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Abstract

Let p be a prime, M a finite group with Op(M) = 1, V a faithful FpM -module and J the
subgroup of M generated by the best offenders on V . In this paper we determine structure of
J and the action of J on V .

Introduction

Let p be a prime, M a finite group and V a finite dimensional FpM -module, where Fp is the prime
field in characteristic p. A subgroup A ≤M is an offender on V if

1. A/CA(V ) is an elementary abelian p-group, and

2. |V/CV (A)| ≤ |A/CA(V )|;

and A is a non-trivial offender on V , if in addition [V,A] 6= 0. Moreover, V is called an FF -module
for M if some subgroup of M is a non-trivial offender on V . Faithful simple FF -modules for groups
of Lie type in equicharacteristic have been classified by Cooperstein [Co] (the case p = 2) and
Meixner [M] (the case p 6= 2) and for arbitrary nearly simple groups by Guralnick, R. Lawther and
G. Malle [GM1], [GM2], [GLM].

These results have been of great importance for the local theory of finite groups since such FF -
modules are closely related to the failure of the Thompson-factorization in groups of characteristic
p. In fact, for a finite group G and a normal elementary abelian p-subgroup X the elementary
abelian p-subgroups of maximal order in G provide examples for offenders on X; and so G possesses
non-trivial offenders on X if [X, J(S)] 6= 1, where S ∈ Sylp(G). The action of such elementary
abelian subgroups have an additional property that is reflected in the following definition.

A subgroup A ≤M is a best offender on V if

(i) A/CA(V ) is an elementary abelian p-group, and

(ii) |B||CV (B)| ≤ |A||CV (A)| for every subgroup B ≤ A.

It is easy to see (using B := CA(V )) that every best offender is an offender. Indeed, a best
offender A on V is an offender on every A-submodule of V ; and this property characterizes best
offenders (see 1.2).
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In this paper we use this slightly stronger definition to derive a result about FF -modules that is
free from the restriction to simple modules. It includes the above mentioned FF -module theorems,
but also in these cases it gives more information about the size and action of offenders on V .

Most of the time we will treat groups like Alt(6) ∼= Sp4(2)′, SU3(3) ∼= G2(2)′ and 2F4(2)′ together
with the groups of Lie-Type. We therefore use the following definition.

Definition. A genuine group of Lie-type in characteristic p is a group isomorphic to Op′(CK(σ)),
where K is a semisimple Fp-algebraic group, Fp is the algebraic closure of Fp, and σ is Steinberg
endomorphism of K, see [GLS3, Definition 2.2.2] for details. A simple group of Lie-type in charac-
teristic p is a non-abelian composition factor of a genuine group of Lie-type in characteristic p.

Before stating our main result we give some further definitions.

Definition. The normal subgroup of M generated by the best offenders of M on V is denoted
by JM (V ). A non-trivial subgroup K of JM (V ) is a JM (V )-component if K is minimal with respect
to K = [K, JM (V )]. The set of these components we denote by JM (V ).

A finite group H is a called a CK-group provided that each composition factor of H is one of the
known finite simple groups.

Let S be a set of subgroups of M . We often write [V,S] and CV (S) rather than [V, 〈S〉] and
CV (〈S〉). Similarly, we write×S rather than×A∈S A.

The FpM -module V is perfect if V = [V,M ], simple if V 6= 0 and 0 is the only proper FpM -
submodule of V , and quasisimple if V is perfect, Op(M/CM (V )) = 1 and V/CV (M) is simple.
Moreover, M acts simply on V if V is a simple M -module; and M acts nilpotently on V if there
exists a finite series 0 = V0 ≤ V1 ≤ Vk−1 ≤ Vk = V of FpM -submodules of V with [Vi,M ] ≤ Vi−1

for all 1 ≤ i ≤ k.
Let A be a subgroup of M . Then

– A is a strong dual offender on V if A acts nilpotently on V and [V,A] = [v,A] for every
v ∈ V \ CV (A);

– A is a strong offender on V if A is an offender on V and CV (A) = CV (a) for every a ∈ A\CA(V )
(note that the last condition is equivalent to CA(V ) = CA(v) for all v ∈ V \ CV (A));

– A is an over-offender on V if A is an offender and |A/CA(V )| > |V/CV (A)|.

Finally we call V a natural FpK-module for M if M/CM (V ) ∼= K, and there exists a quadratic,
bilinear or sesquilinear form f on V left invariant by M such that for K, K := EndM (V ), dimK V
and f one of the following cases holds:

K dimK V K f

SLn(pk) n Fpk zero-form
Sp2n(pk) 2n Fpk non-deg. symplectic
Oε
n(pk) n Fpk non-deg. quadratic

Ωεn(pk) n Fpk non-deg. quadratic
SUn(pk) n Fp2k non-deg. unitary
G2(2k) 6 F2k non-deg. symplectic

Sym(2n) 2n− 2 F2 zero-form
Alt(2n) 2n− 2 F2 − || −

Sym(2n+ 1) 2n F2 − || −
Alt(2n+ 1) 2n F2 − || −
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In the last four cases V is meant to be the simple composition factor of the F2-permutation
module for Sym(2n) and Sym(2n+ 1), respectively.

Note that in the above definition a non-degenerate quadratic form is a quadratic form that is non-
zero on every non-zero element in the radical of the associated symmetric form. Also observe that
O2n+1(2k) ∼= Sp2n(2k) and V is a central extension of a natural Sp2n(2k)-module. This extension
does not split if n > 1 or k > 1.

In general, M can have more than one natural module. For example, for n = 5, Alt(5) ∼= SL2(4) ∼=
Ω−4 (2), so M has three natural modules, the natural SL2(4)-module, the natural Ω−4 (2)-module, and
the natural Alt(5)-module, the latter two being isomorphic.

In addition, M ∼= SLn(q), n > 2, has two natural SLn(q)-modules that are not isomorphic due
to the graph automorphism of SLn(q). Similarly, M ∼= Spin+

8 (q) has three natural Ω+
8 (q)-modules.

In the literature two of these are called half-spin modules depending which epimorphism from M to
Ω+

8 (q) one chooses.

Theorem 1 (General FF-Module Theorem). Let M be a finite CK-group with Op(M) = 1
and V be a faithful finite dimensional FpM -module. Suppose that J := JM (V ) 6= 1. Then for
J := JM (V ), W := [V,J ] + CV (J )/CV (J ), K ∈ J and J := J/CJ([W,K]) the following hold:

(a) K is either quasisimple, or p = 2 or 3 and K ∼= SL2(p)′.

(b) [V,K,L] = 0 for all K 6= L ∈ J , and W =
⊕

K∈J [W,K].

(c) JpJ ′ = Op(J) = F∗(J) =×J .

(d) W is a faithful semisimple FpJ-module.

(e) If A ≤M is a best offender on V , then A is a best offender on W .

(f) K = F∗(J) = Op(J) and CJ([W,K]) = CJ([V,K]).

(g) Either [W,K] is a simple FpK-module, or one of the following holds, where q is a power of p:

1. J ∼= SLn(q), n ≥ 3, and [W,K] ∼= Nr ⊕ N∗s, where N is a natural SLn(q)-module, N∗ its
dual, and r, s are integers with 0 ≤ r, s < n and

√
r +
√
s ≤
√
n.

2. J ∼= Sp2m(q), m ≥ 3, and [W,K] ∼= Nr, where N is a natural Sp2m(q)-module and r is a
positive integer with 2r ≤ m+ 1.

3. J ∼= SUn(q), n ≥ 8, and [W,K] ∼= Nr, where N is a natural SUn(q)-module and r is a
positive integer with 4r ≤ n.

4. J ∼= Ωεn(q) with p odd if n is odd, or J ∼= Oε
n(q) with p = 2 and n even.1 Moreover, n ≥ 10 and

[W,K] ∼= Nr, where N is a natural Ωεn(q)-module and r is a positive integer with 4r ≤ n− 2.

(h) If [W,K] is not a homogeneous FpK module, then (g:1) holds with r 6= 0 6= s and n ≥ 4.

Theorem 2 (FF-Module Theorem). Let M 6= 1 be a finite CK-group and V be a faithful FpM -
module. Put

D := {A ≤M | there exists 1 6= B ≤ A such that [V,B,A] = 0 and A and B are offenders on V }.2

Suppose that V is a simple Fp JM (V )-module and M = 〈D〉. Then one of the following holds, where
q is a power of p:

1The odd-dimensional orthogonal groups in characteristic 2 are covered in case (g:2).
2 Note here that D contains all quadratic offenders and by the Timmesfeld Replacement Theorem [KS, 9.2.3], also

all best offenders in M on V .
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1. M ∼= SLn(q), n ≥ 2, and V is a natural SLn(q)-module.

2. M ∼= Sp2n(q), n ≥ 1, and V is a natural Sp2n(q)-module.

3. M ∼= SUn(q), n ≥ 4, and V is a natural SUn(q)-module.

4. M ∼= Ω+
2n(q) for 2n ≥ 6, M ∼= Ω−2n(q) for p = 2 and 2n ≥ 6, M ∼= Ω−2n(q) for p odd and 2n ≥ 8,

M ∼= Ω2n+1(q) for p odd and 2n + 1 ≥ 7, M ∼= O−4 (2), or M ∼= Oε
2n(q) for p = 2 and 2n ≥ 6,

and V is a corresponding natural module.

5. M ∼= G2(q), p = 2, and V is a natural G2(q)-module (of order q6).

6. M ∼= SLn(q)/〈−idn−1〉, n ≥ 5, and V is the exterior square of a natural SLn(q)-module.

7. M ∼= Spin7(q), and V is a spin module of order q8.

8. M ∼= Spin+
10(q), and V is a half-spin module of order q16.

9. M ∼= 3.Alt(6), p = 2 and |V | = 26.

10. M ∼= Alt(7), p = 2, and |V | = 24.

11. M ∼= Sym(n), p = 2, n odd, n ≥ 3, and V is a natural Sym(n)-module.

12. M ∼= Alt(n) or Sym(n), p = 2, n is even, n ≥ 6, and V is a corresponding natural module.

Theorem 3 (Best Offender Theorem). Let M 6= 1 be a finite group, T ∈ Sylp(M), and V be a
faithful FpM -module, and let A ≤ T be an non-trivial offender on V .

(a) Suppose that M ∼= G2(q), p = 2, and V is a natural G2(q)-module. Then NM (A) is a maximal
Lie-parabolic subgroup, |A| = |V/CV (A)| = q3, [V,A] = CV (A), and CT (A) = A.

(b) Suppose that M ∼= SLn(q)/〈−idn−1〉, n ≥ 5, and V is the exterior square of the natural SLn(q)-
module W . Let U be the (unique) T -invariant Fq-hyperplane of W . Then A = CM (U). In
particular, A is uniquely determined in T , CT (A) = A, [V,A] = CV (A) and |V/CV (A)| = |A| =
qn−1.

(c) Suppose that M ∼= Spin7(q), and V is a spin module of order q8. Then CV (A) = [V,A],

|V/CV (A)| = q4 ≤ |A| ≤ q5, and if A is maximal, then |A| = q5, CT (A) = A, Op′(NM (A))/A ∼=
Sp4(q), and A is uniquely determined in T .

(d) Suppose that M ∼= Spin+
10(q), and V is a half-spin module of order q16. Then [V,A] = CV (A),

q8 = |A| = |V/CV (A)|, Op′(NM (A)/A) ∼= Spin+
8 (q), and A is uniquely determined in T .

(e) Suppose that M ∼= 3.Alt(6), p = 2 and |V | = 26. Then [V,A] = CV (A), |[V,A]| = |CV (A)| = 16,
|V/CV (A)| = |A| = 4, and A is uniquely determined in T .

(f) Suppose that M ∼= Alt(7), p = 2 and |V | = 24. Then [V,A] = CV (A), |[V,A]| = |CV (A)| = 4,
|V/CV (A)| = |A| = 4, and A is uniquely determined in T .

(g) Suppose that M ∼= Sym(n), p = 2, n odd, and V is a natural Sym(n)-module. Then every
offender on V is a quadratic best offender, A is generated by commuting transpositions and
|V/CV (A)| = |[V,A]| = |A|.
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(h) Suppose that M ∼= Alt(n) or Sym(n), p = 2, n is even, n ≥ 6, and V is a corresponding
natural module. Then every offender on V is a best offender, and there exists a set of pairwise
commuting transpositions t1, . . . , tk such that one of the following holds:

1. A = 〈t1, . . . , tk〉, and either n 6= 2k, [V,A] ≤ CV (A) and |[V,A]| = |V/CV (A)| = |A| or
n = 2k, [V,A] = CV (A) and 2|V/CV (A)| = |A|.

2. n = 2k and A = 〈t1t2, t2t3 . . . , tl−1tl, tl+1, tl+2, . . . , tk〉 for some 2 ≤ l ≤ k, [V,A] = CV (A)
and |V/CV (A)| = |A|.

3. n = 2k and A = 〈t1t2, s1s2, t3, t4 . . . , tk〉, where s1, s2 are transpositions distinct from t1
and t2 and s1s2 moves the same four symbols as t1t2, A is not quadratic and |[V,A]| =
|V/CV (A)| = |A|.

4. n = 8 = |A|, A acts regularly on {1, 2, . . . , 8}, [V,A] = CV (A) and |V/CV (A)| = |A|.

In particular, if A ≤ Alt(n) and n 6= 8, then n = 2k and A = 〈t1t2, t2t3, . . . , tk−1tk〉.

Note that in all cases of the FF-Module Theorem M is generated by quadratic best offenders.
In the following list we give the module structure of A, V/CV (A) and [V,A] considered as a

NM (A)-modules in the cases (a) – (d) of the Offender Theorem, as it can be deduced from the
action of M on V . Put P := Op

′
(NM (A)).

Case P/Op(P ) A [V,A] V/CV (A) Remarks
(a) SL2(q) U U∗ U [U,P ] a nat. SL2(q)-module

(b) SLn−1(q) U
∧2

(U) U U a nat. SLn−1(q)-module
(c) Sp4(q) nat. Ω5(q) nat. Sp4(q) nat. Sp4(q) V/CV (A) ∼= [V,A]

A/CA(P ) 6∼= V/CV (A)
(d) Spin+

8 (q) nat. Ω+
8 (q) nat. Ω+

8 (q) nat. Ω+
8 (q) pairwise non-isom.

Acknowledgment: We would like to thank the referee for all his helpful comments and sugges-
tions that improved the readability of our manuscript considerably.

1 Linear Algebra and Offenders

In this section p is a prime, M a finite group and V a finite dimensional FpM -module.

Lemma 1.1. Let A ≤ M and W a set of A-submodules of V with V =
⊕
W. Suppose that A

is a faithful offender on V but not an over-offender on W for any W ∈ W. Let W ∈ W and put
AW =

⋂
W 6=U∈W CA(U). Then

(a) |A| = |V/CV (A)|.

(b) A =×W∈W AW = AW × CA(W ).

(c) |A/CA(W )| = |W/CW (A)| = |W/CW (AW )| = |AW |.
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Proof. Since A is not an over-offender on W , |A/CA(W )| ≤ |W/CW (A)|, and since V =
⊕
W,

|V/CV (A)| =
∏
W∈W |W/CW (A)|. Since A is an offender on V this gives

(∗) |A| ≥ |V/CV (A)| =
∏
W∈W

|W/CW (A)| ≥
∏
W∈W

|A/CA(W )|.

Put B =×W∈W A/CA(W ) and let BW = A/CA(W ) be viewed as a subgroup of B. So B is
the internal direct product of the BW , W ∈ W. Consider the homomorphism

φ : A→ B, a→ (aCA(W ))W∈W .

Since V is a faithful A-module and V =
⊕
W, kerφ =

⋂
W∈W CA(W ) = CA(V ) = 1 and φ is

injective. By (∗) |A| ≥ |B|. Thus φ is surjective and so an isomorphism. Moreover, equality holds
everywhere in (∗). In particular, (a) and the first equality in (c) hold.

Let a ∈ A. Then aφ ∈ BW if and only if a ∈ CA(U) for all W 6= U ∈ W and so if and only if
a ∈ AW . Thus AWφ = BW . Also a ∈ CA(W ) if and only if the W -coordinate of aφ is 1 and so if
and only if aφ ∈×W 6=U∈W BW . Thus CA(W )φ =×W 6=U∈W BW . Since B =×W∈W BW and φ
is an isomorphism, (b) holds.

From (b) we get that CW (A) = CW (AW ) and |AW | = |A/CA(W )|. Hence the (already proved)
first equality in (c) gives also the second and third equality in (c).

Lemma 1.2. Let A ≤M . Then A is a best offender on V if and only if A is an offender on every
A-submodule of V .

Proof. If A is a best offender, then by [MS1, 2.5] A is an offender on every A-submodule of V .
Conversely, suppose A is an offender on every A-submodule of V . Then A is an offender on V

and so elementary abelian. Let B ≤ A and put W := CV (B). Clearly

(∗) B ≤ CA(W ) and CW (A) = CV (A).

As A is an offender on W , |W/CW (A)| ≤ |A/CA(W )|, and (∗) implies that

|B||W | ≤ |B||A/CA(W )||CW (A)| ≤ |A||CV (A)|.

This shows that A is a best offender on V .

Lemma 1.3. Suppose that B is a minimal offender on V and W is a B-submodule of V . Then B
is a quadratic best offender on W , and one of the following holds:

1. B is an over-offender on W .

2. [W,B] = 0.

3. CB(W ) = CB(V ) and V = W + CV (B).

Proof. Let D ≤ B. Since B is a minimal offender,

|D||CV (D)| ≤ |V ||CD(V )| ≤ |V ||CB(V )| ≤ |B||CV (B)|

and so B is a best offender. By the Timmesfeld Replacement Theorem [KS, 9.2.3], CB([V,B]) is a
non-trivial offender on V and so by minimality B = CB([V,B]). Thus B is quadratic.
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Assume that B is not an over-offender on W . Then |B/CB(W )| = |W/CW (B)| and

|V/CV (B) +W | = |V/CV (B)||W/CW (B)|−1 ≤ |B||B/CB(W )|−1 = |CB(W )|.

Hence CB(W ) is an offender on V , and the minimality of B gives either B = CB(W ) or CB(W ) =
CB(V ). In the first case (2) holds. In the second case

V = CV (B) +W

and (3) follows.

Lemma 1.4. Suppose that A ≤M acts nilpotently on V . Then the following are equivalent:

(a) A is a strong dual offender on V .

(b) Let 0 ≤ U ≤ Y ≤ V be any chain of A-submodules with [Y/U,A] = 0. Then [V,A] ≤ U or
Y ≤ CV (A).

(c) A is a strong dual offender on V ∗.

Proof. Suppose (a) holds. Let U and Y be as in (b) and suppose that Y � CV (A). Pick v ∈
Y \ CV (A). Then

[V,A] = [v,A] ≤ [Y,A] ≤ U.

Thus (a) implies (b).
Suppose next that (b) holds. To show that (a) holds, let v ∈ V \CV (A) and put Y := 〈vA〉 and

U := [v,A]. Since [vk, a] = [v, a]k for all k ∈ Z, a ∈ A, U = [〈v〉, A]. So Y and U are A-submodules,
U ≤ Y and A centralizes Y/U . Since v ∈ Y , Y � CV (A) and so (b) implies that [V,A] ≤ U . Hence
[v,A] = U = [V,A] and (a) holds.

By 1.8(c), (b) holds for V if and only if it holds for V ∗ in place of V . Thus the above argument
with V ∗ in place of V shows that (b) and (c) are equivalent.

Lemma 1.5. Let A be a strong dual offender on V . Then the following hold:

(a) A is quadratic on V .

(b) A is a strong dual offender on every A-submodule of V and V ∗.

(c) A is best offender on V and on V ∗.

(d) If |[V,A]| = |A|, then A is a strong offender on V .

Proof. Since by 1.4 A is also a strong dual offender on V ∗ it suffices to prove the statements for V .
(a): Since A acts nilpotently on V there exists v ∈ V \CV (A) with [v,A] ≤ CV (A). By definition

of a strong dual offender we conclude that [V,A] = [v,A] ≤ CV (A) and so A is quadratic.
(b): This follows immediately from the definition of a strong dual offender.
(c): Let v ∈ V \ CV (A). Since A is quadratic on V , [v,A] = {[v, a] | a ∈ A} and so

(∗) |[V,A]| = |[v,A]| = |A/CA(v)| ≤ |A|.

Thus by 1.8 |V ∗/CV ∗(A)| ≤ |A|. So A is an offender on V ∗. By (b) this is also true for any A-
submodule of V ∗. Thus by 1.2 A is a best offender on V ∗. By symmetry, A is also a best offender
on V .
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(d): Suppose |[V,A]| = |A|. Then by (∗)

|A| ≤ |A/CA(v)| ≤ |A| for every v ∈ V \ CV (A).

Hence CA(v) = 1 and so CV (a) = CV (A) for all a ∈ A].

Lemma 1.6. Let A be a strong offender on V . Then A is a quadratic best offender on V .

Proof. Let W be an A-submodule of V with [W,A] 6= 0. Then CA(W ) = 1 and so

|W/CW (A)| ≤ |V/CV (A)| ≤ |A| = |A/CA(W )|.

Hence A is an offender on W and so by 1.2, A is a best offender on V .
To show that A is quadratic we may assume that [V,A] 6= 0. Put B = CA([V,A]). By the

Timmesfeld Replacement Theorem [KS, 9.2.3], [V,B] 6= 0 and since A is a strong offender, CV (B) =
CV (A). Since [V,A,B] = 0 we conclude that [V,A,A] = 0 and so A is quadratic.

Lemma 1.7. Let A be a subgroup of M . Suppose V is self-dual as an FpA-module. Then A is a
strong offender iff |V/CV (A)| = |A| and A is a strong dual offender.

Proof. Suppose first that A is strong offender and let 1 6= a ∈ A. Then CV (a) = CV (A) and since
V is self-dual, [V, a] = [V,A] by 1.8(c). Let v ∈ V \ CV (A). Then CA(v) = 1 and so |[v,A]| ≥ |A|.
Hence

|A| ≤ |[v,A]| ≤ |[V,A]| = |[V, a]| = |V/CV (a)| = |V/CV (A)| ≤ |A|,

and equality holds everywhere. Thus [v,A] = [V,A] and so A is a strong dual offender.
Suppose now that |V/CV (A)| = |A| and A is a strong dual offender. Since V is self-dual we get

|[V,A]| = |A|. Thus by 1.5(d), A is a strong offender.

Lemma 1.8. Suppose that K is a field and V is a K-space. The following hold for A ≤ GLK(V )
and U a K-subspace of V :

(a) dimK V = dimK V
∗.

(b) dimK U + dimK U
⊥ = dimK V .

(c) [V,A]⊥ = CV ∗(A) and CV (A)⊥ = [V ∗, A].

(d) [V,A,A] = 0 ⇐⇒ [V ∗, A,A] = 0.

(e) CM (CV (A)) ∩ CM (CV ∗(A)) is the largest subgroup Y ≤ M with CV (Y ) = CV (A) and [V, Y ] =
[V,A].

(f) If A is quadratic on V , then dimK[V,A] + dimK V/CV (A) ≤ dimK V .

Proof. (a), (b) and (c) are well-known and easy to prove statements from linear algebra; and (e)
follows from (c).

(d): [V,A,A] = 0 iff [V,A] ≤ CV (A) iff CV (A)⊥ ≤ [V,A]⊥ iff [V ∗, A] ≤ CV ∗(A) iff [V ∗, A,A] = 0.
(f): Since A is quadratic, [V,A] ≤ CV (A). Thus

dimK V = dimK[V,A] + dimK CV (A)/[V,A] + dimK V/CV (A).
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Lemma 1.9. Let F be a finite field of characteristic p, V a finite dimensional FH-module, and
N E H. Put K := EndFN (V ) and suppose that V is a self-dual simple FN -module. Then the
following hold:

(a) There exists an N -invariant non-degenerate symmetric, symplectic or unitary K-form s on V .

(b) There exists a homomorphism ρ : H → AutF(K) with h 7→ ρh such that h ∈ H acts ρh-semi-
linearly on the right K-vector space V ; i.e., (v + w)h = vh + wh and (vk)h = (vh)(kρh) for
v, w ∈ V and k ∈ K.

(c) There exists a map λ : H → K] with h 7→ λh such that the map H → K] o AutF(K), h→ λhρh
is a homomorphism and

(vh,wh)s = (v, w)sλhρh

for all v, w ∈ V , h ∈ H.

(d) Let U be a K-subspace of V and put U⊥ = {v ∈ V | (u, v)s = 0 for all u ∈ U}. Then U⊥ is
NH(U)-invariant.

(e) Let U be a non-zero K-subspace of V such that CH(U) acts simply on V/U⊥. Then U is 1-
dimensional over K.

(f) Put H0 = ker ρ. Then s is Op
′
(H0)N -invariant.

Proof. Recall that K is a finite field of characteristic p since V is finite and simple. It is convenient
to write V in the following as a right K-vector space since we write the action of K on V from the
right.

Put V ∗ := HomK(V,K) and W := HomF(V,F). Let µ : K→ F be any non-zero F-linear map and
define

τ : V ∗ →W by u→ u ◦ µ.

(Recall that our mappings act from the right, so v(u ◦ µ) = (vu)µ.)
Let 0 6= u ∈ V ∗. Then V u = K and so there exists v ∈ V with vu /∈ kerµ. Thus v.uτ = vuµ 6= 0.

In particular uτ 6= 0 and ker τ = 0. Since τ is F-linear and

dimF V
∗ = dimFKdimK V

∗ = dimFKdimK V = dimF V = dimFW

we conclude that τ is an F-isomorphism. For n ∈ N , v ∈ V and u ∈ V ∗ we have

v.unτ = v.un.µ = vn−1uµ = vn−1.uτ = v.uτn

and so unτ = uτn. Thus τ is an FN -isomorphism. Since V is self-dual as an FN -module, this shows
that V and V ∗ are isomorphic FN -modules. Hence the set H of FN -isomorphisms from V to V ∗ is
non-empty.

For k ∈ K let

k : V ∗ → V ∗ defined by xk : v 7→ vk.x (x ∈ V ∗, v ∈ V ).

Then k ∈ EndFN (V ∗) =: K and k 7→ k induces an isomorphism of fields from K to K.
Let β ∈ H. Then β ◦ k ◦ β−1 is F-linear and so

σβ : K→ K with k 7→ β ◦ k ◦ β−1

is an F-linear automorphism of K. Since β ◦ k = kσβ ◦ β we get
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1◦. β is σ−1
β -semi-linear.

Let δ ∈ H and put l = δ ◦ β−1. Then l is FN -linear and so l ∈ K. Thus:

2◦. For all β, δ ∈ H there exists l ∈ K with δ = l ◦ β.

It follows that

kσδ = δ ◦ k ◦ δ−1 = l ◦ β ◦ k ◦ β−1 ◦ l−1 = l ◦ kσβ ◦ l−1.

Since K is commutative, this implies kσδ = kσβ . Thus σδ = σβ is independent from β ∈ H. So we
just write σ for σβ .

Let F be the set of all N -invariant non-zero functions s : V × V → K which are K-linear in the
first coordinate and F-linear in the second, where N -invariant means that (vn,wn)s = (v, w)s for
all v, w ∈ V and n ∈ N . Clearly, all these forms are non-degenerate since V is a simple FN -module.

For β ∈ H define sβ : V × V → K, (v, w)→ v.wβ. Then sβ ∈ F and so also F 6= ∅. Conversely,
for s ∈ F define βs : V → V ∗ by v.wβs = (v, w)s. Then βs ∈ H, and (1◦) applied to βs gives:

3◦. Each s ∈ F is a σ−1-sesquilinear K-form.

Define s∗ : V ×V → K, (v, w)→ (w, v)sσ. Then s∗ is N -invariant, K-linear in the first coordinate
and σ-semi-linear in the second coordinate. In particular, s∗ ∈ F and so (3◦) implies. Hence

4◦. σ = σ−1, and either σ = idK or σ has order 2.

We now will prove (a) – (f).

(a): Put t = s+ s∗. Then t = t∗. Suppose first that t 6= 0. If σ = idK, then t is an N -invariant
symmetric K-form; and if |σ| = 2, then t is an N -invariant unitary K-form. So (a) holds in this case.

Suppose next that t = 0. Then s = −s∗. Assume charK = 2, then s = s∗ and so s is a symmetric
or unitary K-form. Assume charK 6= 2. If σ = idK then s is a symplectic K-form. If |σ| = 2 pick
x ∈ K with x 6= xσ and put y := x− xσ. Then yσ = −y. Hence (sy)∗ = s∗.yσ = sy and so sy is a
N -invariant unitary K-form on V . Again (a) hold.

(b): Since N EH, it is readily verified that for k ∈ K and h ∈ H the map V → V, v 7→ vh−1kh
is in K. Thus ρh ∈ AutF(K) where

v.kρh = vh−1kh for all k ∈ K, h ∈ H.

A simple calculation shows that ρ : H → AutF(K) with h 7→ ρh is a homomorphism and h acts
ρh-semi-linearly on V .

(c): Fix h ∈ H and define

sh : V × V → K, (v, w) 7→ (vh,wh)sρ−1
h .

Using that Aut(K) is abelian, it is straight forward to verify that sh ∈ F . By (2◦), βsh = kh ◦ βs for
some kh ∈ K. Thus for all v, w ∈ V

(vh,wh)sρ−1
h = (v, w)sh = v.wβsh = v.wkhβs = (v, wkh)s = (v, w)s.khσ

Define λh = khσ, then
(vh,wh)s = (v, w)sλhρh.
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It is readily verified that the map H → K] oAutF(K), h→ λhρh is a homomorphism.

(d): Let v ∈ U⊥, h ∈ NH(U) and u ∈ U . Then

(u, vh)s = (uh−1, v)sλhρh = 0.

(e): Let D be a 1-dimensional K-subspace of U . Then by (d), D⊥ is CH(U)-invariant. Since
U⊥ ≤ D⊥ and CH(U) is simple on V/U⊥ we get U⊥ = D⊥ and U = D.

(f) For a, b ∈ H0 the homomorphism given in (c) yields

λabρab = λab = λaρaλbρb = λaλb.

Hence λ |H0
is a homomorphism from H0 in K]. Since K] is a p′-group, (f) follows.

2 J-Components

In this section p is a prime, M is a finite group with Op(M) = 1, and V is a finite dimensional
faithful FpM -module such that JM (V ) 6= 1.

Notation 2.1. Put J := JM (V ) and J := JM (V ). Let I be the set of solvable J-components, K be
the set of perfect J-components, E := 〈K〉, and I := 〈I〉.

Lemma 2.2. The following hold:

(a) CM (J/Z(J)) = CM (J).

(b) Let N be a J-invariant subgroup of M with [N, J ] 6= 1. Then there exists K ∈ J with K ≤ N .

(c) J 6= ∅, J = I ∪ K, and K is the set of components of J .

(d) Let K ∈ I. Then either p = 2, K ∼= C3
∼= SL2(2)′, and [V,K] ∼= F2

2, or p = 3, K ∼= Q8
∼=

SL2(3)′, and [V,K] ∼= F2
3.

(e) [W,K] = [W,K,K] for every K ∈ J and every K-submodule W of V .

(f) [K,F ] = 1 and [V,K, F ] = 0 for every K,F ∈ J with K 6= F .

(g) CJ(IE) = Z(J), or p = 2 and CJ(IE) = Z(J)I. So in both cases CJ(IE) is an abelian p′-group.

(h) Let U ≤M and K ∈ J . Then either [K,U ] = 1 or [W,K] ≤ [W, [K,U ]] for every K-submodule
W ≤ V .

Proof. (a) Put R = CM (J/Z(J)) and let T be a p-subgroup of J . Since Op(M) = 1, Op(Z(J)) = 1
and so Z(J) is a p′-group, Since [Z(J), T ] = 1, we conclude that T = Op(Z(J)T ). So, as [R, T ] ≤
Z(J), R normalizes T and [R, T ] ≤ T ∩ Z(J) = 1. Since J is generated by p-groups, this means
[R, J ] = 1 and so R = CM (J).

(b): By (a), [N, J ] � Z(J). So by [MS1, 3.1] there exists K ∈ J with K ≤ [N, J ].
(c) and (d) follow from [MS1, 3.2], and [MS1, 3.4], and (f) is The Other P (G,V )-Theorem in

[MS1].
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(e): By (c) and (d) K is generated by p′-elements. Hence (e) follows from elementary properties
of coprime action.

(g): Put C := CJ(IE). Clearly Z(J) ≤ C. Hence, by (b) either C = Z(J), or there exists a
J-component in C. Assume the latter case. Then by (c) and (d), p = 2 and I ≤ C. The action of
C on [V, I] shows that C = ICC([V, I]). But now again (b), this time applied to CC([V, I]), gives
CC([V, I]) ≤ Z(J) and thus C = Z(J)I.

(h): Note that K[K,U ] = Ku[K,U ] for every u ∈ U . Assume first that U 6≤ NM (K). Then
there exists u ∈ U \NU (K), and by (f) [W,K] ≤ CW (Ku). Now (e) yields

[W,K] = [W,K,K] ≤ [W,K,Ku[K,U ]] = [W,K, [K,U ]] ≤ [W, [K,U ]].

Assume now that U ≤ NM (K), [K,U ] 6= 1 and [W,K] 6= 0. Then 1 6= [K,U ] E K. By (c) and
(d) K is a component, or K ∼= C3, or K ∼= Q8. In the first case K ≤ [K,U ], and (h) follows. In the
other two cases by (d) [W,K] = [V,K] is a faithful simple K-module, so [V,K] = [V, [K,U ]].

Lemma 2.3. Let A be a best offender of M on V and K ∈ J . Then the following hold:

(a) [K,A] = K or [K,A] = 1.

(b) If [K,A] 6= 1, then there exists a best offender A0 ≤ A such that K = [K,A0], [[V,K], A0, A] = 0,
and A0 is quadratic on [V,K].

Proof. (a) is obvious since K E J and by 2.2 either K is quasisimple or isomorphic to C3 or Q8.
(b): This is essentially [MS1, 3.3], but since our assumption is slightly weaker we repeat the proof:

By (a) [K,A] = K and by 2.2(e) [V,K] = [V,K,K], so [V,K,A] 6= 0. The Timmesfeld Replacement
Theorem [MS1, 2.7] with W := [V,K] gives a best offender A0 ≤ A satisfying [W,A0, A] = 0 and
[W,A0] 6= 0. The first property shows that A0 is quadratic on W . Suppose that [K,A0] = 1. Then
by [MS1, 2.9], [W,A0] = 0, a contradiction. Thus [K,A0] 6= 1 and by (a), K = [K,A0].

Lemma 2.4. Let K ∈ J and A be a subgroup of M such that [V,A,A] = 0 and [K,A] 6= 1. Suppose
that X is a perfect K-submodule of V and X is a non-zero K-factor module of X. Then

CA(X) = CA(K) = CA(X).

Proof. Put L := [K,A]. The quadratic and faithful action of A shows that A is an elementary
abelian p-subgroup. Hence A0 := CA(K) centralizes 〈K,A〉 and so also L. The quadratic action of
A gives

[V,L] ≤ [V, 〈AK〉] = 〈[V,A]K〉 ≤ CV (A0).

As [K,A] 6= 1, 2.2(h) yields X = [X,K] ≤ [X,L] ≤ CV (A0) and A0 ≤ CA(X) ≤ CA(X). Conversely,
[X, [K,CA(X)]] 6= X since X 6= 0. Hence again 2.2(h) implies that CA(X) ≤ CA(K).

Lemma 2.5. Let K ∈ J and K := EndK(V ). Suppose that V is a simple K-module and M is
generated by quadratic offenders on V . Then the following hold:

(a) K is a finite field.

(b) M acts K-linearly on V , or |V | = 4 and M ∼= SL2(2).

(c) F∗(M) = Z(M)K, and CM (K) = Z(M) if |V | > 4.
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Proof. (a): By Schur’s Lemma K is a finite division ring, so by Wedderburn’s Theorem K is a field.
(b): Let A ≤ M be a quadratic offender and suppose A does not act K-linearly on V . Then

by [MS3, 2.14], |A| = 2. Since |A| is an offender we get |V/CV (A)| = 2. Since A does not act
K-linearly, there exists 0 6= k ∈ K which is inverted by a ∈ A]; and since k acts fixed-point-freely on
V , |CV (a)|2 = |V |. This implies |K| = 4 = |V |. Hence M ∼= SL2(2) and (b) is proved.

(c): Suppose K is solvable. Then by 2.2 |V | = 4 or |V | = 9 and (c) is obvious. So we may assume
that K is not solvable and so by 2.2 K is a component of M ; in particular F∗(M) = KCF∗(M)(K).
By (b) M acts K-linearly on V , so CM (K) ≤ Z(M), and F∗(M) = KCF∗(M)(K) = KZ(M).

Lemma 2.6. Let K ∈ J and X be a perfect K-submodule of V , and let A be a best offender of M
on V such that [K,A] 6= 1. Then A normalizes X.

Proof. By 2.3(b) there exists a best offender A0 ≤ A such that [K,A0] = K, [[V,K], A0, A] = 0 and
A0 is quadratic on [V,K]. Clearly A normalizes K since K E J .

We will first show that A0 normalizes X. Note that by 1.2 A0 is a best offender on W := 〈XA0〉.
LetR := radK(W ), that is, the intersection of the maximalK-submodules ofW , and putW := W/R.
Note that W = [W,K] and so by 2.4 CA0(W ) = CA0(W ) = CA0(K). Since A0 is a quadratic offender
on W , we conclude that A0 is also a quadratic offender on W . Thus there exists a quadratic best
offender A1 ≤ A0 on W such that [W,A1] 6= 0 and so by 2.4 [K,A1] 6= 1.

Note that X is a semisimple K-module. Let Y be any simple K-submodule of X. By [MS1, 2.10]
A1 normalizes Y . Moreover, since X is a perfect K-module and [K,A1] 6= 1, 2.4 gives [Y ,A1] 6= 0.
Now 0 6= [Y ,A1] ≤ CY (A0) shows that also A0 normalizes Y . Hence, A0 normalizes X and W =
X +R, so W = X.

Thus A0 normalizes X. Let a ∈ A. Then [X,A0] ≤ X ∩Xa =: D. Since D is a KA0-module and
[X,A0] ≤ D, we get from 2.2(h) X = [X,K] ≤ [X, [K,A0]] ≤ D and thus Xa = X. So A normalizes
X.

Lemma 2.7. Let K ∈ J and X be a perfect K-submodule of V , and let B be a best offender of M
on V such that [K,B] = 0. Then [X,B] = 0.

Proof. Let X be a counterexample such that dimFp X is minimal, and let W be a maximal K-
submodule of X. We use the following notation:

Y := 〈XB〉, U := [W,K], B0 := CB(Y ), Y := Y/CY (K).

Note that [Y,K] = Y . Since [Y,CB(Y ),K] = 0 and [CB(Y ),K] ≤ [B,K] = 1, the Three Subgroups
Lemma gives [Y,CB(Y )] = [K,Y,CB(Y )] = 0. It follows that

CB(X) = B0 = CB(Y ) = CB(X).

As B is a best offender on Y by 1.2, B is an offender on Y .
Since U is a perfect K-module, the minimality of X gives [U,B] = 0. Thus [W,K,B] = 0 and

[K,B] = 0, and the Three Subgroups Lemma yields [W,B,K] = 0. Thus [W,B] = 0 and so CX(b) =
W for every b ∈ B \B0 since X/W is simple. Hence [X, b] ∼= X/CX(b) = X/W ∼= X/W := I. This
shows that [X,B] is the direct sum of, say n, copies of I.

Put F := EndK(I). Let

κb : X → [X,B] with x+W 7→ [x, b]. (b ∈ B)

13



Then b 7→ κb, b ∈ B, defines to a homomorphism from B to HomF(X/W, [X,B]) ∼= Fn whose
kernel is CB(X) = CB(X). It follows that |B/CB(X)| ≤ |F|n. Since B is an offender on Y with
B0 = CB(Y ) and CX(B) = W ,

|F|n ≥ |B/B0| ≥ |Y /CY (B)| ≥ |XCY (B)/CY (B)| = |X/W | = |I|,

so

(+) dimF I ≤ n.

According to 1.2 and (b) there exists a best offender A on V such that [K,A] = K and A is
quadratic on V . By 2.6 A normalizes X,Y and U and thus also W and X/W since W/U = CX/U (K).

Let b ∈ B \ CB(X). Then [X, b] is a perfect K-submodule of Y , and so again by 2.6 A normalizes
[X, b] and thus also [X, b]. Since I = X/W ∼= [X, b] as K-module, D := HomK(I, [X, b]) is a non-
trivial p-group. Since A acts on D we get CD(A) 6= 0 and so HomKA(I, [X, b]) 6= 0. Thus [X, b] is
isomorphic to I as an KA-module.

By 2.4

(∗) CA(I) = CA(K) = CA(Y ),

so 1.2 shows that A is a non-trivial quadratic offender on I. Hence by 2.5(b) A acts F-linearly on
I or |I| = 4. In the latter case (∗) implies |A/CA(I)| = 2 = |Y/CY (A)|, |K| = 3 and |Y | = 4. In
particular [Y,B] = 0.

Assume now that A acts F-linearly on I. Let m = dimF I and c = dimF CI(A). Recall that
Y = X + [X,B] and [X,B] is the direct sum of n copies of KA-modules isomorphic to I. Hence

dimF Y/CY (A) ≥ dimF Y /CY (A) ≥ n · dimF I/CI(A) = n(m− c).

Since A acts quadratically on I, |A/CA(I)| ≤ |HomF(I/CI(A),CI(A))|, so |A/CA(I)| ≤ |F|c(m−c).
On the other hand, by (∗) CA(I) = CA(Y ) and so by (+)

|A/CA(Y )| = |A/CA(I)| ≤ |F|c(m−c) < |F|n(m−c) ≤ |Y/CY (A)|,

a contradiction since A is an offender.

Proposition 2.8. Let K ∈ J and X be a perfect K-submodule of V . Then J normalizes X.

Proof. This follows from 2.6 and 2.7.

Lemma 2.9. Let K ∈ J and let

X0 ≤ Y1 ≤ X1 ≤ Y2 ≤ X2 . . . ≤ Yn ≤ Xn ≤ V

be a series of K-submodules such that Xi = [Xi,K], Xi/Yi is a simple K-module, and [Yi,K] ≤ Xi−1

for i = 1, . . . , n. Then the following hold for S := ⊕ni=1Xi/Yi:

(a) J acts on S and Op(J̃) = 1, where J̃ := J/CJ(S).

(b) Every best offender on V is an offender on S; in particular J̃ is generated by offenders on S.

(c) K̃ is the unique JJ̃(S)-component of J̃ .
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Proof. (a): By 2.8 J normalizes every Xi and Yi since Yi/Xi−1 = CXi/Xi−1
(K), so J acts on S.

Since Xi/Yi, i ≥ 1, is a simple K-module, we also get Op(J̃) = 1.
(b): Let A be a best offender on V . By 2.7 [S,A] = 0 if [K,A] = 1. In the other case 2.4 shows

that

(∗) CA(K) = CA(Xi) = CA(Xi/Yi), i = 1, . . . , n.

Hence in both cases CA(S) = CA(K).
By 1.2 A is a best offender on Xn. Hence

|Xn/CXn(A)| ≤ |A/CA(Xn)| = |A/CA(K)| = |A/CA(S)|.

On the other hand,

|Xn| = |Xn/Yn||Yn/Xn−1||Xn−1/Yn−1| · · · |X1/Y1||Y1|

and
|CXn(A)| ≤ |CXn/Yn(A)||Yn/Xn−1||CXn−1/Yn−1

(A)| · · · |CX1/Y1
(A)||Y1|,

so

|A/CA(S)| ≥ |Xn/CXn(A)| ≥ |Xn/Yn/CXn/Yn(A)| · · · |X1/Y1/CX1/Y1
(A)| ≥ |S/CS(A)|.

This shows that A is an offender on S.
(c): There exists a best offender A on V such that [K,A] 6= 1 and thus by (∗) also [S,A] 6= 0.

By (b) A is an offender on S, so A contains a non-trivial best offender B on S. Again (∗) yields

[K,B] 6= 1. Hence by 2.3(a), K̃ ≤ JJ̃(S) and so K̃ E JJ̃(S). Now 2.2(c) and (d) show that

K̃ is a JJ̃(S)-component of J̃ . Moreover, since [S, K̃] = S, 2.2(f) implies that K̃ is the unique

JJ̃(S)-component of J̃ .

Lemma 2.10. Let K ∈ J and L be a normal subgroup of M with L = Op′(L). Then either
K ≤ [K,L] ≤ L or [K,L] = 1.

Proof. If K is a component of M , this is [KS, 6.5.2]. So suppose K is solvable. Then either p = 2
and K ∼= C3, or p = 3 and K ∼= Q8.

We may assume that [K,L] 6= 1. Since L = Op′(L), there exists a p-subgroup T of L with
[K,T ] 6= 1. If If T normalizes K, the structure of Aut(K) shows that K = [K,T ] ≤ [K,L] ≤ L.
So we may assume there exists t ∈ T with K 6= Kt. Put L0 := KKt ∩ L. Then L0 E J ,
and KKt = KL0 = KtL0 since [K, t] ≤ L. In particular [L0, J ] 6= 1 since K = [K,J ] 6= Kt.

Hence, by 2.2(b) there exists a J-component K̃ ≤ L0, so K̃ ≤ KKt. If K̃ = K or Kt, then

K ≤ KKt = K̃L0 ≤ L0 ≤ L. Suppose that K̃ is different from K and Kt. Then by 2.2(e),(f)

[V, K̃] = [V, K̃, K̃] ≤ [V,KKt, K̃] = 0,

a contradiction.

Lemma 2.11. Let K ∈ J , W a K-submodule of V , V := V/W and U a K-submodule of V . Then
the following are equivalent:

(a) U is a perfect K-module and U/CU (K) is a simple K-module.
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(b) U is a quasisimple K-module.

(c) U is a minimal non-trivial K-submodule of V .

Proof. (a) =⇒ (b): Let N be the inverse image of Op(K/CK(U)) in K. Then U 6= [U,N ] and
since U is a perfect K-module, N 6= K. By 2.2 K is quasisimple or K is p′-group. In the first case
N ≤ Z(K) and since Op(K) ≤ Op(M) = 1, N is a p′-group. So in any case N is a p′-group. Thus
N/CK(U) = 1 and so U is a quasisimple K-module.

(b) =⇒ (c): Let Y be non-zero K-submodule of U . By 2.2, K = Op(K) and so CU (K) =
CU (Op(K)). Thus U/CU (K) is a simple K-module. If Y � CU (K) we get U = Y + CV (K) and
so U = [U,K] = [Y,K] ≤ Y and Y = U . Thus, either Y = U or Y ≤ CU (K), so Y is a minimal
non-trivial K-submodule of V .

(c) =⇒ (a): Since U is non-trivial, U 6= CU (K). Let Y be a proper K-submodule of U with
CU (K) ≤ Y . Then [Y,K] = 0 by minimality of U . Thus Y = CU (K) and so U/CU (K) is a simple
K-module. Since K = Op(K), [U,K,K] 6= 1 and so U = [U,K] by minimality of U . Thus U is a
perfect K-module and (a) holds.

3 Maximal Quadratic Offenders in Classical Groups

In this section K is a field and V is an n-dimensional vector space over K. We assume that there exists
a sesquilinear form f on V such that one of the following holds: (Recall here that f is non-degenerate
if for each 0 6= v ∈ V there exists w ∈ V with f(v, w) 6= 0.)

(i) f = 0.

(ii) f is a non-degenerate symplectic form on V ; so f is bilinear and f(v, v) = 0 for v ∈ V .

(iii) f is a non-degenerate unitary form; so there exists α ∈ Aut(K) such that α2 = idK 6= α, f is
linear in the first component, and f(v, w) = f(w, v)α for v, w ∈ V .

(iv) f is a symmetric bilinear form and there exists an associated non-degenerate quadratic form
h on V , that is a function h : V → K with

h(k1v + k2w) = k2
1h(v) + k2

2h(w) + k1k2f(v, w) for k1, k2 ∈ K, v, w ∈ V.

(Recall here that h is non-degenerate if for each 0 6= v ∈ V with h(v) = 0 there exists w ∈ V
with f(v, w) 6= 0.) Also if charK = 2, we assume that K is perfect and so for each k ∈ K there

exists a unique element
√
k ∈ K with

√
k

2
= k.

By GL(V ), Sp(V ), GU(V ), and O(V ), respectively, we denote the group of automorphisms of V
leaving invariant f (in the first three cases) and h in the fourth case. In the last three cases V is
called a non-degenerate symplectic, unitary and orthogonal space, respectively.

We also use the notation GLn(F), Spn(F), GUn(F), and On(F), where n := dimV and either
F = K or, in the unitary case, F = Kα, the subfield centralized by α. In the first three cases put
α = idK, so F = Kα. If F is finite, say |F| = q, we also write GLn(q), Spn(q), etc.

An element v ∈ V is called isotropic if f(v, v) = 0. A subspace U of V is called isotropic if
f |U×U= 0. An element v ∈ V is called singular if v isotropic and (in the fourth case) h(v) = 0. A
subspace is called singular if it is isotropic and all its elements are singular.
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By V ∗ we denote the vector space dual to V , so V ∗ := HomK(V,K) and an element g ∈ GL(V )
acts on V ∗ via

xg : v 7→ (vg−1)x (x ∈ V ∗, v ∈ V ).

We will use the notion of perpendicularity (and the symbol ⊥) with respect to f .
An α-sesquilinear form on V is a function g : V × V → K such that g is K-linear in the first

coordinate and α-semilinear in the second coordinate. We denote the set of α-sesquilinear forms on
V be Fα(V ). Observe that Fα(V ) is vector space over K. Moreover, an element t ∈ GLK(V ) acts
on Fα(V ) via

gt : (u, v) 7→ g(ut−1, vt−1) u, v ∈ V.

Let η ∈ {±}. An (α, η)-sesquilinear form on V is an α-sesquilinear form g with g(v, w) = ηg(w, v)α
for all v, w ∈ V . Fα,η(V ) denotes the set all (α, η)-sesquilinear forms. Note that Fα,η(V ) is an
F-subspace of Fα(V ).

∧
2(V ) denotes the set of symplectic forms on V and S2(V ) denotes the set

symmetric bilinear forms on V . So S2(V ) = Fid,+(V ). Also
∧

2(V ) ≤ Fid,−(V ) with equality if
charK 6= 2.

Note that, if f 6= 0, then f is an (α, ε)-sesquilinear form, where ε = + for M = O(V ) or
M = GU(V ) and ε = − for M = Sp(V ).

In the following M = GL(V ), Sp(V ), GU(V ) and O(V ), respectively. In this section we will
write the action of M on V as right multiplication.

Lemma 3.1. Let U be an isotropic but not singular K-subspace of V . Let U0 be the set of singular
vectors in U . Then G = O(V ), p = 2, U0 is K-subspace of U and dimK U/U0 = 1. In particular,
dimK V

⊥ ≤ 1.

Proof. Since U is isotropic, f |U×U= 0, so all elements in U are isotropic. Since U is not singular,
there exists a non-singular element u in U . Since u is isotropic, we conclude that G = O(V ) and
h(u) 6= 0. Then 4h(u) = h(2u) = h(u + u) = h(u) + f(u, u) + h(u) = 2h(u) and so p = 2. In

particular, K is perfect and for every k ∈ K there exists a unique
√
k such that

√
k

2
= k. Consider

the map

τ : U → K with u→
√
h(u).

Observe that U0 = ker τ . Since U is isotropic,

τ(u+ v) =
√
h(u+ v) =

√
h(u) + f(u, v) + h(v) =

√
h(u) +

√
h(v) = τ(u) + τ(v).

for all u, v ∈ U0. Also

τ(ku) =
√
h(ku) =

√
k2h(u) = kτ(u),

and so τ is K-linear. Thus U0 = ker τ is K-subspace and dimK U/U0 = dimKK = 1.

Lemma 3.2. Suppose f 6= 0. Let A ≤M and U be subspace of V .

(a) V/U⊥ and U/U ∩ V ⊥ are isomorphic FNM (U)-modules. In particular, if f is non-degenerate,
then V and V ∗ are isomorphic FM -modules.

(b) CV/V ⊥(A) = CV (A)/V ⊥.

(c) CV (A) = [V,A]⊥.
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(d) CM (V/U) ≤ CM (U⊥); in particular CM (V/U) ≤ CM (U) if U is isotropic.

(e) If A acts quadratically on V/V ⊥, then A acts quadratically on V and [V,A] is an isotropic
subspace of V .

Proof. (a): Replacing V by V/V ⊥ and U by U + V ⊥/V ⊥ we may assume that V ⊥ = 0. For w ∈ V
define w∗ : U → K, u 7→ f(u,w). Since f is K-linear in the first coordinate, w∗ ∈ U∗. Define

φ : V → U∗, v 7→ v∗.

Since f is α-linear in the second coordinate, φ is α-linear and so F-linear. Moreover, kerφ = U⊥.
Hence dimV/U⊥ = dimV φ ≤ dimU∗ = dimU . This result applied to U⊥ gives dimV/U⊥⊥ ≤
dimU⊥ and since U ≤ U⊥⊥,

dimU ≤ dimU⊥⊥ ≤ dimV/U⊥ ≤ dimU.

So equality holds in the preceding inequalities. Therefore dimV φ = dimU∗ and φ is surjective.
For g ∈ NM (U) and u ∈ U :

u((wφ)g) = (ug−1)(wφ) = f(ug−1, w) = f(u,wg) = u((wg)φ),

so (wφ)g = (wg)φ. Thus (a) holds.

Put V := V/V ⊥ and define f : V → V → K, (v + V ⊥, w + V ⊥) → f(v, w). Then f is a
non-degenerate form on V .

(b): If V ⊥ = 0, there is nothing to prove. So suppose V ⊥ 6= 0, that is G = O(V ), charK = 2,
and n is odd. Let v ∈ V with v ∈ CV (A) and g ∈ A. Then vg = v + u for some u ∈ V ⊥, so

h(v) = h(vg) = h(v + u) = h(v) + f(u, v) + h(u) = h(v) + h(u).

Hence h(u) = 0. Since u ∈ V ⊥ and h is non-degenerate this gives u = 0 and so v ∈ CV (g). Thus
(b) holds.

(c): By 1.8(c) and (a) we have CV (A) = [V ,A]⊥. Observe that [V,A]⊥ is the preimage of [V ,A]⊥

in V . By (b), CV (A) is the preimage of CV (A) in V . Thus (c) holds.
(d): Put C := CM (V/U). Note that [V,C] ≤ U and so by (c), CV (C) = [V,C]⊥ ≥ U⊥. Hence

C ≤ CM (U⊥). If U is, in addition, isotropic, U ≤ U⊥ and so C ≤ CM (U).
(e): Suppose that A is quadratic on V . Then [V ,A] ≤ CV (A) = CV (A). Thus [V,A,A] = 0 and

[V,A] ≤ CV (A) = [V,A]⊥ by (c). Hence [V,A] is isotropic.

Lemma 3.3. Suppose that f 6= 0 and U is an isotropic subspace of V with U ∩ V ⊥ = 0. Put
V := V/U⊥, D := CGL(V )(U

⊥) ∩ CGL(V )(V/U) and

fd(x, y) := f(x, [y, d]) for all d ∈ D, x, y ∈ V.

Let d ∈ D. Then

(a)
λ : D → Fα(V ), d 7→ fd

is a ZNM (U)-module isomorphism.

(b) f(xd, yd) = f(x, y) for all x, y ∈ V if and only if fd ∈ Fα,−ε(V ).
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(c) Suppose M = Sp(V ) then d ∈M if and only if fd ∈ S2(V ).

(d) Suppose M = GU(V ), then d ∈M if and only if fd ∈ Fα,−(V ).

(e) Suppose M = O(V ) and U is singular, then d ∈M if and only if fd ∈
∧

2(V ).

(f) Suppose that M = O(V ) and U is not singular. Then there exists a unique w ∈ V such that

h(u) = f(w, u)2 for all u ∈ U.

Moreover, d ∈M if and only if d ∈ S2(V ) and

fd(x, x) = fd(w, x)2 for all x ∈ V .

Proof. Observe that fd is well-defined and α-sesquilinear, so fd ∈ Fα(V ). Note that [V,D] ≤ U ≤ U⊥
and so [V ,D] = 0. Thus λ is a homomorphism, and for d ∈ D, g ∈ NM (U) and h ∈ Fα(V )

(fdg)(x, y) = fd(xg
−1, yg−1) = f(xg−1, [yg−1, d]) = f(xg−1,−yg−1 + yg−1d)

= f(xg−1, (−y + y(g−1dg))g−1) = f(x,−y + y(g−1dg))
= fdg (x, y).

To see that λ is a ZNM (U)-module isomorphism it remains to show that λ is bijective. The injectivity
follows from the fact that [V,D] ≤ U and U ∩ V ⊥ = 0.

Let g ∈ Fα(V ). For u ∈ U define φu ∈ V
∗

by xφu := f(x, u) for all x ∈ V . Since U ∩ V ⊥ = 0,

the map U → V
∗
, u 7→ φu, is an α-semilinear isomorphism. For w ∈ V , the map t 7→ g(t, w) is

in V
∗

and so there exists a unique uw ∈ U with xφuw = f(x, uw) = g(x,w) for all x ∈ V . Define
dg ∈ GL(V ) by dg(v) := v + uv. Clearly dg ∈ D, and for all x, y ∈ V :

fdg (x, y) = f(x, [y, dg]) = f(x, uy) = g(x, y),

so fdg = g, and λ is surjective. Thus (a) holds.
To prove (b) let d ∈ D. We will determine necessary and sufficient conditions for d to be in M .
Since f is an (α, ε)-sesquilinear form and U is isotropic,

f(xd, yd)− f(x, y) = f(x+ [x, d], y + [y, d])− f(x, y) = f(x, [y, d]) + f([x, d], y) =

f(x, [y, d]) + εf(y, [x, d])α = fd(x, y) + εfd(y, x)α.

Thus d preserves f if and only if

(1) fd(x, y) = −εfd(y, x)α for all x, y ∈ V .

That is, if and only if fd ∈ Fα,−ε(V ). So (b) follows.
(c) and (d): These statements follow immediately from (b).
(d) and (e): So suppose that G = O(V ) and let d ∈ D such that (1) holds. Since ε = 1 and

α = idK, fd is a skew-symmetric form. Then

(2) h(xd)− h(x) = h(x+ [x, d])− h(x) = f(x, [x, d]) + h([x, d]) = fd(x, x) + h([x, d]).

So

(3) d ∈ O(V ) if and only if d ∈ Fid,−(V ) and fd(x, x) = −h([x, d]) for all x ∈ V.
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If U is singular, then h([x, d] = 0 and we conclude that (d) holds. So suppose U is not singular.
Then p = 2. Define δ : U → K, u 7→

√
h(u), and observe that δ is K-linear, so δ ∈ U∗. On the other

hand the map
φ∗ : V → U∗, φ∗(v) : u 7→ f(v, u)

is an isomorphism. Thus there exists a unique w ∈ V with φ∗(w) = δ. This gives

h(u) = δ(u)2 = f(w, u)2 for all u ∈ U.

Together with (3) we conclude that (e) holds.

Lemma 3.4. Let U be an k-dimensional isotropic subspace of V and E := CM (U) ∩ CM (V/U).

(a) Suppose M = GL(V ). Then E ∼= U ⊗K (V/U)∗, |E| = |K|k(n−k) and |V/CV (E)| = |K|n−k.

(b) Suppose M = Sp(V ). Then E ∼= S2(U∗), |E| = |K|
k(k+1)

2 and |V/CV (E)| = |K|k.

(c) Suppose M = GU(V ) Then E ∼= Fα,−(U∗), |E| = |F|k2

and |V/CV (E)| = |F|2k.

(d) Suppose M = O(V ) and U is singular. Then E ∼=
∧

2(U∗), |E| = |K|
k(k−1)

2 , |V/CV (E)| = |K|k,

(e) Suppose M = O(V ) and U is not singular. Put U0 := {u ∈ U | h(u) = 0}, E0 := CE(V/U0), and

E1 := E∩Ωn(V ). Then p = 2, E0 ≤ E1 ≤ E, E1/E0
∼= U0, E0

∼=
∧

2(U∗0 ), and |E1| = |K|
k(k−1)

2 .
If V ⊥ ∩ U 6= 0 then |V/CV (E)| = |K|k−1 and E = E1. If V ⊥ ∩ U = 0 then |V/CV (E)| = |K|k
and |E/E1| = 2.

Here all the isomorphisms are ZNM (U)-module isomorphisms.

Proof. Suppose first that f = 0, so M = GL(V ). Then clearly E ∼= HomK(V/U,U) ∼= U ⊗K (V/U)∗

and (a) holds.
Suppose next that f 6= 0 and U ∩ V ⊥ = 0. We apply 3.3 with the notation introduced there.

Since [V,E] ≤ U , 3.2(c) gives CV (E) = [V,E]⊥ ≥ U⊥ and so E ≤ D. Thus E = D ∩M . So 3.3(c),
(d) and (e) imply (b), (c) and (d).

Suppose that G = O(V ) and U is not singular. Let d ∈ D. By 3.3(f) there exists w ∈ V with

(2) h(u) = f(w, u)2 for all u ∈ U.

and

(3) d ∈ O(V ) if and only if d ∈ S2(V ) and fd(x, x) = fd(w, x)2 for all x ∈ V

Recall from the proof of 3.3 that the map φ∗ : V → U∗ with vφ∗ : u 7→ f(v, u) is an isomorphism.
For δ := wφ∗ we get from (3) that ker δ = U0 = w⊥ ∩U . Note that φ∗ also induces an isomorphism
V /Kw → (ker δ)∗ = (U0)∗.

Consider the map τ : E → V
∗

defined by xτ(d) := fd(w, x). By (3) ker τ consists of all d ∈ D
such that fd is a symplectic form on V with w ∈ radfd. Also fd(w, x) = 0 iff f(w, [x, d]) = 0 and
(by (2)) iff h([x, d]) = 0. Thus d ∈ ker τ iff [V, d] ≤ U0. Hence ker τ = E0. As V /Kw ∼= U∗0 we get

(5) E0 = ker τ ∼=
∧

2
(V /Kw) ∼=

∧
2
(U∗0 ).

We claim that Im τ = X1 := {φ ∈ V ∗ | φ(w) ∈ {0, 1}}.
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If d ∈ E then (3) applied with x = w gives fd(w,w) = fd(w,w)2 and so fw(w,w)2 ∈ {0, 1}.
Hence Im τ ≤ X1.

Conversely let φ ∈ V ∗ with φ(w) = 1. Define g : V ×V , (x, y) 7→ φ(x)φ(y). Then g is a symmetric
bilinear form on V , so by 3.3 with dg := gλ−1

fdg (w, x) = g(w, x) = φ(x)φ(w) = φ(x)

and
fdg (x, x) = g(x, x) = φ(x)2 = g(w, x)2 = fdg (w, x).

Thus by (3), dg ∈ E and τ(dg) = φ. Any φ ∈ V ∗ with φ(w) = 0 can be written as a sum φ1 + φ2

where φi ∈ V
∗

and φi(w) = 1. It follow that τ(E) = X1.

Put X0 := {φ ∈ V ∗ | φ(w) = 0}. Then X0
∼= (V /Kw)∗ ∼= U0. Also |X1/X0| = 2 and so (e) holds.

Thus we have proved all claims in the case V ⊥ ∩ U = 0.

Suppose now that V ⊥∩U 6= 0. Then V is an orthogonal space and dimV ⊥ = 1, so V ⊥ ≤ U . Let
Ṽ be an orthogonal space of dimension n+ 1 with V ≤ Ṽ and Ṽ ⊥ = 0; in particular, Ṽ ⊥ ∩ U = 0.
Put M̃ = O(Ṽ ) and Ẽ := CM̃ (U) ∩ CM̃ (Ṽ /U). Then (e) holds for Ṽ , M̃ and Ẽ.

Note that in Ṽ , V ⊥⊥ = V . Since V ⊥ ≤ U , this gives Ẽ ≤ CM̃ (V ⊥) ≤ NM̃ (V ) and we obtain a

homomorphism β : Ẽ → E, e 7→ eCM̃ (V ). Note that kerβ has order two, indeed the only non-trivial
element in kerβ is the transvection associated to the 1-space V ⊥. By Witt’s theorem, β is onto.
Also kerβ is not contained in Ẽ ∩ Ω(Ṽ ). Thus (e) applied to M̃ shows that E ∼= Ẽ0, and (e) also
holds in this case.

Lemma 3.5. Let U be a isotropic subspace of V , let U0 be the subspace of all singular elements of
U and put k = dimK U0. Suppose that K is finite and k ≥ 2. Put E := CM (U) ∩ CM (V/U), and

P := Op′(NM ′(U)), where p = charK.

(a) If M = GL(V ) or GU(V ) then E is a simple FpP -module.

(b) If M = Sp(V ) and p is odd, then E is a simple FpP module.

(c) If M = O(V ) and U is singular, then one of the following holds:

1. k ≥ 3 and E is a simple FpP -module.

2. k = 2, P centralizes E and E is a simple FpNM ′(U)-module.

(d) Suppose M = Sp(V ) and p = 2 or M = O(V ) and U is not singular. Then p = 2. Let E0 be
the sum of the simple F2P -submodules of E. Then one of the following holds:

1. k ≥ 3, E0 is a simple F2P -module, and E0
∼=
∧

2 U
∗
0 .

2. k = 2, |K| > 2 or V ⊥ � U , E0 = CE(P ). |E0| = |K| and NM ′(U) acts simply on E0.

3. k = 2, |K| = 2, M = Sp(V ) or V ⊥ ≤ U , and E is the direct sum of simple F2P -modules of
order 2 and 4.

Proof. Let S be a Sylow p-subgroup of P and D be a simple FpP -submodule of E.
Assume first that M = GL(V ) and put S0 := CS(V/U)). Then S0 induces a Sylow p-subgroup

of GLK(U) on U . Hence 3.4 implies that CE(S0) ∼= x ⊗ (V/U)∗ for some 0 6= x ∈ U . Thus CP (U)
acts simply on CE(S0) and so CE(S0) ≤ D. Since CP (V/U) acts simply on U , we conclude that
E = 〈CE(S0)CP (V/U)〉 ≤ D. Thus E is a simple FpP -module.
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Assume next that f 6= 0 and U ∩ V ⊥ = 0. Put W := V/U⊥ and note that dimW = dimU .
By Witt’s Theorem S induces a Sylow p-subgroup of GLK(U) on U and thus also on W . Thus
CW (S) is 1-dimensional. By 3.4 E is embedded into Fα,−ε(W ). Let 1 6= x ∈ CD(S), and let
fx ∈ Fα,−ε(W ), fx as in 3.3. Then fx is invariant under S, so W/rad fx possesses a non-degenerate
(α,−ε) sesquilinear form invariant under a Sylow p-subgroup of GL(W/rad fx). If follows that either
W/rad fx is 1-dimensional or α = idK, −ε = −1 and dimW/rad fx = 2.

Suppose that M = Sp(V ) and p is odd or that M = GU(V ), so dimK U = k. Then P induces
SLK(U) on U . Moreover dimW/rad fx = 1 and NP (S) acts simply on the subspace Ffx of Fα,−ε(W ).
Also for any ψ ∈ Fα,−ε(W ) there exists a basis (xi)1≤i≤k of W which is orthogonal with respect to
ψ, that is, ψ(xi, xj) = 0 for i 6= j. It follows that ψ is a F-linear combination of conjugates of fx
under P and so D = E.

Suppose that M = O(V ) and U is singular. Then P induces SLK(U) on U . By 3.4(d) E ∼=
∧

2W
and fx is a symplectic form. Thus dimW/rad fx = 2. Let ψ ∈

∧
2(W ). Then W has basis xi, yi, zs,

1 ≤ i ≤ r and 1 ≤ s ≤ t, where ψ(xi, yi) = 1, ψ(yi, xi) = −1, and ψ(c, d) = 0 for any other pair of
basis elements.

Assume that k ≥ 3. Then P acts transitively on the set of symplectic forms on W with radical
of codimension 2. Hence ψ is a sum of P -conjugates of fx. Thus D = E and (c:1) holds in this case.

Assume that k = 2. Then P centralizes
∧2

W . Also any scalar multiplication on W is induced by

an element of NM ′(U) and so NM ′(U) acts simply on
∧2

W . Thus (c:2) holds.
Suppose that M = O(V ) and U is not singular. Put F = CM (V/U0). Note that F ≤ CM (U⊥0 )

by 3.2(d), and so F ≤ E since U ≤ U⊥0 . By the preceding case F ∼=
∧

2(U∗0 ) and either k = 3 and F
is a simple FpP -module or k = 2, [F, P ] = 1 and F is a simple NM ′(U)-module. Thus F ≤ E0 and
it suffices to show that E0 ≤ F . Let w be as in 3.3(f). The uniqueness of w show that w ∈ CW (S).
Since dimW = dimU > dimU0 ≥ 2 and dimW/radfx ≤ 2 we have radfx 6= 0. Hence Cradfx(S) 6= 0
and since CW (S) is 1-dimensional, w ∈ radfx. So 3.3(f) shows that fx is symplectic and thus fx ∈ F .
Since D is simple, D ≤ F and E0 ≤ F .

Suppose M = Sp(V ) and p = 2. Then by 3.4(b) E ∼= S2(U∗), and by 3.2(a) W ∼= U∗, so
S2(U∗) ∼= S2(W ). Since p = 2,

∧
2(W ) ≤ S2(W ). Let F be the inverse image of

∧
2(W ) in E.

Then F ∼=
∧

2(W ) ∼=
∧

2(U∗). As seen in the case where U is singular either k ≥ 3 and E0 is a
simple FpP -module, or k = 2, [F, P ] = 1 and NM ′(U) acts simply on F . If |K| = 2 and k = 2,
then |U | = 4 and |E| = 8 and it is easy to see that (d:3) holds. So suppose that |K| > 2 or k > 2.
We will show that D ≤ F . For this we just need to show that there exists 1 6= u ∈ D such that
fu is a symplectic form. Fix a basis (vi) for W and for e ∈ E let Me be the matrix (fe(vi, vj)).
Then Me is symmetric and e ∈ F if and only if all diagonal elements of Me are zero. Moreover,
dimW/radfe = rankMe. We may assume that fx is not symplectic and so there exists v ∈ V with
fx(v, v) 6= 0. Since K is perfect we can choose v such that fx(v, v) = 1. Put s = dimW/radfx. Then
either s = 1 and V = Kv + radfx, or s = 2, there exists w ∈W with fx(v, w) = 0 and fx(w,w) = 1
and V = Kv + Kw + radfx. So we can choose our basis such that fx(vi, vj) = 1 for 1 ≤ i = j ≤ s
and fx(vi, vj) = 0 for all other i, j.

Suppose s = 1. Note that(
1 0
0 0

)
+

(
1 0
0 0

)
+

(
1 1
1 1

)
=

(
0 1
1 0

)
The three matrices on the left side of the equation all are symmetric of rank 1 and so conjugate
under SL2(K) on it actions on S2(K2). The matrix on the right is symplectic. Thus 〈dP 〉 ∩ F 6= 1
and so D ≤ F .

Suppose that s = 2 and |K| > 2. Pick a, b ∈ K \ {0, 1} with a+ b = 1. Note that
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(
1 0
0 1

)
+

(
a b
b a

)
+

(
b a
a b

)
=

(
0 1
1 0

)
The three matrices on the left side of the equation are symmetric, not symplectic and have

determinant 1. So they are conjugate under SL2(K) on it actions on S2(K2). The matrix on the
right is symplectic and so again D ≤ F .

Suppose that s = 2, |K| = 2 and k ≥ 3. We have1 0 0
0 1 0
0 0 0

+

1 0 1
0 1 1
1 1 0

 =

0 0 1
0 0 1
1 1 0


The two matrices on the left side of the equation are symmetric, not symplectic and have rank 2.

So they are conjugate under SL3(K) on it actions on S2(K3). The matrix on the right is symplectic
and so again D ≤ F .

We have proved that D ≤ F . So E0 = F and (d:1) or (d:2) holds.
Assume finally that M = O(V ), U is not singular and U ∩ V ⊥ 6= 0. Then p = 2 and M ∼=

Sp(V/V ⊥). Hence the case where M = Sp(V ) applied to V/V ⊥ and U/V ⊥ shows that (d) holds.

4 Smith’s Lemma and Ronan-Smith’s Lemma

In this section we provide a few pieces from the theory of equicharacteristic representations of groups
of Lie-type. The material presented here essentially comes from [GLS3, Section 2.8] except that we
are looking at representations over Fp rather than its algebraic closure Fp.

Lemma 4.1 (Steinberg’s Lemma). Let M be a genuine group of Lie-type defined over a finite
field of characteristic p. Let V be a simple FpM -module, S ∈ Sylp(M), and B := NM (S). Put K :=
EndM (V ). Then CV (S) is 1-dimensional over K, K is isomorphic to the subring of EndFp(CV (S))
generated by the image of B, and CV (S) is a simple FpB-module.

Proof. Choose an embedding σ : K→ Fp and put V = Fp ⊗K V . Then V is a simple FpM -module.
Thus by [St, Theorem 46] CV (S) is 1-dimensional over Fp and so CV (S) is 1-dimensional over K.
Define λ : B → K by vb = λ(b)v for all b ∈ B, v ∈ CV (S), and let E be the subfield of K generated
by λ(B). Let ρ ∈ AutE(Fp). Then [St, Theorem 46] shows that V ∼= V

ρ
as a KM -module. Thus

ρ centralizes K and so K = E. Since CV (S) is 1-dimensional over K this implies that CV (S) is a
simple FpB-module.

Let F be a finite field of characteristic p, M a finite group, V a simple FM -module and W a
simple FpM -submodule. Recall that the field K := EndM (W ) is called the field of definition of the
FM -module W .

Theorem 4.2 (Smith’s Lemma). Let M be a genuine group of Lie-type defined over a finite
field of characteristic p. Let V be a simple FpM -module, K := EndM (V ), E a parabolic subgroup

of M , L := Op′(E) and P = NM (L). Then L = Op
′
(P ), Op(E) = Op(P ) = Op(L), and P is a

Lie-parabolic subgroup of M . Moreover, CV (Op(P )) is a simple FpP -module, an absolutely simple
KL-module, and an absolutely simple KE-module.

Proof. Let S ∈ Sylp(E) and B = NM (S). Then P = BL = BE and so P is a Lie-parabolic subgroup

of M . Since B/S is a p′-group we conclude that E = Op′(P ) and Op(E) = Op(L) = Op(P ).
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Choose an embedding σ : K→ Fp and put V = Fp⊗K V . Then V is a simple FpM -module. Put
U = CV (Op(P )) and U = CV (Op(P )) = Fp ⊗K U . By [Ti] U is a simple FpP -module.

Let Y be a simple FpL-submodule of U . Then CY (S) 6= 0, and since by [St, Theorem 46] CV (S)
is 1-dimensional over Fp, CV (S) ≤ Y . Thus

U = 〈CU (S)P 〉 = 〈CU (S)BL〉 = 〈CU (S)L〉 ≤ Y,

so U is simple FpL. Thus, U is an absolutely simple KL-module, and since L ≤ E, U is also an
absolutely simple KE-module.

Let X be a simple FpP -submodule of U . Then again 0 6= CX(S) is B-invariant and since CV (S)
is a simple FpB-module by 4.1, CV (S) ≤ X. Since 〈CV (S)P 〉 is a K-submodule of U we conclude
that X = U .

Theorem 4.3 (Ronan-Smith’s Lemma). Let M be a universal group of Lie-type defined over a
finite field of characteristic p, S a Sylow p-subgroup of M , P1, P2, . . . , Pn the minimal Lie-parabolic

subgroups of M containing S, and Li = Op′(Pi). Let V be the class of all tuples (K, V1, V2, . . . Vn)
such that

(i) K is a finite field of characteristic p.

(ii) Each Vi is an absolutely simple KLi-module.

(iii) K = 〈Ki | 1 ≤ i ≤ n〉, where Ki is the field of definition of the KLi-module Vi.

Define two elements (K, V1, V2, . . . Vn) and (K̃, Ṽ1, Ṽ2, . . . Ṽn) of V to be isomorphic if there exists
a field isomorphism σ : K̃ → K such that Vi ∼= Ṽ σi as an KLi-module for all 1 ≤ i ≤ n. Then the
map

V → (EndM (V ),CV (Op(Li)), . . .CV (Op(Ln))) (V a simple FpM -module)

induces a bijection between the isomorphism classes of simple FpM -modules and the isomorphism
classes of V.

Proof. Let V be a simple FpM -module and put K := EndM (V ) and Vi := CV (Op(Li)). By Smith’s
Lemma 4.2, Vi is an absolutely simple KLi-module. Let Ki be the field of definition of the KLi-
module Vi. Put B := NM (S). By 4.1 K is generated by the image of B in EndFp(CV (S)). Moreover,
each Ki is generated by the image of B ∩ Li in CV (S). Since B = 〈B ∩ Li, 1 ≤ i ≤ n〉 we conclude
that K = 〈Ki | 1 ≤ i ≤ n〉.

Clearly, if Ṽ is an FpM -module isomorphic to V , then the corresponding elements of V are
isomorphic.

Now let (K, V1, V2, . . . Vn) ∈ V. Pick 0 6= vi ∈ CVi(S) and define λi, ni and µi as in [St, Theorem

46] applied to the FpLi/Op(Li)-module V i = Fp ⊗K Vi. Since B/S =×n

i=1(B ∩Li)/S, there exists
a unique homomorphism λ : B → Fp with λ |B∩Lo= λi. Let V be the simple FpM -module obtained
from [St, Theorem 46]. Since CV (Op(Vi)) is simple we conclude from [St, Theorem 46] applied
to Li that CV (Op(Vi)) ∼= Vi. Let V be a simple FpM -submodule of V and put E = EndM (V ).
Then V ∼= Fp ⊗E V as an FpM -module. It is now easy to see that E ∼= K, that V is send to
(K, V1, V2, . . . Vn) ∈ V and that V is unique up to isomorphism with this property.

5 Generating Genuine Groups of Lie-type

Lemma 5.1. Let G be a simple genuine group of Lie Type over a field of characteristic p, P+ a
Lie-parabolic subgroup of G and P− an opposite Lie-parabolic. Then G = 〈Op(P

+),Op(P
−)〉.
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Proof. Put L = 〈Op(P
+),Op(P

−)〉. Since P+ is opposite to P−, G = 〈P+, P−〉 and P ε =
Op(P

ε)(P+ ∩ P−). It follows that L E L(P+ ∩ P−) = 〈P+, P−〉 = G, and since G is simple,
G = L.

Lemma 5.2. Let G ∼= G2(q), p = qk, P a Lie-parabolic subgroup of G with Z(Op′(P )) = 1 and
AE P with |A| = q3. Then G = 〈A,At〉 for some t ∈ G.

Proof. Choose a root system Φ for G such that P is a Lie-parabolic with respect to Φ and let N/H
be the corresponding Weyl-group. Let Rl ( Rs) be set root subgroups in G corresponding to the
long (short) roots in Φ. Put L = 〈Rl〉. Then L is a genuine group of Lie-type of type A2 and
P ∩ L is a Lie-parabolic subgroup of L with L ∩ A = Op(P ∩ L). Since N/H ∼= D12 we can choose
t ∈ N \H with [t,N ] ≤ H. Put K = 〈A,At〉. Since (P ∩ L)t is opposite to P ∩ L in L, 5.1 implies
that L = 〈L∩A, (L∩A)t〉. Thus L ≤ K . Since (N ∩L)H/H ∼= D6 we have N = (L∩H)〈t〉H and
so N normalizes K. Since N acts transitive Rs and there exists R ∈ Rs with R ≤ A, 〈Rs〉 ≤ K.
Hence G = 〈Rl,Rs〉 ≤ K and G = K.

Lemma 5.3. Let G ∼= SLn(K). Then G is generated by n root subgroups.

Proof. Let I = {1, . . . , n} and Φ = {ei − ej | i, j ∈ I, i 6= j} by the root system for G and for φ ∈ Φ
let Zφ be the corresponding root subgroup. Then

(∗) [Zei−ej , Zej−ek ] = Zei−ek for all distinct i, j, k in I.

Put U := 〈Zei−ei+1
| n 6= i ∈ I}〉 and L := 〈U,Zen−e1〉. Let i, j ∈ I with i < j.

We will first show by induction on j − i that Zei−ej ∈ U . If j − i = 1, this holds by definition of
U . So suppose j − i > 1 and by induction that Zei−ej−1

≤ U . Thus using (∗),

Zei−ej = [Zei−ej−1 , Zej−1−ej ] ≤ U.

Next we will show by downwards induction on j − i, then Zej−ei ≤ L. If j − i = n − 1, then
j = n and i = 1 and so this holds by definition on L. So suppose j − i < n− 1.

Assume that i > 1 and by induction that Zej−ei−1 ≤ L. Then by (∗)

Zej−ei = [Zej−ei−1
, Zei−1−ei ] ≤ U.

Assume that i = 1. Then j < n and by induction Zej+1−ei ≤ U . So by (∗)

Zej−ei = [Zej−ej+1
, Zej+1−ei ] ≤ U.

Thus L contains all Zφ, φ ∈ Φ and so L = M .

Lemma 5.4. Let H be quasisimple with H/Z(H) ∼= Alt(6) and |Z(H)|
∣∣3. Let S ∈ Syl2(H), B =

NH(S), and M1 and M2 be the two maximal subgroups of H containing B. Let K be a field of
characteristic 2, V be a faithful KH-module, U a simple KB-submodule of V and put Ui := 〈UMi〉.
Suppose that

(i) V = 〈UM 〉,

(ii) U = U1, and

(iii) dimK U2 = 2 dimK U .
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Then the following hold:

(a) Suppose H ∼= Alt(6), then V is a quotient of the natural even permutation module for H over
K. In particular, V/CV (H) is a natural KAlt(6)-module for H, dimK CV (H) ≤ 1 and CV (H) ≤
〈UM1

2 〉.

(b) Suppose H ∼ 3.Alt(6). Let E be subring of EndKH(V ) generated by the images of K and Z(H).
Then E is a field, E = K(ξ) for ξ ∈ E with |ξ| = 3, dimE U = 1 and dimE V = 3.

Proof. Since S E B and U is a simple F2B-module, [U, S] = 0. As the Sylow 2-subgroups of Alt(6)
are self-normalizing, B = SZ(H), and so U is a simple KZ(H)-module.

Since V = 〈UM 〉, Z(H) acts homogeneously on V and so the subring E of EndKH(V ) generated
by the images of K and Z(H) is a field. Moreover, E = K if Z(H) = 1 or K contains a non-trivial
third root of unity; in the other case E = K(ξ) where ξ ∈ E \K with ξ3 = 1. Also dimE U = 1 and
since dimK U2 = 2 dimK U , dimE U2 = 2.

Let A be the natural F2Alt(6)-module for H with CA(M1) 6= 0. Then there exists an M -
equivariant bijection A] → UM1 , a→ Ua. We now use the fact that Alt(6) ∼= Sp4(2)′ and A is also a
natural Sp4(2)′-module for H, so there exists an H-invariant non-degenerate symplectic form on A.

For B ⊆ A define UB := 〈Ub | b ∈ B]〉 and WB := UB⊥ , where B⊥ is the F2-subspace of A
perpendicular to B with respect to the above mentioned symplectic form on A.

Let B be a singular 2-subspace of A. By Witt’s Theorem H acts transitively on the singular
2-subspaces of A and so UB is a conjugate of U2. In particular,

(∗) UB = Ub + Uc and Ua+c ≤ Ua + Uc for B = 〈a, c〉.

Now let a ∈ A]. Since dimF2
A = 4, a⊥ = 〈a〉 ⊕ B, where B is a non-singular 2-subspace. Then

〈a, b〉 is singular for every b ∈ B. Thus by (∗)

(∗∗) Wa = Σb∈B]U〈a,b〉 = Ua + UB .

Since |B]| = 3, dimE UB ≤ 3 and so dimEWa ≤ 4.
Now let d ∈ A\a⊥ and put B := a⊥∩d⊥. Then B is a non-singular 2-space, and by (∗∗) applied

to a and d, Wa +Wd = Ua + UB + Ud. Thus dimEWa +Wd ≤ 5.
Put W := Wa + Wd. We will show that V = W , that is Ub ≤ W for all b ∈ A]. Certainly

Ub ≤W if b ∈ a⊥ ∪ d⊥. So suppose b /∈ a⊥ and b /∈ d⊥.
Assume first that b 6= a + d. Then 〈b, d〉 6= 〈a, d〉 and so also b⊥ ∩ a⊥ 6= b⊥ ∩ d⊥. Choose

e ∈ b⊥ ∩ a⊥ \ d⊥; in particular Ue ≤ Wa. Then e + b ≤ b⊥ ∩ d⊥, so Ue+b ≤ Wd, and by (∗)
Ub ≤ Ue + Ue+b ≤Wa +Wd = W .

Assume next that b = a+ d. Pick b̃ ∈ A \ (a⊥ ∪ d⊥) with b̃ 6= b. Put c = b+ b̃. By the previous
case Ub̃ ≤W . Note that b̃ ∈ b⊥ and c ∈ a⊥. Thus Uc ≤W and by (∗) Ub ≤ Ub̃+Uc. Hence Ub ≤W .

We have shown that Ub ≤W for all b ∈ A] and so W = V ; in particular dimE V ≤ 5.
Suppose now that H ∼= Alt(6). Then Z(H) = 1 and E = K. Let V̌ be the KH-module induced

from the trivial KM1-module U1, and let Ǔ1 be the image of U1 in V̌ . Put Ǔ2 := 〈ǓM2
1 〉. Then

Ǔ2/CǓ2
(M2) has dimension 2 over K. It follows that V̂ := V̌ /〈CǓ2

(M2)H〉 fulfills the assumptions
of (a).

Choose a faithful action of H on I := {1, 2, 3, 4, 5, 6} with

M1 = NH({1, 2}) and M2 = NH({{{1, 2}, {3, 4}, {5, 6}}.
Let Ṽ be the corresponding permutation module for H over K with K basis {bi | i ∈ I}, and
let Ṽ0 := {

∑
i∈I kibi | ki ∈ K,

∑
i∈I ki = 0} be the even permutation module. For J ⊆ I put
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bJ =
∑
j∈J bj . Then M1 centralizes Kb3456, 〈KbM2

3456〉 = K〈b3456, b1234〉 and Ṽ0 = K〈bH3456〉. Thus

Ṽ0 and V are KH-quotients of V̂ . Since dimK Ṽ0 = 5 and dimK V̂ ≤ 5 we conclude that V̂ is
isomorphic to Ṽ0. Thus V is isomorphic to a quotient of Ṽ0. Observe that CṼ0

(H) = K〈b123456〉 and

b123456 = b1234 + b1235 + b1245 + b3456 ∈ K〈bM1
3456, b

M1
1234〉. So (a) holds.

Suppose next that H ∼ 3.Alt(6). Let R be a Sylow 3-subgroup of H. The R is extraspecial
of order 27. Let Y be any R-chief-factor of V . Then Z(H) = Z(R) acts non-trivially on Y and
so dimE Y = 3. Thus dimE V is a multiple of three and since dimE V ≤ 5, dimE V = 3. So (b)
holds.
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6 Module Decompositions

Lemma 6.1. Let H be a finite group, V an FpH-module, and K := EndH(V ). The following table
lists the dimension d := dimK(H1(H,V )) for various pairs (H,V ).

H p V Conditions d
Ωεn(pk), n ≥ 3 p V ∗nat n = 3, pk = 2 1

” ” ” n = 3, pk = 5 1
” ” ” n = 4, ε = −, pk = 3 2
” ” ” n = 5, pk = 3 1
” ” ” n = 6, ε = +, pk = 2 1
” ” ” all others 0

Sp2n(pk) p Vnat p = 2, (2n, pk) 6= (2, 2) 1
” ” ” all others 0

SLn(pk) p Vnat n = 2, p = 2, k > 1 1
” ” ” n = 3, p = 2, k = 1 1
” ” ” all others 0

SUn(pk), n ≥ 3 p Vnat n = 4, pk = 2 1
” ” ” all others 0

G2(2k)′ 2 K6 − 1
G2(pk)′ p 6= 2 K7 − 0
3D4(pk) p K8 − 0
Spinεn(pk) p (Half)-Spin n ≥ 7 0
3.Alt(6) 2 K3 − 0

Alt(n), n ≥ 5 2 Vnat n even 1
” ” ” n odd 0

SLn(pk), n ≥ 5 p
∧2

(Vnat) − 0
SLn(pk), n ≥ 3 odd Sym2(Vnat) − 0

SLn(p2k), n ≥ 3 p Vnat ⊗ V p
k

nat n = 3, p2k = 4 2
” ” ” all others 0

E6(pk) p K27 − 0
Matn, 22 ≤ n ≤ 24 2 Todd n = 24 1

” ” ” n = 22, 23 0
Matn, 22 ≤ n ≤ 24 2 Golay n = 22 1
Matn, 22 ≤ n ≤ 24 2 Golay n = 23, 24 0

3.Mat22 2 F6
4 − 0

Mat11 3 Todd − 0
Mat11 3 Golay − 1

2.Mat12 3 Todd − 0
2.Mat12 3 Golay − 0

Proof. Let T ∈ Sylp(H) and W be an FpH-module with [W,H] ≤ V and CW (H) ≤ V . Note that
by Gaschütz’s Theorem, CW (T ) ≤ V .

1◦. Let C ≤ H and A and B be normal p-subgroups of C with A ≤ B, and let X,Y, Z be
C-submodules of W with X ≤ Y ≤ Z. Suppose that

(i) B centralizes Z/Y and Y/X.
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(ii) A centralizes Z/X.

(iii) Φ(B) ≤ A.

Put U/X := CZ/X(B). Then Z/U is isomorphic to a C-submodule of HomFp(B/A, Y/X). If in
addition C centralizes Z/U , then Z/U embeds into HomFpC(B/A, Y/X).

For z ∈ Z define
z̃ : B/A→ Y/X with bA→ [b, z] +X.

Since B/A and Y/X are FpC-modules, for c ∈ C the element z̃c := c−1z̃c ∈ HomFp(B/A, Y/X) is
defined, and

(bA)z̃c = bA(c−1z̃c) = (bc
−1

Az̃)c = ([bc
−1

, z] +X)c = [b, zc] +X = bAz̃c.

Thus, the map
Z → HomFp(B/A, Y/X) with z → z̃

is C-equivariant with kernel U . So the first statement holds. The second follows from the first.

Case 1. V is the dual of a natural module for H ∼= Ωεn(q), n > 2 and q = pk.

This case is covered by [Po] and [JP].

Case 2. V is a natural module for H = Sp2n(q).

See [JP].

Case 3. V is a natural module for H = SLn(q), q = pk.

See [JP].

Case 4. V is a natural module for H = SUn(q), q = pk, and n ≥ 3.

If q > 3 see [JP]. So assume that q ≤ 3. If H is solvable, then H = SU3(2), and Maschke’s
Theorem shows that the lemma holds. Thus, assume in addition that H 6= SU3(2). Let V1 be a
1-dimensional singular K-subspace of V , V2 = V ⊥1 ≤ V , L = CH(V1), and L∗ = NH(V1).

Suppose for a contradiction that [V,Op(L)] � V2. Since L centralizes W/V and V/V2 we conclude
that Op(L) � Op(L) and so n = 3 and q = 3. In particular, L = O3(L) is extraspecial of exponent
3 and [W,Φ(L)] ≤ V2. Hence, there exists g ∈ L \ Φ(L) with [W, g] 6≤ V2. Note that [v, g, g] 6= 0 for
every v ∈ V \V2. On the other hand |g| = 3, so g acts cubically on W . This shows that [W, g] ≤ V2,
which contradicts the choice of g. Thus

2◦. [W,Op(L)] ≤ V2.

Since [V2,Op(L)] ≤ V1 we conclude that [W,Op(L)′] ≤ V1. Let W2 be maximal in W with
[W2,Op(L)] ≤ V1. In addition we use the following notation:

K∗ := CL∗(L/Op(L)), K := CL∗(V2/V1), X/V2 := CW/V2
(K∗).

Then K ≤ K∗, K∗/Op(L) has order q2 − 1 and K/Op(L) has order q − 1. We will prove next:

3◦. [W,L] ≤ V2.

By Maschke’s Theorem and (2◦), W/V2 = X/V2⊕V/V2. Since [X,L∗] ≤ X∩V = V2 we conclude
that [W,L] ≤ V2.

4◦. Either W = W2 + V or q = 2, n = 4 and |W/W2 + V | ≤ 4.
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Suppose that q 6= 2. Then Op(L) = [Op(L),K] and so K = Op(K). Since [X,K] ≤ V2 and
[V2,K] ≤ V1 we have [X,K] = [X,Op(K)] ≤ V1. Thus X ≤ W2. Since W = X + V , (4◦) holds in
this case.

So we may assume that q = 2. Then n > 3 since we are assuming that H 6= SU3(2). Put
Z := O2(L)′. Then [Z,L] = 1 and by (2◦), [W,O2(L), Z] ≤ [V2, Z] = 0. Since by (3◦) [W,L] ≤ V2,
we conclude from (1◦) that W/V2 embeds into HomL(O2(L)/Z, V2/V1).

Suppose that n > 4. Then L acts simply on Op(L)/Z and on V2/V1 and thus

q2 = |V/V2| ≤ |W/V2| ≤ |HomL(Op(L)/Z, V2/V1)| = q2.

We conclude that V = W , so (4◦) holds in this case.
Suppose that n = 4. Since V2 ≤W2 and L∗ centralizes X/V2, L∗ centralizes X +W2/W2. So by

(1◦) X + W2/W2 embeds into HomL∗(Op(L)/Z, V2/V1). Since L∗ acts simply on Op(L)/Z and on
V2/V1 we conclude as above that |X/X ∩W2| = |X+W2/W2| ≤ q2 = 4. Now W/V2 = X/V2⊕V/V2

and V2 ≤W2 imply

|W/(X ∩W2) + V | = |X + V/(X ∩W2) + V | = |(X/V2)/(X ∩W2/V2)| = |X/X ∩W2| =≤ 4,

so (4◦) also holds in this case.

5◦. Put W1 := CW2
(Op(L)). Then W2 = W1 + V2 and W2 + V = W1 + V .

Since [W2,Op(L)] ≤ V1 ≤ CV (Op(L)) the Three Subgroups Lemma gives that [W2, Z] = 0. So
by (1◦) W2/W1 embeds into HomFp(Op(L)/Z, V1). As an L-module HomFp(Op(L)/Z, V1) is a direct
sum of copies of the dual of Op(L)/Z. If n > 3 we conclude that W2/W1 = [W2/W1, L] and so by
(3◦) W2 = W1 +V2. Thus (5◦) holds in this case. So suppose n = 3. Let Y/V1 = CW2/V1

(L∗). Then
by Maschke’s Theorem, W2 = Y + V2.

Suppose that Y �W1. Then Op(L)/Z ∼= V1 as an L∗-module. Since n = 3 we have q > 2, and so

L∗ acts simply on Op(L)/Z and on V1. It follows that there exists 0 ≤ l < 2k with λ2−pk = λp
l

, for
all 0 6= λ ∈ Fp2k . Thus p2k−1 divides pl+pk−2. Hence either pl+pk−2 ≤ 0 or pl+pk−2 ≥ p2k−1.
Since pk = q > 2 we have pl + pk − 2 > 0. Moreover,

pl + pk − 2 ≤ p2k−1 + p2k−1 − 2 ≤ p2k − 2 < p2k − 1,

a contradiction. Thus Y ≤W1, and (5◦) also holds for n = 3.

6◦. W1 = V1 and W2 + V = V .

Let g ∈ H such that V1 is not perpendicular to V g1 in V , so V1 � V g2 . Then by (3◦), [W1, L∩Lg] ≤
W1 ∩ V g2 ≤ (W1 ∩ V ) ∩ V g2 = V1 ∩ V g2 = 0. Thus W1 is centralizes by Op(L)(L ∩ Lg) = L and so
W1 ≤ CW (T ) ≤ V . Thus W1 = V1, and (5◦) implies (6◦).

From (4◦) and (6◦) we see that the lemma holds in (Case 4).

Case 5. H = G2(q)′, q = pk, and either p = 2 and V = K6 or p 6= 2 and V = K7.

See [JP].

Case 6. V is a natural module for H = 3D4(q), q = pk.
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Fix a root system Φ. With respect to Φ, let C be the Cartan subgroup, N/C the Weyl-group, and
L be the subgroup of H generated by the long root subgroups. Then L ∼= SL3(q) and C normalizes
L.

Let K ≤ H be the centralizer of a field automorphism of order 3 in H such that K ∼= G2(q),
each root subgroup with respect to Φ intersects K in a root subgroup of K, and N = (N ∩K)C.
Then L ≤ K and 〈K,C〉 contains all the root subgroups from Φ. So 〈K,C〉 = H. In the case q = 2,
the action of C on the Lie-parabolic subgroups of H shows that also 〈O2(K), C〉 = H.

Note that V/CV (K) is a 7-dimensional K-module (over K), which is a natural module for p odd
and a non-split central extension of a natural module for p = 2. By (Case 5), W = CW (Op(K))+V .
Moreover, the action ofK on V shows that CV (Op(K)) = CV (L(N∩Op(K))). So also CW (Op(K)) =
CW (L(N ∩ Op(K)). Note that C acts fixed-point freely on CV (L). Since C is a p′-group we get
CW (L) = CV (L)⊕ CW (LC). Thus also W = V ⊕ CW (LC). Since N normalizes CW (LC) we have

CW (LC) = CW (LN) ≤ CW (L(N ∩Op(K))) ≤ CW (Op(K)).

Thus CW (LC) ≤ CW (〈C,Op(K)〉) = CW (H) = 0 and so V = W .

Case 7. V is the (half)-spin-module for H = Spinεn(q), q = pk, n ≥ 7.

See [JP].

Case 8. H = 3.Alt(6) and V = K3.

Since [V,Z(H)] 6= 0, Maschke’s Theorem implies that V = W .

Case 9. V is a natural module for H ∼= Alt(n), n ≥ 5, p = 2.

See [As, page 74].

Case 10. V is the symmetric square of a natural module for H ∼= SLn(q), q = pk, p odd, n ≥ 3.

Let V2 := [V, T ], L∗ := NH(V2), L1 := CL∗(V/V2) and L := Op′(L∗). Then L/Op(L) ∼= SLn−1(q)
and |L1/L| = 2. Note that L = Op(L) unless n = 3 = q, in which case L1/Op(L1) ∼= GL2(3). So in
any case L1 = Op(L1) and thus

7◦. [W,L1] = V2 = [W,L].

Let V1 := CV (Op(L)) = [V2,Op(L)]. Then V2/V1 is a natural SLn−1(q)-module for L/Op(L)
isomorphic to Op(L). Hence |HomL(Op(L), V2/V1)| = q. Let W2/V1 := CW/V1

(Op(L)). Then by
(1◦) W/W2 embeds into HomL(Op(L), V2/V1). Since |V/V2| = q we conclude that

8◦. W = W2 + V .

Let W1/V1 := CW2/V1
(L). By (Case 3) H1(L/Op(L), V2/V1) = 0 and so by (8◦)

9◦. W2 = W1 + V2 and W = W1 + V .

Note that V1 is the symmetric square of a natural module for L/Op(L). In particular, V1 and
Op(L)) are non-isomorphic simple L/Op(L)-modules and so [W1,Op(L)] = 1. Let W0 = CW1(L).
Suppose that W1 6= W0 ⊕ V1. By induction on n and with (Case 1) we conclude that n = 3 and
q = 5. (Note here that for n = 3 V1 is an orthogonal Ω3(q)-module for L/Op(L).)

Since T/O5(L) is cyclic, the Jordan Form for T on V shows that T does not act cubically on
W1. Pick g ∈ H with T = O5(L)(O5(L)g ∩ T ). By (9◦), O5(L) acts cubically on V and so T acts
cubically in W1, a contradiction.

Thus W1 = W0 + V1. As W0 ≤ CW (T ) ≤ V we have W1 ≤ V , and by (9◦) V = W .
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Case 11. V is the alternating square of a natural module for H ∼= SLn(q), q = pk, n ≥ 5.

See [JP].

Case 12. H ∼= E6(q), q = pk, and V = K27.

See [JP].

Case 13. H ∼= SLn(q2), q = pk, and V is a simple FqH-submodule of N ⊗Fq2 N
σ, where N is

the natural Fq2H-module and σ is the field automorphism of order 2 of Fq2 .

Let N1 := CN (T ), L∗ := NH(N1), and L := CH(N1), and let J ≤ L∗ with L∗ = Op(L)J
and N = N1 ⊕ [N, J ∩ L]. Then J ∩ L ∼= SLn−1(q2) and J ∼= GLn−1(q2). Let V1 = CV (L) and
V2 = [V,Op(L)]. Then V2/V1 is a natural SLn−1(q2)-module for L/Op(L) isomorphic to N/N1 and
dual to Op(L). Also V/V2 is isomorphic to a simple FqL/Op(L) submodule of N/N1 ⊗Fq2 N

σ/Nσ
1 .

We first show:

10◦. Suppose n = 3 and q 6= 2. Then Z(J) acts fix-point freely on V/V2, and Op(L) and V2/V1

are not isomorphic as FpZ(J)-modules.

Let j ∈ Z(J), then j acts as an Fq2 -scalar λ on N/N1. It follows that j acts as λ−2 on N1, as λ−3

on Op(L), as λq−2 on V2/V1 and as λq+1 on V/V2. Since q > 2 we conclude that Z(J) is fixed-point
free on V/V2. Suppose that V2/V1 and Op(L) are isomorphic as FpZ(J)-modules. Then there exists

0 ≤ l < 2k with λ−3pl = λq−2 for all 0 6= λ ∈ Fq2 and so

p2k − 1
∣∣3pl + pk − 2.

Since pk = q > 2, the right side is positive and so

p2k − 1 ≤ 3pl + pk − 2 ≤ 3p2k−1 + pk − 2 ≤ 4p2k−1 − 2.

Thus p ≤ 3. If p = 3 we have

32k ≤ 3l+1 + 3k − 1 ≤ 2 · 3m − 1,

where m = max{l + 1, k}. Hence m = l + 1 = 2k. and so

32k − 1
∣∣3 · 32k−1 + 3k − 2 = (32k − 1) + 3k − 1.

Therefore 32k − 1
∣∣3k − 1, a contradiction.

Thus p = 2. If l = 0 we get 22k − 1 ≤ 2k + 1 and q = 2k = 2, contradiction. Hence l > 0 and
since 22k − 1 is odd,

22k − 1
∣∣3 · 2l−1 + 2k−1 − 1.

So
22k ≤ 3 · 2l−1 + 2k−1 = 2l + 2l−1 + 2k−1.

It follows that k = 1 = l and q = 2, a contradiction.

11◦. Suppose n = 3 and V 6= W . Then q = 2 and |W/V | ≤ 4.

32



Since Op(L) and V/V2 are non-isomorphic simple L-modules, [W,Op(L)] ≤ V2. Let W2/V2 =
CW/V2

(L). If q 6= 2, then by (10◦) Z(J) acts fixed-point-freely on V/V2, and if q = 2, then by (Case

1), H1(L/Op(L), V/V2) = 0. So in any case W = W2 + V .
Let W1/V1 = CW2/V1

(Op(L)). Then W2/W1 embeds into HomL∗(Op(L), V2/V1). By (10◦) this
group is trivial for q 6= 2. For q = 2 it has order 4. So W2 = W1 if q 6= 2 and |W2/W1| ≤ 4 if q = 2.
It remains to show that W1 ≤ V .

Let W0 = CW1(Op(L)). Then W1/W0 embeds into HomFp(Op(L), V1). The latter group is as an
L-module isomorphic to a direct sum of copies of the dual of Op(L). Hence [W1/W0, L] = W1/W0 and
so W1 = W0 +V2. Since W0∩V = V1 and L = Op(L) we have [W0, L] = 0 and so W0 ≤ CV (T ) ≤ V .
Thus also W1 ≤ V , and (11◦) is proved.

12◦. Suppose n = 3 and q = 2. Then |H1(H,V )| = 4, and GL3(4) acts fixed-point freely on
H1(H,V ).

By (11◦) |H1(H,V )| ≤ 4. Let I be the simple 11-dimensional Golay code-module for M = Mat24

over F2. Let H̃ = Mat21
∼= PSL3(4). Then [I, H̃] is simple of F2-dimension 9 and CI(H̃) = 0.

Moreover, NM (H̃) ∼= PGL3(4) acts fixed-point freely on I/[I, H̃], so (12◦) holds.

13◦. Suppose n > 3. Then V = W .

Note that W/V2 and Op′(L∗/Op(L)) satisfy (Case 13) for n−1, and note further that L∗/Op(L) ∼=
GLn−1(q2). Moreover, for n − 1 = 3 the case described in (12◦) does not occur since [W,L∗] = V .
Hence induction shows that H1(L∗/Op(L), V/V2) = 0. By (Case 3), also H1(L∗/Op(L), V/V2) = 0.
Since n > 3, V/V2 and V2/V1 are simple L∗-modules not isomorphic to Op(L). Also since L = Op(L),
H1(L, V1) = 0. Thus H1(L∗, V ) = 0 and V = W .

By (11◦), (12◦) and (13◦) the Lemma holds in case (Case 13).

Case 14. p = 2, and V is the simple Todd- or Golay code-module for H = Matn, n = 22, 23, or
24.

Let P := Matn−1 ≤ H. Suppose first that H = Mat22 and V is the Todd-module. Put
V1 := CV (T ) and L := CH(V1). Then L/O2(L) ∼= Sym(5), and O2(L) is a natural ΓSL2(4)-module
for L. Put V2 := [V,O2(L)]. Then O2(L) centralizes V2/V1, and V2/V1 is an non-split extension
of a 1-dimensional module by a natural ΓSL2(4)-module for L/O2(L). Moreover, V/V2 is a natu-
ral O−4 (2)-module for L. Since V/V2 is not isomorphic to O2(L) as an L-module, [W,O2(L)] ≤
V2. Put W2/V2 := CW/V2

(L). By (Case 1) W = W2 + V . Since V2/V1 is indecomposable,
HomL(O2(L), V2/V1) = 0 and so [W2,O2(L)] ≤ V1. Let W1 = CW2(O2(L)). Then W2/W1 em-
beds into HomF2

(O2(L), V1). The latter is isomorphic to the dual of O2(L) and so W2 = W1 + V2.
Note that [W1,O

2(L)] = 1 and W1 ∩ V has order 4 with L/O2(L) acting non-trivial on W1 ∩ V . It
follows that W1 = CW1

(L) + (W1 ∩ V ) and so W1 ≤ CW (T ) + V ≤ V . Hence also W2 ≤ V and
W = V .

Suppose next that H = Mat22 and V is the Golay code -module. Then |[V, P ]| = 29 and
CV (P ) = 0, so V is a non-split extension for P as in case (Case 13). Thus (Case 13) shows that
|W/V + CW (P )| ≤ 2. Let L0 = Mat20 ≤ P and L = NH(L0) ∼ 24Sym(5). Then CV (L0) = 0 and
so CW (P ) ≤ CW (L0) ≤ CW (L). Since L contains a Sylow 2-subgroup of H, CW (L) ≤ V and so
CW (P ) = 0 and |W/V | ≤ 2.

Suppose next that H = Mat23. Then P contains a Sylow 2-subgroup of H and so CW (P ) ≤ V .
If V is the Todd-module, then V = [V, P ] and V/CV (P ) is the Todd-module for P = Mat22. Since
P = O2(P ), the Mat22-case implies that W = CW (P ) + V = V .
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If V is the Golay code-module, then CV (P ) = 0 and [V, P ] is the 10 dimensional Golay code
module for P . Thus by the Mat22-case, W = CW (L) + V = V .

Suppose that H = Mat24. Then V is simple as a P -module, so by the Mat23-case, W =
CW (P ) + V . Let w ∈ CW (P ). Then 〈wH〉 is a quotient of the natural permutation module of
Mat24. If V is the Golay code-module, we conclude that [w,H] = 0 and so V = W . If V is the Todd
module and w 6= 0, we conclude that 〈wH〉 = 〈w〉 + V is uniquely determined as an F2H-module.
Since |K| = 2 this implies |W/V | ≤ 2.

Case 15. V = F6
4 and H = 3.Mat22.

Since Z(H) 6= 1, we have V = W .

Case 16. p = 3, V is the simple Todd- or Golay code-module for H = Mat11 or 2.Mat12.

If H = 2.Mat12, we have W = CW (Z(H))⊕ V and so V = W . Suppose H = Mat11.
Assume first that V is the Golay code-module. Let L0 = Mat10 and L = L′0

∼= L2(9). Then
[V,L] is the natural Ω−4 (3)-module for L and CV (L) = 0. Thus by (Case 1), |W/V + CW (L)| ≤ 3.
Since L contains a Sylow 3-subgroup of H, CW (L) ≤ V and so |W/V | ≤ 3.

Suppose next that V is the Todd-module. Let L = NH(T ). Then L/T is semidihedral of order
16. Let K ∈ Syl2(L) and put V2 = [V, T ] and V1 = CV (T ). Then |V/V1| = 3 with D := CK(V/V1)
dihedral of order 8. Moreover, V2/V1 has order 9 with K acting faithfully on V2/V1, and V1 has
order 9 with |CK(V1)| = 2. Since T = [T,D], we have [W,T ] ≤ V2. Let W2/V1 = CW/V1

(T ).
Then W/W2 embeds into HomD(T, V2/V1). Since D acts simply on T and V2/V1, we conclude that
HomD(T, V2/V1) has order 3. Thus W = W2 +V . Let W1/V1 = CW2/V1

(L). By Mascke’s Theorem,
W2 = W1 + V2. Since V1 is not isomorphic to T as an L-module, [W1, T ] = 0 and so W1 ≤ V and
V = W .

Definition 6.2. Let H be a finite group, V an FpH-module and Q a p-subgroup of H. Then V is
called a Q!-module for H if Q is not normal in H and

(Q!) QE NH(A) for all 1 6= A ≤ CV (Q).

Lemma 6.3. Let M ∼= SLn(q), q a power of p, n ≥ 2, and let V be an FpM -module. Suppose that
there exists an M -submodule I in V such that the following hold:

(i) W := V/I is a natural SLn(q)-module for M .

(ii) I ∼= Λ2
KW as an FpM -module, where K := EndM (W ).

(iii) If H is a K-hyperplane in W and A := CM (H) ∩ CM (W/H), then CV (A) � I.

Then there exists x ∈ V \W with CM (x) = CM (x + I/I). Moreover, V is not a Q!-module for
any p-subgroup Q of M .

Proof. Put U := CV (A), L = NM (H) ∩ CM (W/H) and T ∈ Sylp(L). Note T ∈ Sylp(M). We will
first show:

1◦. CV (T ) � I.

The proof is by induction on n. If n = 2 then A = T and (1◦) follows from (iii). Suppose that
n ≥ 3. Note that L/A ∼= SLn−1(q), H ∼= U/U ∩ I is a natural module for L/A and U ∩ I ∼= Λ2

KH.
Let g ∈M with Hg 6= H and put R0 := L ∩Ag and R := A(L ∩Ag).
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Assume that n = 3. Then T = R and I ∼= W ∗. In particular

[U ∩ (Ug + I), R] = [I,R0] ∩ I ∩ U = 0.

Since |U ∩ (Ug + I)| = q2 while |U ∩ I| = q, we conclude that CU (R) = CU (T ) � I, and (1◦) holds.

Suppose now that n > 3. Then CI(R) = CU∩I(R0) and so CI(R) has order q(
n−2

2 ). On the
other hand, CV (A) has index qn in V . Hence CV (〈A,Ag〉) has index at most q2n in V . Thus also
|V/CV (R)| ≤ q2n. Note that

|V/CI(R)| = qn+(n2)−(n−2
2 ) = q3n−3 > q2n,

where the last inequality holds since n > 3.
Thus CV (R) � CI(R) and since CV (R) ≤ U , CU (R) � U ∩I. Thus (U,U ∩I, L/A,H∩Hg, R/A)

in place of (V, I,M,H,A) fulfills the assumptions (i)-(iii) and so by induction CU (T/A) � U ∩ I.
Thus (1◦) holds.

Put Y := I + CV (T ) and F1 := CM (Y/I). Then dimK Y/I = 1, so F1 = CM (x + I/I) for
x ∈ CV (T )\I. Since T ∈ Sylp(F1), Gaschütz’ Theorem implies that Y = I⊕X for some F1-invariant
subspaceX of Y . Then [X,F1] ≤ X∩I = 0. Let 0 6= x ∈ X. Then F1 ≤ CF1(x) ≤ CM (x+I/I) = F1,
and so the first statement in 6.3 is proved.

Suppose V is a Q!-module. If n = 2, then [I,M ] = 0 and so Q E CM (I) = M , a contradiction.
Thus n ≥ 3. Without loss Q ≤ T . Thus X ≤ CV (Q) and so by Q! we get that Q E F1. Similar
Q E F2 := NM (CI(T )). Since F2 is the normalizer of a 2-dimensional subspace of W , we have
M = 〈F1, F2〉 and so QEM , a contradiction to the definition of a Q!-module.

Lemma 6.4. Let M = SL2(F), F a field, and let Z be a maximal unipotent subgroup of M and
B := NM (Z). Suppose that X is an ZM -module with [X,Z,Z] = 0 and Y is a B-submodule of
CX(Z) with X = 〈YM 〉. Then for every h ∈M \B

X = Y + Y h + CX(M) = Y + Y h + [Y h, Z] and CX(Z) = Y + [Y h, Z] = Y + CX(M);

in particular CX(M) ≤ Y + [Y h, Z].

Proof. Note that Z acts transitively on ZM \ {Z} and so ZM = {Z} ∪ ZhZ and YM = {Y } ∪ Y hZ
for all h ∈M \B. Thus

(∗) X = 〈YM 〉 = Y + 〈Y hZ〉 = Y + Y h + [Y h, Z].

By the quadratic action of Z, [Y h, Z] ≤ CX(Z). By assumption also Y ≤ CX(Z) and so CX(Z) =
Y +[Y h, Z]+CY h(Z). Note that M = 〈ZM 〉 = 〈Z,ZhZ〉 = 〈Z,Zh〉 and so CY h(Z) ≤ CX(〈Zh, Z〉) ≤
CX(M). Hence CY h(Z) ≤ CY h(M) ≤ Y and so CX(Z) = Y + [Y h, Z].

Now by (∗) X = Y h + CX(Z) and thus CX(Zh) = Y h + CX(Z) ∩ CX(Zh) = Y h + CX(M).
Hence CX(Z) = Y + CX(M) and X = Y h + Y + CX(M).

Notation 6.5. Let

CL(p) := {SLn(q), SUn(q), Sp2n(q) (q odd), Ωεn(q), Oε
n(q) (q even)},

where q is a power of p. Let H ∈ CL(p) and Ã be the corresponding natural FpH-module. Put

A := Ã/CÃ(H). Note that A is a simple FpH-module. Also CÃ(H) = 0 unless H = Ω2m+1(2k)), in
which case CÃ(H) is 1-dimensional, H ∼= Sp2m(2k), and A is the natural Sp2m(2k)-module for H.

Furthermore set K := Op(H) and K := EndH(A). Then A is also a KH-module, and A is
equipped with a natural sesquilinear form f if A is not the natural SLn(q)-module.
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The groups Sp2n(2k) have been excluded from the list in 6.5, since it will be more convenient for
us to treat Sp2n(2k) as Ω2n+1(2k).

Lemma 6.6. Let H ∈ CL(p), V be a faithful FpH-module with H-submodules A0 ≤ B ≤ V , and let
D ≤ H. Suppose that

(i) [B,K] ≤ A0, A ∼= A0 and V/B ∼= A or A∗,

(ii) D is a non-trivial quadratic best offender on V .

Then there exists a KD-submodule C in V such that A0 � C and V = B + C.

Proof. Let D∗ be any non-trivial quadratic best offender on V such that KD∗ < H. Then we may
assume by induction on H that V = B + C for a KD∗-submodule C with A0 6≤ C. Since V/B is a
perfect K-module and K = Op(K), also V = B + [C,K] and [C,K] = [C,K,K]. Hence 2.6 shows
that C is D-invariant, and we are done. Thus, we may assume

1◦. H = KD∗ for every non-trivial quadratic best offender D∗ on V ; in particular H = KD.

Note that by 1.2 D is a best offender on [V,K] and that D is a quadratic offender on V/CV (K),
so D contains a best offender on V/CV (K). Hence we may assume that

2◦. V = [V,K] and CV (K) = 0.

We will now compare the action of H on V with that on the natural module Ã. According to
(1◦) we can choose D such that U := [Ã,D] is minimal with respect to (ii). Observe that U is a
K-subspace. Put P := NH(U) and E = CH(U) ∩ CH(Ã/U). Note that D acts quadratically on A0

and so also on A. By 3.2(e), D acts quadratically on Ã and U is isotropic. Thus D ≤ E. Since E
acts quadratically on Ã, E is an elementary abelian p-group.

Pick D1 ≤ E such that first |D1||CV (D1)| is maximal among all subgroups of E and then that
|D1| is maximal with that property. Since D ≤ E, |D1||CV (D1)| ≥ |D||CV (D)| ≥ |V | and so D1 is
a non-trivial best offender on V . By [MS1, 2.6] D1 is uniquely determined in E and so D1 E P . By
the Timmesfeld Replacement Theorem, D2 := CD1

([V,D1]) is a non-trivial quadratic best offender
on V . Since [Ã,D2] ≤ [Ã, E] ≤ U , the minimal choice of U and (1◦) imply [Ã,D2] = U , and so we
may assume

3◦. D E P .

By our hypothesis
|D| ≥ |A/CA(D)||V/B/CV/B(D)|.

Since A is self-dual if A is not the natural SLn(q)-module, we get:

4◦. |D| ≥ |A/CA(D)||A∗/CA∗(D)| and A is the natural SLn(q)-module, or |D| ≥ |A/CA(D)|2.

Let CL be the type of H, so CL ∈ {SL,Sp,SU,Ωε,Oε} and H = CLn(K).

Case 1. Suppose CL = SL,SU or Sp.
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Recall that in these cases A = Ã and U = [A,D]. If dimK U = 1 we get |A/CA(D)| ≥ |D|,
a contradiction to (4◦). Thus dimK U ≥ 2. By 3.5 and since by assumption p is odd in the
symplectic case, P acts simply on E and so D = E. Let U1 be a 1-dimensional subspace of U .
If H = SLn(K) let Un−1 be a hyperplane of A containing U , Z := CH(A/U1) ∩ CH(Un−1) and
L := CH(U1) ∩ CH(U/Un−1). In the other cases let Un−1 := U⊥1 , Z := CH(U⊥1 ) and L := CH(U1).
In either case put W := Un−1/U1. Then Z is a transvection group, Z ≤ Z(L)∩D, Op(L) = CL(W )
and L/Op(L) induces CLn−2(W ) on W . Moreover, if CL = SL, Op(L)/Z is as an L/Op(L)-module
isomorphic to the direct sum of W and its dual. And if CL = Sp or SU, then Op(L)/Z ∼= W as an
L-module. Let S ∈ Sylp(L) and note that S ∈ Sylp(H).

5◦. [V,Z, L] = 0.

Note that D = E induces CCLn−2(W )(U) ∩ CCLn−2(W )(W/U) on W . Since dimU ≥ 2 we have

U 6= 0. It follows that either L = Op(L)〈DL〉 or D ≤ Op(L), CL = SL and U = Un−1.
In the first case Op(L)/Z is a perfect L-module and Z ≤ Φ(Op(L)), so L = 〈DL〉. Since D is

quadratic on V and Z ≤ D we have [V,Z,D] = 0, and since Z ≤ Z(L), this implies [V,Z, 〈DL〉] = 0
and so [V,Z, L] = 0.

Now suppose CL = SL and U = Un−1, so |D| = qn−1. Since dimU ≥ 2, n ≥ 3. If V/B ∼= A∗,
then |V/B

/
CV/B(D)| = qn−1 = |D|, a contradiction to (4◦). Thus V/B ∼= A. Suppose for a

contradiction that A0 6= B. Then by 6.1 n = 3 and q = 2. So |D| = 4. From

|V/B
/

CV/B(D)||B/CB(D)| ≤ |V/CV (D)| ≤ |D| = 4

we conclude that |B/CB(D)| = 2. Since H (∼= GL3(2)) is generated by three conjugates of D, this
gives |B/CB(H)| ≤ 23 = |A0|. Hence |A0| < |B| implies CB(H) 6= 0, which contradicts (2◦).

Hence A0 = B and thus |V/CV (D)| = q2. In particular |[V, z]| = q2 for 1 6= z ∈ Z. Let h ∈ H
with Zh ≤ L, but Zh � D. Note that CV (D)+B/B = CV/B(Z) and |[CA(D), zh]| = q. Since B and

V/B are isomorphic to A we conclude that |[CV (D), zh]| = q2. Since |[V, z]| = q2 we get [V, zh] =

[CV (D), zh] ≤ CV (D), so 〈DLh〉 ≤ CH([V,Zh]). In CH([A,Zh]) = CH(Uh1 ) ∼ qn−1SLn−1(q) we see

that 〈DLh〉 = CH(Uh1 ). Since Lh ≤ CH(Uh1 ), also Lh ≤ 〈DLh〉 ≤ CH([V,Zh]), and so [V,Zh, Lh] = 0
and again (5◦) holds.

Put L̃ := CH([V/B,Z]). Observe that [V/B,Z] is a 1-dimensional K-subspace of V/B and

S ≤ L ≤ L̃. Thus by (5◦), [V,Z] + B = CV (S) + B = Y ∗ ⊕ B for some Y ∗ ≤ CV (S). By
Gaschütz’ Theorem there also exists a L̃-invariant complement Y to B in B + CV (S), in particular
[Y, L̃] ≤ Y ∩B = 0. Let W := 〈Y H〉 and h ∈ H.

6◦. [Y h, Z] ≤ Y .

If Z ≤ L̃h, then [Y h, Z] = 0. So assume that Z � L̃h. Note that there exists h∗ ∈ H with

Y h = Y h
∗

and T := 〈Zh∗ , Z〉 ∼= SL2(q). Without loss h = h∗. Put X := 〈Y T 〉. Then 6.4 and (5◦)
give

Y + CX(T ) = Y + [Y h, Z] ≤ CV (L).

Note that T normalizes neither U1 nor Un−1, so T and L are not contained in a proper parabolic
subgroup. Hence H = 〈L, T 〉 and CV (H) = 0. Since CX(T ) ≤ CV (L), this gives CX(T ) = 0, and
we conclude that Y = [Y h, Z].

From (6◦) we get [W,Z] = Y . In particular A �W , and the lemma holds in (Case 1).

Case 2. Suppose CL = Ωε or Oε.
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7◦. If 0 6= Ã⊥ ≤ U , then dimU ≥ 4 and n ≥ 7. In the other cases dimU ≥ 5 and n ≥ 10.

Put k := dimU . Suppose first that 0 6= Ã⊥ ≤ U . By 3.4, |D| ≤ |E| ≤ q
k(k−1)

2 and |A/CA(D)|2 =
|Ã/U⊥|2 ≥ q2(k−1). Thus by (4◦) k

2 ≥ 2 and so k ≥ 4.

Suppose next that Ã⊥ = 0 or Ã⊥ � U . By 3.4, |D| ≤ |E| ≤ 2q
k(k−1)

2 ≤ q
k(k−1)

2 +1 and

|A/CA(D)|2 = |Ã/U⊥|2 ≥ q2k. Thus by (4◦) k(k−1)
2 + 1 ≥ 2k, k(k − 5) ≥ −2 and k ≥ 5.

By (7◦), U contains a singular 2-space U2. Put

Z := CH(Ã/U2), L := CH′(U2), and W := U⊥2 /U2.

Then |Z| = q, Z is a long root subgroup of H in Z(L), and L induces Ωεn−4(W ) on W . Moreover,

CL(W ) = Op(L), and Op(L)/Z is as an L-module the direct sum of two copies of W . Let U0 be

the singular radical of U and E0 := CH(Ã/U0). Then Z ≤ E0 and by 3.5, E0 ≤ D. In particular,
Z ≤ D. If E 6= E0, we have [Ã, E0] = U0 6= U and so E0 < D.

8◦. L = 〈DL〉.

From 3.5 and (7◦) we see that D acts non-trivially on W . Suppose n ≥ 9. Then n− 4 ≥ 5 and
so L/Op(L) is simple and W = [W,L]. It follows that L = 〈DL〉Op(L) and then L = 〈DL〉.

So suppose n < 9. Then (7◦) implies that n = 7, 0 6= Ã⊥ ≤ U , dimU = 4. By 3.4(e), E/E0
∼= U0,

and since E0 < DEP , 3.5 implies that D = E. Thus CH(U⊥2 ) ≤ D. Also L/Op(L) ∼= SL2(q) and so
L = 〈DL〉Op(L). Since Op(L)/CH(U⊥) is a direct sum of two copies of the natural SL2(q)-module

W/W
⊥

we again get that L = 〈DL〉.

9◦. [V,Z, L] = 0.

This follows immediately from [V,Z,D] = 0 and (8◦).

Note that we can can embed [Ã, Z] in a non-degenerate subspace U4 of Ã of dimension 4. Put

K := Op′(NH′(U4) ∩ CH′(U
⊥
4 )), L̂ := Op′(NH(Z)), and let U1 be a 1-subspace of U2.

Then Z ≤ K and K ∼= Op′(Ω+
4 (q)) ∼= SL2(q) ∗ SL2(q). Moreover T ∗ := 〈ZK〉 ∼= SL2(q).

Since dim Ã ≥ 7, NH(U4) induces O+
4 (U4) on U4 and there exists h ∈ NH(U4) ∩ NH(U1) with

T := T ∗h 6= T ∗. Then

K = TT ∗, T ∼= SL2(q), L̂ = TL, and [T, T ∗] = 1.

Note that U1 = U2∩Uh2 = [Ã, Z, Zh] 6= 0. Put P̃ := NH(U1), so P̃ is the stabilizer of a 1-dimensional
singular subspace of Ã.

Since U1 6= 0 also V1 := [V,Z, Zh] 6= 0. Note that V1 is centralizes by LZh and thus by a Sylow

p-subgroup of P̃ . Again Gaschütz’ Theorem gives a P̃ -invariant complement Y to B in B + V1.
Let s ∈ T ∗ \NT∗(Z). Then U1 +Us1 is a singular 2-space normalized by T ∗ and Us1 � U⊥2 . Since

Op(L) is transitive on the singular 1-spaces of U⊥2 + Us1 not contained in U⊥2 , and T is transitive

on Ã/U⊥2 , we get that TL is transitive on the conjugates of P̃ that do not contain Z. As in the
previous case, this gives

[〈Y H〉, Z] = [〈Y sTL〉, Z] = 〈[Y s, Z]T 〉.

Observe that 〈L, T ∗〉 = H. Hence, 6.4 implies 〈Y T∗〉 = Y +Y s. Since Uh1 = U1 we have Y h = Y .
Hence also 〈Y T 〉 = Y + Y sh since Th = T ∗, and so [〈Y H〉, Z] = Y + Y sh. Then as in the previous
case [A0, Z] � [〈Y H〉, Z], so A � 〈Y H〉, and the lemma also follows in (Case 2).
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7 Quadratic Modules

In this section M is a finite group, and V is a finite dimensional FpM -module.

Lemma 7.1. Let V be faithful. Suppose that p is odd, A ≤ M with [V,A,A] = 0, and R is an A-
invariant p′-subgroup of M satisfying R = [R,A] 6= 1. Then p = 3 and R is a non-abelian 2-group.
If in addition |Φ(R)| = 2 and |A| = 3, then RA ∼= SL2(3).

Proof. Observe that by coprime action for every prime divisor r of R there exists an A-invariant
Sylow r-subgroup Sr in R. If [Sr, A] 6= 1 then [KS, 9.1.3] implies that p = 3, r = 2 and Sr is not
abelian. It follows that R = CR(A)S2 and so R = [R,A] = [S2, A] ≤ S2.

Suppose now that |Φ(R)| = 2 and |A| = 3. Then A acts fixed-point freely on R := R/Φ(R).
Since A centralizes Z(R), this gives Z(R) = Φ(R) and R is an extraspecial 2-group. Assume that
there exists an involution t ∈ R \ Φ(R). Then F := 〈tA〉 has order at most 8. Since |F | = 4 and F
contains an involution, we conclude that F is abelian. But, as we have already seen, [F,A] has to
be non-abelian.

This contradiction shows that there are no involutions in R \ Φ(R), and so R ∼= Q8 and RA ∼=
SL2(3).

Lemma 7.2. Let p = 2 and V be a faithful indecomposable M -module with CV (M) = 0 and
[V,M ] = V . Suppose that M = Alt(n), n ≥ 5, and that A = 〈(12)(34), (13)(24)〉 acts quadratically
on V . Then 〈(123)〉 acts fixed-point freely on V . Moreover, one of the following holds:

1. V is the (simple) spin module for M .

2. 4 divides n and there exists an F2M -submodule in W such that W and V/W spin modules for
M and V/W ∼= Wh, where h ∈ Sym(n) \Alt(n).

Proof. Let E = 〈123〉 and B = AE ∼= Alt(4) and for 5 ≤ i ≤ n let Di = CM ({1, 2, 3, 4, i}). Then
B ≤ Di, Di

∼= Alt(5) and

(∗) M = 〈D5, D6, . . . , Dn〉.

Suppose there exists 0 6= w ∈ V with [w,B] = 0. Then 〈wDi〉 is a quotient of the natural
permutation module for Di

∼= Alt(5) over F2, and the quadratic action of A forces [w,Di] = 0. So
by (*) [w,M ] = 0, which contradicts CV (M) = 0.

Thus CV (B) = 0. Since B/A ∼= E is a 2′-group,

CV (A) = CV (B)⊕ [CV (A), B] = [CV (A), B] = [CV (A), E],

and so E acts fixed-point freely on CV (A). This result applied to the dual of V shows that E acts
fixed-point freely on V/[V,A]. Since A is quadratic, [V,A] ≤ CV (A) and so E acts fixed-point freely
on V . Now [Me, Theorem 2] shows that (1) or (2) holds.

Corollary 7.3. Let p = 2 and M ∼= Alt(6). Suppose that all fours groups in M act quadratically
on V . Then [V,M ] = 0.

Proof. Since M = O2(M) we may assume for a contradiction that V is a non-trivial simple module.
By 7.2, (123) acts fix-point freely on V . Since there exists an automorphism of Alt(6) sending
(123) to (123)(456), the same results shows that (123)(456) acts fixpoint freely. So all non-trivial
elements of order three in the non-cyclic abelian 3-group 〈(123), (456)〉 act fixed-point freely on V ,
a contradiction to coprime action.
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Lemma 7.4. Let p = 2 and V be faithful and simple, and let A ≤M with [V,A,A] = 0 and |A| > 2.

Put L := F*(M). Suppose that M = 〈AM 〉, L is quasisimple, Z(L) 6= 1, and L/Z(L) ∼= Alt(n),
n ≥ 5. Then one of the following holds:

1. M ∼ 3.Alt(6) and |V | = 26.

2. M ∼ 3.Alt(7), |V | = 212, and AZ(L)/Z(L) is conjugate to 〈(12)(34), (13)(24)〉.

Proof. Since V is a faithful simple M -module, O2(M) = O2(L) = 1. From [Gr] we get that n = 6 or
7 and |Z(L)| = 3. Put Z := Z(L) and let F be the subring of End(V ) generated by the image of Z in
End(V ). Then F is a field of order four and M acts semilinear on the F-module V . Now [V,A,A] = 0
and |A| > 2 imply that A acts F-linearly on V , see for example [MS3, 2.15]. Thus [Z,A] = 1 and
Z = Z(M). Hence M = L or M/Z ∼= Mat10. But M = 〈AM 〉 is generated by involutions while
Mat10 is not, so M = L. Since A is elementary abelian and |A| > 2 we have |A| = 4.

Note that there are two conjugacy classes of fours groups in L. In any case we can choose a
series of subgroups A ≤ B ≤ D ≤ H ≤ L with B ∼= Alt(4), D ∼= Alt(5) and H ∼ 3.Alt(6). Let
E ∈ Syl3(B). Then E ∼= C3 and B = AE. By Gaschütz’ Theorem, the Sylow 3-subgroups of L are
not abelian and so the subgroups E = E1, E2, E3 of order three in EZ other than Z are conjugate.
Since Z acts fixed-point freely on V we have V = [V,Z] =

⊕3
i=1 CV (Ei) and so |V | = |CV (E)|3. In

particular, CV (E) 6= 0.
We claim that CV (B) 6= 0 or [V,B] 6= V . If CV (E) ≤ CV (A), then 0 6= CV (E) ≤ CV (B).

So suppose CV (E) � CV (A) and put V = V/CV (A). Then 0 6= CV (E) ≤ CV (E). By coprime
actions, V = CV (E)⊕ [V ,E] and so V 6= [V ,E]. Since A centralizes V , this give V 6= [V ,B] and so
V 6= [V,B], proving the claim. Note further that by 1.8(d) A is also quadratic on the dual module
V ∗. So replacing V by its dual, if necessary, we may assume that CV (B) 6= 0.

Let W be 1-dimensional F-subspace of CV (B). Then 〈WD〉 is a quotient of the natural permu-
tation module for D ∼= Alt(5) over F. The quadratic action of A forces [W,D] = 0. Put U = 〈WH〉.
Then U ∼= V̂ /X̂, where V̂ is the FH-module induced from the FZD-module W and X̂ is a FH-
submodule of V̂ . Note that dimF V̂ = 6. Since A has a regular orbit on H/ZD, A does not act
quadratically on V̂ . Thus U 6= V̂ . Since H acts faithfully on V̂ /X̂ and on X̂ and since H has no
faithful module of dimension less than 3, we conclude that dimF V̂ /X̂ = 3 = dimF X̂.

If n = 6, then H = L, V = U and (1) holds. So suppose that n = 7. Choose a transitive action
of L on I := {1, . . . , 7}. Suppose first that A has an orbit J on I with |J | = 2. Put K := CL(J)′.
Then K ∼= Alt(5) and AK ∼= Sym(5). Note that K is contained in a conjugate of H and that
all composition factors for FH on V are 3-dimensional. It follows that all non-trivial composition
factor for FK on V are 2-dimensional. Since A ∩ K 6= 1, the quadratic action of A in V shows
that also the non-trivial composition factors for FKA on V are 2-dimensional, a contradiction since
|KA| > |K| = |SL2(4)|.

Thus A has no orbits of length 2 and so A has three fixed-points on I. Then D has two fixed-

points, say i and j. Put D∗ := O2′(NL({i, j}). Then D∗ ∼= Sym(5) and D E D∗. Recall from above
that W is a 1-dimensional subspace of CV (D), so CV (D) 6= 0 and thus also CV (D∗) 6= 0. Hence we
may and do choose W such that [W,D∗] = 0. For k 6= l ∈ I and g ∈ G with {k, l} = {i, j}g put
Wkl = Wlk = W g. Since NL({i, j}) = ZD∗ ≤ NL(W ), Wkl is well-defined. Let i be the fixed-point
of H. Since 〈WH〉 is 3-dimensional and H acts triple transitively on {Wij | j ∈ I \ i} we conclude
that for any distinct a, b, c, d ∈ I, 〈WH〉 = Wab + Wac + Wad. Since V = 〈WL〉 is now easy to see
that V = 〈Wkl | 1 ≤ k < l ≤ 4〉. Thus V is at most 6-dimensional. By the action of H on V , dimF V

is a multiple of 3, so dimF V = 3 or 6. Since |L3(4)|
|Alt(7)| = 8 and L3(4) � Alt(8), Alt(7) is not involved

in L3(4). We conclude that dimF V > 3 and so dimF V = 6, and (2) holds.
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We remark that 3.Alt(7) has indeed a 6-dimensional quadratic module over F4. One way to see
this is to use the embedding 3.Alt(7) ≤ 3.Mat22 ≤ SU6(2) (thanks to J. Hall for pointing out this
embedding to us): Consider the block normalizer P ∼ 3.24.Alt(6) in 3.Mat22. Then P has a unique
proper submodule on F6

4, namely a 3-dimensional one. In particular, O2(P ) acts quadratically.
Alt(7) has orbits of length 7 and 15 on the 22 points. Any three points from the 7 lie in a unique
block and so we can choose P to intersect 3.Alt(7) in B ∼ 3.(Alt(4) × Alt(3)).2. It follows that
O2(B) ≤ O2(P ) and so O2(B) is a quadratic fours group.

Lemma 7.5. Let M = Alt(n) or Sym(n), n ≥ 5, n 6= 6, 8, and V be a simple spin module for F2M .
Suppose that A is a maximal quadratic subgroup of M on V with |A| > 2. Then |V | = |CV (A)|2 and
[V, a] = [V,A] = CV (A) = CV (a) for all 1 6= a ∈ A. Moreover, one of the following holds:

1. A is conjugate to 〈(12)(34), (13)(24)〉.

2. M ∼= Alt(9), |A| = 8, |A| has a regular orbit of length 8 on {1, 2, . . . , 9} and, up to conjugation,
A is unique in M , with the conjugacy class depending on the isomorphism type of V .

Proof. Let I = {1, 2, . . . , n} with M acting transitively on I. Let K ≤ M with K ∼= Alt(5) and K
fixing n − 5 points of I. Then V is a direct sum of natural SL2(4)-modules. From this we get for
B ∈ Syl2(K): B is a quadratic fours group, and

|V | = |CV (B)|2 and [V, b] = [V,B] = CV (B) = CV (b) for all 1 6= b ∈ B.

Moreover, the non-trivial elements of odd order in K act fixed-point-freely on V .
Let 1 6= z ∈ B and let D be a quadratic subgroup with z ∈ D. Then CV (B) = CV (z) = CV (D)

and so DB is quadratic. In particular, DB is elementary abelian.
Let W be a simple F2M

′-submodule of V . Since A ∩M ′ 6= 1, then 0 6= [W,A ∩M ′] ≤ CW (A).
Thus A normalizes W .

If n = 5 or 7 then all involutions in M ′ are conjugate. Thus we may assume that z ∈ A. If
n = 5, then A ≤ CM (B) = B. If n = 7, then Sym(7) does not act on W and so A ≤M ′. Also B is
a Sylow 2-subgroup of CM ′(B) and again A ≤ B. So the lemma holds for n = 5 and 7.

Suppose next that n ≥ 9. As in Section 4 of [MeSt2] define Lz := O2(CM (z)) and Az :=
O2(CL(z)). Moreover, for t ∈ M with |t| = 2 let Kt be the subgroup generated by the quadratic
subgroups of M containing t. Observe that [V, t,Kt] = 0, so every fours group of Kt containing t is
quadratic on V . Note further that Az = B and Lz ∼= Alt(n− 4).

According to [MeSt2, Lemma (4.3)] we have that Lz � Kz. Since Kz E CM (z) and Lz is simple
this implies [Lz,Kz] = 1. Since B = CM (Lz) we conclude that Kz ≤ B.

If z ∈ A we conclude that A = B, and case (1) of the lemma holds. So suppose zM ∩A = ∅. Let
1 6= a ∈ A. Then A ≤ Ka. If z ∈ Ka, then by the above observation, a ∈ Kz = B and so a ∈ zM ,
contrary to the assumption. Thus zM ∩Ka = ∅.

Let k := |CI(a)|, J = I \ CI(a) and m := |J|
2 . We now choose 1 6= a ∈ M ′ ∩ A and so m is

even and m ≥ 4. Let D be the largest subgroup of M ′ which has the same orbits as a on I. Put
X = CM (I \ J) and Y = CM (J). Then D is elementary abelian of order 2m−1 and Y ≤ CM (a).
Suppose that Y ∩ A 6= 1 and let 1 6= b ∈ A ∩ Y . Then Alt(J) ∼= 〈aCM (b)〉 ≤ Kb and zM ∩Kb 6= 1,
a contradiction. Thus A ∩ Y = 1 and A � 〈a〉Y . In particular, Ka � 〈a〉Y . Since D ∩ zM 6= ∅ we
have D � Ka. Also D = [D,X] = [DY,X] and so D � KaY and DY ∩KaY = 〈a〉Y .

Hence DY/〈a〉Y is not the only minimal normal subgroup of CM (a)/〈a〉Y . Since

CM (a)/〈a〉Y ∼ 2m−1Sym(m) or 2m−2Sym(m)
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(with k ≤ 1 and M = Alt(n) in the latter case) we conclude that m = 4, CM (a)/〈a〉Y ∼ 22Sym(4)
and M ∼= Alt(9). Moreover, |Ka/〈a〉| = 4 and CM (a) acts transitively on (Ka/〈a〉)]. Thus Ka

is elementary abelian of order 8 and since Ka ∩ zM = ∅, Ka acts regularly on J . It follows that
NM (Ka) acts transitively on K]

a. Since [V, a,Ka] = 0 we conclude that Ka acts quadratically on
V . Thus A = Ka by the maximality of A. In particular, A is unique up to conjugacy. Also if
t ∈ CSym(9)(a) \Alt(8), then At 6= A = Ka. So At will not act quadratically on V , and AM depends
on the isomorphism type of V . Let F ∈ Syl5(K). As seen above F acts fixed-point freely on V ,
and F is inverted by a conjugate of a. Thus CV (a) = [V, a] and the quadratic action of A forces
CV (a) = [V,A] = CV (A); in particular |V | = |CV (a)|2.

Lemma 7.6. Let M = G2(2) or G2(2)′, and let V be a non-trivial simple F2M -module. Suppose
there exists A ≤M with |A| > 2 and [V,A,A] = 0. Then V is a natural G2(2)- and G2(2)′-module,
respectively.

Proof. Since |A| > 2, there exists 1 6= z ∈ A ∩M ′, and since M ′ has a unique class of involutions, z
is 2-central. Put P1 := CM (z), let S ∈ Syl2(P1), and let P2 be the other minimal parabolic subgroup
containing S. Suppose for a contradiction that CV (P2) = 0.

Let Γ = PG1 ∪ PG2 be the generalized hexagon associated to M . Let (P1, P2, P3, P4) be a path of
length 4 in Γ. Put Z := 〈z〉. Then

Z ≤ P4, Z � O2(P4), T := ZO2(P4) ∈ Syl2(P4), and P4 = 〈ZP4〉O2(P4).

Since CV (P2) = 0 and P2 and P4 are conjugate, we also have CV (P4) = 0, so

X := [CV (O2(P4)), Z] 6= 0.

Note that T centralizes X, and since T is a maximal subgroup of P4, CP4
(X) = T . Since P4 and

P3 are the only maximal subgroups of M containing T , it follows that CM (X) ≤ P3. From Z ≤ A
and [V,A,A] = 0 we get A ≤ CM (X) = P3. So A fixes all vertices of distance two from P1. But the
stabilizer in P1 of these vertices is cyclic, a contradiction since |A| > 2 and A is elementary abelian.

Thus CV (P2) 6= 0. Let M ≤M∗ with M∗ ∼= G2(2), and let V ∗ be a simple quotient of the induced
F2M

∗-module VM
∗

and identify V with its image in V ∗. Let S∗ ∈ Syl2(M∗) with S ≤ S∗. Put
P ∗i = PiS

∗. Since |P ∗2 /P2| ≤ 2 we get that CV ∗(P
∗
2 ) 6= 0. By Smith’s lemma 4.2 Vi := CV ∗(O2(P ∗i ))

is a simple P ∗i -module. It follows that V2 = CV (P ∗2 ) = CV (S∗) has order two, CV ∗(P
∗
1 ) = 0, and V1

is the unique non-trivial simple P ∗1 /O2(P ∗1 )-module, namely the natural SL2(2)-module. Thus by
Ronan-Smith’s Lemma 4.3 V ∗ is uniquely determined, and so V ∗ is the natural G2(2)-module for
M∗. Hence V = V ∗ and the lemma is proved.

Remark 7.7. Let L := F∗(M) and suppose that O2(M) = 1, L is quasisimple and L/Z(L) ∼= U4(3).
Let M = M/Z(L), S ∈ Syl2(M), and Z = Ω1Z(S). In the following we use some information about
the structure of M which can be found for example in [ATLAS]. More precisely we use the following
facts:

There exists exactly two elementary abelian subgroups Q1 and Q2 of order 24 in S, and for

P1 = CL(Z), Q1 := O2(P1), P2 := NL(Q2), and P3 := NL(Q3)

the following hold:

(a) For i = 1, 2, 3, P i is a maximal subgroup of M and has characteristic 2.
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(b) P 1/Q1
∼= Sym(3)× Sym(3), Q1 is extraspecial of order 25, and Q1/Z is a simple P1-module.

(c) For i = 1, 2, P i/Qi
∼= Alt(6), and Qi is a natural Alt(6)-module for Pi.

(d) All involutions in L are conjugate.

(e) Suppose in addition that |Z(L)| = 3, M 6= L, [Z(L),M ] = 1, M = NM (Q2)L, and that NM (Q2)
induces inner automorphisms on P2/Q2. Put P ∗i = NM (Qi) and Q∗i = O2(P ∗i ). Then

(a) M is unique up to isomorphism and |M/L| = 2.

(b) M has two classes of involutions in M \ L with representatives a and b in Q2 such that
CL(a) ∼= U4(2) and CL(b) ∼ 24.32.22.

(c) P ∗2 /Q
∗
2
∼= 3.Alt(6), and Q∗2 is the dual of the natural Ω5(2)-module for P ∗2 .

(d) Q∗3 = Q2 and P ∗2 /Q2
∼= C3 × Sym(6).

Lemma 7.8. Let p = 2 and V be faithful F2M -module, and let Z ≤M with |Z| = 2. Suppose that

(i) M is quasisimple, O2(M) = 1 and M/Z(M) ∼= U4(3).

(ii) CM ([V,Z]) � Z.

(iii) CV (M) = 0, V = [V,M ] and V is indecomposable, that is, V is not the sum of two proper
(non-zero) F2M -submodules.

Put P1 := NM (Z) and Q1 := O2(P1), and let S ∈ Syl2(P1) and Qi, i = 2, 3, be the two elementary

abelian subgroup of order 16 in S. Put Pi := NM (Qi), Li := O2′(Pi), L12 := 〈QP1
3 〉, L13 := 〈QP1

2 〉,
and F := EndM (V ). Then we can choose {i, j} = {2, 3} such that the following hold :

(a) V is a simple M -module, |F| = 4 and dimF V = 6.

(b) CV (Li) = 0 and CV (Lj) 6= 0.

(c) V is uniquely determined as a F2M -module.3

(d) There exists a non-degenerate M -invariant unitary F-form on V .

(e) Q1 ≤ L1k, L1k/Q1
∼= Sym(3), k = 2, 3, and L1/Q1 = L12/Q1 × L13/Q1

∼= Sym(3)× Sym(3).

(f) L1j = CM ([V,Z]), CV (Z) = [V,Q1] = [V,L1j ] and [V,Z] = CV (Q1) = CV (L1j).

(g) 1 ≤ [V,Z] ≤ CV (Z1) ≤ V is the unique chiefseries for P1 on V , each of the factors is 2-
dimensional over F, L1i centralizes CV (Z)/[V,Z] and L1j centralizes [V,Z] and V/[V,Z].

(h) Pi = Li and Li/Qi is quasisimple of shape 3.Alt(6).

(i) Qi acts quadratically on V and CV (Qi) = [V,Qi].

(j) 1 ≤ [V,Qi] ≤ V is the unique chiefseries for Pi on V , each of the factors is 3-dimensional over
F and faithful for Pi/Qi. Moreover, V/[V,Qi] is as an F2Pi-module isomorphic to the dual of
[V,Qi].

(k) Lj/Qj is isomorphic to Alt(6).

3Note that 32. U4(3) has two quotients isomorphic to M and so has two modules which fulfill the hypothesis of
this lemma, except that the modules are not faithful.
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(l) CV (S) = CV (Qj) = CV (Lj) and [V, S] = [V,Qj ] = [V,Lj ].

(m) 1 ≤ CV (Qj) ≤ [V,Qj ] ≤ V is the unique chiefseries for Pj on V , where CV (Qj) and V/[V,Qj ]
are 1-dimensional over F and centralized by Lj while [V,Qj ]/CV (Qj) is a 4-dimensional natural
FAlt(6)-module for Lj.

Proof. Let M := M/Z(M), {k, l} = {2, 3} and P1k := P1 ∩ Pk.

1◦. V is an homogeneous F2Z(M)-module and Z(M) is cyclic.

Since O2(M) = 1, Z(M) is an abelian 2′-group. Thus V is a semisimple F2Z(M)-module. Since
V is indecomposable, we conclude that V is an homogeneous F2Z(M) module and so Z(M) is cyclic.
Thus (1◦) holds.

In the following we will only use (1◦) but no longer that V is indecomposable. Moreover, we
make use of the properties listed in 7.7.

2◦. [V,Z,Q1] = 0.

By (1◦) Z(M) ∩ CM ([V,Z]) = 1 and so by (ii) CM ([V,Z]) � Z. Note that P1/Q1
∼= Sym(3) ×

Sym(3), Q1 is extra special of order 25 and P1 acts simply on Q1/Z. Hence Q1/Z is the unique
minimal normal subgroup of P1 and we conclude that Q1 ≤ CM ([V,Z]). Thus Q1 ≤ CM ([V,Z]) and
(2◦) holds.

3◦. [V,Qk, Qk, Lk] = 1.

Observe that Pk/Qk ∼= Alt(6), CM (Qk) = Qk and Qk is a natural Alt(6)-module for Pk. Since
P1k = NPk(Z) we conclude that P1k/O2(P1k) ∼= Sym(3) and [Qk, P1k] is a hyperplane of Qk. The
structure of P1 shows that [O2(P1k), P1k] ≤ Q1 and so [Qk, P1k] ≤ Q1 and |Qk/Qk ∩ Q1| ≤ 2. In
particular, P1k normalizes [V,Z,Q1Qk], and by (2◦) [V,Z,Q1Qk] = [V,Z,Qk].

Note that Q1 does not contain an elementary abelian subgroup of order 24. So Qk � Q1 and
Q1 ∩Qk = [Qk, P1k]. Pick g ∈ Pk with Qk = (Q1 ∩Qk)Zg. Then by (2◦)

[V,Z,Qk] = [V,Z, (Q1 ∩Qk)Zg] = [V,Z, Zg] ≤ [V,Zg] ≤ CV (Qg1).

It follows that [V,Z,Qk] is normalized by 〈P1k, Q
g
k〉 = Pk. Thus [V,Z,Qk] = [V,

< ZPk〉, Qk] = [V,Qk, Qk] and [V,Qk, Qk] is centralized by 〈QgPk1 〉 = Lk.

4◦. [CV (Qk), Q1, Q1] = 0.

Let h ∈ P1 \P1∩Pk. Then Q1 = (Q1∩Qk)(Q1∩Qhk). Since Q1 normalizes CV (Qk), (3◦) implies

[CV (Qk), Q1, Q1] = [CV (Qk), (Q1 ∩Qhk), (Q1 ∩Qhk)] ≤ CV (Qk) ∩ [V,Qk, Qk]h ≤ CV (Qk) ∩ CV (Lhk).

Since Lk is a maximal subgroup of M and Qk � Lhk we have M = 〈Qk, Lhk〉. So

CV (Q1) ∩ CV (Qk) ≤ CV (M) = 0,

and (4◦) is proved.
In the next step we regard Qk is a 4-dimensional symplectic space for Lk/QK

∼= Sp4(2)′.

5◦. |QkQl/Qk| = 4 and QkQl 6= QkQ1. Moreover, Qk ∩Ql is a singular subgroup of order 4 in
Qk (and Ql), and Qk ∩Ql acts quadratically on V .
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Since Ql is elementary abelian of order 24 and no element in Lk acts as a transvection on Qk,

|QkQl/Qk| = |Ql ∩Qk| = 4, Qk ∩Ql = [Qk, Ql] = CQk(Q1).

Hence 3.2(c) shows that Ql ∩Qk is a singular subspace of Qk. Moreover, Z ≤ Qk ∩Ql ≤ Qk ∩Q1

and so by (2◦), [V,Z,Qk ∩Ql] = 1. Since |Qk ∩Ql| = 4 and Z ≤ Qk ∩Ql, this shows that Qk ∩Ql
is quadratic on V , and (5◦) holds.

6◦. [CV (Qk), Ql, Ql] = 1

By (5◦) Ql = (Ql ∩Qk)(Ql ∩Qk)g for a suitable g ∈ Pl and (Ql ∩Qk)g acts quadratically on V .
Thus

[CV (Qk), Ql, Ql] = [CV (Qk), (Ql ∩Qk)g, (Ql ∩Qk)g] = 0,

and (6◦) holds.

Since CV (M) = 0, M = 〈L2, L3〉 and CV (S) ≤ CV (Q2) ∩ CV (Q3) we can choose i ∈ {2, 3} such
that [CV (Qi), Li] 6= 0. Let {2, 3} = {i, j}.

7◦. Pi = Li, Z(M) = Z(Li) ∼= C3. Li/Qi is quasisimple of shape 3.Alt(6) and CV (Li) = 0.

By (4◦),(5◦), (6◦) all the fours groups in Li/Qi act quadratically on CV (Qi). Since [CV (Qi), Li] 6=
0, 7.3 shows that Li/Qi 6∼= Alt(6). Hence Z(M) ∩ Li 6= 1. By [Gr] and since Z(M) is a cyclic 2′-
group, Z(M) ∼= C3 and so Z(M) ≤ Li. So Pi = Li, and CV (Li) ≤ CV (Z(M)) = 0. Thus Li/Qi is
quasisimple of shape 3.Alt(6), and (7◦) is proved.

In particular, (h) holds.

8◦. Qi acts quadratically on V .

By (3◦) and (7◦), [V,Qk, Qk] ≤ CV (Lk) = 0.

9◦. [CV (Qi), Qj ] ≤ CV (Lj) = CV (Qj) and Lj/Qj ∼= Alt(6); in particular CV (Lj) 6= 0.

Let g ∈ Lj with Zg � Qi ∩ Qj . Then Zg ≤ Li and Zg � Qi. Since Li/Qi is quasisimple, Li =
〈ZgLi〉Qi and so [CV (Qi), Z

g] 6= 0. On the other hand [CV (Qi), Z
g] is centralized by 〈Qi, Qg1〉 = Lj

and we conclude that 0 6= [CV (Qi), Qj ] ≤ CV (Lj). In particular, Z(M) � Lj and so Lj/Qj ∼= Alt(6).
Thus CV (Lj) 6= 0. If [CV (Qj), Lj ] 6= 0 we could apply (7◦) to j in place of i and conclude that

CV (Lj) = 0, a contradiction. Thus [CV (Qj), Lj ] = 0 and (9◦) holds.

In particular, (k) holds. Since CV (Lj) 6= 0, (b) is proved.

10◦. V = 〈CV (Lj)
M 〉.

By (9◦) [CV (Qi), Qj ] ≤ CV (Lj). It follows that

[CV (Qi), Li] = [CV (Qi), 〈Q
Lj
j 〉] ≤ 〈CV (Lj)

Li〉.

On the other hand, by (7◦) Z(M) ≤ Z(Li), so by (1◦) Li does not have any central chieffactor in
CV (Qi). Hence CV (Qi) = 〈CV (Lj)

Li〉.
Since V = [V,M ] and M = 〈QMi 〉, V = 〈[V,Qi]M 〉. As Qi acts quadratically we conclude that

V = 〈CV (Qi)
M 〉, and as CV (Qi) = 〈CV (Lj)

Li〉, this gives (10◦).

11◦. CV (L1) = 0.

By (9◦) CV (L1) ≤ CV (Lj). Since CV (M) = 0 and M = 〈L1, Lj〉, (11◦) follows.
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12◦. [V,Z, L1j ] = 0, L1kQk = O2′(P1 ∩ Pk), and (e) holds.

Put P ∗ := CP1
([V,Z]). Since P1 normalizes [V,Z], P ∗ E P1. Moreover, by (11◦) Lj ≤

CM ([V,Z] ∩ CV (S)) and so CM ([V,Z] ∩ CV (S)) ≤ Pj , since Lj is a maximal subgroup of M .
It follows that P ∗ ≤ P1 ∩ Pj .

Since Qi acts quadratically on V and Z ≤ Qi, [V,Z,Qi] = 0. Hence L1j = 〈QP1
i 〉 ≤ P ∗, so

[V,Z, L1j ] = 0. Moreover, since L1j E P1, and P1 acts simply on Q1/Z, also Q1 ≤ L1j . Since

Lj ∩P1/Qj ∼= Sym(4) and L1j = 〈QL1j

i 〉, we conclude that L1j/Q1
∼= Sym(3) and L1jQj = O2′(P1 ∩

Pj). In particular [L1j , Qj ] ≤ Q1 and so [L1j , L1i] ≤ Q1. Hence also L1i/O2(Lij) ∼= Sym(3) and
again by the simple action of P1 on Q1/Z, O2(L1i) = Q1. In addition, P1i ≤ NP1

(Qi) and so

L1i = O2′(P1 ∩ Pi) since by (7◦) P1 ∩ Pi/Qi ∼= C3 × Sym(4). Hence (12◦) and (e) has been proved.

13◦. Let E be the subring of F generated by the image of Z(M). Then E ∼= F4 and [V,Z] is a
direct sum of 2-dimensional simple EL1-modules.

Since Z(M) ∼= C3, E ∼= F4. The second statement follows from (12◦) (and (e)) since L1j =
CL1([V,Z)), CV (L1) = 0 and L1/L1j

∼= Sym(3).

Let Uj be a 1-dimensional E-subspace of CV (Lj). In the following we use the fact that (e) has
already been proved, so we know that L1j = CL1([V,Z]) E P1 and

L1/Q1 = L12/Q1 × L13/Q1
∼= Sym(3)× Sym(3);

in particular L1/CL1
([V,Z]) ∼= Sym(3).

Put U1 := 〈UP1
j 〉 and Ui := 〈UPij 〉, so [Uj , L1j ] = 0 since L1j ≤ Lj , and

U1 = 〈UL1i
j 〉 = 〈UP1∩Pi

j 〉

since Uj is an E-space. As L1/CL1([V,Z]) ∼= Sym(3) and CV (L1) = 0 we conclude that dimE U1 = 2.

Since Pi ∩Lj centralizes Uj and U1 = 〈UPi∩P1
j 〉, (7◦) and 5.4 imply that dimE Ui = 3. In particular,

Ui = 〈UPi∩Pj1 〉.

Put W1 := 〈UL1
i 〉 and Wj := 〈ULj1 〉. Since [Ui, L1i] ≤ U1 and L1i E L1 we have

[W1, L1i] ≤ U1 and W1 = 〈UL1j

i 〉 = 〈〈UPi∩Pj1 〉L1j 〉 ≤Wj .

Put Yj := CWj
(Lj) and W j := Wj/Uj . Then dimE U1 = 1, dimE U i = 2, and U i = 〈UPi∩Lj1 〉.

Thus, we can apply 5.4 (and (9◦)) with U = U1. This shows that W j/CW j
(Lj) is a natural EAlt(6)-

module and CW j
(Lj) ≤ 〈U

L1j

i 〉 = W 1; in particular dimEW j/CW j
(Lj) = 4. Since Lj = O2(Lj)

and [Uj , Lj ] = 0, we also have CW j
(Lj) = Yj .

Since Yj ≤ W1 [Yj , L1i] ≤ [W1, L1i] ≤ U1. From L1iL1j = L1 we conclude that [YjU1, L1] ≤ U1.
Note that [YjU1, Q1] = 0 and O2(L1)/Q1 is a 2′-group. So coprime action implies

YjU1 = CYjU1
(O2(L1))[YjU1,O

2(L1)].

Since CV (L1) = 0 also CV (O2(L1)) = 0 and so YjU1 = U1. Thus Yj ≤ CU1
(Qj) = Uj . Hence

dimEWj/Uj = 4 and since W1 ≤ Wj , dimEW1/U1 = 2. It follows that dimEWj/W1 = 1 and

Wj = 〈WPi∩Pj
1 〉.
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Put W := 〈WLi
1 〉 and W̌ = W/Ui. Then Wj ≤ W , dimE W̌1 = 1 and dimE W̌j = 2. Hence

(7◦) and 5.4 give dimE W̌ = 3; in particular dimEW/Wj = 1. Since P1i does not normalize Wj ,

W = 〈WPi∩P1
j 〉. Since dimEWj/W1 = 1, [Wj , L1j ] ≤ W1 and so [W,L1j ] ≤ W1 ≤ W . Thus W

is normalized by Li and L1jL1i = L1. Hence W is an EM submodule of V , dimEW = 6 and
W = 〈UMj 〉.

Note that [Uj , Lj ] = 0 and Uj is the (up to isomorphism) unique non-trivial simple F2Z(M)

module. So Uj is uniquely determined as an F2Pj-module. Let Ŵ be the F2M -module induced from

the F2Pj module Uj . Put W̃ := Ŵ/〈[Ŵ , Z,Q1]M 〉 and let Ûj be the image of Uj in Ŵ . Note that

Z(M) acts fixed-point freely on Ŵ and so also on W̃ . In particular, C
W̃

(M) = 0, W̃ = [W̃ ,M ] and

[W̃ , Z,Q1] = 0. Thus W̃ fulfills the assumption on W in this proof. Since W̃ = 〈ŨMj 〉 we conclude

that dimE W̃ = 6. On the other hand W is as an F2M -module an homomorphic image of Ŵ and so
also of W̃ . It follows that W ∼= W̃ as an F2M -module and so W is unique up to isomorphism.

Up to now we only used (1◦) to determine W . Suppose now that V is indecomposable. Then
by (10◦) we can choose Uj such that V = 〈UMj 〉. Thus V = W and dimE V = 6. Any non-trivial
F2M quotient of V fulfills the same assumption and so is 6-dimensional over E. Thus V is a simple
F2M -module.

Let V ∗ be the F-dual of V . Then V ∗ = [V ∗,Z(M)] = [V ∗,M ] and 0 = CV ∗(Z(M)) = CV ∗(L
∗
i ) =

CV ∗(M) = 0. By 1.8(c) Q acts quadratically on V ∗ and so CM ([V ∗, Z]) � Z. Thus V ∗ and i fulfill
the same assumption as V and i, and V and V ∗ are isomorphic F2M -modules. Hence by 1.9(a)
there exists a M -invariant non-degenerate symmetric, symplectic or unitary F-form on V ∗. In the
symmetric or symplectic case, V would be selfdual as an FM -module and so also an EZ(M)-module,
a contradiction. Thus (d) holds.

Since Li acts simply on Ui and V/Ui, CV (Qi) = Ui = [V,Qi] and (i) and (j) hold. Note
that Z = Q′1 centralizes V/[V,Q,Q]. Since Q1 centralizes V/W1 and W1/U1 we conclude that
[V,Q,Q] = W1 = [V,Z] and [V,Q] = W1. By a dual argument, CV (Z) = W1 and CV (Q1) = U1.
Also [U1, L1j ] = 1 and dually [V,L1j ] ≤W1. Thus (f) and (g) are proved.

CV (Qj) ≤ CV (Z) = W1 < Wj and since Wj/Uj is a simple ELj-module, CV (Qj) = Uj . Dually
[V,Qj ] = Wj and so (l) and (m) hold. Since |Uj | = 4 and CV (Qj) is an F-subspace, |F| ≤ 4 and so
F = E. Since W is unique up to isomorphism we conclude that (a) and (c) hold.

Lemma 7.9. Put L := F∗(M) and suppose that

(i) V is faithful and indecomposable F2M -module, CV (L) = 0 and V = [V,L].

(ii) M = 〈D ≤M | [V,D,D] = 0, |D| > 2〉; and

(iii) L is quasi-simple and Z(L) ∼= U4(3).

Put F := EndM (V ) and let A be a maximal quadratic subgroup of M on V . Then

(a) V is a simple F2L-module and (L, V ) fulfills the assumptions on (M,V ) and so also the conclu-
sions in 7.8.

(b) M = LA.

(c) |A/A ∩ L| ≤ 2, |A ∩ L| = 24 and CM (A) = CM (A ∩ L) = AZ(M).

(d) NM (A) = NM (A ∩ L) and so NM (A)/A is a quasisimple group of shape 3.Alt(6).
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(e) CV (A ∩ L) = CV (A) = [V,A] = [V,A ∩ L] is a 3-dimensional. simple module for NM (A).

(f) A is unique up to conjugation under L, with the conjugacy class depending on the isomorphism
type of V .

(g) Let 1 6= B ≤ M such that B acts quadratically on V . Then B is conjugate under L to an
subgroup of A and assuming that B ≤ A one of the following holds:

(a) |B| = 2, B ≤ L and dimF[V,B] = dimF V/CV (B) = 2.

(b) |B| = 2, dimF[V,B] = dimF V/CV (B) = 1. and CV (B)/[V,B] is natural FSU4(2)-module
for CL(B).

(c) |B| = 4, B � L, dimF[V,B] = dimF V/CV (B) = 2 and dimF[V, b] = 1 for all b ∈ B \ L.

(d) CV (B) = [V,B] = CV (A) and A is the unique maximal quadratic subgroup of M containing
B.

Proof. Put M = M/Z(L). Among all A ≤M with [V,A,A] = 0 and |A| > 2 let A be maximal. Let
S ∈ Syl2(M)) with A ≤ S. Since Out(L) ∼= Dih8, M/L is isomorphic to a subgroup of Dih8. In
particular, M = LS. Let Y be non-trivial indecomposable F2L-submodule of V .

By [MeSt1, 2.3] we have CS∩L([V,Z]) � Z and so (L, Y ) fulfills the hypothesis of 7.8 in place of
(M,V ). It follows that Y is a simple F2L-module and so V is a semisimple F2L-module.

Let W be a maximal homogeneous F2L-submodule of V and suppose that A does not normalizes
W . Then by [MS3, 2.11]|A/CA(W )| = 2 and so CA(W ) 6= 1. Since L is quasisimple we conclude
that L = [L,CA(W )] ≤ CL(W ), a contradiction to CV (L) = 0. Hence A normalizes W . As A
was an arbitrary maximal quadratic subgroup of order larger than 2, (ii) shows that M normalizes
every maximal homogeneous F2L-submodule W . Since V is indecomposable as an F2M -module and
semisimple as an F2L-module we conclude that V = W and so V is a homogeneous F2L-module.
In particular, CL(Y ) = CL(V ) = 1, Z(L) ∼= C3 and the subring E of EndF2L(V ) generated by the
image of Z(L) is a field isomorphic to F4.

Put F0 := Z(EndF2L(V )) and note that F0 is field isomorphic to EndF2L(Y ) and so to F4. Thus
F0 = E. Since |A| ≥ 4, we conclude from [MS3, 2.15], that A and so also M acts F0-linear on V .
Hence Z(L) = Z(M) and F0 = F.

Let Z = Z(S ∩ L), P1 = NL(Z), Q1 = O2(P1), Qi, i = 2, 3, the two elementary abelian
subgroups of order 16 in S ∩L, Pi = NLi(Qi) and for i ∈ {1, 2, 3}, P ∗i = NM (Qi), Li = O2′(Pi), and
Q∗i = O2(P ∗i ). Choose notation such that CY (L2) = 0 and so CY (L3) 6= 0. In the following we will
use the properties of Pi, i = 1, 2, 3, given in 7.8.

Since V is a homogeneous F2L-module we conclude that also CV (L2) = 0 and CV (L3) 6= 0.
Thus S normalizes L2 and L3 and so S ≤ P ∗i for all 1 ≤ i ≤ 3. In particular, |M/L| ≤ 4. Since
P2/Q2 ∼ 3.Alt(6) and P ∗2 centralizes Z(L) we conclude that P ∗2 induces inner automorphisms on
P2/Q2, so P ∗2 = Q∗2P2. Thus |M/L| ≤ 2. Since |A| ≥ 4 we get A∩L 6= 1, and since L has unique class
of involutions and |Z| = 2, we may assume that Z ≤ A ∩ L. In particular, 0 6= [Y,A ∩ L] ≤ CY (A)
and since Y is a simple F2L-module, A normalizes Y . Thus Y is an F2M submodule. As this holds
for all simple F2L-submodules on V and V is a semisimple F2L-module and an indecomposable
F2M -module, V = Y . Thus V is a simple F2L-module and (a) holds. By 7.8(d), there exists an
L-invariant non-degenerate quadratic form on V and by 1.9(f), this form is invariant under M .

Let D ≤ Q2 with |D| ≥ 4 and let a, b ∈ D] with a 6= b. Note that P2 acts simple on [V,Q2]
and 〈CP2

(a),CP2
(b)〉 = P2. Since 0 6= [V, a] < [V,Q2] we conclude that [V, a] 6= [V, b]. Since

dimF[V, a] = 2 and dimF[V,Q2] = 3 this gives [V,D] = [V, a] + [V, b] = [V,Q2] We have proved
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(∗) [V,D] = [V,Q2] for all D ≤ Q2 with |D| > 2.

Put L13 := 〈QP1
2 〉. Then Q1 ≤ L13, L13 ≤ P1 ∩ P3, L13/Q1

∼= Sym(3) and L13 = CL([V,Z]). Put
L∗13 := CM ([V,Z]). Then A ≤ L∗13 and so M = L∗13L and P ∗1 = L∗13P1. Since |L13/L

∗
13| ≤ 2 we

conclude that O2(L∗13) = Q∗1, L∗13 = L13Q
∗
1 and L∗1 = L1Q

∗
1.

Put Z∗ := Z(Q∗1). Since L1 acts simply on Q1/Z, we have [Q1, Q
∗
1] ≤ Z and conclude that

Q∗1 = Z∗Q1. Note that [Z∗, L1] ≤ Z and so [Z∗,O2(L1)] = 1. Since V/CV (Z) and CV (Z∗)/[V,Z]
are non-isomorphic as O2(L1)-modules, [V,Z∗] = [V,Z] and similarly CV (Z∗) = CV (Z). It follows
that [V,Z∗] ≤ [V,Z] ≤ [V,A] ≤ CV (A) ≤ CV (Z) = CV (Z∗) and so Z∗A is quadratic on V . Thus by
maximality of A, Z∗ ≤ A and A = Z∗(A ∩ L). We will show that A is contained in a conjugate of
Q∗2 under P1. Since A = Z∗(A ∩ L) it suffices to show that A ∩ L is contained in a conjugate of Q2

under P1.
Suppose A ∩ L ≤ Q1. Note that P1 acts transitively on fours groups of Q1 containing Z and so

we may assume |A ∩Q2| ≥ 4. Thus using (∗),

A ≤ CM ([V,A ∩Q2]) = CM ([V,Q2]) ≤ Q∗2.

Suppose next that A ∩ L � Q1. Since L13/Q1
∼= Sym(3) we may assume that A ∩ L ≤ Q1Q2.

Let P̃1 := P1/Z and let q ∈ Q2 \Q1. Then CQ̃1
(q) = [Q̃1, q] = Q̃1 ∩Q2. It follow that all involutions

in Q̃1Q̃2 \ Q̃1 are conjugate and so Q2 is the unique maximal elementary subgroup of Q1Q2 not
contained in Q1. Thus A ∩ L ≤ Q2.

We proved that A is conjugate to a subgroup of Q∗2 and we may assume that A ≤ Q∗2. Since
CV (Q2) is the unique non-zero proper F2L2 submodule of V , CV (Q∗2) = [V,Q∗2] = CV (Q2) and so
Q∗2 is quadratic on V . This gives A = Q∗2 , and all maximal quadratic subgroups of M of order at
least 4 are conjugate to Q∗2.

It remains to proof (g). So let B be any quadratic subgroup of M . Suppose first that |B| = 2.
If B ≤ L then B is conjugate to |Z| and so (g:a) holds. If B � L then either CL(B) ∼= U4(2) or
CL(B) ∼ 24.32.2.

Suppose that CL(B) ∼ 24.32.2. Then O2(CL(B)) is conjugate to A ∩ L and we may assume
that B ≤ A and CM (B) ≤ P2. Note that CM (B) contains a Sylow 3-subgroups of P2. Since the
Sylow 3-subgroups of P2 are extraspecial of order 33 they act simply on [V,A] and we conclude that
[V,B] = CV (B) = [V,A] = CV (A) and so (g:d) holds.

Suppose CL(B) ∼= U4(2). Let y ∈ Z∗ \ Z. Then [V, y] ≤ [V,Z]. The preceding paragraph
shows that CL(B) � 24.32.2 and thus 〈y〉 is conjugate to B. So we may assume that B ≤ Z∗.
Thus V/CV (B) and [V,B] have dimension at most two over F and so are centralized by CL(B).
Thus CL(B) acts faithfully on CV (B)/[V,B]. Since [V,B] ≤ CV (B) = [V,B]⊥, the L-invariant
unitary form on V gives raises to an CL(B)-invariant unitary form on CV (B)/[V,B]. It follows
that dimF CV (B)/[V,B] = 4 and CV (B)/[V,B] is a natural SU4(2)-module for CL(B). Thus
dimF V/CV (B) = 1 = dimF[V,B] and (g:b) holds.

Suppose next that |B| > 2. Then B is contained in a maximal quadratic subgroup of order at least
4 and so we may assume that B ≤ A. If [V,B] = [V,A], then CV (B) = [V,B]⊥ = [V,A]⊥ = CV (A)
and (g:d) holds. So suppose [V,B] < [V,A]. Then (∗) implies that |B ∩ L| = 2 and so |B| = 4. If
d ∈ B \L, then dimF[V, d] ≤ dimF[V,B] ≤ 2 and so (g:b) must hold for 〈d〉 in place of B. Thus (g:c)
holds.

Lemma 7.10. Let M = Oε
2n(q), q = 2k, and V be the corresponding natural module over Fq. Let

a ∈M with |a| = 2. Then a ∈ Ωε2n(q) if and only if dimFq [V, a] is even.
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Proof. This is well known, but a reference seems to be hard to come by. So here is a proof: If n = 1,
this is obvious. Suppose there exists an a-invariant proper subspace W of V with V = W ⊕W⊥.
Then the claim follows by induction on n. So we may assume that no such W exists. In particular
v ⊥ va for all v ∈ V and so [V, a] is a singular subspace. Let CV (a) = [V, a]⊕W for some Fq-subspace
W . Since CV (a) = [V, a]⊥, V = W ⊕W⊥ and so W = 0 and [V,A] = CV (a) is maximal singular
subspace of V . Thus ε = +. Since a normalize a maximal singular subspace, a ∈ Ω+

2n(q). Consider
the map sa : V/CV (a)× V/CV (a)→ Fq define by sa(v + CV (a), w + CV (a)) = s(v, [w, a])), where s
is the symmetric form on V invariant under M . Then sa is a non-degenerate bilinear form. From
v ⊥ va we get v ⊥ [v, a] and so sa is a symplectic form. Thus dim[V, a] = dimV/CV (a) is even.

Lemma 7.11. Let q be a power of p and KEM such that K ∼= Spinεn(q), n ≥ 3, and CM (K) = Z(K).
Let Vnat be the natural FqΩεn(q)-module for K, S ∈ Sylp(M), U := CVnat

(S ∩K), L := CK(U) and
Q := Op(L). Then the following hold:

(a) Suppose that W is a non-trivial simple FpK-module with [W,Q,Q] = 0. Then W is a (half-)spin
module for K.

(b) Suppose that p = 2, n even, n ≥ 6, W is a simple F2M -module with [W,K] 6= 0 and that there
exists A ≤ S with [W,A,A] = 0, M = 〈AM 〉, |A| > 2, and A � K. Then M ∼= Oε

n(q) and W is
the natural Oε

n(q)-module for M .

Proof. Put T := S ∩K, so T ∈ Sylp(K), and NM (Q) := NM (Q)/QZ(K), and let U0 be the unique

1-dimensional singular subspace of U . Then [U⊥, Q] = U0. Moreover U = U0, if n is even or p is
odd, and U = U0 + V ⊥ if n is odd and p = 2. Hence

1◦. U⊥/U0 and Q are natural Ωεn−2(q)-modules for L.

Assume that n ≥ 5. Then there exists g ∈ K such that Y := U0 +Ug0 is a 2-dimensional singular
subspace of U⊥ normalized by T . Put H := 〈Q,Qg〉 and Z := Q ∩Qg. Then H/CH(Y ) ∼= SL2(q),
and H acts transitively on the 1-dimensional subspaces of Y . Thus H = 〈QNK(Y )〉; in particular, T
normalizes H. Moreover, QOp(HT ) = T ∈ Sylp(HT ), and using (1◦):

2◦. If n ≥ 5, then CQg (Y ) = Op(CL(Y/U0)), and Z is a 1-dimensional singular subspace of Q.

(a): Put K := EndK(W ). By Smith’s Lemma 4.2 applied to W and its dual, CW (Q) and
W/[W,Q] are simple KL-modules. Since [W,Q] ≤ CW (Q) we conclude that [W,Q] = CW (Q).
Suppose that n = 3 or 4. Then Q = T and so CW (Q) and W/[W,Q] are 1-dimensional over K. Thus
dimK(W ) = 2.

If n = 3 or (n, ε) = (4,+) then W is a natural SL2(q)-module. If (n, ε) = (4,−), then W is a
natural SL2(q2)-module. These are the (half-)spin modules for these groups, so (a) follows in this
case.

Suppose now that n ≥ 5, so we are allowed to use the subgroups Y , H and Z constructed above.
Since [W,Z,H] = 0 and Z 6= 0 we conclude that CW (HT ) 6= 0. By Smith’s Lemma 4.2 CW (T ) is
1-dimensional over K and so CW (T ) = CW (TH). Since K = 〈L,HT 〉 and W is simple, we have
[CW (T ), L] 6= 0, so [CW (Q), L] 6= 0. Now again Smith’s Lemma 4.2 and (2◦) show that CW (Q),
L and CQg (Y ) satisfy the hypothesis in place of W , K, and Q. Thus by induction CW (Q) is a
(half-)spin module for L. Together with [CW (T ), HT ] = 0, this determines W up to isomorphism
(see 4.3) and so W is a (half)-spin-module.

(b): Note that K ∼= Ωεn(q) since p = 2, that S normalizes L, and that by (1◦) Q is a natural
Ωεn−2(q)-module for L. Thus there exists an L-invariant quadratic form h (over Fq) on Q.
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3◦. There exist a, b ∈ A] with CQ(a) 6= CQ(b).

Assume first that A does not act Fq-linearly on Q. Since Aut(Fq) is cyclic and A is elementary
abelian with |A| ≥ 4, we conclude that there exists 1 6= a ∈ A acting Fq-linearly on Q and b ∈ A
acting not Fq-linearly on Q. Hence CQ(a) is an Fq-subspace of Q while CQ(b) is not; in particular
CQ(a) 6= CQ(b).

Assume now that A acts Fq-linearly on Q. Then AL ∼= Oε
n−2(q), and there exists a ∈ A \K and

1 6= b ∈ A ∩K. By 7.10 we conclude that CQ(a) is odd dimensional and CQ(b) is even dimensional
over Fq. Hence again CQ(a) 6= CQ(b).

4◦. There exists D ≤ LA with D ∩A � Q, [W,D,D] = 0, and D ∩Q 6= 1.

Clearly A � Q since A � K, so if A ∩ Q 6= 1 we can choose D = A. Suppose A ∩ Q = 1. Let
a, b ∈ A as in (3◦) and without loss CQ(a) � CQ(b). Then there exists 1 6= d ∈ [CQ(a), b] ≤ 〈bCQ(a)〉,
so

[W,a, d] ≤ [W,a, 〈bCQ(a)〉] = 〈[W,a, b]CQ(a)〉 = 0.

Since A is elementary abelian, d ∈ 〈bCQ(a)〉 ≤ CL(a) and so [a, d,W ] = 0. Hence by the Three
Subgroups Lemma also [W,d, a] = 0, and D := 〈a, d〉 satisfies (4◦).

5◦. There exists B ≤ Q and 1 6= e ∈ B such that [W,B,B] = 0, h(e) = 0 and B � Fq e.

Let D be as in (4◦). Pick 1 6= b ∈ D ∩ Q, and put E := 〈DCL(b)〉 and C := Fqb. Then
[W, b,E] = 0.

Suppose that b⊥ ≤ E ∩Q. Note that there exists u ∈ E ∩Q \ C such that h(u) = 0 if h(b) 6= 0.
Pick such an element u and put B := 〈b, u〉. Since [W, b,B] = 0, B acts quadratically on W . Thus
(5◦) holds with e = b if h(b) = 0 and e = u if h(b) 6= 0.

Suppose now that b⊥ � E ∩Q. By the action of CL(b) on Q, any CL(b)-submodule of Q, which
contains b, either contains b⊥ or is contained in C. In particular E∩Q ≤ C and [Q,E] ≤ E∩Q ≤ C.
Since Q is a natural Ωεn−2(q)-module for L, 3.4 shows h(b) 6= 0 and |DQ/Q| = |EQ/Q| = 2. Thus

[D,CL(b)] ≤ C, and since CL(b) centralizes C, [D,O2(CL(b)] = 1. The structure of On−2(q) shows
that

[Q,D] = C and CLD(b)/Q ∼= C2 × Spn−4(q)

Put D∗ = CDL(O2(CL(b))). It follows that D ≤ D∗, |D∗Q/Q| = 2, D∗ ∩ Q = C, and the q
elements in D∗ \Q are the transvections on Vnat corresponding to the q non-singular 1-spaces in the
isotropic 2-space [Vnat, b]. Pick d ∈ D ∩ A \Q. Then F := CDK(d) ∼= C2 × Spn−2(q). In particular
F = 〈DF 〉. From [W,d,D] = 0 we get [W,d, F ] = 0 and so [W,d,CQ(d)] = 0. Pick e ∈ CQ(d) \ C.
Then 〈e, d〉 is quadratic on W and satisfies (4◦) in place of D. Moreover [Q, d] � Fq e. Hence the
arguments of the previous paragraph apply to 〈e, d〉 in place of D, and (5◦) holds.

6◦. [W,Z,CQ(Y )] = 0.

Let B and e be as in (5◦). Since L is transitive on the singular elements of Q and since by (2◦) Z
is a singular subspace of Q, we may assume that e ∈ Z. Put Qe := e⊥ in Q. Note that Qe = CQ(Y ),
so we have to show that [W,Z,Qe] = 0.

Since B � Z = Fqe we get Qe ≤ 〈BCL(e)〉, so [W, e,Qe] = 0. As NL(Qe) acts transitively on Z,
we conclude that [W,Z,Qe] = [W, 〈eNL(Qe)〉, Qe] = 0.

7◦. Put K := EndK(W ). Then W is a simple F2K-module, and M acts K-linearly on W .
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Let X be a simple F2K-submodule of W and E := EndK(X), and pick D as in (4◦). Then
0 6= [X,D ∩ Q] ≤ CX(D) and so X is D-invariant. Hence 0 6= [X,D ∩ A] ≤ CX(A) and so X is
A-invariant. Since D∩Q acts E-linearly on X, [X,D∩Q] is a non-trivial E-subspace centralized by
D, so D acts E-linearly on X. Hence [X,D ∩A] is a non-trivial E-subspace centralized by A, and A
acts E-linearly on X. This also holds for each conjugate of A under M . Since M = 〈AM 〉 and W is
a simple F2M -module, X = W , K = E, and M acts K-linearly on W .

8◦. [W,Q,Q] 6= 0.

Suppose [W,Q,Q] = 0. Then by (7◦) and (a), W is a (half)-spin module. If ε = −, then K ∼= Fq2

and since A acts K-linearly on W , we conclude that A ≤ K, a contradiction. If ε = +, then K = Fq
and so A induces a graph automorphism on K. But graph automorphisms interchange the two
half-spin modules and so do not act on W , again a contradiction.

9◦. W is a natural Ωεn(q)-module for K.

Put QZ = CQ(Y )CQg (Y ), where g is as in the definition of Y . Then by (6◦) [W,Z,QZ ] = 0. Let
l ∈ L with Zl 6≤ CQ(Y ), so Q = CQ(Y )Zl. Note that L = 〈QZ , QlZ〉. Since [W,Q,Q] 6= 0 by (8◦)
and 〈ZL〉 = Q, also [W,Z,Q] 6= 0. Now [W,Z,CQ(Y )] = 0 gives

0 6= [W,Z,Q] = [W,Z,CQ(Y )Zl] = [W,Z,Zl].

Since [Z,Zl] = 1, we get

0 6= [W,Z,Zl] = [W,Zl, Z] ≤ [W,Z] ∩ [W,Zl] ≤ CW (QZ) ∩ CW (QlZ) = CW (L).

Thus CW (L) 6= 0, and with Smith’s Lemma 4.2 [CW (S ∩K), L] = 0.
By (6◦) Z and thus also Zl acts quadratically on W . On the other hand

ZlO2(HT ) = QO2(HT ) ∈ Syl2(HT ).

Hence, T acts quadratically on CW (O2(HT )). So by (a) CW (O2(HT )) is a natural SL2(q)-module
for HT . Thus by Ronan-Smith’s Lemma 4.3 W is unique up to isomorphism, and (9◦) holds.

From (9◦) we conclude that K = Fq. Since A acts K-linearly on W we infer that KA ∼= Oε
2n(q),

W is the natural module, and M = KA.

8 The FF-Module Theorems

In this section we use the same hypothesis and notation as in Section 2; that is, M is a finite group
with Op(M) = 1, V is a finite, faithful FpM -module such that J = JM (V ) 6= 1, and J is the set of
JM (V )-components of M on V .

Recall that a finite group H is p-minimal if S ∈ Sylp(H) is contained in a unique maximal
subgroup of H and S 5 H.

Lemma 8.1. Suppose that M is p-minimal and T ∈ Sylp(M). Then there exist subgroups E1, . . . , Er
such that the following hold:

(a) J = E1 × · · · × Er and J = {E′1, . . . , E′r}.

(b) V = CV (J) +
∑r
i=1[V,Ei] and [V,Ei, Ej ] = 0 for i 6= j.
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(c) [CV (T ),Op(M)] 6= 0.

(d) T is transitive on E1, . . . , Er.

(e) There are no over-offenders on V in M .

(f) Ei ∼= SL2(q), q = pn, and [V,Ei]/C[V,Ei](Ei) is a natural SL2(q)-module for Ei, or p = 2,
Ei ∼= Sym(2n + 1), and [V,Ei] is a natural Sym(2n + 1)-module for Ei.

(g) If A ≤ M is an offender on V , then A = (A ∩ E1) × . . . × (A ∩ Er), and each A ∩ Ei is an
offender on V .

Proof. Using [BHS, 5.6] we see that (c) holds. Hence M and V satisfy the hypothesis of [BHS, 5.5].
This result gives subgroups E1, . . . , Er satisfying (b),(d), (f) and (g). Moreover, [BHS, 2.16] shows
that every best offender on V induces inner automorphisms in Ei and is not an over-offender on
[V,Ei]. The first property gives (a) and the second one (e).

The proof of Theorem 2:

Let K ∈ J , K := EndK(V ), and A ∈ D. From 2.8 we get:

1◦. V is a simple K-module, and K is the unique J-component of M .

If K is solvable, then 2.2(d) shows that Theorem 2(1) holds for q = 2 or 3 and n = 2. Thus, we
assume from now on that K is not solvable, so K is a component by 2.2(d).

By the definition of D there exists 1 6= B ≤ A such that B is an offender on V with

(∗) [V,B,A] = 0.

We choose such an offender B with |B| minimal. Then B is a minimal offender and thus a quadratic
best offender on V , so B ≤ J .

By (1◦) and 2.2(b) [K,B] 6= 1. Hence

2◦. K = [K,B] and [V,B,A] = 0.

Since K is not solvable, we get from 2.5, applied to BK, that BK acts K-linearly on V . In
particular, [V,B] is a K-subspace of V . Thus (∗) shows that A centralizes a K-subspace of V , so
also A acts K-linearly on V . Since this holds for every A ∈ D, we conclude:

3◦. M acts K-linearly on V , and CM (K) = Z(M).

We will now prove Theorem 2 by using the information given in [GM2, Theorem B]. Observe
that the bounds on the dimension of V in the cases (3) and (4) of Theorem 2 follow from 3.4.

Suppose that (KB,V ) or (K,V ) is one of the possibilities (1) – (12) given in Theorem 2 for
(M,V ). Since by (3◦) M ≤ NGLK(V )(K), then also (M,V ) is on the list. Moreover, if there exists a
non-trivial offender on V in K, then (3◦) and [GM2] show that (K,V ) is on the list. Thus, we may
assume:

4◦. B is a minimal best offender on V , M = KB, and there is no non-trivial offender on V in
K. In particular K 6= M .

Case 1. Suppose that p is odd.
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In [Ch, Corollary C] all possibilities for M are given under the hypothesis that |V/CV (B)| ≤ |B|2
for some non-trivial quadratic subgroup B ≤M . It turns out that p = 3 and M ∼= SL2(5), or M is
a genuine group of Lie type in characteristic p. In the first case |V/CV (B)| > |B|, and B is not an
offender contradicting (4◦). In the second case (4◦) shows that M ∼= 2G2(3) ∼ SL2(8).3. But then
M has abelian Sylow 2-subgroups, which contradicts [KS, 9.1.4].

Case 2. Suppose that |B| = 2.

Then B acts as a transvection on V , and [McL] shows that (M,V ) is on the list.

Case 3. Suppose that p = 2, |B| > 2, and K is not a genuine group of Lie-type in characteristic
p.

Then [MeSt1], [MeSt2] and 7.4 together with (4◦) show that

K ∼= Alt(n), n ≥ 6, n 6= 8, U3(3), 3.U4(3), 2F4(2)′, ,Mat12, or Mat22.

Except in the case K ∼= Alt(n) the corresponding module V is uniquely determined.
Suppose K ∼= Alt(n). Then [MeSt2] offers two possibilities for V . If V is the natural module for

Alt(n), then M ∼= Sym(n) and V is the natural module for Sym(n). Hence (M,V ) are on the list.
If V is not a natural module, then V is the (half-)spin module and n > 6. So 7.5 shows that

B ≤ Alt(n) contradicting (4◦).
Suppose that K ∼= U3(3). Then M ∼= G2(2), and 7.6 shows that (M,V ) is on the list.
Suppose K ∼= 2F4(2)′. Then M ∼= 2F4(2) and so M \ K does not contain any involution, a

contradiction.
Suppose K ∼= 3.U4(3). Then K = F4 and dimK V = 6. Since M acts K-linearly we get

|M/K| = 2, and there exists B ≤ R ≤M such that R ∼ 24+13.Alt(6). Observe that every non-zero
R-section of V is at least 3-dimensional over K. Hence IR := CV (O2(R)) = CV (O2(R) ∩ K) is
3-dimensional over K and V = [V,R].

Clearly B is not an over-offender on IR since |BO2(R)/O2(R)| ≤ 4 and IR is an F4R-module.
Thus, by 1.3 either V = IR+CV (B) or B ≤ O2(R). In the first case [V,R] ≤ IR, a contradiction. In
the second case [MS1, 2.6] implies that there exists an offender 1 6= D ≤ O2(R) with D E R. Since
IR and V/IR are simple R-modules we get CV (D) = IR and 25 = |O2(R)| ≥ |D| ≥ |V/CV (D)| =
|V/IR| = 26, a contradiction.

Suppose next that K ∼= Mat12 or Mat22. Then M ∼= Aut(Mat12) and Aut(Mat22), respectively,
and [MeSt2] shows that |B| = 4. But then |V/CV (B∩K)| ≤ |V/CV (B)| ≤ |B| = 4, which contradicts
the action of K on V .

Case 4. Suppose p = 2, |B| > 2, and K is a genuine group of Lie type defined over a field of
characteristic 2.

Recall that B ≤ T ∈ Syl2(M). Let V0 := CV (T ∩ K). Note that M is generated by the 2-
minimal subgroups containing T . Hence there exists T ≤ P ≤ M such that P is 2-minimal and
[V0,O

2(P )] 6= 0.

5◦. B ≤ O2(P ).

Suppose that P = M . Then by 8.1 (KB,V ) is on the list, contrary to the assumptions. Thus
P 6= M .

Put VP := CV (O2(P )∩K). Then V0 ≤ VP . Put P̃ = NK(O2′(P ∩K)). Then P̃ is a Lie-parabolic

subgroup of K, O2(P ) ∩K = O2(P̃ ) and O2′(P̃ ) = O2′(P ∩K). Thus by Smith’s Lemma 4.2 VP
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is a simple K(P ∩K)-module. By (4◦) O2(P ) ≤ P ∩K, so CV (O2(P )) = 0 and VP = CV (O2(P )).
Moreover, since P is 2-minimal, CT (VP ) = O2(P ).

Suppose that B � O2(P ), so [VP , B] 6= 0. By 1.2 B is a non-trivial best offender on VP , and by
8.1 B is not an over-offender on VP . Hence 1.3 shows that CB(VP ) = 1 and V = VP +CV (B). Again
by 8.1 there exists O2(P )B ≤ H ≤ P such that H/O2(P ) ∼= SL2(|B|), U := [VP , H] is a natural
SL2(|B|)-module, and V = U + CV (B).

Put D := 〈BH〉. Then [V,D] ≤ U , so every subgroup of V containing U is D-invariant. Since K
is of local characteristic 2 and P 6= M , there exists a minimal normal subgroup N of D in O2(D)∩K.
Then [V,D,N ] ≤ [U,N ] = 0 and [V,N,O2(D)] = U . Hence, the Three Subgroups Lemma shows
that [O2(D), N, V ] 6= 0 and so [N,O2(D)] 6= 1. As SL2(|B|) has no non-trivial simple F2-module of
order less than |B|2, we get |N | ≥ |B|2.

On the other hand for every 1 6= x ∈ N , U ≤ CV (x) and so CV (x) is D-invariant. Since
N = 〈xD〉 it follows that CV (N) = CV (x). Now choose y ∈ N and b ∈ B with x := [y, b] 6= 1. Then
x ∈ N ∩ 〈B,By〉 and CV (B) ∩ CV (By) ≤ CV (x) and so

|V/CV (N)| = |V/CV (x)| ≤ |V/CV (B)|2 ≤ |B|2 ≤ |N |.

Hence, N is a non-trivial offender on V in K. But this contradicts (4◦), and so (5◦) holds.

Since by (5◦) B ≤ O2(P ) and since P = (P ∩K)B, also P ∩K is 2-minimal. Thus P ∩K is a
minimal parabolic subgroup of K fixed by B.

Let ∆ be the Dynkin diagram of K and i be the node corresponding to P ∩ K. Among all
B-invariant proper Γ ⊂ ∆ with i in Γ and Γ connected we choose Γ maximal. Let T ∩K ≤ L̃ be the

parabolic subgroup of K corresponding to Γ and put L := O2′(L̃), Q := O2(L), and VL := CV (Q).
Note that B normalizes L and thus also VL. So by 1.2 B is a best offender on VL. By Smith’s
Lemma 4.2 VL is a simple F2L̃-module. Let W be a simple F2L-submodule of VL. By 2.6 and 1.2
B normalizes W and is a best offender on W .

6◦. Either B ≤ LO2(LB), or the following hold:

(a) LB/CLB(W ) ∼= Oε
2n(q), n ≥ 3, and W is the corresponding natural module.

(b) |B/CB(W )| ≥ 4.

Suppose that B � LO2(LB). Note that [V0,O
2(L)] 6= 0 since O2(P ) ≤ L and [V0,O

2(P )] 6=
0. Since Γ is connected, CB(W ) ≤ O2(LB). Thus B is a non-trivial best offender on W . If
|B/CB(W )| = 2, then B is not an over-offender on W , and by 1.3 |B| = 2, a contradiction to the
assumptions of (Case 4).

Hence |B/CB(W )| ≥ 4, and by induction LB/CLB(W ) ∼= Oε
2n(q) and W is the corresponding

natural module. Moreover (5◦) shows that LB is not 2-minimal, so n ≥ 3.

7◦. B acts transitively on ∆ \ Γ.

There exists a node j ∈ ∆ \Γ such that j is adjacent to some node in Γ. Now the maximality of
Γ shows that ∆ = Γ ∪ jB .

We now discuss the possibilities for K/Z(K). Suppose first that K/Z(K) is an untwisted group
of Lie type defined over Fq. Then (5◦) shows that no element of B induces a field automorphism or
graph-field automorphism in ∆. Thus B induces a graph automorphism on ∆, so ∆ is of type Am,
Dm, F4, or E6. Since M is not 2-minimal by (5◦), m ≥ 3.

If ∆ is of type Dm, then (M,V ) is in the list by 7.11(b). Assume now that ∆ is not of type
Dm, so m ≥ 4 if ∆ is of type Am. Since B induces a graph automorphism, (7◦) yields one of the
following possibilities:
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(i) |Γ| = m− 2, and ∆ is of type Am.

(ii) |Γ| = 2, and ∆ is of type F4.

(iii) |Γ| = 4 or 5, and ∆ is of type E6.

In all cases B acts non-trivially on Γ; in particular B � LO2(LB). Hence (6◦) shows that Γ is
of type Dn. This rules out case (ii). Moreover, in case (i) m = 5 and Γ is of type D3; and in case
(iii) Γ is of type D4. In particular, by (6◦) in each of the remaining cases P is uniquely determined,
CV (O2(P )) is a natural SL2(q)-module for P , and [V0, R] = 0 for every other minimal Lie-parabolic
subgroup R of K containing T ∩K. By Ronan-Smith’s Lemma 4.3 this determines the module V
uniquely.

If ∆ is of type A5, then V is the exterior cube of a natural SL6(q)-module. But then there exists
an L-composition factor of V that is a natural SL4(q)-module. This contradicts 2.8 and 7.11(b).

If ∆ is of type E6, then V is the adjoint module for E6(q). But then V has an L-composition
factor isomorphic to the adjoint module for Ω+

8 (q), a similar contradiction as above.

Suppose now that K/Z(K) is a twisted group of Lie type over Fqν . Then |∆ \ Γ| = 1 and
B induces a field automorphism of order 2 on Fqν with fixed field Fq, so ν = 2. Since M is not
2-minimal by (5◦), K has Lie rank at least 2.

In all cases (5◦) shows that P/O2(P ) ∼= SL2(q), and this excludes that K is of type 2F4, 3D4 or
2Am, m even. So K is of type 2Am, m odd, 2Dm, or 2E6.

If K is of type 2Dm, we are done by 7.11(b). Suppose that K is of type 2Am, m odd. Since
2A3 = 2D3 we may assume in addition that m ≥ 5, so by (7◦) |Γ| ≥ 2. In particular L contains
a minimal parabolic subgroup R with R/O2(R) ∼= SL2(q2), so B � LO2(LB). Hence (6◦) implies
that K is of type 2A5. Now as in the A5-case, V is the exterior cube of the natural SU5(q)-module
and L has a composition factor which is a natural SU4(q)-module. Since SU4(q) ∼= Spin−6 (q) this
contradicts 7.11(b).

Suppose that K is of type 2E6. Then |Γ| = 3 and with the same argument as in the previous
paragraph using (6◦) L is of type 2D4. So Γ, P and VP are uniquely determined. Now as in the
E6-case V is the adjoint module for K, and L has a composition factor isomorphic to the adjoint
module for Ω−8 (q), which contradicts 7.11(b).

The proof of Theorem 3:

Let B be a minimal offender in A and note that B is a quadratic best offender on V .

Case 1. The case M ∼= G2(q), q = 2n, V a natural G2(q)-module.

We will use the following facts about the action of K on V and the structure of K, where
i-subspace means K-subspace of dimension i in V :

There exists an M -invariant non-degenerate symplectic form on V (since V is self-dual and
p = 2). Let M1 and M2 be the pair of maximal parabolic subgroups of M with T ≤ Mi and such
that Mi normalizes an i-subspace Vi in V . Note that Vi is singular and the graph with vertices
VM1 ∪VM2 and inclusion as incidence relation is a generalized hexagon. Since M acts transitively on
V ], VM1 consists of all the 1-dimensional subspaces of V .

Put Pi := O2′(Mi), and Qi := O2(Pi). There exist exactly two classes of involutions in M with
representatives z, t ∈ T such that

(i) t 6∈ Z(Q1), P1 = Q1CM (t), and P2 = CM (z).

56



(ii) t and z and do not fix any vertex of distance larger than 3 from V1 and V2, respectively.

(iii) t and z fix all vertices of distance at most 3 from V1 and V2, respectively.

We will use these properties to show 3(a).

1◦. |CV (z)| = q4. More precisely, z centralizes exactly the 1-subspaces of distance 1 and 3 from
V2.

There are precisely q + 1 1-spaces of distance 1 and q2(q + 1) 1-spaces of distance 3 from V2.
Hence by (ii) and (iii) CV (z) has exactly q + 1 + q2(q + 1) = q3 + q2 + q + 1 1-spaces.

2◦. |CV (t)| = q3. More precisely, t centralizes exactly the 1-dimensional subspaces of distance 0
and 2 from V1.

There is one 1-space of distance 0 and q(q + 1) 1-spaces of distance 2. Thus, as in (1◦), CV (t)
contains exactly 1 + q(q + 1) = q2 + q + 1 1-spaces.

3◦. Suppose t ∈ B. Then |B| = |CV (B)| = |[V,B]| = q3, CT (B) = B, and B is uniquely
determined in M1.

Since CV (B) ≤ CV (t) and by (2◦) and the quadratic action of B,

q3 = |[V, t]| = |[V,B]| and CV (B) = CV (t); in particular |B| ≥ q3.

By (2◦) CV (t) is uniquely determined by M1, so also B∗ := Op′(CM1
(CV (t))) is uniquely deter-

mined. To prove the uniqueness of B in M1, it suffices to show that |B∗| ≤ q3 since then B = B∗.
Note that [V g2 , B

∗] = 0 for every g ∈ M1, and so B∗ ≤ Q1 ∩ Q2. Let x ∈ P2 \ M1 and
D := B∗ ∩B∗x. Then |B∗/D| ≤ q2 and |D| ≥ q since |Q2| = q5 and |B∗| ≥ q3. On the other hand,
D fixes a path of length 6 with V2 as midpoint, and (ii) yields |D| ≤ q. This shows that |D| = q and
consequently |B∗| ≤ q3.

It remains to show that B = CT (B). Assume that B0 =: CT (B) > B. By Smiths’ Lemma,
CV (Q1) = V1 and so [CV (t), Q1] 6= 1. From [V2, Q1] ≤ V1 we get CV (t) = 〈V P1

1 〉 and [CV (t), Q1] =
V1. Thus Q1/B = Q1/CQ1

(CV (t)) is dual to the natural SL2(q)-module CV (t)/V1. We claim that
CQ1(B) � B. If B0 ≤ Q1 this is obvious. And if B0 � Q1 we get [Q1, B0] � B and so again
CQ1(B) � B. Since CQ1(B) E P1 we conclude that Q1 = CQ1(B) and t ∈ Z(Q1), which contradicts
(i).

4◦. tM ∩B 6= ∅.

Assume that tM ∩ B = ∅. Then we may assume that z ∈ B, so CV (B) ≤ CV (z) and by (1◦)
q2 ≤ |V/CV (B)| ≤ |B|. On the other hand, by (ii) and (1◦) the non-trivial elements of CT (CV (z))
centralize every 1-subspace of distance at most 3 from V2 but no singular 2-space of distance 4.
Hence |CT (CV (z))| = q. It follows that there exists zg ∈ B with CV (z) 6= CV (zg) and so also
[V, z] 6= [V, zg]. Since [V, z] + [V, zg] ≤ CV (B) ≤ CV (z) ∩ CV (zg) and |[V, z]| = q2, we conclude that

|CV (B)| = q3, |B| = q3 and CV (B) = CV (z) ∩ CV (zg).

But then V2 and V g2 are of distance 2, and we may assume that V1 = V2 ∩ V g2 . Now (2◦) shows that
t centralizes CV (B) and so CV (B) = CV (t). Hence also B〈t〉 is a quadratic offender, and (3◦) yields
t ∈ B, a contradiction.
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5◦. Case (a) of Theorem 3 holds.

According to (4◦) we may assume that t ∈ B, and according to (3◦) CT (B) = B and so A = B.
So 3(a) follows from (3◦).

Case 2. The case M ∼= SLn(q)/〈−idn−1〉, n ≥ 5, and V the exterior square of a natural KSLn(q)-
module W .

Let U be a T -invariant K-hyperplane in W . Put R := CM (W/U) and IR := CV (Op(R)). Recall
that R/Op(R) ∼= SLn−1(q) and Op(R) is an natural SLn−1(q)-module for R isomorphic to U .

We will use the following properties of the exterior square:

6◦. U , Op(R) and V/IR are isomorphic natural SLn−1(q)-modules for R.

7◦. IR is as an FpR-module isomorphic to the exterior square of U .

If n ≥ 6, then by (7◦) and induction B is not an over-offender on IR. If n = 5, then SL4(q) ∼=
Ω+

6 (q) and IR is the natural orthogonal module. Again by 3.4 B is not an over-offender. Hence, in
both cases 1.3 shows that either B ∩Op(R) = 1 or B ≤ Op(R).

In the first case |IR/CIR(B)| = |B| and V = IR + CV (B); in particular [V,B] ≤ IR. But this
contradicts (6◦). Thus we have B ≤ Op(R). Pick b ∈ B] and put C := CR(b). Then C acts as
a point stabilizer on Op(R) and thus by (6◦) also as a point stabilizer on V/IR. It follows that
CV (b) = IR or |CV (b)/IR| = q.

If CV (B) = IR, then |B| ≥ |V/IR| = qn−1 and B = Op(R). Since CT (Op(R)) = Op(R) we get
A = B, and case (b) of Theorem 3 follows.

Assume now that |CV (B)/IR| = q. Then CV (B) = CV (b) for all 1 6= b ∈ B. Also qn−2 =
|V/CV (B)| ≤ |B|. Since n ≥ 5 this gives |B| > q, so there exists 1 6= b, b̃ ∈ B with CR(b) 6= CR(b̃).
Hence, CV (B) = CV (b) = CV (b̃) is normalized by R = 〈CR(b),CR(b̃)〉, a contradiction.

Case 3. The case M ∼= Spin7(q) or Spin+
10(q) and V a corresponding spin module.

We will use the following facts about the action of M on V and the structure of M . Recall that
P Ω5(q) ∼= PSp4(q). There exists T ≤ R ≤M such that for IR := CV (Op(R)) the following hold:

(i) Spinεn(q)/〈−idV 〉 ∼= Ωεn(q).

(ii) R/Op(R) ∼= Spin5(q) resp. Spin+
8 (q).

(iii) Op(R) is a natural Ω5(q)- resp. Ω+
8 (q)-module for R.

(iv) IR = [V,Op(R)].

(v) If n = 7, then V/IR and IR are isomorphic natural Sp4(q)-modules for R, but IR is not
isomorphic to Op(R)/Op(R) ∩ Z(R); while if n = 10, Op(R), V/IR and IR are pairwise non-
isomorphic natural Ω+

8 (q)-modules for R.

(vi) Op(R) acts quadratically on V .

(vii) If n = 7 and Z is a 1-dimensional singular subspace of Op(R), then CM (Z)/Op(CM (Z)) ∼=
Spin+

4 (q), and V/[V,Z] is a natural Ω+
4 (q)-module for CM (Z).

Put δ = 1 if n = 7 and δ = 2 if n = 10. We first show:

8◦. CV (x) = IR for every non-singular x ∈ Op(R), and |V/CV (x)| = q2δ for every non-trivial
singular x ∈ Op(R).
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Let 1 6= x ∈ Op(R). Suppose first that x is singular in Op(R). Then CM (x) � R and so
CV (x) 6= IR. Moreover, CR(x) normalizes a unique proper submodule of V/IR. This submodule has
order q2δ and so (8◦) holds.

Suppose next that x is not singular. Then there exists g ∈M such that Rg and Rgx are opposite
Lie-parabolics of M . So by 5.1 M = 〈Op(R

g),Op(R
gx〉 ≤ 〈Op(R

g), x〉. Thus CV (Op(R
g))∩CV (x) =

0 and V = [V,Op(R
g)] + [V, x]. Since [V,Op(R

g)] ≤ CV (Op(R
g)) and [V, x] ≤ CV (x), this implies

[V, x] = CV (x) and so CV (x) = CV (Op(R)) = IR.

9◦. B is conjugate to a subgroup of Op(R).

Suppose not. Then B � Op(R). Let Z = Op(R) ∩ B. If Z contains a non-singular element b,
then by (8◦) [V,B] ≤ CV (B) ≤ CV (b) = IR. But then 〈BR〉 centralizes V/IR, a contradiction to
(v). Thus all elements in Z are singular. By 1.3 either V = IR + CV (B) and [V,B] ≤ IR, or B is an
over-offender on IR. The first possibility contradicts (v), so B is an over-offender on IR. Then by
3.4

CIR(B) = [IR, B], |CIR(B)| = q2δ and q2δ < |B/Z| = |B/B ∩Op(R)| ≤ q3δ.

Put V = V/IR. Then B acts quadratically on V . From |B/Z| > q2δ and 3.4 we conclude that
|V ,B]| = q2δ and so also |V /CV (B)| = q2δ. Thus |V/CV (B)| ≥ q4δ and so |Z| ≥ qδ. Let 1 6= x ∈ Z.
Note that [V,B] + IR ≤ CV (x). Since x is singular in Op(R) (8◦) gives |V/CV (x)| = q2δ. Thus
CV (x) = [V,B] + IR and CR(x) normalizes [V,B] + IR. But R = 〈CR(x), CR(y)〉 for any singular
x, y ∈ Op(R) with Fqx 6= Fqy and since R does not normalizes [V,B]+IR we conclude that Z ≤ Fqx.
Since |Z| ≥ qδ, we conclude that Z is a 1-dimensional singular subspace of Op(R). Also δ = 1 and
so n = 7.

Put P := CM (Z). By (vii) P/Op(P ) ∼= Spin+
4 (q), and CV (Z)/[V,Z] is the natural Ω+

4 (q)-module
for P . Thus every singular 1-space of CV (Z)/[V,Z] is contained in a P -conjugate of IR/[V,Z], and
the conjugates of IR/[V,Z] are TI-subgroups in CV (Z)/[V,Z].

Since B acts quadratically on V , [V,B]/[V,Z] is a 2-dimensional isotropic subspace and thus
contains a 1-dimensional singular subspace. Hence there exists g ∈ P such that [V,B]∩ IgR 6≤ [V,Z].
The TI-property of IR/[V,Z] implies that B normalizes IgR, so B ≤ Rg.

If B � Op(R
g), then the above also applies to B and Rg in place of B and R, so [V,B] ∩ IgR is

2-dimensional and so [V,B] ∩ IgR = [V,Z], a contradiction. Thus, we have that B ≤ Op(R
g), and B

is not a counterexample. Hence (9◦) is proved.

According to (9◦) we may assume that B ≤ Op(R). If B does not contain a non-singular
element of Op(R), then |B| ≤ q2δ. So also |V/CV (B)| ≤ q2δ and by (8◦) CV (B) = CV (b) for every
1 6= b ∈ B. On the other hand, for every such b, CR/Op(R)(b) is contained in a unique maximal
parabolic subgroup of R/Op(R). It follows that B is has order at most q, a contradiction.

Hence B contains a non-singular element b. Then by (8◦)

(+) IR = CV (b) = [V, b] = CV (B) = [V,B] and |B| ≥ |V/CV (B)| = q4δ

If M ∼= Spin+
10(q), then |Op(R)| = |IR| = q8 = q2δ and so by (+) B = Op(R). Thus A ≤

CT (Op(R)) = Op(R) and A = B. Since Op(R) is weakly closed in T , we see that case (d) of
Theorem 3 follows from (+).

So suppose M ∼= Spin7(q). If A ≤ Op(R), then case (c) Theorem 3 follows. So assume for a
contradiction that A � Op(R). Observe that [B,A] = 1, |B| ≥ q2δ = q4 and Op(R) is a natural
Ω5(q)-module for R/Op(R). We conclude that p = 2, |B| = q4, B = A ∩ Op(B) = COp(R)(A)
and |A/B| ≤ q. Thus |A| ≤ q5. Since Op(R)/Op(R) ∩ Z(R) is not isomorphic to IR, we get that
|IR/CIR(A)| = q2 and so |V/CV (A)| = q6 > q5 = |A|. This contradiction completes (Case 3).

59



Case 4. The case M ∼= 3.Alt(6) and |V | = 26.

Then K = F4, |A| = 4, and CV (A) is a K-hyperplane, so case (e) Theorem 3 follows.

Case 5. The case K ∼= Alt(n), n ≥ 5, and V the natural Alt(n)-module for K.

Let W be the natural permutation module for Sym(n) over F2 with basis wi, i ∈ Ω := {1, . . . , n},
and W0 := 〈

∑
Ω wi〉. For Ψ ⊆ Ω put WΨ = 〈wi + wj | i, j ∈ Ψ〉 and WΨ = WΨ + W0/W0. Then

V ∼= WΩ.

10◦. If A is a best offender, then case (g) or case (h) of Theorem 3 holds.

Suppose that A acts transitively Ω. Then n = 2k, and since n ≥ 5, k ≥ 3. Note that |A| = 2k,

CWΩ(A) = W0, and |WΩ| = 22k−2. The commutator map

CWΩ
(A)×A→W0 with (w +W0, a) 7→ [w, a]

shows that
|CWΩ

(A)| = |CWΩ
(A)/CWΩ(A)| ≤ |A| = 2k,

and so
2k = |A| ≥ |V/CV (A)| = |WΩ/CWΩ

(A)| ≥ 22k−k−2.

Thus 2k−1 ≤ k + 1, so k = 3 and |A| = |V/CV (A)| = 8 = |CV (A)|. Since V is self-dual, also
|[V,A]| = 8 and since [V,A] ≤ CV (A), [V,A] = CV (A). Hence case (h:4) of Theorem 3 holds.

So we may assume from now on that A does not act transitively on Ω. Let Ψ be an orbit of A on
Ω of length say 2k. Since A is a best offender, A is an offender on WΨ, and since Ψ 6= Ω, W0 �WΨ

and so WΨ
∼= WΨ. Thus A is an offender on WΨ. Note that |A/CA(WΨ)| = |A/CA(Ψ)| = 2k,

|WΨ| = 22k−1, and |CWΨ(A)| = |2|. Thus 22k−1−1 ≤ 2k, 2k ≤ k + 2 and k ≤ 2.
Suppose A has two orbits Ψ1 and Ψ2 of length four and put Λ := Ψ1 ∪ Ψ2. Assume for a

contradiction that Λ = Ω and put H := NM ({Ψ1,Ψ2}). Then H ∼= Sym(4) o C2 and A ≤ O2(H).
So H acts simple on O2(H). [MS1, 2.6] shows that O2(H) is an offender, and the Timmesfeld
Replacement theorem implies that O2(H) acts quadratically on V , a contradiction. Hence Λ 6= Ω
and so WΛ

∼= WΛ. Note that |A/CA(WΛ)| = |A/CA(Λ)| ≤ 16, |WΛ| = 27 and |CWΛ(A)| = 4. Thus
27/4 ≤ 16, a contradiction.

Suppose Ψ is an orbit of length 4 for A on Ω and A has a fixed-point i on Ω. Put VΨi := 〈wi+wj |
j ∈ Ψ〉. Then VΨ,i is isomorphic to the permutations module for A on Ψ and is also isomorphic
to VΨ,i. Thus A is a best offender on VΨ,i. But |A/CA(VΨ,i)| = 4 and |VΨ,i/CWΨ

(A)| = 8, a
contradiction.

We have proved that either all orbits of A on Ω have length 1 or 2, or A has a unique orbit of
length four and all other orbits have length two.

Assume for a contradiction that CWΩ
(A) 6= CWΩ

(A)/W0. Then there exists w ∈ WΩ such that
0 6= [w,A] ∈ W0; in particular A0 := CA(w) has index 2 in A. Let X ⊆ Ω with w =

∑
i∈X wi and

|X| even. Then there exists a ∈ A such that {X,Xa} is a partition of Ω, and A0 normalizes X and
Xa. Note that CWX

(A) = 〈w〉 and that |X| ≥ 4 since n ≥ 5 and |X| is even. Thus

4 ≤ |WX/CWX
(A)| ≤ |V/CV (A)| ≤ |A|.

Thus A0 6= 1, and since CA0
(X) = CA0

(X ∩Xa) = 1, A0 acts non-trivially on X. Since A has at
most one orbit of length four on Ω we conclude that |X \CX(A0)| = 2. Thus |A0| = 2 and |A| = 4.
The Timmesfeld Replacement Theorem shows that A acts quadratically on V . But [WX , A0, a] 6= 0,
a contradiction.
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We have proved that CWΩ/W0
(A) = CWΩ

(A)/W0, so |V/CV (A)| = |WΩ/CWΩ
(A)|. If follows that

A is an offender on WΩ. Let k be the number of orbits of length 2. Assume that A has an orbit of
length four, then A has no fixed-point, n = 2k + 4, |CWΩ(A)| = 2k+1, |A| ≤ 2k · 4 = 2k+2, and

|V/CV (A)| = |WΩ/CWΩ(A)| = 2n−1−(k+1) = 2k+2.

Since A is an offender, this implies |A| = 2k+2, and since V is self-dual, |[V,A]| = |V/CV (A)| =
2k+2 = |A|. As A has on orbit of length 4, A is not quadratic on WΩ and since CWΩ/W0

(A) =
CWΩ

(A)/W0 also not quadratic on V . Hence case (h:3) of Theorem 3 holds.
Assume now that A does not have any orbit of length 4. Then [V,A] ≤ CV (A) and |A| ≤ 2k.

Suppose A has a fixed-point in Ω. Then |V/CV (A)| = 2k = |[V,A]| and so |A| = 2k and case (g) or
(h:1) of Theorem 3 holds. So suppose A has no fixed-points and so n = 2k and |V/CV (A)| = 2k−1 =
|[V,A]|. Thus 2k−1 ≤ |A|.

Let t1, . . . , tk be the transpositions corresponding to the non-trivial orbits of orbits of A on Ω,
say ti ∈ A if and only if i > l. If l = 0, then again case (h:1) of Theorem 3 holds. Suppose l > 0.
Let 1 ≤ r < s < l and put Ars = CA(CΩ(〈tr, ts〉). Then |A/Ars| ≤ 2k−2 and so Ars 6= 1. Since
Ats ≤ 〈tr, ts〉 and neither tr nor ts are in A we conclude that Ars = 〈trts〉. It follows that

A = 〈t1t2, t2t3, . . . , tl−1tl, tl+1, tl+2, tk〉.

Thus case (h:3) of Theorem 3 holds.

11◦. Every offender in M on V is a best offender.

Let X be an offender and let Y ≤ X with |CV (Y )||Y | maximal and then Y minimal. By
the Timmesfeld Replacement Theorem, Y is quadratic. If |Y ||CV (Y )| = |V |, then |Y ||CV (Y )| =
|X||CV (X)| and so X is a best offender. If |Y ||CV (Y )| > |V |, then (10◦) shows that Y is generated
by a maximal set of commuting transpositions. So X ≤ CM (Y ) = Y , X = Y , and X is a best
offender.

Observe that (11◦) together with (10◦) completes (Case 5).

Case 6. The case M ∼= Alt(7) and |V | = 24.

Choose T ≤ R ≤M with R ∼= Alt(6). Then the previous case applies to R, and we are done.

Theorem 8.2. Let M be a finite CK-group and V a faithful FpM -module. Suppose that there exists
K ∈ JM (V ) such that V = [V,K] and V is a semisimple but not simple FpK-module. Then one of
the following holds, where q is a power of p and J := JM (V ):

1. J ∼= SLn(q), n ≥ 3, and V ∼= Nr ⊕N∗s, where N is a natural SLn(q)-module, N∗ its dual, and
r, s are integers with 0 ≤ r, s < n and

√
r +
√
s ≤
√
n.

2. J ∼= Sp2m(q), m ≥ 3, and V ∼= Nr, where N is a natural Sp2m(q)-module and r is a positive
integer with 2r ≤ m+ 1.

3. J ∼= SUn(q), n ≥ 8, and V ∼= Nr, where N is a natural SUn(q)-module and r is a positive integer
with 4r ≤ n.

4. J ∼= Ωεn(q) with p odd if n is odd, or M ∼= Oε
n(q) with p = 2 and n even. Moreover n ≥ 10 and

V ∼= Nr, where N is a corresponding natural module and r is a positive integer with 4r ≤ n− 2.

In particular, if V is not a homogeneous FpJ module, then (1) holds with r 6= 0 6= s and n ≥ 4.
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Proof. By 2.2(f) K is the unique J-component of M ; in particular K EM . Since V is a semisimple
K-module we have

1◦. V = N1 ⊕ · · · ⊕Nm, m ≥ 2, where Ni is a perfect simple FpK-module.

By 2.8 J normalizes Ni and by 1.2 every best offender on V is also a best offender on Ni.
Moreover, Op(J/CJ(Ni)) = 1 since Ni is simple. Hence

2◦. J/CJ(Ni) and Ni satisfy the hypothesis of Theorem 2.

By 2.2 K is not solvable since m ≥ 2, so K is a component of M . Now 2.5 shows that J
acts Fi-linearly on Ni, where Fi = EndK(Ni). In particular [J,CJ(K)] ≤ CJ(Ni). Since K is the
unique J-component and K � CJ(Ni)CJ(K), we get from 2.2(b) CJ(Ni)CJ(K) ≤ Z(J). Another
application of Theorem 2 shows that J/KCJ(Ni) is a p-group. Hence J/K is nilpotent, and since J
is generated by p-elements and Op(Z(J)) ≤ Op(M) = 1, we get that Z(J) ≤ K. It follows:

3◦. CJ(Ni) ≤ CJ(K) = Z(J) = Z(K).

From now on we fix a non-trivial best offender A ≤ M . By 2.3(b) there exists a minimal best
offender B ≤ A such that [V,B,A] = 0; in particular B is quadratic on V .

Note that by (3◦) CA(Ni) = 1, since Z(J) is a p′-group, and that B is a best offender on Ni by
1.2. Now (1◦) implies

|V/CV (B)| =
m∏
i=1

|Ni/CNi(B)| ≤ |B|.

Since m ≥ 2 there exists N ∈ {N1, . . . , Nr} such that

4◦. |N/CN (B)| ≤ |B| 12 .

Put F := EndK(N). Then (2◦) and Theorems 2 and 3 imply:

5◦. J/CJ(N) ∼= SLn(q), Spn(q), SUn(q), Ωεn(q) or Oε
n(q) (and p = 2), n := dimFN where

q := |F| if J/CJ(N) � SUn(q) and q = |F| 12 if J/CJ(N) ∼= SUn(q). Moreover, N is the corresponding
natural module.

Let N∗ be the FK-module dual to N . We first treat the cases where each Ni is isomorphic to N
or N∗, say V ∼= Nr ⊕N∗s, r + s = m.

By 1.8(d) B is quadratic on N∗. Put

D := CJ(CN (B)) ∩ CJ(CN∗(B)), k := dimFN/CN (D), l = dimF[N,D].

By 1.8(c) l = dimFN
∗/CN∗(D), and by 1.8(d) B ≤ D, CV (D) = CV (B), [V,D] = [V,B], and D is

a quadratic offender on V . Moreover by 1.8(f) k + l ≤ n. We get

6◦. |V/CV (D)| = qrk+sl ≤ |D|.

Recall from 3.2 that N and N∗ are isomorphic FJ-modules, if J/CJ(N) is not isomorphic to
SLn(q). We now treat the cases given in (5◦) separately.

Case 1. Suppose that M ∼= SLm(q) and V ∼= Nr ⊕N∗s with r + s ≥ 2. Then (1) holds.
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By 3.4 |D| = qkl, and (6◦) gives |V/CV (D)| = qrk+sl. Thus V is an FF-module if and only if
there exists 0 < k, l < n with rk + sl ≤ kl, that is r

l + s
k ≤ 1. Increasing l decreases r

l + s
k . So

we may assume that k + l = n. Put g(k) = r
n−k + s

k . We will determine the minimal value of g(k)
on the open interval (0, n). If k approaches 0 or n, g(k) approaches +∞. So f obtains a minimum
value at some point m in (0, n) with g′(m) = 0. We have g′(m) = r

(n−m)2 − s
m2 . Straightforward

calculations show that m =
√
s√

r+
√
s
n, n −m =

√
r√

r+
√
s
n and g(m) = (

√
r+
√
s)2

n . Thus g(m) ≤ 1 if

and only if
√
r+
√
s ≤
√
n. So if V is an FF-module, then

√
r+
√
s ≤
√
n. (We remark that with a

little more effort it can be shown that there even exists an integer k in (0, n) with g(k) ≤ 1, so V is
an FF -module if and only if

√
r +
√
s ≤
√
n.)

In the remaining cases M ∼= Spn(q), SUn(q), Ωεn(q) or Oε
n(q) we get from 3.2(a) that N ∼= N∗.

Hence k = l. Recall that [N,D] is an isotropic subspace of N by 3.2(e) since D is quadratic on N .

Case 2. Suppose that M ∼= Spn(q) and V ∼= Nr for some r ≥ 2. Then (2) holds.

By 3.4 |D| = q(
k+1

2 ) and so as in the case (Case 1) rk ≤ k(k+1)
2 and 2r ≤ k + 1. Since [V,D] is

isotropic and the maximal dimension of an isotropic subspace is n
2 we get 2r ≤ n

2 + 1. Now r ≥ 2
implies n ≥ 6, and (2) holds.

Case 3. Suppose that M ∼= SUn(q) and V ∼= Nr with r ≥ 2. Then (3) holds.

In this case |N | = q2n. By 3.4 |D| = qk
2

and as in the previous cases 2rk ≤ k2 and 2r ≤ k.
Moreover, since k + l ≤ n and k = l, also 2k ≤ n and so 4r ≤ n. Now r ≥ 2 implies n ≥ 8.

Case 4. Suppose that M ∼= Ωεn(q) or Oε
n(q) and p = 2, with n even if p = 2, and V ∼= Nr for

some r ≥ 2. Then (4) holds.

Suppose first that [N,D] is singular. Then by 3.4 |D| = q(
k
2) and so rk ≤

(
k
2

)
and 2r ≤ k − 1.

Since k + l = 2k ≤ n, we get 4r ≤ 2n− 2. Now r ≥ 2 implies (4).

Suppose next that [N,D] is not singular. Then p = 2 and so n is even, and 3.4 yields |D| ≤ 2q(
k
2)

and as in the previous cases qrk ≤ 2q(
k
2). In addition, r ≥ 2 implies k ≥ 2. Then

rk ≤ logq 2 +

(
k

2

)
and 2r ≤

2 logq 2

k
+ k − 1.

If
2 logq 2

k ≥ 1, then q = 2 = k and r = 1, a contradiction. Thus
2 logq 2

k < 1 and 2r ≤ k − 1. Now
again 2k ≤ n implies that 4r ≤ 2k − 2 ≤ n− 2. Since r ≥ 2, n ≥ 10, and (4) holds.

Case 5. Suppose V is not a direct sum of copies of N and N∗.

Without loss N2 is neither isomorphic to N nor to N∗. We will show that this leads to a
contradiction.

By (4◦) B is an offender on N ⊕N . Hence we can apply the previous cases to N ⊕N in place
of V and get that dimN ≥ 3, 6, 8, and 10, respectively.

Suppose that M/CM (N) ∼= SLn(q) and N is the corresponding natural module. Since N2 is not
a natural module, Theorem 2 shows that N2 is the exterior square of a natural module. For n = 3,
N2
∼= N∗ or N , which is not the case. Hence n ≥ 4. Since B is an over-offender on N2, Theorem

3(b) shows that n = 4. In this case N2 is a natural Ω+
6 (q)-module for J/CJ(N2). Hence 3.4 gives

|N2/CN2(B)| = qs < |B| ≤ q(
s
2),
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where s is the Fq-dimension of a maximal singular subspace of N2 centralized by B. On the other
hand 2s ≤ 6 and so s ≤ 3. But then s does not satisfy the above inequality.

Suppose M/CM (N) ∼= Sp2n(q). Then by Theorem 2 n = 3 and N2 is a spin module. So we get
|B| ≤ q5 and |N2/CN2(B)| = q4. It follows that |N/CN (B)| ≤ q, a contradiction to |B| ≥ q4.

Suppose that K/CK(N) ∼= SUn(q), n ≥ 8, or Ωεn(q), n ≥ 10. Then Theorems 2 and 3 show that
every FF-module for J with an over-offender is a natural module, a contradiction.

Suppose now that V is not homogeneous as an F2J-module. Then (1) holds with r 6= 0 6= s.
Thus

√
n ≥
√

1 +
√

1 = 2, n ≥ 4 and all parts of the theorem are proved.

Theorem 8.3. Let M be a finite CK-group with Op(M) = 1 and V a faithful FpM -module. Put
J := JM (V ), J := JM (V ) and W := [V,J ] + CV (J )/CV (J ) . Then the following hold:

(a) Let K ∈ J . Then K is either quasisimple, or p = 2 or 3 and K ∼= SL2(p)′.

(b) [V,K,L] = 0 for all K 6= L ∈ J , and W =
⊕

K∈J [W,K].

(c) JpJ ′ = Op(J) = F∗(J) =×J .

(d) W is a faithful semisimple FpJ-module.

(e) CJ([W,K]) = CJ([V,K]).

Proof. (a) and the first part of (b) follow from 2.2. For the proof of the second part of (b) note that
CW (K) = C[V,J ](K)+CV (J )/CV (J ) since K = Op(K). Thus, by the first part CW (K)∩ [W,K] ≤
CW (J ) = 0.

(c): Put J0 := J ′Jp. First we prove:

1◦. Let K ∈ J . Then J0 induces inner automorphism on K.

Let X be a quasisimple K-submodule of V and Y = CX(K). Then we can apply 2.9 to 0 ≤ Y ≤
X ≤ V and S := X/Y . By 2.9(a) J̃ := J/CJ(S) and S satisfy the hypothesis of Theorem 2. We
conclude that |J̃/K̃| ≤ p and so J̃0 ≤ K̃. Since CJ(K̃) = CJ(K) by 2.2(c), (d), (1◦) holds.

Let D := 〈J 〉, so D =×J and D ≤ J0 by 2.2. Moreover, Z(J) ≤ J0 since Z(J) is a p′-group.
By (1◦) J0 induces inner automorphisms on D. Hence J0 ≤ DCJ(D), and by 2.2(g) J0 = DZ(J).
Since J/J0 is an elementary abelian p-group, J/D is nilpotent, and since J is generated by p-elements
J/D is a p-group and so D = J0.

(d): Since Op(J) ≤ 〈J 〉, J acts nilpotently on V/[V,J ] and CV (J ). Hence CJ(W ) acts nilpo-
tently on V and so CJ(W ) ≤ Op(M) = 1. Thus W is faithful J-module.

By 2.8 every perfect simple K-submodule is also a simple J-submodule. Hence (d) follows if
[W,K] is a semisimple K-module. So suppose for a contradiction that [W,K] is not semisimple
K-module. We will use the bar-convention for the images of subgroups of V in W , so X = X +
CV (D)/CV (D) for X ≤ V .

Let X2 ≤ V be a K-submodule of W that is minimal such that X2 = [X2,K] and X2 is not a
semisimple K-module. The minimality of X2 implies that X2 has a unique maximal K-submodule
Y2 such that [Y2,K] 6= 0 and X2/Y2 is a simple K-module.

Recall that [U,K,K] = [U,K] for every K-section of W since K is a J-component and thus is
generated by p′-elements. It follows that CY2/CY2

(K)(K) = 0. Hence there exists a K-submodule Y1

of Y2 that is maximal such that Y1 6= Y2 and CY2/Y1
(K) = 0. Put X1 := [Y2,K] + Y1. Let Z1 be a

K-submodule of Y2 with Y1 < Z1 < Y2. Then by maximality of Y1, CY2/Z1
(K) 6= 0. Let Z2 be the
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inverse image of CY2/Z1
(K) in Y2. Then CY2/Z2

(K) = 0 and so by maximality of Y1, Z2 = Y2. Hence
X1 = [Y2,K] + Y1 ≤ Z1. It follows that X1/Y1 is the unique minimal K-submodule and Y2/Y1 is
the unique maximal K-submodule of X2/Y1, while X1/Y1 and X2/Y2 are simple K-modules, and
X2/X1 is a quasisimple K-module. In particular, K and X0 = Y1 ≤ X1 ≤ Y2 ≤ X2 satisfy the

hypothesis of 2.9. This result shows that S := X1/Y1 ⊕ X2/Y2 and J̃ := J/CJ(S) satisfies the
hypothesis of 8.2 in place of V and M . We conclude that

K̃ ∼= SLn(q), n ≥ 3, Sp2n(q), n ≥ 3, Ωεn(q), n ≥ 10, or SUn(q), n ≥ 8,

N := X1/Y1 is a corresponding natural module, and X2/Y2 is either isomorphic or dual to N .
In particular, CK(N) = CK(S) = CK(X2/Y1). Put F := EndK(N). Note that there exists a J-
invariant symplectic, orthogonal or unitary form on N , which is non-degenerate with the exception
of the natural SLn(q)-module, where it is the zero-form.

Let B ≤ J be a nontrivial quadratic best offender on T := X2/Y1 with E := [N,B] minimal.
Since B is quadratic on T , by 3.2 E is an isotropic subspace of N . Put P := NKB(E) and Q = 〈BP 〉.
Then [N,Q] ≤ E ≤ CN (Q) and so Q is quadratic on N . In particular

Q′ ≤ CQ(N) ∩ (KB)′ ≤ CK(N) = CK(T ).

Since CK(T ) ≤ Z(K) is a p′-group, this implies that Q is abelian, so Q/CQ(T ) is elementary abelian.
As Q contains an offender, [MS1, 2.6] and the Timmesfeld Replacement Theorem show that there
exists R ≤ Q with R E P such that R is a quadratic best offender on T . The minimality of [N,B]
gives [N,R] = E.

Put J := J/CJ(N) and U := CK(E) ∩ CK(N/E). We will show next:

2◦. U does not possess any central P -chief factor.

Note that R ∩K ≤ U E P . If K̃ ∼= SLn(F) or SUn(F), then [U,P ] 6= 1 and P acts simply on U ,
so (2◦) holds.

Suppose that K̃ ∼= Sp2n(F) or Ωε2n(F). Let l := dimFE. By 3.4

|T/CT (R)| = q2l ≤ |R| ≤ q(
l+1
2 ) resp. 2q(

l
2).

It follows that l ≥ 3 in the first case and l ≥ 5 in the second case. Hence 3.5 shows that P has no
central chief-factors on U and again (2◦) holds.

3◦. CKR(N) = CKR(T ).

Put C := CKR(N) and R0 := R ∩KC. Note that R0 ≤ UC. It follows that

R0C/C ≤ UC/C ∼=P U.

On the other hand Op(P ) centralizes R0C/(K ∩ R)C. Hence (2◦) gives R0 ≤ (R ∩K)C, so R0 =
(R ∩K)CR(N). This shows that

KC ∩KR = KR0 = KCR(N).

By 2.4 CR(N) = CR(K) = CR(T ) and, as seen above, CK(N) ≤ CK(T ), so CKR(N) = CKR(T ).

By (3◦) (KR/CKR(T ), T ) satisfies the hypothesis of 6.6. It follows that there exists a K-
submodule U of T with T = Y2/Y1 + U and N � U , a contradiction since N is the unique minimal
K-submodule of T . Thus (d) is proved.
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To proof (e) put C = CJ([W,K]). Since K acts faithfully on [W,K], C∩K = 1 and so [C,K] = 1.
Since [V,K] = [V,K,K] we have [W,K] = [V,K] + CV (J )/CV (J ) and [V,K,C] ≤ CV (J )). In
particular, CJ([V,K]) ≤ C. Let c ∈ C. Then [V,K, c] ∼= [V,K]/C[V,K](c) as a K-module. But any
quotient of [V,K] is a perfect K module, while any submodule of CV (J ) is a trivial K-module. So
[V,K, c] = 0 and C ≤ CJ([V,K]).

The proof of Theorem 1, apart from statement (e): The first four statements (a) – (d)
follow from 8.3. The statements (f) and (g) follow from 8.2.

Theorem 1 (e) will be proved at the very end of the paper.

Lemma 8.4. Let M be a finite CK-group with Op(M) = 1 and V a faithful FpM -module. Suppose
that

(i) M = JM (V ) and there exists a unique JM (V )-component K,

(ii) CV (K) ≤ [V,K] and either CV (K) 6= 0 or V 6= [V,K].

Let A ≤M be a best offender on V and put W := [V,K] and V := V/CV (K). Then p = 2, and one
of the following holds:

(a) M = K ∼= SL3(2), V = W , |CV (K)| = 2, V is a natural SL3(2)-module, |A| = 4, [V ,A]| = 2
and CV (A) = [V,A] has order 4.

(b) M = K ∼= SL3(2), |V/W | = 2, CV (K) = 0, W is a natural SL3(2)-module, |A| = 4 = |CW (A)|
and CV (A) = [V,A] = CW (A).

(c) M = K ∼= SU4(2), V = W , 2 ≤ |CV (K)| ≤ 4, V is a natural SU4(2)-module, A is the centralizer
of a singular 2-subspace of V , and CV (A) = [V,A].

(d) M ∼= G2(q), q = 2k, V = W , 2 ≤ |CV (K)| ≤ q, V is a natural G2(q)-module, |A| = q3, and
CV (A) = [V,A].

(e) K ∼= Alt(2m) and M ∼= Sym(2m) or Alt(2m). For Ω = {1, 2, . . . , 2m} let N = {nΣ | Σ ⊆ Ω} be
the 2m-dimensional natural permutation module and Ñ be the F2M -module defined by Ñ = N
as an F2-space and

ngΣ = nΣg if |Σ| is even or g ∈ Alt(Ω), and ngΣ = nΣg + nΩ if |Σ| is odd and g /∈ Alt(Ω).

Then one of the following holds, where t1, t2, . . . , tm is a maximal set of commuting transposi-
tions:

1. M = Sym(n), V is isomorphic to N or N/CN (K), and A = 〈t1, t2, . . . , tk〉 for some 1 ≤ k ≤
m.

2. M = Sym(n), V ∼= Ñ and A = 〈t1, t2, . . . , tm〉.
3. V ∼= [N,K] and A fulfills one of the cases (h:1) – (h:3) of Theorem 3.

(f) M = K ∼= Sp2m(q), m ≥ 1, q = 2k, (m, q) 6= (1, 2), (2, 2), and W is the direct sum of r natural
Sp2n(q)-modules.4 Moreover, the following hold:

4Observe that for m = 1, Sp2(q) ∼= SL2(q) and a natural Sp2(q)-module is also a natural SL2(q)-module.
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(a) 2r ≤ m+ 1, and if V 6= W then m > 1 and 2r < m+ 1.

(b) Let X be the 2m + 2-dimensional FqM -module obtained from the embedding Sp2m(q) ∼=
Ω2m+1(q) ≤ Ω±2m+2(q). Then V is isomorphic to an FpM -section of Xr.

Proof. Suppose K is not quasisimple. Then K is a p′-group and V = [V,K] ⊕ CV (K). Since
CV (K) ≤ [V,K] this gives CV (K) = 0 and V = [V,K], contrary to the assumptions.

Thus K is quasisimple. By 8.3, W is a semisimple K-module and we conclude that there exists
simple K-submodule of U of W such that H1(K,U) 6= 0 or H1(K,U

∗
) 6= 0.

Let B := CA([V,A]). By the Timmesfeld Replacement Theorem, B is a non-trivial quadratic
best offender on V . Note that by 2.4 and 1.2 A and B are offenders on U and W . Comparing 6.1
with Theorem 1(g) we see that p = 2 and the following holds:

1◦. M ∼= SL3(2), SU4(2), G2(q), Alt(2m), Sym(2m) or Sp2m(q), and W is the corresponding
natural module, with the exception of the Sp2m(q)-case, where W is the direct sum of r natural
modules for some integer r with 2r ≤ m+ 1.

We now discuss the cases given in (1◦) (and 6.1) separately.

Case 1. Suppose M ∼= SL3(2) and CW (K) 6= 0.

Let 1 6= a ∈ A. Since W = [W,K] has order 24 and K is generated by three conjugates of a,
|[W,a]| = |W/CW (a)| = 4. Since A is an offender we conclude that

A = B, |V/CV (A)| = |A| = |CW (A)| = 4.

In particular CW (A) = [W,A], V = CV (A) + W and |[V ,A]| = 2. The latter fact shows that
V = W + CV (K) and thus W = V . Hence (a) holds in this case.

Case 2. Suppose M ∼= SL3(2) and CW (K) = 0.

Then W is a natural module and V 6= W . As above, for 1 6= a ∈ A, |V/CV (a)| = |A| = 4, and
CV (a) = CW (a) = CV (A). Hence (b) holds.

Case 3. Suppose M ∼= SU4(2).

Then [W,B] is a singular subspace of W , and 3.4 shows that |B| = 24 = |W/CW (B)|. Thus
A = B and |V/CV (A)| = 24. Moreover, by 5.1 M is generated by two conjugates of A and so
|V/CV (K)| = 28 and V = W + CV (K). Hence V = W . As [V,A]/[V,A] ∩ CV (K) has order 24

and M is generated by two conjugates of A, CV (K) ≤ [V,A]. Since CV (A) = [V ,A] this gives
CV (A) = [V,A], and (c) holds.

Case 4. Suppose M ∼= G2(q).

Then |A| = q3, CW (A) = [W,A] has order q3, |W | = q6, and by 5.2 M is generated by two
conjugates of A A similar argument as in the SU4(2) case now shows that (d) holds.

Case 5. Suppose M ∼= Alt(2m) or Sym(2m).

Since K is perfect, V is as an F2K-module isomorphic to a section of the 2m-dimensional permu-
tation module N . If V = W or CV (K) = 0 we have CGL(V )(K) = 1 and so V is also an F2M -module
isomorphic to N .

If H = Sym(n) and |V | = 22m, there are two possible isomorphism types for V , namely N and
Ñ as described in (e). Note that if t is a transposition, and V ∼= Ñ , then CV (t) ≤W . Since A is an
offender on W we can apply Theorem 3(h).
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Suppose that CV (A) �W . Then there exists a proper subset Σ of Ω = {1, 2, . . . , 2m} such that
|Σ| is odd and |A| normalizes {Σ,Ω\Σ}. If Σ is A invariant, then A has a fixed-point on Σ. It follows
from Theorem 3(h) that A is generated by transpositions, V � Ñ , and (e:1) holds. So suppose for
a contradiction that Σa = Ω \Σ for some a ∈ A. Then |Σ| = m is odd. So Theorem 3(h:4) does not
hold. Put A0 := NA(Σ). Note that Supp(b) = Ω for all a ∈ A \A0 and so b ∈ A0 for all b ∈ A with
with |Supp(b)| ≤ 4. In the first three cases of Theorem 3(h), A is generated by such elements, so
A = A0, a contradiction.

Suppose that CV (A) ≤ W . If W 6= V we conclude that A is an over-offender on W . Thus by
Theorem 3(h) A is generated by a maximal set of commuting transpositions. Hence (e:1) or (e:2)
holds.

Assume that W = V . Then W ∼= [N,K]. If 2m = 8 and A acts transitively on Ω, then
CV (A) = CV (K) and |V/CV (A)| = 26 ≥ 23 = |A|, a contradiction. This excludes case (h:4) of
Theorem 3, and (e:3) holds.

Case 6. Suppose M ∼= Sp2m(q).

Since K is perfect we conclude from 6.1, (1◦) and 8.2(2) that it remains to prove the second
statement of (f:a). Since A is an offender on V we may assume that CV (K) = 0 and so V 6= W .

Suppose that there exists v ∈ CV (A) \W . Then CK(v) is contained in a subgroup isomorphic
to Oε

2m(V ), and 8.2(4) shows that 4r ≤ 2m− 2. Thus 2r ≤ m− 1 < m+ 1.
Suppose next that CV (A) ≤ W . Since V 6= W we conclude that A is an over-offender on W .

The proof of 8.2(Case 2) now shows that r < m+ 1.

Corollary 8.5. Assume the hypothesis of 8.4. Then every best offender in M on V is a best offender
on [V,J ] + CV (J )/CV (J ).

Proof. According to 1.2 we may assume that V = [V,J ]. Put V := V/CV (J ) =: W and X :=
CV (J ). Let A be a best offender in M on V . Choose 1 6= B ≤ A such that |B||CW (B)| is maximal
and then B minimal. Since A is an offender on W , B is a quadratic best offender on W .

Suppose that CW (B) = CV (B). Since A is a best offender on V , |CV (B)||B| ≤ |CV (A)||A| and
since B ≤ A, CX(B) ≥ CX(A). Thus

|CW (B)||B| = |CV (B)||B|
|CX(B)|

≤ |CV (A)||A|
|CX(A)|

= |CV (A)||A| ≤ |CW (A)||A|,

and so A is a best offender on W .
Suppose that CW (B) 6= CV (B). Since V is J-semisimple by 8.3, there exists a perfect J-

submodule Y of V such that Y is simple and CY (B) 6= CY (B). Note that there exists a unique J-

component K with [Y,K] 6= 0. Moreover, Y = [Y,K] and Y ∩X = CY (K) 6= 0. Put J̃ := J/CJ(Y ).
The Three Subgroups Lemma implies that Op(J̃) centralizes Y and so we can apply 8.4 to (J̃ , K̃, Y )
in place of (H,K, V ).

In Case 8.4(d),(f) we have CJ(v) = CJ(v) for all v ∈ V , a contradiction.
In Case 8.4(c) we get Ã = B̃ and CV (B) = [V ,A] = CV (A) = CV (B), contradiction.
Suppose 8.4(e) holds. Then A is generated by elements of support at most 4 and so CV (A) =

CV (A).
Suppose that 8.4(a) holds. Then |Ã| = 4 and CY (A) = [Y ,A] = CY (A). Thus B̃ 6= Ã and

|B̃| = 2 = |Y /CY (B)|. Put B0 = CB(Y ). Then |CW (B)||B| = |CW (B0)||B0|. The minimal choice
of B implies B0 = 1 and so |B| = 2. Thus |CW (B)||B| = |W |. Since A is an offender on W , this
gives |CW (B)||B| ≤ |CW (A)||A|. Thus A is a best offender on W .

Finally Case 8.4(b) does not apply, since CV (K) 6= 0.
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The proof of Theorem 1(e): This is 8.5.
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