The Fitting Submodule

U. Meierfrankenfeld
B. Stellmacher
Department of Mathematics, Michigan State University, East Lansing MI 48840
meier@math.msu.edu
Mathematisches Seminar, Christian-Albrechts- Universität, D24098 Kiel
stellmacher@math.uni-kiel.de

Abstract

Let H be a finite group, \mathbb{F} a field and V a finite dimensional $\mathbb{F} H$-module. We introduce the Fitting submodule $\mathrm{F}_{V}(H)$, an $\mathbb{F} H$ submodule of V which has properties similar to the generalized Fitting subgroup of a finite group.

1 Introduction

Throughout this paper \mathbb{F} is a field of characteristic p, p a prime, H is a finite group, and V is a finite dimensional $\mathbb{F} H$-module.

We will use the concept of the generalized Fitting subgroup of a finite group as a model for our definition of the Fitting submodule $\mathrm{F}_{V}(H)$ of V. In particular, $\mathrm{F}_{V}(H)$ will be defined by means of components which in turn resemble components of finite groups.

Our first result can be stated without mentioning the Fitting submodule:
Theorem 1.1 Suppose that V is faithful and $\mathrm{O}_{p}(H)=1$. Then there exists an $\mathbb{F} H$-section of V that is faithful and semisimple.

In fact 1.1 is a corollary of 1.3 and 1.4 below, which show that $\mathrm{F}_{V}(H) / \operatorname{rad}_{\mathrm{F}_{V}(H)}(H)$ has the desired properties.

To introduce the concept of a Fitting submodule we need a few basic definitions, some of them inspired by corresponding definitions in finite group theory.
Definition 1.2 (a) H acts nilpotently on V if $[W, H]<W$ for all non-zero $\mathbb{F} H$-submodules W of V.
(b) $\mathrm{C}_{H}^{*}(V)$ is the largest normal subgroup of H acting nilpotently on V. It is elementary to show that $\mathrm{C}_{H}^{*}(V) / \mathrm{C}_{H}(V)=\mathrm{O}_{p}\left(H / \mathrm{C}_{H}(V)\right)$ and that $\mathrm{C}_{H}^{*}(V)$ is the largest subnormal subgroup of H acting nilpotently on V.
(c) V is H-reduced if $C_{H}^{*}(V)=C_{H}(V)$ (that is if any normal subgroup of H which acts nilpotently on V already centralizes $V)$.
(d) $\mathrm{C}_{V}^{*}(H)$ is largest $\mathbb{F} H$-submodule of V on which H acts nilpotently (so $\mathrm{C}_{V}^{*}(H)=\mathrm{C}_{V}\left(\mathrm{O}^{p}(H)\right)$;
(e) $\operatorname{rad}_{V}(H)$ is the intersection of the maximal $\mathbb{F} H$-submodules of $V\left(s o \operatorname{rad}_{V}(H)\right.$ is the smallest $\mathbb{F} H$-submodule with semisimple quotient).

[^0](f) Let W be an $\mathbb{F} H$ submodule of V and $N \unlhd H$. Then W is N-quasisimple if W is H-reduced, $W / \operatorname{rad}_{W}(H)$ is simple, $W=[W, N]$ and N acts nilpotently on $\operatorname{rad}_{W}(H)$. If $N=H$ we often write quasisimple rather than H-quasisimple.
$(g) \mathrm{S}_{V}(H)$ is the sum of all simple $\mathbb{F} H$-submodules of V, and $\mathrm{E}_{H}(V):=\mathrm{C}_{\mathrm{F}^{*}(H)}\left(\mathrm{S}_{V}(H)\right)$.
(h) W is a component of V (or an H-component if we want to emphasize the dependence on H) if either W is a simple $\mathbb{F} H$-submodule with $\left[W, \mathrm{~F}^{*}(H)\right] \neq 0$ or W is an $\mathrm{E}_{H}(V)$-quasisimple $\mathbb{F} H$-submodule. The Fitting submodule $\mathrm{F}_{V}(H)$ of V is the sum of all components of V.
(i) $\mathrm{R}_{V}(H):=\sum \operatorname{rad}_{W}(H)$, where the sum runs over all the components of V, and $\overline{\mathrm{F}_{V}(H)}:=$ $\mathrm{F}_{V}(H) / \mathrm{R}_{V}(H)$.

Theorem 1.3 The Fitting submodule $\mathrm{F}_{V}(H)$ is H-reduced and $\mathrm{R}_{V}(H)$ is a semisimple $\mathbb{F F}^{*}(H)$ module. Moreover, $\mathrm{R}_{V}(H)=\operatorname{rad}_{\mathrm{F}_{V}(H)}(H)$; in particular $\mathrm{F}_{V}(H) / \mathrm{R}_{V}(H)$ is semisimple.
Theorem 1.4 Let V be faithful and H-reduced. Then also $\mathrm{F}_{V}(H)$ and $\mathrm{F}_{V}(H) / \mathrm{R}_{V}(H)$ are faithful and H-reduced.

In section 3 we will discuss the relation between the Fitting submodule $\mathrm{F}_{V}(H)$ and the Fitting submodule $\mathrm{F}_{V}(N)$, where N is a subnormal subgroup of H. Finally, in section 4 the structure of the $\mathrm{F}^{*}(H)$-components of V is given in the case where \mathbb{F} is a finite or algebraically closed field.

2 The Fitting Submodule

We will frequently use the following well-known and elementary properties of the generalized Fitting subgroup $\mathrm{F}^{*}(H)$ of H, see for example [1]:

Lemma 2.1 Let $E \leq H$.
(a) If $E \unlhd H$, then $\mathrm{F}^{*}(E)=E \cap \mathrm{~F}^{*}(H)$.
(b) If $E=\mathrm{F}^{*}(E)$, then $E=\mathrm{O}_{p}(E) \mathrm{O}^{p}(E)$ and $\left[\mathrm{O}^{p}(E), \mathrm{O}_{p}(E)\right]=1$.
(c) If E is a product of components of H, then $\mathrm{F}^{*}(H)=E \mathrm{C}_{\mathrm{F}^{*}(H)}(E)$.
(d) If E is a component of H and $N \unlhd H$, then either $E \leq N$ or $[E, N]=1$.

Lemma 2.2 Let E and P be normal subgroups of H with $[E, P] \leq \mathrm{C}_{H}(V)$. Suppose that $V=[V, E]$ and $V / \mathrm{C}_{V}^{*}(E)$ is a simple $\mathbb{F} H$-module. Then the following hold:
(a) $\operatorname{rad}_{V}(H)=\mathrm{C}_{V}^{*}(E)$.
(b) V is a semisimple $\mathbb{F} P$-module, and every simple $\mathbb{F} P$-submodule of V is isomorphic to a simple $\mathbb{F} P$-submodule of $V / \mathrm{rad}_{H} V$. In particular, if I_{1} and I_{2} are simple $\mathbb{F} P$-submodules of V, then there exists $h \in H$ such that I_{1} and I_{2}^{h} are isomorphic as $\mathbb{F} P$-modules.
(c) If $E=\mathrm{F}^{*}(E)$, then $\mathrm{C}_{H}\left(V / \operatorname{rad}_{V}(H)\right)=\mathrm{C}_{H}(V), V$ is H-reduced and V is E-quasisimple as an $\mathbb{F} H$-module.
(d) If $E=\mathrm{F}^{*}(E)$, then E centralizes $\operatorname{rad}_{V}(H)$ and $\operatorname{rad}_{V}(H)$ is semisimple as an $\mathbb{F} E P$-module.
(e) Either $[V, P]=0$, or $\mathrm{C}_{V}(P)=0$ and $[V, P]=V$.

Proof: (a): Let Y be a maximal $\mathbb{F} H$-submodule of V. If $\mathrm{C}_{V}^{*}(E) \not \approx Y$ then $V=Y+\mathrm{C}_{V}^{*}(E)$. So E acts nilpotently on V / Y, contradicting $V=[V, E]$. Thus $\mathrm{C}_{V}^{*}(E) \leq Y$ and so $\mathrm{C}_{V}^{*}(E) \leq$ $\operatorname{rad}_{V}(H)$. The other inclusion follows from the simplicity of $V / \mathrm{C}_{V}^{*}(E)$.
(b): Since $V / \operatorname{rad}_{V}(H)$ is a simple H-module, Clifford Theory shows that $V / \operatorname{rad}_{V}(H)$ is a semisimple $\mathbb{F} P$-module and that any two simple $\mathbb{F} P$-submodules of $V / \operatorname{rad}_{V} H$ are isomorphic up to conjugacy under H. Let U be the sum of all $\mathbb{F} P$-submodules of V that are isomorphic to some simple $\mathbb{F} P$-submodule of $V / \operatorname{rad}_{V}(H)$. It remains to show that $V=U$.

Let $x \in \mathrm{O}^{p}(E)$. Then

$$
\phi: V \rightarrow[V, x] \text { with } v \mapsto[v, x]
$$

is an $\mathbb{F} P$-module homomorphism since $[E, P] \leq \mathrm{C}_{H}(V)$, so $[V, x] \cong_{\mathbb{F} P} V / C_{V}(x)$. As $\operatorname{rad}_{V}(H) \leq$ $\mathrm{C}_{V}(x)$ and $V / \operatorname{rad}_{V}(H)$ is a semisimple $\mathbb{F} P$-module, $[V, x] \leq U$. Hence also

$$
V=[V, E]=\left[V, \mathrm{O}^{p}(E)\right] \leq U
$$

and thus $V=U$.
(c): Put $C:=\mathrm{C}_{H}\left(V / \operatorname{rad}_{V}(H)\right)$. By (a) $C \cap E$ acts nilpotently on $V / \operatorname{rad}_{V}(H)$ and on $\operatorname{rad}_{V}(H)$. Thus $\mathrm{O}^{p}(C \cap E)$ centralizes V. By 2.1(a), $C \cap E=\mathrm{F}^{*}(C \cap E)$, and by 2.1(b),

$$
C \cap E=\mathrm{O}_{p}(C \cap E) \mathrm{O}^{p}(C \cap E) \leq \mathrm{O}_{p}(E) \mathrm{C}_{E}(V) \text { and }\left[\mathrm{O}_{p}(E), \mathrm{O}^{p}(E)\right]=1
$$

Thus $\left[\mathrm{O}^{p}(E), C \cap E\right] \leq \mathrm{C}_{E}(V)$. Since

$$
\left[V, C, O^{p}(E)\right] \leq\left[\operatorname{rad}_{V}(H), \mathrm{O}^{p}(E)\right]=0 \text { and } V=\left[V, \mathrm{O}^{p}(E)\right]
$$

the Three Subgroups Lemma gives $C \cap E \leq C_{H}(V)$ and then that $C \leq \mathrm{C}_{H}(V)$. Clearly $\mathrm{C}_{H}(V) \leq C$ and so $C=\mathrm{C}_{H}(V)$. Since $\mathrm{C}_{H}^{*}(\bar{V})$ acts trivially on every simple $\mathbb{F} H$-section of V, $\mathrm{C}_{H}^{*}(V) \leq C=\mathrm{C}_{H}(V)$ and so V is H-reduced. Together with (a) we see that V fulfills all the conditions of an E-quasisimple $\mathbb{F} H$-module.
(d): According to (c), $\left[\operatorname{rad}_{V}(H), \mathrm{O}^{p}(E)\right]=0$ and $\left[V, \mathrm{O}_{p}(E)\right]=0$. Hence E centralizes $\operatorname{rad}_{V}(H)$ since $E=\mathrm{F}^{*}(E)=\mathrm{O}_{p}(E) \mathrm{O}^{p}(E)$.

By (b) V and so also $\operatorname{rad}_{V}(H)$ is a semisimple $\mathbb{F} P$-module. Thus $\operatorname{rad}_{V}(H)$ is a semisimple $\mathbb{F} E P$-module.
(e): This is an immediate consequence of (b).

Lemma 2.3 Let $N \unlhd H$ with $N \leq \mathrm{E}_{H}(V)$ and $N \not \leq \mathrm{C}_{H}^{*}(V)$. Let W be an $\mathbb{F} H$-submodule of V that is minimal with respect to $N \not \leq \mathrm{C}_{H}^{*}(W)$. Then
(a) W is a H-component of V.
(b) $W=[W, N]$ and $\mathrm{C}_{W}^{*}(N)=\operatorname{rad}_{W}(H)=\mathrm{C}_{W}\left(\mathrm{E}_{H}(V)\right) \neq 0$.
(c) There exists a unique normal subgroup M of H minimal with respect to $M \leq \mathrm{E}_{H}(V)$ and $[W, M] \neq 0$.
(d) $M \leq N, W=[W, M]$ and M is a product of components of H transitively permuted by H.
(e) $\mathrm{C}_{\mathrm{E}_{H}(V)}(M)=\mathrm{C}_{\mathrm{E}_{H}(V)}(W)$.

Proof: The minimality of W implies that $\mathrm{C}_{W}^{*}(N)$ is the unique maximal H-submodule of W. Thus
$1{ }^{\circ} \quad \mathrm{C}_{W}^{*}(N)=\operatorname{rad}_{W}(H)$ and $W / \operatorname{rad}_{W}(H)$ is a simple $\mathbb{F} H$-module,
If $[W, N] \leq \mathrm{C}_{W}^{*}(N)$, then N acts nilpotently on W, a contradiction. Thus $[W, N] \not \leq C_{W}^{*}(N)$ and the minimality of W gives
$\mathbf{2}^{\circ} \quad W=[W, N]$.

Observe that by $2.1 N=\mathrm{F}^{*}(N)$. Hence by $2.2(\mathrm{c})$ applied with N and W in place of E and V, respectively:
$\mathbf{3}^{\circ} \quad W$ is a H-reduced.
Since $[W, N] \neq 0$ and $N \leq \mathrm{E}_{H}(V), W$ is not a simple H-module. Thus
$4^{\circ} \quad \operatorname{rad}_{W}(H) \neq 0$.
Choose $M \unlhd H$ minimal in N with $[W, M] \not \leq \operatorname{rad}_{W}(H)$. Then
$5^{\circ} \quad W=[W, M]=\left[W, \mathrm{O}^{p}(M)\right]$,
and so by the minimality of M and $2.1, M=\mathrm{O}^{p}(M)=\mathrm{F}^{*}(M)$. Hence M is a p^{\prime}-group or a product of components transitively permuted by H. As a subgroup of N, M acts nilpotently on $\operatorname{rad}_{W}(H)$, so
$6^{\circ} \quad\left[\operatorname{rad}_{W}(H), M\right]=0$.
Assume that M is a p^{\prime}-group. Then Maschke's Theorem implies $W=\mathrm{C}_{W}(M) \oplus[W, M]$ and $\operatorname{rad}_{W}(M)=\mathrm{C}_{W}(M)=0$, which contradicts $\left(4^{\circ}\right)$. Thus
$\mathbf{7}^{\circ} \quad M$ is a the product of components of H transitively permuted by H.
By 2.1(c)

$$
\begin{equation*}
\mathrm{E}_{H}(V)=M \mathrm{C}_{\mathrm{E}_{H}(V)}(M) \tag{*}
\end{equation*}
$$

We now apply $2.2(\mathrm{e})$ with $E:=M, P:=\mathrm{C}_{\mathrm{E}_{H}(V)}(M)$ and W in place of V. Since $P \leq \mathrm{E}_{H}(V)$, P centralizes all simple $\mathbb{F} H$-submodules of W. Thus $\mathrm{C}_{W}(P) \neq 0$ and $2.2(\mathrm{e})$ implies $[W, P]=0$. Hence by (6°)
$8^{\circ} \quad[W, P]=0$, and $\mathrm{E}_{H}(V)=M P$ centralizes $\operatorname{rad}_{W}(H)$.
Since $N \leq \mathrm{E}_{H}(V),\left(2^{\circ}\right)$ implies

$$
\mathbf{9}^{\circ} \quad W=\left[W, \mathrm{E}_{H}(V)\right]
$$

If M_{1} is any normal subgroup of H with $M_{1} \leq \mathrm{E}_{H}(V)$ and $M_{1} \not \leq P$, then $1 \neq\left[M, M_{1}\right] \leq$ $M \cap M_{1}$, and $\left(7^{\circ}\right)$ shows that $M=\left[M, M_{1}\right] \leq M_{1}$. In particular,
$\left[W, M_{1}\right] \neq 0$ and so by $\left(8^{\circ}\right)$
$1 \mathbf{0}^{\circ} \quad \mathrm{C}_{\mathrm{E}_{H}(V)}(W)=P=\mathrm{C}_{\mathrm{E}_{H}(V)}(M)$.
Hence M_{1} is an arbitrary normal subgroup of $\mathrm{E}_{H}(V)$ not centralizing W. Thus $M \leq M_{1}$ implies (c). By $\left(1^{\circ}\right),\left(4^{\circ}\right)\left(8^{\circ}\right)$ and $\left(9^{\circ}\right) W$ is $\mathrm{E}_{H}(V)$-quasisimple and so (a) holds. Moreover, (b) follows from $\left(1^{\circ}\right),\left(2^{\circ}\right),\left(3^{\circ}\right)$ and $\left(8^{\circ}\right)$, and (d) follows from $\left(5^{\circ}\right)$ and $\left(7^{\circ}\right)$. Finally (e) is $\left(10^{\circ}\right)$.

Lemma 2.4 (a) $\overline{\mathrm{F}_{V}(H)}$ is a semisimple H-module and $\left[\mathrm{F}_{V}(H), \mathrm{F}^{*}(H)\right]=\mathrm{F}_{V}(H)$.
(b) $\mathrm{F}_{V}(H)$ is H-reduced.
(c) $\mathrm{R}_{V}(H)$ is a semisimple $\mathbb{F F}^{*}(H)$-module.

Proof: Let W be a component of V. Note that either $W \leq \mathrm{R}_{V}(H)$ or $W \cap \mathrm{R}_{V}(H)=\operatorname{rad}_{W}(H)$.
(a): Using the above observation, (a) is an immediate consequence of the definition of $\mathrm{F}_{V}(H)$.
(b): By definition all components are either simple or $\mathrm{E}_{H}(V)$-quasisimple, so they are reduced. Clearly sums of reduced modules are reduced and so (b) holds.
(c): Let W be a non-simple component of V. Then by $2.2(\mathrm{~d})$ applied with $E:=\mathrm{E}_{H}(V)$, $P:=\mathrm{C}_{\mathrm{F}^{*}(H)}(E)$ and W in place of $V, \operatorname{rad}_{W} H$ is a semisimple $\mathbb{F} E P$-module. By $2.1 \mathrm{~F}^{*}(H)=E P$ and so (c) holds.

Lemma 2.5 The following hold:
(a) $\mathrm{C}_{\mathrm{F}_{V}(H)}^{*}\left(\mathrm{E}_{H}(V)\right)=\left[\mathrm{S}_{V}(H), \mathrm{F}^{*}(H)\right]+\mathrm{R}_{V}(H)=\mathrm{C}_{\mathrm{F}_{V}(H)}\left(\mathrm{E}_{H}(V)\right)$
(b) $\mathrm{C}_{\mathrm{F}^{*}(H)}^{*}(V)=\mathrm{C}_{\mathrm{F}^{*}(H)}\left(\mathrm{F}_{V}(H)\right)=\mathrm{O}_{p}(H) \mathrm{C}_{\mathrm{F}^{*}(H)}(V) \leq \mathrm{E}_{H}(V)$.
(c) $\mathrm{F}(H) \cap \mathrm{E}_{H}(V)=\mathrm{C}_{\mathrm{F}(H)}^{*}(V)=\mathrm{C}_{\mathrm{F}(H)}\left(\mathrm{F}_{V}(H)\right)=\mathrm{O}_{p}(H) \mathrm{C}_{\mathrm{F}(H)}(V)$.
(d) If V is faithful and H-reduced, then $\mathrm{E}_{H}(V)$ is the direct product of perfect simple groups.

Proof:

(a): Let W be a component of V. Then either $\operatorname{rad} W=0$ and $W \leq\left[\mathrm{S}_{V}(H), \mathrm{F}^{*}(H)\right]$ or $\operatorname{rad} W \neq 0, W=\left[W, \mathrm{E}_{H}(V)\right]$ and $W / \operatorname{rad}_{W}(H)$ is simple. Thus $U:=\mathrm{F}_{V}(H) /\left[\mathrm{S}_{V}(H), \mathrm{F}^{*}(H)\right]+$ $\mathrm{R}_{V}(H)$ is a sum of simple $\mathbb{F} H$-module that are not centralized by $\mathrm{E}_{H}(V)$. So $\mathrm{C}_{U}\left(\mathrm{E}_{H}(V)\right)=0$ and $\mathrm{C}_{\mathrm{F}_{V}(H)}^{*}\left(\mathrm{E}_{H}(V)\right) \leq\left[\mathrm{S}_{V}(H), \mathrm{F}^{*}(H)\right]+\mathrm{R}_{V}(H)$.

Let W be a component of V with $\operatorname{rad}_{W}(H) \neq 0$. Then by 2.3(b), applied with $N:=\mathrm{E}_{H}(V)$, $\left[\operatorname{rad}_{V}(H), \mathrm{E}_{H}(V)\right]=0$. The definition of $\mathrm{E}_{H}(V)$ shows that $\left[\mathrm{S}_{V}(H), \mathrm{E}_{H}(V)\right]=0$ and so

$$
\left[\mathrm{S}_{V}(H), \mathrm{F}^{*}(H)\right]+\mathrm{R}_{V}(H) \leq \mathrm{C}_{\mathrm{F}_{V}(H)}\left(\mathrm{E}_{H}(V)\right)
$$

Clearly $\mathrm{C}_{\mathrm{F}_{V}(H)}\left(\mathrm{E}_{H}(V)\right) \leq \mathrm{C}_{\mathrm{F}_{V}(H)}^{*}\left(\mathrm{E}_{H}(V)\right)$ and so (a) holds.
(b): Since $\mathrm{F}_{V}(H)$ is H-reduced by $2.4(\mathrm{~b}), \mathrm{C}_{\mathrm{F}^{*}(H)}^{*}(V) \leq \mathrm{C}_{\mathrm{F}^{*}(H)}\left(\mathrm{F}_{V}(H)\right)=: N$. Then $N \leq \mathrm{E}_{H}(V)$ since

$$
\mathrm{S}_{V}(H)=\left(\mathrm{S}_{V}(H) \cap \mathrm{F}_{V}(H)\right)+\mathrm{C}_{V}\left(\mathrm{~F}^{*}(H)\right)
$$

If N does not act nilpotently on V, then 2.3 gives a component W of V with $[W, N] \neq 0$, which contradicts $\left[\mathrm{F}_{V}(H), N\right]=0$. Thus N acts nilpotently on V and so $\mathrm{O}^{p}(N) \leq \mathrm{C}_{N}(V)$. By 2.1(b) $N=\mathrm{O}_{p}(N) \mathrm{O}^{p}(N)=\mathrm{O}_{p}(N) \mathrm{C}_{N}(V) \leq \mathrm{O}_{p}(H) \mathrm{C}_{\mathrm{F}^{*}(H)}(V)$.

Clearly $\mathrm{O}_{p}(H) \mathrm{C}_{\mathrm{F}^{*}(H)}(V) \leq \mathrm{C}_{\mathrm{F}^{*}(H)}^{*}(V)$ and so (b) holds.
(c): By (b), $\mathrm{C}_{\mathrm{F}(H)}^{*}(V)=\mathrm{C}_{\mathrm{F}(H)}\left(\mathrm{F}_{V}(H)\right)=\mathrm{O}_{p}(H) \mathrm{C}_{\mathrm{F}(H)}(V) \leq \mathrm{F}(H) \cap \mathrm{E}_{H}(V)$. Suppose $\mathrm{F}(H) \cap \mathrm{E}_{H}(V) \not \leq \mathrm{C}_{\mathrm{F}(H)}^{*}(V)$. Then by $2.3(\mathrm{~d}), \mathrm{F}(H) \cap \mathrm{E}_{H}(V)$ is not nilpotent, a contradiction.
(d) If V is faithful and H-reduced, $\mathrm{C}_{H}^{*}(V)=1$. So by $(\mathrm{c}), \mathrm{F}\left(\mathrm{E}_{H}(V)\right)=\mathrm{F}(H) \cap \mathrm{E}_{H}(V)=1$. Since $\mathrm{E}_{H}(V)$ is the central product of nilpotent and quasisimple groups, (d) holds.

Lemma 2.6 Let W be an H-submodule of V such that $W / C_{W}^{*}\left(\mathrm{E}_{H}(V)\right)$ is a simple H-module. Choose an $\mathbb{F} H$-submodule Y in W minimal with $Y \not \leq \mathrm{C}_{W}^{*}\left(\mathrm{E}_{H}(V)\right)$. Then

$$
Y=\left[W, \mathrm{O}^{p}\left(\mathrm{E}_{H}(V)\right)\right] \text { and } W=Y+\mathrm{C}_{W}^{*}\left(\mathrm{E}_{H}(V)\right)
$$

and Y is a component of V.
Proof: \quad Since $W / C_{W}^{*}\left(\mathrm{E}_{H}(V)\right)$ is simple, $W=Y+\mathrm{C}_{W}^{*}\left(\mathrm{E}_{H}(V)\right)$. Thus $\left[W, \mathrm{O}^{p}\left(\mathrm{E}_{H}(V)\right)\right] \leq Y$. Since $\left[W, \mathrm{O}^{p}\left(\mathrm{E}_{H}(V)\right)\right] \not \leq \mathrm{C}_{W}^{*}(H)$, the minimality of Y implies $Y=\left[W, \mathrm{O}^{p}\left(\mathrm{E}_{H}(V)\right)\right]$. By 2.3(a), Y is a component.

Lemma 2.7 Put $\mathcal{C}:=\{\bar{W} \mid W$ component of $V, \bar{W} \neq 0\}$. Then every $\mathbb{F} H$-submodule of $\overline{\mathrm{F}_{V}(H)}$ is the direct sum of elements of \mathcal{C}.
Proof: It suffices to show the assertion for simple submodules since $\overline{\mathrm{F}_{V}(H)}$ is semisimple by 2.4(a).

Let $U / \mathrm{R}_{V}(H)$ be a simple $\mathbb{F} H$-submodule of $\overline{\mathrm{F}_{V}(H)}$. We need to show that $U=Y+\mathrm{R}_{V}(H)$ for some component Y of V. Since by $2.5(\mathrm{a}) \mathrm{R}_{V}(H) \leq \mathrm{C}_{U}\left(\mathrm{E}_{H}(V)\right)$ either $\mathrm{C}_{U}^{*}\left(\mathrm{E}_{H}(V)\right)=\mathrm{R}_{V}(H)$ or $\mathrm{C}_{U}^{*}\left(\mathrm{E}_{H}(V)\right)=U$. In the first case the claim for U follows from 2.6.

In the second case $2.5(\mathrm{a})$ implies $U \leq\left[\mathrm{S}_{V}(H), \mathrm{F}^{*}(H)\right]+\mathrm{R}_{V}(H)$ and so

$$
U=\left(U \cap\left[\mathrm{~S}_{V}(H), \mathrm{F}^{*}(H)\right]\right)+\mathrm{R}_{V}(H)
$$

Since $\left[\mathrm{S}_{V}(H), \mathrm{F}^{*}(H)\right]$ is the sum of simple H-components of V, so is $U \cap\left[\mathrm{~S}_{V}(H), \mathrm{F}^{*}(H)\right]$. Thus, also in this case the claim holds for U.

Lemma 2.8 Let $N \unlhd H$. Then

$$
\mathrm{C}_{\overline{\mathrm{F}_{V}(H)}}(N)=\overline{\mathrm{C}_{\mathrm{F}_{V}(H)}(N)} .
$$

Proof: Let \mathcal{C} be as in 2.7. Then by 2.7

$$
\mathrm{C}_{\overline{\mathrm{F}_{V}(H)}}(N)=\langle\bar{W} \in \mathcal{C} \mid[\bar{W}, N]=0\rangle
$$

Let W be a H-component of V such that $\bar{W} \neq 0$ and $[\bar{W}, N]=0$. Since \bar{W} is semisimple and $\operatorname{rad}_{W}(H)$ is the unique maximal $\mathbb{F} H$-submodule of $W, \operatorname{rad}_{W}(H)=W \cap \mathrm{R}_{V}(H)$. If $\operatorname{rad}_{W}(H)=0$, this shows that $[W, N]=0$. If $\operatorname{rad}_{W}(H) \neq 0$, then W is E-quasisimple for $E:=\mathrm{E}_{H}(V)$. In this case $2.2(\mathrm{c})$ with W in place of V implies that $[W, N]=0$, so the lemma holds.

Lemma 2.9 Let \mathcal{W} be a set of $\mathbb{F} H$-submodules of V. Then

$$
\operatorname{rad}_{\sum_{W \in \mathcal{W}} W}(H)=\sum_{W \in \mathcal{W}} \operatorname{rad}_{W}(H)
$$

Proof: Clearly $\sum_{W \in \mathcal{W}} W / \sum_{W \in \mathcal{W}} \operatorname{rad}_{W}(H)$ is semisimple and so

$$
\operatorname{rad}_{\sum_{W \in \mathcal{W}} W}(H) \leq \sum_{W \in \mathcal{W}} \operatorname{rad}_{W}(H)
$$

On the other hand, for $W \in \mathcal{W}, W+\operatorname{rad}_{\sum_{W \in \mathcal{W}} W}(H) / \operatorname{rad}_{\sum_{W \in \mathcal{W}} W}(H)$ semisimple, so

$$
\operatorname{rad}_{W}(H) \leq \operatorname{rad}_{\sum_{W \in \mathcal{W}} W}(H)
$$

and the reverse inequality holds .

Lemma $2.10 \mathrm{R}_{V}(H)=\operatorname{rad}_{\mathrm{F}_{V}(H)}(H)$.
Proof: This follows immediately from 2.9 and the definition of $\mathrm{R}_{V}(H)$.

Lemma 2.11 $\mathrm{C}_{H}\left(\mathrm{~F}_{V}(H)\right)=\mathrm{C}_{H}\left(\overline{\mathrm{~F}_{V}(H)}\right)$
Proof: Let $N=\mathrm{C}_{H}\left(\mathrm{~F}_{V}(H)\right)$. Then by 2.8, $\mathrm{F}_{V}(H)=\mathrm{C}_{\mathrm{F}_{V}(H)}(N)+\mathrm{R}_{V}(H)$, and by 2.10, $\mathrm{F}_{V}(H)=\mathrm{C}_{\mathrm{F}_{V}(H)}(N)$.

Theorem 2.12 Suppose that V is faithful and H-reduced. Then $\mathrm{F}_{V}(H)$ and $\mathrm{F}_{V}(H) / \mathrm{R}_{H}(V)$ are faithful and H-reduced $\mathbb{F} H$-modules.
Proof: By 2.4(b) $\mathrm{F}_{V}(H)$ is reduced. Moreover $\overline{\mathrm{F}_{V}(H)}$ is semisimple and thus also H-reduced. From 2.5(b) we get $\mathrm{C}_{\mathrm{F}^{*}(H)}\left(\mathrm{F}_{V}(H)\right) \leq \mathrm{C}_{H}^{*}(V)=1$. Hence $\mathrm{F}^{*}\left(\mathrm{C}_{H}\left(\mathrm{~F}_{V}(H)\right)\right)=1$ and so $\mathrm{C}_{H}\left(\mathrm{~F}_{V}(H)\right)=1$. Thus $\mathrm{F}_{V}(H)$ is faithful. Now 2.11 implies that also $\overline{\mathrm{F}_{V}(H)}$ is faithful.

The proof of the Theorems 1.1, 1.3, and 1.4: Theorem 1.3 is $2.4(\mathrm{a})$, (c) and 2.10, while Theorem 1.4 is 2.12 . Moreover, Theorem 1.1 is a direct consequence of these two theorems.

3 The Fitting Submodule for Normal Subgroups

In this section we investigate the relationship between the Fitting submodules for H and for normal subgroups.

Lemma 3.1 Let $N \unlhd \unlhd H$. Then $\mathrm{S}_{V}(H) \leq \mathrm{S}_{V}(N)$ and $\mathrm{E}_{H}(V) \cap N=\mathrm{E}_{N}(V)$.
Proof: Using induction on the subnormal defect of N in H, it suffices to treat the case $N \unlhd H$. Let W be a simple H-submodule. Then by Clifford Theory W is a semisimple N-module and so $\mathrm{S}_{V}(H) \leq \mathrm{S}_{V}(N)$. Thus together with $2.1 \mathrm{E}_{N}(V) \leq \mathrm{E}_{H}(V) \cap N$.

Conversely, let Y be a simple N-submodule of V and let U be the sum of all N-submodule of V isomorphic to some H-conjugate of Y. Then U is an $\mathbb{F} H$-submodule of V and we can choose a simple H-submodule W of U. As an $\mathbb{F} N$-module, W is a direct sum of modules isomorphic to H-conjugates of Y, with each H-conjugate appearing at least once. Hence $\mathrm{E}_{H}(V) \cap N \leq$ $\mathrm{C}_{\mathrm{F}^{*}(N)}(W) \leq \mathrm{C}_{\mathrm{F}^{*}(N)}(Y)$. Intersecting over all the possible Y gives $\mathrm{E}_{H}(V) \cap N \leq \mathrm{E}_{N}(V)$.

Lemma 3.2 Let W be a H-component of V and $N \unlhd \unlhd H$. Then there exists a $\mathbb{F} N$-submodule $Y \leq W$ with $W=\left\langle Y^{H}\right\rangle$ such that either Y is an N-component of V or Y is simple and $\left[W, \mathrm{~F}^{*}(N)\right]=1$. In particular, $\mathrm{F}_{V}(H) \leq \mathrm{S}_{V}(N)+\mathrm{F}_{V}(N)$.

Proof: Again we use induction on the defect $d_{H}(N)$ of N in H. Assume that $d_{H}(N)>1$. Then there exists $N \leq N_{1} \unlhd H$ so that $d_{N_{1}}(N)<d_{H}(N)$. By induction there exists an $\mathbb{F} N_{1}$ submodule Y_{1} of W with $W=\left\langle Y_{1}^{H}\right\rangle$ such that either Y_{1} is simple and $\left[W, \mathrm{~F}^{*}\left(N_{1}\right)\right]=0$ or Y_{1} is a N_{1}-component of V. In the first case by 2.1 also $\left[W, \mathrm{~F}^{*}(N)\right]=0$ and we can choose a simple $\mathbb{F} N$-submodule Y of Y_{1}. In the second case induction applies to every H-conjugate of Y_{1} in W, so either $\left[W, \mathrm{~F}^{*}(N)\right]=0$ and $Y_{1}=\left\langle Y^{N_{1}}\right\rangle$ for a simple $\mathbb{F} N$-submodule Y of Y_{1} or there exists $h \in H$ and an N-component Y of V with $W^{h}=\left\langle Y^{N_{1}}\right\rangle$. In any case $W=\left\langle Y^{H}\right\rangle$ and the lemma holds.

Thus it remains to treat the case $N \unlhd H$. Let $Y \leq W$ be a N-submodule minimal with $Y \nexists \operatorname{rad}_{W}(H)$. Then $Y / Y \cap \operatorname{rad}_{W}(H)$ is a simple N-module and $W=\left\langle Y^{H}\right\rangle$.

Suppose that Y is a semisimple $\mathbb{F} N$-module, then the minimality of Y shows that Y is simple. If $\left[Y, \mathrm{~F}^{*}(N)\right]=0$, then also $\left[W, \mathrm{~F}^{*}(N)\right]=0$; and if $\left[Y, \mathrm{~F}^{*}(N)\right] \neq 0$, then Y is a N-component of V.

Suppose that Y is not a semisimple $\mathbb{F} N$-module. Then $Y \cap \operatorname{rad}_{W}(H) \neq 0$ and also W is not a semisimple $\mathbb{F} N$-module. By the definition of a component, W is $\mathrm{E}_{H}(V)$-quasisimple. Now $2.2(\mathrm{~b})$, with $\left(N, \mathrm{E}_{H}(V), W\right)$ in place of (P, E, V), shows that $R:=\left[\mathrm{E}_{H}(V), N\right] \not \equiv \mathrm{C}_{H}(W)$.

Since W is reduced, R does not act nilpotently on W, so $\mathrm{C}_{W}^{*}\left(\mathrm{E}_{N}(V)\right) \leq \mathrm{C}_{W}^{*}(R) \leq \operatorname{rad}_{W}(H)$. On the other hand $\mathrm{E}_{H}(V) \leq \mathrm{C}_{H}^{*}\left(\operatorname{rad}_{W}(H)\right)$ and so by $3.1 \operatorname{rad}_{W}(H) \leq \mathrm{C}_{W}^{*}\left(\mathrm{E}_{N}(V)\right)$. This shows that $\mathrm{C}_{W}^{*}\left(\mathrm{E}_{N}(V)\right)=\operatorname{rad}_{W}(H)$. Hence by 2.6, applied to (N, Y) in place of (H, W), and the minimality of Y show that Y is a N-component of V.

Corollary 3.3 $\mathrm{E}_{\mathrm{F}^{*}(H)}(V)=\mathrm{E}_{H}(V)$ and $\mathrm{F}_{V}(H) \leq \mathrm{F}_{V}\left(\mathrm{~F}^{*}(H)\right)$.
Proof: Since $\mathrm{E}_{H}(V) \leq \mathrm{F}^{*}(H)$ the first statement follows from 3.1 applied with $N:=\mathrm{F}^{*}(H)$.
Note that $W=\left[W, \mathrm{~F}^{*}(H)\right]$ for all components of V. The second statement then follows from 3.2 again with $N:=\mathrm{F}^{*}(H)$.

Proposition 3.4 Let E and F be two distinct components of $\mathrm{E}_{H}(V)$. Then

$$
\left.\left[\mathrm{F}_{V}(H)\right), E, F\right]=0
$$

Proof: By 3.3 we may assume that $H=\mathrm{F}^{*}(H)$. Let W be an H-component of V with $[W, E] \neq 0$. We can apply 2.3 with $N:=\mathrm{E}_{H}(V)$. By part (c) and (d) of that lemma E is the unique normal subgroup of H minimal with $[W, E] \neq 0$. Since $[E, F]=1$, part (e) gives $[W, F]=0$. Since $\mathrm{F}_{V}(H)$ is the sum of all the components of V the lemma holds.

Recall that a Wedderburn-component for H on V is a maximal sum of isomorphic simple $\mathbb{F} H$-submodules.
Proposition 3.5 Let W be an H-component of $V, N \unlhd H$ and $\operatorname{rad}_{W}(H) \leq Y_{1} \leq W$ such that $Y_{1} / \operatorname{rad}_{W}(H)$ is a Wedderburn-component for N on $W / \operatorname{rad}_{W}(H)$. Put $Y:=Y_{1}$ if $\operatorname{rad}_{W}(H)=0$, and $Y:=\left[Y_{1}, \mathrm{E}_{H}(V)\right]$ if $\operatorname{rad}_{W}(H) \neq 0$. Then $\mathrm{E}_{H}(V) \leq \mathrm{N}_{H}\left(Y_{1}\right), Y=Y_{1}+\operatorname{rad}_{W}(H)$ and Y is $a \mathrm{~N}_{H}\left(Y_{1}\right)$-component of V.
Proof: Set $L:=\mathrm{N}_{H}\left(Y_{1}\right)$ and $\widetilde{W}:=W / \operatorname{rad}_{W}(H)$. Let $D \leq H$ with $[D, N] \leq C_{N}\left(Y_{1}\right)$ and U be any simple N-submodule of $\widetilde{Y_{1}}$. Then $[D, N] \leq C_{N}(U)$, and for all $d \in D$ the map

$$
U \rightarrow U^{d} \text { with } u \mapsto u^{d} \quad(u \in U)
$$

is an $\mathbb{F} N$-isomorphism. Thus U^{d} is in the Wedderburn-component $\widetilde{Y_{1}}$, and

$$
\begin{equation*}
D \leq L \tag{*}
\end{equation*}
$$

By 2.5(c) and 2.1(d), $\mathrm{E}_{H}(V)=\mathrm{C}_{\mathrm{E}_{H}(V)}\left(\mathrm{F}_{V}(H)\right)\left(\mathrm{E}_{H}(V) \cap N\right) \mathrm{C}_{\mathrm{E}_{H}(V)}(N)$ and so by (*), $\mathrm{E}_{H}(V) \leq L$. This is the first part of the claim.

Since \widetilde{W} is a simple $\mathbb{F} H$-module, Clifford Theory implies that \widetilde{Y}_{1} is a simple $\mathbb{F} L$-module. Suppose first that $\operatorname{rad}_{W}(H) \neq 0$. With $\mathrm{E}_{H}(V)$ in place of $N 3.1$ gives $\mathrm{E}_{H}(V)=\mathrm{E}_{\mathrm{E}_{H}(V)}(V)$. Then with $\left(L, \mathrm{E}_{H}(V)\right)$ in place of $(H, N) 3.1$ gives $\mathrm{E}_{H}(V) \leq \mathrm{E}_{L}(V)$. Observe that $W=$ $\left[W, \mathrm{E}_{H}(V)\right]$ since W is $\mathrm{E}_{H}(V)$-quasisimple, so $Y=\left[Y, \mathrm{E}_{H}(V)\right] \neq 0$. Hence 2.3(a) applied with $\left(L, \mathrm{E}_{H}(V), Y, V\right)$ in place of (H, N, W, V) shows that Y is a component for L.

Suppose now that $\operatorname{rad}_{W}(H)=0$. To show that Y is an L-component of V it suffices to show that $\left[Y, \mathrm{~F}^{*}(L)\right] \neq 0$. Observe that $\left[\mathrm{F}^{*}(H), N\right] \leq \mathrm{F}^{*}(N) \leq \mathrm{F}^{*}(L)$. So if $\left[\mathrm{F}^{*}(H), N\right]$ does not centralizes Y, we are done. If $\left[F^{*}(H), N\right] \leq \mathrm{C}_{N}(Y)$, then $(*)$ implies $\mathrm{F}^{*}(H) \leq L$ and so $\mathrm{F}^{*}(H) \leq \mathrm{F}^{*}(L)$. By the definition of a component, $\left[W, \mathrm{~F}^{*}(H)\right] \neq 1$, and since W is a simple $\mathbb{F} H$-module also $\left[Y, \mathrm{~F}^{*}(H)\right] \neq 1$. Thus $\left[Y, \mathrm{~F}^{*}(L)\right] \neq 1$.

Lemma 3.6 Let $N \unlhd H$. Then the following are equivalent:
(a) $\mathrm{F}_{V}(H)$ is a semisimple $\mathbb{F} N$-module.
(b) If K is a component of $\mathrm{E}_{H}(V)$ with $K \leq N$, then $[V, K]=0$.
(c) $\mathrm{E}_{N}(V)=\mathrm{E}_{H}(V) \cap N \leq \mathrm{C}_{H}^{*}(V)$.
(d) $\left[N, \mathrm{E}_{H}(V)\right] \leq \mathrm{C}_{H}\left(\mathrm{~F}_{V}(H)\right)$.

Proof: $\quad(\mathrm{a}) \Longrightarrow(b)$: Let K be a component of $\mathrm{E}_{H}(V)$ with $K \leq N$. By $3.1, K=\mathrm{E}_{K}(V)$ and so K centralizes all simple $\mathbb{F} K$-submodules. Since $\mathrm{F}_{V}(H)$ is semisimple as an $\mathbb{F} N$-module and so also as an $\mathbb{F} K$-module, $\left[\mathrm{F}_{V}(H), K\right]=1$. Thus by $2.5(\mathrm{~b}), K$ centralizes V.
$(\mathrm{b}) \Longrightarrow(c)$: By $2.5(\mathrm{c}), \mathrm{F}\left(\mathrm{E}_{H}(V) \cap N\right) \leq \mathrm{C}_{H}^{*}(V)$ and by (b) any component of $\mathrm{E}_{H}(V) \cap N$ is contained in $\mathrm{C}_{H}(V)$. Hence $\mathrm{E}_{H}(V) \cap N \leq \mathrm{C}_{H}^{*}(V)$, and 3.1 shows that $E_{N}(V)=\mathrm{E}_{H}(V) \cap N$.
$(\mathrm{c}) \Longrightarrow(d)$: $\mathrm{By}(\mathrm{c})\left[N, \mathrm{E}_{H}(V)\right] \leq \mathrm{C}_{\mathrm{F}^{*}(H)}^{*}(V)$ and by $2.5(\mathrm{c}), \mathrm{C}_{\mathrm{F}^{*}(H)}^{*}(V) \leq \mathrm{C}_{H}\left(\mathrm{~F}_{V}(H)\right)$.
$(\mathrm{d}) \Longrightarrow(a)$: Let W be a component of V. If $\operatorname{rad}_{W}(H)=0, W$ is a simple H-module and so a semisimple N-module. Suppose that $\operatorname{rad}_{W}(H) \neq 0$. Then $W=\left[W, \mathrm{E}_{H}(V)\right]$ and by $2.2(\mathrm{~b})$ with $\left(W, N, \mathrm{E}_{H}(V)\right)$ in place of $(V, P, E), W$ is a semisimple N-module.

Lemma 3.7 Let W be component of V and $N \unlhd H$ such that W is semisimple as an $\mathbb{F} N$-module. Let Y be a Wedderburn-component for N on W. Then Y is an $\mathrm{N}_{H}(Y)$-component of V.
Proof: Define $\widetilde{W}:=W / \operatorname{rad}_{W}(H)$. Then since W is a semisimple N-module, \widetilde{Y} is a Wedderburn component for N on \widetilde{W}. If $\operatorname{rad}_{W}(H)=0$ we are done by 3.5.

Suppose that $\operatorname{rad}_{W}(H) \neq 0$. Then $W=\left[W, \mathrm{E}_{H}(V)\right]$ and clearly $W=\mathrm{F}_{W}(H)$. Since 3.6(a) holds for W in place of $V, 3.6(\mathrm{~d})$ implies $\left[N, \mathrm{E}_{H}(W)\right] \leq \mathrm{C}_{H}(W)$. Thus also $\left[N, \mathrm{E}_{H}(V)\right] \leq$ $\mathrm{C}_{H}(W)$ since $\mathrm{E}_{H}(V) \leq \mathrm{E}_{H}(W)$. This shows that $\mathrm{E}_{H}(V)$ normalizes every Wedderburn component for N on W.

Let Y_{1}, \ldots, Y_{r} be the Wedderburn components of N on W. Then

$$
W=Y_{1} \oplus \cdots \oplus Y_{r} \text { and }\left[W, \mathrm{E}_{H}(V)\right]=\left[Y_{1}, \mathrm{E}_{H}(V)\right] \oplus \cdots \oplus\left[Y_{r}, \mathrm{E}_{H}(V)\right] .
$$

From $W=\left[W, \mathrm{E}_{H}(V)\right]$ we conclude that $Y_{i}=\left[Y_{i}, \mathrm{E}_{H}(V)\right]$ for $i=1, \ldots, r$. On the other hand by $2.2(\mathrm{~d})$ and 3.5

$$
\left[Y_{i}+\operatorname{rad}_{W}(H), \mathrm{E}_{H}(V)\right]=\left[Y_{i}, \mathrm{E}_{H}(V)\right]=Y_{i}
$$

is a $\mathrm{N}_{H}\left(Y_{i}+\operatorname{rad}_{W}(H)\right)$-component of W. Then $\mathrm{N}_{H}\left(Y_{i}+\operatorname{rad}_{W}(H)\right)=\mathrm{N}_{H}\left(Y_{i}\right)$, and Y_{i} is a $\mathrm{N}_{H}\left(Y_{i}\right)$-component.

4 The Structure of an $\mathbf{F}^{*}(H)$-component of V

In this section we determine the structure the $\mathrm{F}^{*}(H)$-components of V for the case that \mathbb{F} is finite or algebraically closed.
Lemma 4.1 Suppose \mathbb{F} is finite or algebraically closed. Let $E, P \leq H$ with $[E, P]=1$. Suppose there exists a simple $\mathbb{F} P$-module Y and $n \in \mathbb{N}$ such that $V \cong Y^{n}$ has an $\mathbb{F} P$-module. Put $\mathbb{K}=\operatorname{End}_{\mathbb{F} P}(Y)$. Then \mathbb{K} is a finite field extension of \mathbb{F} and there exists an $\mathbb{K} E$-module X with $\operatorname{dim}_{\mathbb{K}} X=n$ such that

$$
V \cong_{\mathbb{F}(E \times P)} X \otimes_{\mathbb{K}} Y
$$

Moreover, the following hold:
(a) If $\operatorname{End}_{\mathbb{F E} P}(V)=\mathbb{F}$, then $\mathbb{K}=\mathbb{F}$.
(b) If V is a simple $\mathbb{F} E P$-module, then X is a simple $\mathbb{K} E$-module.
(c) If V is an E-quasisimple $\mathbb{F} E P$-module, then X is a quasisimple $\mathbb{K} E$-module.

Proof: By Schur's Lemma \mathbb{K} is a division ring. Since V is finite dimensional, $\operatorname{dim}_{\mathbb{F}} \mathbb{K}$ is finite. More precisely, if \mathbb{F} is algebraically closed then $\mathbb{F}=\mathbb{K}$; and if \mathbb{F} is finite then \mathbb{K} is finite. In any case \mathbb{K} is a field.

Let $X=\operatorname{Hom}_{\mathbb{P} P}(Y, V)$. Then X is a vector space over \mathbb{K} via

$$
(k x)(y):=x(k y) \text { for all } k \in \mathbb{K}, y \in Y \text { and } x \in X
$$

Moreover, E acts on X by $\left(x^{e}\right)(y):=x(y)^{e}$ and this action is \mathbb{K}-linear. Thus X is a $\mathbb{K} E$ module. We now regard $X \otimes_{\mathbb{K}} Y$ as an $\mathbb{F}(E \times P)$-module via $(x \otimes y)^{e a}=x^{e} \otimes y^{a}$ for $e \in E$, $a \in P$. Let

$$
\phi: X \otimes_{\mathbb{K}} Y \rightarrow V \text { with } x \otimes y \rightarrow x(y)
$$

Then ϕ is well-defined since $\phi(k x \otimes y)=(k x)(y)=x(k y)=\phi(x \otimes k y)$. Also if $e \in E$ and $a \in P$, then

$$
\phi\left((x \otimes y)^{e a}\right)=\phi\left(x^{e} \otimes y^{a}\right)=\left(x^{e}\right)\left(y^{a}\right)=x\left(\left(y^{a}\right)\right)^{e}=\left(x(y)^{a}\right)^{e}=x(y)^{a e}=x(y)^{e a}=\phi(x \otimes y)^{e a}
$$

So ϕ is an $\mathbb{F}(E \times P)$-module homomorphism. Note that for each submodule Z of V isomorphic to Y, there exists $x \in X$ with $x(Y)=Z$ and so $\phi(x \otimes Y)=Z$. Since V is the sum of such submodules, ϕ is surjective. As $V \cong Y^{n}$,

$$
X=\operatorname{Hom}_{\mathbb{F} P}(Y, V) \cong \operatorname{Hom}_{\mathbb{F} P}\left(Y, Y^{n}\right) \cong \operatorname{End}_{\mathbb{F} P}(Y)^{n}=\mathbb{K}^{n} .
$$

Hence the \mathbb{F}-spaces $X \otimes_{\mathbb{K}} Y$ and Y^{n} and thus also V have the same finite dimension. So ϕ is also injective and ϕ is an $\mathbb{F}(E \times P)$-isomorphism.

Observe that $E \times P$ acts \mathbb{K}-linearly on $X \otimes_{\mathbb{K}} Y$. So if we view V as a \mathbb{K}-space via

$$
k \phi(u)=\phi(k u) \text { for all } k \in \mathbb{K}, u \in X \otimes_{\mathbb{K}} Y,
$$

then $E P$ acts \mathbb{K}-linearly on V. Hence if $\operatorname{End}_{\mathbb{F E} P}(V)=\mathbb{F}$ we conclude that $\mathbb{K}=\mathbb{F}$. This proves (a).

Let X_{0} be a proper $\mathbb{K} E$-submodule of X, then $\phi\left(X_{0} \otimes_{\mathbb{K}} Y\right)$ is a proper $\mathbb{K} E P$-submodule of V. This gives (b). In a similar way $[V, E]=V$ implies $[X, E]=X$.

Now assume that V is E-quasisimple, so $\operatorname{rad}_{V}(E P)$ is the unique maximal $E P$-submodule and $\operatorname{rad}_{V}(E P)=\mathrm{C}_{V}^{*}(E)$. Then

$$
X_{0} \otimes Y \leq \operatorname{rad}_{X \otimes_{\mathbb{K}} Y}(E P)=\mathrm{C}_{X \otimes_{\mathbb{K}} Y}^{*}(E)=\mathrm{C}_{X}^{*}(E) \otimes_{\mathbb{K}} Y
$$

This yields $X_{0} \leq \mathrm{C}_{X}^{*}(E)$. Since X_{0} was an arbitrary proper submodule, it also shows that $\mathrm{C}_{X}^{*}(E)$ is the unique maximal $\mathbb{K} E$-submodule of X and $\mathrm{C}_{X}^{*}(E)=\operatorname{rad}_{X}(E)$ and (c) follows.

Proposition 4.2 Suppose \mathbb{F} is finite or algebraically closed. Let W be an $\mathrm{F}^{*}(H)$-component of V with $\operatorname{rad}_{W}\left(\mathrm{~F}^{*}(H)\right) \neq 0$, and let E be the unique component of $\mathrm{E}_{H}(V)$ with $[W, E] \neq 0$ (see 2.3). Put $P:=\mathrm{C}_{\mathrm{F}^{*}(H)}(E)$. Then $\mathrm{F}^{*}(H)=E P$ and there exists a finite field extension \mathbb{K} of \mathbb{F}, a quasisimple $\mathbb{K} E$-module X and an absolutely simple $\mathbb{K} P$-module Y such that

$$
V \cong_{\mathbb{F F}^{*}(H)} X \otimes_{\mathbb{K}} Y
$$

Proof: By $2.1(\mathrm{c}), \mathrm{F}^{*}(H)=E P$. Let Y be a simple $\mathbb{F} P$-submodule of W. Since $[E, P]=1$, any $\mathrm{F}^{*}(H)$ conjugate of Y is isomorphic to Y. Thus by $2.2(\mathrm{~b})$ applied to $\mathrm{F}^{*}(H)$ in place of H, $W \cong_{\mathbb{F} P} Y^{n}$ for some n. Now 4.1 shows that $V \cong_{\mathbb{F F}^{*}(H)} X \otimes_{\mathbb{K}} Y$. Moreover, since $\mathbb{K}=\operatorname{End}_{\mathbb{F} P}(Y)$ and \mathbb{K} is commutative, $\mathbb{K}=\operatorname{End}_{\mathbb{K} P}(Y)$, and Y is an absolutely simple $\mathbb{K} P$-module. Also since W is an E-quasisimple $\mathbb{F} E P$-module, X is E-quasisimple.

Corollary 4.3 Suppose \mathbb{F} is finite or algebraically closed. Let W be a $\mathrm{F}^{*}(H)$-component of V, and let \mathcal{K} be the set consisting of all the components of H and all the $O_{r}(H), r$ a prime divisor of $|H|$. Then there exists a finite field extension \mathbb{K} of \mathbb{F} and for each $K \in \mathcal{K} a \mathbb{K} K$-module W_{K} such that

$$
W \cong_{\mathbb{F F}^{*}(H)} \bigotimes_{K \in \mathcal{K}} W_{K}
$$

Moreover, either

1. $\operatorname{rad}_{W}\left(\mathrm{~F}^{*}(H)\right)=0$ and W_{K} is absolutely simple for every $K \in \mathcal{K}$, or
2. $\operatorname{rad}_{W}\left(\mathrm{~F}^{*}(H)\right) \neq 0, W_{E}$ is E-quasisimple and W_{K} is absolutely simple for every $K \in$ $\mathcal{K} \backslash\{E\}$, where E is the unique component of $\mathrm{E}_{H}(V)$ with $[W, E] \neq 0$.
Proof: We may assume that $|\mathcal{K}|>1$. If $\operatorname{rad}_{W}(H)=0$ put $Y:=W, \mathbb{K}:=\operatorname{End}_{\mathbb{F F}^{*}(H)}(W)$ and $\mathcal{K}_{0}:=\mathcal{K}$. Otherwise let X, Y and \mathbb{K} be as in 4.2 and put $W_{E}:=X$ and $\mathcal{K}_{0}:=\mathcal{K} \backslash\{E\}$. Observe that then W_{E} is E-quasisimple.

In any case Y is an absolutely simple $\mathbb{K} P$-module, where $P:=\left\langle\mathcal{K}_{0}\right\rangle$. If $\left|\mathcal{K}_{0}\right|=1$, we are done. In the other case pick $K \in \mathcal{K}_{0}$ and set $\mathcal{K}_{1}:=\mathcal{K}_{0} \backslash\{K\}$. Then 4.1 applies with $\left(\mathbb{K}, K,\left\langle\mathcal{K}_{1}\right\rangle, Y\right)$ in place of (\mathbb{F}, E, P, V). Note that in addition $\mathbb{K}=\operatorname{End}_{\mathbb{K} K\left\langle\mathcal{K}_{1}\right\rangle}(Y)$, so 4.1(a) also applies. Now an easy induction finishes the proof.

References

[1] H. Kurzweil, B. Stellmacher, The Theory of Finite Groups, An Introduction. SpringerVerlag, New York, (2004) 387pp.

[^0]: Mathematics Subject Classification (2000) 20C20

