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1. Introduction

Suppose that p is a prime, P is a finite group and S ∈ Sylp(P ). Then P is p-
minimal if S is not normal in P and S is contained in a unique maximal subgroup of
P . Now suppose that G is a finite group and S ∈ Sylp(G). The set of subgroups of
G which contain S and are p-minimal will be denoted by PG(S). For P ∈ PG(S) we
put

LG(P, S) := 〈PG(S) \ {P}, NG(S)〉,
and next introduce isolated p-minimal subgroups.

Definition 1.1. A p-minimal subgroup P in PG(S) is A-isolated where A is a normal
p-subgroup of LG(P, S) if A 6≤ Op(P ). We say that P ∈ PG(S) is an isolated subgroup
of G if it is A-isolated for some A.

Clearly P is an isolated subgroup of G if and only if Op(LG(P, S)) 6≤ Op(P ). As
a consequence G 6= LG(P, S). Thus, as G = 〈PG(S), NG(S)〉 (see Lemma 3.1), any
minimal generating set of G using subgroups from PG(S), together with NG(S), must
include P .

The archetypical p-minimal subgroup is to be found in groups of Lie type defined
in characteristic p. If G is such a group and R is a minimal parabolic subgroup of
G, then P = Op′(R) is a p-minimal subgroup of G. For such a P , L := LG(P, S) is
the unique maximal parabolic subgroup of G not containing R and Op(L) � Op(P ),
and so in fact P is an isolated subgroup of G. This in itself makes isolated subgroups
worthy of study yet there are other compelling reasons for instigating a study of this
type of subgroup. Such subgroups arise in the on-going work whose aim is to classify
finite Kp-proper groups of local characteristic p. We return to this important aspect
of isolated subgroups shortly.

Our first theorem includes a statement about a special class of p-minimal subgroups
which we call narrow subgroups. Before defining narrow subgroups, we first recall
that a group G acts imprimitively on a GF(p)G-module V provided there exists a
non-trivial decomposition of V into a direct sum of subspaces W1, . . . ,Wk which are
permuted by the action of G. A group which does not act imprimitively on a module
V is said to act primitively on V .

Definition 1.2. Suppose that P is a p-minimal group, S ∈ Sylp(P ) and let M be the
unique maximal subgroup of P containing S. Set E := Op(P )F/F where F is the

1



2 ULRICH MEIERFRANKENFELD CHRISTOPHER PARKER PETER ROWLEY

core of M in P . Then we say that P is narrow if either E is a simple group or E is
elementary abelian and M acts primitively on E.

Again examples of narrow, isolated subgroups appear naturally in Lie type groups
of characteristic p.

Our first theorem shows that finite groups with isolated subgroups have a restricted
structure. Its proof consists of an analysis of the over groups of Sylow p-subgroups
and relies only on results from classical group theory. This contrasts with the proof
of Theorem 1.7 where we are forced to draw upon specific structural properties of
certain finite simple groups.

Theorem 1.3. Suppose that p is a prime, G is a finite group, S ∈ Sylp(G) and

P ∈ PG(S) is an isolated subgroup of G. Set L := LG(P, S) and Y := 〈Op(P )G〉.
Then G = Y L, P is an isolated subgroup of Y S and either

(a) Y = Op(P ); or
(b) Y/Op(Y ) is a central product of quasisimple groups which are transitively per-

muted by S under conjugation and, if P is narrow, then Y/Op(Y ) is quasisimple.
Furthermore, Y/Op(Y ) has order divisible by p.

Of course, if G is a quasisimple group and G has an isolated subgroup, then Y =
G and alternative (b) of Theorem 1.3 holds. If G is a p-minimal group and S ∈
Sylp(G), then LG(G,S) is the unique maximal subgroup of G containing S. Hence,
if Op(LG(G,S)) > Op(G), G is an isolated subgroup of G and the possibility in
Theorem 1.3(a) trivially holds. As an indication of the limitations of Theorem 1.3,
we could take G = H1 ×H2 with P an isolated subgroup of H1S with S ≤ P where
S ∈ Sylp(G). Then P is an isolated subgroup of G (see Lemma 3.5) and of course
Y ≤ H1. So the direct factor H2 is invisible as far as Y is concerned.

For a finite group G and p a prime, let F ∗p (G) denote the inverse image in G of
F ∗(G/Op(G))), the generalized Fitting subgroup of G/Op(G). Then we have the
following corollary of Theorem 1.3.

Corollary 1.4. Suppose that G is a finite group and P ∈ PG(S) is an isolated
subgroup of G where S ∈ Sylp(G), p a prime.

(a) Op(P ) ≤ F ∗p (G).

(b) If Y := 〈Op(P )G〉 is soluble, then Y = Op(P ) and there is a prime t 6= p such
that Y/Op(Y ) is a t-group of class at most 2.

Again casting an eye over the Lie type groups in characteristic p we see that every
p-minimal subgroup is an isolated subgroup. This leads us to give

Definition 1.5. Let G be a finite group, p a prime and S ∈ Sylp(G). Then G is
called completely isolated if P is isolated for all P ∈ PG(S).

For P1, P2 ∈ PG(S) write P1 ∼ P2 whenever 〈Op(P1)
G〉 = 〈Op(P2)

G〉. Clearly ∼
is an equivalence relation on PG(S). Our second theorem describes the structure of
completely isolated finite groups.

Theorem 1.6. If G is a completely isolated finite group, then G = F ∗p (G)NG(S),
where S ∈ Sylp(G). Moreover, F ∗(G/Op(G)) is a central product of the subgroups
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generated by the ∼ equivalence classes of PG/Op(G)(S/Op(G)) and F (G/Op(G)) has
class at most two.

For p a prime, we define

L1(p) := {Op(X) | X ∼= H/Z where H is a universal rank 1 Lie type group

defined in characteristic p and Z ≤ Z(H)}.
Observe that some of the groups in L1(p) are smaller than we might have expected.

For example, O2(SL2(2)) has order 3 and O2(2B2(2)) has order 5. So, to be explicit
we list the members of L1(p). For p ≥ 5, we have

L1(p) = {SL2(p
a),PSL2(p

a), SU3(p
a),PSU3(p

a) | a ≥ 1}.
Because of the non-simplicity of SL2(3) and 2G2(3), we have

L1(3) = {Q8, 2
2, 2G2(3)′ ∼= SL2(8)}∪{SL2(3

a),PSL2(3
a), SU3(3

a−1), 2G2(3
2a−1) | a ≥ 2}

and similarly, because of the non-simplicity of SL2(2), SU3(2) and 2B2(2), we have

L1(2) = {3, 5, 31+2
+ , 32} ∪ {SL2(2

a), SU3(2
a),PSU3(2

a), 2B2(2
2a−1) | a ≥ 2}.

The groups in L1(p) will be discussed further in Section 3. Notice that ifOp(P/Op(P )) ∈
L1(p), S ∈ Sylp(P ), and S > Op(P ), then P is a narrow unless p = 2 andO2(P/Op(P )) ∼=
32 or 31+2

+ in which case we have to be rather more careful. Thus Theorem 1.3 applies
to narrow isolated subgroups with the property that Op(P/Op(P )) ∈ L1(p) and tells
us that when Op(G) = 1, Y := 〈Op(P )G〉 is either quasisimple or equal to Op(P ).
In the latter case we have that either Y = Op(P ) is quasisimple or Y is soluble and
Op(P ) is isomorphic to one of 3, 5, Q8, 22, 31+2

+ and 32.
Our next theorem concerns certain isolated subgroups of CK-groups. We say that

a finite simple group is a K-group if it is isomorphic to a cyclic group of prime order,
an alternating group of degree at least 5, a simple group of Lie type (including the
Tits simple group) or one of the 26 sporadic simple groups. A group is a CK-group,
if each of its composition factors is a K-group.

Theorem 1.7. Suppose that p is a prime, G is a finite CK-group and P ∈ PG(S). If
Op(P/Op(P )) ∈ L1(p), then either Op(P )EG or Op(Z(LG(P, S))) ≤ Op(P ).

In other words Theorem 1.7 is asserting that if P is Op(Z(LG(P, S)))-isolated and
Op(P/Op(P )) ∈ L1(p), then Op(P ) is normal in G. We note that if we take G = J2

(Janko’s second simple group) we have a narrow subgroup P ofG with P ∼= PSU3(3) ∈
L1(3) and LG(P, S) ∼= 3.PGL2(9). So O3(P ) = 1, O3(LG(P, S)) has order 3 and just
misses being in Z(LG(P, S)).

We comment that not every finite group possesses an isolated subgroup. However,
as we have seen, if it does then it imposes global constraints on the structure of
the group. Another example of this is the following corollary to [MPR, Corollary
1.2]. This asserts that a simple CK-group with an isolated subgroup P satisfying
Op(P/Op(P )) ∈ L1(p) with p ≥ 11 must be a Lie type group in characteristic p.

Isolated subgroups, as mentioned earlier, also surface in the project to classify finite
Kp-proper groups of local characteristic p. That is finite groups all of whose p-local
subgroups H satisfy F ∗(H) = Op(H) and have all simple sections from the list of finite
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simple groups itemized above. Let G to be such a group and let C be a maximal
p-local subgroup containing NG(Ω1(Z(S))) where S ∈ Sylp(G). Then in this context

the P̃ !-Theorem [MMPS] asserts that in the presence of certain additional conditions

there is an isolated subgroup P̃ of G contained in PC(S). Moreover, Op(P̃ /Op(P̃ )) ∈
L1(p). Thus all of our theorems apply to tell us that Y := 〈Op(P̃ )C〉Op(C)/Op(C)
is a quasisimple group. In particular, as C is a CK-group the results of [MPR]
which determine the finite simple K-groups possessing an isolated subgroup P with
Op(P/Op(P )) ∈ L1(p), can be applied to limit the possibilities for Y . For an account
of the genealogy of this (still in progress) programme as well as an overview of its
aims see [MSS].

Briefly this paper is organized as follows. In Section 2 we gather some elemen-
tary background results that we require in this paper. The following section con-
tains a number of general properties of p-minimal groups ranging from their gener-
ational properties, their behaviour under quotients to the important compendium
of structural properties given in Lemma 3.2. Towards the end of Section 3, in
Lemmas 3.6 and 3.7, detailed information about p-minimal isolated subgroups with
Op(P/Op(P )) ∈ L1(p) is listed. These two results plus Corollary 3.9 are needed in
our proof of Theorem 1.7. We begin Section 4 by noting a number of basic facts
about isolated subgroups – Lemma 4.3 being a result we use frequently. After estab-
lishing further preparatory results such as Lemmas 4.4, 4.9 and 4.10, we then prove
Theorems 1.3 and 1.6. The remainder of this section gives various consequences of
Theorem 1.3 which will be of use in [MPR]. Our final section is devoted to a proof
of Theorem 1.7.

If X is a collection of subsets of G, then
⋂
X means the intersection of all the

subsets in X . Assume that H is a subgroup of G. Then HG will denote the set of all
G-conjugates of H. Hence

⋂
HG is just the core of H in G. For p a fixed prime, we

sometimes write QG for Op(G), the largest normal p-subgroup of G. Also we denote
the preimage of F (G/QG) by Fp(G) and the preimage of Φ(G/QG) by Φp(G). The
remainder of our group theoretic notation is standard and can be found in [As] or [KS].
Atlas [Atlas] names and conventions will be followed with a few exceptions which
we now note. We shall use Sym(n) and Alt(n) to denote, respectively, the symmetric
and alternating group of degree n. And Dih(n), SDih(n) stand, respectively, for the
dihedral and semidihedral group of order n (so n is even ).

The genesis of the work in this paper and [MPR] occurred while the authors
were participants in the RiP (Research in Pairs) programme at the Mathematis-
che Forschungsinstitut Oberwolfach. The completion of these papers was further
supported by an LMS scheme 4 grant and funding from the Manchester Institute of
Mathematical Sciences – the authors express their gratitude to all these organizations.

2. Preliminary Results

This section contains an assorted collection of background results. The first two
concern subnormal subgroups while Lemma 2.3 is an elementary criterion for a p-
subgroup of a group G to be contained in Op(G). Lemmas 2.4 and 2.6 look at the
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Frattini subgroup and Lemma 2.7 examines Φp(O
p(G)). And we end with Propo-

sition 2.8 which gives a property of finite simple K-groups with abelian Sylow p-
subgroups.

Our first lemma records a well-known property of components.

Lemma 2.1. Let G be a finite group, K a component of G and N a subnormal
subgroup of G. Then either K ≤ N or [K,N ] = 1.

Proof. [As, 31.4]. �

In the proof of Lemma 3.2 we shall need the following result.

Lemma 2.2. Suppose that G is a finite group, M is a maximal subgroup of G and
N is a subnormal subgroup of G with N ≤M . Then N ≤

⋂
MG.

Proof. We may assume that N is maximal, under inclusion, with the property that
N is subnormal in G and N ≤M . Let N = N0EN1E . . .ENk = G be a subnormal
chain from N to G. By Wielandt’s Subnormality Theorem [KS, 6.7.1], 〈NM〉EEG.
Because of the maximality of N , 〈NM〉 = N and so NEM . Thus NE〈M,N1〉. Also,
by the maximality of N , N1 6≤M , whence N EG, and this proves the lemma. �

Lemma 2.3. Suppose that G is a finite group, p is a prime, and A is a p-subgroup
of G for which [A,G] ≤ NG(A). Then A ≤ Op(G) and [A,G] is a p-group.

Proof. Since

A ≤ Op([A,G]A) = Op(〈AG〉)EG,
A ≤ Op(G) and [A,G] is a p-group. �

Lemma 2.4. Suppose that G is a finite group and N is a normal subgroup of G.
Then Φ(N) ≤ Φ(G).

Proof. Assume that M is a maximal subgroup of G and that Φ(N) is not contained
in M . Then, as M is maximal in G and Φ(N) is normal in G, G = Φ(N)M . Thus

N = N ∩G = N ∩ Φ(N)M = Φ(N)(N ∩M).

Thus N = N ∩M and so M ≥ N ≥ Φ(N) which is not the case. Hence Φ(N) ≤ Φ(G)
as claimed. �

Lemma 2.5. Suppose that G is a finite group. Then

(a) Φp(G) is the intersection of all the maximal subgroups of G which contain a Sylow
p-subgroup of G;

(b) Op(G) ∈ Sylp(Φp(G)); and
(c) if Op(O

p(G)) = 1, then Φp(G) is nilpotent.
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Proof. Let F := Φp(G) and H be the intersection of all the maximal subgroups of
G which contain a Sylow p-subgroup of G. Obviously F ≤ H and H is normal in
G. Let T ∈ Sylp(H). Then the Frattini Argument gives G = NG(T )H. Since T
has p′ index in H, we infer that NG(T ) contains a Sylow p-subgroup of G. Thus
NG(T ) = G. Hence T ≤ Op(G) and so as Op(G) ≤ F , we have Op(G) = T . Assume
that F < H. Then there exists a maximal subgroup M of G containing T which does
not contain H. But then G = MH and, as M ∩ H ≥ T , we have that M contains
a Sylow p-subgroup of G which delivers the contradiction H ≤ M . Hence F = H
and Op(G) ∈ Sylp(F ), so proving (a) and (b). Suppose that Op(O

p(G)) = 1. Then
[Op(G), F ∩ Op(G)] = 1 and, since F = Op(G)(F ∩ Op(G)) by (b), we get that F is
nilpotent. Hence (c) holds. �

Lemma 2.6. Suppose G is a finite group with H and K subgroups of G. If G = HK
and H ∩K = [H,K] = 1, then Φ(G) = Φ(H)Φ(K).

Proof. Clearly we may assume H 6= 1 6= K. Now every maximal subgroup M of
G containing H, as H ∩ K = 1, must be of the form HM1 where M1 is a maximal
subgroup ofK. Since a similar statement holds for maximal subgroups ofG containing
K, intersecting over all maximal subgroups of G which contain either H or K shows
that Φ(G) ≤ Φ(H)Φ(K). Lemma 2.4 gives the reverse inclusion and so Φ(G) =
Φ(H)Φ(K). �

Lemma 2.7. Suppose that G is a finite group and p is a prime. Then Φp(O
p(G)) =

Op(G) ∩ Φp(G).

Proof. Suppose that G is a minimal counterexample to the statement in the lemma.
Set X := Op(G), F := Φp(G), FX := F ∩X and let S ∈ Sylp(G). By the minimality
of G, QX = 1.

Using Lemma 2.4, we get Φp(X) = Φ(X) ≤ Φ(G) ∩X ≤ FX . Hence FX 6≤ Φ(X).
Assume that M is a maximal subgroup of X and that M does not contain FX .

Then, as M is maximal in X and FX is normal in X, X = FXM . Since FX ∼=
FXQG/QG ≤ Φp(G)/QG = Φ(G/QG), FX is nilpotent of p′-order. Hence NFX

(FX ∩
M) > FX ∩M which together with the maximality of M in X implies that FX ∩M
is a normal subgroup of X. Furthermore, because of the maximality of M in X,
FX/(FX ∩M) has no non-trivial proper X-invariant subgroups. Hence FX/(FX ∩M)
is an elementary abelian t-group for some prime t with t 6= p. Let R =

⋂
(FX ∩M)G.

Assume thatR > 1. Then by induction we haveOp(G/R)∩Φp(G/R) = Φp(O
p(G/R)).

Furthermore, as R ≤ Φp(G), Φp(G/R) ≥ Φp(G)/R. Hence, using X/R = Op(G/R),
we have

FX/R = Φp(G)/R ∩X/R ≤ Φp(G/R) ∩Op(G/R) = Φp(X/R).

But we know thatM has index a power of t inX, soM/R ≥ Φp(X/R) by Lemma 2.5(a).
Thus FX/R ≤ Φp(X/R) ≤ M/R, which is a contradiction to our choice of M .
Therefore, R = 1 and, in particular, FX is an elementary abelian t-group. No-
tice that M/(FX ∩M) is a complement to FX/(FX ∩M) in X/(FX ∩M). Choose
K of minimal order in M such that X = KFX . Then K ∩ FX is normalized by
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both FX and K and so is normal in X. Since K ≤ M , K ∩ FX 6= FX . We
claim that K is a complement to FX in X. Suppose that K ∩ FX > 1. Then,
as R = 1, there exists g ∈ G such that Kg ∩ FX 6≤ FX ∩ M . It follows that
Kg(FX ∩ M) = Kg(FX ∩ Kg)(FX ∩ M) = KgFX = X as (FX ∩ M)(FX ∩ Kg) is
normal in X. Therefore, as Kg/(Kg ∩ (FX ∩M)) ∼= X/(FX ∩M) and X/(FX ∩M)
splits over FX/(FX ∩M), Kg/(Kg ∩ FX ∩M) splits over (Kg ∩ FX)/(Kg ∩ FX ∩M)
and thus K contains a proper subgroup K0 such that K = K0(K ∩ FX). But then
K0FX = KFX = X and we have a contradiction to the minimal choice of K. There-
fore, X splits over FX . By [As, 17.7] the total number of complements to FX in X
is |FX/CFX

(X)||H1(X,FX)| = ta for some integer a. Since S permutes (by conju-
gation) the complements to FX in X and S is a p-group, we get that there exists a
complement K to FX in X which is normalized by S. So KS is a subgroup of G and
FXKS = XS = G. Since KS ≥ QG, we infer that KS = G. As FX is a p′-group, we
get FX = 1 and we have a contradiction to FX 6≤ Φ(X). This concludes the proof of
Lemma 2.7 �

Proposition 2.8. Suppose that p is a prime, G is a finite non-abelian simple K-group
and S is a Sylow p-subgroup of G. If S is abelian, then NG(S) acts irreducibly on
Ω1(S).

Proof. See [GL, 12-1,pg 158] or [GLS3, 7.8.1]. �

3. p-minimal groups

The first result of this section is elementary to prove but is never-the-less a funda-
mental result for our work on p-minimal subgroups.

Lemma 3.1. For G a finite group, p a prime and S a Sylow p-subgroup of G, G =
〈PG(S)〉NG(S).

Proof. This is also proved in [PPS, 1.3]. By induction on |G|. If S is contained in
a unique maximal subgroup of G, then either S is normal in G or G ∈ PG(S) and
the lemma holds. Otherwise we can choose different maximal subgroups M1 and M2

of G which contain S. Since G = 〈M1,M2〉, applying induction to M1 and M2 gives
G = 〈PG(S)〉NG(S). �

We now move on to study the structure of p-minimal groups – here is the main
structural result for such groups.

Lemma 3.2. Suppose that p is a prime, P is p-minimal and S ∈ Sylp(P ). Let M

be the (unique) maximal subgroup of P containing S and set F :=
⋂
MP . Then the

following hold.

(a) QP ∈ Sylp(F ).
(b) F = Φp(P ) and, in particular, if Op(O

p(P )) = 1, then F is nilpotent.
(c) If N is a subnormal subgroup of P contained in M , then N ∩ S ≤ QP .
(d) If Op(P ) is p-closed, then P is a {t, p}-group for some prime t 6= p.
(e) For N E P , either Op(P ) ≤ N or N ≤ F . In particular, P = Op′(P ).
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(f) Op(P )/(F ∩Op(P )) is a minimal normal subgroup of P/(F ∩Op(P )).
(g) If P is soluble, then Op(P ) is p-closed and P is a {t, p}-group for some prime

t 6= p.
(h) Op(P ) = [Op(P ), P ].

Proof. Parts (a) and (b) follow immediately from Lemma 2.5(a) and (b).
(c) From Lemma 2.2, N ≤

⋂
MP = F . Hence by (a), N ∩ S ≤ QP .

(d) For r a prime divisor of |Op(P )| with r 6= p, Op(P ) possesses a Sylow r-
subgroup Sr such that Op(O

p(P ))Sr is S-invariant. If (d) were false, then we would
get SSr ≤M for all prime divisors r of |Op(P )|, which then forces M = P . Thus (d)
holds.

(e) Clearly S ≤ SN ≤ P and so either SN = P or SN ≤ M . The former
alternative yields Op(P ) ≤ N and the latter N ≤

⋂
MP = F , as required. If

Op′(P ) ≤ F , then by (a) QP = S a contradiction. Thus Op′(P ) � F and so P =

SOp(P ) ≤ Op′(P ).
(f) Note that Op(P ) > F ∩ Op(P ), as Op(P ) ≤ F would give FS = P whereas

FS ≤M . Then (f) follows immediately from (e).
(g) Suppose that P is soluble. Hence, by (f), Op(P )/(F ∩ Op(P )) is a t-group, t a

prime with t 6= p. Since F is p-closed by (a), F ∩Op(P ) is also p-closed and so Op(P )
is p-closed. Now (d) gives the result.

(h) As [Op(P ), P ]EP , applying (e) gives either Op(P ) ≤ [Op(P ), P ] or [Op(P ), P ] ≤
F . So to prove (e) we must show that [Op(P ), P ] ≤ F cannot occur. Suppose that
[Op(P ), P ] ≤ F . Then [Op(P ),M ] ≤ F and, as Op(P )M = P , we infer that M E P .
Hence M = F and so, by (a), S = QP . But then SEP contrary to P being p-minimal.
Thus [Op(P ), P ] ≤ F cannot hold. �

It is of course important to know about the quotients of a p-minimal group P . For
N a normal subgroup of P , having Op(P ) ≤ N is the kiss of death as far as P/N
being a p-minimal group (because a p-group is not p-minimal). However, as we see
next, this is the only bad case.

Lemma 3.3. Suppose that p is a prime, P is a p-minimal group and let N be a
normal subgroup of P with Op(P ) � N . Put P := P/N . Then

(a) P is a p-minimal group;
(b) P/Φp(P ) ∼= P/Φp(P ); and
(c) if P is narrow, then so is P .

Proof. Let S ∈ Sylp(P ) and let M be the unique maximal subgroup of P containing

S. By Lemma 3.2(e), as Op(P ) 6≤ N , N ≤ M and hence M is the unique maximal
subgroup of P containing S. Suppose that S E P . Then, by the Frattini argument,
P = NP (S)N ≤M , which is impossible. Therefore S is not normal in P and so P is
a p-minimal group. Clearly (b) follows from Lemma 3.2(b) and (c) follows from (a)
and (b). �

Lemma 3.4. PG(S) = POp′ (G)(S) and Op′(G) = 〈PG(S)〉.
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Proof. Set X := Op′(G). The inclusion PX(S) ⊆ PG(S) is obvious. Assume that
P ∈ PG(S). Then, by Lemma 3.2(e), P = Op′(P ) ≤ P ∩ X. Thus PG(S) ⊆
PX(S) and so PG(S) = PX(S). Since 〈PX(S)〉 = 〈PG(S)〉 is normalized by NG(S),
Lemma 3.1 implies that 〈PX(S)〉 is a normal subgroup of G which contains S. Thus
〈PX(S)〉 = Op′(G). �

We next see that p-minimal subgroups are nicely located within central products.

Lemma 3.5. Assume that G has subgroups H1 and H2 such that [H1, H2] = 1 and
G = H1H2. Then

PG(S) = PH1S(S) ∪ PH2S(S).

Proof. For i = 1, 2, set Si := S ∩ Hi and let P ∈ PG(S). Then, by Lemma 3.2(e),
P = 〈SP1 〉〈SP2 〉. Let M be the unique maximal subgroup of P containing S. We may
assume 〈SP1 〉 � M . So, using Lemma 3.2(e), Op(P ) ≤ 〈SP1 〉 ≤ H1 and P ≤ H1S.
Thus P ∈ PH1S(S). �

We continue this section by illuminating, in the next two lemmas, the structure of
narrow groups with Op(P/QP ) ∈ L1(p).

Lemma 3.6. Suppose that p is a prime, P is a narrow group and Op(P ) ∈ L1(p)
where P = P/QP . Then exactly one of the following holds.

(a) pa ≥ 4 and P is isomorphic to SL2(p
a) or PSL2(p

a) perhaps extended by field
automorphisms of order a power of p.

(b) pa ≥ 3 and P is isomorphic to SU3(p
a) or PSU3(p

a) perhaps extended by field
automorphisms of order a power of p.

(c) p = 2, a > 1 and P is isomorphic to 2B2(2
a).

(d) p = 3, a > 1 and P is isomorphic to 2G2(3
a) perhaps extended by field automor-

phisms of order a power of 3.
(e) p = 2, O2(P ) ∼= 3 and P ∼= SL2(2) ∼= Sym(3).
(f) p = 3, O3(P ) ∼= Q8 or 22 and, respectively, P ∼= SL2(3) ∼= 2.Alt(4) or PSL2(3) ∼=

Alt(4).
(g) p = 2, O2(P ) ∼= 31+2

+ or 32 and P/O2(P )QP
∼= SDih(16), 8 or Q8.

(h) p = 2, O2(P ) ∼= 5 and P ∼= Dih(10) or 2B2(2).
(i) p = 3 and P is isomorphic to 2G2(3)′ ∼= SL2(8) or 2G2(3) ∼= SL2(8) : 3.

Proof. The structure of Op(P ) follows directly from the structure of the rank one Lie
type groups and then the rest follows from the structure of the automorphism groups
of Op(P ) and the fact that P = Op′(P ) is p-minimal. However, we note in detail the
special case of P ∼= SU3(2) or PSU3(2). In these cases we have that O2(P ) ∼= 31+2

+ or 32

respectively. Thus Out(O2(P )) ∼= GL2(3) and so X := P/O2(P )QP is isomorphic to a
subgroup of SDih(16) (which is isomorphic to a Sylow 2-subgroup of GL2(3)). Since
P is 2-minimal, we have that X acts irreducibly on O2(P )/Φ(O2(P )) ∼= 32. Thus
X ∼= SDih(16), 8, Q8, Dih(8) or 4. However, the latter two groups act imprimitively
on O2(P )/Φ(O2(P )) and so these two possibilities do not arise in (g). �
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Lemma 3.7. Suppose that p is a prime, P is narrow and that Op(P ) ∈ L1(p) where
P := P/QP . Let S ∈ Sylp(P ), M be the unique maximal subgroup of P containing S

and R := NOp(P )(S ∩Op(P )).

(a) If P has abelian Sylow p-subgroups, then either
(i) P ∼= PSL2(p

a) or SL2(p
a) for some a ≥ 1;

(ii) p = 3 and P ∼= 2G2(3)′ ∼= SL2(8);
(iii) p = 2 and P ∼= 2B2(2) or Dih(10); or
(iv) p = 2 and P ∼= 31+2

+ : 8 or 32 : 8.

(b) If P has cyclic Sylow p-subgroups, then P ∼= PSL2(p), SL2(p), 2G2(3)′, 2B2(2),
Dih(10), 31+2

+ : 8, and 32 : 8.

(c) If D ≤ S is normal in M with D abelian but not elementary abelian, then D is

cyclic and either P is soluble, or p = 3 and P
′ ∼= 2G2(3)′.

(d) R is soluble.
(e) Either CS(R) = 1 or P is soluble.
(f) If R normalizes a non-trivial cyclic subgroup of S, then either |S| ≤ p3, or p = 2

and S ∼= SDih(16).
(g) If P is soluble, then p ≤ 3.

Proof. Suppose first that P is soluble. Then Lemma 3.6 implies that p = 2 or 3 and
gives an explicit description of P . With this information it is easy to verify all the
claims in the lemma in this case. So assume that P is not soluble. Let X = Op(P )
and T = S ∩ X. If X = 2G2(3)′ ∼= SL2(8). Then P has cyclic Sylow 3-subgroups if
and only if P = X. In this case we have S is cyclic of order 9 and is inverted by R.
Thus (a), (b), (c) and (d) hold in this case. Since S is either cyclic or extraspecial,
and R inverts T , CS(R) = 1. Hence (e) is true and, as |S| ≤ 33, (f) holds as well. So
we may assume that X 6∼= 2G2(3)′. Hence we now consider the cases when X is not
soluble and

X ∈ {SL2(p
a),PSL2(p

a), SU3(p
a),PSU3(p

a), 2B2(2
2a+1), 2G2(3

2a+1) | a ≥ 1}.

In particular, we note that p divides |X|. If P has abelian Sylow p-subgroups, then
so does X. Thus the candidates for the groups P with abelian Sylow p-subgroups are
as listed in (a) and (b). Now for (a) we note that if P 6= X, then, by Lemma 3.6 (a)
and (i), P includes field automorphisms of SL2(p

a). Since the field automorphism of
SL2(p

a) of order p centralizes a subgroup of X which has Sylow p-subgroups of order
pa/p, we have S is abelian if and only if P = X. Hence (a) holds and (b) follows from
(a).

Suppose that D ≤ S where D is abelian and is normalized by M = RS. We will
prove (c) by showing that D is elementary abelian. Since [R,D] ≤ R ∩ D ≤ T , we
infer that D ≤ T as in all the cases we are considering the field automorphisms of X
do not centralize R/T . If X ∼= SL2(p

a) or PSL2(p
a), we get D is elementary abelian.

Now suppose that X ∼= SU3(p
a) or PSU3(p

a). We use [H, II 10.12] to deduce the
required facts about the structure of X. If D 6≤ Z(T ), then, as R acts irreducibly
on T/Z(T ), we have T = DZ(T ). Since Z(T ) = Φ(T ), this means D = T is not
abelian which is impossible. Thus D ≤ Z(T ) is elementary abelian. In the case when
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X = 2B2(2
2a+1), a similar argument to the one above shows that D is elementary

abelian . Suppose that X ∼= 2G2(3
2a+1) with a ≥ 1. We use [HB3, 13.2] or [W]

to extract facts about the structure of T . This time R acts irreducibly on T/Φ(T ),
Φ(T )/Z(T ) and on Z(T ) and each of these groups has order 32a+1. Furthermore
Φ(T ) is elementary abelian. If D 6≤ Φ(T ), then T = DΦ(T ) and so D = T , again a
contradiction. Thus D ≤ Φ(T ) and so D is elementary abelian. This completes the
proof of (c). In particular, we note from the above proof that the irreducible action
of R implies that D ≥ Z(T ) for all abelian subgroups of S normalized by R. Thus if
R normalizes a non-trivial cyclic subgroup D of S, we must have Ω1(D) = Z(T ) has
order p. It follows that |S| = |T | ≤ p3 and thus (f) holds.

We know from the above sources that R/T is a cyclic group. Thus R is soluble and
(d) holds.

Finally for part (e) we cite [DS, (5.1)(e)]. �

For a p-group S, p a prime, we use J(S) to denote the elementary abelian version
of the Thompson subgroup of S. That is, J(S) := 〈Ae(S)〉 where Ae(S) is defined to
be the set of elementary abelian subgroups of S which have maximal rank.

Theorem 3.8. Suppose that p is a prime, P is a p-minimal group, CP (QP ) ≤ QP ,
S ∈ Sylp(P ) and P > 〈CP (Ω1(Z(S))), NP (J(S))〉. Let V := Ω1(Z(QP )) and P :=
P/CP (V ). Then there exist subgroups E1, . . . , En of P such that

(a) S acts transitively on {E1, . . . , En} by conjugation;
(b) [Ei, Ej] = 1 for i 6= j;
(c) either Ei ∼= SL2(p

n) for some n ≥ 1 or p = 2 and Ei ∼= Sym(2m + 1) for some
m ≥ 1; and

(d) V/CV (Ei) is a corresponding natural Ei-module and, for i 6= j, V/CV (Ei) is
centralized by Ej.

Proof. This is the C∗∗(G, T )-Theorem from [BHS]. �

Corollary 3.9. Suppose that P is as in Theorem 3.8 (and use the notation there). Let
M be the unique maximal subgroup of P containing S, and set E := 〈Ei | 1 ≤ i ≤ n〉.
Assume there is a non-trivial subgroup A of V which is centralized by M and such that
A ∩CV (E) = 1. Then p = 2, Ei ∼= Sym(2m + 1) and ACV (E)/CV (E) = CV/CV (E)(S)
has order 2.

Proof. As A is centralized by S and S is transitive on {E1, . . . , En}, A ∩ CV (E1) ≤
A ∩ CV (E) = 1. Therefore, |A| = |ACV (E1)/CV (E1)|. Now M ∩ E1 is the unique
maximal subgroup of E1 containing S ∩E1 ∈ Sylp(E1) and so CV/CV (E1)(M ∩E1) = 1

whenever V/CV (E1) is a natural module for E1
∼= SL2(p

n) with pn 6= 2. Since
ACV (E1)/CV (E1) ≤ CV/CV (E1)(M ∩E1), we infer that p = 2, E1

∼= Sym(2m + 1) and
then that |ACV (E1)/CV (E1)| = 2 by direct calculation in the natural Sym(2m + 1)-
module. �
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4. Finite groups with isolated subgroups

Throughout this section G is assumed to be a finite group, p a prime and S ∈
Sylp(G). Our first three results give some elementary properties of isolated subgroups,
Lemma 4.2(a) having already been mentioned in Section 1.

Lemma 4.1. Suppose that P ∈ PG(S) is an A-isolated subgroup of G. Then P is an
A-isolated subgroup of Op′(G).

Proof. SetX := Op′(G). Suppose that P ∈ PG(S) is A-isolated. Then, by Lemma 3.4,
P ∈ PX(S), A is normal in LX(P, S) and, of course, A 6≤ QP . Thus P is A-isolated
in X. �

Lemma 4.2. Let P ∈ PG(S) be an isolated subgroup of G. Then

(a) P 6≤ LG(P, S) and LG(P, S) 6= G; and
(b) NG(S) ≤ NG(P ).

Proof. Set L := LG(P, S). If P ≤ L, then QL ≤ QP , contrary to P being an isolated
subgroup. So P 6≤ L, and (a) holds. For g ∈ NG(S), P g ∈ PG(S) and, as NG(S) ≤ L
and P 6≤ L, P g 6≤ L. Since P g is also p-minimal, P = P g and the lemma holds. �

The next lemma is the initial structural result about groups which possess an
isolated subgroup.

Lemma 4.3. Assume that P ∈ PG(S) is an A-isolated subgroup, and set L :=
LG(P, S).

(a) Suppose that S ≤ H ≤ G and H 6≤ L. Then P ≤ H, LH(P, S) = L ∩ H is a
maximal subgroup of H and P is an A-isolated subgroup of H.

(b) P ∩ L is the unique maximal subgroup of P containing S.
(c) L is a maximal subgroup of G.

Proof. From Lemma 3.1, H = 〈PH(S)〉NH(S) and so, as H 6≤ L, P ∈ PH(S). Thus
P ≤ H. By Lemma 4.2(a) and the definition of L, PH(S) \ {P} = PL∩H(S). Since
NH(S) ≤ L ∩H, using Lemma 3.1 gives

LH(P, S) = 〈PH(S) \ {P}〉NH(S) = L ∩H.
If L ∩ H < K ≤ H, then clearly K 6≤ L and so, as S ≤ K, P ≤ K. Hence
PK(S) = PH(S). Therefore, by Lemma 3.1,

K = 〈PK(S)〉NK(S) = 〈PH(S)〉NH(S) = H.

Thus L∩H is a maximal subgroup of H. Since A is a normal p-subgroup of L∩H =
LH(P, S), P is an A-isolated subgroup of H and this proves (a). Parts (b) and (c)
follow from (a) by taking, respectively, H = P and H = G. �

We now obtain further restrictions on the structure of P .

Lemma 4.4. Suppose that P ∈ PG(S) is an A-isolated subgroup of G and M is the
unique maximal subgroup of P containing S. Put X := Op(P ) and F :=

⋂
MP .

Then
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(a) XA = 〈AP 〉;
(b) [XA,X ∩ F ] ≤ Op(X);
(c) X/Op(X) is either a central product of quasisimple groups transitively permuted

by S or there is a prime t such that X/Op(X) is a t-group of class at most 2; and
(d) Φp(X) = X ∩ F .

Proof. Since F is p-closed by Lemma 3.2(a) and A 6≤ QP , Lemma 3.2(e) implies that
Op(P ) ≤ 〈AP 〉. So (a) holds.

Set L := LG(P, S). Then (F ∩X)S ≤M = P ∩ L by Lemma 4.3(b). Thus F ∩X
normalizes A. Hence, by Lemma 3.2(a),

[A,F ∩X] ≤ QL ∩ F ∩X ≤ QP ∩X = Op(X).

Hence (b) follows from (a).
From Lemma 3.2(f) X/(X∩F ) is a minimal normal subgroup of P/(X∩F ). Hence

X/(X ∩ F ) is isomorphic to a direct product of simple groups. If X/(X ∩ F ) is an
elementary abelian t-group (t a prime), then X is p-closed, whence X/Op(X) is a
t-group by Lemma 3.2(d). Since [X,X ∩ F ] ≤ Op(X), X/Op(X) will also have class
at most two. In the case when X/(X ∩ F ) is a direct product of non abelian simple
groups, [X,X ∩F ] ≤ Op(X) and P being p-minimal force X/(X ∩F ) to be a central
product of quasisimple groups transitively permuted by S. So (c) holds.

Finally, combining Lemmas 2.7 and 3.2(b) gives

Φp(X) = X ∩ Φp(P ) = X ∩ F.
�

Lemma 4.5. Suppose that P ∈ PG(S) is an A-isolated subgroup of G.

(a) If A ≤ T E S, then NG(T ) ≤ LG(P, S).
(b) If S ≤ H ≤ G and QH ≤ QP , then P ≤ H.

Proof. Put L := LG(P, S). Assume that A ≤ T E S and NG(T ) 6≤ L. Since S ≤
NG(T ), applying Lemma 4.3(a) yields P ≤ NG(T ). But then

A ≤ T ≤ Op(NG(T )) ≤ QP ,

which is not the case. Thus NG(T ) ≤ L, and we have (a). Now assume that S ≤
H ≤ G with QH ≤ QP . If we have H ≤ L then

A ≤ QL ≤ QH ≤ QP ,

contrary to P being an A-isolated subgroup. Therefore H 6≤ L and, again by
Lemma 4.3(a), P ≤ H, so proving the lemma. �

As we shall see in Lemma 4.6 the property of having an isolated subgroup is pre-
served when taking certain quotients.

Lemma 4.6. Suppose that P ∈ PG(S) and let N be a normal subgroup of G with
Op(P ) � N . Put L := LG(P, S), Y := 〈Op(P )G〉 and G := G/N . Then the following
hold.

(a) P ∩N ≤ Φp(P ).
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(b) G = LY .
(c) If P is an isolated subgroup of G, then N ≤

⋂
LG and⋂

LG = CG(〈QG
L〉/QG) = CL(Y QG/QG).

(d) If P is an A-isolated subgroup of G, then P is an A-isolated subgroup of G.

Proof. Part (a) follows immediately from Lemmas 3.2(b) and 3.2(e), and part (b)
follows from Lemma 3.1 as LY contains NG(S) and all the p-minimal subgroups
containing S.

Set Z :=
⋂
LG. Since Op(P ) � N , P � NS and so NS ≤ L by Lemma 4.3(a).

Hence N ≤ Z. Put J := CG(〈QG
L〉/QG) and K := CL(Y QG/QG). Because P is an

isolated subgroup of G, Lemma 4.4(a) gives Op(P ) ≤ 〈QP
L〉 and so Y ≤ 〈QG

L〉. Since
QL E JS, P � JS and so JS ≤ L. Therefore J ≤ K. Because Z ≤ L, Z normalizes
QL and so [QL, Z] ≤ QL ∩ Z = QZ ≤ QG. So we have Z ≤ J ≤ K. Since QG ≤ K,
Y normalizes K and so K E 〈Y, L〉 = G. So, as K ≤ L, K ≤ Z. Thus Z = J = K
and (c) holds.

Since P = PN/N ∼= P/(P ∩ N), Lemma 3.3(a) implies that P ∈ PG(S). By (c)
we also have P 6≤ L. Now suppose that R ∈ PG(S) with R 6≤ L. Then, as N ≤ L by
(c), R 6≤ L. Since R ≥ NS ≥ S, we infer from Lemma 4.3(a) that P ≤ R and that,
as R is p-minimal, L ∩ R is the unique maximal subgroup of R containing NS. But
P ≥ S and so PN ≥ NS. Since P 6≤ L, we deduce that PN = R and that R = P .
Hence, as NG(S) = NG(S) ≤ L, L = LG(P , S). Finally assume that A ≤ QP . Let
K denote the inverse image in G of QP . Evidently 〈AP 〉 ≤ K. By Lemma 4.4(a),
Op(P ) ≤ 〈AP 〉. So Op(P ) ≤ K and consequently, as K/N is a p-group, we obtain
Op(P ) ≤ N whereas Op(P ) 6≤ N . Therefore P is A-isolated in G and so (d) holds. �

Lemma 4.7. Suppose that P ∈ PG(S) is an A-isolated subgroup of G. If Op(G) is
p-closed, then G = LG(P, S)P and 〈AG〉 = 〈AP 〉.

Proof. We set L := LG(P, S), and prove that G = LP . Because of Lemma 4.6(d),
without loss of generality we may assume that QG = 1. So Op(G) is a p′-group, and
hence Op(P ) is also a p′-group. Therefore, by Lemma 3.2(d), P is a {t, p}-group for
some prime t 6= p. For each prime r dividing |Op(G)|, Op(G) has an S-invariant
Sylow r-subgroup, denoted Sr, and we may select St so that P ≤ SSt. Therefore
P = (P ∩ St)S. If r is a prime divisor of |Op(G)| with r 6= t, then evidently P 6≤ SSr
and consequently SSr ≤ L by Lemma 4.3(a). Thus Op(G) = (Op(G) ∩ L)St. Since
SSt 6≤ L, Lemma 4.3(a) implies that SSt ∩ L = S(St ∩ L) is a maximal subgroup of
SSt. Now NSt(St ∩L) is S-invariant and so SNSt(St ∩L) is a subgroup of SSt. Thus
St ∩ L E St and S acts irreducibly on St/(St ∩ L). As St ∩ P 6≤ St ∩ L, this gives
St = (St ∩ L)(St ∩ P ). Hence we have

G = Op(G)S = (Op(G) ∩ L)StS

= (Op(G) ∩ L)(St ∩ L)(St ∩ P )S = LP.

Finally it follows that 〈AG〉 = 〈ALP 〉 = 〈AP 〉 and this completes the proof of
Lemma 4.7. �
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Corollary 4.8. Suppose that P ∈ PG(S) is an A-isolated subgroup of G. If Y :=
〈Op(P )G〉 is p-closed, then Y = Op(P ).

Proof. We have that P is an A-isolated subgroup of H := SY . Since Op(H) ≤ Y
and Y is p-closed, Op(H) is p-closed. Therefore as A is normalized by L := LG(P, S),
Lemmas 4.6(b) and 4.7 imply

〈AP 〉 = 〈ASY 〉 = 〈ALY 〉 = 〈AG〉.
By Lemma 4.4(a), Op(P ) is a characteristic subgroup of 〈AP 〉 and so Op(P ) is normal
in G. Thus Y = 〈Op(P )G〉 = Op(P ), as claimed. �

Lemma 4.9. Suppose that P ∈ PG(S) is an A-isolated subgroup of G, and set L :=
LG(P, S), Z :=

⋂
LG and Y := 〈Op(P )G〉.

(a) If N EG and N 6≤ L, then Y ≤ N .
(b) If N is a proper characteristic subgroup of Y , then N ≤ Z and [Y,N ] ≤ QG.
(c) Either Y = Op(P ) and there exists a prime t 6= p such that Y QG/QG is a t-group

of class at most 2, or Y QG/QG is a central product of quasisimple groups.
(d) Assume that Y 6= Op(P ), and let K ≤ Y be such that KQG/QG is a component

in Y QG/QG. Then Y QG/QG = 〈KS〉QG/QG and K ∩ P 6≤ L.
(e) Y ≤ F ∗p (G).

Proof. (a) Since N E G and N 6≤ L, S ≤ NS ≤ G and NS 6≤ L. Thus P ≤ NS by
Lemma 4.3(a) and so Op(P ) ≤ Op(NS) ≤ N . Therefore Y = 〈Op(P )G〉 ≤ N .

(b) Because Y 6≤ N , part (a) implies that N ≤ L. Hence N ≤
⋂
LG = Z. Thus,

by Lemma 4.6(c), [N, Y ] ≤ QG.
For the proof of parts (c) and (d), by Lemma 4.6(d), we may suppose without loss

of generality that QG = 1.
(c) Suppose that E(Y ) 6= Y . Then [E(Y ), Y ] = 1 by (b) and so E(Y ) = 1.

Hence F ∗(Y ) = F (Y ). Since CY (F ∗(Y )) ≤ F ∗(Y ) using (b) again we see that
Y = F ∗(Y ) = F (Y ). So Y is nilpotent and in particular is p-closed. Applying
Corollary 4.8 gives Y = Op(P ). Therefore either Y = E(Y ) or Y = Op(P ). Finally,
in the latter case, Lemma 4.4(c) implies that Y is a t-group of class at most 2 for
some prime t 6= p.

(d) Assume that Y 6= Op(P ) and let K be a component of Y . Then K E Y by (c).
Hence, as G = Y L,

〈KG〉 = 〈KY L〉 = 〈KL〉.
Since [Z, Y ] = 1 by Lemma 4.6(c), we infer that K 6≤ L. Therefore 〈KS〉 ≥ Op(P )
by Lemma 4.3(a). If K1 is a component of Y which is not contained in 〈KS〉, then
using (b) we get

Op(P ) ≤ 〈KS〉 ∩ 〈KS
1 〉 ≤ Z(Y ) ≤ Z ≤ L,

which is impossible. Therefore Y = 〈KS〉 and the first part of (d) holds.
Assume that K ∩P ≤ L, and argue for a contradiction. So K ∩P ≤ L∩P which is

the unique maximal subgroup of P containing S. Since (K ∩P )EEP , Lemma 3.2(c)
gives K ∩ S = (K ∩ P ) ∩ S ≤ QP . Hence, as Y = 〈KS〉, Y ∩ S = Y ∩QP E P and,
in particular, Op(P ) is p-closed. Set R := NY (Y ∩ S)S. Then Op(R) is p-closed and
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R ≥ P . Therefore, R = (R∩L)P and 〈AR〉 = 〈AP 〉 ≤ P , using Lemma 4.7. Suppose
that A ≤ NG(K). Then

[A,K ∩R] ≤ K ∩ 〈AR〉 ≤ K ∩ P ≤ L

which implies that [A,K∩R] normalizes A. It follows from Lemma 2.3 that [A,K∩R]
is a p-group. Consequently, as K ∩R = NK(K ∩ S) is p-closed,

[A,K ∩R] ≤ QP ∩K.

Thus [A,R] = 〈[A,K ∩ R]S〉 ≤ QP . But then 〈AR〉 = 〈AP 〉 ≥ Op(P ) is a p-group,
a contradiction. Hence we conclude that A 6≤ NG(K). So QL 6≤ NG(K). Since
[K ∩ L,QL] is a p-group we infer that (K ∩ L)Z(Y )/Z(Y ) is a p-group which yields
that K ∩L is nilpotent. Hence K ∩S = Op(K ∩L) and therefore Y ∩S = Op(Y ∩L).
Thus

Y ∩QP = Y ∩ S E 〈P, Y ∩ L〉 = Y,

and we conclude that Y is p-closed. Now a final application of Corollary 4.8 gives Y =
Op(Y ) = Op(P ). By assumption Y 6= Op(P ) and so this is the desired contradiction.
Therefore K ∩ P 6≤ L.

Part (e) follows from (c). �

Lemma 4.10. Suppose that P ∈ PG(S) is A-isolated and narrow and set Y :=
〈Op(P )G〉. Then either Y = Op(P ) or Y QG/QG is quasisimple.

Proof. As usual we set L := LG(P, S). We assume that Y 6= Op(P ) and aim to
show that Y QG/QG is quasisimple. Because of Lemma 4.6(d) there is no loss in
assuming that

⋂
LG = 1. By Lemma 4.9(c), Z(Y )QY < Y and so, by Lemma 4.9(b),

Z(Y )QY ≤
⋂
LG = 1. Thus we seek to show that Y is simple. Put F := Φp(P ) and

X := Op(P ). By Lemma 4.9(c) and 4.9(d), Y is semisimple and for any component
K of Y , Y = 〈KS〉 and K ∩ P 6≤ L. In particular, if K is normalized by S, then
Y = 〈KS〉 = K is simple and we are done. Hence we assume that K is not normalized
by S and look for a contradiction.

Suppose first thatXF/F is a non-abelian simple group. Observe that (K∩P )F/F∩
XF/F 6= 1. For if (K ∩ P )F/F ∩XF/F = 1, then (K ∩ P )F/F is a p-group and so,
as a result, (K ∩P )F ≤ FS ≤ L whereas K ∩P 6≤ L. Then, as X ≤ Y , (K ∩P )F/F
is normalized by XF/F and so (K ∩ P )F ≥ XF . Now selecting s ∈ S such that
Ks 6= K, we have

X = [X,X] ≤ [XF,XF ] ≤ [(K ∩ P )F, (Ks ∩ P )F ] ≤ [K,Ks]F = F,

which is a contradiction as X is not contained in F . Therefore, XF/F is an ele-
mentary abelian t-group for some prime t 6= p and P is a {t, p}-group. Moreover, by
Lemma 3.2(f), SF is a maximal subgroup of P . We have that Op(K ∩P ) ≤ Op(P ) =
X and so, as K ∩ P 6≤ L, X = 〈Op(K ∩ P )S〉. Set D := Op(K ∩ P ) and note that,
as Y is semisimple,

X =×
T∈DS

T.
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By Lemma 4.4(d), Φp(X) = X ∩ F . On the other hand, by Lemma 2.6, Φp(X) =

×T∈DS
Φp(T ) and so we conclude that

XF/F ∼= X/(X ∩ F ) =×
T∈DS

T/Φp(T ).

Since P is narrow, it must be that DS = {D} and so X = D. Hence K is normalized
by S, a contradiction. �

It is now a simple matter to deduce Theorems 1.3 and 1.6 and Corollary 1.4.

Proof of Theorem 1.3. Combining Corollary 4.8, Lemma 4.9(c), (d) and (e) together
with Lemma 4.10 yields Theorem 1.3. For part (b) we note that p divides |Y/QY |
else Y would be p-closed and so, by part (a), Y = Op(P ). �

Proof of Corollary 1.4. This follows from Theorem 1.3 and Lemma 4.9(c). �

Proof of Theorem 1.6. By Lemma 4.9(e), 〈PG(S)〉 ≤ F ∗p (G) and hence, by Lemma 3.1,
G = F ∗p (G)NG(S). The next lemma completes the proof of Theorem 1.6. �

Lemma 4.11. Suppose that QG = 1 and P1, P2 ∈ PG(S) are both isolated subgroups
of G. Then either 〈Op(P1)

G〉 = 〈Op(P2)
G〉 or [〈Op(P1)

G〉, 〈Op(P2)
G〉] = 1.

Proof. For i = 1, 2, set Yi = 〈Op(Pi)
G〉 and Li = LG(Pi, S). If Y1 and Y2 are products

of components of G then Theorem 1.3 guarantees that either Y1 = Y2 or [Y1, Y2] = 1.
So suppose that Y1 = Op(P1) and without loss that P1 6= P2. Then P1 ≤ L2 and so

[QL2 , Y1] = [QL2 , O
p(P1)] ≤ Op(O

p(P1)) ≤ QG = 1.

Since Op(P2) ≤ 〈QP2
L2
〉 by Lemma 4.4(a), we get Y2 ≤ 〈QG

L2
〉 and conclude that

[Y1, Y2] = 1. �

In the companion paper [MPR] we will investigate specific simple groups with an
eye to showing that they have or do not have an isolated narrow subgroup. The
remaining results in this section will be applied to proper subgroups of such groups.
And in all these results for P ∈ PG(S) an isolated subgroup of G we set L := LG(P, S)
and Y := 〈Op(P )G〉.
Lemma 4.12. Suppose that P ∈ PG(S) is an isolated subgroup in G. Then either P
is soluble or Op(P )QP/QP is a central product of quasisimple groups. If, additionally,
P is narrow, then either P is soluble or Op(P )QP/QP is quasisimple.

Proof. Let M := L∩P . Then, by Lemma 4.3(b), M is the unique maximal subgroup
of P containing S. Put F :=

⋂
MP . Then F is normal in P and contained in

L. Therefore [QL, F ] ≤ QL ∩ F ≤ S ∩ F = QP . Thus F/QP is centralized by
〈QP

L〉 ≥ Op(P ) and so FQP/QP ≤ Z(Op(P )QP/QP ). Since P ∈ PG(S), we have that
either P is soluble or Op(P )QP/QP is a central product of quasisimple groups. If P
is narrow, the latter case implies that Op(P )QP/QP is quasisimple. �
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Lemma 4.13. Suppose that Op(G) is quasisimple and set G := G/Z(Op(G)). If
P ∈ PG(S) is an A-isolated subgroup of G, then P is an A-isolated subgroup of G.

Proof. Set Z := Z(Op(G)) and L := LG(P, S). If Op(P ) 6≤ Z, then the result
follows from Lemma 4.6(d). So assume Op(P ) ≤ Z. Then [Op(P ), Op(L)] = 1
which, as G = 〈L,Op(P )〉, means that Op(L) E G. But Op(L) ≤ Op(G) and Op(G)
being quasisimple implies that Op(L) ≤ Z or Op(L) = Op(G). Both possibilities are
impossible as, in the first case, we get that G = SZ which is soluble and, in the
second case, we get P = Op(P )S ≤ Op(G)S = Op(L)S = L. �

Lemma 4.14. Suppose that QG = 1, F (G) = CG(E(G)) and G operates transitively
by conjugation on the set of components of G. If P ∈ PG(S) is narrow and isolated
in G, then E(G) = Y is quasisimple.

Proof. Assume that P is a narrow isolated subgroup of G. Suppose first that Y is
soluble. Then Corollary 1.4(b) implies that Y = Op(P ). As G = LY , we have that
QLY EG and this subgroup is also soluble. Hence QLY centralizes E(G). But then
QLY ≤ CG(E(G)) which is nilpotent by assumption. Thus QLY is nilpotent and this
contradicts QL 6≤ QP . Thus Y is not soluble and so Lemma 4.10 implies that Y is a
component of G. Since G acts transitively on the set of components of G, we obtain
Y = E(G) and this proves the lemma. �

Lemma 4.15. Suppose that QG = 1, N is a normal subgroup of G with N soluble
and CG(N) ≤ N . If P ∈ PG(S) is isolated in G, then Op(P )EG and P is soluble.

Proof. Suppose that N ≤ L. Then Op(P ) 6≤ N and hence Y 6≤ N . However,
Lemma 4.6(c) implies that Y ≤ CG(N) ≤ N , which is a contradiction. Therefore
N 6≤ L. Hence P ≤ NS by Lemma 4.3(a). But then Op(P ) ≤ N and, as N is
soluble, Lemma 4.9(c) gives the result. �

Lemma 4.16 exploits the fact that, as observed in Lemma 4.2(b), an isolated p-
minimal subgroup is normalized by NG(S).

Lemma 4.16. Suppose that P ∈ PG(S) is an isolated subgroup of G. Assume that
one of the following holds.

(a) NG(S) acts irreducibly on S.
(b) NG(S) = L.
(c) NG(S) is contained in a unique maximal subgroup of G.

Then P EG.

Proof. Suppose (a) holds. Since NG(S) ≤ L, we get that QL = S and so (b) holds.
Now suppose (b) holds. Then, by Lemma 4.3(c), NG(S) is a maximal subgroup of G
and hence (c) holds. So we may assume that (c) holds. Since NG(S) ≤ L, we get that
L is the unique maximal subgroup of G containing NG(S). Because NG(S)P ≤ NG(P )
and P � L, we must have G = NG(P ) and so P EG. �
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Lemma 4.17. Suppose that G is an almost simple group, and set X := F ∗(G). If
P ∈ PG(S) is A-isolated, then P ∈ PXS(S) is A-isolated.

Proof. Note that if H ≥ XS, then Op(H) ≤ CG(X) = CG(F ∗(G)) = 1. Thus
LG(P, S) 6≥ XS, whence P ≤ XS. �

5. The Centre of LG(P, S)

The main purpose of this section is to prove Theorem 1.7.

Theorem 5.1. Suppose that p is a prime and G a finite CK-group. If P ∈ PG(S)
with Op(P/QP ) ∈ L1(p), then either Op(P )EG or Op(Z(LG(P, S))) ≤ QP .

Proof. Suppose the theorem is false and let G be a minimal counterexample. Again
set L := LG(P, S) and Y := 〈Op(P )G〉. So we have Op(P ) is not normal in G and
D := Op(Z(L)) 6≤ QP . Thus P is D-isolated. The minimality of G gives

5.1.1. QG = 1.

Thus, by Theorem 1.3,

5.1.2. Y is a central product of quasisimple simple groups each of which has order
divisible by p.

Since QP ≤ L, we have [QP , D] = 1 and so, by Lemma 4.4(a),

5.1.3. [QP , O
p(P )] = 1.

We next show that

5.1.4. P is soluble and Op(P ) is a p′-group.

Since P ∩ L centralizes DQP/QP , [DS, (5.1)e] implies that P is soluble. Hence
(5.1.4) now follows from (5.1.3).

5.1.5. D ∩QP = 1.

By (5.1.3) D ∩QP is normalized by 〈Op(P ), L〉 = G. Thus (5.1.1) gives (5.1.5).

Pick 1 6= a ∈ D of order p and set A := 〈a〉. Then, by (5.1.5), A 6≤ QP . Since L is
a maximal subgroup of G, (5.1.1) implies

5.1.6. NG(A) = L = CG(A).

5.1.7. A is not weakly closed in G (with respect to S).

Suppose that A is weakly closed in G. If there exists g ∈ G such that ag ∈ S, then
Ag ≤ S whence A = Ag. So g ∈ NG(A) and hence, by (5.1.6), ag = a. Therefore
a is weakly closed in G and, in particular, in AY (with respect to S ∩ AY ). Now,
as G is a CK-group, [GLS3, Remark 7.8.3] implies that [A, Y ] is a p′-group. Hence
by (5.1.2), [A, Y ] ≤ Z(Y ) and so the Three Subgroup Lemma and (5.1.2) once more
give [A, Y ] = 1. Hence, using (5.1.6), Op(P ) ≤ Y ≤ L, a contradiction and so (5.1.7)
holds.
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By (5.1.7) there exists a p-subgroup R of G with A ≤ R and NG(R) � NG(A) = L.
So there also exists a subgroup H of G with H � L and A ≤ QH . Choose such an
H with |H ∩ L|p maximal and then with |H| minimal. Let T ∈ Sylp(H ∩ L). Since
A E L we may assume that T ≤ S. If T = S, then, as H 6≤ L, P ≤ H and then
A ≤ QH ≤ QP , a contradiction. Therefore,

5.1.8. S > T .

Next we show

5.1.9. Let U be a p-group with T ≤ U . Then U ≤ NG(U) ≤ L. In particular,
T ∈ Sylp(H) and H 6= NH(T ).

We have A ≤ T ≤ Op(NG(U ∩ L)) and either U ∩ L > T or, by (5.1.8),

|NG(U ∩ L) ∩ L|p > |U ∩ L| = |T |.
Hence |NG(U ∩ L) ∩ L|p > |T | = |H ∩ L|p and so, by the maximal choice of H,
NG(U ∩ L) ≤ L. In particular, U = U ∩ L and (5.1.9) holds.

5.1.10. L ∩H is the unique maximal subgroup of H containing T . In particular,
H ∈ PH(T ).

Indeed let T ≤M < H. Then A ≤ QH ≤ QM , |M ∩L|p = |T | = |H ∩L|p and thus
the minimal choice of H implies M ≤ L. So M ≤ L ∩H. By (5.1.9), T 5 H and so
H ∈ PH(T ).

5.1.11. CG(Op(H)) ∩ Z(S) = 1.

Suppose that E := CG(Op(H))∩Z(S) > 1 and put C := CG(E). Then, by (5.1.1),
G > C ≥ 〈Op(H), S〉. Note that S ≤ C and C � L. Therefore, by Lemma 4.3(a),
P ≤ C. Also L ∩ C = LC(P, S) and D ≤ Z(L ∩ C). Thus Op(Z(L ∩ C)) 6≤ QP and
hence Op(P )E C by induction. We now have C = (L ∩ C)Op(P ). So

〈AOp(H)〉 ≤ 〈AC〉 = 〈A(L∩C)Op(P )〉 = 〈AOp(P )〉 ≤ Op(P )A.

Since also 〈AOp(H)〉 ≤ QH , we get that 〈AOp(H)〉 ≤ Op(P )A∩QH = A by (5.1.4). But
then, by (5.1.6), Op(H) ≤ NG(A) = L, a contradiction.

By the maximal choice of H, T ∈ Sylp(NG(QH)). Hence Z(S) ≤ T ≤ H. Since
H ∈ PH(T ) by (5.1.10), Lemma 3.2(a) and (e) imply that either CH(QH) ≥ Op(H) or
QH ∈ Sylp(CH(QH)) and CH(QH) is p-closed. In the former case, Op(H) ≤ CG(A) =
L which is not the case. Thus, as Z(S) ≤ CH(QH), we have

5.1.12. CH(QH) ≤ QH and Z(S) ≤ QH .

5.1.13. p = 2 and Ω1(Z(S)) = A has order 2.

Since A ≤ Z(T ) and H is p-minimal by (5.1.10), we have CH(Ω1(Z(T ))) ≤ H ∩L.
Also, since T < S, NS(J(T )) > T and so the maximal choice of H shows that J(T ) is
not normal inH. It follows thatH > H∩L ≥ 〈NH(J(T )), CH(Ω1(Z(T )))〉. Therefore,
since Ω1(Z(S)) ≤ Ω1(Z(QH)) and H ∩ L centralizes A, we infer from Corollary 3.9,
(5.1.11) and (5.1.12) that p = 2 and |A| ≤ |Ω1(Z(S))| = 2.
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5.1.14. QP = 1.

Since A ∩ QP = 1 by (5.1.5), (5.1.13) implies QP ∩ Ω1(Z(S)) = 1. Hence also
QP = 1.

5.1.15. QH is a fours group, T ∼= Dih(8), H/CH(QH) ∼= Sym(3), S ∼= SDih(16)
and O2(P ) ∼= 32 or 31+2

+ .

From (5.1.4), (5.1.14) and Lemma 3.6, |S| ≤ 24. Note that 1 < A < QH < T < S.
Thus |S| = 24, |QH | = 4 and |T | = 8. Since A 5 H, QH

∼= 22 and since QH 5 S,
T = 〈QS

H〉 ∼= Dih(8). Together with Lemma 3.6 we infer that (5.1.15) holds.

5.1.16. G has a unique conjugacy class of involutions.

By (5.1.15) all involutions in S are conjugate in S to an involution in the fours

group QH . Since H acts transitively by conjugation on Q]
H , (5.1.16) follows.

From (5.1.15) and (5.1.16) either G is simple or G′ is simple and T ∈ Syl2(G
′).

Suppose first that G is simple. Then, since S ∼= SDih(16), G ∼= Mat11 or G ∼= PSLε3(q)
with q + ε ≡ 4 (mod 8) by [ABG]. In the first case there exists S ≤ K ≤ G with
K ∼= Mat10. So K ∈ PG(S), but neither P = K nor K ≤ L, a contradiction. If
ε = +, then L = CG(A) ∼= GL2(q) is not a maximal subgroup of G. So ε = −. In
this case, as the Sylow 3-subgroups of PSL−3 (q) are abelian, we have O2(P ) = 32 and
P ∼= 32 : SDih(16). Since the Sylow 3-subgroups of G are not cyclic, we infer that 3
divides q + 1 and that |Z(SL−3 (q))| = 3. It follows that the preimage J of O2(P ) in
SL−3 (q) is extraspecial and that NSL−3 (q)(J)/J ∼= Q8. This contradicts S ≤ NG(O2(P ))

and |S| = 24. Therefore G 6∼= PSL−3 (q). So G is not simple.
Hence G′ is simple and by [GW], G′ ∼= Alt(7) or G′ ∼= PSL2(q) with q ∼= 7, 9

(mod 16). The former possibility is ruled out as a Sylow 2-subgroup of Sym(7) is not
isomorphic to SDih(16). Hence G′ ∼= PSL2(q). If q 6= 3a, then G has cyclic Sylow
3-subgroups and this contradicts O2(P ) ≤ G′. Thus q = 3a. In this case P ∩ G′
normalizes a 3-subgroup and hence a Sylow 3-subgroup U of G′. But NG′(U)/U is
cyclic, T ≤ G′ and P ≥ T ∼= Dih(8). This contradiction completes the proof of
Theorem 5.1. �

Our final observation turns out to be very useful in [MPR].

Corollary 5.2. Let p be a prime and G be a finite CK-group with QG = 1. Suppose
that P ∈ PG(S) is an isolated subgroup of G with Op(P/QP ) ∈ L1(p) and that Op(P )
is not normal G. Then the following hold.

(a) If [QP , O
p(P )] = 1, then CQL

(Op(L)) = 1.
(b) QL ∩Op(G) 6= 1.
(c) L ∩Op(G) is a p-local subgroup of Op(G).

Proof. Put D := Op(Z(L)) where L := LG(P, S). By Theorem 5.1, D ≤ QP and so
[D,Op(P )] = 1 and DE 〈Op(P ), L〉 = G. Thus D = 1 and, since CCQL

(Op(L))(S) ≤ D,

(a) holds.
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For (b), suppose that QL ∩Op(G) = 1. Then

[QL, Op(O
p(P ))] ≤ QL ∩Op(P ) ≤ QL ∩Op(G) = 1.

Therefore [〈QP
L〉, Op(O

p(P ))] = 1. Since Op(P ) ≤ 〈QP
L〉 by Lemma 4.4(a), we get

[Op(P ), Op(O
p(P ))] = 1. Now

[QP , O
p(P )] ≤ QP ∩Op(P ) = Op(O

p(P )),

and so [QP , O
p(P ), Op(P )] = 1. Hence [QP , O

p(P )] = 1. Thus CQL
(Op(L)) = 1 by

part (a), Further

[QL, O
p(L)] ≤ QL ∩Op(L) ≤ QL ∩Op(G) = 1

and consequently QL ≤ CQL
(Op(L)) = 1, a contradiction. Hence QL ∩ Op(G) 6= 1

and (b) holds. �
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