The General FF-module Theorem

U. Meierfrankenfeld
B. Stellmacher
Department of Mathematics, Michigan State University, East Lansing MI 48824
meier@math.msu.edu
Mathematisches Seminar, Christian-Albrechts-Universität, D24098 Kiel
stellmacher@math.uni-kiel.de

Abstract

Let p be a prime, M a finite group with $\mathrm{O}_{p}(M)=1, V$ a faithful $\mathbb{F}_{p} M$-module and J the subgroup of M generated by the best offenders on V. In this paper we determine structure of J and the action of J on V.

Introduction

Let p be a prime, M a finite group and V a finite dimensional $\mathbb{F}_{p} M$-module, where \mathbb{F}_{p} is the prime field in characteristic p. A subgroup $A \leq M$ is an offender on V if

1. $A / \mathrm{C}_{A}(V)$ is an elementary abelian p-group, and
2. $\left|V / \mathrm{C}_{V}(A)\right| \leq\left|A / \mathrm{C}_{A}(V)\right|$;
and A is a non-trivial offender on V, if in addition $[V, A] \neq 0$. Moreover, V is called an $F F$-module for M if some subgroup of M is a non-trivial offender on V. Faithful simple $F F$-modules for groups of Lie type in equicharacteristic have been classified by Cooperstein (Co (the case $p=2$) and Meixner M (the case $p \neq 2$) and for arbitrary nearly simple groups by Guralnick, R. Lawther and G. Malle GM1, GM2, GLM].

These results have been of great importance for the local theory of finite groups since such $F F$ modules are closely related to the failure of the Thompson-factorization in groups of characteristic p. In fact, for a finite group G and a normal elementary abelian p-subgroup X the elementary abelian p-subgroups of maximal order in G provide examples for offenders on X; and so G possesses non-trivial offenders on X if $[X, \mathrm{~J}(S)] \neq 1$, where $S \in \operatorname{Syl}_{p}(G)$. The action of such elementary abelian subgroups have an additional property that is reflected in the following definition.

A subgroup $A \leq M$ is a best offender on V if
(i) $A / \mathrm{C}_{A}(V)$ is an elementary abelian p-group, and
(ii) $\left|B \| \mathrm{C}_{V}(B)\right| \leq|A|\left|\mathrm{C}_{V}(A)\right|$ for every subgroup $B \leq A$.

It is easy to see (using $B:=\mathrm{C}_{A}(V)$) that every best offender is an offender. Indeed, a best offender A on V is an offender on every A-submodule of V; and this property characterizes best offenders (see 1.2).

In this paper we use this slightly stronger definition to derive a result about $F F$-modules that is free from the restriction to simple modules. It includes the above mentioned $F F$-module theorems, but also in these cases it gives more information about the size and action of offenders on V.

Most of the time we will treat groups like $\operatorname{Alt}(6) \cong \mathrm{Sp}_{4}(2)^{\prime}, \mathrm{SU}_{3}(3) \cong \mathrm{G}_{2}(2)^{\prime}$ and ${ }^{2} \mathrm{~F}_{4}(2)^{\prime}$ together with the groups of Lie-Type. We therefore use the following definition.

Definition. A genuine group of Lie-type in characteristic p is a group isomorphic to $\mathrm{O}^{p^{\prime}}\left(\mathrm{C}_{\bar{K}}(\sigma)\right)$, where \bar{K} is a semisimple $\overline{\mathbb{F}_{p}}$-algebraic group, $\overline{\mathbb{F}_{p}}$ is the algebraic closure of \mathbb{F}_{p}, and σ is Steinberg endomorphism of \bar{K}, see GLS3, Definition 2.2.2] for details. A simple group of Lie-type in characteristic p is a non-abelian composition factor of a genuine group of Lie-type in characteristic p.

Before stating our main result we give some further definitions.
Definition. The normal subgroup of M generated by the best offenders of M on V is denoted by $\mathrm{J}_{M}(V)$. A non-trivial subgroup K of $\mathrm{J}_{M}(V)$ is a $\mathrm{J}_{M}(V)$-component if K is minimal with respect to $K=\left[K, \mathrm{~J}_{M}(V)\right]$. The set of these components we denote by $\mathcal{J}_{M}(V)$.

A finite group H is a called a $\mathcal{C K}$-group provided that each composition factor of H is one of the known finite simple groups.

Let \mathcal{S} be a set of subgroups of M. We often write $[V, \mathcal{S}]$ and $C_{V}(\mathcal{S})$ rather than $[V,\langle\mathcal{S}\rangle]$ and $C_{V}(\langle\mathcal{S}\rangle)$. Similarly, we write $\times \mathcal{S}$ rather than $\chi_{A \in \mathcal{S}} A$.

The $\mathbb{F}_{p} M$-module V is perfect if $V=[V, M]$, simple if $V \neq 0$ and 0 is the only proper $\mathbb{F}_{p} M$ submodule of V, and quasisimple if V is perfect, $O_{p}\left(M / C_{M}(V)\right)=1$ and $V / C_{V}(M)$ is simple. Moreover, M acts simply on V if V is a simple M-module; and M acts nilpotently on V if there exists a finite series $0=V_{0} \leq V_{1} \leq V_{k-1} \leq V_{k}=V$ of $\mathbb{F}_{p} M$-submodules of V with $\left[V_{i}, M\right] \leq V_{i-1}$ for all $1 \leq i \leq k$.

Let A be a subgroup of M. Then

- A is a strong dual offender on V if A acts nilpotently on V and $[V, A]=[v, A]$ for every $v \in V \backslash \mathrm{C}_{V}(A)$;
- A is a strong offender on V if A is an offender on V and $\mathrm{C}_{V}(A)=\mathrm{C}_{V}(a)$ for every $a \in A \backslash \mathrm{C}_{A}(V)$ (note that the last condition is equivalent to $\mathrm{C}_{A}(V)=\mathrm{C}_{A}(v)$ for all $v \in V \backslash \mathrm{C}_{V}(A)$);
- A is an over-offender on V if A is an offender and $\left|A / \mathrm{C}_{A}(V)\right|>\left|V / \mathrm{C}_{V}(A)\right|$.

Finally we call V a natural $\mathbb{F}_{p} K$-module for M if $M / C_{M}(V) \cong K$, and there exists a quadratic, bilinear or sesquilinear form f on V left invariant by M such that for $K, \mathbb{K}:=\operatorname{End}_{M}(V), \operatorname{dim}_{\mathbb{K}} V$ and f one of the following cases holds:

K	$\operatorname{dim}_{\mathbb{K}} V$	\mathbb{K}	f	
$\operatorname{SL}_{n}\left(p^{k}\right)$	n			
$\operatorname{Sp}_{2 n}\left(p^{k}\right)$	$2 n$	$\mathbb{F}_{p^{k}}$	zero-form	
$\mathrm{O}_{n}^{\epsilon}\left(p^{k}\right)$	n	$\mathbb{F}_{p^{k}}$	non-deg. symplectic	
$\Omega_{n}^{\epsilon}\left(p^{k}\right)$	n	$\mathbb{F}_{p^{k}}$	non-deg. quadratic	
$\operatorname{SU}_{n}\left(p^{k}\right)$	n	$\mathbb{F}_{p^{2 k}}$	non-deg. quadratic	
$\mathrm{G}_{2}\left(2^{k}\right)$	6	$\mathbb{F}_{2^{k}}$	non-deg. nonitary	
$\operatorname{Sym}(2 n)$	$2 n-2$	\mathbb{F}_{2}	zero-form	
$\operatorname{Alt}(2 n)$	$2 n-2$	\mathbb{F}_{2}	$-\\|-$	
$\operatorname{Sym}(2 n+1)$	$2 n$	\mathbb{F}_{2}	$-\\|-$	
$\operatorname{Alt}(2 n+1)$	$2 n$	\mathbb{F}_{2}	$-\\|-$	

In the last four cases V is meant to be the simple composition factor of the \mathbb{F}_{2}-permutation module for $\operatorname{Sym}(2 n)$ and $\operatorname{Sym}(2 n+1)$, respectively.

Note that in the above definition a non-degenerate quadratic form is a quadratic form that is nonzero on every non-zero element in the radical of the associated symmetric form. Also observe that $\mathrm{O}_{2 n+1}\left(2^{k}\right) \cong \mathrm{Sp}_{2 n}\left(2^{k}\right)$ and V is a central extension of a natural $\mathrm{Sp}_{2 n}\left(2^{k}\right)$-module. This extension does not split if $n>1$ or $k>1$.

In general, M can have more than one natural module. For example, for $n=5, \operatorname{Alt}(5) \cong \mathrm{SL}_{2}(4) \cong$ $\Omega_{4}^{-}(2)$, so M has three natural modules, the natural $\mathrm{SL}_{2}(4)$-module, the natural $\Omega_{4}^{-}(2)$-module, and the natural Alt(5)-module, the latter two being isomorphic.

In addition, $M \cong \operatorname{SL}_{n}(q), n>2$, has two natural $\mathrm{SL}_{n}(q)$-modules that are not isomorphic due to the graph automorphism of $\mathrm{SL}_{n}(q)$. Similarly, $M \cong \operatorname{Spin}_{8}^{+}(q)$ has three natural $\Omega_{8}^{+}(q)$-modules. In the literature two of these are called half-spin modules depending which epimorphism from M to $\Omega_{8}^{+}(q)$ one chooses.

Theorem 1 (General FF-Module Theorem). Let M be a finite $\mathcal{C} \mathcal{K}$-group with $\mathrm{O}_{p}(M)=1$ and V be a faithful finite dimensional $\mathbb{F}_{p} M$-module. Suppose that $J:=\mathrm{J}_{M}(V) \neq 1$. Then for $\mathcal{J}:=\mathcal{J}_{M}(V), W:=[V, \mathcal{J}]+\mathrm{C}_{V}(\mathcal{J}) / \mathrm{C}_{V}(\mathcal{J}), K \in \mathcal{J}$ and $\bar{J}:=J / \mathrm{C}_{J}([W, K])$ the following hold:
(a) K is either quasisimple, or $p=2$ or 3 and $K \cong \operatorname{SL}_{2}(p)^{\prime}$.
(b) $[V, K, L]=0$ for all $K \neq L \in \mathcal{J}$, and $W=\bigoplus_{K \in \mathcal{J}}[W, K]$.
(c) $J^{p} J^{\prime}=\mathrm{O}^{p}(J)=\mathrm{F}^{*}(J)=\times \mathcal{J}$.
(d) W is a faithful semisimple $\mathbb{F}_{p} J$-module.
(e) If $A \leq M$ is a best offender on V, then A is a best offender on W.
(f) $\bar{K}=\overline{\mathrm{F}^{*}(J)}=\mathrm{O}^{p}(\bar{J})$ and $\mathrm{C}_{J}([W, K])=\mathrm{C}_{J}([V, K])$.
(g) Either $[W, K]$ is a simple $\mathbb{F}_{p} K$-module, or one of the following holds, where q is a power of p :

1. $\bar{J} \cong \mathrm{SL}_{n}(q), n \geq 3$, and $[W, K] \cong N^{r} \oplus N^{* s}$, where N is a natural $\mathrm{SL}_{n}(q)$-module, N^{*} its dual, and r, s are integers with $0 \leq r, s<n$ and $\sqrt{r}+\sqrt{s} \leq \sqrt{n}$.
2. $J \cong \operatorname{Sp}_{2 m}(q), m \geq 3$, and $[W, K] \cong N^{r}$, where N is a natural $\operatorname{Sp}_{2 m}(q)$-module and r is a positive integer with $2 r \leq m+1$.
3. $\bar{J} \cong \mathrm{SU}_{n}(q), n \geq 8$, and $[W, K] \cong N^{r}$, where N is a natural $\mathrm{SU}_{n}(q)$-module and r is a positive integer with $4 r \leq n$.
4. $\bar{J} \cong \Omega_{n}^{\epsilon}(q)$ with p odd if n is odd, or $\bar{J} \cong \mathrm{O}_{n}^{\epsilon}(q)$ with $p=2$ and n even ${ }^{1}$ Moreover, $n \geq 10$ and $[W, K] \cong N^{r}$, where N is a natural $\Omega_{n}^{\epsilon}(q)$-module and r is a positive integer with $4 r \leq n-2$.
(h) If $[W, K]$ is not a homogeneous $\mathbb{F}_{p} K$ module, then (g:1) holds with $r \neq 0 \neq s$ and $n \geq 4$.

Theorem 2 (FF-Module Theorem). Let $M \neq 1$ be a finite $\mathcal{C K}$-group and V be a faithful $\mathbb{F}_{p} M$ module. Put
$\mathcal{D}:=\{A \leq M \mid$ there exists $1 \neq B \leq A$ such that $[V, B, A]=0$ and A and B are offenders on $V\} 2^{2}$
Suppose that V is a simple $\mathbb{F}_{p} \mathrm{~J}_{M}(V)$-module and $M=\langle\mathcal{D}\rangle$. Then one of the following holds, where q is a power of p :

[^0]1. $M \cong \mathrm{SL}_{n}(q), n \geq 2$, and V is a natural $\mathrm{SL}_{n}(q)$-module.
2. $M \cong \operatorname{Sp}_{2 n}(q), n \geq 1$, and V is a natural $\mathrm{Sp}_{2 n}(q)$-module.
3. $M \cong \mathrm{SU}_{n}(q), n \geq 4$, and V is a natural $\mathrm{SU}_{n}(q)$-module.
4. $M \cong \Omega_{2 n}^{+}(q)$ for $2 n \geq 6, M \cong \Omega_{2 n}^{-}(q)$ for $p=2$ and $2 n \geq 6, M \cong \Omega_{2 n}^{-}(q)$ for p odd and $2 n \geq 8$, $M \cong \Omega_{2 n+1}(q)$ for p odd and $2 n+1 \geq 7, M \cong O_{4}^{-}(2)$, or $M \cong \mathrm{O}_{2 n}^{\epsilon}(q)$ for $p=2$ and $2 n \geq 6$, and V is a corresponding natural module.
5. $M \cong \mathrm{G}_{2}(q), p=2$, and V is a natural $\mathrm{G}_{2}(q)$-module (of order q^{6}).
6. $M \cong \mathrm{SL}_{n}(q) /\left\langle-\mathrm{id}^{n-1}\right\rangle, n \geq 5$, and V is the exterior square of a natural $\mathrm{SL}_{n}(q)$-module.
7. $M \cong \operatorname{Spin}_{7}(q)$, and V is a spin module of order q^{8}.
8. $M \cong \operatorname{Spin}_{10}^{+}(q)$, and V is a half-spin module of order q^{16}.
9. $M \cong 3$. $\operatorname{Alt}(6), p=2$ and $|V|=2^{6}$.
10. $M \cong \operatorname{Alt}(7), p=2$, and $|V|=2^{4}$.
11. $M \cong \operatorname{Sym}(n), p=2$, n odd, $n \geq 3$, and V is a natural $\operatorname{Sym}(n)$-module.
12. $M \cong \operatorname{Alt}(n)$ or $\operatorname{Sym}(n), p=2$, n is even, $n \geq 6$, and V is a corresponding natural module.

Theorem 3 (Best Offender Theorem). Let $M \neq 1$ be a finite group, $T \in \operatorname{Syl}_{p}(M)$, and V be a faithful $\mathbb{F}_{p} M$-module, and let $A \leq T$ be an non-trivial offender on V.
(a) Suppose that $M \cong \mathrm{G}_{2}(q)$, $p=2$, and V is a natural $\mathrm{G}_{2}(q)$-module. Then $\mathrm{N}_{M}(A)$ is a maximal Lie-parabolic subgroup, $|A|=\left|V / \mathrm{C}_{V}(A)\right|=q^{3},[V, A]=\mathrm{C}_{V}(A)$, and $\mathrm{C}_{T}(A)=A$.
(b) Suppose that $M \cong \mathrm{SL}_{n}(q) /\left\langle-\mathrm{id}^{n-1}\right\rangle, n \geq 5$, and V is the exterior square of the natural $\mathrm{SL}_{n}(q)-$ module W. Let U be the (unique) T-invariant \mathbb{F}_{q}-hyperplane of W. Then $A=C_{M}(U)$. In particular, A is uniquely determined in $T, C_{T}(A)=A,[V, A]=\mathrm{C}_{V}(A)$ and $\left|V / \mathrm{C}_{V}(A)\right|=|A|=$ q^{n-1}.
(c) Suppose that $M \cong \operatorname{Spin}_{7}(q)$, and V is a spin module of order q^{8}. Then $\mathrm{C}_{V}(A)=[V, A]$, $\left|V / \mathrm{C}_{V}(A)\right|=q^{4} \leq|A| \leq q^{5}$, and if A is maximal, then $|A|=q^{5}, \mathrm{C}_{T}(A)=A, \mathrm{O}^{p^{\prime}}\left(\mathrm{N}_{M}(A)\right) / A \cong$ $\mathrm{Sp}_{4}(q)$, and A is uniquely determined in T.
(d) Suppose that $M \cong \operatorname{Spin}_{10}^{+}(q)$, and V is a half-spin module of order q^{16}. Then $[V, A]=\mathrm{C}_{V}(A)$, $q^{8}=|A|=\left|V / \mathrm{C}_{V}(A)\right|, \mathrm{O}^{p^{\prime}}\left(\mathrm{N}_{M}(A) / A\right) \cong \operatorname{Spin}_{8}^{+}(q)$, and A is uniquely determined in T.
(e) Suppose that $M \cong 3$.Alt(6), $p=2$ and $|V|=2^{6}$. Then $[V, A]=\mathrm{C}_{V}(A),|[V, A]|=\left|\mathrm{C}_{V}(A)\right|=16$, $\left|V / \mathrm{C}_{V}(A)\right|=|A|=4$, and A is uniquely determined in T.
(f) Suppose that $M \cong \operatorname{Alt}(7), p=2$ and $|V|=2^{4}$. Then $[V, A]=\mathrm{C}_{V}(A),|[V, A]|=\left|\mathrm{C}_{V}(A)\right|=4$, $\left|V / \mathrm{C}_{V}(A)\right|=|A|=4$, and A is uniquely determined in T.
(g) Suppose that $M \cong \operatorname{Sym}(n)$, $p=2$, n odd, and V is a natural $\operatorname{Sym}(n)$-module. Then every offender on V is a quadratic best offender, A is generated by commuting transpositions and $\left|V / \mathrm{C}_{V}(A)\right|=|[V, A]|=|A|$.
(h) Suppose that $M \cong \operatorname{Alt}(n)$ or $\operatorname{Sym}(n), p=2$, n is even, $n \geq 6$, and V is a corresponding natural module. Then every offender on V is a best offender, and there exists a set of pairwise commuting transpositions t_{1}, \ldots, t_{k} such that one of the following holds:

1. $A=\left\langle t_{1}, \ldots, t_{k}\right\rangle$, and either $n \neq 2 k,[V, A] \leq \mathrm{C}_{V}(A)$ and $|[V, A]|=\left|V / \mathrm{C}_{V}(A)\right|=|A|$ or $n=2 k,[V, A]=\mathrm{C}_{V}(A)$ and $2\left|V / \mathrm{C}_{V}(A)\right|=|A|$.
2. $n=2 k$ and $A=\left\langle t_{1} t_{2}, t_{2} t_{3} \ldots, t_{l-1} t_{l}, t_{l+1}, t_{l+2}, \ldots, t_{k}\right\rangle$ for some $2 \leq l \leq k,[V, A]=\mathrm{C}_{V}(A)$ and $\left|V / \mathrm{C}_{V}(A)\right|=|A|$.
3. $n=2 k$ and $A=\left\langle t_{1} t_{2}, s_{1} s_{2}, t_{3}, t_{4} \ldots, t_{k}\right\rangle$, where s_{1}, s_{2} are transpositions distinct from t_{1} and t_{2} and $s_{1} s_{2}$ moves the same four symbols as $t_{1} t_{2}$, A is not quadratic and $|[V, A]|=$ $\left|V / \mathrm{C}_{V}(A)\right|=|A|$.
4. $n=8=|A|$, A acts regularly on $\{1,2, \ldots, 8\},[V, A]=C_{V}(A)$ and $\left|V / \mathrm{C}_{V}(A)\right|=|A|$.

In particular, if $A \leq \operatorname{Alt}(n)$ and $n \neq 8$, then $n=2 k$ and $A=\left\langle t_{1} t_{2}, t_{2} t_{3}, \ldots, t_{k-1} t_{k}\right\rangle$.

Note that in all cases of the FF-Module Theorem M is generated by quadratic best offenders.
In the following list we give the module structure of $A, V / C_{V}(A)$ and $[V, A]$ considered as a $N_{M}(A)$-modules in the cases (a) - (d) of the Offender Theorem, as it can be deduced from the action of M on V. Put $P:=O^{\vec{p}}\left(N_{M}(A)\right)$.

C ase	$P / \mathrm{O}_{p}(P)$	A	$[V, A]$	$V / C_{V}(A)$	Remarks
$\left(\frac{a}{b}\right.$	$\mathrm{SL}_{2}(q)$	U	U^{*}	U	$[U, P]$ a nat. $\mathrm{SL}_{2}(q)$-module
(b)	$\mathrm{SL}_{n-1}(q)$	U	$\bigwedge^{2}(U)$	U	U a nat. $\mathrm{SL}_{n-1}(q)$-module
$\mathrm{Sp}_{4}(q)$	nat. $\Omega_{5}(q)$	nat. $\mathrm{Sp}_{4}(q)$	nat. $\mathrm{Sp}_{4}(q)$	$V / C_{V}(A) \cong[V, A]$	
(d)	$\operatorname{Spin}_{8}^{+}(q)$	nat. $\Omega_{8}^{+}(q)$	nat. $\Omega_{8}^{+}(q)$	nat. $\Omega_{8}^{+}(q)$	$A / C_{A}(P) \neq V / \mathrm{C}_{V}(A)$
pairwise non-isom.					

Acknowledgment: We would like to thank the referee for all his helpful comments and suggestions that improved the readability of our manuscript considerably.

1 Linear Algebra and Offenders

In this section p is a prime, M a finite group and V a finite dimensional $\mathbb{F}_{p} M$-module.
Lemma 1.1. Let $A \leq M$ and \mathcal{W} a set of A-submodules of V with $V=\bigoplus \mathcal{W}$. Suppose that A is a faithful offender on V but not an over-offender on W for any $W \in \mathcal{W}$. Let $W \in \mathcal{W}$ and put $A_{W}=\bigcap_{W \neq U \in \mathcal{W}} \mathrm{C}_{A}(U)$. Then
(a) $|A|=\left|V / \mathrm{C}_{V}(A)\right|$.
(b) $A=X_{W \in \mathcal{W}} A_{W}=A_{W} \times \mathrm{C}_{A}(W)$.
(c) $\left|A / \mathrm{C}_{A}(W)\right|=\left|W / C_{W}(A)\right|=\left|W / C_{W}\left(A_{W}\right)\right|=\left|A_{W}\right|$.

Proof. Since A is not an over-offender on $W,\left|A / C_{A}(W)\right| \leq\left|W / C_{W}(A)\right|$, and since $V=\bigoplus \mathcal{W}$, $\left|V / \mathrm{C}_{V}(A)\right|=\prod_{W \in \mathcal{W}}\left|W / C_{W}(A)\right|$. Since A is an offender on V this gives

$$
\begin{equation*}
|A| \geq\left|V / \mathrm{C}_{V}(A)\right|=\prod_{W \in \mathcal{W}}\left|W / C_{W}(A)\right| \geq \prod_{W \in \mathcal{W}}\left|A / \mathrm{C}_{A}(W)\right| \tag{*}
\end{equation*}
$$

Put $B=X_{W \in \mathcal{W}} A / \mathrm{C}_{A}(W)$ and let $B_{W}=A / \mathrm{C}_{A}(W)$ be viewed as a subgroup of B. So B is the internal direct product of the $B_{W}, W \in \mathcal{W}$. Consider the homomorphism

$$
\phi: A \rightarrow B, a \rightarrow\left(a \mathrm{C}_{A}(W)\right)_{W \in \mathcal{W}} .
$$

Since V is a faithful A-module and $V=\bigoplus \mathcal{W}$, $\operatorname{ker} \phi=\bigcap_{W \in \mathcal{W}} \mathrm{C}_{A}(W)=\mathrm{C}_{A}(V)=1$ and ϕ is injective. By $(*)|A| \geq|B|$. Thus ϕ is surjective and so an isomorphism. Moreover, equality holds everywhere in $(*)$. In particular, (a) and the first equality in (c) hold.

Let $a \in A$. Then $a \phi \in B_{W}$ if and only if $a \in \mathrm{C}_{A}(U)$ for all $W \neq U \in \mathcal{W}$ and so if and only if $a \in A_{W}$. Thus $A_{W} \phi=B_{W}$. Also $a \in \mathrm{C}_{A}(W)$ if and only if the W-coordinate of $a \phi$ is 1 and so if and only if $a \phi \in X_{W \neq U \in \mathcal{W}} B_{W}$. Thus $\mathrm{C}_{A}(W) \phi=X_{W \neq U \in \mathcal{W}} B_{W}$. Since $B=$ X $_{W \in \mathcal{W}} B_{W}$ and ϕ is an isomorphism, (b) holds.

From (b) we get that $C_{W}(A)=C_{W}\left(A_{W}\right)$ and $\left|A_{W}\right|=\left|A / C_{A}(W)\right|$. Hence the (already proved) first equality in (c) gives also the second and third equality in (c).

Lemma 1.2. Let $A \leq M$. Then A is a best offender on V if and only if A is an offender on every A-submodule of V.

Proof. If A is a best offender, then by [MS1, 2.5] A is an offender on every A-submodule of V.
Conversely, suppose A is an offender on every A-submodule of V. Then A is an offender on V and so elementary abelian. Let $B \leq A$ and put $W:=\mathrm{C}_{V}(B)$. Clearly

$$
\begin{equation*}
B \leq \mathrm{C}_{A}(W) \text { and } \mathrm{C}_{W}(A)=\mathrm{C}_{V}(A) \tag{*}
\end{equation*}
$$

As A is an offender on $W,\left|W / \mathrm{C}_{W}(A)\right| \leq\left|A / \mathrm{C}_{A}(W)\right|$, and (*) implies that

$$
|B \| W| \leq|B|\left|A / \mathrm{C}_{A}(W)\right|\left|\mathrm{C}_{W}(A)\right| \leq|A|\left|\mathrm{C}_{V}(A)\right|
$$

This shows that A is a best offender on V.
Lemma 1.3. Suppose that B is a minimal offender on V and W is a B-submodule of V. Then B is a quadratic best offender on W, and one of the following holds:

1. B is an over-offender on W.
2. $[W, B]=0$.
3. $\mathrm{C}_{B}(W)=\mathrm{C}_{B}(V)$ and $V=W+\mathrm{C}_{V}(B)$.

Proof. Let $D \leq B$. Since B is a minimal offender,

$$
\left|D \| \mathrm{C}_{V}(D)\right| \leq|V|\left|C_{D}(V)\right| \leq|V|\left|\mathrm{C}_{B}(V)\right| \leq|B|\left|\mathrm{C}_{V}(B)\right|
$$

and so B is a best offender. By the Timmesfeld Replacement Theorem [KS, 9.2.3], $\mathrm{C}_{B}([V, B])$ is a non-trivial offender on V and so by minimality $B=\mathrm{C}_{B}([V, B])$. Thus B is quadratic.

Assume that B is not an over-offender on W. Then $\left|B / \mathrm{C}_{B}(W)\right|=\left|W / \mathrm{C}_{W}(B)\right|$ and

$$
\left|V / \mathrm{C}_{V}(B)+W\right|=\left|V / \mathrm{C}_{V}(B)\right|\left|W / \mathrm{C}_{W}(B)\right|^{-1} \leq|B|\left|B / \mathrm{C}_{B}(W)\right|^{-1}=\left|\mathrm{C}_{B}(W)\right|
$$

Hence $\mathrm{C}_{B}(W)$ is an offender on V, and the minimality of B gives either $B=\mathrm{C}_{B}(W)$ or $\mathrm{C}_{B}(W)=$ $\mathrm{C}_{B}(V)$. In the first case 2 holds. In the second case

$$
V=\mathrm{C}_{V}(B)+W
$$

and (3) follows.

Lemma 1.4. Suppose that $A \leq M$ acts nilpotently on V. Then the following are equivalent:
(a) A is a strong dual offender on V.
(b) Let $0 \leq U \leq Y \leq V$ be any chain of A-submodules with $[Y / U, A]=0$. Then $[V, A] \leq U$ or $Y \leq \mathrm{C}_{V}(A)$.
(c) A is a strong dual offender on V^{*}.

Proof. Suppose (a) holds. Let U and Y be as in ba and suppose that $Y \not \leq \mathrm{C}_{V}(A)$. Pick $v \in$ $Y \backslash \mathrm{C}_{V}(A)$. Then

$$
[V, A]=[v, A] \leq[Y, A] \leq U
$$

Thus (a) implies (b).
Suppose next that bolds. To show that a) holds, let $v \in V \backslash \mathrm{C}_{V}(A)$ and put $Y:=\left\langle v^{A}\right\rangle$ and $U:=[v, A]$. Since $\left[v^{k}, a\right]=[v, a]^{k}$ for all $k \in \mathbb{Z}, a \in A, U=[\langle v\rangle, A]$. So Y and U are A-submodules, $U \leq Y$ and A centralizes Y / U. Since $v \in Y, Y \not \leq \mathrm{C}_{V}(A)$ and so implies that $[V, A] \leq U$. Hence $[v, A]=U=[V, A]$ and (a) holds.

By 1.8 c), (b) holds for V if and only if it holds for V^{*} in place of V. Thus the above argument with V^{*} in place of V shows that (b) and (c) are equivalent.

Lemma 1.5. Let A be a strong dual offender on V. Then the following hold:
(a) A is quadratic on V.
(b) A is a strong dual offender on every A-submodule of V and V^{*}.
(c) A is best offender on V and on V^{*}.
(d) If $|[V, A]|=|A|$, then A is a strong offender on V.

Proof. Since by $1.4 A$ is also a strong dual offender on V^{*} it suffices to prove the statements for V.
(a): Since A acts nilpotently on V there exists $v \in V \backslash \mathrm{C}_{V}(A)$ with $[v, A] \leq \mathrm{C}_{V}(A)$. By definition of a strong dual offender we conclude that $[V, A]=[v, A] \leq \mathrm{C}_{V}(A)$ and so A is quadratic.
(b): This follows immediately from the definition of a strong dual offender.
(c): Let $v \in V \backslash \mathrm{C}_{V}(A)$. Since A is quadratic on $V,[v, A]=\{[v, a] \mid a \in A\}$ and so

$$
\begin{equation*}
|[V, A]|=|[v, A]|=\left|A / \mathrm{C}_{A}(v)\right| \leq|A| \tag{*}
\end{equation*}
$$

Thus by $1.8\left|V^{*} / \mathrm{C}_{V^{*}}(A)\right| \leq|A|$. So A is an offender on V^{*}. By bis is also true for any A submodule of V^{*}. Thus by $1.2 A$ is a best offender on V^{*}. By symmetry, A is also a best offender on V.
(d): Suppose $|[V, A]|=|A|$. Then by $(*)$

$$
|A| \leq\left|A / \mathrm{C}_{A}(v)\right| \leq|A| \text { for every } v \in V \backslash \mathrm{C}_{V}(A)
$$

Hence $\mathrm{C}_{A}(v)=1$ and so $\mathrm{C}_{V}(a)=\mathrm{C}_{V}(A)$ for all $a \in A^{\sharp}$.
Lemma 1.6. Let A be a strong offender on V. Then A is a quadratic best offender on V.
Proof. Let W be an A-submodule of V with $[W, A] \neq 0$. Then $\mathrm{C}_{A}(W)=1$ and so

$$
\left|W / \mathrm{C}_{W}(A)\right| \leq\left|V / \mathrm{C}_{V}(A)\right| \leq|A|=\left|A / \mathrm{C}_{A}(W)\right|
$$

Hence A is an offender on W and so by 1.2, A is a best offender on V.
To show that A is quadratic we may assume that $[V, A] \neq 0$. Put $B=\mathrm{C}_{A}([V, A])$. By the Timmesfeld Replacement Theorem [KS, 9.2.3], $[V, B] \neq 0$ and since A is a strong offender, $\mathrm{C}_{V}(B)=$ $\mathrm{C}_{V}(A)$. Since $[V, A, B]=0$ we conclude that $[V, A, A]=0$ and so A is quadratic.

Lemma 1.7. Let A be a subgroup of M. Suppose V is self-dual as an $\mathbb{F}_{p} A$-module. Then A is a strong offender iff $\left|V / \mathrm{C}_{V}(A)\right|=|A|$ and A is a strong dual offender.

Proof. Suppose first that A is strong offender and let $1 \neq a \in A$. Then $\mathrm{C}_{V}(a)=\mathrm{C}_{V}(A)$ and since V is self-dual, $[V, a]=[V, A]$ by 1.8 (c). Let $v \in V \backslash \mathrm{C}_{V}(A)$. Then $\mathrm{C}_{A}(v)=1$ and so $|[v, A]| \geq|A|$. Hence

$$
|A| \leq|[v, A]| \leq|[V, A]|=|[V, a]|=\left|V / \mathrm{C}_{V}(a)\right|=\left|V / \mathrm{C}_{V}(A)\right| \leq|A|
$$

and equality holds everywhere. Thus $[v, A]=[V, A]$ and so A is a strong dual offender.
Suppose now that $\left|V / \mathrm{C}_{V}(A)\right|=|A|$ and A is a strong dual offender. Since V is self-dual we get $|[V, A]|=|A|$. Thus by 1.5 d $], A$ is a strong offender.

Lemma 1.8. Suppose that \mathbb{K} is a field and V is a \mathbb{K}-space. The following hold for $A \leq \mathrm{GL}_{\mathbb{K}}(V)$ and U a \mathbb{K}-subspace of V :
(a) $\operatorname{dim}_{\mathbb{K}} V=\operatorname{dim}_{\mathbb{K}} V^{*}$.
(b) $\operatorname{dim}_{\mathbb{K}} U+\operatorname{dim}_{\mathbb{K}} U^{\perp}=\operatorname{dim}_{\mathbb{K}} V$.
(c) $[V, A]^{\perp}=\mathrm{C}_{V^{*}}(A)$ and $\mathrm{C}_{V}(A)^{\perp}=\left[V^{*}, A\right]$.
(d) $[V, A, A]=0 \Longleftrightarrow\left[V^{*}, A, A\right]=0$.
(e) $\mathrm{C}_{M}\left(\mathrm{C}_{V}(A)\right) \cap \mathrm{C}_{M}\left(\mathrm{C}_{V^{*}}(A)\right)$ is the largest subgroup $Y \leq M$ with $\mathrm{C}_{V}(Y)=\mathrm{C}_{V}(A)$ and $[V, Y]=$ $[V, A]$.
(f) If A is quadratic on V, then $\operatorname{dim}_{\mathbb{K}}[V, A]+\operatorname{dim}_{\mathbb{K}} V / \mathrm{C}_{V}(A) \leq \operatorname{dim}_{\mathbb{K}} V$.

Proof. (a), ba and (c) are well-known and easy to prove statements from linear algebra; and (e) follows from (c).
(d): $[V, A, A]=0$ iff $[V, A] \leq \mathrm{C}_{V}(A)$ iff $\mathrm{C}_{V}(A)^{\perp} \leq[V, A]^{\perp}$ iff $\left[V^{*}, A\right] \leq \mathrm{C}_{V^{*}}(A)$ iff $\left[V^{*}, A, A\right]=0$.
(f): Since A is quadratic, $[V, A] \leq \mathrm{C}_{V}(A)$. Thus

$$
\operatorname{dim}_{\mathbb{K}} V=\operatorname{dim}_{\mathbb{K}}[V, A]+\operatorname{dim}_{\mathbb{K}} \mathrm{C}_{V}(A) /[V, A]+\operatorname{dim}_{\mathbb{K}} V / \mathrm{C}_{V}(A)
$$

Lemma 1.9. Let \mathbb{F} be a finite field of characteristic p, V a finite dimensional $\mathbb{F} H$-module, and $N \unlhd H . \quad$ Put $\mathbb{K}:=\operatorname{End}_{\mathbb{F} N}(V)$ and suppose that V is a self-dual simple $\mathbb{F} N$-module. Then the following hold:
(a) There exists an N-invariant non-degenerate symmetric, symplectic or unitary \mathbb{K}-form s on V.
(b) There exists a homomorphism $\rho: H \rightarrow \operatorname{Aut}_{\mathbb{F}}(\mathbb{K})$ with $h \mapsto \rho_{h}$ such that $h \in H$ acts ρ_{h}-semilinearly on the right \mathbb{K}-vector space V; i.e., $(v+w) h=v h+w h$ and $(v k) h=(v h)\left(k \rho_{h}\right)$ for $v, w \in V$ and $k \in \mathbb{K}$.
(c) There exists a map $\lambda: H \rightarrow \mathbb{K}^{\sharp}$ with $h \mapsto \lambda_{h}$ such that the map $H \rightarrow \mathbb{K}^{\sharp} \rtimes \operatorname{Aut}_{\mathbb{F}}(K), h \rightarrow \lambda_{h} \rho_{h}$ is a homomorphism and

$$
(v h, w h) s=(v, w) s \lambda_{h} \rho_{h}
$$

for all $v, w \in V, h \in H$.
(d) Let U be a \mathbb{K}-subspace of V and put $U^{\perp}=\{v \in V \mid(u, v) s=0$ for all $u \in U\}$. Then U^{\perp} is $N_{H}(U)$-invariant.
(e) Let U be a non-zero \mathbb{K}-subspace of V such that $C_{H}(U)$ acts simply on V / U^{\perp}. Then U is 1dimensional over \mathbb{K}.
(f) Put $H_{0}=\operatorname{ker} \rho$. Then s is $O^{p^{\prime}}\left(H_{0}\right) N$-invariant.

Proof. Recall that \mathbb{K} is a finite field of characteristic p since V is finite and simple. It is convenient to write V in the following as a right \mathbb{K}-vector space since we write the action of \mathbb{K} on V from the right.

Put $V^{*}:=\operatorname{Hom}_{\mathbb{K}}(V, \mathbb{K})$ and $W:=\operatorname{Hom}_{\mathbb{F}}(V, \mathbb{F})$. Let $\mu: \mathbb{K} \rightarrow \mathbb{F}$ be any non-zero \mathbb{F}-linear map and define

$$
\tau: V^{*} \rightarrow W \text { by } u \rightarrow u \circ \mu
$$

(Recall that our mappings act from the right, so $v(u \circ \mu)=(v u) \mu$.)
Let $0 \neq u \in V^{*}$. Then $V u=\mathbb{K}$ and so there exists $v \in V$ with $v u \notin \operatorname{ker} \mu$. Thus $v . u \tau=v u \mu \neq 0$. In particular $u \tau \neq 0$ and $\operatorname{ker} \tau=0$. Since τ is \mathbb{F}-linear and

$$
\operatorname{dim}_{\mathbb{F}} V^{*}=\operatorname{dim}_{\mathbb{F}} \mathbb{K} \operatorname{dim}_{\mathbb{K}} V^{*}=\operatorname{dim}_{\mathbb{F}} \mathbb{K} \operatorname{dim}_{\mathbb{K}} V=\operatorname{dim}_{\mathbb{F}} V=\operatorname{dim}_{\mathbb{F}} W
$$

we conclude that τ is an \mathbb{F}-isomorphism. For $n \in N, v \in V$ and $u \in V^{*}$ we have

$$
v . u n \tau=v . u n \cdot \mu=v n^{-1} u \mu=v n^{-1} \cdot u \tau=v . u \tau n
$$

and so $u n \tau=u \tau n$. Thus τ is an $\mathbb{F} N$-isomorphism. Since V is self-dual as an $\mathbb{F} N$-module, this shows that V and V^{*} are isomorphic $\mathbb{F} N$-modules. Hence the set \mathcal{H} of $\mathbb{F} N$-isomorphisms from V to V^{*} is non-empty.

For $k \in \mathbb{K}$ let

$$
\bar{k}: V^{*} \rightarrow V^{*} \text { defined by } x \bar{k}: v \mapsto v k . x \quad\left(x \in V^{*}, v \in V\right)
$$

Then $\bar{k} \in \operatorname{End}_{\mathbb{F} N}\left(V^{*}\right)=: \overline{\mathbb{K}}$ and $k \mapsto \bar{k}$ induces an isomorphism of fields from \mathbb{K} to $\overline{\mathbb{K}}$.
Let $\beta \in \mathcal{H}$. Then $\beta \circ \bar{k} \circ \beta^{-1}$ is \mathbb{F}-linear and so

$$
\sigma_{\beta}: \mathbb{K} \rightarrow \mathbb{K} \text { with } k \mapsto \beta \circ \bar{k} \circ \beta^{-1}
$$

is an \mathbb{F}-linear automorphism of \mathbb{K}. Since $\beta \circ \bar{k}=k \sigma_{\beta} \circ \beta$ we get
$\mathbf{1}^{\circ} . \quad \beta$ is σ_{β}^{-1}-semi-linear.
Let $\delta \in \mathcal{H}$ and put $l=\delta \circ \beta^{-1}$. Then l is $\mathbb{F} N$-linear and so $l \in \mathbb{K}$. Thus:
$\mathbf{2}^{\circ}$. For all $\beta, \delta \in \mathcal{H}$ there exists $l \in \mathbb{K}$ with $\delta=l \circ \beta$.
It follows that

$$
k \sigma_{\delta}=\delta \circ \bar{k} \circ \delta^{-1}=l \circ \beta \circ \bar{k} \circ \beta^{-1} \circ l^{-1}=l \circ k \sigma_{\beta} \circ l^{-1} .
$$

Since \mathbb{K} is commutative, this implies $k \sigma_{\delta}=k \sigma_{\beta}$. Thus $\sigma_{\delta}=\sigma_{\beta}$ is independent from $\beta \in \mathcal{H}$. So we just write σ for σ_{β}.

Let \mathcal{F} be the set of all N-invariant non-zero functions $s: V \times V \rightarrow \mathbb{K}$ which are \mathbb{K}-linear in the first coordinate and \mathbb{F}-linear in the second, where N-invariant means that $(v n, w n) s=(v, w) s$ for all $v, w \in V$ and $n \in N$. Clearly, all these forms are non-degenerate since V is a simple $\mathbb{F} N$-module.

For $\beta \in \mathcal{H}$ define $s_{\beta}: V \times V \rightarrow \mathbb{K},(v, w) \rightarrow v . w \beta$. Then $s_{\beta} \in \mathcal{F}$ and so also $\mathcal{F} \neq \emptyset$. Conversely, for $s \in \mathcal{F}$ define $\beta_{s}: V \rightarrow V^{*}$ by $v . w \beta_{s}=(v, w) s$. Then $\beta_{s} \in \mathcal{H}$, and (10) applied to β_{s} gives:

3 ${ }^{\circ}$. Each $s \in \mathcal{F}$ is a σ^{-1}-sesquilinear \mathbb{K}-form.
Define $s^{*}: V \times V \rightarrow \mathbb{K},(v, w) \rightarrow(w, v) s \sigma$. Then s^{*} is N-invariant, \mathbb{K}-linear in the first coordinate and σ-semi-linear in the second coordinate. In particular, $s^{*} \in \mathcal{F}$ and so 3° implies. Hence
4. $\quad \sigma=\sigma^{-1}$, and either $\sigma=\mathrm{id}_{\mathbb{K}}$ or σ has order 2 .

We now will prove (a) - (f).
(a): Put $t=s+s^{*}$. Then $t=t^{*}$. Suppose first that $t \neq 0$. If $\sigma=\operatorname{id}_{\mathbb{K}}$, then t is an N-invariant symmetric \mathbb{K}-form; and if $|\sigma|=2$, then t is an N-invariant unitary \mathbb{K}-form. So (a) holds in this case.

Suppose next that $t=0$. Then $s=-s^{*}$. Assume char $\mathbb{K}=2$, then $s=s^{*}$ and so s is a symmetric or unitary \mathbb{K}-form. Assume char $\mathbb{K} \neq 2$. If $\sigma=\operatorname{id}_{\mathbb{K}}$ then s is a symplectic \mathbb{K}-form. If $|\sigma|=2$ pick $x \in \mathbb{K}$ with $x \neq x \sigma$ and put $y:=x-x \sigma$. Then $y \sigma=-y$. Hence $(s y)^{*}=s^{*} \cdot y \sigma=s y$ and so $s y$ is a N-invariant unitary \mathbb{K}-form on V. Again (a) hold.
(b): Since $N \unlhd H$, it is readily verified that for $k \in \mathbb{K}$ and $h \in H$ the map $V \rightarrow V, v \mapsto v h^{-1} k h$ is in \mathbb{K}. Thus $\rho_{h} \in \operatorname{Aut}_{\mathbb{F}}(\mathbb{K})$ where

$$
v . k \rho_{h}=v h^{-1} k h \text { for all } k \in \mathbb{K}, h \in H .
$$

A simple calculation shows that $\rho: H \rightarrow \operatorname{Aut}_{\mathbb{F}}(\mathbb{K})$ with $h \mapsto \rho_{h}$ is a homomorphism and h acts ρ_{h}-semi-linearly on V.
(c): Fix $h \in H$ and define

$$
s_{h}: V \times V \rightarrow \mathbb{K},(v, w) \mapsto(v h, w h) s \rho_{h}^{-1} .
$$

Using that $\operatorname{Aut}(\mathbb{K})$ is abelian, it is straight forward to verify that $s_{h} \in \mathcal{F}$. By $\left(2^{\circ}\right), \beta_{s_{h}}=k_{h} \circ \beta_{s}$ for some $k_{h} \in \mathbb{K}$. Thus for all $v, w \in V$

$$
(v h, w h) s \rho_{h}^{-1}=(v, w) s_{h}=v \cdot w \beta_{s_{h}}=v \cdot w k_{h} \beta_{s}=\left(v, w k_{h}\right) s=(v, w) s \cdot k_{h} \sigma
$$

Define $\lambda_{h}=k_{h} \sigma$, then

$$
(v h, w h) s=(v, w) s \lambda_{h} \rho_{h} .
$$

It is readily verified that the map $H \rightarrow \mathbb{K}^{\sharp} \rtimes \operatorname{Aut}_{\mathbb{F}}(\mathbb{K}), h \rightarrow \lambda_{h} \rho_{h}$ is a homomorphism.
(d): Let $v \in U^{\perp}, h \in N_{H}(U)$ and $u \in U$. Then

$$
(u, v h) s=\left(u h^{-1}, v\right) s \lambda_{h} \rho_{h}=0
$$

(e): Let D be a 1-dimensional \mathbb{K}-subspace of U. Then by (d), D^{\perp} is $C_{H}(U)$-invariant. Since $U^{\perp} \leq D^{\perp}$ and $C_{H}(U)$ is simple on V / U^{\perp} we get $U^{\perp}=D^{\perp}$ and $U=D$.
(f) For $a, b \in H_{0}$ the homomorphism given in (c) yields

$$
\lambda_{a b} \rho_{a b}=\lambda_{a b}=\lambda_{a} \rho_{a} \lambda_{b} \rho_{b}=\lambda_{a} \lambda_{b}
$$

Hence $\left.\lambda\right|_{H_{0}}$ is a homomorphism from H_{0} in \mathbb{K}^{\sharp}. Since \mathbb{K}^{\sharp} is a p^{\prime}-group, (£) follows.

2 J-Components

In this section p is a prime, M is a finite group with $\mathrm{O}_{p}(M)=1$, and V is a finite dimensional faithful $\mathbb{F}_{p} M$-module such that $\mathrm{J}_{M}(V) \neq 1$.

Notation 2.1. Put $J:=\mathrm{J}_{M}(V)$ and $\mathcal{J}:=\mathcal{J}_{M}(V)$. Let \mathcal{I} be the set of solvable J-components, \mathcal{K} be the set of perfect J-components, $E:=\langle\mathcal{K}\rangle$, and $I:=\langle\mathcal{I}\rangle$.

Lemma 2.2. The following hold:
(a) $\mathrm{C}_{M}(J / \mathrm{Z}(J))=\mathrm{C}_{M}(J)$.
(b) Let N be a J-invariant subgroup of M with $[N, J] \neq 1$. Then there exists $K \in \mathcal{J}$ with $K \leq N$.
(c) $\mathcal{J} \neq \emptyset, \mathcal{J}=\mathcal{I} \cup \mathcal{K}$, and \mathcal{K} is the set of components of J.
(d) Let $K \in \mathcal{I}$. Then either $p=2, K \cong \mathrm{C}_{3} \cong \mathrm{SL}_{2}(2)^{\prime}$, and $[V, K] \cong \mathbb{F}_{2}^{2}$, or $p=3, K \cong Q_{8} \cong$ $\mathrm{SL}_{2}(3)^{\prime}$, and $[V, K] \cong \mathbb{F}_{3}^{2}$.
(e) $[W, K]=[W, K, K]$ for every $K \in \mathcal{J}$ and every K-submodule W of V.
(f) $[K, F]=1$ and $[V, K, F]=0$ for every $K, F \in \mathcal{J}$ with $K \neq F$.
(g) $\mathrm{C}_{J}(I E)=\mathrm{Z}(J)$, or $p=2$ and $\mathrm{C}_{J}(I E)=\mathrm{Z}(J) I$. So in both cases $\mathrm{C}_{J}(I E)$ is an abelian p^{\prime}-group.
(h) Let $U \leq M$ and $K \in \mathcal{J}$. Then either $[K, U]=1$ or $[W, K] \leq[W,[K, U]]$ for every K-submodule $W \leq V$.

Proof. (a) Put $R=\mathrm{C}_{M}(J / \mathrm{Z}(J))$ and let T be a p-subgroup of J. Since $\mathrm{O}_{p}(M)=1, \mathrm{O}_{p}(\mathrm{Z}(J))=1$ and so $\overline{\mathrm{Z}}(J)$ is a p^{\prime}-group, Since $[\mathrm{Z}(J), T]=1$, we conclude that $T=\mathrm{O}_{p}(\mathrm{Z}(J) T)$. So, as $[R, T] \leq$ $\mathrm{Z}(J), R$ normalizes T and $[R, T] \leq T \cap \mathrm{Z}(J)=1$. Since J is generated by p-groups, this means $[R, J]=1$ and so $R=\mathrm{C}_{M}(J)$.
(b): By (a), $[N, J] \not \subset \mathrm{Z}(J)$. So by [MS1, 3.1] there exists $K \in \mathcal{J}$ with $K \leq[N, J]$.
(c) and (d) follow from MS1, 3.2], and [MS1, 3.4], and (f) is The Other $P(G, V)$-Theorem in MS1.
(e): By (c) and (d) K is generated by p^{\prime}-elements. Hence (e) follows from elementary properties of coprime action.
(g): Put $C:=\mathrm{C}_{J}(I E)$. Clearly $\mathrm{Z}(J) \leq C$. Hence, by (b) either $C=\mathrm{Z}(J)$, or there exists a J-component in C. Assume the latter case. Then by (c) and (d), $p=2$ and $I \leq C$. The action of C on $[V, I]$ shows that $C=I \mathrm{C}_{C}([V, I])$. But now again (b), this time applied to $\mathrm{C}_{C}([V, I])$, gives $\mathrm{C}_{C}([V, I]) \leq \mathrm{Z}(J)$ and thus $C=\mathrm{Z}(J) I$.
(h): Note that $K[K, U]=K^{u}[K, U]$ for every $u \in U$. Assume first that $U \not \leq \mathrm{N}_{M}(K)$. Then there exists $u \in U \backslash \mathrm{~N}_{U}(K)$, and by (£) $[W, K] \leq \mathrm{C}_{W}\left(K^{u}\right)$. Now (e) yields

$$
[W, K]=[W, K, K] \leq\left[W, K, K^{u}[K, U]\right]=[W, K,[K, U]] \leq[W,[K, U]]
$$

Assume now that $U \leq \mathrm{N}_{M}(K),[K, U] \neq 1$ and $[W, K] \neq 0$. Then $1 \neq[K, U] \unlhd K$. By (c) and (d) K is a component, or $K \cong \mathrm{C}_{3}$, or $K \cong Q_{8}$. In the first case $K \leq[K, U]$, and (h) follows. In the other two cases by (d) $[W, K]=[V, K]$ is a faithful simple K-module, so $[V, K]=[V,[K, U]]$.

Lemma 2.3. Let A be a best offender of M on V and $K \in \mathcal{J}$. Then the following hold:
(a) $[K, A]=K$ or $[K, A]=1$.
(b) If $[K, A] \neq 1$, then there exists a best offender $A_{0} \leq A$ such that $K=\left[K, A_{0}\right],\left[[V, K], A_{0}, A\right]=0$, and A_{0} is quadratic on $[V, K]$.

Proof. (a) is obvious since $K \unlhd J$ and by 2.2 either K is quasisimple or isomorphic to C_{3} or Q_{8}.
(b): This is essentially MS1, 3.3], but since our assumption is slightly weaker we repeat the proof: By (a) $[K, A]=K$ and by 2.2 e $[V, K]=[V, K, K]$, so $[V, K, A] \neq 0$. The Timmesfeld Replacement Theorem MS1, 2.7] with $W:=[V, K]$ gives a best offender $A_{0} \leq A$ satisfying $\left[W, A_{0}, A\right]=0$ and $\left[W, A_{0}\right] \neq 0$. The first property shows that A_{0} is quadratic on W. Suppose that $\left[K, A_{0}\right]=1$. Then by [MS1, 2.9], $\left[W, A_{0}\right]=0$, a contradiction. Thus $\left[K, A_{0}\right] \neq 1$ and by (a), $K=\left[K, A_{0}\right]$.

Lemma 2.4. Let $K \in \mathcal{J}$ and A be a subgroup of M such that $[V, A, A]=0$ and $[K, A] \neq 1$. Suppose that X is a perfect K-submodule of V and \bar{X} is a non-zero K-factor module of X. Then

$$
\mathrm{C}_{A}(X)=\mathrm{C}_{A}(K)=\mathrm{C}_{A}(\bar{X})
$$

Proof. Put $L:=[K, A]$. The quadratic and faithful action of A shows that A is an elementary abelian p-subgroup. Hence $A_{0}:=\mathrm{C}_{A}(K)$ centralizes $\langle K, A\rangle$ and so also L. The quadratic action of A gives

$$
[V, L] \leq\left[V,\left\langle A^{K}\right\rangle\right]=\left\langle[V, A]^{K}\right\rangle \leq \mathrm{C}_{V}\left(A_{0}\right)
$$

As $[K, A] \neq 1,2.2 \mathrm{~h})$ yields $X=[X, K] \leq[X, L] \leq \mathrm{C}_{V}\left(A_{0}\right)$ and $A_{0} \leq \mathrm{C}_{A}(X) \leq \mathrm{C}_{A}(\bar{X})$. Conversely, $\left[X,\left[K, \mathrm{C}_{A}(\bar{X})\right]\right] \neq X$ since $\bar{X} \neq 0$. Hence again 2.2 h) implies that $\mathrm{C}_{A}(\bar{X}) \leq \mathrm{C}_{A}(K)$.

Lemma 2.5. Let $K \in \mathcal{J}$ and $\mathbb{K}:=\operatorname{End}_{K}(V)$. Suppose that V is a simple K-module and M is generated by quadratic offenders on V. Then the following hold:
(a) \mathbb{K} is a finite field.
(b) M acts \mathbb{K}-linearly on V, or $|V|=4$ and $M \cong \mathrm{SL}_{2}(2)$.
(c) $\mathrm{F}^{*}(M)=\mathrm{Z}(M) K$, and $\mathrm{C}_{M}(K)=\mathrm{Z}(M)$ if $|V|>4$.

Proof. (a): By Schur's Lemma \mathbb{K} is a finite division ring, so by Wedderburn's Theorem \mathbb{K} is a field.
(b): Let $A \leq M$ be a quadratic offender and suppose A does not act \mathbb{K}-linearly on V. Then by [MS3, 2.14], $|A|=2$. Since $|A|$ is an offender we get $\left|V / \mathrm{C}_{V}(A)\right|=2$. Since A does not act \mathbb{K}-linearly, there exists $0 \neq k \in \mathbb{K}$ which is inverted by $a \in A^{\sharp}$; and since k acts fixed-point-freely on $V,\left|C_{V}(a)\right|^{2}=|V|$. This implies $|\mathbb{K}|=4=|V|$. Hence $M \cong \mathrm{SL}_{2}(2)$ and b is proved.
(c): Suppose K is solvable. Then by $2.2|V|=4$ or $|V|=9$ and (c) is obvious. So we may assume that K is not solvable and so by $2.2 K$ is a component of M; in particular $\mathrm{F}^{*}(M)=K \mathrm{C}_{\mathrm{F}^{*}(M)}(K)$. By (b) M acts \mathbb{K}-linearly on V, so $\mathrm{C}_{M}(K) \leq \mathrm{Z}(M)$, and $\mathrm{F}^{*}(M)=K \mathrm{C}_{\mathrm{F}^{*}(M)}(K)=K \mathrm{Z}(M)$.

Lemma 2.6. Let $K \in \mathcal{J}$ and X be a perfect K-submodule of V, and let A be a best offender of M on V such that $[K, A] \neq 1$. Then A normalizes X.

Proof. By 2.3 b there exists a best offender $A_{0} \leq A$ such that $\left[K, A_{0}\right]=K,\left[[V, K], A_{0}, A\right]=0$ and A_{0} is quadratic on $[V, K]$. Clearly A normalizes K since $K \unlhd J$.

We will first show that A_{0} normalizes X. Note that by $1.2 A_{0}$ is a best offender on $W:=\left\langle X^{A_{0}}\right\rangle$. Let $R:=\operatorname{rad}_{K}(W)$, that is, the intersection of the maximal K-submodules of W, and put $\bar{W}:=W / R$. Note that $W=[W, K]$ and so by $2.4 \mathrm{C}_{A_{0}}(W)=\mathrm{C}_{A_{0}}(\bar{W})=\mathrm{C}_{A_{0}}(K)$. Since A_{0} is a quadratic offender on W, we conclude that A_{0} is also a quadratic offender on \bar{W}. Thus there exists a quadratic best offender $A_{1} \leq A_{0}$ on \bar{W} such that $\left[\bar{W}, A_{1}\right] \neq 0$ and so by $2.4\left[K, A_{1}\right] \neq 1$.

Note that \bar{X} is a semisimple K-module. Let \bar{Y} be any simple K-submodule of \bar{X}. By [MS1, 2.10] A_{1} normalizes \bar{Y}. Moreover, since \bar{X} is a perfect K-module and $\left[K, A_{1}\right] \neq 1,2.4$ gives $\left[\bar{Y}, A_{1}\right] \neq 0$. Now $0 \neq\left[\bar{Y}, A_{1}\right] \leq \mathrm{C}_{\bar{Y}}\left(A_{0}\right)$ shows that also A_{0} normalizes \bar{Y}. Hence, A_{0} normalizes \bar{X} and $W=$ $X+R$, so $W=X$.

Thus A_{0} normalizes X. Let $a \in A$. Then $\left[X, A_{0}\right] \leq X \cap X^{a}=: D$. Since D is a $K A_{0}$-module and $\left[X, A_{0}\right] \leq D$, we get from 2.2hh $X=[X, K] \leq\left[X,\left[K, A_{0}\right]\right] \leq D$ and thus $X^{a}=X$. So A normalizes X.

Lemma 2.7. Let $K \in \mathcal{J}$ and X be a perfect K-submodule of V, and let B be a best offender of M on V such that $[K, B]=0$. Then $[X, B]=0$.

Proof. Let X be a counterexample such that $\operatorname{dim}_{\mathbb{F}_{p}} X$ is minimal, and let W be a maximal K submodule of X. We use the following notation:

$$
Y:=\left\langle X^{B}\right\rangle, U:=[W, K], \quad B_{0}:=\mathrm{C}_{B}(Y), \bar{Y}:=Y / \mathrm{C}_{Y}(K)
$$

Note that $[Y, K]=Y$. Since $\left[Y, \mathrm{C}_{B}(\bar{Y}), K\right]=0$ and $\left[\mathrm{C}_{B}(\bar{Y}), K\right] \leq[B, K]=1$, the Three Subgroups Lemma gives $\left[Y, \mathrm{C}_{B}(\bar{Y})\right]=\left[K, Y, \mathrm{C}_{B}(\bar{Y})\right]=0$. It follows that

$$
\mathrm{C}_{B}(X)=B_{0}=\mathrm{C}_{B}(\bar{Y})=\mathrm{C}_{B}(\bar{X})
$$

As B is a best offender on Y by 1.2, B is an offender on \bar{Y}.
Since U is a perfect K-module, the minimality of X gives $[U, B]=0$. Thus $[W, K, B]=0$ and $[K, B]=0$, and the Three Subgroups Lemma yields $[W, B, K]=0$. Thus $[\bar{W}, B]=0$ and so $\mathrm{C}_{\bar{X}}(b)=$ \bar{W} for every $b \in B \backslash B_{0}$ since \bar{X} / \bar{W} is simple. Hence $[\bar{X}, b] \cong \bar{X} / \mathrm{C}_{\bar{X}}(b)=\bar{X} / \bar{W} \cong X / W:=I$. This shows that $[\bar{X}, B]$ is the direct sum of, say n, copies of I.

Put $\mathbb{F}:=\operatorname{End}_{K}(I)$. Let

$$
\kappa_{b}: \bar{X} \rightarrow[\bar{X}, B] \text { with } \bar{x}+\bar{W} \mapsto[\bar{x}, b] . \quad(b \in B)
$$

Then $b \mapsto \kappa_{b}, b \in B$, defines to a homomorphism from B to $\operatorname{Hom}_{\mathbb{F}}(\bar{X} / \bar{W},[\bar{X}, B]) \cong \mathbb{F}^{n}$ whose kernel is $\mathrm{C}_{B}(\bar{X})=\mathrm{C}_{B}(X)$. It follows that $\left|B / \mathrm{C}_{B}(X)\right| \leq|\mathbb{F}|^{n}$. Since B is an offender on \bar{Y} with $B_{0}=\mathrm{C}_{B}(\bar{Y})$ and $\mathrm{C}_{\bar{X}}(B)=\bar{W}$,

$$
|\mathbb{F}|^{n} \geq\left|B / B_{0}\right| \geq\left|\bar{Y} / \mathrm{C}_{\bar{Y}}(B)\right| \geq\left|\bar{X} \mathrm{C}_{\bar{Y}}(B) / \mathrm{C}_{\bar{Y}}(B)\right|=|\bar{X} / \bar{W}|=|I|
$$

so

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{F}} I \leq n \tag{+}
\end{equation*}
$$

According to 1.2 and (b) there exists a best offender A on V such that $[K, A]=K$ and A is quadratic on V. By $2.6 A$ normalizes X, Y and U and thus also W and X / W since $W / U=\mathrm{C}_{X / U}(K)$. Let $b \in B \backslash \mathrm{C}_{B}(\bar{X})$. Then $[X, b]$ is a perfect K-submodule of Y, and so again by $2.6 A$ normalizes $[X, b]$ and thus also $[\bar{X}, b]$. Since $I=X / W \cong[\bar{X}, b]$ as K-module, $D:=\operatorname{Hom}_{K}(I,[X, b])$ is a nontrivial p-group. Since A acts on D we get $\mathrm{C}_{D}(A) \neq 0$ and so $\operatorname{Hom}_{K A}(I,[\bar{X}, b]) \neq 0$. Thus $[\bar{X}, b]$ is isomorphic to I as an $K A$-module.

By 2.4

$$
\begin{equation*}
\mathrm{C}_{A}(I)=\mathrm{C}_{A}(K)=\mathrm{C}_{A}(Y) \tag{*}
\end{equation*}
$$

so 1.2 shows that A is a non-trivial quadratic offender on I. Hence by 2.5 b A acts \mathbb{F}-linearly on I or $|I|=4$. In the latter case $(*)$ implies $\left|A / C_{A}(I)\right|=2=\left|Y / \mathrm{C}_{Y}(A)\right|,|K|=3$ and $|Y|=4$. In particular $[Y, B]=0$.

Assume now that A acts \mathbb{F}-linearly on I. Let $m=\operatorname{dim}_{\mathbb{F}} I$ and $c=\operatorname{dim}_{\mathbb{F}} \mathrm{C}_{I}(A)$. Recall that $\bar{Y}=\bar{X}+[\bar{X}, B]$ and $[\bar{X}, B]$ is the direct sum of n copies of $K A$-modules isomorphic to I. Hence

$$
\operatorname{dim}_{\mathbb{F}} Y / \mathrm{C}_{Y}(A) \geq \operatorname{dim}_{\mathbb{F}} \bar{Y} / \mathrm{C}_{\bar{Y}}(A) \geq n \cdot \operatorname{dim}_{\mathbb{F}} I / \mathrm{C}_{I}(A)=n(m-c)
$$

Since A acts quadratically on $I,\left|A / \mathrm{C}_{A}(I)\right| \leq\left|\operatorname{Hom}_{\mathbb{F}}\left(I / \mathrm{C}_{I}(A), \mathrm{C}_{I}(A)\right)\right|$, so $\left|A / \mathrm{C}_{A}(I)\right| \leq|\mathbb{F}|^{c(m-c)}$. On the other hand, by $(*) \mathrm{C}_{A}(I)=\mathrm{C}_{A}(Y)$ and so by $(+)$

$$
\left|A / \mathrm{C}_{A}(Y)\right|=\left|A / \mathrm{C}_{A}(I)\right| \leq|\mathbb{F}|^{c(m-c)}<|\mathbb{F}|^{n(m-c)} \leq\left|Y / \mathrm{C}_{Y}(A)\right|
$$

a contradiction since A is an offender.
Proposition 2.8. Let $K \in \mathcal{J}$ and X be a perfect K-submodule of V. Then J normalizes X.
Proof. This follows from 2.6 and 2.7 .
Lemma 2.9. Let $K \in \mathcal{J}$ and let

$$
X_{0} \leq Y_{1} \leq X_{1} \leq Y_{2} \leq X_{2} \ldots \leq Y_{n} \leq X_{n} \leq V
$$

be a series of K-submodules such that $X_{i}=\left[X_{i}, K\right], X_{i} / Y_{i}$ is a simple K-module, and $\left[Y_{i}, K\right] \leq X_{i-1}$ for $i=1, \ldots, n$. Then the following hold for $S:=\oplus_{i=1}^{n} X_{i} / Y_{i}$:
(a) J acts on S and $\mathrm{O}_{p}(\widetilde{J})=1$, where $\widetilde{J}:=J / \mathrm{C}_{J}(S)$.
(b) Every best offender on V is an offender on S; in particular \widetilde{J} is generated by offenders on S.
(c) \widetilde{K} is the unique $\mathrm{J}_{\widetilde{J}}(S)$-component of \widetilde{J}.

Proof. (a): By $2.8 J$ normalizes every X_{i} and Y_{i} since $Y_{i} / X_{i-1}=C_{X_{i} / X_{i-1}}(K)$, so J acts on S. Since $X_{i} / Y_{i}, i \geq 1$, is a simple K-module, we also get $\mathrm{O}_{p}(\widetilde{J})=1$.
(b): Let A be a best offender on V. By $2.7[S, A]=0$ if $[K, A]=1$. In the other case 2.4 shows that

$$
\begin{equation*}
\mathrm{C}_{A}(K)=\mathrm{C}_{A}\left(X_{i}\right)=\mathrm{C}_{A}\left(X_{i} / Y_{i}\right), i=1, \ldots, n \tag{*}
\end{equation*}
$$

Hence in both cases $\mathrm{C}_{A}(S)=\mathrm{C}_{A}(K)$.
By $1.2 A$ is a best offender on X_{n}. Hence

$$
\left|X_{n} / \mathrm{C}_{X_{n}}(A)\right| \leq\left|A / \mathrm{C}_{A}\left(X_{n}\right)\right|=\left|A / \mathrm{C}_{A}(K)\right|=\left|A / \mathrm{C}_{A}(S)\right|
$$

On the other hand,

$$
\left|X_{n}\right|=\left|X_{n} / Y_{n}\right|\left|Y_{n} / X_{n-1}\right|\left|X_{n-1} / Y_{n-1}\right| \cdots\left|X_{1} / Y_{1}\right|\left|Y_{1}\right|
$$

and

$$
\left|\mathrm{C}_{X_{n}}(A)\right| \leq\left|\mathrm{C}_{X_{n} / Y_{n}}(A)\right|\left|Y_{n} / X_{n-1}\right|\left|\mathrm{C}_{X_{n-1} / Y_{n-1}}(A)\right| \cdots\left|\mathrm{C}_{X_{1} / Y_{1}}(A)\right|\left|Y_{1}\right|
$$

so

$$
\left|A / \mathrm{C}_{A}(S)\right| \geq\left|X_{n} / \mathrm{C}_{X_{n}}(A)\right| \geq\left|X_{n} / Y_{n} / \mathrm{C}_{X_{n} / Y_{n}}(A)\right| \cdots\left|X_{1} / Y_{1} / \mathrm{C}_{X_{1} / Y_{1}}(A)\right| \geq\left|S / \mathrm{C}_{S}(A)\right|
$$

This shows that A is an offender on S.
(c): There exists a best offender A on V such that $[K, A] \neq 1$ and thus by $(*)$ also $[S, A] \neq 0$. By (b) A is an offender on S, so A contains a non-trivial best offender B on S. Again ($*$) yields $[K, B] \neq 1$. Hence by 2.3 a), $\widetilde{K} \leq \mathrm{J}_{\widetilde{J}}(S)$ and so $\widetilde{K} \unlhd \mathrm{~J}_{\widetilde{J}}(S)$. Now 2.2 c) and (d) show that \widetilde{K} is a $\mathrm{J}_{\widetilde{J}}(S)$-component of \widetilde{J}. Moreover, since $\left.[S, \widetilde{K}]=S, 2.2 \mathrm{f}\right)$ implies that \widetilde{K} is the unique $\mathrm{J}_{\widetilde{J}}(S)$-component of \widetilde{J}.

Lemma 2.10. Let $K \in \mathcal{J}$ and L be a normal subgroup of M with $L=\mathrm{O}^{p^{\prime}}(L)$. Then either $K \leq[K, L] \leq L$ or $[K, L]=1$.

Proof. If K is a component of M, this is [KS, 6.5.2]. So suppose K is solvable. Then either $p=2$ and $K \cong \mathrm{C}_{3}$, or $p=3$ and $K \cong Q_{8}$.

We may assume that $[K, L] \neq 1$. Since $L=\mathrm{O}^{p^{\prime}}(L)$, there exists a p-subgroup T of L with $[K, T] \neq 1$. If If T normalizes K, the structure of Aut (K) shows that $K=[K, T] \leq[K, L] \leq L$. So we may assume there exists $t \in T$ with $K \neq K^{t}$. Put $L_{0}:=K K^{t} \cap L$. Then $L_{0} \unlhd J$, and $K K^{t}=K L_{0}=K^{t} L_{0}$ since $[K, t] \leq L$. In particular $\left[L_{0}, J\right] \neq 1$ since $K=[K, J] \neq K^{t}$. Hence, by 2.2 b there exists a J-component $\widetilde{K} \leq L_{0}$, so $\widetilde{K} \leq K K^{t}$. If $\widetilde{K}=K$ or K^{t}, then $K \leq K K^{t}=K L_{0} \leq L_{0} \leq L$. Suppose that \widetilde{K} is different from K and K^{t}. Then by 2.2 ee, (f)

$$
[V, \widetilde{K}]=[V, \widetilde{K}, \widetilde{K}] \leq\left[V, K K^{t}, \widetilde{K}\right]=0
$$

a contradiction.
Lemma 2.11. Let $K \in \mathcal{J}, W$ a K-submodule of $V, \bar{V}:=V / W$ and U a K-submodule of \bar{V}. Then the following are equivalent:
(a) U is a perfect K-module and $U / C_{U}(K)$ is a simple K-module.
(b) U is a quasisimple K-module.
(c) U is a minimal non-trivial K-submodule of \bar{V}.

Proof. (a) \Longrightarrow b): Let N be the inverse image of $\mathrm{O}_{p}\left(K / \mathrm{C}_{K}(U)\right)$ in K. Then $U \neq[U, N]$ and since U is a perfect K-module, $N \neq K$. By $2.2 K$ is quasisimple or K is p^{\prime}-group. In the first case $N \leq \mathrm{Z}(K)$ and since $\mathrm{O}_{p}(K) \leq \mathrm{O}_{p}(M)=1, N$ is a p^{\prime}-group. So in any case N is a p^{\prime}-group. Thus $N / \mathrm{C}_{K}(U)=1$ and so U is a quasisimple K-module.
(b) \Longrightarrow (c): Let Y be non-zero K-submodule of U. By $2.2, K=\mathrm{O}^{p}(K)$ and so $\mathrm{C}_{U}(K)=$ $\mathrm{C}_{U}\left(\mathrm{O}^{p}(K)\right)$. Thus $U / C_{U}(K)$ is a simple K-module. If $Y \not \leq \mathrm{C}_{U}(K)$ we get $U=Y+\mathrm{C}_{V}(K)$ and so $U=[U, K]=[Y, K] \leq Y$ and $Y=U$. Thus, either $Y=U$ or $Y \leq \mathrm{C}_{U}(K)$, so Y is a minimal non-trivial K-submodule of \bar{V}.
(c) \Longrightarrow a): \quad Since U is non-trivial, $U \neq \mathrm{C}_{U}(K)$. Let Y be a proper K-submodule of U with $\mathrm{C}_{U}(K) \leq Y$. Then $[Y, K]=0$ by minimality of U. Thus $Y=\mathrm{C}_{U}(K)$ and so $U / \mathrm{C}_{U}(K)$ is a simple K-module. Since $K=O^{p}(K),[U, K, K] \neq 1$ and so $U=[U, K]$ by minimality of U. Thus U is a perfect K-module and (a) holds.

3 Maximal Quadratic Offenders in Classical Groups

In this section \mathbb{K} is a field and V is an n-dimensional vector space over \mathbb{K}. We assume that there exists a sesquilinear form f on V such that one of the following holds: (Recall here that f is non-degenerate if for each $0 \neq v \in V$ there exists $w \in V$ with $f(v, w) \neq 0$.)
(i) $f=0$.
(ii) f is a non-degenerate symplectic form on V; so f is bilinear and $f(v, v)=0$ for $v \in V$.
(iii) f is a non-degenerate unitary form; so there exists $\alpha \in \operatorname{Aut}(\mathbb{K})$ such that $\alpha^{2}=\operatorname{id}_{\mathbb{K}} \neq \alpha$, f is linear in the first component, and $f(v, w)=f(w, v) \alpha$ for $v, w \in V$.
(iv) f is a symmetric bilinear form and there exists an associated non-degenerate quadratic form h on V, that is a function $h: V \rightarrow \mathbb{K}$ with

$$
h\left(k_{1} v+k_{2} w\right)=k_{1}^{2} h(v)+k_{2}^{2} h(w)+k_{1} k_{2} f(v, w) \text { for } k_{1}, k_{2} \in \mathbb{K}, v, w \in V
$$

(Recall here that h is non-degenerate if for each $0 \neq v \in V$ with $h(v)=0$ there exists $w \in V$ with $f(v, w) \neq 0$.) Also if char $\mathbb{K}=2$, we assume that \mathbb{K} is perfect and so for each $k \in \mathbb{K}$ there exists a unique element $\sqrt{k} \in \mathbb{K}$ with $\sqrt{k}^{2}=k$.

By $\mathrm{GL}(V), \mathrm{Sp}(V), \mathrm{GU}(V)$, and $\mathrm{O}(V)$, respectively, we denote the group of automorphisms of V leaving invariant f (in the first three cases) and h in the fourth case. In the last three cases V is called a non-degenerate symplectic, unitary and orthogonal space, respectively.

We also use the notation $\mathrm{GL}_{n}(\mathbb{F}), \mathrm{Sp}_{n}(\mathbb{F}), \mathrm{GU}_{n}(\mathbb{F})$, and $\mathrm{O}_{n}(\mathbb{F})$, where $n:=\operatorname{dim} V$ and either $\mathbb{F}=\mathbb{K}$ or, in the unitary case, $\mathbb{F}=\mathbb{K}_{\alpha}$, the subfield centralized by α. In the first three cases put $\alpha=\operatorname{id}_{\mathbb{K}}$, so $\mathbb{F}=\mathbb{K}_{\alpha}$. If \mathbb{F} is finite, say $|\mathbb{F}|=q$, we also write $\operatorname{GL}_{n}(q), \operatorname{Sp}_{n}(q)$, etc.

An element $v \in V$ is called isotropic if $f(v, v)=0$. A subspace U of V is called isotropic if $\left.f\right|_{U \times U}=0$. An element $v \in V$ is called singular if v isotropic and (in the fourth case) $h(v)=0$. A subspace is called singular if it is isotropic and all its elements are singular.

By V^{*} we denote the vector space dual to V, so $V^{*}:=\operatorname{Hom}_{\mathbb{K}}(V, \mathbb{K})$ and an element $g \in G L(V)$ acts on V^{*} via

$$
x g: v \mapsto\left(v g^{-1}\right) x \quad\left(x \in V^{*}, v \in V\right)
$$

We will use the notion of perpendicularity (and the symbol \perp) with respect to f.
An α-sesquilinear form on V is a function $g: V \times V \rightarrow \mathbb{K}$ such that g is \mathbb{K}-linear in the first coordinate and α-semilinear in the second coordinate. We denote the set of α-sesquilinear forms on V be $\mathrm{F}_{\alpha}(V)$. Observe that $\mathrm{F}_{\alpha}(V)$ is vector space over \mathbb{K}. Moreover, an element $t \in \mathrm{GL}_{\mathbb{K}}(V)$ acts on $\mathrm{F}_{\alpha}(V)$ via

$$
g t:(u, v) \mapsto g\left(u t^{-1}, v t^{-1}\right) \quad u, v \in V
$$

Let $\eta \in\{ \pm\}$. An (α, η)-sesquilinear form on V is an α-sesquilinear form g with $g(v, w)=\eta g(w, v) \alpha$ for all $v, w \in V . \mathrm{F}_{\alpha, \eta}(V)$ denotes the set all (α, η)-sesquilinear forms. Note that $\mathrm{F}_{\alpha, \eta}(V)$ is an \mathbb{F}-subspace of $\mathrm{F}_{\alpha}(V) . \bigwedge_{2}(V)$ denotes the set of symplectic forms on V and $\mathrm{S}_{2}(V)$ denotes the set symmetric bilinear forms on V. So $\mathrm{S}_{2}(V)=\mathrm{F}_{\mathrm{id},+}(V)$. Also $\bigwedge_{2}(V) \leq \mathrm{F}_{\mathrm{id},-}(V)$ with equality if char $\mathbb{K} \neq 2$.

Note that, if $f \neq 0$, then f is an (α, ϵ)-sesquilinear form, where $\epsilon=+$ for $M=\mathrm{O}(V)$ or $M=\mathrm{GU}(V)$ and $\epsilon=-$ for $M=\mathrm{Sp}(V)$.

In the following $M=\mathrm{GL}(V), \mathrm{Sp}(V), \mathrm{GU}(V)$ and $\mathrm{O}(V)$, respectively. In this section we will write the action of M on V as right multiplication.

Lemma 3.1. Let U be an isotropic but not singular \mathbb{K}-subspace of V. Let U_{0} be the set of singular vectors in U. Then $G=\mathrm{O}(V), p=2, U_{0}$ is \mathbb{K}-subspace of U and $\operatorname{dim}_{\mathbb{K}} U / U_{0}=1$. In particular, $\operatorname{dim}_{\mathbb{K}} V^{\perp} \leq 1$.

Proof. Since U is isotropic, $\left.f\right|_{U \times U}=0$, so all elements in U are isotropic. Since U is not singular, there exists a non-singular element u in U. Since u is isotropic, we conclude that $G=\mathrm{O}(V)$ and $h(u) \neq 0$. Then $4 h(u)=h(2 u)=h(u+u)=h(u)+f(u, u)+h(u)=2 h(u)$ and so $p=2$. In particular, K is perfect and for every $k \in \mathbb{K}$ there exists a unique \sqrt{k} such that $\sqrt{k}^{2}=k$. Consider the map

$$
\tau: U \rightarrow \mathbb{K} \text { with } u \rightarrow \sqrt{h(u)}
$$

Observe that $U_{0}=\operatorname{ker} \tau$. Since U is isotropic,

$$
\tau(u+v)=\sqrt{h(u+v)}=\sqrt{h(u)+f(u, v)+h(v)}=\sqrt{h(u)}+\sqrt{h(v)}=\tau(u)+\tau(v)
$$

for all $u, v \in U_{0}$. Also

$$
\tau(k u)=\sqrt{h(k u)}=\sqrt{k^{2} h(u)}=k \tau(u),
$$

and so τ is \mathbb{K}-linear. Thus $U_{0}=\operatorname{ker} \tau$ is \mathbb{K}-subspace and $\operatorname{dim}_{\mathbb{K}} U / U_{0}=\operatorname{dim}_{\mathbb{K}} \mathbb{K}=1$.
Lemma 3.2. Suppose $f \neq 0$. Let $A \leq M$ and U be subspace of V.
(a) V / U^{\perp} and $U / U \cap V^{\perp}$ are isomorphic $\mathbb{F} N_{M}(U)$-modules. In particular, if f is non-degenerate, then V and V^{*} are isomorphic $\mathbb{F} M$-modules.
(b) $\mathrm{C}_{V / V^{\perp}}(A)=\mathrm{C}_{V}(A) / V^{\perp}$.
(c) $\mathrm{C}_{V}(A)=[V, A]^{\perp}$.
(d) $C_{M}(V / U) \leq C_{M}\left(U^{\perp}\right)$; in particular $C_{M}(V / U) \leq C_{M}(U)$ if U is isotropic.
(e) If A acts quadratically on V / V^{\perp}, then A acts quadratically on V and $[V, A]$ is an isotropic subspace of V.

Proof. (a): Replacing V by V / V^{\perp} and U by $U+V^{\perp} / V^{\perp}$ we may assume that $V^{\perp}=0$. For $w \in V$ define $w^{*}: U \rightarrow \mathbb{K}, u \mapsto f(u, w)$. Since f is \mathbb{K}-linear in the first coordinate, $w^{*} \in U^{*}$. Define

$$
\phi: V \rightarrow U^{*}, v \mapsto v^{*} .
$$

Since f is α-linear in the second coordinate, ϕ is α-linear and so \mathbb{F}-linear. Moreover, $\operatorname{ker} \phi=U^{\perp}$. Hence $\operatorname{dim} V / U^{\perp}=\operatorname{dim} V \phi \leq \operatorname{dim} U^{*}=\operatorname{dim} U$. This result applied to U^{\perp} gives $\operatorname{dim} V / U^{\perp \perp} \leq$ $\operatorname{dim} U^{\perp}$ and since $U \leq U^{\perp \perp}$,

$$
\operatorname{dim} U \leq \operatorname{dim} U^{\perp \perp} \leq \operatorname{dim} V / U^{\perp} \leq \operatorname{dim} U
$$

So equality holds in the preceding inequalities. Therefore $\operatorname{dim} V \phi=\operatorname{dim} U^{*}$ and ϕ is surjective. For $g \in N_{M}(U)$ and $u \in U$:

$$
u((w \phi) g)=\left(u g^{-1}\right)(w \phi)=f\left(u g^{-1}, w\right)=f(u, w g)=u((w g) \phi)
$$

so $(w \phi) g=(w g) \phi$. Thus (a) holds.
Put $\bar{V}:=V / V^{\perp}$ and define $\bar{f}: \bar{V} \rightarrow \bar{V} \rightarrow \mathbb{K},\left(v+V^{\perp}, w+V^{\perp}\right) \rightarrow f(v, w)$. Then \bar{f} is a non-degenerate form on \bar{V}.
(b): If $V^{\perp}=0$, there is nothing to prove. So suppose $V^{\perp} \neq 0$, that is $G=\mathrm{O}(V)$, char $\mathbb{K}=2$, and n is odd. Let $v \in V$ with $\bar{v} \in \mathrm{C}_{\bar{V}}(A)$ and $g \in A$. Then $v g=v+u$ for some $u \in V^{\perp}$, so

$$
h(v)=h(v g)=h(v+u)=h(v)+f(u, v)+h(u)=h(v)+h(u) .
$$

Hence $h(u)=0$. Since $u \in V^{\perp}$ and h is non-degenerate this gives $u=0$ and so $v \in \mathrm{C}_{V}(g)$. Thus (b) holds.
(c): By $1.8\left(\mathrm{c}\right.$) and (a) we have $\mathrm{C}_{\bar{V}}(A)=[\bar{V}, A]^{\perp}$. Observe that $[V, A]^{\perp}$ is the preimage of $[\bar{V}, A]^{\perp}$ in V. By (b), $\mathrm{C}_{V}(A)$ is the preimage of $\mathrm{C}_{\bar{V}}(A)$ in V. Thus (c) holds.
(d): Put $C:=\mathrm{C}_{M}(V / U)$. Note that $[V, C] \leq U$ and so by (c), $\mathrm{C}_{V}(C)=[V, C]^{\perp} \geq U^{\perp}$. Hence $C \leq \mathrm{C}_{M}\left(U^{\perp}\right)$. If U is, in addition, isotropic, $U \leq U^{\perp}$ and so $C \leq \mathrm{C}_{M}(U)$.
(e): Suppose that A is quadratic on \bar{V}. Then $[\bar{V}, A] \leq \mathrm{C}_{\bar{V}}(A)=\overline{\mathrm{C}_{V}(A)}$. Thus $[V, A, A]=0$ and $[V, A] \leq \mathrm{C}_{V}(A)=[V, A]^{\perp}$ by (c). Hence $[V, A]$ is isotropic.

Lemma 3.3. Suppose that $f \neq 0$ and U is an isotropic subspace of V with $U \cap V^{\perp}=0$. Put $\bar{V}:=V / U^{\perp}, D:=\mathrm{C}_{\mathrm{GL}(V)}\left(U^{\perp}\right) \cap \mathrm{C}_{\mathrm{GL}(V)}(V / U)$ and

$$
f_{d}(\bar{x}, \bar{y}):=f(x,[y, d]) \text { for all } d \in D, x, y \in V
$$

Let $d \in D$. Then
(a)

$$
\lambda: D \rightarrow \mathrm{~F}_{\alpha}(\bar{V}), d \mapsto f_{d}
$$

is a $\mathbb{Z N}_{M}(U)$-module isomorphism.
(b) $f(x d, y d)=f(x, y)$ for all $x, y \in V$ if and only if $f_{d} \in F_{\alpha,-\epsilon}(\bar{V})$.
(c) Suppose $M=\operatorname{Sp}(V)$ then $d \in M$ if and only if $f_{d} \in \mathrm{~S}_{2}(\bar{V})$.
(d) Suppose $M=\mathrm{GU}(V)$, then $d \in M$ if and only if $f_{d} \in F_{\alpha,-}(\bar{V})$.
(e) Suppose $M=\mathrm{O}(V)$ and U is singular, then $d \in M$ if and only if $f_{d} \in \bigwedge_{2}(\bar{V})$.
(f) Suppose that $M=\mathrm{O}(V)$ and U is not singular. Then there exists a unique $\bar{w} \in \bar{V}$ such that

$$
h(u)=f(w, u)^{2} \quad \text { for all } u \in U
$$

Moreover, $d \in M$ if and only if $d \in S_{2}(\bar{V})$ and

$$
f_{d}(\bar{x}, \bar{x})=f_{d}(\bar{w}, \bar{x})^{2} \quad \text { for all } \bar{x} \in \bar{V}
$$

Proof. Observe that f_{d} is well-defined and α-sesquilinear, so $f_{d} \in \mathrm{~F}_{\alpha}(\bar{V})$. Note that $[V, D] \leq U \leq U^{\perp}$ and so $[\bar{V}, D]=0$. Thus λ is a homomorphism, and for $d \in D, g \in \mathrm{~N}_{M}(U)$ and $h \in \mathrm{~F}_{\alpha}(\overline{\bar{V}})$

$$
\begin{aligned}
\left(f_{d} g\right)(\bar{x}, \bar{y}) & =f_{d}\left(\bar{x} g^{-1}, \bar{y} g^{-1}\right)=f\left(x g^{-1},\left[y g^{-1}, d\right]\right)=f\left(x g^{-1},-y g^{-1}+y g^{-1} d\right) \\
& =f\left(x g^{-1},\left(-y+y\left(g^{-1} d g\right)\right) g^{-1}\right)=f\left(x,-y+y\left(g^{-1} d g\right)\right) \\
& =f_{d^{g}}(\bar{x}, \bar{y})
\end{aligned}
$$

To see that λ is a $\mathbb{Z} \mathrm{N}_{M}(U)$-module isomorphism it remains to show that λ is bijective. The injectivity follows from the fact that $[V, D] \leq U$ and $U \cap V^{\perp}=0$.

Let $g \in \mathrm{~F}_{\alpha}(\bar{V})$. For $u \in U$ define $\phi_{u} \in \bar{V}^{*}$ by $\bar{x} \phi_{u}:=f(x, u)$ for all $x \in V$. Since $U \cap V^{\perp}=0$, the map $U \rightarrow \bar{V}^{*}, u \mapsto \phi_{u}$, is an α-semilinear isomorphism. For $w \in \bar{V}$, the map $t \mapsto g(t, w)$ is in \bar{V}^{*} and so there exists a unique $u_{w} \in U$ with $\bar{x} \phi_{u_{w}}=f\left(x, u_{w}\right)=g(\bar{x}, w)$ for all $x \in V$. Define $d_{g} \in \mathrm{GL}(V)$ by $d_{g}(v):=v+u_{\bar{v}}$. Clearly $d_{g} \in D$, and for all $x, y \in V$:

$$
f_{d_{g}}(\bar{x}, \bar{y})=f\left(x,\left[y, d_{g}\right]\right)=f\left(x, u_{\bar{y}}\right)=g(\bar{x}, \bar{y})
$$

so $f_{d_{g}}=g$, and λ is surjective. Thus (a) holds.
To prove (b) let $d \in D$. We will determine necessary and sufficient conditions for d to be in M.
Since f is an (α, ϵ)-sesquilinear form and U is isotropic,

$$
\begin{gathered}
f(x d, y d)-f(x, y)=f(x+[x, d], y+[y, d])-f(x, y)=f(x,[y, d])+f([x, d], y)= \\
f(x,[y, d])+\epsilon f(y,[x, d]) \alpha=f_{d}(\bar{x}, \bar{y})+\epsilon f_{d}(\bar{y}, \bar{x}) \alpha .
\end{gathered}
$$

Thus d preserves f if and only if

$$
\begin{equation*}
f_{d}(\bar{x}, \bar{y})=-\epsilon f_{d}(\bar{y}, \bar{x}) \alpha \quad \text { for all } \bar{x}, \bar{y} \in \bar{V} \tag{1}
\end{equation*}
$$

That is, if and only if $f_{d} \in \mathrm{~F}_{\alpha,-\epsilon}(\bar{V})$. So (b) follows.
(c) and (d): These statements follow immediately from (b).
(d) and (e): So suppose that $G=\mathrm{O}(V)$ and let $d \in D$ such that (1) holds. Since $\epsilon=1$ and $\alpha=\mathrm{id}_{\mathbb{K}}, f_{d}$ is a skew-symmetric form. Then

$$
\begin{equation*}
h(x d)-h(x)=h(x+[x, d])-h(x)=f(x,[x, d])+h([x, d])=f_{d}(\bar{x}, \bar{x})+h([x, d]) \tag{2}
\end{equation*}
$$

So

$$
\begin{equation*}
d \in \mathrm{O}(V) \text { if and only if } d \in \mathrm{~F}_{\mathrm{id},-}(\bar{V}) \text { and } f_{d}(\bar{x}, \bar{x})=-h([x, d]) \text { for all } x \in V \tag{3}
\end{equation*}
$$

If U is singular, then $h([x, d]=0$ and we conclude that $\sqrt{d})$ holds. So suppose U is not singular. Then $p=2$. Define $\delta: U \rightarrow \mathbb{K}, u \mapsto \sqrt{h(u)}$, and observe that δ is \mathbb{K}-linear, so $\delta \in U^{*}$. On the other hand the map

$$
\phi^{*}: \bar{V} \rightarrow U^{*}, \phi^{*}(\bar{v}): u \mapsto f(v, u)
$$

is an isomorphism. Thus there exists a unique $\bar{w} \in \bar{V}$ with $\phi^{*}(\bar{w})=\delta$. This gives

$$
h(u)=\delta(u)^{2}=f(w, u)^{2} \text { for all } u \in U
$$

Together with (3) we conclude that (e) holds.
Lemma 3.4. Let U be an k-dimensional isotropic subspace of V and $E:=\mathrm{C}_{M}(U) \cap \mathrm{C}_{M}(V / U)$.
(a) Suppose $M=\mathrm{GL}(V)$. Then $E \cong U \otimes_{\mathbb{K}}(V / U)^{*},|E|=|\mathbb{K}|^{k(n-k)}$ and $\left|V / \mathrm{C}_{V}(E)\right|=|\mathbb{K}|^{n-k}$.
(b) Suppose $M=\operatorname{Sp}(V)$. Then $E \cong \mathrm{~S}_{2}\left(U^{*}\right),|E|=|\mathbb{K}|^{\frac{k(k+1)}{2}}$ and $\left|V / \mathrm{C}_{V}(E)\right|=|\mathbb{K}|^{k}$.
(c) Suppose $M=\mathrm{GU}(V)$ Then $E \cong \mathrm{~F}_{\alpha,-}\left(U^{*}\right),|E|=|\mathbb{F}|^{k^{2}}$ and $\left|V / \mathrm{C}_{V}(E)\right|=|\mathbb{F}|^{2 k}$.
(d) Suppose $M=\mathrm{O}(V)$ and U is singular. Then $E \cong \bigwedge_{2}\left(U^{*}\right),|E|=|\mathbb{K}|^{\frac{k(k-1)}{2}},\left|V / \mathrm{C}_{V}(E)\right|=|\mathbb{K}|^{k}$,
(e) Suppose $M=\mathrm{O}(V)$ and U is not singular. Put $U_{0}:=\{u \in U \mid h(u)=0\}, E_{0}:=\mathrm{C}_{E}\left(V / U_{0}\right)$, and $E_{1}:=E \cap \Omega_{n}(V)$. Then $p=2, E_{0} \leq E_{1} \leq E, E_{1} / E_{0} \cong U_{0}, E_{0} \cong \bigwedge_{2}\left(U_{0}^{*}\right)$, and $\left|E_{1}\right|=|\mathbb{K}|^{\frac{k(k-1)}{2}}$. If $V^{\perp} \cap U \neq 0$ then $\left|V / \mathrm{C}_{V}(E)\right|=|\mathbb{K}|^{k-1}$ and $E=E_{1}$. If $V^{\perp} \cap U=0$ then $\left|V / \mathrm{C}_{V}(E)\right|=|\mathbb{K}|^{k}$ and $\left|E / E_{1}\right|=2$.

Here all the isomorphisms are $\mathbb{Z N}_{M}(U)$-module isomorphisms.
Proof. Suppose first that $f=0$, so $M=\mathrm{GL}(V)$. Then clearly $E \cong \operatorname{Hom}_{\mathbb{K}}(V / U, U) \cong U \otimes_{\mathbb{K}}(V / U)^{*}$ and (a) holds.

Suppose next that $f \neq 0$ and $U \cap V^{\perp}=0$. We apply 3.3 with the notation introduced there. Since $[V, E] \leq U, 3.2$ c) gives $\mathrm{C}_{V}(E)=[V, E]^{\perp} \geq U^{\perp}$ and so $E \leq D$. Thus $E=D \cap M$. So 3.3 .c), (d) and (e) imply (b), (c) and (d).

Suppose that $G=\mathrm{O}(V)$ and U is not singular. Let $d \in D$. By 3.3 f there exists $w \in V$ with

$$
\begin{equation*}
h(u)=f(w, u)^{2} \quad \text { for all } u \in U \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
d \in \mathrm{O}(V) \text { if and only if } d \in S_{2}(\bar{V}) \text { and } f_{d}(\bar{x}, \bar{x})=f_{d}(\bar{w}, \bar{x})^{2} \text { for all } x \in V \tag{3}
\end{equation*}
$$

Recall from the proof of 3.3 that the map $\phi^{*}: \bar{V} \rightarrow U^{*}$ with $\bar{v} \phi^{*}: u \mapsto f(v, u)$ is an isomorphism. For $\delta:=\bar{w} \phi^{*}$ we get from (3) that $\operatorname{ker} \delta=U_{0}=w^{\perp} \cap U$. Note that ϕ^{*} also induces an isomorphism $\bar{V} / \mathbb{K} \bar{w} \rightarrow(\operatorname{ker} \delta)^{*}=\left(U_{0}\right)^{*}$.

Consider the map $\tau: E \rightarrow \bar{V}^{*}$ defined by $\bar{x} \tau(d):=f_{d}(\bar{w}, \bar{x})$. By (3) ker τ consists of all $d \in D$ such that f_{d} is a symplectic form on \bar{V} with $\bar{w} \in \operatorname{rad} f_{d}$. Also $f_{d}(\bar{w}, \bar{x})=0 \operatorname{iff} f(w,[x, d])=0$ and (by (2)) iff $h([x, d])=0$. Thus $d \in \operatorname{ker} \tau \operatorname{iff}[V, d] \leq U_{0}$. Hence $\operatorname{ker} \tau=E_{0}$. As $\bar{V} / \mathbb{K} \bar{w} \cong U_{0}^{*}$ we get

$$
\begin{equation*}
E_{0}=\operatorname{ker} \tau \cong \bigwedge_{2}(\bar{V} / \mathbb{K} \bar{w}) \cong \bigwedge_{2}\left(U_{0}^{*}\right) \tag{5}
\end{equation*}
$$

We claim that $\operatorname{Im} \tau=X_{1}:=\left\{\phi \in \bar{V}^{*} \mid \phi(\bar{w}) \in\{0,1\}\right\}$.

If $d \in E$ then (3) applied with $\bar{x}=\bar{w}$ gives $f_{d}(\bar{w}, \bar{w})=f_{d}(\bar{w}, \bar{w})^{2}$ and so $f_{w}(\bar{w}, \bar{w})^{2} \in\{0,1\}$. Hence $\operatorname{Im} \tau \leq X_{1}$.

Conversely let $\phi \in \bar{V}^{*}$ with $\phi(\bar{w})=1$. Define $g: \bar{V} \times \bar{V},(\bar{x}, \bar{y}) \mapsto \phi(\bar{x}) \phi(\bar{y})$. Then g is a symmetric bilinear form on \bar{V}, so by 3.3 with $d_{g}:=g \lambda^{-1}$

$$
f_{d_{g}}(\bar{w}, \bar{x})=g(\bar{w}, \bar{x})=\phi(\bar{x}) \phi(\bar{w})=\phi(\bar{x})
$$

and

$$
f_{d_{g}}(\bar{x}, \bar{x})=g(\bar{x}, \bar{x})=\phi(\bar{x})^{2}=g(\bar{w}, \bar{x})^{2}=f_{d_{g}}(\bar{w}, \bar{x})
$$

Thus by $(3), d_{g} \in E$ and $\tau\left(d_{g}\right)=\phi$. Any $\phi \in \bar{V}^{*}$ with $\phi(\bar{w})=0$ can be written as a sum $\phi_{1}+\phi_{2}$ where $\phi_{i} \in \bar{V}^{*}$ and $\phi_{i}(\bar{w})=1$. It follow that $\tau(E)=X_{1}$.

Put $X_{0}:=\left\{\phi \in \bar{V}^{*} \mid \phi(\bar{w})=0\right\}$. Then $X_{0} \cong(\bar{V} / \mathbb{K} \bar{w})^{*} \cong U_{0}$. Also $\left|X_{1} / X_{0}\right|=2$ and so (e) holds. Thus we have proved all claims in the case $V^{\perp} \cap U=0$.

Suppose now that $V^{\perp} \cap U \neq 0$. Then V is an orthogonal space and $\operatorname{dim} V^{\perp}=1$, so $V^{\perp} \leq U$. Let \tilde{V} be an orthogonal space of dimension $n+1$ with $V \leq \tilde{V}$ and $\tilde{V} \tilde{V}^{\perp} \underset{\tilde{V}}{\sim}$; in particular, $\tilde{V}^{\perp} \cap U=0$. Put $\tilde{M}=\mathrm{O}(\tilde{V})$ and $\tilde{E}:=\mathrm{C}_{\tilde{M}}(U) \cap \mathrm{C}_{\tilde{M}}(\tilde{V} / U)$. Then holds for \tilde{V}, \tilde{M} and \tilde{E}.

Note that in $\tilde{V}, V^{\perp \perp}=V$. Since $V^{\perp} \leq U$, this gives $\tilde{E} \leq \mathrm{C}_{\tilde{M}}\left(V^{\perp}\right) \leq \mathrm{N}_{\tilde{M}}(V)$ and we obtain a homomorphism $\beta: \tilde{E} \rightarrow E, e \mapsto e \mathrm{C}_{\tilde{M}}(V)$. Note that ker β has order two, indeed the only non-trivial element in $\operatorname{ker} \beta$ is the transvection associated to the 1 -space V^{\perp}. By Witt's theorem, β is onto. Also $\operatorname{ker} \beta$ is not contained in $\tilde{E} \cap \Omega(\tilde{V})$. Thus applied to \tilde{M} shows that $E \cong \tilde{E}_{0}$, and also holds in this case.

Lemma 3.5. Let U be a isotropic subspace of V, let U_{0} be the subspace of all singular elements of U and put $k=\operatorname{dim}_{\mathbb{K}} U_{0}$. Suppose that \mathbb{K} is finite and $k \geq 2$. Put $E:=\mathrm{C}_{M}(U) \cap \mathrm{C}_{M}(V / U)$, and $P:=\mathrm{O}^{p^{\prime}}\left(\mathrm{N}_{M^{\prime}}(U)\right)$, where $p=\operatorname{char} \mathbb{K}$.
(a) If $M=\mathrm{GL}(V)$ or $\mathrm{GU}(V)$ then E is a simple $\mathbb{F}_{p} P$-module.
(b) If $M=\mathrm{Sp}(V)$ and p is odd, then E is a simple $\mathbb{F}_{p} P$ module.
(c) If $M=\mathrm{O}(V)$ and U is singular, then one of the following holds:

1. $k \geq 3$ and E is a simple $\mathbb{F}_{p} P$-module.
2. $k=2$, P centralizes E and E is a simple $\mathbb{F}_{p} \mathrm{~N}_{M^{\prime}}(U)$-module.
(d) Suppose $M=\operatorname{Sp}(V)$ and $p=2$ or $M=\mathrm{O}(V)$ and U is not singular. Then $p=2$. Let E_{0} be the sum of the simple $\mathbb{F}_{2} P$-submodules of E. Then one of the following holds:
3. $k \geq 3, E_{0}$ is a simple $\mathbb{F}_{2} P$-module, and $E_{0} \cong \bigwedge_{2} U_{0}^{*}$.
4. $k=2,|\mathbb{K}|>2$ or $V^{\perp} \not \leq U, E_{0}=C_{E}(P) .\left|E_{0}\right|=|\mathbb{K}|$ and $\mathrm{N}_{M^{\prime}}(U)$ acts simply on E_{0}.
5. $k=2,|\mathbb{K}|=2, M=\operatorname{Sp}(V)$ or $V^{\perp} \leq U$, and E is the direct sum of simple $\mathbb{F}_{2} P$-modules of order 2 and 4.

Proof. Let S be a Sylow p-subgroup of P and D be a simple $\mathbb{F}_{p} P$-submodule of E.
Assume first that $M=\mathrm{GL}(V)$ and put $\left.S_{0}:=\mathrm{C}_{S}(V / U)\right)$. Then S_{0} induces a Sylow p-subgroup of $\mathrm{GL}_{\mathbb{K}}(U)$ on U. Hence 3.4 implies that $\mathrm{C}_{E}\left(S_{0}\right) \cong x \otimes(V / U)^{*}$ for some $0 \neq x \in U$. Thus $\mathrm{C}_{P}(U)$ acts simply on $\mathrm{C}_{E}\left(S_{0}\right)$ and so $\mathrm{C}_{E}\left(S_{0}\right) \leq D$. Since $\mathrm{C}_{P}(V / U)$ acts simply on U, we conclude that $E=\left\langle\mathrm{C}_{E}\left(S_{0}\right)^{\mathrm{C}_{P}(V / U)}\right\rangle \leq D$. Thus E is a simple $\mathbb{F}_{p} P$-module.

Assume next that $f \neq 0$ and $U \cap V^{\perp}=0$. Put $W:=V / U^{\perp}$ and note that $\operatorname{dim} W=\operatorname{dim} U$. By Witt's Theorem S induces a Sylow p-subgroup of $\mathrm{GL}_{\mathbb{K}}(U)$ on U and thus also on W. Thus $C_{W}(S)$ is 1-dimensional. By $3.4 E$ is embedded into $\mathrm{F}_{\alpha,-\epsilon}(W)$. Let $1 \neq x \in \mathrm{C}_{D}(S)$, and let $f_{x} \in \mathrm{~F}_{\alpha,-\epsilon}(W), f_{x}$ as in 3.3. Then f_{x} is invariant under S, so $W / \operatorname{rad} f_{x}$ possesses a non-degenerate $(\alpha,-\epsilon)$ sesquilinear form invariant under a Sylow p-subgroup of $\mathrm{GL}\left(W / \operatorname{rad} f_{x}\right)$. If follows that either $W / \operatorname{rad} f_{x}$ is 1-dimensional or $\alpha=\operatorname{id}_{\mathbb{K}},-\epsilon=-1$ and $\operatorname{dim} W / \operatorname{rad} f_{x}=2$.

Suppose that $M=\operatorname{Sp}(V)$ and p is odd or that $M=\mathrm{GU}(V)$, so $\operatorname{dim}_{\mathbb{K}} U=k$. Then P induces $\mathrm{SL}_{\mathbb{K}}(U)$ on U. Moreover $\operatorname{dim} W / \operatorname{rad} f_{x}=1$ and $\mathrm{N}_{P}(S)$ acts simply on the subspace $\mathbb{F} f_{x}$ of $F_{\alpha,-\epsilon}(W)$. Also for any $\psi \in \mathrm{F}_{\alpha,-\epsilon}(W)$ there exists a basis $\left(x_{i}\right)_{1 \leq i \leq k}$ of W which is orthogonal with respect to ψ, that is, $\psi\left(x_{i}, x_{j}\right)=0$ for $i \neq j$. It follows that ψ is a \mathbb{F}-linear combination of conjugates of f_{x} under P and so $D=E$.

Suppose that $M=\mathrm{O}(V)$ and U is singular. Then P induces $\mathrm{SL}_{\mathbb{K}}(U)$ on U. By 3.4 d$) E \cong \bigwedge_{2} W$ and f_{x} is a symplectic form. Thus $\operatorname{dim} W / \operatorname{rad} f_{x}=2$. Let $\psi \in \bigwedge_{2}(W)$. Then W has basis x_{i}, y_{i}, z_{s}, $1 \leq i \leq r$ and $1 \leq s \leq t$, where $\psi\left(x_{i}, y_{i}\right)=1, \psi\left(y_{i}, x_{i}\right)=-1$, and $\psi(c, d)=0$ for any other pair of basis elements.

Assume that $k \geq 3$. Then P acts transitively on the set of symplectic forms on W with radical of codimension 2. Hence ψ is a sum of P-conjugates of f_{x}. Thus $D=E$ and c:1 holds in this case. Assume that $k=2$. Then P centralizes $\bigwedge^{2} W$. Also any scalar multiplication on W is induced by an element of $N_{M^{\prime}}(U)$ and so $N_{M^{\prime}}(U)$ acts simply on $\bigwedge^{2} W$. Thus c:2 holds.

Suppose that $M=\mathrm{O}(V)$ and U is not singular. Put $F=C_{M}\left(V / U_{0}\right)$. Note that $F \leq C_{M}\left(U_{0}^{\perp}\right)$ by 3.2 d), and so $F \leq E$ since $U \leq U_{0}^{\perp}$. By the preceding case $F \cong \bigwedge_{2}\left(U_{0}^{*}\right)$ and either $k=3$ and F is a simple $\mathbb{F}_{p} P$-module or $k=2,[F, P]=1$ and F is a simple $N_{M^{\prime}}(U)$-module. Thus $F \leq E_{0}$ and it suffices to show that $E_{0} \leq F$. Let \bar{w} be as in 3.3 f$)$. The uniqueness of \bar{w} show that $\bar{w} \in C_{W}(S)$. Since $\operatorname{dim} W=\operatorname{dim} U>\operatorname{dim} U_{0} \geq 2$ and $\operatorname{dim} W / \operatorname{rad} f_{x} \leq 2$ we have $\operatorname{rad} f_{x} \neq 0$. Hence $C_{\operatorname{rad} f_{x}}(S) \neq 0$ and since $C_{W}(S)$ is 1-dimensional, $\bar{w} \in \operatorname{rad} f_{x}$. So 3.3 f) shows that f_{x} is symplectic and thus $f_{x} \in F$. Since D is simple, $D \leq F$ and $E_{0} \leq F$.

Suppose $M=\operatorname{Sp}(V)$ and $p=2$. Then by 3.4 b $E \cong \mathrm{~S}_{2}\left(U^{*}\right)$, and by 3.2 ab $W \cong U^{*}$, so $S_{2}\left(U^{*}\right) \cong S_{2}(W)$. Since $p=2, \bigwedge_{2}(W) \leq \mathrm{S}_{2}(W)$. Let F be the inverse image of $\bigwedge_{2}(W)$ in E. Then $F \cong \bigwedge_{2}(W) \cong \bigwedge_{2}\left(U^{*}\right)$. As seen in the case where U is singular either $k \geq 3$ and E_{0} is a simple $\mathbb{F}_{p} P$-module, or $k=2,[F, P]=1$ and $N_{M^{\prime}}(U)$ acts simply on F. If $|\mathbb{K}|=2$ and $k=2$, then $|U|=4$ and $|E|=8$ and it is easy to see that d:3) holds. So suppose that $|\mathbb{K}|>2$ or $k>2$. We will show that $D \leq F$. For this we just need to show that there exists $1 \neq u \in D$ such that f_{u} is a symplectic form. Fix a basis $\left(v_{i}\right)$ for W and for $e \in E$ let M_{e} be the matrix $\left(f_{e}\left(v_{i}, v_{j}\right)\right)$. Then M_{e} is symmetric and $e \in F$ if and only if all diagonal elements of M_{e} are zero. Moreover, $\operatorname{dim} W / \operatorname{rad} f_{e}=\operatorname{rank} M_{e}$. We may assume that f_{x} is not symplectic and so there exists $v \in V$ with $f_{x}(v, v) \neq 0$. Since \mathbb{K} is perfect we can choose v such that $f_{x}(v, v)=1$. Put $s=\operatorname{dim} W / \operatorname{rad} f_{x}$. Then either $s=1$ and $V=\mathbb{K} v+\operatorname{rad} f_{x}$, or $s=2$, there exists $w \in W$ with $f_{x}(v, w)=0$ and $f_{x}(w, w)=1$ and $V=\mathbb{K} v+\mathbb{K} w+\operatorname{rad} f_{x}$. So we can choose our basis such that $f_{x}\left(v_{i}, v_{j}\right)=1$ for $1 \leq i=j \leq s$ and $f_{x}\left(v_{i}, v_{j}\right)=0$ for all other i, j.

Suppose $s=1$. Note that

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

The three matrices on the left side of the equation all are symmetric of rank 1 and so conjugate under $\mathrm{SL}_{2}(\mathbb{K})$ on it actions on $\mathrm{S}_{2}\left(\mathbb{K}^{2}\right)$. The matrix on the right is symplectic. Thus $\left\langle d^{P}\right\rangle \cap F \neq 1$ and so $D \leq F$.

Suppose that $s=2$ and $|\mathbb{K}|>2$. Pick $a, b \in \mathbb{K} \backslash\{0,1\}$ with $a+b=1$. Note that

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right)+\left(\begin{array}{ll}
b & a \\
a & b
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

The three matrices on the left side of the equation are symmetric, not symplectic and have determinant 1. So they are conjugate under $\mathrm{SL}_{2}(\mathbb{K})$ on it actions on $\mathrm{S}_{2}\left(\mathbb{K}^{2}\right)$. The matrix on the right is symplectic and so again $D \leq F$.

Suppose that $s=2,|\mathbb{K}|=2$ and $k \geq 3$. We have

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

The two matrices on the left side of the equation are symmetric, not symplectic and have rank 2. So they are conjugate under $\mathrm{SL}_{3}(\mathbb{K})$ on it actions on $\mathrm{S}_{2}\left(\mathbb{K}^{3}\right)$. The matrix on the right is symplectic and so again $D \leq F$.

We have proved that $D \leq F$. So $E_{0}=F$ and d:1) or d:2 holds.
Assume finally that $M=\mathrm{O}(V), U$ is not singular and $U \cap V^{\perp} \neq 0$. Then $p=2$ and $M \cong$ $\operatorname{Sp}\left(V / V^{\perp}\right)$. Hence the case where $M=\operatorname{Sp}(V)$ applied to V / V^{\perp} and U / V^{\perp} shows that (d) holds.

4 Smith's Lemma and Ronan-Smith's Lemma

In this section we provide a few pieces from the theory of equicharacteristic representations of groups of Lie-type. The material presented here essentially comes from [GLS3, Section 2.8] except that we are looking at representations over \mathbb{F}_{p} rather than its algebraic closure $\overline{\mathbb{F}_{p}}$.

Lemma 4.1 (Steinberg's Lemma). Let M be a genuine group of Lie-type defined over a finite field of characteristic p. Let V be a simple $\mathbb{F}_{p} M$-module, $S \in \operatorname{Syl}_{p}(M)$, and $B:=\mathrm{N}_{M}(S)$. Put $\mathbb{K}:=$ $\operatorname{End}_{M}(V)$. Then $\mathrm{C}_{V}(S)$ is 1-dimensional over \mathbb{K}, \mathbb{K} is isomorphic to the subring of $\operatorname{End}_{\mathbb{F}_{p}}\left(\mathrm{C}_{V}(S)\right)$ generated by the image of B, and $\mathrm{C}_{V}(S)$ is a simple $\mathbb{F}_{p} B$-module.
Proof. Choose an embedding $\sigma: \mathbb{K} \rightarrow \overline{\mathbb{F}_{p}}$ and put $\bar{V}=\overline{\mathbb{F}_{p}} \otimes_{\mathbb{K}} V$. Then \bar{V} is a simple $\overline{\mathbb{F}_{p}} M$-module. Thus by [St, Theorem 46] $\mathrm{C}_{\bar{V}}(S)$ is 1-dimensional over $\overline{\mathbb{F}_{p}}$ and so $\mathrm{C}_{V}(S)$ is 1-dimensional over \mathbb{K}. Define $\lambda: B \rightarrow \mathbb{K}$ by $v^{b}=\lambda(b) v$ for all $b \in B, v \in \mathrm{C}_{V}(S)$, and let \mathbb{E} be the subfield of \mathbb{K} generated by $\lambda(B)$. Let $\rho \in \operatorname{Aut}_{\mathbb{E}}\left(\overline{\mathbb{F}_{p}}\right)$. Then [St, Theorem 46] shows that $\bar{V} \cong \bar{V}^{\rho}$ as a $\mathbb{K} M$-module. Thus ρ centralizes \mathbb{K} and so $\mathbb{K}=\mathbb{E}$. Since $\mathrm{C}_{V}(S)$ is 1-dimensional over \mathbb{K} this implies that $\mathrm{C}_{V}(S)$ is a simple $\mathbb{F}_{p} B$-module.

Let \mathbb{F} be a finite field of characteristic p, M a finite group, V a simple $\mathbb{F} M$-module and W a simple $\mathbb{F}_{p} M$-submodule. Recall that the field $\mathbb{K}:=\operatorname{End}_{M}(W)$ is called the field of definition of the $\mathbb{F} M$-module W.

Theorem 4.2 (Smith's Lemma). Let M be a genuine group of Lie-type defined over a finite field of characteristic p. Let V be a simple $\mathbb{F}_{p} M$-module, $\mathbb{K}:=\operatorname{End}_{M}(V), E$ a parabolic subgroup of $M, L:=\mathrm{O}^{p^{\prime}}(E)$ and $P=\mathrm{N}_{M}(L)$. Then $L=O^{p^{\prime}}(P), \mathrm{O}_{p}(E)=\mathrm{O}_{p}(P)=\mathrm{O}_{p}(L)$, and P is a Lie-parabolic subgroup of M. Moreover, $\mathrm{C}_{V}\left(\mathrm{O}_{p}(P)\right)$ is a simple $\mathbb{F}_{p} P$-module, an absolutely simple $\mathbb{K} L$-module, and an absolutely simple $\mathbb{K} E$-module.

Proof. Let $S \in \operatorname{Syl}_{p}(E)$ and $B=\mathrm{N}_{M}(S)$. Then $P=B L=B E$ and so P is a Lie-parabolic subgroup of M. Since B / S is a p^{\prime}-group we conclude that $E=\mathrm{O}^{p^{\prime}}(P)$ and $\mathrm{O}_{p}(E)=\mathrm{O}_{p}(L)=\mathrm{O}_{p}(P)$.

Choose an embedding $\sigma: \mathbb{K} \rightarrow \overline{\mathbb{F}_{p}}$ and put $\bar{V}=\overline{\mathbb{F}_{p}} \otimes_{\mathbb{K}} V$. Then \bar{V} is a simple $\overline{\mathbb{F}_{p}} M$-module. Put $U=\mathrm{C}_{V}\left(\mathrm{O}_{p}(P)\right)$ and $\bar{U}=\mathrm{C}_{\bar{V}}\left(\mathrm{O}_{p}(P)\right)=\overline{\mathbb{F}_{p}} \otimes_{\mathbb{K}} U$. By Ti] \bar{U} is a simple $\overline{\mathbb{F}_{p}} P$-module.

Let Y be a simple $\overline{\mathbb{F}_{p}} L$-submodule of \bar{U}. Then $\mathrm{C}_{Y}(S) \neq 0$, and since by [St, Theorem 46$] \mathrm{C}_{\bar{V}}(S)$ is 1-dimensional over $\overline{\mathbb{F}_{p}}, \mathrm{C}_{\bar{V}}(S) \leq Y$. Thus

$$
\bar{U}=\left\langle\mathrm{C}_{\bar{U}}(S)^{P}\right\rangle=\left\langle\mathrm{C}_{\bar{U}}(S)^{B L}\right\rangle=\left\langle\mathrm{C}_{\bar{U}}(S)^{L}\right\rangle \leq Y
$$

so \bar{U} is simple $\overline{\mathbb{F}_{p}} L$. Thus, U is an absolutely simple $\mathbb{K} L$-module, and since $L \leq E, U$ is also an absolutely simple $\mathbb{K} E$-module.

Let X be a simple $\mathbb{F}_{p} P$-submodule of U. Then again $0 \neq \mathrm{C}_{X}(S)$ is B-invariant and since $\mathrm{C}_{V}(S)$ is a simple $\mathbb{F}_{p} B$-module by 4.1, $\mathrm{C}_{V}(S) \leq X$. Since $\left\langle\mathrm{C}_{V}(S)^{P}\right\rangle$ is a \mathbb{K}-submodule of U we conclude that $X=U$.

Theorem 4.3 (Ronan-Smith's Lemma). Let M be a universal group of Lie-type defined over a finite field of characteristic p, S a Sylow p-subgroup of $M, P_{1}, P_{2}, \ldots, P_{n}$ the minimal Lie-parabolic subgroups of M containing S, and $L_{i}=\mathrm{O}^{p^{\prime}}\left(P_{i}\right)$. Let \mathcal{V} be the class of all tuples $\left(\mathbb{K}, V_{1}, V_{2}, \ldots V_{n}\right)$ such that
(i) \mathbb{K} is a finite field of characteristic p.
(ii) Each V_{i} is an absolutely simple $\mathbb{K} L_{i}$-module.
(iii) $\mathbb{K}=\left\langle\mathbb{K}_{i} \mid 1 \leq i \leq n\right\rangle$, where \mathbb{K}_{i} is the field of definition of the $\mathbb{K} L_{i}$-module V_{i}.

Define two elements $\left(\underset{\sim}{\mathbb{K}}, V_{1}, V_{2}, \ldots V_{n}\right)$ and $\left(\tilde{\mathbb{K}}, \tilde{V}_{1}, \tilde{V}_{2}, \ldots \tilde{V}_{n}\right)$ of \mathcal{V} to be isomorphic if there exists a field isomorphism $\sigma: \tilde{\mathbb{K}} \rightarrow \mathbb{K}$ such that $V_{i} \cong \tilde{V}_{i}^{\sigma}$ as an $\mathbb{K} L_{i}$-module for all $1 \leq i \leq n$. Then the map

$$
V \rightarrow\left(\operatorname{End}_{M}(V), \mathrm{C}_{V}\left(\mathrm{O}_{p}\left(L_{i}\right)\right), \ldots \mathrm{C}_{V}\left(\mathrm{O}_{p}\left(L_{n}\right)\right)\right) \quad\left(V \text { a simple } \mathbb{F}_{p} M \text {-module }\right)
$$

induces a bijection between the isomorphism classes of simple $\mathbb{F}_{p} M$-modules and the isomorphism classes of \mathcal{V}.

Proof. Let V be a simple $\mathbb{F}_{p} M$-module and put $\mathbb{K}:=\operatorname{End}_{M}(V)$ and $V_{i}:=\mathrm{C}_{V}\left(\mathrm{O}_{p}\left(L_{i}\right)\right)$. By Smith's Lemma 4.2, V_{i} is an absolutely simple $\mathbb{K} L_{i^{\prime}}$-module. Let \mathbb{K}_{i} be the field of definition of the $\mathbb{K} L_{i^{-}}$ module V_{i}. Put $B:=\mathrm{N}_{M}(S)$. By $4.1 \mathbb{K}$ is generated by the image of B in $\operatorname{End}_{\mathbb{F}_{p}}\left(\mathrm{C}_{V}(S)\right)$. Moreover, each \mathbb{K}_{i} is generated by the image of $B \cap L_{i}$ in $\mathrm{C}_{V}(S)$. Since $B=\left\langle B \cap L_{i}, 1 \leq i \leq n\right\rangle$ we conclude that $\mathbb{K}=\left\langle\mathbb{K}_{i} \mid \underset{\tilde{V}}{1} \leq i \leq n\right\rangle$.

Clearly, if \tilde{V} is an $\mathbb{F}_{p} M$-module isomorphic to V, then the corresponding elements of \mathcal{V} are isomorphic.

Now let $\left(\mathbb{K}, V_{1}, V_{2}, \ldots V_{n}\right) \in \mathcal{V}$. Pick $0 \neq v_{i} \in \mathrm{C}_{V_{i}}(S)$ and define λ_{i}, n_{i} and μ_{i} as in St, Theorem 46] applied to the $\overline{\mathbb{F}_{p}} L_{i} / \mathrm{O}_{p}\left(L_{i}\right)$-module $\bar{V}_{i}=\overline{\mathbb{F}_{p}} \otimes_{\mathbb{K}} V_{i}$. Since $B / S=X_{i=1}^{n}\left(\underline{B \cap} L_{i}\right) / S$, there exists a unique homomorphism $\lambda: B \rightarrow \overline{\mathbb{F}_{p}}$ with $\left.\lambda\right|_{B \cap L_{o}}=\lambda_{i}$. Let \bar{V} be the simple $\overline{\mathbb{F}_{p}} M$-module obtained from [St, Theorem 46]. Since $\mathrm{C}_{\bar{V}}\left(\mathrm{O}_{p}\left(V_{i}\right)\right)$ is simple we conclude from [St, Theorem 46] applied to L_{i} that $\mathrm{C}_{\bar{V}}\left(\mathrm{O}_{p}\left(V_{i}\right)\right) \cong \overline{V_{i}}$. Let V be a simple $\mathbb{F}_{p} M$-submodule of \bar{V} and put $\mathbb{E}=\operatorname{End}_{M}(V)$. Then $\bar{V} \cong \overline{\mathbb{F}_{p}} \otimes_{\mathbb{E}} V$ as an $\overline{\mathbb{F}_{p}} M$-module. It is now easy to see that $\mathbb{E} \cong \mathbb{K}$, that V is send to $\left(\mathbb{K}, V_{1}, V_{2}, \ldots V_{n}\right) \in \mathcal{V}$ and that V is unique up to isomorphism with this property.

5 Generating Genuine Groups of Lie-type

Lemma 5.1. Let G be a simple genuine group of Lie Type over a field of characteristic $p, P^{+} a$ Lie-parabolic subgroup of G and P^{-}an opposite Lie-parabolic. Then $G=\left\langle\mathrm{O}_{p}\left(P^{+}\right), \mathrm{O}_{p}\left(P^{-}\right)\right\rangle$.

Proof. Put $L=\left\langle\mathrm{O}_{p}\left(P^{+}\right), \mathrm{O}_{p}\left(P^{-}\right)\right\rangle$. Since P^{+}is opposite to $P^{-}, G=\left\langle P^{+}, P^{-}\right\rangle$and $P^{\epsilon}=$ $\mathrm{O}_{p}\left(P^{\epsilon}\right)\left(P^{+} \cap P^{-}\right)$. It follows that $L \unlhd L\left(P^{+} \cap P^{-}\right)=\left\langle P^{+}, P^{-}\right\rangle=G$, and since G is simple, $G=L$.

Lemma 5.2. Let $G \cong G_{2}(q), p=q^{k}$, P a Lie-parabolic subgroup of G with $\mathrm{Z}\left(\mathrm{O}^{p^{\prime}}(P)\right)=1$ and $A \unlhd P$ with $|A|=q^{3}$. Then $G=\left\langle A, A^{t}\right\rangle$ for some $t \in G$.

Proof. Choose a root system Φ for G such that P is a Lie-parabolic with respect to Φ and let N / H be the corresponding Weyl-group. Let $\mathcal{R}_{l}\left(\mathcal{R}_{s}\right)$ be set root subgroups in G corresponding to the long (short) roots in Φ. Put $L=\left\langle\mathcal{R}_{l}\right\rangle$. Then L is a genuine group of Lie-type of type A_{2} and $P \cap L$ is a Lie-parabolic subgroup of L with $L \cap A=\mathrm{O}_{p}(P \cap L)$. Since $N / H \cong D_{12}$ we can choose $t \in N \backslash H$ with $[t, N] \leq H$. Put $K=\left\langle A, A^{t}\right\rangle$. Since $(P \cap L)^{t}$ is opposite to $P \cap L$ in L, 5.1 implies that $L=\left\langle L \cap A,(L \cap A)^{t}\right\rangle$. Thus $L \leq K$. Since $(N \cap L) H / H \cong D_{6}$ we have $N=(L \cap H)\langle t\rangle H$ and so N normalizes K. Since N acts transitive \mathcal{R}_{s} and there exists $R \in \mathcal{R}_{s}$ with $R \leq A,\left\langle\mathcal{R}_{s}\right\rangle \leq K$. Hence $G=\left\langle\mathcal{R}_{l}, \mathcal{R}_{s}\right\rangle \leq K$ and $G=K$.

Lemma 5.3. Let $G \cong \mathrm{SL}_{n}(\mathbb{K})$. Then G is generated by n root subgroups.
Proof. Let $I=\{1, \ldots, n\}$ and $\Phi=\left\{e_{i}-e_{j} \mid i, j \in I, i \neq j\right\}$ by the root system for G and for $\phi \in \Phi$ let Z_{ϕ} be the corresponding root subgroup. Then

$$
\begin{equation*}
\left[Z_{e_{i}-e_{j}}, Z_{e_{j}-e_{k}}\right]=Z_{e_{i}-e_{k}} \text { for all distinct } i, j, k \text { in } I \tag{*}
\end{equation*}
$$

Put $\left.\left.U:=\left\langle Z_{e_{i}-e_{i+1}}\right| n \neq i \in I\right\}\right\rangle$ and $L:=\left\langle U, Z_{e_{n}-e_{1}}\right\rangle$. Let $i, j \in I$ with $i<j$.
We will first show by induction on $j-i$ that $Z_{e_{i}-e_{j}} \in U$. If $j-i=1$, this holds by definition of U. So suppose $j-i>1$ and by induction that $Z_{e_{i}-e_{j-1}} \leq U$. Thus using (*),

$$
Z_{e_{i}-e_{j}}=\left[Z_{e_{i}-e_{j-1}}, Z_{e_{j-1}-e_{j}}\right] \leq U
$$

Next we will show by downwards induction on $j-i$, then $Z_{e_{j}-e_{i}} \leq L$. If $j-i=n-1$, then $j=n$ and $i=1$ and so this holds by definition on L. So suppose $j-i<n-1$.

Assume that $i>1$ and by induction that $Z_{e_{j}-e_{i-1}} \leq L$. Then by (*)

$$
Z_{e_{j}-e_{i}}=\left[Z_{e_{j}-e_{i-1}}, Z_{e_{i-1}-e_{i}}\right] \leq U
$$

Assume that $i=1$. Then $j<n$ and by induction $Z_{e_{j+1}-e_{i}} \leq U$. So by (*)

$$
Z_{e_{j}-e_{i}}=\left[Z_{e_{j}-e_{j+1}}, Z_{e_{j+1}-e_{i}}\right] \leq U
$$

Thus L contains all $Z_{\phi}, \phi \in \Phi$ and so $L=M$.
Lemma 5.4. Let H be quasisimple with $H / \mathrm{Z}(H) \cong \operatorname{Alt}(6)$ and $\mid \mathrm{Z}(H) \|$. Let $S \in \operatorname{Syl}_{2}(H)$, $B=$ $N_{H}(S)$, and M_{1} and M_{2} be the two maximal subgroups of H containing B. Let \mathbb{K} be a field of characteristic 2 , V be a faithful $\mathbb{K} H$-module, U a simple $\mathbb{K} B$-submodule of V and put $U_{i}:=\left\langle U^{M_{i}}\right\rangle$. Suppose that
(i) $V=\left\langle U^{M}\right\rangle$,
(ii) $U=U_{1}$, and
(iii) $\operatorname{dim}_{\mathbb{K}} U_{2}=2 \operatorname{dim}_{\mathbb{K}} U$.

Then the following hold:
(a) Suppose $H \cong \operatorname{Alt}(6)$, then V is a quotient of the natural even permutation module for H over \mathbb{K}. In particular, $V / \mathrm{C}_{V}(H)$ is a natural $\mathbb{K} A l t(6)$-module for $H, \operatorname{dim}_{\mathbb{K}} \mathrm{C}_{V}(H) \leq 1$ and $\mathrm{C}_{V}(H) \leq$ $\left\langle U_{2}^{M_{1}}\right\rangle$.
(b) Suppose $H \sim 3 \cdot \operatorname{Alt}(6)$. Let \mathbb{E} be subring of $\operatorname{End}_{\mathbb{K} H}(V)$ generated by the images of \mathbb{K} and $\mathrm{Z}(H)$. Then \mathbb{E} is a field, $\mathbb{E}=\mathbb{K}(\xi)$ for $\xi \in \mathbb{E}$ with $|\xi|=3, \operatorname{dim}_{\mathbb{E}} U=1$ and $\operatorname{dim}_{\mathbb{E}} V=3$.

Proof. Since $S \unlhd B$ and U is a simple $\mathbb{F}_{2} B$-module, $[U, S]=0$. As the Sylow 2-subgroups of Alt(6) are self-normalizing, $B=S \mathrm{Z}(H)$, and so U is a simple $\mathbb{K} \mathrm{Z}(H)$-module.

Since $V=\left\langle U^{M}\right\rangle, \mathrm{Z}(H)$ acts homogeneously on V and so the subring \mathbb{E} of $\operatorname{End}_{\mathbb{K} H}(V)$ generated by the images of \mathbb{K} and $\mathrm{Z}(H)$ is a field. Moreover, $\mathbb{E}=\mathbb{K}$ if $\mathrm{Z}(H)=1$ or \mathbb{K} contains a non-trivial third root of unity; in the other case $\mathbb{E}=\mathbb{K}(\xi)$ where $\xi \in \mathbb{E} \backslash \mathbb{K}$ with $\xi^{3}=1$. Also $\operatorname{dim}_{\mathbb{E}} U=1$ and since $\operatorname{dim}_{\mathbb{K}} U_{2}=2 \operatorname{dim}_{\mathbb{K}} U, \operatorname{dim}_{\mathbb{E}} U_{2}=2$.

Let A be the natural \mathbb{F}_{2} Alt(6)-module for H with $\mathrm{C}_{A}\left(M_{1}\right) \neq 0$. Then there exists an M equivariant bijection $A^{\sharp} \rightarrow U_{1}^{M}, a \rightarrow U_{a}$. We now use the fact that $\operatorname{Alt}(6) \cong S p_{4}(2)^{\prime}$ and A is also a natural $S p_{4}(2)^{\prime}$-module for H, so there exists an H-invariant non-degenerate symplectic form on A.

For $B \subseteq A$ define $U_{B}:=\left\langle U_{b} \mid b \in B^{\sharp}\right\rangle$ and $W_{B}:=U_{B^{\perp}}$, where B^{\perp} is the \mathbb{F}_{2}-subspace of A perpendicular to B with respect to the above mentioned symplectic form on A.

Let B be a singular 2-subspace of A. By Witt's Theorem H acts transitively on the singular 2-subspaces of A and so U_{B} is a conjugate of U_{2}. In particular,

$$
\begin{equation*}
U_{B}=U_{b}+U_{c} \text { and } U_{a+c} \leq U_{a}+U_{c} \text { for } B=\langle a, c\rangle \tag{*}
\end{equation*}
$$

Now let $a \in A^{\sharp}$. Since $\operatorname{dim}_{\mathbb{F}_{2}} A=4, a^{\perp}=\langle a\rangle \oplus B$, where B is a non-singular 2-subspace. Then $\langle a, b\rangle$ is singular for every $b \in B$. Thus by ($*$)

$$
\begin{equation*}
W_{a}=\Sigma_{b \in B^{\sharp}} U_{\langle a, b\rangle}=U_{a}+U_{B} . \tag{**}
\end{equation*}
$$

Since $\left|B^{\sharp}\right|=3, \operatorname{dim}_{\mathbb{E}} U_{B} \leq 3$ and so $\operatorname{dim}_{\mathbb{E}} W_{a} \leq 4$.
Now let $d \in A \backslash a^{\perp}$ and put $B:=a^{\perp} \cap d^{\perp}$. Then B is a non-singular 2-space, and by ($* *$) applied to a and $d, W_{a}+W_{d}=U_{a}+U_{B}+U_{d}$. Thus $\operatorname{dim}_{\mathbb{E}} W_{a}+W_{d} \leq 5$.

Put $W:=W_{a}+W_{d}$. We will show that $V=W$, that is $U_{b} \leq W$ for all $b \in A^{\sharp}$. Certainly $U_{b} \leq W$ if $b \in a^{\perp} \cup d^{\perp}$. So suppose $b \notin a^{\perp}$ and $b \notin d^{\perp}$.

Assume first that $b \neq a+d$. Then $\langle b, d\rangle \neq\langle a, d\rangle$ and so also $b^{\perp} \cap a^{\perp} \neq b^{\perp} \cap d^{\perp}$. Choose $e \in b^{\perp} \cap a^{\perp} \backslash d^{\perp}$; in particular $U_{e} \leq W_{a}$. Then $e+b \leq b^{\perp} \cap d^{\perp}$, so $U_{e+b} \leq W_{d}$, and by (*) $U_{b} \leq U_{e}+U_{e+b} \leq W_{a}+W_{d}=W$.

Assume next that $b=a+d$. Pick $\tilde{b} \in A \backslash\left(a^{\perp} \cup d^{\perp}\right)$ with $\tilde{b} \neq b$. Put $c=b+\tilde{b}$. By the previous case $U_{\tilde{b}} \leq W$. Note that $\tilde{b} \in b^{\perp}$ and $c \in a^{\perp}$. Thus $U_{c} \leq W$ and by $(*) U_{b} \leq U_{\tilde{b}}+U_{c}$. Hence $U_{b} \leq W$.

We have shown that $U_{b} \leq W$ for all $b \in A^{\sharp}$ and so $W=V$; in particular $\operatorname{dim}_{\mathbb{E}} V \leq 5$.
Suppose now that $H \cong \overline{\operatorname{Alt}}(6)$. Then $\mathrm{Z}(H)=1$ and $\mathbb{E}=\mathbb{K}$. Let \check{V} be the $\mathbb{K} H$-module induced from the trivial $\mathbb{K} M_{1}$-module U_{1}, and let \check{U}_{1} be the image of U_{1} in \check{V}. Put $\check{U}_{2}:=\left\langle\check{U}_{1}^{M_{2}}\right\rangle$. Then $\check{U}_{2} / \mathrm{C}_{\breve{U}_{2}}\left(M_{2}\right)$ has dimension 2 over \mathbb{K}. It follows that $\hat{V}:=\check{V} /\left\langle C_{\breve{U}_{2}}\left(M_{2}\right)^{H}\right\rangle$ fulfills the assumptions of (a).

Choose a faithful action of H on $I:=\{1,2,3,4,5,6\}$ with

$$
M_{1}=\mathrm{N}_{H}(\{1,2\}) \text { and } M_{2}=\mathrm{N}_{H}(\{\{\{1,2\},\{3,4\},\{5,6\}\} .
$$

Let \tilde{V} be the corresponding permutation module for H over \mathbb{K} with \mathbb{K} basis $\left\{b_{i} \mid i \in I\right\}$, and let $\tilde{V}_{0}:=\left\{\sum_{i \in I} k_{i} b_{i} \mid k_{i} \in \mathbb{K}, \sum_{i \in I} k_{i}=0\right\}$ be the even permutation module. For $J \subseteq I$ put
$b_{J}=\sum_{j \in J} b_{j}$. Then M_{1} centralizes $\mathbb{K} b_{3456},\left\langle\mathbb{K} b_{3456}^{M_{2}}\right\rangle=\mathbb{K}\left\langle b_{3456}, b_{1234}\right\rangle$ and $\tilde{V}_{0}=\mathbb{K}\left\langle b_{3456}^{H}\right\rangle$. Thus \tilde{V}_{0} and V are $\mathbb{K} H$-quotients of \hat{V}. Since $\operatorname{dim}_{\mathbb{K}} \tilde{V}_{0}=5$ and $\operatorname{dim}_{\mathbb{K}} \hat{V} \leq 5$ we conclude that \hat{V} is isomorphic to \tilde{V}_{0}. Thus V is isomorphic to a quotient of \tilde{V}_{0}. Observe that $\mathrm{C}_{\tilde{V}_{0}}(H)=\mathbb{K}\left\langle b_{123456}\right\rangle$ and $b_{123456}=b_{1234}+b_{1235}+b_{1245}+b_{3456} \in \mathbb{K}\left\langle b_{3456}^{M_{1}}, b_{1234}^{M_{1}}\right\rangle$. So a holds.

Suppose next that $H \sim 3 \cdot \operatorname{Alt}(6)$. Let R be a Sylow 3 -subgroup of H. The R is extraspecial of order 27. Let Y be any R-chief-factor of V. Then $Z(H)=Z(R)$ acts non-trivially on Y and so $\operatorname{dim}_{\mathbb{E}} Y=3$. Thus $\operatorname{dim}_{\mathbb{E}} V$ is a multiple of three and since $\operatorname{dim}_{\mathbb{E}} V \leq 5, \operatorname{dim}_{\mathbb{E}} V=3$. So (b) holds.

6 Module Decompositions

Lemma 6.1. Let H be a finite group, V an $\mathbb{F}_{p} H$-module, and $\mathbb{K}:=\operatorname{End}_{H}(V)$. The following table lists the dimension $d:=\operatorname{dim}_{\mathbb{K}}\left(H^{1}(H, V)\right)$ for various pairs (H, V).

H	p	V	Conditions	d
$\Omega_{n}^{\epsilon}\left(p^{k}\right), n \geq 3$	p	$V_{\text {nat }}^{*}$	$n=3, p^{k}=2$	1
	"	"	$n=3, p^{k}=5$	1
"	"	"	$n=4, \epsilon=-, p^{k}=3$	2
"	"	"	$n=5, p^{k}=3$	1
"	"	"	$n=6, \epsilon=+, p^{k}=2$	1
$S p_{2 n}\left(p^{k}\right)$	"	"	all others	0
	p	$V_{\text {nat }}$	$p=2,\left(2 n, p^{k}\right) \neq(2,2)$	1
	"	"	all others	0
$S L_{n}\left(p^{k}\right)$	p	$V_{\text {nat }}$	$n=2, p=2, k>1$	1
	"	"	$n=3, p=2, k=1$	1
"	"	"	all others	0
$S U_{n}\left(p^{k}\right), n \geq 3$	p	$V_{\text {nat }}$	$n=4, p^{k}=2$	1
	"	"	all others	0
$\mathrm{G}_{2}\left(2^{k}\right)^{\prime}$	2	\mathbb{K}^{6}	-	1
$\mathrm{G}_{2}\left(p^{k}\right)^{\prime}$	$p \neq 2$	\mathbb{K}^{7}	-	0
${ }^{3} D_{4}\left(p^{k}\right)$	p	\mathbb{K}^{8}	-	0
$\operatorname{Spin}_{n}^{\epsilon}\left(p^{k}\right)$	p	(Half)-Spin	$n \geq 7$	0
3.Alt(6)	2	\mathbb{K}^{3}	-	0
$\operatorname{Alt}(n), n \geq 5$	2	$V_{n a t}$	n even	1
	"	"	n odd	0
$S L_{n}\left(p^{k}\right), n \geq 5$	p	$\Lambda^{2}\left(V_{\text {nat }}\right)$	-	0
$S L_{n}\left(p^{k}\right), n \geq 3$	odd	$\operatorname{Sym}^{2}\left(V_{\text {nat }}\right)$	-	0
$S L_{n}\left(p^{2 k}\right), n \geq 3$	$\underset{\sim}{p}$	$V_{\mathrm{nat}} \otimes V_{" \mathrm{nat}}^{p^{k}}$	$\begin{gathered} n=3, p^{2 k}=4 \\ \text { all others } \end{gathered}$	2 0
$E_{6}\left(p^{k}\right)$	p	\mathbb{K}^{27}	-	0
$\operatorname{Mat}_{n}, 22_{„} \leq n \leq 24$	2	Todd	$n=24$	1
	"	"	$n=22,23$	0
Mat $_{n}, 22 \leq n \leq 24$	2	Golay	$n=22$	1
$\mathrm{Mat}_{n}, 22 \leq n \leq 24$	2	Golay	$n=23,24$	0
3.Mat ${ }_{22}$	2	\mathbb{F}_{4}^{6}	-	0
Mat $_{11}$	3	Todd	-	0
Mat ${ }_{11}$	3	Golay	-	1
2.Mat ${ }_{12}$	3	Todd	-	0
2.Mat ${ }_{12}$	3	Golay	-	0

Proof. Let $T \in \operatorname{Syl}_{p}(H)$ and W be an $\mathbb{F}_{p} H$-module with $[W, H] \leq V$ and $\mathrm{C}_{W}(H) \leq V$. Note that by Gaschütz's Theorem, $\mathrm{C}_{W}(T) \leq V$.

1. Let $C \leq H$ and A and B be normal p-subgroups of C with $A \leq B$, and let X, Y, Z be C-submodules of W with $X \leq Y \leq Z$. Suppose that
(i) B centralizes Z / Y and Y / X.
(ii) A centralizes Z / X.
(iii) $\Phi(B) \leq A$.

Put $U / X:=\mathrm{C}_{Z / X}(B)$. Then Z / U is isomorphic to a C-submodule of $\operatorname{Hom}_{\mathbb{F}_{p}}(B / A, Y / X)$. If in addition C centralizes Z / U, then Z / U embeds into $\operatorname{Hom}_{\mathbb{F}_{p} C}(B / A, Y / X)$.

For $z \in Z$ define

$$
\tilde{z}: B / A \rightarrow Y / X \text { with } b A \rightarrow[b, z]+X
$$

Since B / A and Y / X are $\mathbb{F}_{p} C$-modules, for $c \in C$ the element $\tilde{z}^{c}:=c^{-1} \tilde{z} c \in \operatorname{Hom}_{\mathbb{F}_{p}}(B / A, Y / X)$ is defined, and

$$
(b A) \tilde{z}^{c}=b A\left(c^{-1} \tilde{z} c\right)=\left(b^{c^{-1}} A \tilde{z}\right) c=\left(\left[b^{c^{-1}}, z\right]+X\right)^{c}=\left[b, z^{c}\right]+X=b A \widetilde{z^{c}}
$$

Thus, the map

$$
Z \rightarrow \operatorname{Hom}_{\mathbb{F}_{p}}(B / A, Y / X) \text { with } z \rightarrow \tilde{z}
$$

is C-equivariant with kernel U. So the first statement holds. The second follows from the first.
Case 1. $\quad V$ is the dual of a natural module for $H \cong \Omega_{n}^{\epsilon}(q), n>2$ and $q=p^{k}$.
This case is covered by Po and JP.
Case 2. $\quad V$ is a natural module for $H=\operatorname{Sp}_{2 n}(q)$.
See JP.
Case 3. $\quad V$ is a natural module for $H=\operatorname{SL}_{n}(q), q=p^{k}$.
See JP.
Case 4. $\quad V$ is a natural module for $H=\mathrm{SU}_{n}(q), q=p^{k}$, and $n \geq 3$.
If $q>3$ see JP. So assume that $q \leq 3$. If H is solvable, then $H=\mathrm{SU}_{3}(2)$, and Maschke's Theorem shows that the lemma holds. Thus, assume in addition that $H \neq \mathrm{SU}_{3}(2)$. Let V_{1} be a 1-dimensional singular \mathbb{K}-subspace of $V, V_{2}=V_{1}^{\perp} \leq V, L=\mathrm{C}_{H}\left(V_{1}\right)$, and $L^{*}=\mathrm{N}_{H}\left(V_{1}\right)$.

Suppose for a contradiction that $\left[V, \mathrm{O}_{p}(L)\right] \not \leq V_{2}$. Since L centralizes W / V and V / V_{2} we conclude that $\mathrm{O}_{p}(L) \nsubseteq \mathrm{O}^{p}(L)$ and so $n=3$ and $q=3$. In particular, $L=\mathrm{O}_{3}(L)$ is extraspecial of exponent 3 and $[W, \Phi(L)] \leq V_{2}$. Hence, there exists $g \in L \backslash \Phi(L)$ with $[W, g] \not \leq V_{2}$. Note that $[v, g, g] \neq 0$ for every $v \in V \backslash V_{2}$. On the other hand $|g|=3$, so g acts cubically on W. This shows that $[W, g] \leq V_{2}$, which contradicts the choice of g. Thus

2. $\quad\left[W, \mathrm{O}_{p}(L)\right] \leq V_{2}$.

Since $\left[V_{2}, \mathrm{O}_{p}(L)\right] \leq V_{1}$ we conclude that $\left[W, \mathrm{O}_{p}(L)^{\prime}\right] \leq V_{1}$. Let W_{2} be maximal in W with $\left[W_{2}, \mathrm{O}_{p}(L)\right] \leq V_{1}$. In addition we use the following notation:

$$
K^{*}:=\mathrm{C}_{L^{*}}\left(L / \mathrm{O}_{p}(L)\right), K:=\mathrm{C}_{L^{*}}\left(V_{2} / V_{1}\right), X / V_{2}:=\mathrm{C}_{W / V_{2}}\left(K^{*}\right)
$$

Then $K \leq K^{*}, K^{*} / \mathrm{O}_{p}(L)$ has order $q^{2}-1$ and $K / \mathrm{O}_{p}(L)$ has order $q-1$. We will prove next:
$\mathbf{3}^{\circ} . \quad[W, L] \leq V_{2}$.
By Maschke's Theorem and $\sqrt[2^{\circ}]{ }$, $W / V_{2}=X / V_{2} \oplus V / V_{2}$. Since $\left[X, L^{*}\right] \leq X \cap V=V_{2}$ we conclude that $[W, L] \leq V_{2}$.
$4^{\circ} . \quad$ Either $W=W_{2}+V$ or $q=2, n=4$ and $\left|W / W_{2}+V\right| \leq 4$.

Suppose that $q \neq 2$. Then $\mathrm{O}_{p}(L)=\left[\mathrm{O}_{p}(L), K\right]$ and so $K=\mathrm{O}^{p}(K)$. Since $[X, K] \leq V_{2}$ and $\left[V_{2}, K\right] \leq V_{1}$ we have $[X, K]=\left[X, \mathrm{O}^{p}(K)\right] \leq V_{1}$. Thus $X \leq W_{2}$. Since $W=X+V, 4^{0}$ holds in this case.

So we may assume that $q=2$. Then $n>3$ since we are assuming that $H \neq \mathrm{SU}_{3}(2)$. Put $Z:=\mathrm{O}_{2}(L)^{\prime}$. Then $[Z, L]=1$ and by $2^{\circ},\left[W, \mathrm{O}_{2}(L), Z\right] \leq\left[V_{2}, Z\right]=0$. Since by $3^{\circ}[W, L] \leq V_{2}$, we conclude from 1° that W / V_{2} embeds into $\operatorname{Hom}_{L}\left(\mathrm{O}_{2}(L) / Z, V_{2} / V_{1}\right)$.

Suppose that $n>4$. Then L acts simply on $\mathrm{O}_{p}(L) / Z$ and on V_{2} / V_{1} and thus

$$
q^{2}=\left|V / V_{2}\right| \leq\left|W / V_{2}\right| \leq\left|\operatorname{Hom}_{L}\left(\mathrm{O}_{p}(L) / Z, V_{2} / V_{1}\right)\right|=q^{2}
$$

We conclude that $V=W$, so $4{ }^{\circ}$ holds in this case.
Suppose that $n=4$. Since $V_{2} \leq W_{2}$ and L^{*} centralizes $X / V_{2}, L^{*}$ centralizes $X+W_{2} / W_{2}$. So by (10) $X+W_{2} / W_{2}$ embeds into $\operatorname{Hom}_{L^{*}}\left(\mathrm{O}_{p}(L) / Z, V_{2} / V_{1}\right)$. Since L^{*} acts simply on $\mathrm{O}_{p}(L) / Z$ and on $\overline{V_{2}} / V_{1}$ we conclude as above that $\left|X / X \cap W_{2}\right|=\left|X+W_{2} / W_{2}\right| \leq q^{2}=4$. Now $W / V_{2}=X / V_{2} \oplus V / V_{2}$ and $V_{2} \leq W_{2}$ imply

$$
\left|W /\left(X \cap W_{2}\right)+V\right|=\left|X+V /\left(X \cap W_{2}\right)+V\right|=\left|\left(X / V_{2}\right) /\left(X \cap W_{2} / V_{2}\right)\right|=\left|X / X \cap W_{2}\right|=\leq 4
$$

so $4{ }^{\circ}$ also holds in this case.
5 . Put $W_{1}:=\mathrm{C}_{W_{2}}\left(\mathrm{O}_{p}(L)\right)$. Then $W_{2}=W_{1}+V_{2}$ and $W_{2}+V=W_{1}+V$.
Since $\left[W_{2}, \mathrm{O}_{p}(L)\right] \leq V_{1} \leq \mathrm{C}_{V}\left(\mathrm{O}_{p}(L)\right)$ the Three Subgroups Lemma gives that $\left[W_{2}, Z\right]=0$. So by $\left.11^{\circ}\right) W_{2} / W_{1}$ embeds into $\operatorname{Hom}_{\mathbb{F}_{p}}\left(\mathrm{O}_{p}(L) / Z, V_{1}\right)$. As an L-module $\operatorname{Hom}_{\mathbb{F}_{p}}\left(\mathrm{O}_{p}(L) / Z, V_{1}\right)$ is a direct sum of copies of the dual of $\mathrm{O}_{p}(L) / Z$. If $n>3$ we conclude that $W_{2} / W_{1}=\left[W_{2} / W_{1}, L\right]$ and so by $\left(3^{\circ}\right) W_{2}=W_{1}+V_{2}$. Thus 5°) holds in this case. So suppose $n=3$. Let $Y / V_{1}=\mathrm{C}_{W_{2} / V_{1}}\left(L^{*}\right)$. Then by Maschke's Theorem, $W_{2}=Y+V_{2}$.

Suppose that $Y \not \leq W_{1}$. Then $\mathrm{O}_{p}(L) / Z \cong V_{1}$ as an L^{*}-module. Since $n=3$ we have $q>2$, and so L^{*} acts simply on $\mathrm{O}_{p}(L) / Z$ and on V_{1}. It follows that there exists $0 \leq l<2 k$ with $\lambda^{2-p^{k}}=\lambda^{p^{l}}$, for all $0 \neq \lambda \in \mathbb{F}_{p^{2 k}}$. Thus $p^{2 k}-1$ divides $p^{l}+p^{k}-2$. Hence either $p^{l}+p^{k}-2 \leq 0$ or $p^{l}+p^{k}-2 \geq p^{2 k}-1$. Since $p^{k}=q>2$ we have $p^{l}+p^{k}-2>0$. Moreover,

$$
p^{l}+p^{k}-2 \leq p^{2 k-1}+p^{2 k-1}-2 \leq p^{2 k}-2<p^{2 k}-1
$$

a contradiction. Thus $Y \leq W_{1}$, and $5{ }^{\circ}$ also holds for $n=3$.
6 ${ }^{\circ} \quad W_{1}=V_{1}$ and $W_{2}+V=V$.
Let $g \in H$ such that V_{1} is not perpendicular to V_{1}^{g} in V, so $V_{1} \not \leq V_{2}^{g}$. Then by $\sqrt[3]{ }{ }^{\circ},\left[W_{1}, L \cap L^{g}\right] \leq$ $W_{1} \cap V_{2}^{g} \leq\left(W_{1} \cap V\right) \cap V_{2}^{g}=V_{1} \cap V_{2}^{g}=0$. Thus W_{1} is centralizes by $\mathrm{O}_{p}(L)\left(L \cap L^{g}\right)=L$ and so $W_{1} \leq \mathrm{C}_{W}(T) \leq V$. Thus $W_{1}=V_{1}$, and 5° implies 6°.

From 4° and 6° we see that the lemma holds in Case 4 .
Case 5. $\quad H=\mathrm{G}_{2}(q)^{\prime}, q=p^{k}$, and either $p=2$ and $V=\mathbb{K}^{6}$ or $p \neq 2$ and $V=\mathbb{K}^{7}$.
See JP.
Case 6. $\quad V$ is a natural module for $H={ }^{3} D_{4}(q), q=p^{k}$.

Fix a root system Φ. With respect to Φ, let C be the Cartan subgroup, N / C the Weyl-group, and L be the subgroup of H generated by the long root subgroups. Then $L \cong \mathrm{SL}_{3}(q)$ and C normalizes L.

Let $K \leq H$ be the centralizer of a field automorphism of order 3 in H such that $K \cong \mathrm{G}_{2}(q)$, each root subgroup with respect to Φ intersects K in a root subgroup of K, and $N=(N \cap K) C$. Then $L \leq K$ and $\langle K, C\rangle$ contains all the root subgroups from Φ. So $\langle K, C\rangle=H$. In the case $q=2$, the action of C on the Lie-parabolic subgroups of H shows that also $\left\langle\mathrm{O}^{2}(K), C\right\rangle=H$.

Note that $V / \mathrm{C}_{V}(K)$ is a 7 -dimensional K-module (over \mathbb{K}), which is a natural module for p odd and a non-split central extension of a natural module for $p=2$. By Case 5), $W=\mathrm{C}_{W}\left(\mathrm{O}^{p}(K)\right)+V$. Moreover, the action of K on V shows that $\mathrm{C}_{V}\left(\mathrm{O}^{p}(K)\right)=\mathrm{C}_{V}\left(L\left(N \cap \mathrm{O}^{p}(K)\right)\right.$. So also $\mathrm{C}_{W}\left(\mathrm{O}^{p}(K)\right)=$ $\mathrm{C}_{W}\left(L\left(N \cap \mathrm{O}^{p}(K)\right)\right.$. Note that C acts fixed-point freely on $\mathrm{C}_{V}(L)$. Since C is a p^{\prime}-group we get $\mathrm{C}_{W}(L)=\mathrm{C}_{V}(L) \oplus \mathrm{C}_{W}(L C)$. Thus also $W=V \oplus \mathrm{C}_{W}(L C)$. Since N normalizes $\mathrm{C}_{W}(L C)$ we have

$$
\mathrm{C}_{W}(L C)=\mathrm{C}_{W}(L N) \leq \mathrm{C}_{W}\left(L\left(N \cap \mathrm{O}^{p}(K)\right)\right) \leq \mathrm{C}_{W}\left(\mathrm{O}^{p}(K)\right)
$$

Thus $\mathrm{C}_{W}(L C) \leq \mathrm{C}_{W}\left(\left\langle C, \mathrm{O}^{p}(K)\right\rangle\right)=\mathrm{C}_{W}(H)=0$ and so $V=W$.
Case 7. $\quad V$ is the (half)-spin-module for $H=\operatorname{Spin}_{n}^{\epsilon}(q), q=p^{k}, n \geq 7$.
See JP.
Case 8. $\quad H=3$.Alt(6) and $V=\mathbb{K}^{3}$.
Since $[V, \mathrm{Z}(H)] \neq 0$, Maschke's Theorem implies that $V=W$.
Case 9. $\quad V$ is a natural module for $H \cong \operatorname{Alt}(n), n \geq 5, p=2$.
See [As, page 74].
Case 10. V is the symmetric square of a natural module for $H \cong \operatorname{SL}_{n}(q), q=p^{k}, p$ odd, $n \geq 3$.
Let $V_{2}:=[V, T], L^{*}:=\mathrm{N}_{H}\left(V_{2}\right), L_{1}:=\mathrm{C}_{L^{*}}\left(V / V_{2}\right)$ and $L:=\mathrm{O}^{p^{\prime}}\left(L^{*}\right)$. Then $L / \mathrm{O}_{p}(L) \cong \mathrm{SL}_{n-1}(q)$ and $\left|L_{1} / L\right|=2$. Note that $L=\mathrm{O}^{p}(L)$ unless $n=3=q$, in which case $L_{1} / \mathrm{O}_{p}\left(L_{1}\right) \cong \mathrm{GL}_{2}(3)$. So in any case $L_{1}=\mathrm{O}^{p}\left(L_{1}\right)$ and thus
$7^{\circ} . \quad\left[W, L_{1}\right]=V_{2}=[W, L]$.
Let $V_{1}:=\mathrm{C}_{V}\left(\mathrm{O}_{p}(L)\right)=\left[V_{2}, \mathrm{O}_{p}(L)\right]$. Then V_{2} / V_{1} is a natural $\mathrm{SL}_{n-1}(q)$-module for $L / \mathrm{O}_{p}(L)$ isomorphic to $\mathrm{O}_{p}(L)$. Hence $\left|\operatorname{Hom}_{L}\left(\mathrm{O}_{p}(L), V_{2} / V_{1}\right)\right|=q$. Let $W_{2} / V_{1}:=\mathrm{C}_{W / V_{1}}\left(\mathrm{O}_{p}(L)\right)$. Then by $1^{\top} W / W_{2}$ embeds into $\operatorname{Hom}_{L}\left(\mathrm{O}_{p}(L), V_{2} / V_{1}\right)$. Since $\left|V / V_{2}\right|=q$ we conclude that
$\mathbf{8}^{\circ} . \quad W=W_{2}+V$.
Let $W_{1} / V_{1}:=\mathrm{C}_{W_{2} / V_{1}}(L)$. By Case 3 H $\mathrm{H}^{1}\left(L / \mathrm{O}_{p}(L), V_{2} / V_{1}\right)=0$ and so by 8°
$\mathbf{9}^{\circ} . \quad W_{2}=W_{1}+V_{2}$ and $W=W_{1}+V$.
Note that V_{1} is the symmetric square of a natural module for $L / \mathrm{O}_{p}(L)$. In particular, V_{1} and $\left.\mathrm{O}_{p}(L)\right)$ are non-isomorphic simple $L / \mathrm{O}_{p}(L)$-modules and so $\left[W_{1}, \mathrm{O}_{p}(L)\right]=1$. Let $W_{0}=\mathrm{C}_{W_{1}}(L)$. Suppose that $W_{1} \neq W_{0} \oplus V_{1}$. By induction on n and with Case 1) we conclude that $n=3$ and $q=5$. (Note here that for $n=3 V_{1}$ is an orthogonal $\Omega_{3}(q)$-module for $L / \mathrm{O}_{p}(L)$.)

Since $T / \mathrm{O}_{5}(L)$ is cyclic, the Jordan Form for T on V shows that T does not act cubically on W_{1}. Pick $g \in H$ with $T=\mathrm{O}_{5}(L)\left(\mathrm{O}_{5}(L)^{g} \cap T\right)$. By $\left.9^{\circ}\right), \mathrm{O}_{5}(L)$ acts cubically on V and so T acts cubically in W_{1}, a contradiction.

Thus $W_{1}=W_{0}+V_{1}$. As $W_{0} \leq \mathrm{C}_{W}(T) \leq V$ we have $W_{1} \leq V$, and by $9^{\circ} V=W$.

Case 11. V is the alternating square of a natural module for $H \cong \operatorname{SL}_{n}(q), q=p^{k}, n \geq 5$.
See JP.
Case 12. $\quad H \cong \mathrm{E}_{6}(q), q=p^{k}$, and $V=\mathbb{K}^{27}$.
See JP.
Case 13. $H \cong \operatorname{SL}_{n}\left(q^{2}\right), q=p^{k}$, and V is a simple $\mathbb{F}_{q} H$-submodule of $N \otimes_{\mathbb{F}_{q^{2}}} N^{\sigma}$, where N is the natural $\mathbb{F}_{q^{2}} H$-module and σ is the field automorphism of order 2 of $\mathbb{F}_{q^{2}}$.

Let $N_{1}:=\mathrm{C}_{N}(T), L^{*}:=\mathrm{N}_{H}\left(N_{1}\right)$, and $L:=\mathrm{C}_{H}\left(N_{1}\right)$, and let $J \leq L^{*}$ with $L^{*}=\mathrm{O}_{p}(L) J$ and $N=N_{1} \oplus[N, J \cap L]$. Then $J \cap L \cong \mathrm{SL}_{n-1}\left(q^{2}\right)$ and $J \cong \mathrm{GL}_{n-1}\left(\overline{q^{2}}\right)$. Let $V_{1}=\mathrm{C}_{V}(L)$ and $V_{2}=\left[V, \mathrm{O}_{p}(L)\right]$. Then V_{2} / V_{1} is a natural $\mathrm{SL}_{n-1}\left(q^{2}\right)$-module for $L / \mathrm{O}_{p}(L)$ isomorphic to N / N_{1} and dual to $\mathrm{O}_{p}(L)$. Also V / V_{2} is isomorphic to a simple $\mathbb{F}_{q} L / \mathrm{O}_{p}(L)$ submodule of $N / N_{1} \otimes_{\mathbb{F}_{q^{2}}} N^{\sigma} / N_{1}^{\sigma}$. We first show:

10 ${ }^{\circ}$. Suppose $n=3$ and $q \neq 2$. Then $\mathrm{Z}(J)$ acts fix-point freely on V / V_{2}, and $\mathrm{O}_{p}(L)$ and V_{2} / V_{1} are not isomorphic as $\mathbb{F}_{p} \mathrm{Z}(J)$-modules.
 on $\mathrm{O}_{p}(L)$, as λ^{q-2} on V_{2} / V_{1} and as λ^{q+1} on V / V_{2}. Since $q>2$ we conclude that $\mathrm{Z}(J)$ is fixed-point free on V / V_{2}. Suppose that V_{2} / V_{1} and $\mathrm{O}_{p}(L)$ are isomorphic as $\mathbb{F}_{p} \mathrm{Z}(J)$-modules. Then there exists $0 \leq l<2 k$ with $\lambda^{-3 p^{l}}=\lambda^{q-2}$ for all $0 \neq \lambda \in \mathbb{F}_{q^{2}}$ and so

$$
p^{2 k}-1 \mid 3 p^{l}+p^{k}-2
$$

Since $p^{k}=q>2$, the right side is positive and so

$$
p^{2 k}-1 \leq 3 p^{l}+p^{k}-2 \leq 3 p^{2 k-1}+p^{k}-2 \leq 4 p^{2 k-1}-2 .
$$

Thus $p \leq 3$. If $p=3$ we have

$$
3^{2 k} \leq 3^{l+1}+3^{k}-1 \leq 2 \cdot 3^{m}-1
$$

where $m=\max \{l+1, k\}$. Hence $m=l+1=2 k$. and so

$$
3^{2 k}-1 \mid 3 \cdot 3^{2 k-1}+3^{k}-2=\left(3^{2 k}-1\right)+3^{k}-1
$$

Therefore $3^{2 k}-1 \mid 3^{k}-1$, a contradiction.
Thus $p=2$. If $l=0$ we get $2^{2 k}-1 \leq 2^{k}+1$ and $q=2^{k}=2$, contradiction. Hence $l>0$ and since $2^{2 k}-1$ is odd,

$$
2^{2 k}-1 \mid 3 \cdot 2^{l-1}+2^{k-1}-1
$$

So

$$
2^{2 k} \leq 3 \cdot 2^{l-1}+2^{k-1}=2^{l}+2^{l-1}+2^{k-1}
$$

It follows that $k=1=l$ and $q=2$, a contradiction.
11 ${ }^{\circ}$. Suppose $n=3$ and $V \neq W$. Then $q=2$ and $|W / V| \leq 4$.

Since $\mathrm{O}_{p}(L)$ and V / V_{2} are non-isomorphic simple L-modules, $\left[W, \mathrm{O}_{p}(L)\right] \leq V_{2}$. Let $W_{2} / V_{2}=$ $\mathrm{C}_{W / V_{2}}(L)$. If $q \neq 2$, then by $10^{\circ} \mathrm{Z}(J)$ acts fixed-point-freely on V / V_{2}, and if $q=2$, then by Case 11, $\mathrm{H}^{1}\left(L / \mathrm{O}_{p}(L), V / V_{2}\right)=0$. So in any case $W=W_{2}+V$.

Let $W_{1} / V_{1}=\mathrm{C}_{W_{2} / V_{1}}\left(\mathrm{O}_{p}(L)\right)$. Then W_{2} / W_{1} embeds into $\operatorname{Hom}_{L^{*}}\left(\mathrm{O}_{p}(L), V_{2} / V_{1}\right)$. By 10° this group is trivial for $q \neq 2$. For $q=2$ it has order 4. So $W_{2}=W_{1}$ if $q \neq 2$ and $\left|W_{2} / W_{1}\right| \leq 4$ if $q=2$. It remains to show that $W_{1} \leq V$.

Let $W_{0}=\mathrm{C}_{W_{1}}\left(\mathrm{O}_{p}(L)\right)$. Then W_{1} / W_{0} embeds into $\operatorname{Hom}_{\mathbb{F}_{p}}\left(\mathrm{O}_{p}(L), V_{1}\right)$. The latter group is as an L-module isomorphic to a direct sum of copies of the dual of $\mathrm{O}_{p}(L)$. Hence $\left[W_{1} / W_{0}, L\right]=W_{1} / W_{0}$ and so $W_{1}=W_{0}+V_{2}$. Since $W_{0} \cap V=V_{1}$ and $L=\mathrm{O}^{p}(L)$ we have $\left[W_{0}, L\right]=0$ and so $W_{0} \leq \mathrm{C}_{V}(T) \leq V$. Thus also $W_{1} \leq V$, and 11° is proved.
12 ${ }^{\circ}$. Suppose $n=3$ and $q=2$. Then $\left|\mathrm{H}^{1}(H, V)\right|=4$, and $\mathrm{GL}_{3}(4)$ acts fixed-point freely on $\mathrm{H}^{1}(H, V)$.

By $11^{\circ}\left|\mathrm{H}_{\tilde{1}}^{1}(H, V)\right| \leq 4$. Let I be the simple 11-dimensional Golay code-module for $M=$ Mat $_{24}$ over \mathbb{F}_{2}. Let $\tilde{H}=\operatorname{Mat}_{21} \cong \operatorname{PSL}_{3}(4)$. Then $[I, \tilde{H}]$ is simple of \mathbb{F}_{2}-dimension 9 and $\mathrm{C}_{I}(\tilde{H})=0$. Moreover, $\mathrm{N}_{M}(\tilde{H}) \cong \mathrm{PGL}_{3}(4)$ acts fixed-point freely on $I /[I, \tilde{H}]$, so 12° holds.

13 ${ }^{\circ}$. Suppose $n>3$. Then $V=W$.
Note that W / V_{2} and $\mathrm{O}^{p^{\prime}}\left(L^{*} / \mathrm{O}_{p}(L)\right)$ satisfy Case 13) for $n-1$, and note further that $L^{*} / \mathrm{O}_{p}(L) \cong$ $\mathrm{GL}_{n-1}\left(q^{2}\right)$. Moreover, for $n-1=3$ the case described in 12° does not occur since $\left[W, L^{*}\right]=V$. Hence induction shows that $\mathrm{H}^{1}\left(L^{*} / \mathrm{O}_{p}(L), V / V_{2}\right)=0$. By (Case 3, also $\mathrm{H}^{1}\left(L^{*} / \mathrm{O}_{p}(L), V / V_{2}\right)=0$. Since $n>3, V / V_{2}$ and V_{2} / V_{1} are simple L^{*}-modules not isomorphic to $\mathrm{O}_{p}(L)$. Also since $L=\mathrm{O}^{p}(L)$, $\mathrm{H}^{1}\left(L, V_{1}\right)=0$. Thus $\mathrm{H}^{1}\left(L^{*}, V\right)=0$ and $V=W$.

By 11°, 12° and 13° the Lemma holds in case (Case 13).
Case 14. $\quad p=2$, and V is the simple Todd- or Golay code-module for $H=\operatorname{Mat}_{n}, n=22,23$, or 24.

Let $P:=\operatorname{Mat}_{n-1} \leq H$. Suppose first that $H=$ Mat $_{22}$ and V is the Todd-module. Put $V_{1}:=\mathrm{C}_{V}(T)$ and $L:=\mathrm{C}_{H}\left(V_{1}\right)$. Then $L / \mathrm{O}_{2}(L) \cong \operatorname{Sym}(5)$, and $\mathrm{O}_{2}(L)$ is a natural $\Gamma \mathrm{SL}_{2}(4)$-module for L. Put $V_{2}:=\left[V, \mathrm{O}_{2}(L)\right]$. Then $\mathrm{O}_{2}(L)$ centralizes V_{2} / V_{1}, and V_{2} / V_{1} is an non-split extension of a 1-dimensional module by a natural $\Gamma \mathrm{SL}_{2}(4)$-module for $L / \mathrm{O}_{2}(L)$. Moreover, V / V_{2} is a natural $\mathrm{O}_{4}^{-}(2)$-module for L. Since V / V_{2} is not isomorphic to $\mathrm{O}_{2}(L)$ as an L-module, $\left[W, \mathrm{O}_{2}(L)\right] \leq$ V_{2}. Put $W_{2} / V_{2}:=\mathrm{C}_{W / V_{2}}(L)$. By Case 1) $W=W_{2}+V$. Since V_{2} / V_{1} is indecomposable, $\operatorname{Hom}_{L}\left(\mathrm{O}_{2}(L), V_{2} / V_{1}\right)=0$ and so $\left[W_{2}, \mathrm{O}_{2}(L)\right] \leq V_{1}$. Let $W_{1}=\mathrm{C}_{W_{2}}\left(\mathrm{O}_{2}(L)\right)$. Then W_{2} / W_{1} embeds into $\operatorname{Hom}_{\mathbb{F}_{2}}\left(\mathrm{O}_{2}(L), V_{1}\right)$. The latter is isomorphic to the dual of $\mathrm{O}_{2}(L)$ and so $W_{2}=W_{1}+V_{2}$. Note that $\left[W_{1}, \mathrm{O}^{2}(L)\right]=1$ and $W_{1} \cap V$ has order 4 with $L / \mathrm{O}^{2}(L)$ acting non-trivial on $W_{1} \cap V$. It follows that $W_{1}=\mathrm{C}_{W_{1}}(L)+\left(W_{1} \cap V\right)$ and so $W_{1} \leq \mathrm{C}_{W}(T)+V \leq V$. Hence also $W_{2} \leq V$ and $W=V$.

Suppose next that $H=$ Mat $_{22}$ and V is the Golay code -module. Then $|[V, P]|=2^{9}$ and $\mathrm{C}_{V}(P)=0$, so V is a non-split extension for P as in case Case 13. Thus Case 13) shows that $\left|W / V+\mathrm{C}_{W}(P)\right| \leq 2$. Let $L_{0}=\operatorname{Mat}_{20} \leq P$ and $L=\mathrm{N}_{H}\left(L_{0}\right) \sim 2^{4} \operatorname{Sym}(5)$. Then $\mathrm{C}_{V}\left(L_{0}\right)=0$ and so $\mathrm{C}_{W}(P) \leq \mathrm{C}_{W}\left(L_{0}\right) \leq \mathrm{C}_{W}(L)$. Since L contains a Sylow 2-subgroup of $H, \mathrm{C}_{W}(L) \leq V$ and so $\mathrm{C}_{W}(P)=0$ and $|W / V| \leq 2$.

Suppose next that $H=\operatorname{Mat}_{23}$. Then P contains a Sylow 2-subgroup of H and so $\mathrm{C}_{W}(P) \leq V$. If V is the Todd-module, then $V=[V, P]$ and $V / \mathrm{C}_{V}(P)$ is the Todd-module for $P=\mathrm{Mat}_{22}$. Since $P=\mathrm{O}^{2}(P)$, the Mat ${ }_{22}$-case implies that $W=\mathrm{C}_{W}(P)+V=V$.

If V is the Golay code-module, then $\mathrm{C}_{V}(P)=0$ and $[V, P]$ is the 10 dimensional Golay code module for P. Thus by the Mat_{22}-case, $W=\mathrm{C}_{W}(L)+V=V$.

Suppose that $H=\mathrm{Mat}_{24}$. Then V is simple as a P-module, so by the Mat_{23}-case, $W=$ $\mathrm{C}_{W}(P)+V$. Let $w \in \mathrm{C}_{W}(P)$. Then $\left\langle w^{H}\right\rangle$ is a quotient of the natural permutation module of Mat $_{24}$. If V is the Golay code-module, we conclude that $[w, H]=0$ and so $V=W$. If V is the Todd module and $w \neq 0$, we conclude that $\left\langle w^{H}\right\rangle=\langle w\rangle+V$ is uniquely determined as an $\mathbb{F}_{2} H$-module. Since $|\mathbb{K}|=2$ this implies $|W / V| \leq 2$.
Case 15. $\quad V=\mathbb{F}_{4}^{6}$ and $H=3 . \mathrm{Mat}_{22}$.
Since $\mathrm{Z}(H) \neq 1$, we have $V=W$.
Case 16. $\quad p=3, V$ is the simple Todd- or Golay code-module for $H=\mathrm{Mat}_{11}$ or $2 . \mathrm{Mat}_{12}$.
If $H=2 . \mathrm{Mat}_{12}$, we have $W=\mathrm{C}_{W}(\mathrm{Z}(H)) \oplus V$ and so $V=W$. Suppose $H=\mathrm{Mat}_{11}$.
Assume first that V is the Golay code-module. Let $L_{0}=\operatorname{Mat}_{10}$ and $L=L_{0}^{\prime} \cong \mathrm{L}_{2}(9)$. Then $[V, L]$ is the natural $\Omega_{4}^{-}(3)$-module for L and $\mathrm{C}_{V}(L)=0$. Thus by Case $1,,\left|W / V+\mathrm{C}_{W}(L)\right| \leq 3$. Since L contains a Sylow 3-subgroup of $H, \mathrm{C}_{W}(L) \leq V$ and so $|W / V| \leq 3$.

Suppose next that V is the Todd-module. Let $L=\mathrm{N}_{H}(T)$. Then L / T is semidihedral of order 16. Let $K \in \operatorname{Syl}_{2}(L)$ and put $V_{2}=[V, T]$ and $V_{1}=\mathrm{C}_{V}(T)$. Then $\left|V / V_{1}\right|=3$ with $D:=\mathrm{C}_{K}\left(V / V_{1}\right)$ dihedral of order 8. Moreover, V_{2} / V_{1} has order 9 with K acting faithfully on V_{2} / V_{1}, and V_{1} has order 9 with $\left|\mathrm{C}_{K}\left(V_{1}\right)\right|=2$. Since $T=[T, D]$, we have $[W, T] \leq V_{2}$. Let $W_{2} / V_{1}=\mathrm{C}_{W / V_{1}}(T)$. Then W / W_{2} embeds into $\operatorname{Hom}_{D}\left(T, V_{2} / V_{1}\right)$. Since D acts simply on T and V_{2} / V_{1}, we conclude that $\operatorname{Hom}_{D}\left(T, V_{2} / V_{1}\right)$ has order 3. Thus $W=W_{2}+V$. Let $W_{1} / V_{1}=\mathrm{C}_{W_{2} / V_{1}}(L)$. By Mascke's Theorem, $W_{2}=W_{1}+V_{2}$. Since V_{1} is not isomorphic to T as an L-module, $\left[W_{1}, T\right]=0$ and so $W_{1} \leq V$ and $V=W$.

Definition 6.2. Let H be a finite group, V an $\mathbb{F}_{p} H$-module and Q a p-subgroup of H. Then V is called a Q !-module for H if Q is not normal in H and

$$
\begin{equation*}
Q \unlhd \mathrm{~N}_{H}(A) \text { for all } 1 \neq A \leq \mathrm{C}_{V}(Q) \tag{Q!}
\end{equation*}
$$

Lemma 6.3. Let $M \cong \operatorname{SL}_{n}(q), q$ a power of $p, n \geq 2$, and let V be an $\mathbb{F}_{p} M$-module. Suppose that there exists an M-submodule I in V such that the following hold:
(i) $W:=V / I$ is a natural $\mathrm{SL}_{n}(q)$-module for M.
(ii) $I \cong \Lambda_{\mathbb{K}}^{2} W$ as an $\mathbb{F}_{p} M$-module, where $\mathbb{K}:=\operatorname{End}_{M}(W)$.
(iii) If H is a \mathbb{K}-hyperplane in W and $A:=\mathrm{C}_{M}(H) \cap \mathrm{C}_{M}(W / H)$, then $\mathrm{C}_{V}(A) \nsubseteq I$.

Then there exists $x \in V \backslash W$ with $\mathrm{C}_{M}(x)=\mathrm{C}_{M}(x+I / I)$. Moreover, V is not a Q !-module for any p-subgroup Q of M.

Proof. Put $U:=\mathrm{C}_{V}(A), L=\mathrm{N}_{M}(H) \cap \mathrm{C}_{M}(W / H)$ and $T \in \operatorname{Syl}_{p}(L)$. Note $T \in \operatorname{Syl}_{p}(M)$. We will first show:

$\mathbf{1}^{\circ} . \quad \mathrm{C}_{V}(T) \not \leq I$.

The proof is by induction on n. If $n=2$ then $A=T$ and 1^{1} follows from (iii). Suppose that $n \geq 3$. Note that $L / A \cong \operatorname{SL}_{n-1}(q), H \cong U / U \cap I$ is a natural module for L / A and $U \cap I \cong \Lambda_{\mathbb{K}}^{2} H$. Let $g \in M$ with $H^{g} \neq H$ and put $R_{0}:=L \cap A^{g}$ and $R:=A\left(L \cap A^{g}\right)$.

Assume that $n=3$. Then $T=R$ and $I \cong W^{*}$. In particular

$$
\left[U \cap\left(U^{g}+I\right), R\right]=\left[I, R_{0}\right] \cap I \cap U=0
$$

Since $\left|U \cap\left(U^{g}+I\right)\right|=q^{2}$ while $|U \cap I|=q$, we conclude that $C_{U}(R)=\mathrm{C}_{U}(T) \not \leq I$, and 1^{1} holds.
Suppose now that $n>3$. Then $\mathrm{C}_{I}(R)=\mathrm{C}_{U \cap I}\left(R_{0}\right)$ and so $\mathrm{C}_{I}(R)$ has order $q^{\left(\frac{n-2}{2}\right)}$. On the other hand, $\mathrm{C}_{V}(A)$ has index q^{n} in V. Hence $\mathrm{C}_{V}\left(\left\langle A, A^{g}\right\rangle\right)$ has index at most $q^{2 n}$ in V. Thus also $\left|V / \mathrm{C}_{V}(R)\right| \leq q^{2 n}$. Note that

$$
\left|V / \mathrm{C}_{I}(R)\right|=q^{n+\binom{n}{2}-\binom{n-2}{2}}=q^{3 n-3}>q^{2 n}
$$

where the last inequality holds since $n>3$.
Thus $\mathrm{C}_{V}(R) \nsubseteq \mathrm{C}_{I}(R)$ and since $\mathrm{C}_{V}(R) \leq U, \mathrm{C}_{U}(R) \not \leq U \cap I$. Thus $\left(U, U \cap I, L / A, H \cap H^{g}, R / A\right)$ in place of (V, I, M, H, A) fulfills the assumptions (ii)-(iii) and so by induction $\mathrm{C}_{U}(T / A) \not \leq U \cap I$. Thus 1° holds.

Put $Y:=I+\mathrm{C}_{V}(T)$ and $F_{1}:=\mathrm{C}_{M}(Y / I)$. Then $\operatorname{dim}_{\mathbb{K}} Y / I=1$, so $F_{1}=\mathrm{C}_{M}(x+I / I)$ for $x \in \mathrm{C}_{V}(T) \backslash I$. Since $T \in \operatorname{Syl}_{p}\left(F_{1}\right)$, Gaschütz' Theorem implies that $Y=I \oplus X$ for some F_{1}-invariant subspace X of Y. Then $\left[X, F_{1}\right] \leq X \cap I=0$. Let $0 \neq x \in X$. Then $F_{1} \leq \mathrm{C}_{F_{1}}(x) \leq \mathrm{C}_{M}(x+I / I)=F_{1}$, and so the first statement in 6.3 is proved.

Suppose V is a Q !-module. If $n=2$, then $[I, M]=0$ and so $Q \unlhd \mathrm{C}_{M}(I)=M$, a contradiction. Thus $n \geq 3$. Without loss $Q \leq T$. Thus $X \leq \mathrm{C}_{V}(Q)$ and so by Q ! we get that $Q \unlhd F_{1}$. Similar $Q \unlhd F_{2}:=\mathrm{N}_{M}\left(\mathrm{C}_{I}(T)\right)$. Since F_{2} is the normalizer of a 2-dimensional subspace of W, we have $M=\left\langle F_{1}, F_{2}\right\rangle$ and so $Q \unlhd M$, a contradiction to the definition of a $Q!$-module.

Lemma 6.4. Let $M=\mathrm{SL}_{2}(\mathbb{F}), \mathbb{F}$ a field, and let Z be a maximal unipotent subgroup of M and $B:=\mathrm{N}_{M}(Z)$. Suppose that X is an $\mathbb{Z} M$-module with $[X, Z, Z]=0$ and Y is a B-submodule of $\mathrm{C}_{X}(Z)$ with $X=\left\langle Y^{M}\right\rangle$. Then for every $h \in M \backslash B$

$$
X=Y+Y^{h}+\mathrm{C}_{X}(M)=Y+Y^{h}+\left[Y^{h}, Z\right] \text { and } \mathrm{C}_{X}(Z)=Y+\left[Y^{h}, Z\right]=Y+\mathrm{C}_{X}(M)
$$

in particular $\mathrm{C}_{X}(M) \leq Y+\left[Y^{h}, Z\right]$.
Proof. Note that Z acts transitively on $Z^{M} \backslash\{Z\}$ and so $Z^{M}=\{Z\} \cup Z^{h Z}$ and $Y^{M}=\{Y\} \cup Y^{h Z}$ for all $h \in M \backslash B$. Thus

$$
\begin{equation*}
X=\left\langle Y^{M}\right\rangle=Y+\left\langle Y^{h Z}\right\rangle=Y+Y^{h}+\left[Y^{h}, Z\right] \tag{*}
\end{equation*}
$$

By the quadratic action of $Z,\left[Y^{h}, Z\right] \leq \mathrm{C}_{X}(Z)$. By assumption also $Y \leq \mathrm{C}_{X}(Z)$ and so $\mathrm{C}_{X}(Z)=$ $Y+\left[Y^{h}, Z\right]+\mathrm{C}_{Y^{h}}(Z)$. Note that $M=\left\langle Z^{M}\right\rangle=\left\langle Z, Z^{h Z}\right\rangle=\left\langle Z, Z^{h}\right\rangle$ and so $\mathrm{C}_{Y^{h}}(Z) \leq \mathrm{C}_{X}\left(\left\langle Z^{h}, Z\right\rangle\right) \leq$ $\mathrm{C}_{X}(M)$. Hence $\mathrm{C}_{Y^{h}}(Z) \leq \mathrm{C}_{Y^{h}}(M) \leq Y$ and so $\mathrm{C}_{X}(Z)=Y+\left[Y^{h}, Z\right]$.

Now by $(*) X=Y^{h}+\mathrm{C}_{X}(Z)$ and thus $\mathrm{C}_{X}\left(Z^{h}\right)=Y^{h}+\mathrm{C}_{X}(Z) \cap \mathrm{C}_{X}\left(Z^{h}\right)=Y^{h}+\mathrm{C}_{X}(M)$. Hence $\mathrm{C}_{X}(Z)=Y+\mathrm{C}_{X}(M)$ and $X=Y^{h}+Y+\mathrm{C}_{X}(M)$.

Notation 6.5. Let

$$
\mathcal{C} \mathcal{L}(p):=\left\{\mathrm{SL}_{n}(q), \mathrm{SU}_{n}(q), \operatorname{Sp}_{2 n}(q)(q \text { odd }), \Omega_{n}^{\epsilon}(q), \mathrm{O}_{n}^{\epsilon}(q)(q \text { even })\right\}
$$

where q is a power of p. Let $H \in \mathcal{C} \mathcal{L}(p)$ and \tilde{A} be the corresponding natural $\mathbb{F}_{p} H$-module. Put $A:=\tilde{A} / \mathrm{C}_{\tilde{A}}(H)$. Note that A is a simple $\mathbb{F}_{p} H$-module. Also $\mathrm{C}_{\tilde{A}}(H)=0$ unless $\left.H=\Omega_{2 m+1}\left(2^{k}\right)\right)$, in which case $\mathrm{C}_{\tilde{A}}(H)$ is 1-dimensional, $H \cong \mathrm{Sp}_{2 m}\left(2^{k}\right)$, and A is the natural $\mathrm{Sp}_{2 m}\left(2^{k}\right)$-module for H.

Furthermore set $K:=\mathrm{O}^{p}(H)$ and $\mathbb{K}:=\operatorname{End}_{H}(A)$. Then A is also a $\mathbb{K} H$-module, and A is equipped with a natural sesquilinear form f if A is not the natural $\mathrm{SL}_{n}(q)$-module.

The groups $\operatorname{Sp}_{2 n}\left(2^{k}\right)$ have been excluded from the list in 6.5 . since it will be more convenient for us to treat $\operatorname{Sp}_{2 n}\left(2^{k}\right)$ as $\Omega_{2 n+1}\left(2^{k}\right)$.

Lemma 6.6. Let $H \in \mathcal{C} \mathcal{L}(p)$, V be a faithful $\mathbb{F}_{p} H$-module with H-submodules $A_{0} \leq B \leq V$, and let $D \leq H$. Suppose that
(i) $[B, K] \leq A_{0}, A \cong A_{0}$ and $V / B \cong A$ or A^{*},
(ii) D is a non-trivial quadratic best offender on V.

Then there exists a $K D$-submodule C in V such that $A_{0} \not \leq C$ and $V=B+C$.
Proof. Let D^{*} be any non-trivial quadratic best offender on V such that $K D^{*}<H$. Then we may assume by induction on H that $V=B+C$ for a $K D^{*}$-submodule C with $A_{0} \not \leq C$. Since V / B is a perfect K-module and $K=O^{p}(K)$, also $V=B+[C, K]$ and $[C, K]=[C, K, K]$. Hence 2.6 shows that C is D-invariant, and we are done. Thus, we may assume
$\mathbf{1}^{\circ}$. $H=K D^{*}$ for every non-trivial quadratic best offender D^{*} on V; in particular $H=K D$.
Note that by $1.2 D$ is a best offender on $[V, K]$ and that D is a quadratic offender on $V / \mathrm{C}_{V}(K)$, so D contains a best offender on $V / \mathrm{C}_{V}(K)$. Hence we may assume that
2. $\quad V=[V, K]$ and $\mathrm{C}_{V}(K)=0$.

We will now compare the action of $\underset{\sim}{H}$ on V with that on the natural module \tilde{A}. According to $1{ }^{\circ}$ we can choose D such that $U:=[\tilde{A}, D]$ is minimal with respect to (ii). Observe that U is a \mathbb{K}-subspace. Put $P:=\mathrm{N}_{H}(U)$ and $E=\mathrm{C}_{H}(U) \cap \mathrm{C}_{H}(\tilde{A} / U)$. Note that D acts quadratically on A_{0} and so also on A. By $3.2 \mathrm{e}, D$ acts quadratically on \tilde{A} and U is isotropic. Thus $D \leq E$. Since E acts quadratically on A, E is an elementary abelian p-group.

Pick $D_{1} \leq E$ such that first $\left|D_{1} \| \mathrm{C}_{V}\left(D_{1}\right)\right|$ is maximal among all subgroups of E and then that $\left|D_{1}\right|$ is maximal with that property. Since $D \leq E,\left|D_{1}\right|\left|\mathrm{C}_{V}\left(D_{1}\right)\right| \geq\left|D \| \mathrm{C}_{V}(D)\right| \geq|V|$ and so D_{1} is a non-trivial best offender on V. By [MS1, 2.6] D_{1} is uniquely determined in E and so $D_{1} \unlhd P$. By the Timmesfeld Replacement Theorem, $D_{2}:=\mathrm{C}_{D_{1}}\left(\left[V, D_{1}\right]\right)$ is a non-trivial quadratic best offender on V. Since $\left[\tilde{A}, D_{2}\right] \leq[\tilde{A}, E] \leq U$, the minimal choice of U and 1° imply $\left[\tilde{A}, D_{2}\right]=U$, and so we may assume
$3^{\circ} . \quad D \unlhd P$.
By our hypothesis

$$
|D| \geq\left|A / \mathrm{C}_{A}(D)\right|\left|V / B / \mathrm{C}_{V / B}(D)\right|
$$

Since A is self-dual if A is not the natural $\mathrm{SL}_{n}(q)$-module, we get:
4. $\quad|D| \geq\left|A / \mathrm{C}_{A}(D)\right|\left|A^{*} / \mathrm{C}_{A^{*}}(D)\right|$ and A is the natural $\mathrm{SL}_{n}(q)$-module, or $|D| \geq\left|A / \mathrm{C}_{A}(D)\right|^{2}$.

Let CL be the type of H, so $\mathrm{CL} \in\left\{\mathrm{SL}, \mathrm{Sp}, \mathrm{SU}, \Omega^{\epsilon}, \mathrm{O}^{\epsilon}\right\}$ and $H=\mathrm{CL}_{n}(\mathbb{K})$.
Case 1. Suppose $\mathrm{CL}=\mathrm{SL}, \mathrm{SU}$ or Sp .

Recall that in these cases $A=\tilde{A}$ and $U=[A, D]$. If $\operatorname{dim}_{\mathbb{K}} U=1$ we get $\left|A / \mathrm{C}_{A}(D)\right| \geq|D|$, a contradiction to $4{ }^{\circ}$. Thus $\operatorname{dim}_{\mathbb{K}} U \geq 2$. By 3.5 and since by assumption p is odd in the symplectic case, P acts simply on E and so $D=E$. Let U_{1} be a 1-dimensional subspace of U. If $H=\mathrm{SL}_{n}(\mathbb{K})$ let U_{n-1} be a hyperplane of A containing $U, Z:=\mathrm{C}_{H}\left(A / U_{1}\right) \cap \mathrm{C}_{H}\left(U_{n-1}\right)$ and $L:=\mathrm{C}_{H}\left(U_{1}\right) \cap C_{H}\left(U / U_{n-1}\right)$. In the other cases let $U_{n-1}:=U_{1}^{\perp}, Z:=\mathrm{C}_{H}\left(U_{1}^{\perp}\right)$ and $L:=\mathrm{C}_{H}\left(U_{1}\right)$. In either case put $\bar{W}:=U_{n-1} / U_{1}$. Then Z is a transvection group, $Z \leq \mathrm{Z}(L) \cap D, \mathrm{O}_{p}(L)=\mathrm{C}_{L}(\bar{W})$ and $L / \mathrm{O}_{p}(L)$ induces $\mathrm{CL}_{n-2}(\bar{W})$ on \bar{W}. Moreover, if $\mathrm{CL}=\mathrm{SL}, \mathrm{O}_{p}(L) / Z$ is as an $L / \mathrm{O}_{p}(L)$-module isomorphic to the direct sum of \bar{W} and its dual. And if $\mathrm{CL}=\mathrm{Sp}$ or SU , then $\mathrm{O}_{p}(L) / Z \cong \bar{W}$ as an L-module. Let $S \in \operatorname{Syl}_{p}(L)$ and note that $S \in \operatorname{Syl}_{p}(H)$.
$5^{\circ} . \quad[V, Z, L]=0$.
Note that $D=E$ induces $\mathrm{C}_{\mathrm{CL}_{n-2}(\bar{W})}(\bar{U}) \cap \mathrm{C}_{\mathrm{CL}_{n-2}(\bar{W})}(\bar{W} / \bar{U})$ on \bar{W}. Since $\operatorname{dim} U \geq 2$ we have $\bar{U} \neq 0$. It follows that either $L=\mathrm{O}_{p}(L)\left\langle D^{L}\right\rangle$ or $D \leq \mathrm{O}_{p}(L), \mathrm{CL}=\mathrm{SL}$ and $U=U_{n-1}$.

In the first case $O_{p}(L) / Z$ is a perfect L-module and $Z \leq \Phi\left(O_{p}(L)\right)$, so $L=\left\langle D^{L}\right\rangle$. Since D is quadratic on V and $Z \leq D$ we have $[V, Z, D]=0$, and since $Z \leq Z(L)$, this implies $\left[V, Z,\left\langle D^{L}\right\rangle\right]=0$ and so $[V, Z, L]=0$.

Now suppose $\mathrm{CL}=\mathrm{SL}$ and $U=U_{n-1}$, so $|D|=q^{n-1}$. Since $\operatorname{dim} U \geq 2, n \geq 3$. If $V / B \cong A^{*}$, then $\left|V / B / \mathrm{C}_{V / B}(D)\right|=q^{n-1}=|D|$, a contradiction to 4°. Thus $V / B \cong A$. Suppose for a contradiction that $A_{0} \neq B$. Then by $6.1 n=3$ and $q=2$. So $D \mid=4$. From

$$
\left|V / B / \mathrm{C}_{V / B}(D)\right|\left|B / C_{B}(D)\right| \leq\left|V / C_{V}(D)\right| \leq|D|=4
$$

we conclude that $\left|B / C_{B}(D)\right|=2$. Since $H\left(\cong \mathrm{GL}_{3}(2)\right)$ is generated by three conjugates of D, this gives $\left|B / C_{B}(H)\right| \leq 2^{3}=\left|A_{0}\right|$. Hence $\left|A_{0}\right|<|B|$ implies $C_{B}(H) \neq 0$, which contradicts 2°.

Hence $A_{0}=B$ and thus $\left|V / \mathrm{C}_{V}(D)\right|=q^{2}$. In particular $|[V, z]|=q^{2}$ for $1 \neq z \in Z$. Let $h \in H$ with $Z^{h} \leq L$, but $Z^{h} \not \leq D$. Note that $\mathrm{C}_{V}(D)+B / B=\mathrm{C}_{V / B}(Z)$ and $\left|\left[\mathrm{C}_{A}(D), z^{h}\right]\right|=q$. Since B and V / B are isomorphic to A we conclude that $\left|\left[\mathrm{C}_{V}(D), z^{h}\right]\right|=q^{2}$. Since $|[V, z]|=q^{2}$ we get $\left[V, z^{h}\right]=$ $\left[\mathrm{C}_{V}(D), z^{h}\right] \leq \mathrm{C}_{V}(D)$, so $\left\langle D^{L^{h}}\right\rangle \leq \mathrm{C}_{H}\left(\left[V, Z^{h}\right]\right)$. In $\mathrm{C}_{H}\left(\left[A, Z^{h}\right]\right)=\mathrm{C}_{H}\left(U_{1}^{h}\right) \sim q^{n-1} \mathrm{SL}_{n-1}(q)$ we see that $\left\langle D^{L^{h}}\right\rangle=\mathrm{C}_{H}\left(U_{1}^{h}\right)$. Since $L^{h} \leq \mathrm{C}_{H}\left(U_{1}^{h}\right)$, also $L^{h} \leq\left\langle D^{L^{h}}\right\rangle \leq \mathrm{C}_{H}\left(\left[V, Z^{h}\right]\right)$, and so $\left[V, Z^{h}, L^{h}\right]=0$ and again 55° holds.

Put $\widetilde{L}:=\mathrm{C}_{H}([V / B, Z])$. Observe that $[V / B, Z]$ is a 1-dimensional \mathbb{K}-subspace of V / B and $S \leq L \leq \widetilde{L}$. Thus by $5^{\circ},[V, Z]+B=\mathrm{C}_{V}(S)+B=Y^{*} \oplus B$ for some $Y^{*} \leq \mathrm{C}_{V}(S)$. By Gaschütz' Theorem there also exists a \tilde{L}-invariant complement Y to B in $B+\mathrm{C}_{V}(S)$, in particular $[Y, \tilde{L}] \leq Y \cap B=0$. Let $W:=\left\langle Y^{H}\right\rangle$ and $h \in H$.
6 ${ }^{\circ} . \quad\left[Y^{h}, Z\right] \leq Y$.
If $Z \leq \widetilde{L}^{h}$, then $\left[Y^{h}, Z\right]=0$. So assume that $Z \not 又 \widetilde{L}^{h}$. Note that there exists $h^{*} \in H$ with $Y^{h}=Y^{h^{*}}$ and $T:=\left\langle Z^{h^{*}}, Z\right\rangle \cong \mathrm{SL}_{2}(q)$. Without loss $h=h^{*}$. Put $X:=\left\langle Y^{T}\right\rangle$. Then 6.4 and 5° give

$$
Y+\mathrm{C}_{X}(T)=Y+\left[Y^{h}, Z\right] \leq \mathrm{C}_{V}(L)
$$

Note that T normalizes neither U_{1} nor U_{n-1}, so T and L are not contained in a proper parabolic subgroup. Hence $H=\langle L, T\rangle$ and $\mathrm{C}_{V}(H)=0$. Since $\mathrm{C}_{X}(T) \leq \mathrm{C}_{V}(L)$, this gives $\mathrm{C}_{X}(T)=0$, and we conclude that $Y=\left[Y^{h}, Z\right]$.

From $\sqrt{6^{\circ}}$ we get $[W, Z]=Y$. In particular $A \not \approx W$, and the lemma holds in (Case 1).
Case 2. Suppose $\mathrm{CL}=\Omega^{\epsilon}$ or O^{ϵ}.
$\mathbf{7}^{\circ}$. If $0 \neq \tilde{A}^{\perp} \leq U$, then $\operatorname{dim} U \geq 4$ and $n \geq 7$. In the other cases $\operatorname{dim} U \geq 5$ and $n \geq 10$.
Put $k:=\operatorname{dim} U$. Suppose first that $0 \neq \tilde{A}^{\perp} \leq U$. By 3.4. $|D| \leq|E| \leq q^{\frac{k(k-1)}{2}}$ and $\left|A / \mathrm{C}_{A}(D)\right|^{2}=$ $\left|\tilde{A} / U^{\perp}\right|^{2} \geq q^{2(k-1)}$. Thus by $\sqrt{4} \frac{k}{2} \geq 2$ and so $k \geq 4$.

Suppose next that $\tilde{A}^{\perp}=0$ or $\tilde{A}^{\perp} \not \leq U$. By $3.4,|D| \leq|E| \leq 2 q^{\frac{k(k-1)}{2}} \leq q^{\frac{k(k-1)}{2}+1}$ and $\left|A / \mathrm{C}_{A}(D)\right|^{2}=\left|\tilde{A} / U^{\perp}\right|^{2} \geq q^{2 k}$. Thus by $4 \frac{k(k-1)}{2}+1 \geq 2 k, k(k-5) \geq-2$ and $k \geq 5$.

By $\sqrt[7^{\circ}]{ }, U$ contains a singular 2 -space U_{2}. Put

$$
Z:=\mathrm{C}_{H}\left(\widetilde{A} / U_{2}\right), L:=\mathrm{C}_{H^{\prime}}\left(U_{2}\right), \text { and } \bar{W}:=U_{2}^{\perp} / U_{2}
$$

Then $|Z|=q, Z$ is a long root subgroup of H in $\mathrm{Z}(L)$, and L induces $\Omega_{n-4}^{\epsilon}(\bar{W})$ on \bar{W}. Moreover, $\mathrm{C}_{L}(\bar{W})=\mathrm{O}_{p}(L)$, and $\mathrm{O}_{p}(L) / Z$ is as an L-module the direct sum of two copies of \bar{W}. Let U_{0} be the singular radical of U and $E_{0}:=\mathrm{C}_{H}\left(\tilde{A} / U_{0}\right)$. Then $Z \leq E_{0}$ and by 3.5, $E_{0} \leq D$. In particular, $Z \leq D$. If $E \neq E_{0}$, we have $\left[\tilde{A}, E_{0}\right]=U_{0} \neq U$ and so $E_{0}<D$.
$8^{\circ} . \quad L=\left\langle D^{L}\right\rangle$.
From 3.5 and 7° we see that D acts non-trivially on \bar{W}. Suppose $n \geq 9$. Then $n-4 \geq 5$ and so $L / \mathrm{O}_{p}(L)$ is simple and $\bar{W}=[\bar{W}, L]$. It follows that $L=\left\langle D^{L}\right\rangle \mathrm{O}_{p}(L)$ and then $L=\left\langle D^{L}\right\rangle$.

So suppose $n<9$. Then 7° implies that $n=7,0 \neq \tilde{A}^{\perp} \leq U$, $\operatorname{dim} U=4$. By 3.4 e), $E / E_{0} \cong U_{0}$, and since $E_{0}<D \unlhd P, 3.5$ implies that $D=E$. Thus $\mathrm{C}_{H}\left(U_{2}^{\bar{\perp}}\right) \leq D$. Also $L / \mathrm{O}_{p}(L) \cong \mathrm{SL}_{2}(q)$ and so $L=\left\langle D^{L}\right\rangle \mathrm{O}_{p}(L)$. Since $\mathrm{O}_{p}(L) / \mathrm{C}_{H}\left(U^{\perp}\right)$ is a direct sum of two copies of the natural $\mathrm{SL}_{2}(q)$-module $\bar{W} / \bar{W}^{\perp}$ we again get that $L=\left\langle D^{L}\right\rangle$.
$\mathbf{9}^{\circ} . \quad[V, Z, L]=0$.
This follows immediately from $[V, Z, D]=0$ and 8°.
Note that we can can embed $[\tilde{A}, Z]$ in a non-degenerate subspace U_{4} of \tilde{A} of dimension 4. Put $K:=\mathrm{O}^{p^{\prime}}\left(\mathrm{N}_{H^{\prime}}\left(U_{4}\right) \cap \mathrm{C}_{H^{\prime}}\left(U_{4}^{\perp}\right)\right), \hat{L}:=\mathrm{O}^{p^{\prime}}\left(\mathrm{N}_{H}(Z)\right)$, and let U_{1} be a 1-subspace of U_{2}.

Then $Z \leq K$ and $K \cong \mathrm{O}^{p^{\prime}}\left(\Omega_{4}^{+}(q)\right) \cong \mathrm{SL}_{2}(q) * \mathrm{SL}_{2}(q)$. Moreover $T^{*}:=\left\langle Z^{K}\right\rangle \cong \mathrm{SL}_{2}(q)$. Since $\operatorname{dim} \tilde{A} \geq 7, \mathrm{~N}_{H}\left(U_{4}\right)$ induces $\mathrm{O}_{4}^{+}\left(U_{4}\right)$ on U_{4} and there exists $h \in \mathrm{~N}_{H}\left(U_{4}\right) \cap \mathrm{N}_{H}\left(U_{1}\right)$ with $T:=T^{* h} \neq T^{*}$. Then

$$
K=T T^{*}, T \cong \mathrm{SL}_{2}(q), \hat{L}=T L, \text { and }\left[T, T^{*}\right]=1
$$

Note that $U_{1}=U_{2} \cap U_{2}^{h}=\left[\widetilde{A}, Z, Z^{h}\right] \neq 0$. Put $\widetilde{P}:=\mathrm{N}_{H}\left(U_{1}\right)$, so \widetilde{P} is the stabilizer of a 1-dimensional singular subspace of \tilde{A}.

Since $U_{1} \neq 0$ also $V_{1}:=\left[V, Z, Z^{h}\right] \neq 0$. Note that V_{1} is centralizes by $L Z^{h}$ and thus by a Sylow p-subgroup of \widetilde{P}. Again Gaschütz' Theorem gives a \widetilde{P}-invariant complement Y to B in $B+V_{1}$.

Let $s \in T^{*} \backslash \mathrm{~N}_{T^{*}}(Z)$. Then $U_{1}+U_{1}^{s}$ is a singular 2 -space normalized by T^{*} and $U_{1}^{s} \not \not \leq U_{2}^{\perp}$. Since $\mathrm{O}_{p}(\underset{\sim}{L})$ is transitive on the singular 1-spaces of $U_{2}^{\perp}+U_{1}^{s}$ not contained in U_{2}^{\perp}, and T is transitive on $\widetilde{A} / U_{2}^{\perp}$, we get that $T L$ is transitive on the conjugates of \widetilde{P} that do not contain Z. As in the previous case, this gives

$$
\left[\left\langle Y^{H}\right\rangle, Z\right]=\left[\left\langle Y^{s T L}\right\rangle, Z\right]=\left\langle\left[Y^{s}, Z\right]^{T}\right\rangle
$$

Observe that $\left\langle L, T^{*}\right\rangle=H$. Hence, 6.4 implies $\left\langle Y^{T^{*}}\right\rangle=Y+Y^{s}$. Since $U_{1}^{h}=U_{1}$ we have $Y^{h}=Y$. Hence also $\left\langle Y^{T}\right\rangle=Y+Y^{s h}$ since $T^{h}=T^{*}$, and so $\left[\left\langle Y^{H}\right\rangle, Z\right]=Y+Y^{s h}$. Then as in the previous case $\left[A_{0}, Z\right] \not \leq\left[\left\langle Y^{H}\right\rangle, Z\right]$, so $A \not \leq\left\langle Y^{H}\right\rangle$, and the lemma also follows in Case 2).

7 Quadratic Modules

In this section M is a finite group, and V is a finite dimensional $\mathbb{F}_{p} M$-module.
Lemma 7.1. Let V be faithful. Suppose that p is odd, $A \leq M$ with $[V, A, A]=0$, and R is an A invariant p^{\prime}-subgroup of M satisfying $R=[R, A] \neq 1$. Then $p=3$ and R is a non-abelian 2-group. If in addition $|\Phi(R)|=2$ and $|A|=3$, then $R A \cong \mathrm{SL}_{2}(3)$.

Proof. Observe that by coprime action for every prime divisor r of R there exists an A-invariant Sylow r-subgroup S_{r} in R. If $\left[S_{r}, A\right] \neq 1$ then [KS, 9.1.3] implies that $p=3, r=2$ and S_{r} is not abelian. It follows that $R=\mathrm{C}_{R}(A) S_{2}$ and so $R=[R, A]=\left[S_{2}, A\right] \leq S_{2}$.

Suppose now that $|\Phi(R)|=2$ and $|A|=3$. Then A acts fixed-point freely on $\bar{R}:=R / \Phi(R)$. Since A centralizes $\mathrm{Z}(R)$, this gives $\mathrm{Z}(R)=\Phi(R)$ and R is an extraspecial 2-group. Assume that there exists an involution $t \in R \backslash \Phi(R)$. Then $F:=\left\langle t^{A}\right\rangle$ has order at most 8. Since $|\bar{F}|=4$ and F contains an involution, we conclude that F is abelian. But, as we have already seen, $[F, A]$ has to be non-abelian.

This contradiction shows that there are no involutions in $R \backslash \Phi(R)$, and so $R \cong Q_{8}$ and $R A \cong$ SL_{2} (3).

Lemma 7.2. Let $p=2$ and V be a faithful indecomposable M-module with $\mathrm{C}_{V}(M)=0$ and $[V, M]=V$. Suppose that $M=\operatorname{Alt}(n), n \geq 5$, and that $A=\langle(12)(34),(13)(24)\rangle$ acts quadratically on V. Then $\langle(123)\rangle$ acts fixed-point freely on V. Moreover, one of the following holds:

1. V is the (simple) spin module for M.
2. 4 divides n and there exists an $\mathbb{F}_{2} M$-submodule in W such that W and V / W spin modules for M and $V / W \cong W^{h}$, where $h \in \operatorname{Sym}(n) \backslash \operatorname{Alt}(n)$.

Proof. Let $E=\langle 123\rangle$ and $B=A E \cong \operatorname{Alt}(4)$ and for $5 \leq i \leq n$ let $D_{i}=C_{M}(\{1,2,3,4, i\})$. Then $B \leq D_{i}, D_{i} \cong \operatorname{Alt}(5)$ and

$$
\begin{equation*}
M=\left\langle D_{5}, D_{6}, \ldots, D_{n}\right\rangle \tag{*}
\end{equation*}
$$

Suppose there exists $0 \neq w \in V$ with $[w, B]=0$. Then $\left\langle w^{D_{i}}\right\rangle$ is a quotient of the natural permutation module for $D_{i} \cong \operatorname{Alt}(5)$ over \mathbb{F}_{2}, and the quadratic action of A forces $\left[w, D_{i}\right]=0$. So by $\left(^{*}\right)[w, M]=0$, which contradicts $\mathrm{C}_{V}(M)=0$.

Thus $\mathrm{C}_{V}(B)=0$. Since $B / A \cong E$ is a 2^{\prime}-group,

$$
\mathrm{C}_{V}(A)=\mathrm{C}_{V}(B) \oplus\left[\mathrm{C}_{V}(A), B\right]=\left[\mathrm{C}_{V}(A), B\right]=\left[\mathrm{C}_{V}(A), E\right]
$$

and so E acts fixed-point freely on $\mathrm{C}_{V}(A)$. This result applied to the dual of V shows that E acts fixed-point freely on $V /[V, A]$. Since A is quadratic, $[V, A] \leq \mathrm{C}_{V}(A)$ and so E acts fixed-point freely on V. Now [Me, Theorem 2] shows that (1) or (2) holds.

Corollary 7.3. Let $p=2$ and $M \cong$ Alt(6). Suppose that all fours groups in M act quadratically on V. Then $[V, M]=0$.
Proof. Since $M=\mathrm{O}^{2}(M)$ we may assume for a contradiction that V is a non-trivial simple module. By 7.2. (123) acts fix-point freely on V. Since there exists an automorphism of Alt(6) sending (123) to (123)(456), the same results shows that (123)(456) acts fixpoint freely. So all non-trivial elements of order three in the non-cyclic abelian 3-group $\langle(123),(456)\rangle$ act fixed-point freely on V, a contradiction to coprime action.

Lemma 7.4. Let $p=2$ and V be faithful and simple, and let $A \leq M$ with $[V, A, A]=0$ and $|A|>2$. Put $L:=\mathrm{F}^{*}(M)$. Suppose that $M=\left\langle A^{M}\right\rangle$, L is quasisimple, $\mathrm{Z}(L) \neq 1$, and $L / \mathrm{Z}(L) \cong \operatorname{Alt}(n)$, $n \geq 5$. Then one of the following holds:

1. $M \sim 3$.Alt(6) and $|V|=2^{6}$.
2. $M \sim 3 \cdot \operatorname{Alt}(7),|V|=2^{12}$, and $A \mathrm{Z}(L) / \mathrm{Z}(L)$ is conjugate to $\langle(12)(34),(13)(24)\rangle$.

Proof. Since V is a faithful simple M-module, $\mathrm{O}_{2}(M)=\mathrm{O}_{2}(L)=1$. From [Gr] we get that $n=6$ or 7 and $|\mathrm{Z}(L)|=3$. Put $Z:=\mathrm{Z}(L)$ and let \mathbb{F} be the subring of $\operatorname{End}(V)$ generated by the image of Z in $\operatorname{End}(V)$. Then \mathbb{F} is a field of order four and M acts semilinear on the \mathbb{F}-module V. Now $[V, A, A]=0$ and $|A|>2$ imply that A acts \mathbb{F}-linearly on V, see for example [MS3, 2.15]. Thus $[Z, A]=1$ and $Z=\mathrm{Z}(M)$. Hence $M=L$ or $M / Z \cong \operatorname{Mat}_{10}$. But $M=\left\langle A^{M}\right\rangle$ is generated by involutions while Mat $_{10}$ is not, so $M=L$. Since A is elementary abelian and $|A|>2$ we have $|A|=4$.

Note that there are two conjugacy classes of fours groups in L. In any case we can choose a series of subgroups $A \leq B \leq D \leq H \leq L$ with $B \cong \operatorname{Alt}(4), D \cong \operatorname{Alt}(5)$ and $H \sim 3$.Alt(6). Let $E \in \operatorname{Syl}_{3}(B)$. Then $E \cong \mathrm{C}_{3}$ and $B=A E$. By Gaschütz' Theorem, the Sylow 3-subgroups of L are not abelian and so the subgroups $E=E_{1}, E_{2}, E_{3}$ of order three in $E Z$ other than Z are conjugate. Since Z acts fixed-point freely on V we have $V=[V, Z]=\bigoplus_{i=1}^{3} \mathrm{C}_{V}\left(E_{i}\right)$ and so $|V|=\left|\mathrm{C}_{V}(E)\right|^{3}$. In particular, $\mathrm{C}_{V}(E) \neq 0$.

We claim that $\mathrm{C}_{V}(B) \neq 0$ or $[V, B] \neq V$. If $\mathrm{C}_{V}(E) \leq \mathrm{C}_{V}(A)$, then $0 \neq \mathrm{C}_{V}(E) \leq \mathrm{C}_{V}(B)$. So suppose $\mathrm{C}_{V}(E) \not \leq \mathrm{C}_{V}(A)$ and put $\bar{V}=V / \mathrm{C}_{V}(A)$. Then $0 \neq \overline{\mathrm{C}_{V}(E)} \leq \mathrm{C}_{\bar{V}}(E)$. By coprime actions, $\bar{V}=\mathrm{C}_{\bar{V}}(E) \oplus[\bar{V}, E]$ and so $\bar{V} \neq[\bar{V}, E]$. Since A centralizes \bar{V}, this give $\bar{V} \neq[\bar{V}, B]$ and so $V \neq[V, B]$, proving the claim. Note further that by $1.8 \mathrm{~d} A$ is also quadratic on the dual module V^{*}. So replacing V by its dual, if necessary, we may assume that $\mathrm{C}_{V}(B) \neq 0$.

Let W be 1-dimensional \mathbb{F}-subspace of $\mathrm{C}_{V}(B)$. Then $\left\langle W^{D}\right\rangle$ is a quotient of the natural permutation module for $D \cong \operatorname{Alt}(5)$ over \mathbb{F}. The quadratic action of A forces $[W, D]=0$. Put $U=\left\langle W^{H}\right\rangle$. Then $U \cong \hat{V} / \hat{X}$, where \hat{V} is the $\mathbb{F} H$-module induced from the $\mathbb{F} Z D$-module W and \hat{X} is a $\mathbb{F} H$ submodule of \hat{V}. Note that $\operatorname{dim}_{\mathbb{F}} \hat{V}=6$. Since A has a regular orbit on $H / Z D, A$ does not act quadratically on \hat{V}. Thus $U \neq \hat{V}$. Since H acts faithfully on \hat{V} / \hat{X} and on \hat{X} and since H has no faithful module of dimension less than 3 , we conclude that $\operatorname{dim}_{\mathbb{F}} \hat{V} / \hat{X}=3=\operatorname{dim}_{\mathbb{F}} \hat{X}$.

If $n=6$, then $H=L, V=U$ and (11) holds. So suppose that $n=7$. Choose a transitive action of L on $I:=\{1, \ldots, 7\}$. Suppose first that A has an orbit J on I with $|J|=2$. Put $K:=\mathrm{C}_{L}(J)^{\prime}$. Then $K \cong \operatorname{Alt}(5)$ and $A K \cong \operatorname{Sym}(5)$. Note that K is contained in a conjugate of H and that all composition factors for $\mathbb{F} H$ on V are 3-dimensional. It follows that all non-trivial composition factor for $\mathbb{F} K$ on V are 2-dimensional. Since $A \cap K \neq 1$, the quadratic action of A in V shows that also the non-trivial composition factors for $\mathbb{F} K A$ on V are 2-dimensional, a contradiction since $|K A|>|K|=\left|\mathrm{SL}_{2}(4)\right|$.

Thus A has no orbits of length 2 and so A has three fixed-points on I. Then D has two fixedpoints, say i and j. Put $D^{*}:=\mathrm{O}^{2^{\prime}}\left(\mathrm{N}_{L}(\{i, j\})\right.$. Then $D^{*} \cong \operatorname{Sym}(5)$ and $D \unlhd D^{*}$. Recall from above that W is a 1-dimensional subspace of $\mathrm{C}_{V}(D)$, so $\mathrm{C}_{V}(D) \neq 0$ and thus also $\mathrm{C}_{V}\left(D^{*}\right) \neq 0$. Hence we may and do choose W such that $\left[W, D^{*}\right]=0$. For $k \neq l \in I$ and $g \in G$ with $\{k, l\}=\{i, j\}^{g}$ put $W_{k l}=W_{l k}=W^{g}$. Since $\mathrm{N}_{L}(\{i, j\})=Z D^{*} \leq \mathrm{N}_{L}(W), W_{k l}$ is well-defined. Let i be the fixed-point of H. Since $\left\langle W^{H}\right\rangle$ is 3 -dimensional and H acts triple transitively on $\left\{W_{i j} \mid j \in I \backslash i\right\}$ we conclude that for any distinct $a, b, c, d \in I,\left\langle W^{H}\right\rangle=W_{a b}+W_{a c}+W_{a d}$. Since $V=\left\langle W^{L}\right\rangle$ is now easy to see that $V=\left\langle W_{k l} \mid 1 \leq k<l \leq 4\right\rangle$. Thus V is at most 6 -dimensional. By the action of H on $V, \operatorname{dim}_{\mathbb{F}} V$ is a multiple of 3 , so $\operatorname{dim}_{F} V=3$ or 6 . Since $\frac{\left|\mathrm{L}_{3}(4)\right|}{|\operatorname{Alt}(7)|}=8$ and $\mathrm{L}_{3}(4) \nsubseteq \operatorname{Alt}(8), \operatorname{Alt}(7)$ is not involved in $\mathrm{L}_{3}(4)$. We conclude that $\operatorname{dim}_{\mathbb{F}} V>3$ and so $\operatorname{dim}_{\mathbb{F}} V=6$, and 22 holds.

We remark that 3 .Alt (7) has indeed a 6 -dimensional quadratic module over \mathbb{F}_{4}. One way to see this is to use the embedding $3 . \operatorname{Alt}(7) \leq 3 . \mathrm{Mat}_{22} \leq \mathrm{SU}_{6}(2)$ (thanks to J. Hall for pointing out this embedding to us): Consider the block normalizer $P \sim 3.2^{4}$. Alt(6) in 3.Mat ${ }_{22}$. Then P has a unique proper submodule on \mathbb{F}_{4}^{6}, namely a 3 -dimensional one. In particular, $\mathrm{O}_{2}(P)$ acts quadratically. Alt(7) has orbits of length 7 and 15 on the 22 points. Any three points from the 7 lie in a unique block and so we can choose P to intersect 3 . Alt(7) in $B \sim 3$.(Alt(4) $\times \operatorname{Alt}(3)) .2$. It follows that $\mathrm{O}_{2}(B) \leq \mathrm{O}_{2}(P)$ and so $\mathrm{O}_{2}(B)$ is a quadratic fours group.

Lemma 7.5. Let $M=\operatorname{Alt}(n)$ or $\operatorname{Sym}(n), n \geq 5, n \neq 6,8$, and V be a simple spin module for $\mathbb{F}_{2} M$. Suppose that A is a maximal quadratic subgroup of M on V with $|A|>2$. Then $|V|=\left|\mathrm{C}_{V}(A)\right|^{2}$ and $[V, a]=[V, A]=\mathrm{C}_{V}(A)=\mathrm{C}_{V}(a)$ for all $1 \neq a \in A$. Moreover, one of the following holds:

1. A is conjugate to $\langle(12)(34),(13)(24)\rangle$.
2. $M \cong \operatorname{Alt}(9),|A|=8,|A|$ has a regular orbit of length 8 on $\{1,2, \ldots, 9\}$ and, up to conjugation, A is unique in M, with the conjugacy class depending on the isomorphism type of V.

Proof. Let $I=\{1,2, \ldots, n\}$ with M acting transitively on I. Let $K \leq M$ with $K \cong \operatorname{Alt}(5)$ and K fixing $n-5$ points of I. Then V is a direct sum of natural $\mathrm{SL}_{2}(4)$-modules. From this we get for $B \in \operatorname{Syl}_{2}(K): B$ is a quadratic fours group, and

$$
|V|=\left|\mathrm{C}_{V}(B)\right|^{2} \text { and }[V, b]=[V, B]=\mathrm{C}_{V}(B)=\mathrm{C}_{V}(b) \text { for all } 1 \neq b \in B
$$

Moreover, the non-trivial elements of odd order in K act fixed-point-freely on V.
Let $1 \neq z \in B$ and let D be a quadratic subgroup with $z \in D$. Then $\mathrm{C}_{V}(B)=\mathrm{C}_{V}(z)=\mathrm{C}_{V}(D)$ and so $D B$ is quadratic. In particular, $D B$ is elementary abelian.

Let W be a simple $\mathbb{F}_{2} M^{\prime}$-submodule of V. Since $A \cap M^{\prime} \neq 1$, then $0 \neq\left[W, A \cap M^{\prime}\right] \leq \mathrm{C}_{W}(A)$. Thus A normalizes W.

If $n=5$ or 7 then all involutions in M^{\prime} are conjugate. Thus we may assume that $z \in A$. If $n=5$, then $A \leq \mathrm{C}_{M}(B)=B$. If $n=7$, then $\operatorname{Sym}(7)$ does not act on W and so $A \leq M^{\prime}$. Also B is a Sylow 2-subgroup of $\mathrm{C}_{M^{\prime}}(B)$ and again $A \leq B$. So the lemma holds for $n=5$ and 7 .

Suppose next that $n \geq 9$. As in Section 4 of $\mathrm{MeSt2}$ define $L_{z}:=\mathrm{O}^{2}\left(\mathrm{C}_{M}(z)\right)$ and $A_{z}:=$ $\mathrm{O}_{2}\left(\mathrm{C}_{L}(z)\right)$. Moreover, for $t \in M$ with $|t|=2$ let K_{t} be the subgroup generated by the quadratic subgroups of M containing t. Observe that $\left[V, t, K_{t}\right]=0$, so every fours group of K_{t} containing t is quadratic on V. Note further that $A_{z}=B$ and $L_{z} \cong \operatorname{Alt}(n-4)$.

According to [MeSt2, Lemma (4.3)] we have that $L_{z} \not \leq K_{z}$. Since $K_{z} \unlhd \mathrm{C}_{M}(z)$ and L_{z} is simple this implies $\left[L_{z}, K_{z}\right]=1$. Since $B=\mathrm{C}_{M}\left(L_{z}\right)$ we conclude that $K_{z} \leq B$.

If $z \in A$ we conclude that $A=B$, and case 1) of the lemma holds. So suppose $z^{M} \cap A=\emptyset$. Let $1 \neq a \in A$. Then $A \leq K_{a}$. If $z \in K_{a}$, then by the above observation, $a \in K_{z}=B$ and so $a \in z^{M}$, contrary to the assumption. Thus $z^{M} \cap K_{a}=\emptyset$.

Let $k:=\left|\mathrm{C}_{I}(a)\right|, J=I \backslash \mathrm{C}_{I}(a)$ and $m:=\frac{|J|}{2}$. We now choose $1 \neq a \in M^{\prime} \cap A$ and so m is even and $m \geq 4$. Let D be the largest subgroup of M^{\prime} which has the same orbits as a on I. Put $X=\mathrm{C}_{M}(I \backslash J)$ and $Y=\mathrm{C}_{M}(J)$. Then D is elementary abelian of order 2^{m-1} and $Y \leq \mathrm{C}_{M}(a)$. Suppose that $Y \cap A \neq 1$ and let $1 \neq b \in A \cap Y$. Then $\operatorname{Alt}(J) \cong\left\langle a^{\mathrm{C}_{M}(b)}\right\rangle \leq K_{b}$ and $z^{M} \cap K_{b} \neq 1$, a contradiction. Thus $A \cap Y=1$ and $A \not \leq\langle a\rangle Y$. In particular, $K_{a} \not \leq\langle a\rangle Y$. Since $D \cap z^{M} \neq \emptyset$ we have $D \not \leq K_{a}$. Also $D=[D, X]=[D Y, X]$ and so $D \not \leq K_{a} Y$ and $D Y \cap K_{a} Y=\langle a\rangle Y$.

Hence $D Y /\langle a\rangle Y$ is not the only minimal normal subgroup of $\mathrm{C}_{M}(a) /\langle a\rangle Y$. Since

$$
\mathrm{C}_{M}(a) /\langle a\rangle Y \sim 2^{m-1} \operatorname{Sym}(m) \text { or } 2^{m-2} \operatorname{Sym}(m)
$$

(with $k \leq 1$ and $M=\operatorname{Alt}(n)$ in the latter case) we conclude that $m=4, \mathrm{C}_{M}(a) /\langle a\rangle Y \sim 2^{2} \operatorname{Sym}(4)$ and $M \cong \operatorname{Alt}(9)$. Moreover, $\left|K_{a} /\langle a\rangle\right|=4$ and $\mathrm{C}_{M}(a)$ acts transitively on $\left(K_{a} /\langle a\rangle\right)^{\sharp}$. Thus K_{a} is elementary abelian of order 8 and since $K_{a} \cap z^{M}=\emptyset, K_{a}$ acts regularly on J. It follows that $\mathrm{N}_{M}\left(K_{a}\right)$ acts transitively on K_{a}^{\sharp}. Since $\left[V, a, K_{a}\right]=0$ we conclude that K_{a} acts quadratically on V. Thus $A=K_{a}$ by the maximality of A. In particular, A is unique up to conjugacy. Also if $t \in \mathrm{C}_{\operatorname{Sym}(9)}(a) \backslash \operatorname{Alt}(8)$, then $A^{t} \neq A=K_{a}$. So A^{t} will not act quadratically on V, and A^{M} depends on the isomorphism type of V. Let $F \in \operatorname{Syl}_{5}(K)$. As seen above F acts fixed-point freely on V, and F is inverted by a conjugate of a. Thus $\mathrm{C}_{V}(a)=[V, a]$ and the quadratic action of A forces $\mathrm{C}_{V}(a)=[V, A]=\mathrm{C}_{V}(A)$; in particular $|V|=\left|\mathrm{C}_{V}(a)\right|^{2}$.

Lemma 7.6. Let $M=\mathrm{G}_{2}(2)$ or $\mathrm{G}_{2}(2)^{\prime}$, and let V be a non-trivial simple $\mathbb{F}_{2} M$-module. Suppose there exists $A \leq M$ with $|A|>2$ and $[V, A, A]=0$. Then V is a natural $\mathrm{G}_{2}(2)$ - and $\mathrm{G}_{2}(2)^{\prime}$-module, respectively.

Proof. Since $|A|>2$, there exists $1 \neq z \in A \cap M^{\prime}$, and since M^{\prime} has a unique class of involutions, z is 2-central. Put $P_{1}:=\mathrm{C}_{M}(z)$, let $S \in \operatorname{Syl}_{2}\left(P_{1}\right)$, and let P_{2} be the other minimal parabolic subgroup containing S. Suppose for a contradiction that $\mathrm{C}_{V}\left(P_{2}\right)=0$.

Let $\Gamma=P_{1}^{G} \cup P_{2}^{G}$ be the generalized hexagon associated to M. Let $\left(P_{1}, P_{2}, P_{3}, P_{4}\right)$ be a path of length 4 in Γ. Put $Z:=\langle z\rangle$. Then

$$
Z \leq P_{4}, Z \not \leq \mathrm{O}_{2}\left(P_{4}\right), T:=Z \mathrm{O}_{2}\left(P_{4}\right) \in \operatorname{Syl}_{2}\left(P_{4}\right), \text { and } P_{4}=\left\langle Z^{P_{4}}\right\rangle \mathrm{O}_{2}\left(P_{4}\right)
$$

Since $\mathrm{C}_{V}\left(P_{2}\right)=0$ and P_{2} and P_{4} are conjugate, we also have $\mathrm{C}_{V}\left(P_{4}\right)=0$, so

$$
X:=\left[\mathrm{C}_{V}\left(\mathrm{O}_{2}\left(P_{4}\right)\right), Z\right] \neq 0
$$

Note that T centralizes X, and since T is a maximal subgroup of $P_{4}, \mathrm{C}_{P_{4}}(X)=T$. Since P_{4} and P_{3} are the only maximal subgroups of M containing T, it follows that $\mathrm{C}_{M}(X) \leq P_{3}$. From $Z \leq A$ and $[V, A, A]=0$ we get $A \leq \mathrm{C}_{M}(X)=P_{3}$. So A fixes all vertices of distance two from P_{1}. But the stabilizer in P_{1} of these vertices is cyclic, a contradiction since $|A|>2$ and A is elementary abelian.

Thus $\mathrm{C}_{V}\left(P_{2}\right) \neq 0$. Let $M \leq M^{*}$ with $M^{*} \cong \mathrm{G}_{2}(2)$, and let V^{*} be a simple quotient of the induced $\mathbb{F}_{2} M^{*}$-module $V^{M^{*}}$ and identify V with its image in V^{*}. Let $S^{*} \in \operatorname{Syl}_{2}\left(M^{*}\right)$ with $S \leq S^{*}$. Put $P_{i}^{*}=P_{i} S^{*}$. Since $\left|P_{2}^{*} / P_{2}\right| \leq 2$ we get that $\mathrm{C}_{V^{*}}\left(P_{2}^{*}\right) \neq 0$. By Smith's lemma $4.2 V_{i}:=\mathrm{C}_{V^{*}}\left(\mathrm{O}_{2}\left(P_{i}^{*}\right)\right)$ is a simple P_{i}^{*}-module. It follows that $V_{2}=\mathrm{C}_{V}\left(P_{2}^{*}\right)=\mathrm{C}_{V}\left(S^{*}\right)$ has order two, $\mathrm{C}_{V^{*}}\left(P_{1}^{*}\right)=0$, and V_{1} is the unique non-trivial simple $P_{1}^{*} / \mathrm{O}_{2}\left(P_{1}^{*}\right)$-module, namely the natural $\mathrm{SL}_{2}(2)$-module. Thus by Ronan-Smith's Lemma $4.3 V^{*}$ is uniquely determined, and so V^{*} is the natural $\mathrm{G}_{2}(2)$-module for M^{*}. Hence $V=V^{*}$ and the lemma is proved.

Remark 7.7. Let $L:=\mathrm{F}^{*}(M)$ and suppose that $\mathrm{O}_{2}(M)=1, L$ is quasisimple and $L / \mathrm{Z}(L) \cong \mathrm{U}_{4}(3)$. Let $\bar{M}=M / \mathrm{Z}(L), S \in S y l_{2}(M)$, and $Z=\Omega_{1} \mathrm{Z}(S)$. In the following we use some information about the structure of M which can be found for example in [ATLAS]. More precisely we use the following facts:

There exists exactly two elementary abelian subgroups Q_{1} and Q_{2} of order 2^{4} in S, and for

$$
P_{1}=\mathrm{C}_{L}(Z), Q_{1}:=\mathrm{O}_{2}\left(P_{1}\right), P_{2}:=\mathrm{N}_{L}\left(Q_{2}\right), \text { and } P_{3}:=\mathrm{N}_{L}\left(Q_{3}\right)
$$

the following hold:

(a) For $i=1,2,3, \bar{P}_{i}$ is a maximal subgroup of \bar{M} and has characteristic 2 .
(b) $\bar{P}_{1} / \bar{Q}_{1} \cong \operatorname{Sym}(3) \times \operatorname{Sym}(3), Q_{1}$ is extraspecial of order 2^{5}, and Q_{1} / Z is a simple P_{1}-module.
(c) For $i=1,2, \bar{P}_{i} / \bar{Q}_{i} \cong \operatorname{Alt}(6)$, and Q_{i} is a natural Alt(6)-module for P_{i}.
(d) All involutions in L are conjugate.
(e) Suppose in addition that $|\mathrm{Z}(L)|=3, M \neq L,[\mathrm{Z}(L), M]=1, M=\mathrm{N}_{M}\left(Q_{2}\right) L$, and that $\mathrm{N}_{M}\left(Q_{2}\right)$ induces inner automorphisms on $\overline{P_{2}} / \overline{Q_{2}}$. Put $P_{i}^{*}=\mathrm{N}_{M}\left(Q_{i}\right)$ and $Q_{i}^{*}=\mathrm{O}_{2}\left(P_{i}^{*}\right)$. Then
(a) M is unique up to isomorphism and $|M / L|=2$.
(b) M has two classes of involutions in $M \backslash L$ with representatives a and b in Q_{2} such that $\mathrm{C}_{\bar{L}}(a) \cong \mathrm{U}_{4}(2)$ and $\mathrm{C}_{\bar{L}}(b) \sim 2^{4} .3^{2} \cdot 2^{2}$.
(c) $P_{2}^{*} / Q_{2}^{*} \cong 3 \cdot \operatorname{Alt}(6)$, and Q_{2}^{*} is the dual of the natural $\Omega_{5}(2)$-module for P_{2}^{*}.
(d) $Q_{3}^{*}=Q_{2}$ and $P_{2}^{*} / Q_{2} \cong \mathrm{C}_{3} \times \operatorname{Sym}(6)$.

Lemma 7.8. Let $p=2$ and V be faithful $\mathbb{F}_{2} M$-module, and let $Z \leq M$ with $|Z|=2$. Suppose that
(i) M is quasisimple, $\mathrm{O}_{2}(M)=1$ and $M / \mathrm{Z}(M) \cong \mathrm{U}_{4}(3)$.
(ii) $\mathrm{C}_{M}([V, Z]) \not \leq Z$.
(iii) $\mathrm{C}_{V}(M)=0, V=[V, M]$ and V is indecomposable, that is, V is not the sum of two proper (non-zero) $\mathbb{F}_{2} M$-submodules.

Put $P_{1}:=\mathrm{N}_{M}(Z)$ and $Q_{1}:=\mathrm{O}_{2}\left(P_{1}\right)$, and let $S \in \operatorname{Syl}_{2}\left(P_{1}\right)$ and $Q_{i}, i=2,3$, be the two elementary abelian subgroup of order 16 in S. Put $P_{i}:=\mathrm{N}_{M}\left(Q_{i}\right), L_{i}:=\mathrm{O}^{2^{\prime}}\left(P_{i}\right), L_{12}:=\left\langle Q_{3}^{P_{1}}\right\rangle, L_{13}:=\left\langle Q_{2}^{P_{1}}\right\rangle$, and $\mathbb{F}:=\operatorname{End}_{M}(V)$. Then we can choose $\{i, j\}=\{2,3\}$ such that the following hold :
(a) V is a simple M-module, $|\mathbb{F}|=4$ and $\operatorname{dim}_{\mathbb{F}} V=6$.
(b) $C_{V}\left(L_{i}\right)=0$ and $C_{V}\left(L_{j}\right) \neq 0$.
(c) V is uniquely determined as a $\mathbb{F}_{2} M$-module \square^{3}
(d) There exists a non-degenerate M-invariant unitary \mathbb{F}-form on V.
(e) $Q_{1} \leq L_{1 k}, L_{1 k} / Q_{1} \cong \operatorname{Sym}(3), k=2,3$, and $L_{1} / Q_{1}=L_{12} / Q_{1} \times L_{13} / Q_{1} \cong \operatorname{Sym}(3) \times \operatorname{Sym}(3)$.
(f) $L_{1 j}=\mathrm{C}_{M}([V, Z]), \mathrm{C}_{V}(Z)=\left[V, Q_{1}\right]=\left[V, L_{1 j}\right]$ and $[V, Z]=\mathrm{C}_{V}\left(Q_{1}\right)=\mathrm{C}_{V}\left(L_{1 j}\right)$.
(g) $1 \leq[V, Z] \leq \mathrm{C}_{V}\left(Z_{1}\right) \leq V$ is the unique chiefseries for P_{1} on V, each of the factors is 2dimensional over $\mathbb{F}, L_{1 i}$ centralizes $\mathrm{C}_{V}(Z) /[V, Z]$ and $L_{1 j}$ centralizes $[V, Z]$ and $V /[V, Z]$.
(h) $P_{i}=L_{i}$ and L_{i} / Q_{i} is quasisimple of shape $3 \cdot \operatorname{Alt}(6)$.
(i) Q_{i} acts quadratically on V and $\mathrm{C}_{V}\left(Q_{i}\right)=\left[V, Q_{i}\right]$.
(j) $1 \leq\left[V, Q_{i}\right] \leq V$ is the unique chiefseries for P_{i} on V, each of the factors is 3-dimensional over \mathbb{F} and faithful for P_{i} / Q_{i}. Moreover, $V /\left[V, Q_{i}\right]$ is as an $\mathbb{F}_{2} P_{i}$-module isomorphic to the dual of $\left[V, Q_{i}\right]$.
(k) L_{j} / Q_{j} is isomorphic to $\operatorname{Alt}(6)$.

[^1](l) $\mathrm{C}_{V}(S)=\mathrm{C}_{V}\left(Q_{j}\right)=\mathrm{C}_{V}\left(L_{j}\right)$ and $[V, S]=\left[V, Q_{j}\right]=\left[V, L_{j}\right]$.
$(m) 1 \leq \mathrm{C}_{V}\left(Q_{j}\right) \leq\left[V, Q_{j}\right] \leq V$ is the unique chiefseries for P_{j} on V, where $\mathrm{C}_{V}\left(Q_{j}\right)$ and $V /\left[V, Q_{j}\right]$ are 1-dimensional over \mathbb{F} and centralized by L_{j} while $\left[V, Q_{j}\right] / \mathrm{C}_{V}\left(Q_{j}\right)$ is a 4-dimensional natural $\mathbb{F A l t}(6)$-module for L_{j}.

Proof. Let $\bar{M}:=M / \mathrm{Z}(M),\{k, l\}=\{2,3\}$ and $P_{1 k}:=P_{1} \cap P_{k}$.
$\mathbf{1}^{\circ}$. V is an homogeneous $\mathbb{F}_{2} \mathrm{Z}(M)$-module and $\mathrm{Z}(M)$ is cyclic.
Since $\mathrm{O}_{2}(M)=1, \mathrm{Z}(M)$ is an abelian 2^{\prime}-group. Thus V is a semisimple $\mathbb{F}_{2} \mathrm{Z}(M)$-module. Since V is indecomposable, we conclude that V is an homogeneous $\mathbb{F}_{2} \mathrm{Z}(M)$ module and so $\mathrm{Z}(M)$ is cyclic. Thus 1° holds.

In the following we will only use 1° but no longer that V is indecomposable. Moreover, we make use of the properties listed in 7.7 .
$\mathbf{2}^{\circ} . \quad\left[V, Z, Q_{1}\right]=0$.
By $\sqrt{1}{ }^{\circ} \mathrm{Z}(M) \cap \mathrm{C}_{M}([V, Z])=1$ and so by (ii) $\overline{\mathrm{C}_{M}([V, Z])} \not \leq \bar{Z}$. Note that $\overline{P_{1}} / \overline{Q_{1}} \cong \operatorname{Sym}(3) \times$ $\operatorname{Sym}(3), Q_{1}$ is extra special of order 2^{5} and $\overline{P_{1}}$ acts simply on $\overline{Q_{1}} / \bar{Z}$. Hence $\overline{Q_{1}} / \bar{Z}$ is the unique minimal normal subgroup of $\overline{P_{1}}$ and we conclude that $\overline{Q_{1}} \leq \overline{\mathrm{C}_{M}([V, Z])}$. Thus $Q_{1} \leq \mathrm{C}_{M}([V, Z])$ and (20) holds.
$3^{\circ} . \quad\left[V, Q_{k}, Q_{k}, L_{k}\right]=1$.
Observe that $\overline{P_{k}} / \overline{Q_{k}} \cong \operatorname{Alt}(6), \mathrm{C}_{\bar{M}}\left(\overline{Q_{k}}\right)=\overline{Q_{k}}$ and $\overline{Q_{k}}$ is a natural Alt(6)-module for $\overline{P_{k}}$. Since $P_{1 k}=\mathrm{N}_{P_{k}}(Z)$ we conclude that $\overline{P_{1 k}} / \mathrm{O}_{2}\left(\overline{P_{1 k}}\right) \cong \operatorname{Sym}(3)$ and $\left[Q_{k}, P_{1 k}\right]$ is a hyperplane of Q_{k}. The structure of P_{1} shows that $\left[\mathrm{O}_{2}\left(P_{1 k}\right), P_{1 k}\right] \leq Q_{1}$ and so $\left[Q_{k}, P_{1 k}\right] \leq Q_{1}$ and $\left|Q_{k} / Q_{k} \cap Q_{1}\right| \leq 2$. In particular, $P_{1 k}$ normalizes $\left[V, Z, Q_{1} Q_{k}\right]$, and by $\left.2^{\circ}\right]\left[V, Z, Q_{1} Q_{k}\right]=\left[V, Z, Q_{k}\right]$.

Note that Q_{1} does not contain an elementary abelian subgroup of order 2^{4}. So $Q_{k} \not \leq Q_{1}$ and $Q_{1} \cap Q_{k}=\left[Q_{k}, P_{1 k}\right]$. Pick $g \in P_{k}$ with $Q_{k}=\left(Q_{1} \cap Q_{k}\right) Z^{g}$. Then by $\left.2^{\circ}\right)$

$$
\left[V, Z, Q_{k}\right]=\left[V, Z,\left(Q_{1} \cap Q_{k}\right) Z^{g}\right]=\left[V, Z, Z^{g}\right] \leq\left[V, Z^{g}\right] \leq \mathrm{C}_{V}\left(Q_{1}^{g}\right)
$$

It follows that $\left[V, Z, Q_{k}\right]$ is normalized by $\left\langle P_{1 k}, Q_{k}^{g}\right\rangle=P_{k}$. Thus $\left[V, Z, Q_{k}\right]=[V$, $\left.\left.<Z^{P_{k}}\right\rangle, Q_{k}\right]=\left[V, Q_{k}, Q_{k}\right]$ and $\left[V, Q_{k}, Q_{k}\right]$ is centralized by $\left\langle Q_{1}^{g P_{k}}\right\rangle=L_{k}$.
$4^{\circ} . \quad\left[\mathrm{C}_{V}\left(Q_{k}\right), Q_{1}, Q_{1}\right]=0$.
Let $h \in P_{1} \backslash P_{1} \cap P_{k}$. Then $Q_{1}=\left(Q_{1} \cap Q_{k}\right)\left(Q_{1} \cap Q_{k}^{h}\right)$. Since Q_{1} normalizes $C_{V}\left(Q_{k}\right)$, 3° implies $\left[\mathrm{C}_{V}\left(Q_{k}\right), Q_{1}, Q_{1}\right]=\left[\mathrm{C}_{V}\left(Q_{k}\right),\left(Q_{1} \cap Q_{k}^{h}\right),\left(Q_{1} \cap Q_{k}^{h}\right)\right] \leq \mathrm{C}_{V}\left(Q_{k}\right) \cap\left[V, Q_{k}, Q_{k}\right]^{h} \leq \mathrm{C}_{V}\left(Q_{k}\right) \cap \mathrm{C}_{V}\left(L_{k}^{h}\right)$.

Since $\overline{L_{k}}$ is a maximal subgroup of \bar{M} and $Q_{k} \not \leq L_{k}^{h}$ we have $M=\left\langle Q_{k}, L_{k}^{h}\right\rangle$. So

$$
\mathrm{C}_{V}\left(Q_{1}\right) \cap \mathrm{C}_{V}\left(Q_{k}\right) \leq \mathrm{C}_{V}(M)=0
$$

and 4° is proved.
In the next step we regard Q_{k} is a 4-dimensional symplectic space for $\bar{L}_{k} / \bar{Q}_{K} \cong \operatorname{Sp}_{4}(2)^{\prime}$.
5 ${ }^{\circ}$. $\left|Q_{k} Q_{l} / Q_{k}\right|=4$ and $Q_{k} Q_{l} \neq Q_{k} Q_{1}$. Moreover, $Q_{k} \cap Q_{l}$ is a singular subgroup of order 4 in Q_{k} (and Q_{l}), and $Q_{k} \cap Q_{l}$ acts quadratically on V.

Since Q_{l} is elementary abelian of order 2^{4} and no element in L_{k} acts as a transvection on Q_{k},

$$
\left|Q_{k} Q_{l} / Q_{k}\right|=\left|Q_{l} \cap Q_{k}\right|=4, Q_{k} \cap Q_{l}=\left[Q_{k}, Q_{l}\right]=C_{Q_{k}}\left(Q_{1}\right)
$$

Hence 3.2 c$)$ shows that $Q_{l} \cap Q_{k}$ is a singular subspace of Q_{k}. Moreover, $Z \leq Q_{k} \cap Q_{l} \leq Q_{k} \cap Q_{1}$ and so by $\left(2^{\circ}\right),\left[V, Z, Q_{k} \cap Q_{l}\right]=1$. Since $\left|Q_{k} \cap Q_{l}\right|=4$ and $Z \leq Q_{k} \cap Q_{l}$, this shows that $Q_{k} \cap Q_{l}$ is quadratic on V, and 5° holds.
$6^{\circ} . \quad\left[\mathrm{C}_{V}\left(Q_{k}\right), Q_{l}, Q_{l}\right]=1$
By $55^{\circ} Q_{l}=\left(Q_{l} \cap Q_{k}\right)\left(Q_{l} \cap Q_{k}\right)^{g}$ for a suitable $g \in P_{l}$ and $\left(Q_{l} \cap Q_{k}\right)^{g}$ acts quadratically on V. Thus

$$
\left[\mathrm{C}_{V}\left(Q_{k}\right), Q_{l}, Q_{l}\right]=\left[\mathrm{C}_{V}\left(Q_{k}\right),\left(Q_{l} \cap Q_{k}\right)^{g},\left(Q_{l} \cap Q_{k}\right)^{g}\right]=0
$$

and 66° holds.
Since $\mathrm{C}_{V}(M)=0, M=\left\langle L_{2}, L_{3}\right\rangle$ and $\mathrm{C}_{V}(S) \leq \mathrm{C}_{V}\left(Q_{2}\right) \cap \mathrm{C}_{V}\left(Q_{3}\right)$ we can choose $i \in\{2,3\}$ such that $\left[\mathrm{C}_{V}\left(Q_{i}\right), L_{i}\right] \neq 0$. Let $\{2,3\}=\{i, j\}$.
$7^{\circ} . \quad P_{i}=L_{i}, \mathrm{Z}(M)=\mathrm{Z}\left(L_{i}\right) \cong C_{3} . L_{i} / Q_{i}$ is quasisimple of shape $3 \cdot \mathrm{Alt}(6)$ and $\mathrm{C}_{V}\left(L_{i}\right)=0$.
By $\left.\left(4^{\circ}\right),\left(5^{\circ}\right), 6^{\circ}\right)$ all the fours groups in L_{i} / Q_{i} act quadratically on $\mathrm{C}_{V}\left(Q_{i}\right)$. Since $\left[\mathrm{C}_{V}\left(Q_{i}\right), L_{i}\right] \neq$ $0,7.3$ shows that $L_{i} / Q_{i} \not \not 二 \operatorname{Alt}(6)$. Hence $\mathrm{Z}(M) \cap L_{i} \neq 1$. By Gr and since $\mathrm{Z}(M)$ is a cyclic $2^{\prime}-$ group, $\mathrm{Z}(M) \cong C_{3}$ and so $\mathrm{Z}(M) \leq L_{i}$. So $P_{i}=L_{i}$, and $\mathrm{C}_{V}\left(L_{i}\right) \leq \mathrm{C}_{V}(\mathrm{Z}(M))=0$. Thus L_{i} / Q_{i} is quasisimple of shape $3 . \operatorname{Alt}(6)$, and 7° is proved.

In particular, (h) holds.
8°. $\quad Q_{i}$ acts quadratically on V.
By 3° and $77^{\circ},\left[V, Q_{k}, Q_{k}\right] \leq \mathrm{C}_{V}\left(L_{k}\right)=0$.
$\mathbf{9}^{\circ} . \quad\left[\mathrm{C}_{V}\left(Q_{i}\right), Q_{j}\right] \leq \mathrm{C}_{V}\left(L_{j}\right)=C_{V}\left(Q_{j}\right)$ and $L_{j} / Q_{j} \cong \operatorname{Alt}(6)$; in particular $C_{V}\left(L_{j}\right) \neq 0$.
Let $g \in L_{j}$ with $Z^{g} \not \leq Q_{i} \cap Q_{j}$. Then $Z^{g} \leq L_{i}$ and $Z^{g} \not \leq Q_{i}$. Since L_{i} / Q_{i} is quasisimple, $L_{i}=$ $\left\langle Z^{g L_{i}}\right\rangle Q_{i}$ and so $\left[\mathrm{C}_{V}\left(Q_{i}\right), Z^{g}\right] \neq 0$. On the other hand $\left[\mathrm{C}_{V}\left(Q_{i}\right), Z^{g}\right]$ is centralized by $\left\langle Q_{i}, Q_{1}^{g}\right\rangle=L_{j}$ and we conclude that $0 \neq\left[\mathrm{C}_{V}\left(Q_{i}\right), Q_{j}\right] \leq \mathrm{C}_{V}\left(L_{j}\right)$. In particular, $Z(M) \not \leq L_{j}$ and so $L_{j} / Q_{j} \cong \operatorname{Alt}(6)$.

Thus $\mathrm{C}_{V}\left(L_{j}\right) \neq 0$. If $\left[\mathrm{C}_{V}\left(Q_{j}\right), L_{j}\right] \neq 0$ we could apply $\sqrt{7^{\circ}}$ to j in place of i and conclude that $\mathrm{C}_{V}\left(L_{j}\right)=0$, a contradiction. Thus $\left[\mathrm{C}_{V}\left(Q_{j}\right), L_{j}\right]=0$ and 9° holds.

In particular, k holds. Since $\mathrm{C}_{V}\left(L_{j}\right) \neq 0$, b is proved.
$\mathbf{1 0}^{\circ} . \quad V=\left\langle\mathrm{C}_{V}\left(L_{j}\right)^{M}\right\rangle$.
By $9^{\circ}\left[\mathrm{C}_{V}\left(Q_{i}\right), Q_{j}\right] \leq \mathrm{C}_{V}\left(L_{j}\right)$. It follows that

$$
\left[\mathrm{C}_{V}\left(Q_{i}\right), L_{i}\right]=\left[\mathrm{C}_{V}\left(Q_{i}\right),\left\langle Q_{j}^{L_{j}}\right\rangle\right] \leq\left\langle\mathrm{C}_{V}\left(L_{j}\right)^{L_{i}}\right\rangle
$$

On the other hand, by $77^{\circ} \mathrm{Z}(M) \leq \mathrm{Z}\left(L_{i}\right)$, so by $1^{\circ} L_{i}$ does not have any central chieffactor in $\mathrm{C}_{V}\left(Q_{i}\right)$. Hence $\mathrm{C}_{V}\left(Q_{i}\right)=\left\langle\mathrm{C}_{V}\left(L_{j}\right)^{L_{i}}\right\rangle$.

Since $V=[V, M]$ and $M=\left\langle Q_{i}^{M}\right\rangle, V=\left\langle\left[V, Q_{i}\right]^{M}\right\rangle$. As Q_{i} acts quadratically we conclude that $V=\left\langle C_{V}\left(Q_{i}\right)^{M}\right\rangle$, and as $\mathrm{C}_{V}\left(Q_{i}\right)=\left\langle\mathrm{C}_{V}\left(L_{j}\right)^{L_{i}}\right\rangle$, this gives 10°.
$11^{\circ} . \quad \mathrm{C}_{V}\left(L_{1}\right)=0$.
By $9 \mathrm{C}^{\circ} \mathrm{C}_{V}\left(L_{1}\right) \leq \mathrm{C}_{V}\left(L_{j}\right)$. Since $\mathrm{C}_{V}(M)=0$ and $M=\left\langle L_{1}, L_{j}\right\rangle, 11^{\circ}$ follows.

12 ${ }^{\circ}$. $\quad\left[V, Z, L_{1 j}\right]=0, L_{1 k} Q_{k}=O^{2^{\prime}}\left(P_{1} \cap P_{k}\right)$, and (e) holds.
Put $P^{*}:=\mathrm{C}_{P_{1}}([V, Z])$. Since P_{1} normalizes $[V, Z], P^{*} \unlhd P_{1}$. Moreover, by $11^{\circ} L_{j} \leq$ $\mathrm{C}_{M}\left([V, Z] \cap \mathrm{C}_{V}(S)\right)$ and so $\mathrm{C}_{M}\left([V, Z] \cap \mathrm{C}_{V}(S)\right) \leq P_{j}$, since \bar{L}_{j} is a maximal subgroup of \bar{M}. It follows that $P^{*} \leq P_{1} \cap P_{j}$.

Since Q_{i} acts quadratically on V and $Z \leq Q_{i},\left[V, Z, Q_{i}\right]=0$. Hence $L_{1 j}=\left\langle Q_{i}^{P_{1}}\right\rangle \leq P^{*}$, so $\left[V, Z, L_{1 j}\right]=0$. Moreover, since $L_{1 j} \unlhd P_{1}$, and P_{1} acts simply on Q_{1} / Z, also $Q_{1} \leq L_{1 j}$. Since $L_{j} \cap P_{1} / Q_{j} \cong \operatorname{Sym}(4)$ and $L_{1 j}=\left\langle Q_{i}^{L_{1 j}}\right\rangle$, we conclude that $L_{1 j} / Q_{1} \cong \operatorname{Sym}(3)$ and $L_{1 j} Q_{j}=\mathrm{O}^{2^{\prime}}\left(P_{1} \cap\right.$ $\left.P_{j}\right)$. In particular $\left[L_{1 j}, Q_{j}\right] \leq Q_{1}$ and so $\left[L_{1 j}, L_{1 i}\right] \leq Q_{1}$. Hence also $L_{1 i} / \mathrm{O}_{2}\left(L_{i j}\right) \cong \operatorname{Sym}(3)$ and again by the simple action of P_{1} on $Q_{1} / Z, \mathrm{O}_{2}\left(L_{1 i}\right)=Q_{1}$. In addition, $P_{1 i} \leq \mathrm{N}_{P_{1}}\left(Q_{i}\right)$ and so $L_{1 i}=\mathrm{O}^{2^{\prime}}\left(P_{1} \cap P_{i}\right)$ since by $7^{\circ} P_{1} \cap P_{i} / Q_{i} \cong \mathrm{C}_{3} \times \operatorname{Sym}(4)$. Hence 12° and ed has been proved.
13°. Let \mathbb{E} be the subring of \mathbb{F} generated by the image of $Z(M)$. Then $\mathbb{E} \cong \mathbb{F}_{4}$ and $[V, Z]$ is a direct sum of 2-dimensional simple $\mathbb{E} L_{1}$-modules.

Since $Z(M) \cong \mathrm{C}_{3}, \mathbb{E} \cong \mathbb{F}_{4}$. The second statement follows from 12° (and (e) since $L_{1 j}=$ $\mathrm{C}_{L_{1}}([V, Z)), \mathrm{C}_{V}\left(L_{1}\right)=0$ and $L_{1} / L_{1 j} \cong \operatorname{Sym}(3)$.

Let U_{j} be a 1-dimensional \mathbb{E}-subspace of $\mathrm{C}_{V}\left(L_{j}\right)$. In the following we use the fact that (e) has already been proved, so we know that $L_{1 j}=\mathrm{C}_{L_{1}}([V, Z]) \unlhd P_{1}$ and

$$
L_{1} / Q_{1}=L_{12} / Q_{1} \times L_{13} / Q_{1} \cong \operatorname{Sym}(3) \times \operatorname{Sym}(3)
$$

in particular $L_{1} / \mathrm{C}_{L_{1}}([V, Z]) \cong \operatorname{Sym}(3)$.
Put $U_{1}:=\left\langle U_{j}^{P_{1}}\right\rangle$ and $U_{i}:=\left\langle U_{j}^{P_{i}}\right\rangle$, so $\left[U_{j}, L_{1 j}\right]=0$ since $L_{1 j} \leq L_{j}$, and

$$
U_{1}=\left\langle U_{j}^{L_{1 i}}\right\rangle=\left\langle U_{j}^{P_{1} \cap P_{i}}\right\rangle
$$

since U_{j} is an \mathbb{E}-space. As $L_{1} / \mathrm{C}_{L_{1}}([V, Z]) \cong \operatorname{Sym}(3)$ and $\mathrm{C}_{V}\left(L_{1}\right)=0$ we conclude that $\operatorname{dim}_{\mathbb{E}} U_{1}=2$. Since $P_{i} \cap L_{j}$ centralizes U_{j} and $U_{1}=\left\langle U_{j}^{P_{i} \cap P_{1}}\right\rangle, 7^{\circ}$ and 5.4 imply that $\operatorname{dim}_{\mathbb{E}} U_{i}=3$. In particular,

$$
U_{i}=\left\langle U_{1}^{P_{i} \cap P_{j}}\right\rangle
$$

Put $W_{1}:=\left\langle U_{i}^{L_{1}}\right\rangle$ and $W_{j}:=\left\langle U_{1}^{L_{j}}\right\rangle$. Since $\left[U_{i}, L_{1 i}\right] \leq U_{1}$ and $L_{1 i} \unlhd L_{1}$ we have

$$
\left[W_{1}, L_{1 i}\right] \leq U_{1} \text { and } W_{1}=\left\langle U_{i}^{L_{1 j}}\right\rangle=\left\langle\left\langle U_{1}^{P_{i} \cap P_{j}}\right\rangle^{L_{1 j}}\right\rangle \leq W_{j}
$$

Put $Y_{j}:=C_{W_{j}}\left(L_{j}\right)$ and $\bar{W}_{j}:=W_{j} / U_{j} . \operatorname{Then} \operatorname{dim}_{\mathbb{E}} \bar{U}_{1}=1, \operatorname{dim}_{\mathbb{E}} \bar{U}_{i}=2$, and $\bar{U}_{i}=\left\langle\bar{U}_{1}^{P_{i} \cap L_{j}}\right\rangle$. Thus, we can apply 5.4 (and 9°) with $U=\bar{U}_{1}$. This shows that $\bar{W}_{j} / C_{\bar{W}_{j}}\left(L_{j}\right)$ is a natural $\mathbb{E A l t}(6)-$ module and $C_{\bar{W}_{j}}\left(L_{j}\right) \leq\left\langle\bar{U}_{i}^{L_{1 j}}\right\rangle=\bar{W}_{1}$; in particular $\operatorname{dim}_{\mathbb{E}} \bar{W}_{j} / C_{\bar{W}_{j}}\left(L_{j}\right)=4$. Since $L_{j}=O^{2}\left(L_{j}\right)$ and $\left[U_{j}, L_{j}\right]=0$, we also have $C_{\bar{W}_{j}}\left(L_{j}\right)=\overline{Y_{j}}$.

Since $Y_{j} \leq W_{1}\left[Y_{j}, L_{1 i}\right] \leq\left[W_{1}, L_{1 i}\right] \leq U_{1}$. From $L_{1 i} L_{1 j}=L_{1}$ we conclude that $\left[Y_{j} U_{1}, L_{1}\right] \leq U_{1}$. Note that $\left[Y_{j} U_{1}, Q_{1}\right]=0$ and $\mathrm{O}^{2}\left(L_{1}\right) / Q_{1}$ is a 2^{\prime}-group. So coprime action implies

$$
Y_{j} U_{1}=\mathrm{C}_{Y_{j} U_{1}}\left(\mathrm{O}^{2}\left(L_{1}\right)\right)\left[Y_{j} U_{1}, \mathrm{O}^{2}\left(L_{1}\right)\right]
$$

Since $\mathrm{C}_{V}\left(L_{1}\right)=0$ also $\mathrm{C}_{V}\left(\mathrm{O}^{2}\left(L_{1}\right)\right)=0$ and so $Y_{j} U_{1}=U_{1}$. Thus $Y_{j} \leq \mathrm{C}_{U_{1}}\left(Q_{j}\right)=U_{j}$. Hence $\operatorname{dim}_{\mathbb{E}} W_{j} / U_{j}=4$ and since $W_{1} \leq W_{j}, \operatorname{dim}_{\mathbb{E}} W_{1} / U_{1}=2$. It follows that $\operatorname{dim}_{\mathbb{E}} W_{j} / W_{1}=1$ and $W_{j}=\left\langle W_{1}^{P_{i} \cap P_{j}}\right\rangle$.

Put $W:=\left\langle W_{1}^{L_{i}}\right\rangle$ and $\check{W}=W / U_{i}$. Then $W_{j} \leq W, \operatorname{dim}_{\mathbb{E}} \check{W}_{1}=1$ and $\operatorname{dim}_{\mathbb{E}} \check{W}_{j}=2$. Hence 7° and 5.4 give $\operatorname{dim}_{\mathbb{E}} \check{W}=3$; in particular $\operatorname{dim}_{\mathbb{E}} W / W_{j}=1$. Since $P_{1 i}$ does not normalize W_{j}, $W=\left\langle W_{j}^{P_{i} \cap P_{1}}\right\rangle$. Since $\operatorname{dim}_{\mathbb{E}} W_{j} / W_{1}=1,\left[W_{j}, L_{1 j}\right] \leq W_{1}$ and so $\left[W, L_{1 j}\right] \leq W_{1} \leq W$. Thus W is normalized by L_{i} and $L_{1 j} L_{1 i}=L_{1}$. Hence W is an $\mathbb{E} M$ submodule of $V, \operatorname{dim}_{\mathbb{E}} W=6$ and $W=\left\langle U_{j}^{M}\right\rangle$.

Note that $\left[U_{j}, L_{j}\right]=0$ and U_{j} is the (up to isomorphism) unique non-trivial simple $\mathbb{F}_{2} \mathrm{Z}(M)$ module. So U_{j} is uniquely determined as an $\mathbb{F}_{2} P_{j}$-module. Let \hat{W} be the $\mathbb{F}_{2} M$-module induced from the $\mathbb{F}_{2} P_{j}$ module U_{j}. Put $\widetilde{W}:=\hat{W} /\left\langle\left[\hat{W}, Z, Q_{1}\right]^{M}\right\rangle$ and let \hat{U}_{j} be the image of U_{j} in \hat{W}. Note that $Z(M)$ acts fixed-point freely on \hat{W} and so also on \widetilde{W}. In particular, $\mathrm{C}_{\widetilde{W}}(M)=0, \widetilde{W}=[\widetilde{W}, M]$ and $\left[\widetilde{W}, Z, Q_{1}\right]=0$. Thus \widetilde{W} fulfills the assumption on W in this proof. Since $\widetilde{W}=\left\langle\widetilde{U}_{j}^{M}\right\rangle$ we conclude that $\operatorname{dim}_{\mathbb{E}} \widetilde{W}=6$. On the other hand W is as an $\mathbb{F}_{2} M$-module an homomorphic image of \hat{W} and so also of \widetilde{W}. It follows that $W \cong \widetilde{W}$ as an $\mathbb{F}_{2} M$-module and so W is unique up to isomorphism.

Up to now we only used $\sqrt{1^{\circ}}$ to determine W. Suppose now that V is indecomposable. Then by \int_{10}) we can choose U_{j} such that $V=\left\langle U_{j}^{M}\right\rangle$. Thus $V=W$ and $\operatorname{dim}_{\mathbb{E}} V=6$. Any non-trivial $\mathbb{F}_{2} M$ quotient of V fulfills the same assumption and so is 6 -dimensional over \mathbb{E}. Thus V is a simple $\mathbb{F}_{2} M$-module.

Let V^{*} be the \mathbb{F}-dual of V. Then $V^{*}=\left[V^{*}, \mathrm{Z}(M)\right]=\left[V^{*}, M\right]$ and $0=\mathrm{C}_{V^{*}}(\mathrm{Z}(M))=\mathrm{C}_{V^{*}}\left(L_{i}^{*}\right)=$ $\mathrm{C}_{V^{*}}(M)=0$. By 1.8 C$) Q$ acts quadratically on V^{*} and so $C_{M}\left(\left[V^{*}, Z\right]\right) \not \leq Z$. Thus V^{*} and i fulfill the same assumption as V and i, and V and V^{*} are isomorphic $\mathbb{F}_{2} M$-modules. Hence by 1.9 a there exists a M-invariant non-degenerate symmetric, symplectic or unitary \mathbb{F}-form on V^{*}. In the symmetric or symplectic case, V would be selfdual as an $\mathbb{F} M$-module and so also an $\mathbb{E} Z(M)$-module, a contradiction. Thus (d) holds.

Since L_{i} acts simply on U_{i} and $V / U_{i}, \mathrm{C}_{V}\left(Q_{i}\right)=U_{i}=\left[V, Q_{i}\right]$ and (i) and (j) hold. Note that $Z=Q_{1}^{\prime}$ centralizes $V /[V, Q, Q]$. Since Q_{1} centralizes V / W_{1} and W_{1} / U_{1} we conclude that $[V, Q, Q]=W_{1}=[V, Z]$ and $[V, Q]=W_{1}$. By a dual argument, $\mathrm{C}_{V}(Z)=W_{1}$ and $\mathrm{C}_{V}\left(Q_{1}\right)=U_{1}$. Also $\left[U_{1}, L_{1 j}\right]=1$ and dually $\left[V, L_{1 j}\right] \leq W_{1}$. Thus (f) and (g) are proved.
$\mathrm{C}_{V}\left(Q_{j}\right) \leq \mathrm{C}_{V}(Z)=W_{1}<W_{j}$ and since W_{j} / U_{j} is a simple $\mathbb{E} L_{j}$-module, $\mathrm{C}_{V}\left(Q_{j}\right)=U_{j}$. Dually $\left[V, Q_{j}\right]=W_{j}$ and so (ll) and m hold. Since $\left|U_{j}\right|=4$ and $\mathrm{C}_{V}\left(Q_{j}\right)$ is an \mathbb{F}-subspace, $|\mathbb{F}| \leq 4$ and so $\mathbb{F}=\mathbb{E}$. Since W is unique up to isomorphism we conclude that (a) and (c) hold.

Lemma 7.9. Put $L:=\mathrm{F}^{*}(M)$ and suppose that
(i) V is faithful and indecomposable $\mathbb{F}_{2} M$-module, $\mathrm{C}_{V}(L)=0$ and $V=[V, L]$.
(ii) $M=\langle D \leq M|[V, D, D]=0,|D|>2\rangle$; and
(iii) L is quasi-simple and $\mathrm{Z}(L) \cong \mathrm{U}_{4}(3)$.

Put $\mathbb{F}:=\operatorname{End}_{M}(V)$ and let A be a maximal quadratic subgroup of M on V. Then
(a) V is a simple $\mathbb{F}_{2} L$-module and (L, V) fulfills the assumptions on (M, V) and so also the conclusions in 7.8.
(b) $M=L A$.
(c) $|A / A \cap L| \leq 2,|A \cap L|=2^{4}$ and $C_{M}(A)=\mathrm{C}_{M}(A \cap L)=A Z(M)$.
(d) $\mathrm{N}_{M}(A)=\mathrm{N}_{M}(A \cap L)$ and so $\mathrm{N}_{M}(A) / A$ is a quasisimple group of shape 3.Alt(6).
(e) $\mathrm{C}_{V}(A \cap L)=\mathrm{C}_{V}(A)=[V, A]=[V, A \cap L]$ is a 3-dimensional. simple module for $\mathrm{N}_{M}(A)$.
(f) A is unique up to conjugation under L, with the conjugacy class depending on the isomorphism type of V.
(g) Let $1 \neq B \leq M$ such that B acts quadratically on V. Then B is conjugate under L to an subgroup of A and assuming that $B \leq A$ one of the following holds:
(a) $|B|=2, B \leq L$ and $\operatorname{dim}_{\mathbb{F}}[V, B]=\operatorname{dim}_{\mathbb{F}} V / \mathrm{C}_{V}(B)=2$.
(b) $|B|=2$, $\operatorname{dim}_{\mathbb{F}}[V, B]=\operatorname{dim}_{\mathbb{F}} V / \mathrm{C}_{V}(B)=1$. and $\mathrm{C}_{V}(B) /[V, B]$ is natural $\mathbb{F} \mathrm{SU}_{4}(2)$-module for $\mathrm{C}_{L}(B)$.
(c) $|B|=4, B \not \leq L, \operatorname{dim}_{\mathbb{F}}[V, B]=\operatorname{dim}_{\mathbb{F}} V / \mathrm{C}_{V}(B)=2$ and $\operatorname{dim}_{\mathbb{F}}[V, b]=1$ for all $b \in B \backslash L$.
(d) $\mathrm{C}_{V}(B)=[V, B]=\mathrm{C}_{V}(A)$ and A is the unique maximal quadratic subgroup of M containing B.

Proof. Put $\bar{M}=M / \mathrm{Z}(L)$. Among all $A \leq M$ with $[V, A, A]=0$ and $|A|>2$ let A be maximal. Let $\left.S \in \operatorname{Syl}_{2}(M)\right)$ with $A \leq S$. Since Out $(\bar{L}) \cong \mathrm{Dih}_{8}, M / L$ is isomorphic to a subgroup of Dih_{8}. In particular, $M=L S$. Let Y be non-trivial indecomposable $\mathbb{F}_{2} L$-submodule of V.

By MeSt1, 2.3] we have $C_{S \cap L}([V, Z]) \not \leq Z$ and so (L, Y) fulfills the hypothesis of 7.8 in place of (M, V). It follows that Y is a simple $\mathbb{F}_{2} L$-module and so V is a semisimple $\mathbb{F}_{2} L$-module.

Let W be a maximal homogeneous $\mathbb{F}_{2} L$-submodule of V and suppose that A does not normalizes W. Then by [MS3, 2.11]|A/CA $(W) \mid=2$ and so $\mathrm{C}_{A}(W) \neq 1$. Since L is quasisimple we conclude that $L=\left[L, \mathrm{C}_{A}(W)\right] \leq \mathrm{C}_{L}(W)$, a contradiction to $\mathrm{C}_{V}(L)=0$. Hence A normalizes W. As A was an arbitrary maximal quadratic subgroup of order larger than 2, (ii) shows that M normalizes every maximal homogeneous $\mathbb{F}_{2} L$-submodule W. Since V is indecomposable as an $\mathbb{F}_{2} M$-module and semisimple as an $\mathbb{F}_{2} L$-module we conclude that $V=W$ and so V is a homogeneous $\mathbb{F}_{2} L$-module. In particular, $\mathrm{C}_{L}(Y)=\mathrm{C}_{L}(V)=1, \mathrm{Z}(L) \cong \mathrm{C}_{3}$ and the subring \mathbb{E} of $\operatorname{End}_{\mathbb{F}_{2} L}(V)$ generated by the image of $\mathrm{Z}(L)$ is a field isomorphic to \mathbb{F}_{4}.

Put $\mathbb{F}_{0}:=\mathrm{Z}\left(\operatorname{End}_{\mathbb{F}_{2} L}(V)\right)$ and note that \mathbb{F}_{0} is field isomorphic to $\operatorname{End}_{\mathbb{F}_{2} L}(Y)$ and so to \mathbb{F}_{4}. Thus $\mathbb{F}_{0}=\mathbb{E}$. Since $|A| \geq 4$, we conclude from [MS3, 2.15], that A and so also M acts \mathbb{F}_{0}-linear on V. Hence $\mathrm{Z}(L)=\mathrm{Z}(M)$ and $\mathbb{F}_{0}=\mathbb{F}$.

Let $Z=\mathrm{Z}(S \cap L), P_{1}=\mathrm{N}_{L}(Z), Q_{1}=\mathrm{O}_{2}\left(P_{1}\right), Q_{i}, i=2,3$, the two elementary abelian subgroups of order 16 in $S \cap L, P_{i}=\mathrm{N}_{L_{i}}\left(Q_{i}\right)$ and for $i \in\{1,2,3\}, P_{i}^{*}=\mathrm{N}_{M}\left(Q_{i}\right), L_{i}=O^{2^{\prime}}\left(P_{i}\right)$, and $Q_{i}^{*}=\mathrm{O}_{2}\left(P_{i}^{*}\right)$. Choose notation such that $\mathrm{C}_{Y}\left(L_{2}\right)=0$ and so $\mathrm{C}_{Y}\left(L_{3}\right) \neq 0$. In the following we will use the properties of $P_{i}, i=1,2,3$, given in 7.8.

Since V is a homogeneous $\mathbb{F}_{2} L$-module we conclude that also $\mathrm{C}_{V}\left(L_{2}\right)=0$ and $\mathrm{C}_{V}\left(L_{3}\right) \neq 0$. Thus S normalizes L_{2} and L_{3} and so $S \leq P_{i}^{*}$ for all $1 \leq i \leq 3$. In particular, $|M / L| \leq 4$. Since $P_{2} / Q_{2} \sim 3 \cdot \operatorname{Alt}(6)$ and P_{2}^{*} centralizes $\mathrm{Z}(\bar{L})$ we conclude that P_{2}^{*} induces inner automorphisms on P_{2} / Q_{2}, so $P_{2}^{*}=Q_{2}^{*} P_{2}$. Thus $|M / L| \leq 2$. Since $|A| \geq 4$ we get $A \cap L \neq 1$, and since L has unique class of involutions and $|Z|=2$, we may assume that $Z \leq A \cap L$. In particular, $0 \neq[Y, A \cap L] \leq \mathrm{C}_{Y}(A)$ and since Y is a simple $\mathbb{F}_{2} L$-module, A normalizes Y. Thus Y is an $\mathbb{F}_{2} M$ submodule. As this holds for all simple $\mathbb{F}_{2} L$-submodules on V and V is a semisimple $\mathbb{F}_{2} L$-module and an indecomposable $\mathbb{F}_{2} M$-module, $V=Y$. Thus V is a simple $\mathbb{F}_{2} L$-module and (a) holds. By 7.8 d), there exists an L-invariant non-degenerate quadratic form on V and by 1.9 (f), this form is invariant under M.

Let $D \leq Q_{2}$ with $|D| \geq 4$ and let $a, b \in D^{\sharp}$ with $a \neq b$. Note that P_{2} acts simple on [V, Q_{2}] and $\left\langle\mathrm{C}_{P_{2}}(a), \mathrm{C}_{P_{2}}(b)\right\rangle=P_{2}$. Since $0 \neq[V, a]<\left[V, Q_{2}\right]$ we conclude that $[V, a] \neq[V, b]$. Since $\operatorname{dim}_{\mathbb{F}}[V, a]=2$ and $\operatorname{dim}_{\mathbb{F}}\left[V, Q_{2}\right]=3$ this gives $[V, D]=[V, a]+[V, b]=\left[V, Q_{2}\right]$ We have proved

$$
\begin{equation*}
[V, D]=\left[V, Q_{2}\right] \text { for all } D \leq Q_{2} \text { with }|D|>2 \tag{*}
\end{equation*}
$$

Put $L_{13}:=\left\langle Q_{2}^{P_{1}}\right\rangle$. Then $Q_{1} \leq L_{13}, L_{13} \leq P_{1} \cap P_{3}, L_{13} / Q_{1} \cong \operatorname{Sym}(3)$ and $L_{13}=C_{L}([V, Z])$. Put $L_{13}^{*}:=\mathrm{C}_{M}([V, Z])$. Then $A \leq L_{13}^{*}$ and so $M=L_{13}^{*} L$ and $P_{1}^{*}=L_{13}^{*} P_{1}$. Since $\left|L_{13} / L_{13}^{*}\right| \leq 2$ we conclude that $\mathrm{O}_{2}\left(L_{13}^{*}\right)=Q_{1}^{*}, L_{13}^{*}=L_{13} Q_{1}^{*}$ and $L_{1}^{*}=L_{1} Q_{1}^{*}$.

Put $Z^{*}:=\mathrm{Z}\left(Q_{1}^{*}\right)$. Since L_{1} acts simply on Q_{1} / Z, we have $\left[Q_{1}, Q_{1}^{*}\right] \leq Z$ and conclude that $Q_{1}^{*}=Z^{*} Q_{1}$. Note that $\left[Z^{*}, L_{1}\right] \leq Z$ and so $\left[Z^{*}, \mathrm{O}^{2}\left(L_{1}\right)\right]=1$. Since $V / \mathrm{C}_{V}(Z)$ and $\mathrm{C}_{V}\left(Z^{*}\right) /[V, Z]$ are non-isomorphic as $\mathrm{O}^{2}\left(L_{1}\right)$-modules, $\left[V, Z^{*}\right]=[V, Z]$ and similarly $\mathrm{C}_{V}\left(Z^{*}\right)=\mathrm{C}_{V}(Z)$. It follows that $\left[V, Z^{*}\right] \leq[V, Z] \leq[V, A] \leq \mathrm{C}_{V}(A) \leq \mathrm{C}_{V}(Z)=\mathrm{C}_{V}\left(Z^{*}\right)$ and so $Z^{*} A$ is quadratic on V. Thus by maximality of $A, Z^{*} \leq A$ and $A=Z^{*}(A \cap L)$. We will show that A is contained in a conjugate of Q_{2}^{*} under P_{1}. Since $A=Z^{*}(A \cap L)$ it suffices to show that $A \cap L$ is contained in a conjugate of Q_{2} under P_{1}.

Suppose $A \cap L \leq Q_{1}$. Note that P_{1} acts transitively on fours groups of Q_{1} containing Z and so we may assume $\left|A \cap Q_{2}\right| \geq 4$. Thus using (*),

$$
A \leq C_{M}\left(\left[V, A \cap Q_{2}\right]\right)=C_{M}\left(\left[V, Q_{2}\right]\right) \leq Q_{2}^{*}
$$

Suppose next that $A \cap L \not \leq Q_{1}$. Since $L_{13} / Q_{1} \cong \operatorname{Sym}(3)$ we may assume that $A \cap L \leq Q_{1} Q_{2}$. Let $\widetilde{P}_{1}:=P_{1} / Z$ and let $q \in Q_{2} \backslash Q_{1}$. Then $C_{\widetilde{Q}_{1}}(q)=\left[\widetilde{Q}_{1}, q\right]=\widetilde{Q_{1} \cap Q_{2}}$. It follow that all involutions in $\widetilde{Q}_{1} \widetilde{Q}_{2} \backslash \widetilde{Q}_{1}$ are conjugate and so Q_{2} is the unique maximal elementary subgroup of $Q_{1} Q_{2}$ not contained in Q_{1}. Thus $A \cap L \leq Q_{2}$.

We proved that A is conjugate to a subgroup of Q_{2}^{*} and we may assume that $A \leq Q_{2}^{*}$. Since $\mathrm{C}_{V}\left(Q_{2}\right)$ is the unique non-zero proper $\mathbb{F}_{2} L_{2}$ submodule of $V, \mathrm{C}_{V}\left(Q_{2}^{*}\right)=\left[V, Q_{2}^{*}\right]=\mathrm{C}_{V}\left(Q_{2}\right)$ and so Q_{2}^{*} is quadratic on V. This gives $A=Q_{2}^{*}$, and all maximal quadratic subgroups of M of order at least 4 are conjugate to Q_{2}^{*}.

It remains to proof (g). So let B be any quadratic subgroup of M. Suppose first that $|B|=2$. If $B \leq L$ then B is conjugate to $|Z|$ and so g:a holds. If $B \not \leq L$ then either $\mathrm{C}_{\bar{L}}(B) \cong U_{4}(2)$ or $\mathrm{C}_{\bar{L}}(B) \sim 2^{4} .3^{2} .2$.

Suppose that $\mathrm{C}_{\bar{L}}(B) \sim 2^{4} .3^{2} .2$. Then $\mathrm{O}_{2}\left(\mathrm{C}_{L}(B)\right)$ is conjugate to $A \cap L$ and we may assume that $B \leq A$ and $C_{M}(B) \leq P_{2}$. Note that $\mathrm{C}_{M}(B)$ contains a Sylow 3 -subgroups of P_{2}. Since the Sylow 3-subgroups of P_{2} are extraspecial of order 3^{3} they act simply on $[V, A]$ and we conclude that $[V, B]=\mathrm{C}_{V}(B)=[V, A]=\mathrm{C}_{V}(A)$ and so (g:d) holds.

Suppose $\mathrm{C}_{\bar{L}}(B) \cong U_{4}(2)$. Let $y \in Z^{*} \backslash Z$. Then $[V, y] \leq[V, Z]$. The preceding paragraph shows that $\mathrm{C}_{\bar{L}}(B) \nsim 2^{4} .3^{2} .2$ and thus $\langle y\rangle$ is conjugate to B. So we may assume that $B \leq Z^{*}$. Thus $V / \mathrm{C}_{V}(B)$ and $[V, B]$ have dimension at most two over \mathbb{F} and so are centralized by $\mathrm{C}_{L}(B)$. Thus $\mathrm{C}_{L}(B)$ acts faithfully on $\mathrm{C}_{V}(B) /[V, B]$. Since $[V, B] \leq \mathrm{C}_{V}(B)=[V, B]^{\perp}$, the L-invariant unitary form on V gives raises to an $\mathrm{C}_{L}(B)$-invariant unitary form on $\mathrm{C}_{V}(B) /[V, B]$. It follows that $\operatorname{dim}_{\mathbb{F}} \mathrm{C}_{V}(B) /[V, B]=4$ and $\mathrm{C}_{V}(B) /[V, B]$ is a natural $\mathrm{SU}_{4}(2)$-module for $\mathrm{C}_{L}(B)$. Thus $\operatorname{dim}_{\mathbb{F}} V / \mathrm{C}_{V}(B)=1=\operatorname{dim}_{\mathbb{F}}[V, B]$ and (g:b) holds.

Suppose next that $|B|>2$. Then B is contained in a maximal quadratic subgroup of order at least 4 and so we may assume that $B \leq A$. If $[V, B]=[V, A]$, then $\mathrm{C}_{V}(B)=[V, B]^{\perp}=[V, A]^{\perp}=\mathrm{C}_{V}(A)$ and (g:d) holds. So suppose $[V, B]<[V, A]$. Then $(*)$ implies that $|B \cap L|=2$ and so $|B|=4$. If $d \in B \backslash L$, then $\operatorname{dim}_{\mathbb{F}}[V, d] \leq \operatorname{dim}_{\mathbb{F}}[V, B] \leq 2$ and so (g:b) must hold for $\langle d\rangle$ in place of B. Thus g:c holds.

Lemma 7.10. Let $M=\mathrm{O}_{2 n}^{\epsilon}(q), q=2^{k}$, and V be the corresponding natural module over \mathbb{F}_{q}. Let $a \in M$ with $|a|=2$. Then $a \in \Omega_{2 n}^{\epsilon}(q)$ if and only if $\operatorname{dim}_{\mathbb{F}_{q}}[V, a]$ is even.

Proof. This is well known, but a reference seems to be hard to come by. So here is a proof: If $n=1$, this is obvious. Suppose there exists an a-invariant proper subspace W of V with $V=W \oplus W^{\perp}$. Then the claim follows by induction on n. So we may assume that no such W exists. In particular $v \perp v^{a}$ for all $v \in V$ and so $[V, a]$ is a singular subspace. Let $\mathrm{C}_{V}(a)=[V, a] \oplus W$ for some \mathbb{F}_{q}-subspace W. Since $\mathrm{C}_{V}(a)=[V, a]^{\perp}, V=W \oplus W^{\perp}$ and so $W=0$ and $[V, A]=\mathrm{C}_{V}(a)$ is maximal singular subspace of V. Thus $\epsilon=+$. Since a normalize a maximal singular subspace, $a \in \Omega_{2 n}^{+}(q)$. Consider the map $s_{a}: V / \mathrm{C}_{V}(a) \times V / \mathrm{C}_{V}(a) \rightarrow \mathbb{F}_{q}$ define by $\left.s_{a}\left(v+\mathrm{C}_{V}(a), w+\mathrm{C}_{V}(a)\right)=s(v,[w, a])\right)$, where s is the symmetric form on V invariant under M. Then s_{a} is a non-degenerate bilinear form. From $v \perp v^{a}$ we get $v \perp[v, a]$ and so s_{a} is a symplectic form. Thus $\operatorname{dim}[V, a]=\operatorname{dim} V / \mathrm{C}_{V}(a)$ is even.

Lemma 7.11. Let q be a power of p and $K \unlhd M$ such that $K \cong \operatorname{Spin}_{n}^{\epsilon}(q), n \geq 3$, and $\mathrm{C}_{M}(K)=\mathrm{Z}(K)$. Let $V_{\text {nat }}$ be the natural $\mathbb{F}_{q} \Omega_{n}^{\epsilon}(q)$-module for $K, S \in \operatorname{Syl}_{p}(M), U:=\mathrm{C}_{V_{\mathrm{nat}}}(S \cap K), L:=\mathrm{C}_{K}(U)$ and $Q:=\mathrm{O}_{p}(L)$. Then the following hold:
(a) Suppose that W is a non-trivial simple $\mathbb{F}_{p} K$-module with $[W, Q, Q]=0$. Then W is a (half-) spin module for K.
(b) Suppose that $p=2$, n even, $n \geq 6, W$ is a simple $\mathbb{F}_{2} M$-module with $[W, K] \neq 0$ and that there exists $A \leq S$ with $[W, A, A]=0, M=\left\langle A^{M}\right\rangle,|A|>2$, and $A \not \leq K$. Then $M \cong \mathrm{O}_{n}^{\epsilon}(q)$ and W is the natural $\mathrm{O}_{n}^{\epsilon}(q)$-module for M.

Proof. Put $T:=S \cap K$, so $T \in \operatorname{Syl}_{p}(K)$, and $\overline{\mathrm{N}_{M}(Q)}:=\mathrm{N}_{M}(Q) / Q \mathrm{Z}(K)$, and let U_{0} be the unique 1-dimensional singular subspace of U. Then $\left[U^{\perp}, Q\right]=U_{0}$. Moreover $U=U_{0}$, if n is even or p is odd, and $U=U_{0}+V^{\perp}$ if n is odd and $p=2$. Hence
$\mathbf{1}^{\circ}$. $\quad U^{\perp} / U_{0}$ and Q are natural $\Omega_{n-2}^{\epsilon}(q)$-modules for \bar{L}.
Assume that $n \geq 5$. Then there exists $g \in K$ such that $Y:=U_{0}+U_{0}^{g}$ is a 2-dimensional singular subspace of U^{\perp} normalized by T. Put $H:=\left\langle Q, Q^{g}\right\rangle$ and $Z:=Q \cap Q^{g}$. Then $H / \mathrm{C}_{H}(Y) \cong \mathrm{SL}_{2}(q)$, and H acts transitively on the 1-dimensional subspaces of Y. Thus $H=\left\langle Q^{\mathrm{N}_{K}(Y)}\right\rangle$; in particular, T normalizes H. Moreover, $Q \mathrm{O}_{p}(H T)=T \in \operatorname{Syl}_{p}(H T)$, and using 1° :
2. . If $n \geq 5$, then $\overline{\mathrm{C}_{Q^{g}}(Y)}=\mathrm{O}_{p}\left(\mathrm{C}_{\bar{L}}\left(Y / U_{0}\right)\right)$, and Z is a 1-dimensional singular subspace of Q.
(a): Put $\mathbb{K}:=\operatorname{End}_{K}(W)$. By Smith's Lemma 4.2 applied to W and its dual, $\mathrm{C}_{W}(Q)$ and $W /[W, Q]$ are simple $\mathbb{K} L$-modules. Since $[W, Q] \leq \mathrm{C}_{W}(Q)$ we conclude that $[W, Q]=\mathrm{C}_{W}(Q)$. Suppose that $n=3$ or 4 . Then $Q=T$ and so $\mathrm{C}_{W}(Q)$ and $W /[W, Q]$ are 1-dimensional over \mathbb{K}. Thus $\operatorname{dim}_{\mathbb{K}}(W)=2$.

If $n=3$ or $(n, \epsilon)=(4,+)$ then W is a natural $\mathrm{SL}_{2}(q)$-module. If $(n, \epsilon)=(4,-)$, then W is a natural $\mathrm{SL}_{2}\left(q^{2}\right)$-module. These are the (half-)spin modules for these groups, so a) follows in this case.

Suppose now that $n \geq 5$, so we are allowed to use the subgroups Y, H and Z constructed above. Since $[W, Z, H]=0$ and $Z \neq 0$ we conclude that $\mathrm{C}_{W}(H T) \neq 0$. By Smith's Lemma 4.2 $\mathrm{C}_{W}(T)$ is 1-dimensional over \mathbb{K} and so $\mathrm{C}_{W}(T)=\mathrm{C}_{W}(T H)$. Since $K=\langle L, H T\rangle$ and W is simple, we have $\left[\mathrm{C}_{W}(T), L\right] \neq 0$, so $\left[\mathrm{C}_{W}(Q), L\right] \neq 0$. Now again Smith's Lemma 4.2 and 2° show that $\mathrm{C}_{W}(Q)$, \bar{L} and $\overline{\mathrm{C}_{Q^{g}}(Y)}$ satisfy the hypothesis in place of W, K, and Q. Thus by induction $\mathrm{C}_{W}(Q)$ is a (half-) spin module for \bar{L}. Together with $\left[\mathrm{C}_{W}(T), H T\right]=0$, this determines W up to isomorphism (see 4.3) and so W is a (half)-spin-module.
(b): Note that $K \cong \Omega_{n}^{\epsilon}(q)$ since $p=2$, that S normalizes L, and that by 1°) Q is a natural $\Omega_{n-2}^{\epsilon}(q)$-module for L. Thus there exists an L-invariant quadratic form h (over \mathbb{F}_{q}) on Q.
$\mathbf{3}^{\circ}$. There exist $a, b \in A^{\sharp}$ with $\mathrm{C}_{Q}(a) \neq \mathrm{C}_{Q}(b)$.
Assume first that A does not act \mathbb{F}_{q}-linearly on Q. Since $\operatorname{Aut}\left(\mathbb{F}_{q}\right)$ is cyclic and A is elementary abelian with $|A| \geq 4$, we conclude that there exists $1 \neq a \in A$ acting \mathbb{F}_{q}-linearly on Q and $b \in A$ acting not \mathbb{F}_{q}-linearly on Q. Hence $C_{Q}(a)$ is an \mathbb{F}_{q}-subspace of Q while $C_{Q}(b)$ is not; in particular $\mathrm{C}_{Q}(a) \neq \mathrm{C}_{Q}(b)$.

Assume now that A acts \mathbb{F}_{q}-linearly on Q. Then $\overline{A L} \cong \mathrm{O}_{n-2}^{\epsilon}(q)$, and there exists $a \in A \backslash K$ and $1 \neq b \in A \cap K$. By 7.10 we conclude that $\mathrm{C}_{Q}(a)$ is odd dimensional and $\mathrm{C}_{Q}(b)$ is even dimensional over \mathbb{F}_{q}. Hence again $\mathrm{C}_{Q}(a) \neq \mathrm{C}_{Q}(b)$.
4°. There exists $D \leq L A$ with $D \cap A \not \approx Q,[W, D, D]=0$, and $D \cap Q \neq 1$.
Clearly $A \not \leq Q$ since $A \not \leq K$, so if $A \cap Q \neq 1$ we can choose $D=A$. Suppose $A \cap Q=1$. Let $a, b \in A$ as in 3° and without loss $\mathrm{C}_{Q}(a) \not \leq \mathrm{C}_{Q}(b)$. Then there exists $1 \neq d \in\left[\mathrm{C}_{Q}(a), b\right] \leq\left\langle b^{\mathrm{C}_{Q}(a)}\right\rangle$, so

$$
[W, a, d] \leq\left[W, a,\left\langle b^{\mathrm{C}_{Q}(a)}\right\rangle\right]=\left\langle[W, a, b]^{\mathrm{C}_{Q}(a)}\right\rangle=0
$$

Since A is elementary abelian, $d \in\left\langle b^{\mathrm{C}_{Q}(a)}\right\rangle \leq \mathrm{C}_{L}(a)$ and so $[a, d, W]=0$. Hence by the Three Subgroups Lemma also $[W, d, a]=0$, and $D:=\langle a, d\rangle$ satisfies 4°.
5°. There exists $B \leq Q$ and $1 \neq e \in B$ such that $[W, B, B]=0, h(e)=0$ and $B \not \leq \mathbb{F}_{q} e$.
Let D be as in 44°. Pick $1 \neq b \in D \cap Q$, and put $E:=\left\langle D^{\mathrm{C}_{L}(b)}\right\rangle$ and $C:=\mathbb{F}_{q} b$. Then $[W, b, E]=0$.

Suppose that $b^{\perp} \leq E \cap Q$. Note that there exists $u \in E \cap Q \backslash C$ such that $h(u)=0$ if $h(b) \neq 0$. Pick such an element u and put $B:=\langle b, u\rangle$. Since $[W, b, B]=0, B$ acts quadratically on W. Thus 55° holds with $e=b$ if $h(b)=0$ and $e=u$ if $h(b) \neq 0$.

Suppose now that $b^{\perp} \not \leq E \cap Q$. By the action of $C_{L}(b)$ on Q, any $C_{L}(b)$-submodule of Q, which contains b, either contains b^{\perp} or is contained in C. In particular $E \cap Q \leq C$ and $[Q, E] \leq E \cap Q \leq C$. Since Q is a natural $\Omega_{n-2}^{\epsilon}(q)$-module for $L, 3.4$ shows $h(b) \neq 0$ and $|D Q / Q|=|E Q / Q|=2$. Thus $\left[D, \mathrm{C}_{L}(b)\right] \leq C$, and since $\mathrm{C}_{L}(b)$ centralizes $C,\left[D, \mathrm{O}^{2}\left(C_{L}(b)\right]=1\right.$. The structure of $\mathrm{O}_{n-2}(q)$ shows that

$$
[Q, D]=C \text { and } \mathrm{C}_{L D}(b) / Q \cong C_{2} \times \operatorname{Sp}_{n-4}(q)
$$

Put $D^{*}=\mathrm{C}_{D L}\left(\mathrm{O}^{2}\left(\mathrm{C}_{L}(b)\right)\right)$. It follows that $D \leq D^{*},\left|D^{*} Q / Q\right|=2, D^{*} \cap Q=C$, and the q elements in $D^{*} \backslash Q$ are the transvections on $V_{\text {nat }}$ corresponding to the q non-singular 1-spaces in the isotropic 2-space [$\left.V_{\mathrm{nat}}, b\right]$. Pick $d \in D \cap A \backslash Q$. Then $F:=\mathrm{C}_{D K}(d) \cong \mathrm{C}_{2} \times \mathrm{Sp}_{n-2}(q)$. In particular $F=\left\langle D^{F}\right\rangle$. From $[W, d, D]=0$ we get $[W, d, F]=0$ and so $\left[W, d, \mathrm{C}_{Q}(d)\right]=0$. Pick $e \in \mathrm{C}_{Q}(d) \backslash C$. Then $\langle e, d\rangle$ is quadratic on W and satisfies 44° in place of D. Moreover $[Q, d] \not \leq \mathbb{F}_{q} e$. Hence the arguments of the previous paragraph apply to $\langle e, d\rangle$ in place of D, and 5° holds.
6 $^{\circ} . \quad\left[W, Z, \mathrm{C}_{Q}(Y)\right]=0$.
Let B and e be as in $\left(5^{\circ}\right)$. Since L is transitive on the singular elements of Q and since by $\left(2^{\circ} Z\right.$ is a singular subspace of Q, we may assume that $e \in Z$. Put $Q_{e}:=e^{\perp}$ in Q. Note that $Q_{e}=\mathrm{C}_{Q}(Y)$, so we have to show that $\left[W, Z, Q_{e}\right]=0$.

Since $B \not \leq Z=\mathbb{F}_{q} e$ we get $Q_{e} \leq\left\langle B^{\mathrm{C}_{L}(e)}\right\rangle$, so $\left[W, e, Q_{e}\right]=0$. As $\mathrm{N}_{L}\left(Q_{e}\right)$ acts transitively on Z, we conclude that $\left[W, Z, Q_{e}\right]=\left[W,\left\langle e^{\mathrm{N}_{L}\left(Q_{e}\right)}\right\rangle, Q_{e}\right]=0$.
$\mathbf{7}^{\circ}$. Put $\mathbb{K}:=\operatorname{End}_{K}(W)$. Then W is a simple $\mathbb{F}_{2} K$-module, and M acts \mathbb{K}-linearly on W.

Let X be a simple $\mathbb{F}_{2} K$-submodule of W and $\mathbb{E}:=\operatorname{End}_{K}(X)$, and pick D as in $4{ }^{\circ}$. Then $0 \neq[X, D \cap Q] \leq \mathrm{C}_{X}(D)$ and so X is D-invariant. Hence $0 \neq[X, D \cap A] \leq \mathrm{C}_{X}(A)$ and so X is A-invariant. Since $D \cap Q$ acts \mathbb{E}-linearly on $X,[X, D \cap Q]$ is a non-trivial \mathbb{E}-subspace centralized by D, so D acts \mathbb{E}-linearly on X. Hence $[X, D \cap A]$ is a non-trivial \mathbb{E}-subspace centralized by A, and A acts \mathbb{E}-linearly on X. This also holds for each conjugate of A under M. Since $M=\left\langle A^{M}\right\rangle$ and W is a simple $\mathbb{F}_{2} M$-module, $X=W, \mathbb{K}=\mathbb{E}$, and M acts \mathbb{K}-linearly on W.
$8^{\circ} . \quad[W, Q, Q] \neq 0$.
Suppose $[W, Q, Q]=0$. Then by 7° and (a), W is a (half)-spin module. If $\epsilon=-$, then $\mathbb{K} \cong \mathbb{F}_{q^{2}}$ and since A acts \mathbb{K}-linearly on W, we conclude that $A \leq K$, a contradiction. If $\epsilon=+$, then $\mathbb{K}=\mathbb{F}_{q}$ and so A induces a graph automorphism on K. But graph automorphisms interchange the two half-spin modules and so do not act on W, again a contradiction.
$\mathbf{9}^{\circ} . \quad W$ is a natural $\Omega_{n}^{\epsilon}(q)$-module for K.
Put $Q_{Z}=\mathrm{C}_{Q}(Y) \mathrm{C}_{Q^{g}}(Y)$, where g is as in the definition of Y. Then by $\left(6^{\circ}\right)\left[W, Z, Q_{Z}\right]=0$. Let $l \in L$ with $Z^{l} \not \leq \mathrm{C}_{Q}(Y)$, so $Q=\mathrm{C}_{Q}(Y) Z^{l}$. Note that $L=\left\langle Q_{Z}, Q_{Z}^{l}\right\rangle$. Since $[W, Q, Q] \neq 0$ by 8° and $\left\langle Z^{L}\right\rangle=Q$, also $[W, Z, Q] \neq 0$. Now $\left[W, Z, \mathrm{C}_{Q}(Y)\right]=0$ gives

$$
0 \neq[W, Z, Q]=\left[W, Z, \mathrm{C}_{Q}(Y) Z^{l}\right]=\left[W, Z, Z^{l}\right]
$$

Since $\left[Z, Z^{l}\right]=1$, we get

$$
0 \neq\left[W, Z, Z^{l}\right]=\left[W, Z^{l}, Z\right] \leq[W, Z] \cap\left[W, Z^{l}\right] \leq \mathrm{C}_{W}\left(Q_{Z}\right) \cap \mathrm{C}_{W}\left(Q_{Z}^{l}\right)=\mathrm{C}_{W}(L)
$$

Thus $\mathrm{C}_{W}(L) \neq 0$, and with Smith's Lemma $4.2\left[\mathrm{C}_{W}(S \cap K), L\right]=0$.
By $66^{\circ} Z$ and thus also Z^{l} acts quadratically on W. On the other hand

$$
Z^{l} \mathrm{O}_{2}(H T)=Q \mathrm{O}_{2}(H T) \in \operatorname{Syl}_{2}(H T)
$$

Hence, T acts quadratically on $\mathrm{C}_{W}\left(\mathrm{O}_{2}(H T)\right)$. So by a $\mathrm{C}_{W}\left(\mathrm{O}_{2}(H T)\right)$ is a natural $\mathrm{SL}_{2}(q)$-module for $H T$. Thus by Ronan-Smith's Lemma $4.3 W$ is unique up to isomorphism, and 9° holds.

From 9° we conclude that $\mathbb{K}=\mathbb{F}_{q}$. Since A acts \mathbb{K}-linearly on W we infer that $K A \cong \mathrm{O}_{2 n}^{\epsilon}(q)$, W is the natural module, and $M=K A$.

8 The FF-Module Theorems

In this section we use the same hypothesis and notation as in Section 2 , that is, M is a finite group with $\mathrm{O}_{p}(M)=1, V$ is a finite, faithful $\mathbb{F}_{p} M$-module such that $J=\mathrm{J}_{M}(V) \neq 1$, and \mathcal{J} is the set of $\mathrm{J}_{M}(V)$-components of M on V.

Recall that a finite group H is p-minimal if $S \in \operatorname{Syl}_{p}(H)$ is contained in a unique maximal subgroup of H and $S \nexists H$.

Lemma 8.1. Suppose that M is p-minimal and $T \in \operatorname{Syl}_{p}(M)$. Then there exist subgroups E_{1}, \ldots, E_{r} such that the following hold:
(a) $J=E_{1} \times \cdots \times E_{r}$ and $\mathcal{J}=\left\{E_{1}^{\prime}, \ldots, E_{r}^{\prime}\right\}$.
(b) $V=\mathrm{C}_{V}(J)+\sum_{i=1}^{r}\left[V, E_{i}\right]$ and $\left[V, E_{i}, E_{j}\right]=0$ for $i \neq j$.
(c) $\left[\mathrm{C}_{V}(T), \mathrm{O}^{p}(M)\right] \neq 0$.
(d) T is transitive on E_{1}, \ldots, E_{r}.
(e) There are no over-offenders on V in M.
(f) $E_{i} \cong \mathrm{SL}_{2}(q), q=p^{n}$, and $\left[V, E_{i}\right] / \mathrm{C}_{\left[V, E_{i}\right]}\left(E_{i}\right)$ is a natural $\mathrm{SL}_{2}(q)$-module for E_{i}, or $p=2$, $E_{i} \cong \operatorname{Sym}\left(2^{n}+1\right)$, and $\left[V, E_{i}\right]$ is a natural $\operatorname{Sym}\left(2^{n}+1\right)$-module for E_{i}.
(g) If $A \leq M$ is an offender on V, then $A=\left(A \cap E_{1}\right) \times \ldots \times\left(A \cap E_{r}\right)$, and each $A \cap E_{i}$ is an offender on V.

Proof. Using BHS, 5.6] we see that (c) holds. Hence M and V satisfy the hypothesis of [BHS, 5.5]. This result gives subgroups E_{1}, \ldots, E_{r} satisfying (b), (d), (\ddagger) and (g). Moreover, BHS 2.16] shows that every best offender on V induces inner automorphisms in E_{i} and is not an over-offender on [$\left.V, E_{i}\right]$. The first property gives (a) and the second one (e).

The proof of Theorem 2 :

Let $K \in \mathcal{J}, \mathbb{K}:=\operatorname{End}_{K}(V)$, and $A \in \mathcal{D}$. From 2.8 we get:
$\mathbf{1}^{\circ} . \quad V$ is a simple K-module, and K is the unique J-component of M.
If K is solvable, then 2.2 d] shows that Theorem 2.1] holds for $q=2$ or 3 and $n=2$. Thus, we assume from now on that K is not solvable, so K is a component by 2.2 dd.

By the definition of \mathcal{D} there exists $1 \neq B \leq A$ such that B is an offender on V with

$$
\begin{equation*}
[V, B, A]=0 . \tag{*}
\end{equation*}
$$

We choose such an offender B with $|B|$ minimal. Then B is a minimal offender and thus a quadratic best offender on V, so $B \leq J$.

By 1° and 2.2 (b) $[K, B] \neq 1$. Hence
$\mathbf{2}^{\circ}$. $K=[K, B]$ and $[V, B, A]=0$.
Since K is not solvable, we get from [2.5, applied to $B K$, that $B K$ acts \mathbb{K}-linearly on V. In particular, $[V, B]$ is a \mathbb{K}-subspace of V. Thus $(*)$ shows that A centralizes a \mathbb{K}-subspace of V, so also A acts \mathbb{K}-linearly on V. Since this holds for every $A \in \mathcal{D}$, we conclude:

3°. $\quad M$ acts \mathbb{K}-linearly on V, and $\mathrm{C}_{M}(K)=\mathrm{Z}(M)$.

We will now prove Theorem 2 by using the information given in [GM2, Theorem B]. Observe that the bounds on the dimension of V in the cases (3) and (4) of Theorem 2 follow from 3.4

Suppose that $(K B, V)$ or (K, V) is one of the possibilities (11) - 12) given in Theorem 2 for (M, V). Since by $\left(3^{\circ}\right) M \leq \mathrm{N}_{\mathrm{GL}_{\mathrm{K}}(V)}(K)$, then also (M, V) is on the list. Moreover, if there exists a non-trivial offender on V in K, then (30) and [GM2] show that (K, V) is on the list. Thus, we may assume:
4. $\quad B$ is a minimal best offender on $V, M=K B$, and there is no non-trivial offender on V in K. In particular $K \neq M$.

Case 1. Suppose that p is odd.

In [Ch, Corollary C] all possibilities for M are given under the hypothesis that $\left|V / \mathrm{C}_{V}(B)\right| \leq|B|^{2}$ for some non-trivial quadratic subgroup $B \leq M$. It turns out that $p=3$ and $M \cong \mathrm{SL}_{2}(5)$, or M is a genuine group of Lie type in characteristic p. In the first case $\left|V / \mathrm{C}_{V}(B)\right|>|B|$, and B is not an offender contradicting 4°. In the second case 4° shows that $M \cong{ }^{2} \mathrm{G}_{2}(3) \sim \mathrm{SL}_{2}(8) .3$. But then M has abelian Sylow 2-subgroups, which contradicts [KS, 9.1.4].

Case 2. \quad Suppose that $|B|=2$.
Then B acts as a transvection on V, and McL shows that (M, V) is on the list.
Case 3. Suppose that $p=2,|B|>2$, and K is not a genuine group of Lie-type in characteristic p.

Then MeSt1, MeSt2 and 7.4 together with $4{ }^{\circ}$ show that

$$
K \cong \operatorname{Alt}(n), n \geq 6, n \neq 8, \mathrm{U}_{3}(3), 3 . \mathrm{U}_{4}(3),{ }^{2} \mathrm{~F}_{4}(2)^{\prime},, \mathrm{Mat}_{12}, \text { or } \mathrm{Mat}_{22}
$$

Except in the case $K \cong \operatorname{Alt}(n)$ the corresponding module V is uniquely determined.
Suppose $K \cong \operatorname{Alt}(n)$. Then MeSt2] offers two possibilities for V. If V is the natural module for $\operatorname{Alt}(n)$, then $M \cong \operatorname{Sym}(n)$ and V is the natural module for $\operatorname{Sym}(n)$. Hence (M, V) are on the list.

If V is not a natural module, then V is the (half-)spin module and $n>6$. So 7.5 shows that $B \leq \operatorname{Alt}(n)$ contradicting 4°.

Suppose that $K \cong \mathrm{U}_{3}(3)$. Then $M \cong \mathrm{G}_{2}(2)$, and 7.6 shows that (M, V) is on the list.
Suppose $K \cong{ }^{2} \mathrm{~F}_{4}(2)^{\prime}$. Then $M \cong{ }^{2} \mathrm{~F}_{4}(2)$ and so $M \backslash K$ does not contain any involution, a contradiction.

Suppose $K \cong 3 . \mathrm{U}_{4}(3)$. Then $\mathbb{K}=\mathbb{F}_{4}$ and $\operatorname{dim}_{\mathbb{K}} V=6$. Since M acts \mathbb{K}-linearly we get $|M / K|=2$, and there exists $B \leq R \leq M$ such that $R \sim 2^{4+1} 3$.Alt(6). Observe that every non-zero R-section of V is at least 3-dimensional over \mathbb{K}. Hence $I_{R}:=\mathrm{C}_{V}\left(\mathrm{O}_{2}(R)\right)=\mathrm{C}_{V}\left(\mathrm{O}_{2}(R) \cap K\right)$ is 3 -dimensional over \mathbb{K} and $V=[V, R]$.

Clearly B is not an over-offender on I_{R} since $\left|B \mathrm{O}_{2}(R) / \mathrm{O}_{2}(R)\right| \leq 4$ and I_{R} is an $\mathbb{F}_{4} R$-module. Thus, by 1.3 either $V=I_{R}+\mathrm{C}_{V}(B)$ or $B \leq \mathrm{O}_{2}(R)$. In the first case $[V, R] \leq I_{R}$, a contradiction. In the second case [MS1, 2.6] implies that there exists an offender $1 \neq D \leq \mathrm{O}_{2}(R)$ with $D \unlhd R$. Since I_{R} and V / I_{R} are simple R-modules we get $\mathrm{C}_{V}(D)=I_{R}$ and $2^{5}=\left|\mathrm{O}_{2}(R)\right| \geq|D| \geq\left|V / \mathrm{C}_{V}(D)\right|=$ $\left|V / I_{R}\right|=2^{6}$, a contradiction.

Suppose next that $K \cong \operatorname{Mat}_{12}$ or Mat_{22}. Then $M \cong \operatorname{Aut}\left(\operatorname{Mat}_{12}\right)$ and $\operatorname{Aut}\left(\operatorname{Mat}_{22}\right)$, respectively, and MeSt2 shows that $|B|=4$. But then $\left|V / \mathrm{C}_{V}(B \cap K)\right| \leq\left|V / \mathrm{C}_{V}(B)\right| \leq|B|=4$, which contradicts the action of K on V.

Case 4. Suppose $p=2,|B|>2$, and K is a genuine group of Lie type defined over a field of characteristic 2.

Recall that $B \leq T \in \operatorname{Syl}_{2}(M)$. Let $V_{0}:=\mathrm{C}_{V}(T \cap K)$. Note that M is generated by the 2minimal subgroups containing T. Hence there exists $T \leq P \leq M$ such that P is 2-minimal and $\left[V_{0}, \mathrm{O}^{2}(P)\right] \neq 0$.

5. $\quad B \leq \mathrm{O}_{2}(P)$.

Suppose that $P=M$. Then by $8.1(K B, V)$ is on the list, contrary to the assumptions. Thus $P \neq M$.

Put $V_{P}:=\mathrm{C}_{V}\left(\mathrm{O}_{2}(P) \cap K\right)$. Then $V_{0} \leq V_{P}$. Put $\tilde{P}=N_{K}\left(\mathrm{O}^{2^{\prime}}(P \cap K)\right)$. Then \tilde{P} is a Lie-parabolic subgroup of $K, \mathrm{O}_{2}(P) \cap K=\mathrm{O}_{2}(\tilde{P})$ and $\mathrm{O}^{2^{\prime}}(\tilde{P})=\mathrm{O}^{2^{\prime}}(P \cap K)$. Thus by Smith's Lemma 4.2 V_{P}
is a simple $\mathbb{K}(P \cap K)$-module. By $4^{\circ} \mathrm{O}^{2}(P) \leq P \cap K$, so $\mathrm{C}_{V}\left(\mathrm{O}^{2}(P)\right)=0$ and $V_{P}=\mathrm{C}_{V}\left(\mathrm{O}_{2}(P)\right)$. Moreover, since P is 2-minimal, $\mathrm{C}_{T}\left(V_{P}\right)=\mathrm{O}_{2}(P)$.

Suppose that $B \not \leq \mathrm{O}_{2}(P)$, so $\left[V_{P}, B\right] \neq 0$. By $1.2 B$ is a non-trivial best offender on V_{P}, and by $8.1 B$ is not an over-offender on V_{P}. Hence 1.3 shows that $\mathrm{C}_{B}\left(V_{P}\right)=1$ and $V=V_{P}+\mathrm{C}_{V}(B)$. Again by 8.1 there exists $\mathrm{O}_{2}(P) B \leq H \leq P$ such that $H / \mathrm{O}_{2}(P) \cong \mathrm{SL}_{2}(|B|), U:=\left[V_{P}, H\right]$ is a natural $\mathrm{SL}_{2}(|B|)$-module, and $V=U+\mathrm{C}_{V}(B)$.

Put $D:=\left\langle B^{H}\right\rangle$. Then $[V, D] \leq U$, so every subgroup of V containing U is D-invariant. Since K is of local characteristic 2 and $P \neq M$, there exists a minimal normal subgroup N of D in $\mathrm{O}_{2}(D) \cap K$. Then $[V, D, N] \leq[U, N]=0$ and $\left[V, N, O^{2}(D)\right]=U$. Hence, the Three Subgroups Lemma shows that $\left[O^{2}(D), N, V\right] \neq 0$ and so $\left[N, \mathrm{O}^{2}(D)\right] \neq 1$. As $\mathrm{SL}_{2}(|B|)$ has no non-trivial simple \mathbb{F}_{2}-module of order less than $|B|^{2}$, we get $|N| \geq|B|^{2}$.

On the other hand for every $1 \neq x \in N, U \leq \mathrm{C}_{V}(x)$ and so $\mathrm{C}_{V}(x)$ is D-invariant. Since $N=\left\langle x^{D}\right\rangle$ it follows that $\mathrm{C}_{V}(N)=\mathrm{C}_{V}(x)$. Now choose $y \in N$ and $b \in B$ with $x:=[y, b] \neq 1$. Then $x \in N \cap\left\langle B, B^{y}\right\rangle$ and $\mathrm{C}_{V}(B) \cap \mathrm{C}_{V}\left(B^{y}\right) \leq \mathrm{C}_{V}(x)$ and so

$$
\left|V / \mathrm{C}_{V}(N)\right|=\left|V / \mathrm{C}_{V}(x)\right| \leq\left|V / C_{V}(B)\right|^{2} \leq|B|^{2} \leq|N|
$$

Hence, N is a non-trivial offender on V in K. But this contradicts 4°, and so 5° holds.
Since by $55^{\circ} B \leq \mathrm{O}_{2}(P)$ and since $P=(P \cap K) B$, also $P \cap K$ is 2-minimal. Thus $P \cap K$ is a minimal parabolic subgroup of K fixed by B.

Let Δ be the Dynkin diagram of K and i be the node corresponding to $P \cap K$. Among all B-invariant proper $\Gamma \subset \Delta$ with i in Γ and Γ connected we choose Γ maximal. Let $T \cap K \leq \widetilde{L}$ be the parabolic subgroup of K corresponding to Γ and put $L:=\mathrm{O}^{2^{\prime}}(\widetilde{L}), Q:=\mathrm{O}_{2}(L)$, and $V_{L}:=\mathrm{C}_{V}(Q)$. Note that B normalizes L and thus also V_{L}. So by $1.2 B$ is a best offender on V_{L}. By Smith's Lemma $4.2 V_{L}$ is a simple $\mathbb{F}_{2} \widetilde{L}$-module. Let W be a simple $\mathbb{F}_{2} L$-submodule of V_{L}. By 2.6 and 1.2 B normalizes W and is a best offender on W.
$\mathbf{6}^{\circ}$. Either $B \leq L \mathrm{O}_{2}(L B)$, or the following hold:
(a) $L B / \mathrm{C}_{L B}(W) \cong \mathrm{O}_{2 n}^{\epsilon}(q), n \geq 3$, and W is the corresponding natural module.
(b) $\left|B / \mathrm{C}_{B}(W)\right| \geq 4$.

Suppose that $B \not \leq L \mathrm{O}_{2}(L B)$. Note that $\left[V_{0}, \mathrm{O}^{2}(L)\right] \neq 0$ since $\mathrm{O}^{2}(P) \leq L$ and $\left[V_{0}, \mathrm{O}^{2}(P)\right] \neq$ 0 . Since Γ is connected, $\mathrm{C}_{B}(W) \leq \mathrm{O}_{2}(L B)$. Thus B is a non-trivial best offender on W. If $\left|B / \mathrm{C}_{B}(W)\right|=2$, then B is not an over-offender on W, and by $1.3|B|=2$, a contradiction to the assumptions of Case 4.

Hence $\left|B / \mathrm{C}_{B}(W)\right| \geq 4$, and by induction $L B / \mathrm{C}_{L B}(W) \cong \mathrm{O}_{2 n}^{\epsilon}(q)$ and W is the corresponding natural module. Moreover $5{ }^{\circ}$ shows that $L B$ is not 2-minimal, so $n \geq 3$.
$7^{\circ} . \quad B$ acts transitively on $\Delta \backslash \Gamma$.
There exists a node $j \in \Delta \backslash \Gamma$ such that j is adjacent to some node in Γ. Now the maximality of Γ shows that $\Delta=\Gamma \cup j^{B}$.

We now discuss the possibilities for $K / \mathrm{Z}(K)$. Suppose first that $K / \mathrm{Z}(K)$ is an untwisted group of Lie type defined over \mathbb{F}_{q}. Then $\left(5^{\circ}\right)$ shows that no element of B induces a field automorphism or graph-field automorphism in Δ. Thus B induces a graph automorphism on Δ, so Δ is of type A_{m}, D_{m}, F_{4}, or E_{6}. Since M is not 2 -minimal by (5°, $m \geq 3$.

If Δ is of type D_{m}, then (M, V) is in the list by 7.11 b). Assume now that Δ is not of type D_{m}, so $m \geq 4$ if Δ is of type A_{m}. Since B induces a graph automorphism, 7° yields one of the following possibilities:
(i) $|\Gamma|=m-2$, and Δ is of type A_{m}.
(ii) $|\Gamma|=2$, and Δ is of type F_{4}.
(iii) $|\Gamma|=4$ or 5 , and Δ is of type E_{6}.

In all cases B acts non-trivially on Γ; in particular $B \not \leq L \mathrm{O}_{2}(L B)$. Hence $\sqrt{6}$ shows that Γ is of type D_{n}. This rules out case (iii). Moreover, in case (i) $m=5$ and Γ is of type D_{3}; and in case (iii) Γ is of type D_{4}. In particular, by 6° in each of the remaining cases P is uniquely determined, $\mathrm{C}_{V}\left(\mathrm{O}_{2}(P)\right)$ is a natural $\mathrm{SL}_{2}(q)$-module for P, and $\left[V_{0}, R\right]=0$ for every other minimal Lie-parabolic subgroup R of K containing $T \cap K$. By Ronan-Smith's Lemma 4.3 this determines the module V uniquely.

If Δ is of type A_{5}, then V is the exterior cube of a natural $\mathrm{SL}_{6}(q)$-module. But then there exists an L-composition factor of V that is a natural $\mathrm{SL}_{4}(q)$-module. This contradicts 2.8 and 7.11 b).

If Δ is of type E_{6}, then V is the adjoint module for $\mathrm{E}_{6}(q)$. But then V has an L-composition factor isomorphic to the adjoint module for $\Omega_{8}^{+}(q)$, a similar contradiction as above.

Suppose now that $K / Z(K)$ is a twisted group of Lie type over $\mathbb{F}_{q^{\nu}}$. Then $|\Delta \backslash \Gamma|=1$ and B induces a field automorphism of order 2 on $\mathbb{F}_{q^{\nu}}$ with fixed field \mathbb{F}_{q}, so $\nu=2$. Since M is not 2 -minimal by $\left(5^{\circ}\right), K$ has Lie rank at least 2 .

In all cases $\left(5^{\circ}\right.$ shows that $P / \mathrm{O}_{2}(P) \cong \mathrm{SL}_{2}(q)$, and this excludes that K is of type ${ }^{2} F_{4},{ }^{3} D_{4}$ or ${ }^{2} A_{m}, m$ even. So K is of type ${ }^{2} A_{m}, m$ odd, ${ }^{2} D_{m}$, or ${ }^{2} E_{6}$.

If K is of type ${ }^{2} D_{m}$, we are done by 7.11 b . Suppose that K is of type ${ }^{2} A_{m}, m$ odd. Since ${ }^{2} A_{3}={ }^{2} D_{3}$ we may assume in addition that $m \geq 5$, so by $7^{\circ}|\Gamma| \geq 2$. In particular L contains a minimal parabolic subgroup R with $R / \mathrm{O}_{2}(R) \cong \mathrm{SL}_{2}\left(q^{2}\right)$, so $B \not \leq L \mathrm{O}_{2}(L B)$. Hence 6° implies that K is of type ${ }^{2} A_{5}$. Now as in the A_{5}-case, V is the exterior cube of the natural $\mathrm{SU}_{5}(q)$-module and L has a composition factor which is a natural $\mathrm{SU}_{4}(q)$-module. Since $\mathrm{SU}_{4}(q) \cong \operatorname{Spin}_{6}^{-}(q)$ this contradicts 7.11 b).

Suppose that K is of type ${ }^{2} E_{6}$. Then $|\Gamma|=3$ and with the same argument as in the previous paragraph using $6^{\circ} L$ is of type ${ }^{2} D_{4}$. So Γ, P and V_{P} are uniquely determined. Now as in the E_{6}-case V is the adjoint module for K, and L has a composition factor isomorphic to the adjoint module for $\Omega_{8}^{-}(q)$, which contradicts 7.11 b).

The proof of Theorem 3;

Let B be a minimal offender in A and note that B is a quadratic best offender on V.
Case 1. The case $M \cong \mathrm{G}_{2}(q), q=2^{n}$, V a natural $\mathrm{G}_{2}(q)$-module.
We will use the following facts about the action of K on V and the structure of K, where i-subspace means \mathbb{K}-subspace of dimension i in V :

There exists an M-invariant non-degenerate symplectic form on V (since V is self-dual and $p=2$). Let M_{1} and M_{2} be the pair of maximal parabolic subgroups of M with $T \leq M_{i}$ and such that M_{i} normalizes an i-subspace V_{i} in V. Note that V_{i} is singular and the graph with vertices $V_{1}^{M} \cup V_{2}^{M}$ and inclusion as incidence relation is a generalized hexagon. Since M acts transitively on V^{\sharp}, V_{1}^{M} consists of all the 1-dimensional subspaces of V.

Put $P_{i}:=\mathrm{O}^{2^{\prime}}\left(M_{i}\right)$, and $Q_{i}:=\mathrm{O}_{2}\left(P_{i}\right)$. There exist exactly two classes of involutions in M with representatives $z, t \in T$ such that
(i) $t \notin \mathrm{Z}\left(Q_{1}\right), P_{1}=Q_{1} \mathrm{C}_{M}(t)$, and $P_{2}=\mathrm{C}_{M}(z)$.
(ii) t and z and do not fix any vertex of distance larger than 3 from V_{1} and V_{2}, respectively.
(iii) t and z fix all vertices of distance at most 3 from V_{1} and V_{2}, respectively.

We will use these properties to show 3a).

1. $\quad\left|\mathrm{C}_{V}(z)\right|=q^{4}$. More precisely, z centralizes exactly the 1-subspaces of distance 1 and 3 from V_{2}.

There are precisely $q+1$ 1-spaces of distance 1 and $q^{2}(q+1)$ 1-spaces of distance 3 from V_{2}. Hence by (ii) and (iii) $\mathrm{C}_{V}(z)$ has exactly $q+1+q^{2}(q+1)=q^{3}+q^{2}+q+1$ 1-spaces.
$\mathbf{2}^{\circ}$. $\quad\left|\mathrm{C}_{V}(t)\right|=q^{3}$. More precisely, t centralizes exactly the 1-dimensional subspaces of distance 0 and 2 from V_{1}.

There is one 1 -space of distance 0 and $q(q+1) 1$-spaces of distance 2 . Thus, as in $10, \mathrm{C}_{V}(t)$ contains exactly $1+q(q+1)=q^{2}+q+11$-spaces.
3. \quad Suppose $t \in B$. Then $|B|=\left|\mathrm{C}_{V}(B)\right|=|[V, B]|=q^{3}, \mathrm{C}_{T}(B)=B$, and B is uniquely determined in M_{1}.

Since $\mathrm{C}_{V}(B) \leq \mathrm{C}_{V}(t)$ and by 2° and the quadratic action of B,

$$
q^{3}=|[V, t]|=|[V, B]| \text { and } \mathrm{C}_{V}(B)=\mathrm{C}_{V}(t) ; \text { in particular }|B| \geq q^{3}
$$

By $2^{\circ} \mathrm{C}_{V}(t)$ is uniquely determined by M_{1}, so also $B^{*}:=\mathrm{O}^{p^{\prime}}\left(\mathrm{C}_{M_{1}}\left(\mathrm{C}_{V}(t)\right)\right)$ is uniquely determined. To prove the uniqueness of B in M_{1}, it suffices to show that $\left|B^{*}\right| \leq q^{3}$ since then $B=B^{*}$.

Note that $\left[V_{2}^{g}, B^{*}\right]=0$ for every $g \in M_{1}$, and so $B^{*} \leq Q_{1} \cap Q_{2}$. Let $x \in P_{2} \backslash M_{1}$ and $D:=B^{*} \cap B^{* x}$. Then $\left|B^{*} / D\right| \leq q^{2}$ and $|D| \geq q$ since $\left|Q_{2}\right|=q^{5}$ and $\left|B^{*}\right| \geq q^{3}$. On the other hand, D fixes a path of length 6 with V_{2} as midpoint, and (iii) yields $|D| \leq q$. This shows that $|D|=q$ and consequently $\left|B^{*}\right| \leq q^{3}$.

It remains to show that $B=\mathrm{C}_{T}(B)$. Assume that $B_{0}=: \mathrm{C}_{T}(B)>B$. By Smiths' Lemma, $\mathrm{C}_{V}\left(Q_{1}\right)=V_{1}$ and so $\left[\mathrm{C}_{V}(t), Q_{1}\right] \neq 1$. From $\left[V_{2}, Q_{1}\right] \leq V_{1}$ we get $\mathrm{C}_{V}(t)=\left\langle V_{1}^{P_{1}}\right\rangle$ and $\left[\mathrm{C}_{V}(t), Q_{1}\right]=$ V_{1}. Thus $Q_{1} / B=Q_{1} / \mathrm{C}_{Q_{1}}\left(\mathrm{C}_{V}(t)\right)$ is dual to the natural $\mathrm{SL}_{2}(q)$-module $\mathrm{C}_{V}(t) / V_{1}$. We claim that $\mathrm{C}_{Q_{1}}(B) \not \leq B$. If $B_{0} \leq Q_{1}$ this is obvious. And if $B_{0} \not \leq Q_{1}$ we get $\left[Q_{1}, B_{0}\right] \not \leq B$ and so again $\mathrm{C}_{Q_{1}}(B) \nsubseteq B$. Since $\mathrm{C}_{Q_{1}}(B) \unlhd P_{1}$ we conclude that $Q_{1}=\mathrm{C}_{Q_{1}}(B)$ and $t \in \mathrm{Z}\left(Q_{1}\right)$, which contradicts (i).
4. $\quad t^{M} \cap B \neq \emptyset$.

Assume that $t^{M} \cap B=\emptyset$. Then we may assume that $z \in B$, so $\mathrm{C}_{V}(B) \leq \mathrm{C}_{V}(z)$ and by 1^{0} $q^{2} \leq\left|V / \mathrm{C}_{V}(B)\right| \leq|B|$. On the other hand, by (ii) and 1^{0} the non-trivial elements of $\mathrm{C}_{T}\left(\mathrm{C}_{V}(z)\right)$ centralize every 1-subspace of distance at most 3 from V_{2} but no singular 2-space of distance 4 . Hence $\left|\mathrm{C}_{T}\left(\mathrm{C}_{V}(z)\right)\right|=q$. It follows that there exists $z^{g} \in B$ with $\mathrm{C}_{V}(z) \neq \mathrm{C}_{V}\left(z^{g}\right)$ and so also $[V, z] \neq\left[V, z^{g}\right]$. Since $[V, z]+\left[V, z^{g}\right] \leq \mathrm{C}_{V}(B) \leq \mathrm{C}_{V}(z) \cap \mathrm{C}_{V}\left(z^{g}\right)$ and $|[V, z]|=q^{2}$, we conclude that

$$
\left|\mathrm{C}_{V}(B)\right|=q^{3},|B|=q^{3} \text { and } \mathrm{C}_{V}(B)=\mathrm{C}_{V}(z) \cap \mathrm{C}_{V}\left(z^{g}\right)
$$

But then V_{2} and V_{2}^{g} are of distance 2, and we may assume that $V_{1}=V_{2} \cap V_{2}^{g}$. Now 2° shows that t centralizes $\mathrm{C}_{V}(B)$ and so $\mathrm{C}_{V}(B)=\mathrm{C}_{V}(t)$. Hence also $B\langle t\rangle$ is a quadratic offender, and $3{ }^{\circ}$ yields $t \in B$, a contradiction.
5. Case (a) of Theorem 3 holds.

According to 4° we may assume that $t \in B$, and according to $3^{\circ} \mathrm{C}_{T}(B)=B$ and so $A=B$. So 3 a follows from $\left(3^{\circ}\right)$.

Case 2. The case $M \cong \mathrm{SL}_{n}(q) /\left\langle-\mathrm{id}^{n-1}\right\rangle, n \geq 5$, and V the exterior square of a natural $\mathbb{K}_{\mathrm{SL}}^{n}(\mathrm{q})$ module W.

Let U be a T-invariant \mathbb{K}-hyperplane in W. Put $R:=\mathrm{C}_{M}(W / U)$ and $I_{R}:=\mathrm{C}_{V}\left(\mathrm{O}_{p}(R)\right)$. Recall that $R / \mathrm{O}_{p}(R) \cong \mathrm{SL}_{n-1}(q)$ and $\mathrm{O}_{p}(R)$ is an natural $\mathrm{SL}_{n-1}(q)$-module for R isomorphic to U.

We will use the following properties of the exterior square:
6 $^{\circ} \quad U, \mathrm{O}_{p}(R)$ and V / I_{R} are isomorphic natural $\mathrm{SL}_{n-1}(q)$-modules for R.
$7^{\circ} . \quad I_{R}$ is as an $\mathbb{F}_{p} R$-module isomorphic to the exterior square of U.
If $n \geq 6$, then by $\left(7^{\circ}\right)$ and induction B is not an over-offender on I_{R}. If $n=5$, then $\mathrm{SL}_{4}(q) \cong$ $\Omega_{6}^{+}(q)$ and I_{R} is the natural orthogonal module. Again by $3.4 B$ is not an over-offender. Hence, in both cases 1.3 shows that either $B \cap \mathrm{O}_{p}(R)=1$ or $B \leq \mathrm{O}_{p}(R)$.

In the first case $\left|I_{R} / \mathrm{C}_{I_{R}}(B)\right|=|B|$ and $V=I_{R}+\mathrm{C}_{V}(B)$; in particular $[V, B] \leq I_{R}$. But this contradicts $\left.6^{\circ}\right)$. Thus we have $B \leq \mathrm{O}_{p}(R)$. Pick $b \in B^{\sharp}$ and put $C:=\mathrm{C}_{R}(b)$. Then C acts as a point stabilizer on $\mathrm{O}_{p}(R)$ and thus by 6° also as a point stabilizer on V / I_{R}. It follows that $\mathrm{C}_{V}(b)=I_{R}$ or $\left|\mathrm{C}_{V}(b) / I_{R}\right|=q$.

If $\mathrm{C}_{V}(B)=I_{R}$, then $|B| \geq\left|V / I_{R}\right|=q^{n-1}$ and $B=\mathrm{O}_{p}(R)$. Since $\mathrm{C}_{T}\left(\mathrm{O}_{p}(R)\right)=\mathrm{O}_{p}(R)$ we get $A=B$, and case (b) of Theorem 3 follows.

Assume now that $\left|\mathrm{C}_{V}(B) / I_{R}\right|=q$. Then $\mathrm{C}_{V}(B)=\mathrm{C}_{V}(b)$ for all $1 \neq b \in B$. Also $q^{n-2}=$ $\left|V / \mathrm{C}_{V}(B)\right| \leq|B|$. Since $n \geq 5$ this gives $|B|>q$, so there exists $1 \neq b, \tilde{b} \in B$ with $\mathrm{C}_{R}(b) \neq \mathrm{C}_{R}(\tilde{b})$. Hence, $\mathrm{C}_{V}(B)=\mathrm{C}_{V}(b)=\mathrm{C}_{V}(\tilde{b})$ is normalized by $R=\left\langle\mathrm{C}_{R}(b), \mathrm{C}_{R}(\tilde{b})\right\rangle$, a contradiction.

Case 3. The case $M \cong \operatorname{Spin}_{7}(q)$ or $\operatorname{Spin}_{10}^{+}(q)$ and V a corresponding spin module.
We will use the following facts about the action of M on V and the structure of M. Recall that $\mathrm{P} \Omega_{5}(q) \cong \mathrm{PSp}_{4}(q)$. There exists $T \leq R \leq M$ such that for $I_{R}:=\mathrm{C}_{V}\left(\mathrm{O}_{p}(R)\right)$ the following hold:
(i) $\operatorname{Spin}_{n}^{\epsilon}(q) /\left\langle-\operatorname{id}_{V}\right\rangle \cong \Omega_{n}^{\epsilon}(q)$.
(ii) $R / \mathrm{O}_{p}(R) \cong \operatorname{Spin}_{5}(q)$ resp. $\operatorname{Spin}_{8}^{+}(q)$.
(iii) $\mathrm{O}_{p}(R)$ is a natural $\Omega_{5}(q)$ - resp. $\Omega_{8}^{+}(q)$-module for R.
(iv) $I_{R}=\left[V, \mathrm{O}_{p}(R)\right]$.
(v) If $n=7$, then V / I_{R} and I_{R} are isomorphic natural $\operatorname{Sp}_{4}(q)$-modules for R, but I_{R} is not isomorphic to $\mathrm{O}_{p}(R) / \mathrm{O}_{p}(R) \cap \mathrm{Z}(R)$; while if $n=10, \mathrm{O}_{p}(R), V / I_{R}$ and I_{R} are pairwise nonisomorphic natural $\Omega_{8}^{+}(q)$-modules for R.
(vi) $\mathrm{O}_{p}(R)$ acts quadratically on V.
(vii) If $n=7$ and Z is a 1-dimensional singular subspace of $\mathrm{O}_{p}(R)$, then $\mathrm{C}_{M}(Z) / \mathrm{O}_{p}\left(\mathrm{C}_{M}(Z)\right) \cong$ $\operatorname{Spin}_{4}^{+}(q)$, and $V /[V, Z]$ is a natural $\Omega_{4}^{+}(q)$-module for $\mathrm{C}_{M}(Z)$.

Put $\delta=1$ if $n=7$ and $\delta=2$ if $n=10$. We first show:
$\mathbf{8}^{\circ} . \quad \mathrm{C}_{V}(x)=I_{R}$ for every non-singular $x \in \mathrm{O}_{p}(R)$, and $\left|V / \mathrm{C}_{V}(x)\right|=q^{2 \delta}$ for every non-trivial singular $x \in \mathrm{O}_{p}(R)$.

Let $1 \neq x \in \mathrm{O}_{p}(R)$. Suppose first that x is singular in $\mathrm{O}_{p}(R)$. Then $\mathrm{C}_{M}(x) \nsubseteq R$ and so $\mathrm{C}_{V}(x) \neq I_{R}$. Moreover, $\mathrm{C}_{R}(x)$ normalizes a unique proper submodule of V / I_{R}. This submodule has order $q^{2 \delta}$ and so 8° holds.

Suppose next that x is not singular. Then there exists $g \in M$ such that R^{g} and $R^{g x}$ are opposite Lie-parabolics of M. So by $5.1 M=\left\langle\mathrm{O}_{p}\left(R^{g}\right), \mathrm{O}_{p}\left(R^{g x}\right\rangle \leq\left\langle\mathrm{O}_{p}\left(R^{g}\right), x\right\rangle\right.$. Thus $\mathrm{C}_{V}\left(\mathrm{O}_{p}\left(R^{g}\right)\right) \cap \mathrm{C}_{V}(x)=$ 0 and $V=\left[V, \mathrm{O}_{p}\left(R^{g}\right)\right]+[\overline{V, x}]$. Since $\left[V, \mathrm{O}_{p}\left(R^{g}\right)\right] \leq \mathrm{C}_{V}\left(\mathrm{O}_{p}\left(R^{g}\right)\right)$ and $[V, x] \leq \mathrm{C}_{V}(x)$, this implies $[V, x]=\mathrm{C}_{V}(x)$ and so $\mathrm{C}_{V}(x)=C_{V}\left(\mathrm{O}_{p}(R)\right)=I_{R}$.
$\mathbf{9}^{\circ}$. $\quad B$ is conjugate to a subgroup of $\mathrm{O}_{p}(R)$.
Suppose not. Then $B \not \leq \mathrm{O}_{p}(R)$. Let $Z=\mathrm{O}_{p}(R) \cap B$. If Z contains a non-singular element b, then by $8^{0}[V, B] \leq \mathrm{C}_{V}(B) \leq \mathrm{C}_{V}(b)=I_{R}$. But then $\left\langle B^{R}\right\rangle$ centralizes V / I_{R}, a contradiction to v. Thus all elements in Z are singular. By 1.3 either $V=I_{R}+\mathrm{C}_{V}(B)$ and $[V, B] \leq I_{R}$, or B is an over-offender on I_{R}. The first possibility contradicts (v), so B is an over-offender on I_{R}. Then by 3.4

$$
C_{I_{R}}(B)=\left[I_{R}, B\right],\left|\mathrm{C}_{I_{R}}(B)\right|=q^{2 \delta} \text { and } q^{2 \delta}<|B / Z|=\left|B / B \cap \mathrm{O}_{p}(R)\right| \leq q^{3 \delta}
$$

Put $\bar{V}=V / I_{R}$. Then B acts quadratically on \bar{V}. From $|B / Z|>q^{2 \delta}$ and 3.4 we conclude that $\mid \bar{V}, B] \mid=q^{2 \delta}$ and so also $\left|\bar{V} / C_{\bar{V}}(B)\right|=q^{2 \delta}$. Thus $\left|V / C_{V}(B)\right| \geq q^{4 \delta}$ and so $|Z| \geq q^{\delta}$. Let $1 \neq x \in Z$. Note that $[V, B]+I_{R} \leq C_{V}(x)$. Since x is singular in $\mathrm{O}_{p}(R) 8^{\circ}$ gives $\left|V / \mathrm{C}_{V}(x)\right|=q^{2 \delta}$. Thus $\mathrm{C}_{V}(x)=[V, B]+I_{R}$ and $\mathrm{C}_{R}(x)$ normalizes $[V, B]+I_{R}$. But $R=\left\langle C_{R}(x), C_{R}(y)\right\rangle$ for any singular $x, y \in \mathrm{O}_{p}(R)$ with $\mathbb{F}_{q} x \neq \mathbb{F}_{q} y$ and since R does not normalizes $[V, B]+I_{R}$ we conclude that $Z \leq \mathbb{F}_{q} x$. Since $|Z| \geq q^{\delta}$, we conclude that Z is a 1-dimensional singular subspace of $\mathrm{O}_{p}(R)$. Also $\delta=1$ and so $n=7$.

Put $P:=\mathrm{C}_{M}(Z)$. By vii) $P / \mathrm{O}_{p}(P) \cong \operatorname{Spin}_{4}^{+}(q)$, and $\mathrm{C}_{V}(Z) /[V, Z]$ is the natural $\Omega_{4}^{+}(q)$-module for P. Thus every singular 1-space of $\mathrm{C}_{V}(Z) /[V, Z]$ is contained in a P-conjugate of $I_{R} /[V, Z]$, and the conjugates of $I_{R} /[V, Z]$ are TI-subgroups in $\mathrm{C}_{V}(Z) /[V, Z]$.

Since B acts quadratically on $V,[V, B] /[V, Z]$ is a 2 -dimensional isotropic subspace and thus contains a 1-dimensional singular subspace. Hence there exists $g \in P$ such that $[V, B] \cap I_{R}^{g} \not \leq[V, Z]$. The TI-property of $I_{R} /[V, Z]$ implies that B normalizes I_{R}^{g}, so $B \leq R^{g}$.

If $B \not \leq \mathrm{O}_{p}\left(R^{g}\right)$, then the above also applies to B and R^{g} in place of B and R, so $[V, B] \cap I_{R}^{g}$ is 2-dimensional and so $[V, B] \cap I_{R}^{g}=[V, Z]$, a contradiction. Thus, we have that $B \leq \mathrm{O}_{p}\left(R^{g}\right)$, and B is not a counterexample. Hence 9° is proved.

According to 9° we may assume that $B \leq \mathrm{O}_{p}(R)$. If B does not contain a non-singular element of $\mathrm{O}_{p}(R)$, then $|B| \leq q^{2 \delta}$. So also $\left|V / \mathrm{C}_{V}(B)\right| \leq q^{2 \delta}$ and by $8^{\circ} \mathrm{C}_{V}(B)=\mathrm{C}_{V}(b)$ for every $1 \neq b \in B$. On the other hand, for every such $b, \mathrm{C}_{R / \mathrm{O}_{p}(R)}(b)$ is contained in a unique maximal parabolic subgroup of $R / \mathrm{O}_{p}(R)$. It follows that B is has order at most q , a contradiction.

Hence B contains a non-singular element b. Then by 8°

$$
\begin{equation*}
I_{R}=\mathrm{C}_{V}(b)=[V, b]=\mathrm{C}_{V}(B)=[V, B] \text { and }|B| \geq\left|V / \mathrm{C}_{V}(B)\right|=q^{4 \delta} \tag{+}
\end{equation*}
$$

If $M \cong \operatorname{Spin}_{10}^{+}(q)$, then $\left|\mathrm{O}_{p}(R)\right|=\left|I_{R}\right|=q^{8}=q^{2 \delta}$ and so by $(+) B=\mathrm{O}_{p}(R)$. Thus $A \leq$ $\mathrm{C}_{T}\left(\mathrm{O}_{p}(R)\right)=\mathrm{O}_{p}(R)$ and $A=B$. Since $\mathrm{O}_{p}(R)$ is weakly closed in T, we see that case dd of Theorem 3 follows from (+).

So suppose $M \cong \operatorname{Spin}_{7}(q)$. If $A \leq \mathrm{O}_{p}(R)$, then case (c) Theorem 3 follows. So assume for a contradiction that $A \not \leq \mathrm{O}_{p}(R)$. Observe that $[B, A]=1,|B| \geq q^{2 \delta}=q^{4}$ and $\mathrm{O}_{p}(R)$ is a natural $\Omega_{5}(q)$-module for $R / \mathrm{O}_{p}(R)$. We conclude that $p=2,|B|=q^{4}, B=A \cap \mathrm{O}_{p}(B)=\mathrm{C}_{\mathrm{O}_{p}(R)}(A)$ and $|A / B| \leq q$. Thus $|A| \leq q^{5}$. Since $\mathrm{O}_{p}(R) / \mathrm{O}_{p}(R) \cap \mathrm{Z}(R)$ is not isomorphic to I_{R}, we get that $\left|I_{R} / C_{I_{R}}(A)\right|=q^{2}$ and so $\left|V / \mathrm{C}_{V}(A)\right|=q^{6}>q^{5}=|A|$. This contradiction completes (Case 3).

Case 4. The case $M \cong 3$.Alt(6) and $|V|=2^{6}$.
Then $\mathbb{K}=\mathbb{F}_{4},|A|=4$, and $\mathrm{C}_{V}(A)$ is a \mathbb{K}-hyperplane, so case (e) Theorem 3 follows.
Case 5. The case $K \cong \operatorname{Alt}(n), n \geq 5$, and V the natural $\operatorname{Alt}(n)$-module for K.
Let W be the natural permutation module for $\operatorname{Sym}(n)$ over \mathbb{F}_{2} with basis $w_{i}, i \in \Omega:=\{1, \ldots, n\}$, and $W_{0}:=\left\langle\sum_{\Omega} w_{i}\right\rangle$. For $\Psi \subseteq \Omega$ put $W_{\Psi}=\left\langle w_{i}+w_{j} \mid i, j \in \Psi\right\rangle$ and $\overline{W_{\Psi}}=W_{\Psi}+W_{0} / W_{0}$. Then $V \cong \overline{W_{\Omega}}$.
$\mathbf{1 0}^{\circ}$. If A is a best offender, then case (g) or case (h) of Theorem 3 holds.
Suppose that A acts transitively Ω. Then $n=2^{k}$, and since $n \geq 5, k \geq 3$. Note that $|A|=2^{k}$, $\mathrm{C}_{W_{\Omega}}(A)=W_{0}$, and $\left|\overline{W_{\Omega}}\right|=2^{2^{k}-2}$. The commutator map

$$
\mathrm{C}_{\overline{W_{\Omega}}}(A) \times A \rightarrow W_{0} \text { with }\left(w+W_{0}, a\right) \mapsto[w, a]
$$

shows that

$$
\left|\mathrm{C}_{\overline{W_{\Omega}}}(A)\right|=\left|\mathrm{C}_{\overline{W_{\Omega}}}(A) / \overline{\mathrm{C}_{W_{\Omega}}(A)}\right| \leq|A|=2^{k}
$$

and so

$$
2^{k}=|A| \geq\left|V / \mathrm{C}_{V}(A)\right|=\left|\bar{W}_{\Omega} / \mathrm{C}_{\bar{W}_{\Omega}}(A)\right| \geq 2^{2^{k}-k-2}
$$

Thus $2^{k-1} \leq k+1$, so $k=3$ and $|A|=\left|V / \mathrm{C}_{V}(A)\right|=8=\left|\mathrm{C}_{V}(A)\right|$. Since V is self-dual, also $|[V, A]|=8$ and since $[V, A] \leq \mathrm{C}_{V}(A),[V, A]=\mathrm{C}_{V}(A)$. Hence case h:4) of Theorem 3 holds.

So we may assume from now on that A does not act transitively on Ω. Let Ψ be an orbit of A on Ω of length say 2^{k}. Since A is a best offender, A is an offender on $\overline{W_{\Psi}}$, and since $\Psi \neq \Omega, W_{0} \not \leq W_{\Psi}$ and so $\bar{W}_{\Psi} \cong W_{\Psi}$. Thus A is an offender on W_{Ψ}. Note that $\left|A / \mathrm{C}_{A}\left(W_{\Psi}\right)\right|=\left|A / \mathrm{C}_{A}(\Psi)\right|=2^{k}$, $\left|W_{\Psi}\right|=2^{2^{k}-1}$, and $\left|\mathrm{C}_{W_{\Psi}}(A)\right|=|2|$. Thus $2^{2^{k}-1-1} \leq 2^{k}, 2^{k} \leq k+2$ and $k \leq 2$.

Suppose A has two orbits Ψ_{1} and Ψ_{2} of length four and put $\Lambda:=\Psi_{1} \cup \Psi_{2}$. Assume for a contradiction that $\Lambda=\Omega$ and put $H:=\mathrm{N}_{M}\left(\left\{\Psi_{1}, \Psi_{2}\right\}\right)$. Then $H \cong \operatorname{Sym}(4) \imath C_{2}$ and $A \leq \mathrm{O}_{2}(H)$. So H acts simple on $\mathrm{O}_{2}(H)$. [MS1, 2.6] shows that $\mathrm{O}_{2}(H)$ is an offender, and the Timmesfeld Replacement theorem implies that $\mathrm{O}_{2}(H)$ acts quadratically on V, a contradiction. Hence $\Lambda \neq \Omega$ and so $W_{\Lambda} \cong \bar{W}_{\Lambda}$. Note that $\left|A / \mathrm{C}_{A}\left(W_{\Lambda}\right)\right|=\left|A / \mathrm{C}_{A}(\Lambda)\right| \leq 16,\left|W_{\Lambda}\right|=2^{7}$ and $\left|\mathrm{C}_{W_{\Lambda}}(A)\right|=4$. Thus $2^{7} / 4 \leq 16$, a contradiction.

Suppose Ψ is an orbit of length 4 for A on Ω and A has a fixed-point i on Ω. Put $V_{\Psi i}:=\left\langle w_{i}+w_{j}\right|$ $j \in \Psi\rangle$. Then $V_{\Psi, i}$ is isomorphic to the permutations module for A on Ψ and is also isomorphic to $\overline{V_{\Psi, i}}$. Thus A is a best offender on $V_{\Psi, i}$. But $\left|A / \mathrm{C}_{A}\left(V_{\Psi, i}\right)\right|=4$ and $\left|V_{\Psi, i} / \mathrm{C}_{W_{\Psi}}(A)\right|=8$, a contradiction.

We have proved that either all orbits of A on Ω have length 1 or 2 , or A has a unique orbit of length four and all other orbits have length two.

Assume for a contradiction that $\mathrm{C}_{\overline{W_{\Omega}}}(A) \neq \mathrm{C}_{W_{\Omega}}(A) / W_{0}$. Then there exists $w \in W_{\Omega}$ such that $0 \neq[w, A] \in W_{0}$; in particular $A_{0}:=\mathrm{C}_{A}(w)$ has index 2 in A. Let $X \subseteq \Omega$ with $w=\sum_{i \in X} w_{i}$ and $|X|$ even. Then there exists $a \in A$ such that $\left\{X, X^{a}\right\}$ is a partition of Ω, and A_{0} normalizes X and X^{a}. Note that $\mathrm{C}_{\overline{W_{X}}}(A)=\langle\bar{w}\rangle$ and that $|X| \geq 4$ since $n \geq 5$ and $|X|$ is even. Thus

$$
4 \leq\left|\bar{W}_{X} / C_{\overline{W_{X}}}(A)\right| \leq\left|V / \mathrm{C}_{V}(A)\right| \leq|A|
$$

Thus $A_{0} \neq 1$, and since $\mathrm{C}_{A_{0}}(X)=\mathrm{C}_{A_{0}}\left(X \cap X^{a}\right)=1, A_{0}$ acts non-trivially on X. Since A has at most one orbit of length four on Ω we conclude that $\left|X \backslash \mathrm{C}_{X}\left(A_{0}\right)\right|=2$. Thus $\left|A_{0}\right|=2$ and $|A|=4$. The Timmesfeld Replacement Theorem shows that A acts quadratically on V. But $\left[\overline{W_{X}}, A_{0}, a\right] \neq 0$, a contradiction.

We have proved that $\mathrm{C}_{W_{\Omega} / W_{0}}(A)=\mathrm{C}_{W_{\Omega}}(A) / W_{0}$, so $\left|V / \mathrm{C}_{V}(A)\right|=\left|W_{\Omega} / \mathrm{C}_{W_{\Omega}}(A)\right|$. If follows that A is an offender on W_{Ω}. Let k be the number of orbits of length 2 . Assume that A has an orbit of length four, then A has no fixed-point, $n=2 k+4,\left|\mathrm{C}_{W_{\Omega}}(A)\right|=2^{k+1},|A| \leq 2^{k} \cdot 4=2^{k+2}$, and

$$
\left|V / \mathrm{C}_{V}(A)\right|=\left|W_{\Omega} / \mathrm{C}_{W_{\Omega}}(A)\right|=2^{n-1-(k+1)}=2^{k+2} .
$$

Since A is an offender, this implies $|A|=2^{k+2}$, and since V is self-dual, $|[V, A]|=\left|V / \mathrm{C}_{V}(A)\right|=$ $2^{k+2}=|A|$. As A has on orbit of length $4, A$ is not quadratic on W_{Ω} and since $\mathrm{C}_{W_{\Omega} / W_{0}}(A)=$ $\mathrm{C}_{W_{\Omega}}(A) / W_{0}$ also not quadratic on V. Hence case (h:3) of Theorem 3 holds.

Assume now that A does not have any orbit of length 4. Then $[V, A] \leq \mathrm{C}_{V}(A)$ and $|A| \leq 2^{k}$. Suppose A has a fixed-point in Ω. Then $\left|V / \mathrm{C}_{V}(A)\right|=2^{k}=|[V, A]|$ and so $|A|=2^{k}$ and case (g) or (h:1) of Theorem 3 holds. So suppose A has no fixed-points and so $n=2 k$ and $\left|V / \mathrm{C}_{V}(A)\right|=2^{k-1}=$ $|[V, A]|$. Thus $2^{k-1} \leq|A|$.

Let t_{1}, \ldots, t_{k} be the transpositions corresponding to the non-trivial orbits of orbits of A on Ω, say $t_{i} \in A$ if and only if $i>l$. If $l=0$, then again case (h:1) of Theorem 3 holds. Suppose $l>0$. Let $1 \leq r<s<l$ and put $A_{r s}=\mathrm{C}_{A}\left(\mathrm{C}_{\Omega}\left(\left\langle t_{r}, t_{s}\right\rangle\right)\right.$. Then $\left|A / A_{r s}\right| \leq 2^{k-2}$ and so $A_{r s} \neq 1$. Since $A_{t s} \leq\left\langle t_{r}, t_{s}\right\rangle$ and neither t_{r} nor t_{s} are in A we conclude that $A_{r s}=\left\langle t_{r} t_{s}\right\rangle$. It follows that

$$
A=\left\langle t_{1} t_{2}, t_{2} t_{3}, \ldots, t_{l-1} t_{l}, t_{l+1}, t_{l+2}, t_{k}\right\rangle .
$$

Thus case (h:3) of Theorem 3 holds.
11. Every offender in M on V is a best offender.

Let X be an offender and let $Y \leq X$ with $\left|\mathrm{C}_{V}(Y) \| Y\right|$ maximal and then Y minimal. By the Timmesfeld Replacement Theorem, Y is quadratic. If $|Y|\left|\mathrm{C}_{V}(Y)\right|=|V|$, then $|Y|\left|\mathrm{C}_{V}(Y)\right|=$ $|X|\left|\mathrm{C}_{V}(X)\right|$ and so X is a best offender. If $|Y|\left|\mathrm{C}_{V}(Y)\right|>|V|$, then $\left.10^{\circ}\right)$ shows that Y is generated by a maximal set of commuting transpositions. So $X \leq \mathrm{C}_{M}(Y)=Y, X=Y$, and X is a best offender.

Observe that 11°) together with 10° completes Case 5).
Case 6. The case $M \cong \operatorname{Alt}(7)$ and $|V|=2^{4}$.
Choose $T \leq R \leq M$ with $R \cong \operatorname{Alt}(6)$. Then the previous case applies to R, and we are done.

Theorem 8.2. Let M be a finite $\mathcal{C K}$-group and V a faithful $\mathbb{F}_{p} M$-module. Suppose that there exists $K \in \mathcal{J}_{M}(V)$ such that $V=[V, K]$ and V is a semisimple but not simple $\mathbb{F}_{p} K$-module. Then one of the following holds, where q is a power of p and $J:=\mathrm{J}_{M}(V)$:

1. $J \cong \mathrm{SL}_{n}(q), n \geq 3$, and $V \cong N^{r} \oplus N^{* s}$, where N is a natural $\mathrm{SL}_{n}(q)$-module, N^{*} its dual, and r, s are integers with $0 \leq r, s<n$ and $\sqrt{r}+\sqrt{s} \leq \sqrt{n}$.
2. $J \cong \operatorname{Sp}_{2 m}(q), m \geq 3$, and $V \cong N^{r}$, where N is a natural $\mathrm{Sp}_{2 m}(q)$-module and r is a positive integer with $2 r \leq m+1$.
3. $J \cong \operatorname{SU}_{n}(q), n \geq 8$, and $V \cong N^{r}$, where N is a natural $\operatorname{SU}_{n}(q)$-module and r is a positive integer with $4 r \leq n$.
4. $J \cong \Omega_{n}^{\epsilon}(q)$ with p odd if n is odd, or $M \cong \mathrm{O}_{n}^{\epsilon}(q)$ with $p=2$ and n even. Moreover $n \geq 10$ and $V \cong N^{r}$, where N is a corresponding natural module and r is a positive integer with $4 r \leq n-2$.

In particular, if V is not a homogeneous $\mathbb{F}_{p} J$ module, then (1) holds with $r \neq 0 \neq s$ and $n \geq 4$.

Proof. By 2.2 (f) K is the unique J-component of M; in particular $K \unlhd M$. Since V is a semisimple K-module we have
$\mathbf{1}^{\circ}$. $\quad V=N_{1} \oplus \cdots \oplus N_{m}, m \geq 2$, where N_{i} is a perfect simple $\mathbb{F}_{p} K$-module.
By $2.8 J$ normalizes N_{i} and by 1.2 every best offender on V is also a best offender on N_{i}. Moreover, $\mathrm{O}_{p}\left(J / \mathrm{C}_{J}\left(N_{i}\right)\right)=1$ since N_{i} is simple. Hence
2°. $J / \mathrm{C}_{J}\left(N_{i}\right)$ and N_{i} satisfy the hypothesis of Theorem 2 .
By $2.2 K$ is not solvable since $m \geq 2$, so K is a component of M. Now 2.5 shows that J acts \mathbb{F}_{i}-linearly on N_{i}, where $\mathbb{F}_{i}=\operatorname{End}_{K}\left(N_{i}\right)$. In particular $\left[J, \mathrm{C}_{J}(K)\right] \leq \mathrm{C}_{J}\left(N_{i}\right)$. Since K is the unique J-component and $K \not \leq \mathrm{C}_{J}\left(N_{i}\right) \mathrm{C}_{J}(K)$, we get from 2.2 bb $\mathrm{C}_{J}\left(N_{i}\right) \mathrm{C}_{J}(K) \leq \mathrm{Z}(J)$. Another application of Theorem 2 shows that $J / K \mathrm{C}_{J}\left(N_{i}\right)$ is a p-group. Hence J / K is nilpotent, and since J is generated by p-elements and $\mathrm{O}_{p}(\mathrm{Z}(J)) \leq \mathrm{O}_{p}(M)=1$, we get that $\mathrm{Z}(J) \leq K$. It follows:

3。. $\quad \mathrm{C}_{J}\left(N_{i}\right) \leq \mathrm{C}_{J}(K)=\mathrm{Z}(J)=\mathrm{Z}(K)$.
From now on we fix a non-trivial best offender $A \leq M$. By 2.3 b b there exists a minimal best offender $B \leq A$ such that $[V, B, A]=0$; in particular B is quadratic on V.

Note that by $\left.3^{\circ}\right) \mathrm{C}_{A}\left(N_{i}\right)=1$, since $\mathrm{Z}(J)$ is a p^{\prime}-group, and that B is a best offender on N_{i} by 1.2. Now 1° implies

$$
\left|V / \mathrm{C}_{V}(B)\right|=\prod_{i=1}^{m}\left|N_{i} / \mathrm{C}_{N_{i}}(B)\right| \leq|B| .
$$

Since $m \geq 2$ there exists $N \in\left\{N_{1}, \ldots, N_{r}\right\}$ such that
4. $\quad\left|N / \mathrm{C}_{N}(B)\right| \leq|B|^{\frac{1}{2}}$.

Put $\mathbb{F}:=\operatorname{End}_{K}(N)$. Then 2° and Theorems 2 and 3 imply:
5. $\quad J / \mathrm{C}_{J}(N) \cong \mathrm{SL}_{n}(q), \mathrm{Sp}_{n}(q), \mathrm{SU}_{n}(q), \Omega_{n}^{\epsilon}(q)$ or $\mathrm{O}_{n}^{\epsilon}(q)$ (and $p=2$), $n:=\operatorname{dim}_{\mathbb{F}} N$ where $q:=|\mathbb{F}|$ if $J / \mathrm{C}_{J}(N) \not \neq \mathrm{SU}_{n}(q)$ and $q=|\mathbb{F}|^{\frac{1}{2}}$ if $J / \mathrm{C}_{J}(N) \cong \mathrm{SU}_{n}(q)$. Moreover, N is the corresponding natural module.

Let N^{*} be the $\mathbb{F} K$-module dual to N. We first treat the cases where each N_{i} is isomorphic to N or N^{*}, say $V \cong N^{r} \oplus N^{* s}, r+s=m$.

By 1.8 dd B is quadratic on N^{*}. Put

$$
D:=\mathrm{C}_{J}\left(\mathrm{C}_{N}(B)\right) \cap \mathrm{C}_{J}\left(\mathrm{C}_{N^{*}}(B)\right), k:=\operatorname{dim}_{\mathbb{F}} N / \mathrm{C}_{N}(D), l=\operatorname{dim}_{\mathbb{F}}[N, D] .
$$

By $1.8 \mathrm{fc} l=\operatorname{dim}_{\mathbb{F}} N^{*} / \mathrm{C}_{N^{*}}(D)$, and by $\left.1.8 / \mathrm{d}\right] B \leq D, \mathrm{C}_{V}(D)=\mathrm{C}_{V}(B),[V, D]=[V, B]$, and D is a quadratic offender on V. Moreover by $1.8(\mathrm{f}) k+l \leq n$. We get
6 ${ }^{\circ} \quad\left|V / \mathrm{C}_{V}(D)\right|=q^{r k+s l} \leq|D|$.
Recall from 3.2 that N and N^{*} are isomorphic $\mathbb{F} J$-modules, if $J / \mathrm{C}_{J}(N)$ is not isomorphic to $\mathrm{SL}_{n}(q)$. We now treat the cases given in (50) separately.
Case 1. Suppose that $M \cong \operatorname{SL}_{m}(q)$ and $V \cong N^{r} \oplus N^{* s}$ with $r+s \geq 2$. Then (1) holds.

By $3.4|D|=q^{k l}$, and 6° gives $\left|V / \mathrm{C}_{V}(D)\right|=q^{r k+s l}$. Thus V is an FF-module if and only if there exists $0<k, l<n$ with $r k+s l \leq k l$, that is $\frac{r}{l}+\frac{s}{k} \leq 1$. Increasing l decreases $\frac{r}{l}+\frac{s}{k}$. So we may assume that $k+l=n$. Put $g(k)=\frac{r}{n-k}+\frac{s}{k}$. We will determine the minimal value of $g(k)$ on the open interval $(0, n)$. If k approaches 0 or $n, g(k)$ approaches $+\infty$. So f obtains a minimum value at some point m in $(0, n)$ with $g^{\prime}(m)=0$. We have $g^{\prime}(m)=\frac{r}{(n-m)^{2}}-\frac{s}{m^{2}}$. Straightforward calculations show that $m=\frac{\sqrt{s}}{\sqrt{r}+\sqrt{s}} n, n-m=\frac{\sqrt{r}}{\sqrt{r}+\sqrt{s}} n$ and $g(m)=\frac{(\sqrt{r}+\sqrt{s})^{2}}{n}$. Thus $g(m) \leq 1$ if and only if $\sqrt{r}+\sqrt{s} \leq \sqrt{n}$. So if V is an FF-module, then $\sqrt{r}+\sqrt{s} \leq \sqrt{n}$. (We remark that with a little more effort it can be shown that there even exists an integer k in $(0, n)$ with $g(k) \leq 1$, so V is an $F F$-module if and only if $\sqrt{r}+\sqrt{s} \leq \sqrt{n}$.)

In the remaining cases $M \cong \operatorname{Sp}_{n}(q), \mathrm{SU}_{n}(q), \Omega_{n}^{\epsilon}(q)$ or $\mathrm{O}_{n}^{\epsilon}(q)$ we get from 3.2 ab that $N \cong N^{*}$. Hence $k=l$. Recall that $[N, D]$ is an isotropic subspace of N by 3.2 e) since D is quadratic on N.

Case 2. Suppose that $M \cong \operatorname{Sp}_{n}(q)$ and $V \cong N^{r}$ for some $r \geq 2$. Then (2) holds.
By $3.4|D|=q^{\binom{k+1}{2}}$ and so as in the case Case 1 $r k \leq \frac{k(k+1)}{2}$ and $2 r \leq k+1$. Since $[V, D]$ is isotropic and the maximal dimension of an isotropic subspace is $\frac{n}{2}$ we get $2 r \leq \frac{n}{2}+1$. Now $r \geq 2$ implies $n \geq 6$, and (2) holds.
Case 3. Suppose that $M \cong \operatorname{SU}_{n}(q)$ and $V \cong N^{r}$ with $r \geq 2$. Then (3) holds.
In this case $|N|=q^{2 n}$. By $3.4|D|=q^{k^{2}}$ and as in the previous cases $2 r k \leq k^{2}$ and $2 r \leq k$. Moreover, since $k+l \leq n$ and $k=l$, also $2 k \leq n$ and so $4 r \leq n$. Now $r \geq 2$ implies $n \geq 8$.

Case 4. Suppose that $M \cong \Omega_{n}^{\epsilon}(q)$ or $\mathrm{O}_{n}^{\epsilon}(q)$ and $p=2$, with n even if $p=2$, and $V \cong N^{r}$ for some $r \geq 2$. Then (4) holds.

Suppose first that $[N, D]$ is singular. Then by $3.4|D|=q^{\binom{k}{2}}$ and so $r k \leq\binom{ k}{2}$ and $2 r \leq k-1$. Since $k+l=2 k \leq n$, we get $4 r \leq 2 n-2$. Now $r \geq 2$ implies (4).

Suppose next that $[N, D]$ is not singular. Then $p=2$ and so n is even, and 3.4 yields $|D| \leq 2 q^{\binom{k}{2}}$ and as in the previous cases $q^{r k} \leq 2 q^{\binom{k}{2}}$. In addition, $r \geq 2$ implies $k \geq 2$. Then

$$
r k \leq \log _{q} 2+\binom{k}{2} \text { and } 2 r \leq \frac{2 \log _{q} 2}{k}+k-1
$$

If $\frac{2 \log _{q} 2}{k} \geq 1$, then $q=2=k$ and $r=1$, a contradiction. Thus $\frac{2 \log _{q} 2}{k}<1$ and $2 r \leq k-1$. Now again $2 k \leq n$ implies that $4 r \leq 2 k-2 \leq n-2$. Since $r \geq 2, n \geq 10$, and (4) holds.

Case 5. Suppose V is not a direct sum of copies of N and N^{*}.
Without loss N_{2} is neither isomorphic to N nor to N^{*}. We will show that this leads to a contradiction.

By $44^{\circ} B$ is an offender on $N \oplus N$. Hence we can apply the previous cases to $N \oplus N$ in place of V and get that $\operatorname{dim} N \geq 3,6,8$, and 10 , respectively.

Suppose that $M / \mathrm{C}_{M}(N) \cong \mathrm{SL}_{n}(q)$ and N is the corresponding natural module. Since N_{2} is not a natural module, Theorem 2 shows that N_{2} is the exterior square of a natural module. For $n=3$, $N_{2} \cong N^{*}$ or N, which is not the case. Hence $n \geq 4$. Since B is an over-offender on N_{2}, Theorem 3(b) shows that $n=4$. In this case N_{2} is a natural $\Omega_{6}^{+}(q)$-module for $J / \mathrm{C}_{J}\left(N_{2}\right)$. Hence 3.4 gives

$$
\left|N_{2} / \mathrm{C}_{N_{2}}(B)\right|=q^{s}<|B| \leq q^{\binom{s}{2}}
$$

where s is the \mathbb{F}_{q}-dimension of a maximal singular subspace of N_{2} centralized by B. On the other hand $2 s \leq 6$ and so $s \leq 3$. But then s does not satisfy the above inequality.

Suppose $M / \mathrm{C}_{M}(N) \cong \operatorname{Sp}_{2 n}(q)$. Then by Theorem $2 n=3$ and N_{2} is a spin module. So we get $|B| \leq q^{5}$ and $\left|N_{2} / \mathrm{C}_{N_{2}}(B)\right|=q^{4}$. It follows that $\left|N / \mathrm{C}_{N}(B)\right| \leq q$, a contradiction to $|B| \geq q^{4}$.

Suppose that $K / \mathrm{C}_{K}(N) \cong \mathrm{SU}_{n}(q), n \geq 8$, or $\Omega_{n}^{\epsilon}(q), n \geq 10$. Then Theorems 2 and 3 show that every FF-module for J with an over-offender is a natural module, a contradiction.

Suppose now that V is not homogeneous as an $\mathbb{F}_{2} J$-module. Then 11 holds with $r \neq 0 \neq s$. Thus $\sqrt{n} \geq \sqrt{1}+\sqrt{1}=2, n \geq 4$ and all parts of the theorem are proved.
Theorem 8.3. Let M be a finite $\mathcal{C K}$-group with $\mathrm{O}_{p}(M)=1$ and V a faithful $\mathbb{F}_{p} M$-module. Put $\mathcal{J}:=\mathcal{J}_{M}(V), J:=\mathrm{J}_{M}(V)$ and $W:=[V, \mathcal{J}]+\mathrm{C}_{V}(\mathcal{J}) / \mathrm{C}_{V}(\mathcal{J})$. Then the following hold:
(a) Let $K \in \mathcal{J}$. Then K is either quasisimple, or $p=2$ or 3 and $K \cong \mathrm{SL}_{2}(p)^{\prime}$.
(b) $[V, K, L]=0$ for all $K \neq L \in \mathcal{J}$, and $W=\bigoplus_{K \in \mathcal{J}}[W, K]$.
(c) $J^{p} J^{\prime}=\mathrm{O}^{p}(J)=\mathrm{F}^{*}(J)=X \mathcal{J}$.
(d) W is a faithful semisimple $\mathbb{F}_{p} J$-module.
(e) $\mathrm{C}_{J}([W, K])=\mathrm{C}_{J}([V, K])$.

Proof. (a) and the first part of (b) follow from 2.2. For the proof of the second part of (b) note that $\mathrm{C}_{W}(K)=\mathrm{C}_{[V, \mathcal{J}]}(K)+\mathrm{C}_{V}(\mathcal{J}) / \mathrm{C}_{V}(\mathcal{J})$ since $K=\mathrm{O}^{p}(K)$. Thus, by the first part $\mathrm{C}_{W}(K) \cap[W, K] \leq$ $\mathrm{C}_{W}(\mathcal{J})=0$ 。
(c): Put $J_{0}:=J^{\prime} J^{p}$. First we prove:
$\mathbf{1}^{\circ}$. Let $K \in \mathcal{J}$. Then J_{0} induces inner automorphism on K.
Let X be a quasisimple K-submodule of V and $Y=\mathrm{C}_{X}(K)$. Then we can apply 2.9 to $0 \leq Y \leq$ $X \leq V$ and $S:=X / Y$. By 2.9a) $\widetilde{J}:=J / \mathrm{C}_{J}(S)$ and S satisfy the hypothesis of Theorem 2, We conclude that $|\tilde{J} / \tilde{K}| \leq p$ and so $J_{0} \leq \tilde{K}$. Since $\mathrm{C}_{J}(\tilde{K})=\mathrm{C}_{J}(K)$ by 2.2 c , d), 1° holds.

Let $D:=\langle\mathcal{J}\rangle$, so $D=X \mathcal{J}$ and $D \leq J_{0}$ by 2.2 . Moreover, $\mathrm{Z}(J) \leq J_{0}$ since $\mathrm{Z}(J)$ is a p^{\prime}-group. By $1^{\circ} J_{0}$ induces inner automorphisms on D. Hence $J_{0} \leq D \mathrm{C}_{J}(D)$, and by 2.2 g$) J_{0}=D Z(J)$. Since J / J_{0} is an elementary abelian p-group, J / D is nilpotent, and since J is generated by p-elements J / D is a p-group and so $D=J_{0}$.
(d): Since $\mathrm{O}^{p}(J) \leq\langle\mathcal{J}\rangle, J$ acts nilpotently on $V /[V, \mathcal{J}]$ and $\mathrm{C}_{V}(\mathcal{J})$. Hence $\mathrm{C}_{J}(W)$ acts nilpotently on V and so $\mathrm{C}_{J}(W) \leq \mathrm{O}_{p}(M)=1$. Thus W is faithful J-module.

By 2.8 every perfect simple K-submodule is also a simple J-submodule. Hence (d) follows if [W, K] is a semisimple K-module. So suppose for a contradiction that $[W, K]$ is not semisimple K-module. We will use the bar-convention for the images of subgroups of V in W, so $\bar{X}=X+$ $\mathrm{C}_{V}(D) / \mathrm{C}_{V}(D)$ for $X \leq V$.

Let $X_{2} \leq V$ be a K-submodule of W that is minimal such that $X_{2}=\left[X_{2}, K\right]$ and \bar{X}_{2} is not a semisimple K-module. The minimality of X_{2} implies that X_{2} has a unique maximal K-submodule Y_{2} such that $\left[Y_{2}, K\right] \neq 0$ and X_{2} / Y_{2} is a simple K-module.

Recall that $[U, K, K]=[U, K]$ for every K-section of W since K is a J-component and thus is generated by p^{\prime}-elements. It follows that $\mathrm{C}_{Y_{2} / \mathrm{C}_{Y_{2}}(K)}(K)=0$. Hence there exists a K-submodule Y_{1} of Y_{2} that is maximal such that $Y_{1} \neq Y_{2}$ and $\mathrm{C}_{Y_{2} / Y_{1}}(K)=0$. Put $X_{1}:=\left[Y_{2}, K\right]+Y_{1}$. Let Z_{1} be a K-submodule of Y_{2} with $Y_{1}<Z_{1}<Y_{2}$. Then by maximality of $Y_{1}, \mathrm{C}_{Y_{2} / Z_{1}}(K) \neq 0$. Let Z_{2} be the
inverse image of $\mathrm{C}_{Y_{2} / Z_{1}}(K)$ in Y_{2}. Then $\mathrm{C}_{Y_{2} / Z_{2}}(K)=0$ and so by maximality of $Y_{1}, Z_{2}=Y_{2}$. Hence $X_{1}=\left[Y_{2}, K\right]+Y_{1} \leq Z_{1}$. It follows that X_{1} / Y_{1} is the unique minimal K-submodule and Y_{2} / Y_{1} is the unique maximal K-submodule of X_{2} / Y_{1}, while X_{1} / Y_{1} and X_{2} / Y_{2} are simple K-modules, and X_{2} / X_{1} is a quasisimple K-module. In particular, K and $X_{0}=Y_{1} \leq X_{1} \leq Y_{2} \leq X_{2}$ satisfy the hypothesis of 2.9 . This result shows that $S:=X_{1} / Y_{1} \oplus X_{2} / Y_{2}$ and $\widetilde{J}:=J / \mathrm{C}_{J}(S)$ satisfies the hypothesis of 8.2 in place of V and M. We conclude that

$$
\tilde{K} \cong \mathrm{SL}_{n}(q), n \geq 3, \mathrm{Sp}_{2 n}(q), n \geq 3, \Omega_{n}^{\epsilon}(q), n \geq 10, \text { or } \mathrm{SU}_{n}(q), n \geq 8
$$

$N:=X_{1} / Y_{1}$ is a corresponding natural module, and X_{2} / Y_{2} is either isomorphic or dual to N. In particular, $\mathrm{C}_{K}(N)=\mathrm{C}_{K}(S)=\mathrm{C}_{K}\left(X_{2} / Y_{1}\right)$. Put $\mathbb{F}:=\operatorname{End}_{K}(N)$. Note that there exists a J invariant symplectic, orthogonal or unitary form on N, which is non-degenerate with the exception of the natural $\mathrm{SL}_{n}(q)$-module, where it is the zero-form.

Let $B \leq J$ be a nontrivial quadratic best offender on $T:=X_{2} / Y_{1}$ with $E:=[N, B]$ minimal. Since B is quadratic on T, by $3.2 E$ is an isotropic subspace of N. Put $P:=\mathrm{N}_{K B}(E)$ and $Q=\left\langle B^{P}\right\rangle$. Then $[N, Q] \leq E \leq \mathrm{C}_{N}(Q)$ and so Q is quadratic on N. In particular

$$
Q^{\prime} \leq \mathrm{C}_{Q}(N) \cap(K B)^{\prime} \leq \mathrm{C}_{K}(N)=\mathrm{C}_{K}(T)
$$

Since $\mathrm{C}_{K}(T) \leq \mathrm{Z}(K)$ is a p^{\prime}-group, this implies that Q is abelian, so $Q / \mathrm{C}_{Q}(T)$ is elementary abelian. As Q contains an offender, [MS1, 2.6] and the Timmesfeld Replacement Theorem show that there exists $R \leq Q$ with $R \unlhd P$ such that R is a quadratic best offender on T. The minimality of $[N, B]$ gives $[N, R]=E$.

Put $\bar{J}:=J / \mathrm{C}_{J}(N)$ and $U:=\mathrm{C}_{K}(E) \cap \mathrm{C}_{K}(N / E)$. We will show next:
2. \bar{U} does not possess any central \bar{P}-chief factor.

Note that $\bar{R} \cap \bar{K} \leq \bar{U} \unlhd \bar{P}$. If $\widetilde{K} \cong \mathrm{SL}_{n}(\mathbb{F})$ or $\mathrm{SU}_{n}(\mathbb{F})$, then $[\bar{U}, \bar{P}] \neq 1$ and \bar{P} acts simply on \bar{U}, so 2° holds.

Suppose that $\widetilde{K} \cong \operatorname{Sp}_{2 n}(\mathbb{F})$ or $\Omega_{2 n}^{\epsilon}(\mathbb{F})$. Let $l:=\operatorname{dim}_{\mathbb{F}} E$. By 3.4

$$
\left|T / \mathrm{C}_{T}(R)\right|=q^{2 l} \leq|\bar{R}| \leq q^{\binom{(+1}{2}} \text { resp. } 2 q^{\binom{l}{2}}
$$

It follows that $l \geq 3$ in the first case and $l \geq 5$ in the second case. Hence 3.5 shows that \bar{P} has no central chief-factors on \bar{U} and again $\left(2^{\circ}\right)$ holds.

3 $. \quad \mathrm{C}_{K R}(N)=\mathrm{C}_{K R}(T)$.
Put $C:=\mathrm{C}_{K R}(N)$ and $R_{0}:=R \cap K C$. Note that $R_{0} \leq U C$. It follows that

$$
R_{0} C / C \leq U C / C \cong_{P} \bar{U}
$$

On the other hand $\mathrm{O}^{p}(\bar{P})$ centralizes $R_{0} C /(K \cap R) C$. Hence 2° gives $R_{0} \leq(R \cap K) C$, so $R_{0}=$ $(R \cap K) \mathrm{C}_{R}(N)$. This shows that

$$
K C \cap K R=K R_{0}=K \mathrm{C}_{R}(N)
$$

By $2.4 \mathrm{C}_{R}(N)=\mathrm{C}_{R}(K)=\mathrm{C}_{R}(T)$ and, as seen above, $\mathrm{C}_{K}(N) \leq \mathrm{C}_{K}(T)$, so $\mathrm{C}_{K R}(N)=\mathrm{C}_{K R}(T)$.
By $3^{\circ}\left(K R / \mathrm{C}_{K R}(T), T\right)$ satisfies the hypothesis of 6.6 It follows that there exists a K submodule U of T with $T=Y_{2} / Y_{1}+U$ and $N \not \leq U$, a contradiction since N is the unique minimal K-submodule of T. Thus (d) is proved.

To proof (e) put $C=\mathrm{C}_{J}([W, K])$. Since K acts faithfully on $[W, K], C \cap K=1$ and so $[C, K]=1$. Since $[V, K]=[V, K, K]$ we have $[W, K]=[V, K]+\mathrm{C}_{V}(\mathcal{J}) / \mathrm{C}_{V}(\mathcal{J})$ and $\left.[V, K, C] \leq \mathrm{C}_{V}(\mathcal{J})\right)$. In particular, $\mathrm{C}_{J}([V, K]) \leq C$. Let $c \in C$. Then $[V, K, c] \cong[V, K] / \mathrm{C}_{[V, K]}(c)$ as a K-module. But any quotient of $[V, K]$ is a perfect K module, while any submodule of $\mathrm{C}_{V}(\mathcal{J})$ is a trivial K-module. So $[V, K, c]=0$ and $C \leq \mathrm{C}_{J}([V, K])$.

The proof of Theorem 1, apart from statement (e): The first four statements (a) - d follow from 8.3 . The statements (f) and (g) follow from 8.2 .

Theorem 1 (e) will be proved at the very end of the paper.

Lemma 8.4. Let M be a finite $\mathcal{C K}$-group with $\mathrm{O}_{p}(M)=1$ and V a faithful $\mathbb{F}_{p} M$-module. Suppose that
(i) $M=\mathrm{J}_{M}(V)$ and there exists a unique $\mathrm{J}_{M}(V)$-component K,
(ii) $\mathrm{C}_{V}(K) \leq[V, K]$ and either $\mathrm{C}_{V}(K) \neq 0$ or $V \neq[V, K]$.

Let $A \leq M$ be a best offender on V and put $W:=[V, K]$ and $\bar{V}:=V / \mathrm{C}_{V}(K)$. Then $p=2$, and one of the following holds:
(a) $M=K \cong \mathrm{SL}_{3}(2), V=W,\left|\mathrm{C}_{V}(K)\right|=2, \bar{V}$ is a natural $\mathrm{SL}_{3}(2)$-module, $|A|=4,[\bar{V}, A] \mid=2$ and $\mathrm{C}_{V}(A)=[V, A]$ has order 4 .
(b) $M=K \cong \mathrm{SL}_{3}(2),|V / W|=2, \mathrm{C}_{V}(K)=0$, W is a natural $\mathrm{SL}_{3}(2)$-module, $|A|=4=\left|\mathrm{C}_{W}(A)\right|$ and $\mathrm{C}_{V}(A)=[V, A]=\mathrm{C}_{W}(A)$.
(c) $M=K \cong \mathrm{SU}_{4}(2)$, $V=W, 2 \leq\left|\mathrm{C}_{V}(K)\right| \leq 4, \bar{V}$ is a natural $\mathrm{SU}_{4}(2)$-module, A is the centralizer of a singular 2-subspace of \bar{V}, and $\mathrm{C}_{V}(A)=[V, A]$.
(d) $M \cong \mathrm{G}_{2}(q), q=2^{k}, V=W, 2 \leq\left|\mathrm{C}_{V}(K)\right| \leq q, \bar{V}$ is a natural $\mathrm{G}_{2}(q)$-module, $|A|=q^{3}$, and $\mathrm{C}_{V}(A)=[V, A]$.
(e) $K \cong \operatorname{Alt}(2 m)$ and $M \cong \operatorname{Sym}(2 m)$ or $\operatorname{Alt}(2 m)$. For $\Omega=\{1,2, \ldots, 2 m\}$ let $N=\left\{n_{\Sigma} \mid \Sigma \subseteq \Omega\right\}$ be the $2 m$-dimensional natural permutation module and \tilde{N} be the $\mathbb{F}_{2} M$-module defined by $\tilde{N}=N$ as an \mathbb{F}_{2}-space and

$$
n_{\Sigma}^{g}=n_{\Sigma^{g}} \text { if }|\Sigma| \text { is even or } g \in \operatorname{Alt}(\Omega), \text { and } n_{\Sigma}^{g}=n_{\Sigma^{g}}+n_{\Omega} \text { if }|\Sigma| \text { is odd and } g \notin \operatorname{Alt}(\Omega)
$$

Then one of the following holds, where $t_{1}, t_{2}, \ldots, t_{m}$ is a maximal set of commuting transpositions:

1. $M=\operatorname{Sym}(n), V$ is isomorphic to N or $N / \mathrm{C}_{N}(K)$, and $A=\left\langle t_{1}, t_{2}, \ldots, t_{k}\right\rangle$ for some $1 \leq k \leq$ m.
2. $M=\operatorname{Sym}(n), V \cong \tilde{N}$ and $A=\left\langle t_{1}, t_{2}, \ldots, t_{m}\right\rangle$.
3. $V \cong[N, K]$ and A fulfills one of the cases h:1 - h:3) of Theorem 3.
(f) $M=K \cong \operatorname{Sp}_{2 m}(q), m \geq 1, q=2^{k},(m, q) \neq(1,2),(2,2)$, and \bar{W} is the direct sum of r natural $\mathrm{Sp}_{2 n}(q)$-modules \square^{4} Moreover, the following hold:

[^2](a) $2 r \leq m+1$, and if $V \neq W$ then $m>1$ and $2 r<m+1$.
(b) Let X be the $2 m+2$-dimensional $\mathbb{F}_{q} M$-module obtained from the embedding $\operatorname{Sp}_{2 m}(q) \cong$ $\Omega_{2 m+1}(q) \leq \Omega_{2 m+2}^{ \pm}(q)$. Then V is isomorphic to an $\mathbb{F}_{p} M$-section of X^{r}.

Proof. Suppose K is not quasisimple. Then K is a p^{\prime}-group and $V=[V, K] \oplus \mathrm{C}_{V}(K)$. Since $\mathrm{C}_{V}(K) \leq[V, K]$ this gives $\mathrm{C}_{V}(K)=0$ and $V=[V, K]$, contrary to the assumptions.

Thus K is quasisimple. By $8.3 \bar{W}$ is a semisimple K-module and we conclude that there exists simple K-submodule of \bar{U} of \bar{W} such that $\mathrm{H}^{1}(K, \bar{U}) \neq 0$ or $\mathrm{H}^{1}\left(K, \bar{U}^{*}\right) \neq 0$.

Let $B:=\mathrm{C}_{A}([V, A])$. By the Timmesfeld Replacement Theorem, B is a non-trivial quadratic best offender on V. Note that by 2.4 and $1.2 A$ and B are offenders on \bar{U} and \bar{W}. Comparing 6.1 with Theorem $1(\mathrm{~g})$ we see that $p=2$ and the following holds:

1${ }^{\circ}$. $\quad M \cong \mathrm{SL}_{3}(2), \mathrm{SU}_{4}(2), \mathrm{G}_{2}(q)$, $\operatorname{Alt}(2 m), \operatorname{Sym}(2 m)$ or $\mathrm{Sp}_{2 m}(q)$, and \bar{W} is the corresponding natural module, with the exception of the $\mathrm{Sp}_{2 m}(q)$-case, where \bar{W} is the direct sum of r natural modules for some integer r with $2 r \leq m+1$.

We now discuss the cases given in (19) (and 6.1) separately.
Case 1. Suppose $M \cong \mathrm{SL}_{3}(2)$ and $\mathrm{C}_{W}(K) \neq 0$.
Let $1 \neq a \in A$. Since $W=[W, K]$ has order 2^{4} and K is generated by three conjugates of a, $|[W, a]|=\left|W / \mathrm{C}_{W}(a)\right|=4$. Since A is an offender we conclude that

$$
A=B,\left|V / \mathrm{C}_{V}(A)\right|=|A|=\left|\mathrm{C}_{W}(A)\right|=4
$$

In particular $\mathrm{C}_{W}(A)=[W, A], V=\mathrm{C}_{V}(A)+W$ and $|[\bar{V}, A]|=2$. The latter fact shows that $V=W+\mathrm{C}_{V}(K)$ and thus $W=V$. Hence (a) holds in this case.
Case 2. Suppose $M \cong \mathrm{SL}_{3}(2)$ and $\mathrm{C}_{W}(K)=0$.
Then W is a natural module and $V \neq W$. As above, for $1 \neq a \in A,\left|V / \mathrm{C}_{V}(a)\right|=|A|=4$, and $\mathrm{C}_{V}(a)=\mathrm{C}_{W}(a)=\mathrm{C}_{V}(A)$. Hence (b) holds.
Case 3. Suppose $M \cong \mathrm{SU}_{4}(2)$.
Then $[\bar{W}, B]$ is a singular subspace of \bar{W}, and 3.4 shows that $|B|=2^{4}=\left|\bar{W} / \mathrm{C}_{\bar{W}}(B)\right|$. Thus $A=B$ and $\left|V / \mathrm{C}_{V}(A)\right|=2^{4}$. Moreover, by $5.1 M$ is generated by two conjugates of A and so $\left|V / \mathrm{C}_{V}(K)\right|=2^{8}$ and $V=W+\mathrm{C}_{V}(K)$. Hence $V=W$. As $[V, A] /[V, A] \cap \mathrm{C}_{V}(K)$ has order 2^{4} and M is generated by two conjugates of $A, \mathrm{C}_{V}(K) \leq[V, A]$. Since $\mathrm{C}_{\bar{V}}(A)=[\bar{V}, A]$ this gives $\mathrm{C}_{V}(A)=[V, A]$, and (C) holds.
Case 4. Suppose $M \cong \mathrm{G}_{2}(q)$.
Then $|A|=q^{3}, \mathrm{C}_{\bar{W}}(A)=[\bar{W}, A]$ has order $q^{3},|\bar{W}|=q^{6}$, and by $5.2 M$ is generated by two conjugates of A A similar argument as in the $\mathrm{SU}_{4}(2)$ case now shows that (d) holds.

Case 5. Suppose $M \cong \operatorname{Alt}(2 m)$ or $\operatorname{Sym}(2 m)$.
Since K is perfect, V is as an $\mathbb{F}_{2} K$-module isomorphic to a section of the $2 m$-dimensional permutation module N. If $V=W$ or $\mathrm{C}_{V}(K)=0$ we have $\mathrm{C}_{\mathrm{GL}(V)}(K)=1$ and so V is also an $\mathbb{F}_{2} M$-module isomorphic to N.

If $H=\operatorname{Sym}(n)$ and $|V|=2^{2 m}$, there are two possible isomorphism types for V, namely N and \tilde{N} as described in (e). Note that if t is a transposition, and $V \cong \tilde{N}$, then $\mathrm{C}_{V}(t) \leq W$. Since A is an offender on \bar{W} we can apply Theorem 3 hh.

Suppose that $\mathrm{C}_{V}(A) \nsubseteq W$. Then there exists a proper subset Σ of $\Omega=\{1,2, \ldots, 2 m\}$ such that $|\Sigma|$ is odd and $|A|$ normalizes $\{\Sigma, \Omega \backslash \Sigma\}$. If Σ is A invariant, then A has a fixed-point on Σ. It follows from Theorem $3(\mathrm{~h})$ that A is generated by transpositions, $V \not \approx \tilde{N}$, and e:1 holds. So suppose for a contradiction that $\Sigma^{a}=\Omega \backslash \Sigma$ for some $a \in A$. Then $|\Sigma|=m$ is odd. So Theorem $3(\mathrm{~h}: 4)$ does not hold. Put $A_{0}:=\mathrm{N}_{A}(\Sigma)$. Note that $\operatorname{Supp}(b)=\Omega$ for all $a \in A \backslash A_{0}$ and so $b \in A_{0}$ for all $b \in A$ with with $|\operatorname{Supp}(b)| \leq 4$. In the first three cases of Theorem 3 h , A is generated by such elements, so $A=A_{0}$, a contradiction.

Suppose that $\mathrm{C}_{V}(A) \leq W$. If $W \neq V$ we conclude that A is an over-offender on W. Thus by Theorem 3hh A is generated by a maximal set of commuting transpositions. Hence (e:1) or e:2) holds.

Assume that $W=V$. Then $W \cong[N, K]$. If $2 m=8$ and A acts transitively on Ω, then $\mathrm{C}_{V}(A)=\mathrm{C}_{V}(K)$ and $\left|V / \mathrm{C}_{V}(A)\right|=2^{6} \geq 2^{3}=|A|$, a contradiction. This excludes case h:4) of Theorem 3, and e:3) holds.

Case 6. Suppose $M \cong \operatorname{Sp}_{2 m}(q)$.
Since K is perfect we conclude from 6.1, $\sqrt[1]{ }$ and $8.2,2$ that it remains to prove the second statement of $\mathrm{f:a}$. Since A is an offender on V we may assume that $\mathrm{C}_{V}(K)=0$ and so $V \neq W$.

Suppose that there exists $v \in \mathrm{C}_{V}(A) \backslash W$. Then $\mathrm{C}_{K}(v)$ is contained in a subgroup isomorphic to $\mathrm{O}_{2 m}^{\epsilon}(V)$, and $8.2 \sqrt[4]{4}$ shows that $4 r \leq 2 m-2$. Thus $2 r \leq m-1<m+1$.

Suppose next that $\mathrm{C}_{V}(A) \leq W$. Since $V \neq W$ we conclude that A is an over-offender on W. The proof of 8.2 (Case 2 now shows that $r<m+1$.

Corollary 8.5. Assume the hypothesis of 8.4. Then every best offender in M on V is a best offender on $[V, \mathcal{J}]+\mathrm{C}_{V}(\mathcal{J}) / \mathrm{C}_{V}(\mathcal{J})$.

Proof. According to 1.2 we may assume that $V=[V, \mathcal{J}]$. Put $\bar{V}:=V / \mathrm{C}_{V}(\mathcal{J})=: W$ and $X:=$ $\mathrm{C}_{V}(\mathcal{J})$. Let A be a best offender in M on V. Choose $1 \neq B \leq A$ such that $\left|B \| \mathrm{C}_{W}(B)\right|$ is maximal and then B minimal. Since A is an offender on W, B is a quadratic best offender on W.

Suppose that $\mathrm{C}_{W}(B)=\overline{\mathrm{C}_{V}(B)}$. Since A is a best offender on $V,\left|\mathrm{C}_{V}(B)\right||B| \leq\left|\mathrm{C}_{V}(A)\right||A|$ and since $B \leq A, \mathrm{C}_{X}(B) \geq \mathrm{C}_{X}(A)$. Thus

$$
\left|\mathrm{C}_{W}(B)\right||B|=\frac{\left|\mathrm{C}_{V}(B)\right||B|}{\left|\mathrm{C}_{X}(B)\right|} \leq \frac{\left|\mathrm{C}_{V}(A)\right||A|}{\left|\mathrm{C}_{X}(A)\right|}=\left|\overline{C_{V}(A)}\right||A| \leq\left|\mathrm{C}_{W}(A)\right||A|
$$

and so A is a best offender on W.
Suppose that $\mathrm{C}_{W}(B) \neq \overline{\mathrm{C}_{V}(B)}$. Since \bar{V} is J-semisimple by 8.3 , there exists a perfect J submodule Y of V such that \bar{Y} is simple and $\mathrm{C}_{\bar{Y}}(B) \neq \overline{\mathrm{C}_{Y}(B)}$. Note that there exists a unique J component K with $[Y, K] \neq 0$. Moreover, $Y=[Y, K]$ and $Y \cap X=\mathrm{C}_{Y}(K) \neq 0$. Put $\tilde{J}:=J / \mathrm{C}_{J}(Y)$. The Three Subgroups Lemma implies that $\mathrm{O}_{p}(\tilde{J})$ centralizes Y and so we can apply 8.4 to $(\tilde{J}, \tilde{K}, Y)$ in place of (H, K, V).

In Case 8.4 d,(f) we have $\mathrm{C}_{J}(v)=\mathrm{C}_{J}(\bar{v})$ for all $v \in V$, a contradiction.
In Case 8.4 (\bar{c}) we get $\tilde{A}=\tilde{B}$ and $\mathrm{C}_{\bar{V}}(B)=[\bar{V}, A]=\overline{\mathrm{C}_{V}(A)}=\overline{\mathrm{C}_{V}(B)}$, contradiction.
Suppose 8.4 e holds. Then A is generated by elements of support at most 4 and so $\mathrm{C}_{\bar{V}}(A)=$ $\overline{\mathrm{C}_{V}(A)}$.

Suppose that 8.4 ab holds. Then $|\tilde{A}|=4$ and $\mathrm{C}_{\bar{Y}}(A)=[\bar{Y}, A]=\overline{\mathrm{C}_{Y}(A)}$. Thus $\tilde{B} \neq \tilde{A}$ and $|\tilde{B}|=2=\left|\bar{Y} / \mathrm{C}_{\bar{Y}}(B)\right|$. Put $B_{0}=\mathrm{C}_{B}(\bar{Y})$. Then $\left|\mathrm{C}_{W}(B)\right||B|=\left|\mathrm{C}_{W}\left(B_{0}\right)\right|\left|B_{0}\right|$. The minimal choice of B implies $B_{0}=1$ and so $|B|=2$. Thus $\left|\mathrm{C}_{W}(B)\right||B|=|W|$. Since A is an offender on W, this gives $\left|\mathrm{C}_{W}(B)\right||B| \leq\left|\mathrm{C}_{W}(A)\right||A|$. Thus A is a best offender on W.

Finally Case 8.4 b does not apply, since $\mathrm{C}_{V}(K) \neq 0$.

The proof of Theorem $1(\mathrm{e})$: This is 8.5

References

[ATLAS] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Perkel and R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[As] M. Aschbacher, Finite Group Theory, Cambridge studies in advanced mathematics 10, Cambridge University Press (2000), New York.
[BHS] D. Bundy, N. Hebbinghaus, B. Stellmacher, The local $C(G, T)$ Theorem, J. Algebra 300 (2006), no. 2, 741-789.
[Ch] A. Chermak, Quadratic action and the $\mathcal{P}(G, V)$-theorem in arbitrary characteristic, J. Group Theory 2 (1999), 1-13.
[Co] B.N Cooperstein, An enemies list for factorization theorems, Comm. Algebra 6 (1978), 1239-1288.
[GLS3] D. Gorenstein, R. Lyons, R. Solomon, The Classification of the Finite Simple Groups, Number 3 Mathematical Surveys and Monographs, Volume 40, Number 3, AMS (1998).
[GM1] R.M. Guralnick, G. Malle, Classification of 2F-Modules, I, J. Alg. 257 (2002), 348-372.
[GM2] R.M. Guralnick, G. Malle, Classification of 2F-modules, II, Finite groups 2003, 117-183, Walter de Gruyter GmbH \& Co. KG, Berlin, 2004.
[GLM] R.M. Guralnick, R. Lawther, G. Malle, $2 F$-modules for nearly simple groups, J. Alg. 307 (2007), 643-676.
[Gr] R.L. Griess, Schur multipliers of the known finite simple groups, II, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), pp. 279-282, Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, R.I., 1980.
[JP] W. Jones, B. Parshall, On the 1-cohomology of Finite Groups of Lie-type, in Proceedings of the Conference of Finite Groups, ed. W.R. Scott, F.Gross, Academic Press (1976).
[KS] H. Kurzweil, B. Stellmacher, Theorie der endlichen Gruppen. Eine Einführung, SpringerVerlag, Berlin (1998), 341pp.
[McL] J. McLaughlin, Some Subgroups of $S L_{n}\left(F_{2}\right)$, Illinois J. Math. 13 (1969),105-115.
[M] T. Meixner, Failure of factorization modules for Lie-type groups in odd characteristic, Comm. Alg. 19 (1991), 3193-3222.
[Me] U.Meierfrankenfeld, A characterization of the spinmodule for $2 \cdot A_{n}$, Arch. Math 57 (1991) 238-246.
[MS1] U. Meierfrankenfeld, B. Stellmacher, The other PGV Theorem, Rend. Sem. Mat. Univ. Padova 115 (2006), 41-50.
[MS3] U. Meierfrankenfeld, B. Stellmacher, Nearly quadratic modules, J. Alg. 319 (2008), 47984843.
[MeSt1] U. Meierfrankenfeld, G. Stroth, On quadratic $G F(2)$ - modules for Chevalley groups over fields of odd order, Arch. Math. 55 (1990), 105-110.
[MeSt2] U. Meierfrankenfeld, G. Stroth, Quadratic $G F(2)$ - modules for sporadic groups and alternating groups, Comm. Alg. 18 (1990), 2099-2140.
[Po] H. Pollatsek, First cohomology of some orthogonal groups, J.Alg. 28 (1974), 477-483.
[St] R. Steinberg, Lectures on Chevalley Groups, Notes by J. Faulker and R. Wilson, Mimeographed notes, Yale University Mathematics Department (1968).
[Ti] F.G. Timmesfeld, A remark on irreducible modules for finite Lie type groups, Arch. Math. 46 (1986), 499-500.

[^0]: ${ }^{1}$ The odd-dimensional orthogonal groups in characteristic 2 are covered in case $g: 2$.
 2 Note here that \mathcal{D} contains all quadratic offenders and by the Timmesfeld Replacement Theorem [KS 9.2.3], also all best offenders in M on V.

[^1]: ${ }^{3}$ Note that $3^{2 \cdot} \cdot \mathrm{U}_{4}(3)$ has two quotients isomorphic to M and so has two modules which fulfill the hypothesis of this lemma, except that the modules are not faithful.

[^2]: ${ }^{4}$ Observe that for $m=1, \mathrm{Sp}_{2}(q) \cong \mathrm{SL}_{2}(q)$ and a natural $\mathrm{Sp}_{2}(q)$-module is also a natural $\mathrm{SL}_{2}(q)$-module.

