| = 2% and Cas(A) = Car(AN L) = AZ(M).
(d) Npr(A) =Ny (AN L) and so Npy(A)/A is a quasisimple group of shape 3.Alt(6).
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(e) Cy(ANL)=Cy(A) =[V,A] =[V,AN L] is a 3-dimensional. simple module for Ny (A).

(f) A is unique up to conjugation under L, with the conjugacy class depending on the isomorphism
type of V.

(9) Let 1 # B < M such that B acts quadratically on V. Then B is conjugate under L to an
subgroup of A and assuming that B < A one of the following holds:

(a) |B| =2, B <L and dimg[V, B] = dimp V/Cy (B) = 2.

(b) |B| = 2, dimg[V, B] = dimp V/Cy(B) = 1. and Cy(B)/[V, B] is natural FSU4(2)-module
for Cr(B).

(¢) |B| =4, B £ L, dimg[V, B] = dimp V/Cy(B) = 2 and dimg[V,b] =1 for allb € B\ L.

(d) Cy(B) =[V,B] =Cy(A) and A is the unique mazimal quadratic subgroup of M containing
B.

Proof. Put M = M/Z(L). Among all A < M with [V, A, A] =0 and |A| > 2 let A be maximal. Let
S € Syly(M)) with A < S. Since Out(L) = Dihg, M/L is isomorphic to a subgroup of Dihg. In
particular, M = LS. Let Y be non-trivial indecomposable F3 L-submodule of V.

By [MeStil 2.3] we have Csnr([V, Z]) £ Z and so (L,Y) fulfills the hypothesis of in place of
(M, V). It follows that Y is a simple FyL-module and so V' is a semisimple FyL-module.

Let W be a maximal homogeneous Fy L-submodule of V' and suppose that A does not normalizes
W. Then by [MS3| 2.11]|A/Ca(W)| = 2 and so C4(W) # 1. Since L is quasisimple we conclude
that L = [L,Co(W)] < Cp(W), a contradiction to Cy (L) = 0. Hence A normalizes W. As A
was an arbitrary maximal quadratic subgroup of order larger than 2, shows that M normalizes
every maximal homogeneous Fy L-submodule W. Since V is indecomposable as an Fy M-module and
semisimple as an FyL-module we conclude that V = W and so V is a homogeneous Fs L-module.
In particular, Cr(Y) = Cr(V) =1, Z(L) = C3 and the subring E of Endp, (V') generated by the
image of Z(L) is a field isomorphic to Fy.

Put Fy := Z(Endp,1(V)) and note that Fy is field isomorphic to Endp,z(Y) and so to Fy. Thus
Fo = E. Since |A| > 4, we conclude from [MS3| 2.15], that A and so also M acts Fy-linear on V.
Hence Z(L) = Z(M) and Fy = F.

Let Z = Z(SN L), P, = Ni(Z), Q1 = O3(P1), Q;, i = 2,3, the two elementary abelian
subgroups of order 16 in SN L, P = N, (Q;) and for i € {1,2,3}, P} = Njy(Q;), L; = 0% (P;), and
QF = O2(P;). Choose notation such that Cy (Lz) = 0 and so Cy(L3) # 0. In the following we will
use the properties of P;, i = 1,2, 3, given in[7.8]

Since V is a homogeneous FoL-module we conclude that also Cy(L2) = 0 and Cy(L3) # 0.
Thus S normalizes Ly and L3 and so S < P; for all 1 <4 < 3. In particular, |[M/L| < 4. Since
Py/Q2 ~ 3-Alt(6) and Py centralizes Z(L) we conclude that P; induces inner automorphisms on
P5/Q2, 50 Py = Q5P,. Thus |M/L| < 2. Since |A| > 4 we get ANL # 1, and since L has unique class
of involutions and |Z| = 2, we may assume that Z < AN L. In particular, 0 # [Y, AN L] < Cy(A)
and since Y is a simple Fs L-module, A normalizes Y. Thus Y is an Fo M submodule. As this holds
for all simple FyL-submodules on V' and V is a semisimple FyL-module and an indecomposable
FoM-module, V =Y. Thus V is a simple FsL-module and @ holds. By 7 there exists an
L-invariant non-degenerate quadratic form on V and by , this form is invariant under M.

Let D < Qo with |[D| > 4 and let a,b € D* with a # b. Note that P, acts simple on [V, Q3]
and (Cp,(a),Cp,(b)) = Pa. Since 0 # [V,a] < [V,Q2] we conclude that [V,a] # [V,b]. Since
dimp[V, a] = 2 and dimp[V, Q2] = 3 this gives [V, D] = [V, a] + [V, b] = [V, Q2] We have proved
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(%) [V, D] = [V, Q] for all D < Qs with |D| > 2.

Put L13 = <Q§1> Then Ql S ng, L13 S P1 N Pg, LlS/Ql = Sym(3) and L13 = CL([V7 Z]) Put
Lis == Cpy([V, Z]). Then A < Li; and so M = Lj;L and Py = Lj;P;. Since |Li3/L%4| < 2 we
conclude that O2(L33) = QF, Li; = L13Q% and LT = L1 Q5.

Put Z* := Z(Q%). Since L; acts simply on @Q1/Z, we have [@1,Q5] < Z and conclude that
Qi = Z*Q;. Note that [Z*, L] < Z and so [Z*,0%(L;)] = 1. Since V/Cy(Z) and Cy(Z*)/[V, Z]
are non-isomorphic as O%(L;)-modules, [V, Z*] = [V, Z] and similarly Cy (Z*) = Cy(Z). Tt follows
that [V, Z*] < [V, Z] < [V, 4] < Cy(A) < Cy(Z) = Cy(Z*) and so Z* A is quadratic on V. Thus by
maximality of A, Z* < A and A = Z*(AN L). We will show that A is contained in a conjugate of
Q3 under P;. Since A = Z*(A N L) it suffices to show that AN L is contained in a conjugate of Q2
under P;.

Suppose AN L < Q. Note that P; acts transitively on fours groups of ()1 containing Z and so
we may assume |A N Q2| > 4. Thus using (x),

A< Ou([V,;ANQ:]) = Cu([V,Q2]) < Q3.

Suppose next that AN L £ @Qq. Since L13/Q1 = Sym(3) we may assume that AN L < Q1Qo.
Let P, = Py/Z and let ¢ € Q2\ Q1. Then Cs, (q) = [@1, q] = Q1 N Q3. Tt follow that all involutions

in @1522 \ @1 are conjugate and so Q2 is the unique maximal elementary subgroup of Q1Q2 not
contained in Q1. Thus ANL < Q.

We proved that A is conjugate to a subgroup of Y5 and we may assume that A < Q3. Since
Cy(Q2) is the unique non-zero proper FoLs submodule of V, Cy (Q3) = [V, Q3] = Cy(Q2) and so
Q% is quadratic on V. This gives A = @)% , and all maximal quadratic subgroups of M of order at
least 4 are conjugate to Q5.

It remains to proof . So let B be any quadratic subgroup of M. Suppose first that |B| = 2.
If B < L then B is conjugate to |Z| and so holds. If B £ L then either Cx(B) = Uy(2) or
Cz(B) ~2%.3%.2.

Suppose that Cz(B) ~ 2%.32.2. Then O(CL(B)) is conjugate to AN L and we may assume
that B < A and Cp(B) < P,. Note that Cy/(B) contains a Sylow 3-subgroups of P,. Since the
Sylow 3-subgroups of P, are extraspecial of order 3% they act simply on [V, A] and we conclude that
[V,B] = Cy(B) = [V, A] = Cy(A) and so holds.

Suppose C(B) = Us(2). Let y € Z*\ Z. Then [V,y] < [V,Z]. The preceding paragraph
shows that C3(B) ~ 2%.3%.2 and thus (y) is conjugate to B. So we may assume that B < Z*.
Thus V/Cy(B) and [V, B] have dimension at most two over F and so are centralized by Cr(B).
Thus Cp(B) acts faithfully on Cy(B)/[V,B]. Since [V,B] < Cy(B) = [V, B]*, the L-invariant
unitary form on V gives raises to an Cp(B)-invariant unitary form on Cy (B)/[V, B]. It follows
that dimp Cy(B)/[V,B] = 4 and Cy(B)/[V,B] is a natural SU4(2)-module for Cr(B). Thus
dimy V/Cy(B) = 1 = dimg[V, B] and holds.

Suppose next that |B| > 2. Then B is contained in a maximal quadratic subgroup of order at least
4 and so we may assume that B < A. If [V, B] = [V, 4], then Cy/(B) = [V, B]* = [V, A]* = Cy(4)
and holds. So suppose [V, B] < [V, A]. Then (x) implies that |[BN L| = 2 and so |B| = 4. If
d € B\ L, then dimp[V, d] < dimg[V, B] < 2 and so must hold for (d) in place of B. Thus (lg:c)
holds. O

Lemma 7.10. Let M = 05,(q), ¢ = 2%, and V be the corresponding natural module over F,. Let
a € M with |a| = 2. Then a € Q5,(q) if and only if dimg, [V, a] is even.
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Proof. This is well known, but a reference seems to be hard to come by. So here is a proof: If n =1,
this is obvious. Suppose there exists an a-invariant proper subspace W of V with V. = W @& W+,
Then the claim follows by induction on n. So we may assume that no such W exists. In particular
v L v forall v € V and so [V, a] is a singular subspace. Let Cy (a) = [V, a]®W for some F,-subspace
W. Since Cy(a) = [V,a]*, V=W @ W+ and so W = 0 and [V, A] = Cy(a) is maximal singular
subspace of V. Thus € = +. Since a normalize a maximal singular subspace, a € Q;‘n(q) Consider
the map s, : V/Cy(a) x V/Cy (a) — F, define by s,(v+ Cy(a),w+ Cy(a)) = s(v, [w, a])), where s
is the symmetric form on V invariant under M. Then s, is a non-degenerate bilinear form. From
v L v we get v L [v,a] and so s, is a symplectic form. Thus dim[V,a] = dim V/Cy (a) is even. O

Lemma 7.11. Let q be a power of p and K <M such that K = Spin,(q), n > 3, and Cp(K) = Z(K).
Let Viar be the natural Fo$2s5, (q)-module for K, S € Syl,(M), U := Cy,, (SN K), L :=Ck(U) and
Q := O,(L). Then the following hold:

(a) Suppose that W is a non-trivial simple F, K -module with [W, Q, Q] = 0. Then W is a (half-)spin
module for K.

(b) Suppose that p =2, n even, n > 6, W is a simple Fo M -module with [W, K] # 0 and that there
ezists A < S with [W,A,A] =0, M = (AM) |A| > 2, and A £ K. Then M = O5,(q) and W is
the natural O;,(q)-module for M.

Proof. Put T := SN K, so T € Syl,(K), and Ny (Q) := Ny (Q)/QZ(K), and let Uy be the unique
I-dimensional singular subspace of U. Then [U+, Q] = Uy. Moreover U = Uy, if n is even or p is
odd, and U = Uy + V* if n is odd and p = 2. Hence

. o0 an are natura _9l@q)-moaures O’f'i.
1°.  UL/Uy and Q 195, dules for T

Assume that n > 5. Then there exists g € K such that Y := Uy + Uog is a 2-dimensional singular
subspace of U+ normalized by T. Put H := (Q,Q9) and Z := QN QJ. Then H/Cx(Y) = SLa(q),
and H acts transitively on the 1-dimensional subspaces of Y. Thus H = (QN« (Y)>; in particular, T
normalizes H. Moreover, QO,(HT) =T € Syl,(HT), and using :

2°. Ifn > 5, then m = 0,(C(Y/Uy)), and Z is a 1-dimensional singular subspace of Q.

(@): Put K := Endg(W). By Smith’s Lemma applied to W and its dual, Cy(Q) and
W/[W, Q] are simple KL-modules. Since [W,;Q] < Cw(Q) we conclude that [W,Q] = Cw(Q).
Suppose that n = 3 or 4. Then @ = T and so Cy (Q) and W/[W, Q] are 1-dimensional over K. Thus
dimg (W) = 2.

If n =3 or (n,e) = (4,+) then W is a natural SLa(¢q)-module. If (n,€) = (4,—), then W is a
natural SLs(g?)-module. These are the (half-)spin modules for these groups, so @ follows in this
case.

Suppose now that n > 5, so we are allowed to use the subgroups Y, H and Z constructed above.
Since [W, Z,H] = 0 and Z # 0 we conclude that Cy (HT) # 0. By Smith’s Lemma Cw(T) is
1-dimensional over K and so Cyw (T) = Cw (TH). Since K = (L, HT) and W is simple, we have
[Cw(T),L] # 0, so [Cw(Q),L] # 0. Now again Smith’s Lemma [4.2] and show that Cw (@),
L and Cgq(Y) satisfy the hypothesis in place of W, K, and ). Thus by induction Cw (Q) is a
(half-)spin module for L. Together with [Cy/ (T), HT] = 0, this determines W up to isomorphism
(see and so W is a (half)-spin-module.

@: Note that K = Q¢ (q) since p = 2, that S normalizes L, and that by @ is a natural
2, _o(g)-module for L. Thus there exists an L-invariant quadratic form h (over Fy) on Q.
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3°. There exist a,b € A* with Cg(a) # Cq(b).

Assume first that A does not act Fy-linearly on Q. Since Aut(F,) is cyclic and A is elementary
abelian with |A| > 4, we conclude that there exists 1 # a € A acting Fy-linearly on Q and b € A
acting not F,-linearly on (). Hence Cg(a) is an Fy-subspace of @ while C(b) is not; in particular
Cola) # Colb). o

Assume now that A acts Fy-linearly on Q. Then AL = O5,_,(g), and there exists a € A\ K and
1#be ANK. By we conclude that Cg(a) is odd dimensional and Cg(b) is even dimensional
over F,. Hence again Cg(a) # Cq(b).

4°. There exists D < LA with DNA £ Q, [W,D,D] =0, and DNQ # 1.

Clearly A £ @ since A £ K, soif ANQ # 1 we can choose D = A. Suppose ANQ = 1. Let
a,b € Aasin (3°) and without loss Cg(a) £ Cq(b). Then there exists 1 # d € [Cg(a),b] < (b¢2(@),
SO

(W,a,d] < [W,a, (b°2@)] = ([W,a,b]°2¥)) = 0.

Since A is elementary abelian, d € (b°2(®)) < Cp(a) and so [a,d,W] = 0. Hence by the Three
Subgroups Lemma also [W,d,a] = 0, and D := (a,d) satisfies (4°).

5°. There exists B < Q and 1 # e € B such that [W,B,B] =0, h(e) =0 and B % Fqe.

Let D be as in . Pick 1 # b € DNQ, and put E := (D°:®) and C := F,b. Then
[W,b, E] = 0.

Suppose that b~ < EN Q. Note that there exists « € ENQ \ C such that h(u) = 0 if h(b) # 0.
Pick such an element u and put B := (b,u). Since [W,b, B] = 0, B acts quadratically on W. Thus
holds with e = b if A(b) = 0 and e = w if h(b) # 0.

Suppose now that b+ £ EN Q. By the action of Cp(b) on @, any Cy,(b)-submodule of ), which
contains b, either contains b+ or is contained in C. In particular ENQ < C and [Q, F] < ENQ < C.
Since @ is a natural §2f,_,(g)-module for L, shows h(b) # 0 and |DQ/Q| = |EFQ/Q| = 2. Thus
[D,CL(b)] < C, and since Cr,(b) centralizes C, [D, 0*(Cy(b)] = 1. The structure of O,,_»(q) shows
that

[Q,D] = C and CLD(b)/Q = (05 x Spn,4(q)

Put D* = Cpr(0O*(CL(b))). It follows that D < D*, |D*Q/Q| = 2, D*NQ = C, and the ¢
elements in D*\ @) are the transvections on V. corresponding to the ¢ non-singular 1-spaces in the
isotropic 2-space [Vpat, b]. Pick d € DN A\ Q. Then F := Cpg(d) = Cy x Sp,,_5(¢). In particular
F = (DF). From [W,d, D] = 0 we get [W,d, F] = 0 and so [W,d, Cg(d)] = 0. Pick e € Cg(d) \ C.
Then (e, d) is quadratic on W and satisfies in place of D. Moreover [Q,d] & Fye. Hence the
arguments of the previous paragraph apply to (e, d) in place of D, and holds.

6°. [W,Z,Co(Y)] =0.

Let B and e be as in . Since L is transitive on the singular elements of @) and since by Z
is a singular subspace of ), we may assume that e € Z. Put Q. := e* in Q. Note that Q. = Co(Y),
so we have to show that [W, Z,Q.] = 0.

Since B & Z = Fgye we get Q. < (BCL(e)) so [W,e,Q.] = 0. As N1(Q.) acts transitively on Z,
we conclude that [W, Z, Q.| = [W, (eNt (@) Q.] = 0.

7°. Put K := Endg (W). Then W is a simple FoK-module, and M acts K-linearly on W.
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Let X be a simple FoK-submodule of W and E := Endg(X), and pick D as in (4°). Then
0# [X,DNQ] < Cx(D) and so X is D-invariant. Hence 0 # [X,D N A] < Cx(A) and so X is
A-invariant. Since D N @ acts E-linearly on X, [X, D N Q)] is a non-trivial E-subspace centralized by
D, so D acts E-linearly on X. Hence [X, DN A] is a non-trivial E-subspace centralized by A, and A
acts E-linearly on X. This also holds for each conjugate of A under M. Since M = (AM) and W is
a simple Fo M-module, X = W, K=E, and M acts K-linearly on W.

8.  [W,Q,Q]#0.

Suppose [W, @, Q] = 0. Then by and @7 W is a (half)-spin module. If € = —, then K= F 2
and since A acts K-linearly on W, we conclude that A < K, a contradiction. If e = +, then K =F,
and so A induces a graph automorphism on K. But graph automorphisms interchange the two
half-spin modules and so do not act on W, again a contradiction.

9°. W is a natural Q5 (q)-module for K.

Put Qz = Cq(Y)Cqs (Y), where g is as in the definition of Y. Then by W, Z,Qz] =0. Let
l e L with Z! £ Co(Y), so Q = Co(Y)ZL. Note that L = (Qz, Q). Since [W,Q,Q] # 0 by

and (Z%) = Q, also [W, Z,Q] # 0. Now [W, Z,Cq(Y)] = 0 gives
0#[W,Z,Q] = [W.Z,Co(Y)Z'] = W, Z,2'].
Since [Z, Z!] = 1, we get
0# W, 2.2') =W, 2", Z) < W.Z|n[W, Z'] < Cw(Q2z) N Cw(Q%) = Cw(L).

Thus Cw (L) # 0, and with Smith’s Lemma [4.2 [Cw (S N K), L] = 0.
By (6°) Z and thus also Z' acts quadratically on . On the other hand

Z'09(HT) = QOo(HT) € Syl,(HT).

Hence, T acts quadratically on Cyy (O2(HT)). So by (&) Cw (O2(HT)) is a natural SLy(g)-module
for HT. Thus by Ronan-Smith’s Lemma W is unique up to isomorphism, and holds.

From (9°) we conclude that K = F,. Since A acts K-linearly on W we infer that KA = 05, (q),
W is the natural module, and M = K A. O

8 The FF-Module Theorems

In this section we use the same hypothesis and notation as in Section |2} that is, M is a finite group
with O,(M) =1, V is a finite, faithful F,M-module such that J = Jp (V) # 1, and J is the set of
Jar(V)-components of M on V.

Recall that a finite group H is p-minimal if S € Syl,(H) is contained in a unique maximal
subgroup of H and S £ H.

Lemma 8.1. Suppose that M is p-minimal and T' € Syl,,(M). Then there exist subgroups E, ..., E,
such that the following hold:

(a) J=Ey x--- X E. and J ={E},...,E.}.
(b)) V=Cy(J)+ > ,IV.E] and [V, E;, E;] = 0 fori # j.
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(c) [Cv(T), 0" (M)] # 0.
(d) T is transitive on En, ..., E,.
(e) There are no over-offenders on 'V in M.

(f) Ei = SLa(q), q = p", and [V, Ei]/Cly,g,(E;) is a natural SLy(q)-module for E;, or p = 2,
E; 2 Sym(2" 4+ 1), and [V, E;] is a natural Sym(2™ + 1)-module for E;.

(9) If A < M s an offender on V, then A = (ANE;) x...x (ANE,), and each AN E; is an
offender on V.

Proof. Using 5.6] we see that () holds. Hence M and V satisfy the hypothesis of 5.5].
This result gives subgroups E1, ..., E, satisfying @,@, @ and . Moreover, [BHS| 2.16] shows
that every best offender on V' induces inner automorphisms in E; and is not an over-offender on
[V, E;]. The first property gives (a)) and the second one (). O

The proof of Theorem

Let K € J, K:=Endg(V), and A € D. Fromwe get:
1°. V is a simple K-module, and K is the unique J-component of M.

If K is solvable, then [2.2{|d)) shows that Theorem [2{|1) holds for ¢ = 2 or 3 and n = 2. Thus, we
assume from now on that K is not solvable, so K is a component by @

By the definition of D there exists 1 # B < A such that B is an offender on V' with
(+) [V, B, 4] =0,

We choose such an offender B with |B| minimal. Then B is a minimal offender and thus a quadratic
best offender on V', so B < J.

By and [2.2|b)) [K, B] # 1. Hence
2°. K =[K,B] and [V,B,A] = 0.
Since K is not solvable, we get from [2.5, applied to BK, that BK acts K-linearly on V. In

particular, [V, B] is a K-subspace of V. Thus (*) shows that A centralizes a K-subspace of V, so
also A acts K-linearly on V. Since this holds for every A € D, we conclude:

3°. M acts K-linearly on V, and Cp(K) = Z(M).

We will now prove Theorem [2| by using the information given in [GM2, Theorem B]. Observe
that the bounds on the dimension of V' in the cases and of Theorem [2| follow from

Suppose that (KB, V) or (K,V) is one of the possibilities - given in Theorem [2] for
(M,V). Since by M < Ngr,(v)(K), then also (M, V) is on the list. Moreover, if there exists a
non-trivial offender on V in K, then and [GM2] show that (K, V') is on the list. Thus, we may

assume:

4°, B is a minimal best offender on V., M = KB, and there is no non-trivial offender on V' in
K. In particular K # M.

Case 1. Suppose that p is odd.
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In [Ch} Corollary C] all possibilities for M are given under the hypothesis that |V/Cy (B)| < | B|?
for some non-trivial quadratic subgroup B < M. It turns out that p = 3 and M = SLy(5), or M is
a genuine group of Lie type in characteristic p. In the first case |V/Cy(B)| > |B|, and B is not an
offender contradicting . In the second case shows that M = 2Gy(3) ~ SL2(8).3. But then
M has abelian Sylow 2-subgroups, which contradicts [KS, 9.1.4].

Case 2.  Suppose that |B| = 2.
Then B acts as a transvection on V', and [McL] shows that (M, V) is on the list.

Case 3. Suppose that p =2, |B| > 2, and K is not a genuine group of Lie-type in characteristic
p.

Then [MeSt1], [MeSt2] and [7.4] together with show that
K= Alt(n), n Z 6, n 7é 8, U3(3), 3U4(3), 2F4(2)l, 71\/1841]12, or Matgg.

Except in the case K 2 Alt(n) the corresponding module V' is uniquely determined.

Suppose K = Alt(n). Then [MeSt2] offers two possibilities for V. If V' is the natural module for
Alt(n), then M = Sym(n) and V is the natural module for Sym(n). Hence (M, V) are on the list.

If V is not a natural module, then V is the (half-)spin module and n > 6. So shows that
B < Alt(n) contradicting (4°).

Suppose that K 2 Us(3). Then M = G2(2), and shows that (M, V) is on the list.

Suppose K 2 2F4(2)". Then M = 2F,(2) and so M \ K does not contain any involution, a
contradiction.

Suppose K 22 3.U4(3). Then K = Fy and dimgV = 6. Since M acts K-linearly we get
|M/K| =2, and there exists B < R < M such that R ~ 2**13.Alt(6). Observe that every non-zero
R-section of V is at least 3-dimensional over K. Hence Ir := Cy(O2(R)) = Cy(O2(R) N K) is
3-dimensional over K and V' = [V, R].

Clearly B is not an over-offender on Ir since |BO3(R)/O2(R)| < 4 and Ig is an Fy4R-module.
Thus, by [I.3]either V' = Iz +Cy (B) or B < O2(R). In the first case [V, R] < I, a contradiction. In
the second case [MSIl 2.6] implies that there exists an offender 1 # D < O3(R) with D < R. Since
IR and V/Ig are simple R-modules we get Cy (D) = I and 2° = |O2(R)| > |D| > |V/Cy(D)| =
|V/Igr| =25, a contradiction.

Suppose next that K = Matqo or Matgs. Then M = Aut(Mati2) and Aut(Matsas), respectively,
and [MeSt2] shows that |B| = 4. But then |V/Cy (BNK)| < |V/Cy(B)| < |B| = 4, which contradicts
the action of K on V.

Case 4. Suppose p = 2, |B| > 2, and K is a genuine group of Lie type defined over a field of
characteristic 2.

Recall that B < T € Syly(M). Let V := Cy(T N K). Note that M is generated by the 2-
minimal subgroups containing 7. Hence there exists T < P < M such that P is 2-minimal and
[Vo, O*(P)] # 0.

5°. B < 0y(P).

Suppose that P = M. Then by (KB,V) is on the list, contrary to the assumptions. Thus
P+M.

Put Vp := Cy (02(P)NK). Then Vi < Vp. Put P = N (0¥ (PNK)). Then P is a Lie-parabolic
subgroup of K, Oz(P) N K = Oy(P) and 02'(]5) = 0% (PN K). Thus by Smith’s Lemma Vp
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is a simple K(P N K)-module. By (4°) O*(P) < PN K, so Cy(0*(P)) = 0 and Vp = Cy (O(P)).
Moreover, since P is 2-minimal, Cp(Vp) = O2(P).

Suppose that B ¢ Oz(P), so [Vp, B] # 0. By B is a non-trivial best offender on Vp, and by
B is not an over-offender on Vp. Henceshows that Cp(Vp) =1and V = Vp+ Cy(B). Again
there exists O2(P)B < H < P such that H/O3(P) = SLs(|B|), U := [Vp, H]| is a natural
SLo(|B|)-module, and V = U + Cy (B).

Put D := (BH). Then [V, D] < U, so every subgroup of V containing U is D-invariant. Since K
is of local characteristic 2 and P # M, there exists a minimal normal subgroup N of D in O2(D)NK.
Then [V,D,N] < [U,N] = 0 and [V, N,0%*(D)] = U. Hence, the Three Subgroups Lemma shows
that [0%(D), N, V] # 0 and so [N, O?*(D)] # 1. As SLy(|B|) has no non-trivial simple Fy-module of
order less than |B|?, we get |N| > |BJ2.

On the other hand for every 1 # © € N, U < Cy(z) and so Cy(x) is D-invariant. Since
N = (2P) it follows that Cy(N) = Cy(z). Now choose y € N and b € B with x := [y,b] # 1. Then
x € NN(B,BY) and Cy(B) N Cy(BY) < Cy(z) and so

[V/Cy(N)| = |V/Cy(2)| < [V/Cv(B)]* < |BJ> <|N|.
Hence, N is a non-trivial offender on V in K. But this contradicts , and so holds.

Since by B < O3(P) and since P = (PN K)B, also PN K is 2-minimal. Thus PN K is a
minimal parabolic subgroup of K fixed by B.

Let A be the Dynkin diagram of K and 4 be the node corresponding to P N K. Among all
B-invariant proper I' C A with 7 in I and I" connected we choose I' maximal. Let TN K < L be the
parabolic subgroup of K corresponding to I' and put L := 0% (Z), Q = 02(L), and Vi, := Cy (Q).
Note that B normalizes L and thus also V. So by B is a best offender on V. By Smith’s
Lemma Vi, is a simple ng—module. Let W be a simple FsL-submodule of V. By and
B normalizes W and is a best offender on W.

6°. Either B < LOo(LB), or the following hold:
(a) LB/CrLp(W) 2 05,,(q), n > 3, and W is the corresponding natural module.
(b) |B/Cp(W)| > 4.

Suppose that B £ LOs(LB). Note that [Vp, 0%(L)] # 0 since O*(P) < L and [Vp, 0*(P)] #
0. Since T' is connected, Cg(W) < O9(LB). Thus B is a non-trivial best offender on W. If
|B/Cp(W)| = 2, then B is not an over-offender on W, and by |B| = 2, a contradiction to the
assumptions of .

Hence |B/Cgp(W)| > 4, and by induction LB/Crp(W) = 05,,(q) and W is the corresponding
natural module. Moreover shows that LB is not 2-minimal, so n > 3.

7°. B acts transitively on A\T.

There exists a node j € A\ T such that j is adjacent to some node in I'. Now the maximality of
I shows that A =T'U ;5.

We now discuss the possibilities for K/Z(K). Suppose first that K/Z(K) is an untwisted group
of Lie type defined over F,. Then shows that no element of B induces a field automorphism or
graph-field automorphism in A. Thus B induces a graph automorphism on A, so A is of type A,
Dy, Fy, or Eg. Since M is not 2-minimal by , m > 3.

If A is of type Dy, then (M,V) is in the list by . Assume now that A is not of type
D,,, so m > 4 if A is of type A,,. Since B induces a graph automorphism, yields one of the
following possibilities:
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(i) IT'|=m —2, and A is of type A,,.
(ii) || =2, and A is of type Fy.
(iii) |T'| =4 or 5, and A is of type Es.

In all cases B acts non-trivially on I'; in particular B £ LO2(LB). Hence shows that T is
of type D,,. This rules out case . Moreover, in case m =5 and T is of type Ds; and in case
T is of type Dy4. In particular, by in each of the remaining cases P is uniquely determined,
Cy (02(P)) is a natural SLy(g)-module for P, and [Vp, R] = 0 for every other minimal Lie-parabolic
subgroup R of K containing 7'N K. By Ronan-Smith’s Lemma [4.3] this determines the module V
uniquely.

If A'is of type As, then V' is the exterior cube of a natural SLg(¢)-module. But then there exists
an L-composition factor of V that is a natural SL4(g)-module. This contradicts and .

If A is of type Fg, then V is the adjoint module for Eg(g). But then V has an L-composition
factor isomorphic to the adjoint module for QF (¢), a similar contradiction as above.

Suppose now that K/Z(K) is a twisted group of Lie type over Fpr. Then |[A\T| = 1 and
B induces a field automorphism of order 2 on Fg» with fixed field F,, so v = 2. Since M is not
2-minimal by (5°), K has Lie rank at least 2.

In all cases (5°) shows that P/Oz(P) = SLa(q), and this excludes that K is of type 2Fy, 3Dy or
24,,, m even. So K is of type 2A,,, m odd, 2D,,, or 2Es.

If K is of type 2D,,, we are done by [7.11|{b). Suppose that K is of type A,,, m odd. Since
2A3 = ?D3 we may assume in addition that m > 5, so by IT| > 2. In particular L contains
a minimal parabolic subgroup R with R/O2(R) = SL2(¢?), so B £ LO2(LB). Hence implies
that K is of type 245. Now as in the As-case, V is the exterior cube of the natural SUs(q)-module
and L has a composition factor which is a natural SU,(¢)-module. Since SU4(g) = Sping (¢) this
contradicts @

Suppose that K is of type 2Eg. Then |I'| = 3 and with the same argument as in the previous
paragraph using L is of type 2D4. So I', P and Vp are uniquely determined. Now as in the
Eg-case V is the adjoint module for K, and L has a composition factor isomorphic to the adjoint

module for Qg (¢), which contradicts (]EI)

The proof of Theorem

Let B be a minimal offender in A and note that B is a quadratic best offender on V.
Case 1. The case M = Ga(q), ¢ =2", V a natural Ga(q)-module.

We will use the following facts about the action of K on V and the structure of K, where
i-subspace means K-subspace of dimension ¢ in V:

There exists an M-invariant non-degenerate symplectic form on V (since V is self-dual and
p = 2). Let M; and M be the pair of maximal parabolic subgroups of M with T" < M, and such
that M; normalizes an i-subspace V; in V. Note that V; is singular and the graph with vertices
VM UVM and inclusion as incidence relation is a generalized hexagon. Since M acts transitively on
VE, VM consists of all the 1-dimensional subspaces of V.

Put P, := 02/(1\42»)7 and Q; := O2(P;). There exist exactly two classes of involutions in M with
representatives z,t € T such that

(i) t € Z(Q1), Pr = Q:1Cn(t), and P» = Cpy(2).
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(ii) ¢t and z and do not fix any vertex of distance larger than 3 from V; and V3, respectively.

(iii) ¢ and z fix all vertices of distance at most 3 from V; and V5, respectively.

We will use these properties to show @

1°. |Cv(2)| = q*. More precisely, z centralizes exactly the 1-subspaces of distance 1 and 3 from
V.

There are precisely ¢ + 1 1-spaces of distance 1 and ¢%(q + 1) 1-spaces of distance 3 from V5.
Hence by (i) and Cy(2) has exactly ¢+ 1+ ¢?(¢+1) = ¢® + ¢*> + ¢ + 1 1-spaces.

2°. |Cv(t)| = ¢®. More precisely, t centralizes exactly the 1-dimensional subspaces of distance 0
and 2 from Vi.

There is one 1-space of distance 0 and g(q + 1) 1-spaces of distance 2. Thus, as in , Cy(t)
contains exactly 1+ q(q+ 1) = ¢*> + ¢+ 1 1-spaces.

3°. Suppose t € B. Then |B| = |Cy(B)| = |[V,B]| = ¢3, Cr(B) = B, and B is uniquely
determined in M.

Since Cy (B) < Cy(t) and by and the quadratic action of B,
¢® =|[V,t]| = |[V, B]| and Cy(B) = Cy(t); in particular |B| > ¢°.

By Cy (t) is uniquely determined by M;, so also B* := O (Cpy, (Cy (£))) is uniquely deter-
mined. To prove the uniqueness of B in M, it suffices to show that |B*| < ¢* since then B = B*.

Note that [V, B*] = 0 for every g € M, and so B* < Q1 N Qz. Let z € P, \ M; and
D := B*N B**. Then |B*/D| < ¢* and |D| > ¢ since |Q2| = ¢° and |B*| > ¢3. On the other hand,
D fixes a path of length 6 with V5 as midpoint, and yields |D| < g. This shows that |D| = ¢ and
consequently |B*| < ¢3.

It remains to show that B = Cp(B). Assume that By =: Cy(B) > B. By Smiths’ Lemma,
Cy(Q1) = Vi and so [Cy(t),Q1] # 1. From [Va, Q1] < Vi we get Cy(t) = (V) and [Cy(t), Q1] =
V1. Thus Q1/B = Q1/Cq,(Cy (¢)) is dual to the natural SLa(¢)-module Cy (¢)/Vi. We claim that
Co,(B) £ B. If By < @ this is obvious. And if By £ Q1 we get [Q1,By] £ B and so again
Co, (B) £ B. Since Cg, (B) < P; we conclude that Q1 = Cq, (B) and t € Z(Q1), which contradicts

(.
4°. M B£J.

Assume that tM N B = (). Then we may assume that z € B, so Cy(B) < Cy(z) and by
q®> < |V/Cy(B)| < |BJ|. On the other hand, by and the non-trivial elements of Cp(Cy (z))
centralize every l-subspace of distance at most 3 from V5 but no singular 2-space of distance 4.

Hence |Cr(Cy(2))] = ¢. Tt follows that there exists z9 € B with Cy(z) # Cy(29) and so also
[V, 2] # [V, 29]. Since [V, 2] + [V, 29] < Cy(B) < Cy(2) N Cy(29) and |[V, 2]| = ¢%, we conclude that

ICv(B)| = ¢*, |B| = ¢* and Cy(B) = Cy(z) N Cy (z9).

But then V5 and V29 are of distance 2, and we may assume that V; = V5N V29 . Now shows that
t centralizes Cy (B) and so Cy(B) = Cy (). Hence also B(t) is a quadratic offender, and yields
t € B, a contradiction.
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5°. Case (@ of Theorem @ holds.

According to we may assume that ¢ € B, and according to Cp(B) =B and so A = B.
So Bifa) follows from (3°).

Case 2.  The case M = SL,,(q)/(—id"™ '), n. > 5, and V the exterior square of a natural KSLy, (q)-
module W.

Let U be a T-invariant K-hyperplane in W. Put R := Cp;(W/U) and Ig := Cy(O,(R)). Recall
that R/O,(R) = SLy,—1(¢) and O,(R) is an natural SL,,_;(g)-module for R isomorphic to U.
We will use the following properties of the exterior square:

6°. U, Oy(R) and V/Ig are isomorphic natural SL,,_1(q)-modules for R.
7°. Ir is as an FpR-module isomorphic to the exterior square of U.

If n > 6, then by and induction B is not an over-offender on Ig. If n = 5, then SLy(q) &
Q4 (¢) and Ig is the natural orthogonal module. Again by B is not an over-offender. Hence, in
both cases shows that either BN O,(R) =1 or B < O,(R).

In the first case |Ir/Cr,(B)| = |B| and V = Ir + Cy(B); in particular [V, B] < Ir. But this
contradicts . Thus we have B < O,(R). Pick b € B* and put C := Cg(h). Then C acts as
a point stabilizer on O,(R) and thus by also as a point stabilizer on V/Ig. It follows that
Cv(b) =Igor |Cv(b)/IR| =4d.

If Cy(B) = Ig, then |B| > |V/Ig| = ¢"~' and B = O,(R). Since Cr(0,(R)) = O,(R) we get
A = B, and case (]ED of Theorem 3| follows.

Assume now that |Cy (B)/Ir| = gq. Then Cy(B) = Cy(b) for all 1 # b € B. Also ¢" 2 =
|V/Cy(B)| < |B|. Since n > 5 this gives |B| > ¢, so there exists 1 # b,b € B with Cg(b) # Cr(b).

Hence, Cy (B) = Cy (b) = Cy(b) is normalized by R = (Cg(b), Cr(b)), a contradiction.
Case 3. The case M = Spin,(q) or Spinjy(q) and V a corresponding spin module.

We will use the following facts about the action of M on V and the structure of M. Recall that
P Qs5(q) = PSpy(g). There exists T' < R < M such that for I := Cy (O,(R)) the following hold:

(i) Sping,(q)/{=idv) = (q).

(i) R/O,(R) = Sping(g) resp. Sping ().

(iii) O,(R) is a natural Q5(q)- resp. Qg (¢)-module for R.

(iv) Tr = [V, Op(R)].

(v) If n = 7, then V/Ir and Ip are isomorphic natural Sp,(¢q)-modules for R, but Ir is not
isomorphic to O,(R)/O,(R) N Z(R); while if n = 10, O,(R), V/Ir and Ir are pairwise non-
isomorphic natural Qg (¢)-modules for R.

(vi) Op(R) acts quadratically on V.

(vii) If n = 7 and Z is a 1-dimensional singular subspace of O,(R), then Cp/(Z)/0,(Cp(Z)) =
Spinj (q), and V/[V, Z] is a natural J (q)-module for Cp/(Z).

Putd=1ifn="7and §d =2 if n =10. We first show:

8°. Cy(z) = IR for every non-singular x € O,(R), and |V/Cy (x)| = ¢*° for every non-trivial
singular © € Op(R).
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Let 1 # z € Op(R). Suppose first that z is singular in Op,(R). Then Cp(z) £ R and so
Cy (z) # Ir. Moreover, Cr(z) normalizes a unique proper submodule of V/I. This submodule has
order ¢%0 and so (8°) holds.

Suppose next that z is not singular. Then there exists g € M such that RY and R9* are opposite
Lie-parabolics of M. So by p.1] M = (O,(R9), O,(R9") < (Op(R9),z). Thus Cy (O,(R?))NCy (z) =
0 and V = [V,0,(R?)] + [V, z]. Since [V,0,(R?)] < Cy(0,(RY)) and [V,z] < Cy(x), this implies
[V, :17] = C\/(I) and so Cv(l’) = Cv(op(R)) = IR.

9°. B is conjugate to a subgroup of Op(R).

Suppose not. Then B £ O,(R). Let Z = O,(R) N B. If Z contains a non-singular element b,
then by [V,B] < Cy(B) < Cy(b) = Ig. But then (BF) centralizes V/Ir, a contradiction to
. Thus all elements in Z are singular. By either V = I+ Cy(B) and [V, B] < Ig, or B is an
over-offender on Ir. The first possibility contradicts @, so B is an over-offender on I. Then by
B4

C1,(B) = [Ir, B], |Cr,,(B)| = ¢* and ¢* < |B/Z| =|B/B N Oy(R)| < ¢*.

Put V = V/Iz. Then B acts quadratically on V. From |B/Z| > ¢*° and we conclude that
|V, B]| = ¢*® and so also [V /C(B)| = ¢*°. Thus |V/Cy(B)| > ¢* and so |Z| > ¢°. Let 1 £ x € Z.
Note that [V,B] + Ig < Cy(z). Since z is singular in O,(R) gives |V/Cy(z)| = ¢*°. Thus
Cy(z) = [V, B] + Ig and Cg(x) normalizes [V, B] + Ig. But R = (Cr(z),Cgr(y)) for any singular
z,y € Op(R) with Fya # F,y and since R does not normalizes [V, B]+ I we conclude that Z < Fyx.
Since |Z| > ¢°, we conclude that Z is a 1-dimensional singular subspace of O,(R). Also § = 1 and
son="1.

Put P := Cp(Z). By P/0,(P) = Spinf (q), and Cy(Z)/[V, Z] is the natural Q (¢)-module
for P. Thus every singular 1-space of Cy(Z)/[V, Z] is contained in a P-conjugate of Ig/[V, Z], and
the conjugates of Ir/[V, Z] are TI-subgroups in Cy (Z)/[V, Z].

Since B acts quadratically on V, [V, B]/[V, Z] is a 2-dimensional isotropic subspace and thus
contains a 1-dimensional singular subspace. Hence there exists g € P such that [V, B|NI}, £ [V, Z].
The TI-property of Iz/[V, Z] implies that B normalizes I%, so B < RY.

If B £ O,(RY), then the above also applies to B and RY in place of B and R, so [V, B] N I}, is
2-dimensional and so [V, BN I}, = [V, Z], a contradiction. Thus, we have that B < O,(RY), and B
is not a counterexample. Hence is proved.

According to we may assume that B < Op(R). If B does not contain a non-singular
element of O,(R), then |B| < ¢*. So also |V/Cy(B)| < ¢ and by Cy(B) = Cy (b) for every
1 # b € B. On the other hand, for every such b, Cg/0,(r)(b) is contained in a unique maximal
parabolic subgroup of R/O,(R). It follows that B is has order at most ¢, a contradiction.

Hence B contains a non-singular element b. Then by

(+) In = Cy(b) = [V.b] = Cv(B) = [V, B and |B| > |V/Cy(B)| = ¢"

If M = Spinfy(q), then |O,(R)| = |Ir| = ¢® = ¢*° and so by (+) B = O,(R). Thus A <
Cr(Op(R)) = Op(R) and A = B. Since O,(R) is weakly closed in T, we see that case (d]) of
Theorem (3 follows from (+).

So suppose M = Spin,(¢q). If A < O,(R), then case Theorem [3| follows. So assume for a
contradiction that A £ O,(R). Observe that [B, A] = 1, [B] > ¢* = ¢* and O,(R) is a natural
Q5(¢)-module for R/O,(R). We conclude that p = 2, |B| = ¢*, B = AN 0,(B) = Co,(r)(4)
and |A/B| < q. Thus |A] < ¢5. Since O,(R)/O,(R) N Z(R) is not isomorphic to Ir, we get that
|Ir/Cr,(A)| = ¢ and so |V/Cy (A)| = ¢° > ¢° = |A|. This contradiction completes .
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Case 4. The case M = 3.A1t(6) and |V| = 2°.
Then K =Ty, |A| =4, and Cy (A) is a K-hyperplane, so case @ Theorem [3[ follows.
Case 5. The case K = Alt(n), n > 5, and V the natural Alt(n)-module for K.

Let W be the natural permutation module for Sym(n) over Fp with basis w;, i € Q:= {1,...,n},
and Wy := (3 qwi). For ¥ C Q put Wy = (w; +wj | 4,5 € ¥) and Wy = Wy + Wy/Wy. Then
V = Wq.

10°. If A is a best offender, then case (@ or case @ of Theorem@ holds.

Suppose that A acts transitively 2. Then n = 2*, and since n > 5, k > 3. Note that |A| = 2,
Cw, (A) = Wy, and [Wg| = 22°=2 The commutator map

Gy (A) x A — Wo with (w + Wo,a) = [w, d]

shows that
ICrrg(A)] = |Cy(A)/Cwy (A)] < |A] = 25,

and so o .
2" = |A| > [V/Cy (A)| = [Wa/Cy, (A)] > 22 772,

Thus 2¥~! < k+1,s0 k = 3 and |A] = |[V/Cy(A)| = 8 = |Cy(A)|. Since V is self-dual, also
[[V, 4]| = 8 and since [V, A] < Cy(A), [V, A] = Cy(A). Hence case of Theorem [3] holds.

So we may assume from now on that A does not act transitively on €. Let U be an orbit of A on
Q of length say 2%. Since A is a best offender, A is an offender on Wy, and since ¥ # Q, Wy £ Wy
and so Wg = Wy. Thus A is an offender on Wy. Note that |A/Ca(Wy)| = |A/Ca (V)] = 2%,
(We| =22""1 and |Cyy, (A)] = |2|. Thus 22°~1-1 <2k 2k < k4 2 and k < 2.

Suppose A has two orbits ¥; and Wy of length four and put A := ¥; U ¥y, Assume for a
contradiction that A = Q and put H := Npy({¥1,¥2}). Then H = Sym(4)1Cy and A < Oy(H).
So H acts simple on Og(H). [MSI], 2.6] shows that Oo(H) is an offender, and the Timmesfeld
Replacement theorem implies that Oo(H) acts quadratically on V', a contradiction. Hence A # Q
and so Wy = W . Note that |4/C4(Wy)| = |A/Ca(A)]| < 16, [Wa| = 27 and |Cw, (A)| = 4. Thus
27/4 < 16, a contradiction.

Suppose ¥ is an orbit of length 4 for A on 2 and A has a fixed-point ¢ on 2. Put Vy; := (w; +w; |
j € ¥). Then Vg, is isomorphic to the permutations module for A on ¥ and is also isomorphic
to Vg ;. Thus A is a best offender on Vy ;. But |4/Ca(Vy ;)| = 4 and |Vy,;/Cw,(4)] = 8, a
contradiction.

We have proved that either all orbits of A on Q have length 1 or 2, or A has a unique orbit of
length four and all other orbits have length two.

Assume for a contradiction that Cyrs(A) # Cw,, (A)/Wo. Then there exists w € Wq such that
0 # [w, A] € Wp; in particular Ag := Ca(w) has index 2 in A. Let X C Q with w = ),y w; and
|X| even. Then there exists a € A such that {X, X} is a partition of 2, and Ay normalizes X and
X®. Note that Cyr(A) = (w) and that | X[ > 4 since n > 5 and | X[ is even. Thus

1< [Wx/Crr(A)] < |[V/Cy (A)] < |A].

Thus Ag # 1, and since Cx,(X) = C4,(X N X*) =1, Ay acts non-trivially on X. Since A has at
most one orbit of length four on 2 we conclude that [X \ Cx(Ag)| = 2. Thus [Ag| = 2 and [A| = 4.

The Timmesfeld Replacement Theorem shows that A acts quadratically on V. But [Wx, Ay, a] # 0,
a contradiction.
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We have proved that Cyy, /i, (A) = Cw, (A)/Wo, so |V/Cy (A)| = [Wa/Cw, (A)|. If follows that
A is an offender on Wq. Let k be the number of orbits of length 2. Assume that A has an orbit of
length four, then A has no fixed-point, n = 2k + 4, |Cyy, (A)| = 2F+1 |A] < 2F .4 = 2842 and

[V/Cy(A)] = [Wa/Cwy(A)] = 2771 7D = oh+2,

Since A is an offender, this implies |A| = 2¥*2, and since V is self-dual, |[V, A]| = |[V/Cy(4)|
282 = |A]. As A has on orbit of length 4, A is not quadratic on Wq and since Cyy,,/w,(4)
Cw,, (A)/Wy also not quadratic on V. Hence case of Theorem [3| holds.

Assume now that A does not have any orbit of length 4. Then [V, A] < Cy-(A) and |A| < 2F.
Suppose A has a fixed-point in . Then |V/Cy (A)| = 2% = |[V, 4]| and so |A| = 2* and case @ or
of Theoremholds. So suppose A has no fixed-points and so n = 2k and |V/Cy (A)| = 271 =
[V, A]|. Thus 28— < |A].

Let ¢1,...,t; be the transpositions corresponding to the non-trivial orbits of orbits of A on §2,
say t; € A if and only if i > [. If [ = 0, then again case of Theorem [3| holds. Suppose [ > 0.
Let 1 <7 < s <l and put A, = Ca(Ca((t,,t,)). Then |A/A,,| < 272 and so A, # 1. Since
Ais < (tr,ts) and neither t, nor t, are in A we conclude that A,; = (t.t). It follows that

A = (tita, tats, .. iaty, by, Ly, tr)-
Thus case (|h:3)) of Theorem [3| holds.
11°. Every offender in M on V is a best offender.

Let X be an offender and let ¥ < X with |Cy(Y)||Y| maximal and then Y minimal. By
the Timmesfeld Replacement Theorem, Y is quadratic. If |Y||Cy(Y)| = |V|, then |Y||Cy (V)| =
| X||Cy (X)] and so X is a best offender. If |Y]|Cy (V)| > |V, then shows that Y is generated
by a maximal set of commuting transpositions. So X < Cpy(Y) =Y, X =Y, and X is a best
offender.

Observe that (11°) together with (10°) completes (Case 5).
Case 6. The case M = Alt(7) and |V | = 24.

Choose T' < R < M with R = Alt(6). Then the previous case applies to R, and we are done. [

Theorem 8.2. Let M be a finite CK-group and V a faithful F, M -module. Suppose that there exists
K € Ju(V) such that V = [V, K] and V is a semisimple but not simple F, K-module. Then one of
the following holds, where q is a power of p and J := Jp(V):

1. J=SL,(q), n >3, and V=2 N" @& N**, where N is a natural SL,,(q)-module, N* its dual, and
r, s are integers with 0 < v, s <mn and /1 + /s < \/n.

2. J 2 Spy,,(q), m >3, and V = N", where N is a natural Sp,,,(q)-module and r is a positive
integer with 2r < m + 1.

3. J=SU,(¢q), n>8, and V = N”, where N is a natural SU, (q)-module and r is a positive integer
with 4r < n.

4. J =2 Q¢ (q) with p odd if n is odd, or M = O, (q) with p = 2 and n even. Moreover n > 10 and
V =2 N”, where N 1is a corresponding natural module and r is a positive integer with 4r < n — 2.

In particular, if V' is not a homogeneous F,J module, then holds with r #£ 0 # s and n > 4.
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Proof. By [2.2(|) K is the unique J-component of M; in particular K < M. Since V is a semisimple
K-module we have

1°. V=N ® - ® Ny, m>2, where N is a perfect simple F, K-module.

By J normalizes N; and by every best offender on V is also a best offender on N;.
Moreover, O,(J/C;(N;)) = 1 since N; is simple. Hence
2°. J/Cy(N;) and N; satisfy the hypothesis of Theorem @

By K is not solvable since m > 2, so K is a component of M. Now shows that .J
acts F;-linearly on N;, where F; = Endg(N;). In particular [J,C;(K)] < C;(IV;). Since K is the
unique J-component and K £ C;(N;)C;(K), we get from [2.2(b) C;(N;)C,(K) < Z(J). Another
application of Theorem [2 shows that J/KC ;(V;) is a p-group. Hence J/K is nilpotent, and since J
is generated by p-elements and O,(Z(J)) < O,(M) =1, we get that Z(J) < K. It follows:
3°. Cy(N;) < Cy(K)=17Z(J) =ZK).

From now on we fix a non-trivial best offender A < M. By @ there exists a minimal best
offender B < A such that [V, B, A] = 0; in particular B is quadratic on V.
Note that by Ca(N;) =1, since Z(J) is a p’-group, and that B is a best offender on N; by

Now implies

m

V/Cv(B)| =[] IN:/Cn.(B)| < |BI.

i=1
Since m > 2 there exists N € {Ny,..., N, } such that
©.  |N/Cn(B)| <|B}.
Put F := Endg (V). Then and Theorems [2| and [3| imply:

5°  J/Cs(N) = SLu(q), Sp,(q); SUn(q), 2,(q) or Oy(q) (and p = 2), n := dimg N where
q:=|F|if J/C;(N) 2 SU,(q) and q = [F|2 if J/C;(N) = SU,(q). Moreover, N is the corresponding
natural module.

Let N* be the FK-module dual to N. We first treat the cases where each N; is isomorphic to N
or N*, say V=N"® N* r+s=m.
By [1.8(|d)) B is quadratic on N*. Put

D = CJ(CN(B)) N CJ(CN* (B))7 k.= dim]F N/CN(D), = dim]F[N, D]
By [1.8(d) I = dimp N*/Cpn+(D), and by }1@]) B <D, Cy(D)=Cy(B), [V,D] =1[V,B], and D is
a quadratic offender on V. Moreover by [L.8(f) £+ < n. We get
6°.  |V/Cy(D)|=q¢"*" <|D].

Recall from that N and N* are isomorphic FJ-modules, if J/C;(N) is not isomorphic to
SL,,(¢q). We now treat the cases given in separately.

Case 1. Suppose that M = SL,,(q) and V = N” & N** with r + s > 2. Then holds.
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By |D| = ¢*', and (6°) gives |V/Cy(D)| = ¢"**+*!. Thus V is an FF-module if and only if
there exists 0 < k,l < n with rk + sl < ki, that is 7 + 7 < 1. Increasing [ decreases 7 + . So
we may assume that & +1 = n. Put g(k) = -5 + 7. We will determine the minimal value of g(k)
on the open interval (0,n). If k approaches 0 or n, g(k) approaches +oco. So f obtains a minimum

value at some point m in (0,n) with ¢’(m) = 0. We have ¢'(m) = im? — mz- Straightforward
calculations show that m = —2—n, n —m = ——n and g(m) = (PSP g(m) < 1if
VTVl NG no =

and only if /7 + /s < v/n. So if V is an FF-module, then /7 + /s < \/n. (We remark that with a
little more effort it can be shown that there even exists an integer & in (0,n) with g(k) <1, s0 V is
an FF-module if and only if \/r + /s < \/n.)

In the remaining cases M = Sp, (q), SU,(q), Q5(q) or O,(q) we get from [3.2(la)) that N = N*.
Hence k = [. Recall that [V, D] is an isotropic subspace of N by (ED since D is quadratic on V.

Case 2. Suppose that M = Sp,,(q) and V = N" for some r > 2. Then @) holds.
By |D| = q(kgl) and so as in the case |D rk < k(kTH) and 2r < k4 1. Since [V, D] is

isotropic and the maximal dimension of an isotropic subspace is § we get 2r <  + 1. Now r > 2

2
implies n > 6, and holds.
Case 3. Suppose that M =2 SU,,(q) and V = N" with r > 2. Then (@ holds.

In this case |[N| = ¢**. By |D| = ¢*" and as in the previous cases 2rk < k? and 2r < k.
Moreover, since k +1 < n and k =, also 2k < n and so 4r < n. Now r > 2 implies n > 8.

Case 4. Suppose that M = Q¢ (q) or O;,(q) and p = 2, with n even if p =2, and V = N" for
somer > 2. Then holds.

Suppose first that [NV, D] is singular. Then by |D| = q(g) and so rk < (g) and 2r < k — 1.
Since k + 1 =2k < n, we get 4r < 2n — 2. Now r > 2 implies .

Suppose next that [N, D] is not singular. Then p = 2 and so n is even, and Myields |D| < 2q(§)
and as in the previous cases ¢"* < 2q(§). In addition, » > 2 implies k£ > 2. Then

log, 2

k 2
rk<10gq2—|—(2) and 2r < +k—1.

2log, 2

If —*= > 1, then ¢ = 2 = k and r = 1, a contradiction. Thus < 1land 2r <k —1. Now

again 2k < n implies that 4r < 2k — 2 < n — 2. Since r > 2, n > 10, and holds.

2log, 2

Case 5. Suppose V' is not a direct sum of copies of N and N*.

Without loss Ny is neither isomorphic to N nor to N*. We will show that this leads to a
contradiction.

By B is an offender on N @& N. Hence we can apply the previous cases to N & N in place
of V and get that dim N > 3, 6, 8, and 10, respectively.

Suppose that M/Cp(N) = SL,,(¢) and N is the corresponding natural module. Since Ny is not
a natural module, Theorem 2] shows that N, is the exterior square of a natural module. For n = 3,
Ny = N* or N, which is not the case. Hence n > 4. Since B is an over-offender on N5, Theorem
3((b) shows that n = 4. In this case Ny is a natural QF (¢)-module for J/C;(N3). Hence gives

INy/Ch, (B)] = ¢° < |B| < ¢(&),
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where s is the F,-dimension of a maximal singular subspace of Ny centralized by B. On the other
hand 2s < 6 and so s < 3. But then s does not satisfy the above inequality.

Suppose M/Cpr(N) = Spy,,(q). Then by Theorem [2 n = 3 and Nz is a spin module. So we get
|B| < ¢° and |No/Cn,(B)| = ¢*. Tt follows that |[N/Cx(B)| < ¢, a contradiction to |B| > ¢*.

Suppose that K/Cg(N) = SU,(q), n > 8, or Q(q), n > 10. Then Theorems [2| and [3| show that
every FF-module for J with an over-offender is a natural module, a contradiction.

Suppose now that V' is not homogeneous as an FsJ-module. Then holds with r # 0 # s.
Thus v/n > v/1++1/1 =2, n> 4 and all parts of the theorem are proved. O

Theorem 8.3. Let M be a finite CK-group with O,(M) =1 and V a faithful F,M-module. Put
T =IuV), J:=Iu(V) and W := [V, T+ Cy(TJ)/Cv(JT) . Then the following hold:

(a) Let K € J. Then K is either quasisimple, or p =2 or 3 and K = SLy(p)’.
(4) [V,K,L] =0 for all K # L € J, and W = @ e ,[W, K].

(¢) JPT = OP(J) = F*(J) = X J.

(d) W is a faithful semisimple F,.J-module.

(e) C;(W,K]) = Cy([V,K]).

Proof. @ and the first part of (]E[) follow from For the proof of the second part of (]ED note that
Cw(K) = Cy,71(K)+Cy(J)/Cy(J) since K = OP(K). Thus, by the first part Cy (K)N[W, K] <
Cw(J)=0.

(c): Put Jo := J'JP. First we prove:
1°. Let K € J. Then Jy induces inner automorphism on K.

Let X be a quasisimple K-submodule of V. and Y = Cx(K). Then we can apply - 2.9to0<Y <

X <Voand S:=X/Y. By ) J = J/C(S) and S satlsfy the hypothesis of Theorem We
conclude that |.J/K| < p and so Jo < K. Since Cy(K ii @ . holds.

Let D :=(J),s0 D= X J and D < .J by- Moreover, Z(J) < Jo since Z(J) is a p’ group
By (1° . Jo induces inner automorphisms on D. Hence Jy < DC;(D), and by [2.2] -. Jo = DZ(J
Since J/Jy is an elementary abelian p-group, J/D is nilpotent, and since J is generated by p—elements
J/D is a p-group and so D = Jp.

(d): Since OP(J) < (J), J acts nilpotently on V/[V,J] and Cy(J). Hence C;(W) acts nilpo-
tently on V and so C;(W) < O,(M) = 1. Thus W is faithful J-module.

By every perfect simple K-submodule is also a simple J-submodule. Hence @ follows if
[W, K] is a semisimple K-module. So suppose for a contradiction that [W, K] is not semisimple
K-module. We will use the bar-convention for the images of subgroups of V in W, so X = X +
Cy(D)/Cy(D) for X <V.

Let Xo <V be a K-submodule of W that is minimal such that Xy = [X5, K] and X5 is not a
semisimple K-module. The minimality of X5 implies that X5 has a unique maximal K-submodule
Ys such that [Y3, K] # 0 and X5/Y5 is a simple K-module.

Recall that [U, K, K] = [U, K| for every K-section of W since K is a J-component and thus is
generated by p’-elements. It follows that Cy, /Cy, (K) (K) = 0. Hence there exists a K-submodule Y;
of Y that is maximal such that Y7 # Y5 and Cy, /vy, (K) = 0. Put X; := [Y3, K] + Y7. Let Z; be a
K-submodule of Y3 with Y7 < Z; < Y5. Then by maximality of Y1, Cy,/z, (K) # 0. Let Zy be the
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inverse image of Cy, /7, (K) in Y5. Then Cy, z,(K) = 0 and so by maximality of Y, Z, = Y. Hence
X1 =[Yo, K|+ Y < Z;. Tt follows that X;/Y7 is the unique minimal K-submodule and Y2/Y7 is
the unique maximal K-submodule of X5/Y7, while X;/Y7 and X5/Y> are simple K-modules, and
X2/X; is a quasisimple K-module. In particular, K and Xy = Y] < X; < Y5 < X, satisfy the
hypothesis of This result shows that S := X;/Y; & X5/Ys and J := J/C,(S) satisfies the
hypothesis of in place of V' and M. We conclude that

K 2 SL,(q), n > 3, Spy,,(q), n > 3, Q5. (q), n > 10, or SU,(q), n > 8,

N := X;/Y; is a corresponding natural module, and X5/Y5 is either isomorphic or dual to N.
In particular, Cx(N) = Cg(S) = Cg(X2/Y1). Put F := Endg(N). Note that there exists a J-
invariant symplectic, orthogonal or unitary form on N, which is non-degenerate with the exception
of the natural SL,,(¢)-module, where it is the zero-form.

Let B < J be a nontrivial quadratic best offender on T' := X,/Y; with E := [N, B] minimal.
Since B is quadratic on T, byE is an isotropic subspace of N. Put P := Ngp(E) and Q = (BY).
Then [N,Q] < E < Cxn(Q) and so @ is quadratic on N. In particular

Q' < Cq(N)N(KB) <Ckg(N)=Cg(T).

Since Ck (T') < Z(K) is a p’-group, this implies that @ is abelian, so Q/Cq(T) is elementary abelian.
As @ contains an offender, [MS1], 2.6] and the Timmesfeld Replacement Theorem show that there
exists R < @ with R < P such that R is a quadratic best offender on T. The minimality of [N, B|
gives [N, R] = E.

Put J := J/C;(N) and U := Cg(E) N Cx(N/E). We will show next:

2°. U does not possess any central P-chief factor.

Note that RN K < U < P. If K 2 SL,,(F) or SU,,(F), then [U, P] # 1 and P acts simply on U,
S0 holds.
Suppose that K = Sp,,, (F) or Q5,,(F). Let [ := dimy E. By 3.4
IT/Cr(R)| = ¢® < [R| < q('%) resp. 2q().

It follows that [ > 3 in ‘Lhe first case and [ > 5 in the second case. Hence shows that P has no
central chief-factors on U and again holds.

3°. Ckr(N) = Ckgr(T).
Put C := Cgr(N) and Ry := RN KC. Note that Ry < UC'. It follows that
RyC/C <UC/C =pU.

On the other hand OP(P) centralizes RyC/(K N R)C. Hence gives Ry < (RN K)C, so Ry =
(RN K)Cgr(N). This shows that

KCNKR= KRy = KCgx(N).

By 2.4 Cr(N) = Cr(K) = Cg(T) and, as seen above, Cx(N) < C(T), so Cxr(N) = Cxr(T).

By (KR/Ckgr(T),T) satisfies the hypothesis of It follows that there exists a K-
submodule U of T with T'=Y5/Y; + U and N £ U, a contradiction since N is the unique minimal
K-submodule of T'. Thus @ is proved.
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To proof () put C = C,;([W, K]). Since K acts faithfully on [W, K], CNK = 1 and so [C, K] = 1.
Since [V, K] = [V, K, K] we have [W, K] = [V,K] + Cy(J)/Cv(J) and [V,K,C] < Cy(J)). In
particular, C;([V; K]) < C. Let ¢ € C. Then [V,K,c] = [V, K]/Cy k)(c) as a K-module. But any
quotient of [V, K] is a perfect K module, while any submodule of Cy (J) is a trivial K-module. So
[V,K,c] =0 and C < C;([V, K)). O

The proof of Theorem apart from statement @: The first four statements @ - @
follow from The statements (f) and follow from
Theorem (ED will be proved at the very end of the paper.

Lemma 8.4. Let M be a finite CKC-group with Op(M) =1 and V a faithful F,M-module. Suppose
that

(i) M =Jp (V) and there exists a unique Jpr(V')-component K,
(i) Cy(K) < [V, K] and either Cy(K) # 0 or V # [V, K].

Let A < M be a best offender on' V and put W := [V, K] and V := V/Cy(K). Then p =2, and one
of the following holds:

(a) M = K = SL3(2), V=W, |Cy(K)| =2, V is a natural SL3(2)-module, |A| = 4, [V, A]| = 2
and Cy (A) = [V, A] has order 4.

(b)) M = K =2 SL3(2), |[V/W| =2, Cy(K) =0, W is a natural SL3(2)-module, |A| =4 = |Cw (A)]
and Cy (A) = [V, A] = Cw (4).

(¢) M=K =8U42),V=W,2<|Cy(K)| <4,V is a natural SU4(2)-module, A is the centralizer
of a singular 2-subspace of V', and Cy (A) = [V, A].

(d) M = Ga(q), g =2%, V=W, 2<|Cy(K)| <q, V is a natural Ga(q)-module, |A| = ¢3, and
Cy(4) = [V, A].

(e) K = Alt(2m) and M = Sym(2m) or Alt(2m). For Q= {1,2,...,2m} let N = {nxg | ¥ C Q} be
the 2m-dimensional natural permutation module and N be the Fo M -module defined by N = N
as an Fa-space and

nd = nxe if |3 is even or g € Alt(Q), and n¥, = nys + ng if |X| is odd and g ¢ Alt(Q).

Then one of the following holds, where ty,ts, ...ty is a mazimal set of commuting transposi-
tions:

1. M = Sym(n), V is isomorphic to N or N/Cn(K), and A = (t1,ta,...,tx) for some 1l <k <
m.

2. M =Sym(n), V = N and A = (t1,to, . tm).

3. V[N, K] and A fulfills one of the cases - of Theorem[3

(f) M =K =Sp,,.(q), m>1,q=2% (m,q) # (1,2),(2,2), and W is the direct sum of r natural
Sp%(q)-modulesﬁ Moreover, the following hold:

40bserve that for m = 1, Spy(q) = SL2(q) and a natural Sp,(g)-module is also a natural SLa(g)-module.
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(a) 2r <m+1, and if V#W then m > 1 and 2r < m + 1.

(b) Let X be the 2m + 2-dimensional F,M-module obtained from the embedding Sp,,(q) =
Qomi1(q) < U 10(q). Then V is isomorphic to an F,M-section of X".

Proof. Suppose K is not quasisimple. Then K is a p’-group and V = [V, K] & Cy(K). Since
Cy(K) < [V, K] this gives Cy(K) =0 and V = [V, K], contrary to the assumptions.

Thus K is quasisimple. By W is a semisimple K-module and we conclude that there exists
simple K-submodule of U of W such that H(K,T) # 0 or H(K,U") # 0.

Let B := C4([V,4]). By the Timmesfeld Replacement Theorem, B is a non-trivial quadratic
best offender on V. Note that by and A and B are offenders on U and W. Comparing
with Theorem we see that p = 2 and the following holds:

1°. M == SL3(2), SU4(2), Ga(q), Alt(2m), Sym(2m) or Spy,,(q), and W is the corresponding

natural module, with the exception of the Sp,,,(q)-case, where W is the direct sum of r natural
modules for some integer r with 2r < m + 1.

We now discuss the cases given in (and separately.
Case 1. Suppose M = SL3(2) and Cw (K) # 0.

Let 1 # a € A. Since W = [W, K] has order 2* and K is generated by three conjugates of a,
[[W,a]| = [W/Cw(a)| = 4. Since A is an offender we conclude that

A= B, [V/Cy(4)] = |A| = |Cw(4)| = 4.

In particular Cy (A) = [W,A], V = Cy(A4) + W and |[V,A]| = 2. The latter fact shows that
V =W + Cy(K) and thus W = V. Hence (@) holds in this case.

Case 2. Suppose M = SL3(2) and Cw (K) = 0.

Then W is a natural module and V' # W. As above, for 1 # a € A, |V/Cy(a)| = |A| =4, and
Cv(a) = Cw(a) = Cy(A). Hence () holds.

Case 3. Suppose M = SU4(2).

Then [W, B] is a singular subspace of W, and shows that |B| = 2% = |W /Cy#(B)|. Thus
A = B and |V/Cy(A)| = 2*. Moreover, by M is generated by two conjugates of A and so
|V/Cy(K)| =28 and V = W + Cy(K). Hence V.= W. As [V, A]/[V,A] N Cy(K) has order 2*
and M is generated by two conjugates of A, Cy(K) < [V, A]. Since Cy+(A) = [V, 4] this gives
Cy(A) = [V, A], and () holds.

Case 4. Suppose M = Ga(q).

Then |A] = ¢3, C(A) = [W, A] has order ¢3, [W| = ¢%, and by |5.2] M is generated by two
conjugates of A A similar argument as in the SU4(2) case now shows that @ holds.

Case 5. Suppose M = Alt(2m) or Sym(2m).

Since K is perfect, V is as an Fy K-module isomorphic to a section of the 2m-dimensional permu-
tation module N. If V=W or Cy (K) = 0 we have Cq(v)(K) = 1 and so V' is also an Fo M-module
isomorphic to N.

If H = Sym(n) and |V| = 22 there are two possible isomorphism types for V, namely N and
N as described in (EI) Note that if ¢ is a transposition, and V = N, then Cy () < W. Since A is an
offender on W we can apply Theorem 1)
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Suppose that Cy (A) £ W. Then there exists a proper subset X of Q = {1,2,...,2m} such that
|2 is odd and | A| normalizes {¥, Q\X}. If ¥ is A invariant, then A has a fixed-point on X. It follows
from Theorem that A is generated by transpositions, V % N, and holds. So suppose for
a contradiction that ¢ = Q\ ¥ for some a € A. Then |X| = m is odd. So Theorem [3|[h:4)) does not
hold. Put Aj := N4(X). Note that Supp(b) = Q for all a € A\ Ag and so b € A for all b € A with
with [Supp(b)| < 4. In the first three cases of Theorem [3[h), A is generated by such elements, so
A = Ay, a contradiction.

Suppose that Cy(A) < W. If W # V we conclude that A is an over-offender on W. Thus by
Theorem A is generated by a maximal set of commuting transpositions. Hence or
holds.

Assume that W = V. Then W = [N,K]|. If 2m = 8 and A acts transitively on 2, then
Cy(A) = Cy(K) and |V/Cy(A)] = 26 > 23 = |A|, a contradiction. This excludes case of
Theorem and holds.

Case 6. Suppose M = Sp,,.,(q).

Since K is perfect we conclude from and that it remains to prove the second
statement of . Since A is an offender on V we may assume that Cy (K) =0 and so V # W.

Suppose that there exists v € Cy (A) \ W. Then Ck(v) is contained in a subgroup isomorphic
to 05,,(V), and B:2d) shows that 4r < 2m — 2. Thus 2r <m—1<m+ 1.

Suppose next that Cy(A) < W. Since V # W we conclude that A is an over-offender on W.

The proof of [8.2(|Case 2|) now shows that r < m + 1. O

Corollary 8.5. Assume the hypothesis of[84 Then every best offender in M on'V is a best offender
on [V, J] + Cv(TJ)/Cv (T).

Proof. According to we may assume that V = [V, J]. Put V := V/Cy(J) =: W and X :=
Cy(J). Let A be a best offender in M on V. Choose 1 # B < A such that |B||Cw (B)| is maximal
and then B minimal. Since A is an offender on W, B is a quadratic best offender on W.

Suppose that Cy (B) = Cy(B). Since A is a best offender on V, |Cy (B)||B| < |Cv(A)||A] and
since B < A, Cx(B) > Cx(A). Thus

ICy(B)||B] _ |Cv(AIA] A
CxB) = [Cxid) = OvAIAI<ICw(AIA]

and so A is a best offender on W.

Suppose that Cy(B) # Cy(B). Since V is J-semisimple by there exists a perfect J-
submodule Y of V such that Y is simple and Cy(B) # Cy (B). Note that there exists a unique J-
component K with [Y, K] # 0. Moreover, Y = [Y, K] and Y N X = Cy (K) # 0. Put J := J/C(Y).
The Three Subgroups Lemma implies that Op(j ) centralizes Y and so we can applyto (J,K,Y)
in place of (H, K, V).

In Case [8.4{(d), () we have C;(v) = C;(v) for all v € V, a contradiction.

In Case [8.4(c) we get A = B and Ci+(B) = [V, A] = Cy(A) = Cy (B), contradiction.

Suppose [8.4{le) holds. Then A is generated by elements of support at most 4 and so Cy-(A4) =
Cv(4). N _ L

Suppose that holds. Then |A| = 4 and Cy(A) = [V, A] = Cy(A). Thus B # A and
|B| = 2 =|Y/Cs(B)|. Put By = Cp(Y). Then |Cy (B)||B| = |Cw(Bo)||Bo|- The minimal choice
of B implies By = 1 and so |B| = 2. Thus |Cw(B)||B| = |W/|. Since A is an offender on W, this
gives |Cy (B)||B| < |Cw(A)||A|. Thus A is a best offender on W.

Finally Case does not apply, since Cy (K) # 0. O

[Cw (B)||B| =
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The proof of Theorem @: This is

References

[ATLAS] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Perkel and R.A. Wilson, Atlas of Finite

[As]

[BHS]

[GLS3]

[GM1]
[GM2)

[GLM]

[Gr]

Groups, Clarendon Press, Oxford, 1985.

M. Aschbacher, Finite Group Theory, Cambridge studies in advanced mathematics 10,
Cambridge University Press (2000), New York.

D. Bundy, N. Hebbinghaus, B. Stellmacher, The local C(G,T) Theorem, J. Algebra 300
(2006), no. 2, 741-789.

A. Chermak, Quadratic action and the P(G,V)-theorem in arbitrary characteristic, J.
Group Theory 2 (1999), 1-13.

B.N Cooperstein, An enemies list for factorization theorems, Comm. Algebra 6 (1978),
1239-1288.

D. Gorenstein, R. Lyons, R. Solomon, The Classification of the Finite Simple Groups,
Number 8 Mathematical Surveys and Monographs, Volume 40, Number 3, AMS (1998).

R.M. Guralnick, G. Malle, Classification of 2F-Modules, I, J. Alg. 257 (2002), 348 - 372.

R.M. Guralnick, G. Malle, Classification of 2F-modules, 11, Finite groups 2003 , 117-183,
Walter de Gruyter GmbH & Co. KG, Berlin, 2004.

R.M. Guralnick, R. Lawther, G. Malle, 2F-modules for nearly simple groups, J. Alg. 307
(2007), 643-676.

R.L. Griess, Schur multipliers of the known finite simple groups, II, The Santa Cruz
Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), pp. 279-282,
Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, R.I., 1980.

W. Jones, B. Parshall, On the 1-cohomology of Finite Groups of Lie-type, in Proceedings
of the Conference of Finite Groups, ed. W.R.. Scott, F.Gross, Academic Press (1976).

H. Kurzweil, B. Stellmacher, Theorie der endlichen Gruppen. Eine Einfihrung, Springer-
Verlag, Berlin (1998), 341pp.

J. McLaughlin, Some Subgroups of SL, (F3), Illinois J. Math. 13 (1969),105-115.

T. Meixner, Failure of factorization modules for Lie-type groups in odd characteristic,
Comm. Alg. 19 (1991), 3193-3222.

U.Meierfrankenfeld, A characterization of the spinmodule for 2- A,,, Arch. Math 57 (1991)
238-246.

U. Meierfrankenfeld, B. Stellmacher, The other PGV Theorem, Rend. Sem. Mat. Univ.
Padova 115 (2006), 41-50.

U. Meierfrankenfeld, B. Stellmacher, Nearly quadratic modules, J. Alg. 319 (2008), 4798-
4843.

69



[MeSt1]  U. Meierfrankenfeld, G. Stroth, On quadratic GF(2) - modules for Chevalley groups over
fields of odd order, Arch. Math. 55 (1990), 105 - 110.

[MeSt2] U. Meierfrankenfeld, G. Stroth, Quadratic GF(2) - modules for sporadic groups and
alternating groups, Comm. Alg. 18 (1990), 2099 - 2140.

[Po] H. Pollatsek, First cohomology of some orthogonal groups, J.Alg. 28 (1974), 477-483.

[St] R. Steinberg, Lectures on Chevalley Groups, Notes by J. Faulker and R. Wilson,
Mimeographed notes, Yale University Mathematics Department (1968).

[Ti] F.G. Timmesfeld, A remark on irreducible modules for finite Lie type groups, Arch. Math.
46 (1986), 499-500.

70



	Linear Algebra and Offenders
	J-Components 
	Maximal Quadratic Offenders in Classical Groups
	Smith's Lemma and Ronan-Smith's Lemma
	Generating Genuine Groups of Lie-type
	Module Decompositions
	Quadratic Modules
	The FF-Module Theorems

