The Fitting Submodule

U. Meierfrankenfeld B. Stellmacher

Department of Mathematics, Michigan State University, East Lansing MI 48840 meier@math.msu.edu Mathematisches Seminar, Christian-Albrechts- Universität, D24098 Kiel stellmacher@math.uni-kiel.de

Abstract

Let H be a finite group, \mathbb{F} a field and V a finite dimensional $\mathbb{F}H$ -module. We introduce the Fitting submodule $F_V(H)$, an $\mathbb{F}H$ submodule of V which has properties similar to the generalized Fitting subgroup of a finite group.

1 Introduction

Throughout this paper \mathbb{F} is a field of characteristic p, p a prime, H is a finite group, and V is a finite dimensional $\mathbb{F}H$ -module.

We will use the concept of the generalized Fitting subgroup of a finite group as a model for our definition of the Fitting submodule $F_V(H)$ of V. In particular, $F_V(H)$ will be defined by means of components which in turn resemble components of finite groups.

Our first result can be stated without mentioning the Fitting submodule:

Theorem 1.1 Suppose that V is faithful and $O_p(H) = 1$. Then there exists an $\mathbb{F}H$ -section of V that is faithful and semisimple.

In fact 1.1 is a corollary of 1.3 and 1.4 below, which show that $F_V(H)/\operatorname{rad}_{F_V(H)}(H)$ has the desired properties.

To introduce the concept of a Fitting submodule we need a few basic definitions, some of them inspired by corresponding definitions in finite group theory.

- **Definition 1.2** (a) H acts nilpotently on V if [W, H] < W for all non-zero $\mathbb{F}H$ -submodules W of V.
 - (b) $C_H^*(V)$ is the largest normal subgroup of H acting nilpotently on V. It is elementary to show that $C_H^*(V)/C_H(V) = O_p(H/C_H(V))$ and that $C_H^*(V)$ is the largest subnormal subgroup of H acting nilpotently on V.
- (c) V is H-reduced if $C_H^*(V) = C_H(V)$ (that is if any normal subgroup of H which acts nilpotently on V already centralizes V).
- (d) $C_V^*(H)$ is largest $\mathbb{F}H$ -submodule of V on which H acts nilpotently (so $C_V^*(H) = C_V(O^p(H))$;
- (e) $\operatorname{rad}_V(H)$ is the intersection of the maximal $\mathbb{F}H$ -submodules of V (so $\operatorname{rad}_V(H)$ is the smallest $\mathbb{F}H$ -submodule with semisimple quotient).

Mathematics Subject Classification (2000) 20C20

- (f) Let W be an $\mathbb{F}H$ submodule of V and $N \leq H$. Then W is N-quasisimple if W is H-reduced, W/rad_W(H) is simple, W = [W, N] and N acts nilpotently on rad_W(H). If N = H we often write quasisimple rather than H-quasisimple.
- (g) $S_V(H)$ is the sum of all simple $\mathbb{F}H$ -submodules of V, and $E_H(V) := C_{F^*(H)}(S_V(H))$.
- (h) W is a component of V (or an H-component if we want to emphasize the dependence on H) if either W is a simple $\mathbb{F}H$ -submodule with $[W, F^*(H)] \neq 0$ or W is an $E_H(V)$ -quasisimple $\mathbb{F}H$ -submodule. The Fitting submodule $F_V(H)$ of V is the sum of all components of V.
- (i) $R_V(H) := \sum \operatorname{rad}_W(H)$, where the sum runs over all the components of V, and $\overline{F_V(H)} := F_V(H)/R_V(H)$.

Theorem 1.3 The Fitting submodule $F_V(H)$ is H-reduced and $R_V(H)$ is a semisimple $\mathbb{F}F^*(H)$ module. Moreover, $R_V(H) = \operatorname{rad}_{F_V(H)}(H)$; in particular $F_V(H)/R_V(H)$ is semisimple.

Theorem 1.4 Let V be faithful and H-reduced. Then also $F_V(H)$ and $F_V(H)/R_V(H)$ are faithful and H-reduced.

In section 3 we will discuss the relation between the Fitting submodule $F_V(H)$ and the Fitting submodule $F_V(N)$, where N is a subnormal subgroup of H. Finally, in section 4 the structure of the $F^*(H)$ -components of V is given in the case where \mathbb{F} is a finite or algebraically closed field.

2 The Fitting Submodule

We will frequently use the following well-known and elementary properties of the generalized Fitting subgroup $F^*(H)$ of H, see for example [1]:

Lemma 2.1 Let $E \leq H$.

- (a) If $E \leq H$, then $F^*(E) = E \cap F^*(H)$.
- (b) If $E = F^*(E)$, then $E = O_p(E)O^p(E)$ and $[O^p(E), O_p(E)] = 1$.
- (c) If E is a product of components of H, then $F^*(H) = EC_{F^*(H)}(E)$.
- (d) If E is a component of H and $N \leq H$, then either $E \leq N$ or [E, N] = 1.

Lemma 2.2 Let E and P be normal subgroups of H with $[E, P] \leq C_H(V)$. Suppose that V = [V, E] and $V/C_V^*(E)$ is a simple $\mathbb{F}H$ -module. Then the following hold:

- (a) $\operatorname{rad}_V(H) = \operatorname{C}^*_V(E)$.
- (b) V is a semisimple $\mathbb{F}P$ -module, and every simple $\mathbb{F}P$ -submodule of V is isomorphic to a simple $\mathbb{F}P$ -submodule of V/rad_HV. In particular, if I_1 and I_2 are simple $\mathbb{F}P$ -submodules of V, then there exists $h \in H$ such that I_1 and I_2^h are isomorphic as $\mathbb{F}P$ -modules.
- (c) If $E = F^*(E)$, then $C_H(V/rad_V(H)) = C_H(V)$, V is H-reduced and V is E-quasisimple as an $\mathbb{F}H$ -module.
- (d) If $E = F^*(E)$, then E centralizes $\operatorname{rad}_V(H)$ and $\operatorname{rad}_V(H)$ is semisimple as an $\mathbb{F}EP$ -module.
- (e) Either [V, P] = 0, or $C_V(P) = 0$ and [V, P] = V.

Proof: (a): Let Y be a maximal $\mathbb{F}H$ -submodule of V. If $C_V^*(E) \leq Y$ then $V = Y + C_V^*(E)$. So E acts nilpotently on V/Y, contradicting V = [V, E]. Thus $C_V^*(E) \leq Y$ and so $C_V^*(E) \leq \operatorname{rad}_V(H)$. The other inclusion follows from the simplicity of $V/C_V^*(E)$.

(b): Since $V/\operatorname{rad}_V(H)$ is a simple H-module, Clifford Theory shows that $V/\operatorname{rad}_V(H)$ is a semisimple $\mathbb{F}P$ -module and that any two simple $\mathbb{F}P$ -submodules of $V/\operatorname{rad}_V H$ are isomorphic up to conjugacy under H. Let U be the sum of all $\mathbb{F}P$ -submodules of V that are isomorphic to some simple $\mathbb{F}P$ -submodule of $V/\operatorname{rad}_V(H)$. It remains to show that V = U.

Let $x \in O^p(E)$. Then

$$\phi: V \to [V, x]$$
 with $v \mapsto [v, x]$

is an $\mathbb{F}P$ -module homomorphism since $[E, P] \leq C_H(V)$, so $[V, x] \cong_{\mathbb{F}P} V/C_V(x)$. As $\operatorname{rad}_V(H) \leq C_V(x)$ and $V/\operatorname{rad}_V(H)$ is a semisimple $\mathbb{F}P$ -module, $[V, x] \leq U$. Hence also

$$V = [V, E] = [V, O^p(E)] \le U$$

and thus V = U.

(c): Put $C := C_H(V/\operatorname{rad}_V(H))$. By (a) $C \cap E$ acts nilpotently on $V/\operatorname{rad}_V(H)$ and on $\operatorname{rad}_V(H)$. Thus $O^p(C \cap E)$ centralizes V. By 2.1(a), $C \cap E = F^*(C \cap E)$, and by 2.1(b),

$$C \cap E = \mathcal{O}_p(C \cap E)\mathcal{O}^p(C \cap E) \leq \mathcal{O}_p(E)\mathcal{C}_E(V)$$
 and $[\mathcal{O}_p(E), \mathcal{O}^p(E)] = 1$.

Thus $[O^p(E), C \cap E] \leq C_E(V)$. Since

$$[V, C, O^{p}(E)] \leq [\operatorname{rad}_{V}(H), O^{p}(E)] = 0 \text{ and } V = [V, O^{p}(E)],$$

the Three Subgroups Lemma gives $C \cap E \leq C_H(V)$ and then that $C \leq C_H(V)$. Clearly $C_H(V) \leq C$ and so $C = C_H(V)$. Since $C_H^*(V)$ acts trivially on every simple $\mathbb{F}H$ -section of V, $C_H^*(V) \leq C = C_H(V)$ and so V is H-reduced. Together with (a) we see that V fulfills all the conditions of an E-quasisimple $\mathbb{F}H$ -module.

(d): According to (c), $[\operatorname{rad}_V(H), O^p(E)] = 0$ and $[V, O_p(E)] = 0$. Hence E centralizes $\operatorname{rad}_V(H)$ since $E = F^*(E) = O_p(E)O^p(E)$.

By (b) V and so also $\operatorname{rad}_V(H)$ is a semisimple $\mathbb{F}P$ -module. Thus $\operatorname{rad}_V(H)$ is a semisimple $\mathbb{F}EP$ -module.

(e): This is an immediate consequence of (b).

Lemma 2.3 Let $N \leq H$ with $N \leq E_H(V)$ and $N \notin C_H^*(V)$. Let W be an $\mathbb{F}H$ -submodule of V that is minimal with respect to $N \notin C_H^*(W)$. Then

- (a) W is a H-component of V.
- (b) W = [W, N] and $C_W^*(N) = \operatorname{rad}_W(H) = C_W(E_H(V)) \neq 0.$
- (c) There exists a unique normal subgroup M of H minimal with respect to $M \leq E_H(V)$ and $[W, M] \neq 0$.
- (d) $M \leq N, W = [W, M]$ and M is a product of components of H transitively permuted by H.

(e)
$$C_{E_H(V)}(M) = C_{E_H(V)}(W)$$

Proof: The minimality of W implies that $C_W^*(N)$ is the unique maximal H-submodule of W. Thus

 1° $C^*_W(N) = \operatorname{rad}_W(H)$ and $W/\operatorname{rad}_W(H)$ is a simple $\mathbb{F}H$ -module,

If $[W, N] \leq C_W^*(N)$, then N acts nilpotently on W, a contradiction. Thus $[W, N] \nleq C_W^*(N)$ and the minimality of W gives

 $\mathbf{2}^{\circ} \qquad W = [W, N].$

Observe that by 2.1 $N = F^*(N)$. Hence by 2.2(c) applied with N and W in place of E and V, respectively:

 $\mathbf{3}^{\circ}$ W is a H-reduced.

Since $[W, N] \neq 0$ and $N \leq E_H(V)$, W is not a simple H-module. Thus

 $\mathbf{4}^{\circ}$ rad_W(H) $\neq 0$.

Choose $M \leq H$ minimal in N with $[W, M] \leq \operatorname{rad}_W(H)$. Then

$$5^{\circ}$$
 $W = [W, M] = [W, O^{p}(M)],$

and so by the minimality of M and 2.1, $M = O^p(M) = F^*(M)$. Hence M is a p'-group or a product of components transitively permuted by H. As a subgroup of N, M acts nilpotently on rad_W(H), so

 $\mathbf{6}^{\circ} \qquad [\mathrm{rad}_W(H), M] = 0.$

Assume that M is a p'-group. Then Maschke's Theorem implies $W = C_W(M) \oplus [W, M]$ and $\operatorname{rad}_W(M) = C_W(M) = 0$, which contradicts (4°) . Thus

 7° M is a the product of components of H transitively permuted by H.

By 2.1(c)

$$(*) E_H(V) = M C_{E_H(V)}(M).$$

We now apply 2.2(e) with E := M, $P := C_{E_H(V)}(M)$ and W in place of V. Since $P \leq E_H(V)$, P centralizes all simple $\mathbb{F}H$ -submodules of W. Thus $C_W(P) \neq 0$ and 2.2(e) implies [W, P] = 0. Hence by (6°)

 $\mathbf{8}^{\circ}$ [W, P] = 0, and $\mathbf{E}_H(V) = MP$ centralizes $\mathrm{rad}_W(H)$.

Since $N \leq E_H(V)$, (2°) implies

$$\mathbf{9}^{\circ}$$
 $W = [W, \mathbf{E}_H(V)].$

If M_1 is any normal subgroup of H with $M_1 \leq E_H(V)$ and $M_1 \notin P$, then $1 \neq [M, M_1] \leq M \cap M_1$, and (7°) shows that $M = [M, M_1] \leq M_1$. In particular,

 $[W, M_1] \neq 0$ and so by (8°)

 $\mathbf{10}^{\circ} \qquad \mathbf{C}_{\mathbf{E}_{H}(V)}(W) = P = \mathbf{C}_{\mathbf{E}_{H}(V)}(M).$

Hence M_1 is an arbitrary normal subgroup of $E_H(V)$ not centralizing W. Thus $M \leq M_1$ implies (c). By $(1^\circ), (4^\circ)$ (8°) and (9°) W is $E_H(V)$ -quasisimple and so (a) holds. Moreover, (b) follows from $(1^\circ), (2^\circ), (3^\circ)$ and (8°) , and (d) follows from (5°) and (7°) . Finally (e) is $(10^\circ). \square$

Lemma 2.4 (a) $\overline{F_V(H)}$ is a semisimple *H*-module and $[F_V(H), F^*(H)] = F_V(H)$.

(b) $F_V(H)$ is H-reduced.

(c) $R_V(H)$ is a semisimple $\mathbb{F}F^*(H)$ -module.

Proof: Let W be a component of V. Note that either $W \leq R_V(H)$ or $W \cap R_V(H) = \operatorname{rad}_W(H)$.

(a): Using the above observation, (a) is an immediate consequence of the definition of $F_V(H)$.

(b): By definition all components are either simple or $E_H(V)$ -quasisimple, so they are reduced. Clearly sums of reduced modules are reduced and so (b) holds.

(c): Let W be a non-simple component of V. Then by 2.2(d) applied with $E := E_H(V)$, $P := C_{F^*(H)}(E)$ and W in place of V, $\operatorname{rad}_W H$ is a semisimple $\mathbb{F}EP$ -module. By 2.1 $F^*(H) = EP$ and so (c) holds.

Lemma 2.5 The following hold:

- (a) $C^*_{F_V(H)}(E_H(V)) = [S_V(H), F^*(H)] + R_V(H) = C_{F_V(H)}(E_H(V))$
- (b) $C^*_{F^*(H)}(V) = C_{F^*(H)}(F_V(H)) = O_p(H)C_{F^*(H)}(V) \le E_H(V).$
- (c) $F(H) \cap E_H(V) = C^*_{F(H)}(V) = C_{F(H)}(F_V(H)) = O_p(H)C_{F(H)}(V).$

(d) If V is faithful and H-reduced, then $E_H(V)$ is the direct product of perfect simple groups. **Proof:**

(a): Let W be a component of V. Then either $\operatorname{rad} W = 0$ and $W \leq [S_V(H), F^*(H)]$ or $\operatorname{rad} W \neq 0$, $W = [W, E_H(V)]$ and $W/\operatorname{rad}_W(H)$ is simple. Thus $U := F_V(H)/[S_V(H), F^*(H)] + R_V(H)$ is a sum of simple $\mathbb{F}H$ -module that are not centralized by $E_H(V)$. So $C_U(E_H(V)) = 0$ and $C^*_{F_V(H)}(E_H(V)) \leq [S_V(H), F^*(H)] + R_V(H)$.

Let W be a component of V with $\operatorname{rad}_W(H) \neq 0$. Then by 2.3(b), applied with $N := E_H(V)$, $[\operatorname{rad}_V(H), E_H(V)] = 0$. The definition of $E_H(V)$ shows that $[S_V(H), E_H(V)] = 0$ and so

$$[S_V(H), F^*(H)] + R_V(H) \le C_{F_V(H)}(E_H(V)).$$

Clearly $C_{F_V(H)}(E_H(V)) \leq C^*_{F_V(H)}(E_H(V))$ and so (a) holds.

(b): Since $F_V(H)$ is *H*-reduced by 2.4(b), $C^*_{F^*(H)}(V) \leq C_{F^*(H)}(F_V(H)) =: N$. Then $N \leq E_H(V)$ since

$$S_V(H) = (S_V(H) \cap F_V(H)) + C_V(F^*(H)).$$

If N does not act nilpotently on V, then 2.3 gives a component W of V with $[W, N] \neq 0$, which contradicts $[F_V(H), N] = 0$. Thus N acts nilpotently on V and so $O^p(N) \leq C_N(V)$. By 2.1(b) $N = O_p(N)O^p(N) = O_p(N)C_N(V) \leq O_p(H)C_{F^*(H)}(V)$.

Clearly $O_p(H)C_{F^*(H)}(V) \leq C^*_{F^*(H)}(V)$ and so (b) holds.

(c): By (b), $C^*_{F(H)}(V) = C_{F(H)}(F_V(H)) = O_p(H)C_{F(H)}(V) \leq F(H) \cap E_H(V)$. Suppose $F(H) \cap E_H(V) \nleq C^*_{F(H)}(V)$. Then by 2.3(d), $F(H) \cap E_H(V)$ is not nilpotent, a contradiction.

(d) If V is faithful and H-reduced, $C_H^*(V) = 1$. So by (c), $F(E_H(V)) = F(H) \cap E_H(V) = 1$. Since $E_H(V)$ is the central product of nilpotent and quasisimple groups, (d) holds.

Lemma 2.6 Let W be an H-submodule of V such that $W/C_W^*(E_H(V))$ is a simple H-module. Choose an $\mathbb{F}H$ -submodule Y in W minimal with $Y \nleq C_W^*(E_H(V))$. Then

$$Y = [W, \operatorname{O}^{p}(\operatorname{E}_{H}(V))] \text{ and } W = Y + \operatorname{C}^{*}_{W}(\operatorname{E}_{H}(V)),$$

and Y is a component of V.

Proof: Since $W/C_W^*(\mathbb{E}_H(V))$ is simple, $W = Y + C_W^*(\mathbb{E}_H(V))$. Thus $[W, O^p(\mathbb{E}_H(V))] \leq Y$. Since $[W, O^p(\mathbb{E}_H(V))] \nleq C_W^*(H)$, the minimality of Y implies $Y = [W, O^p(\mathbb{E}_H(V))]$. By 2.3(a), Y is a component.

Lemma 2.7 Put $C := \{\overline{W} \mid W \text{ component of } V, \overline{W} \neq 0\}$. Then every $\mathbb{F}H$ -submodule of $\overline{F_V(H)}$ is the direct sum of elements of C.

Proof: It suffices to show the assertion for simple submodules since $\overline{F_V(H)}$ is semisimple by 2.4(a).

Let $U/R_V(H)$ be a simple $\mathbb{F}H$ -submodule of $F_V(H)$. We need to show that $U = Y + R_V(H)$ for some component Y of V. Since by 2.5(a) $R_V(H) \leq C_U(E_H(V))$ either $C_U^*(E_H(V)) = R_V(H)$ or $C_U^*(E_H(V)) = U$. In the first case the claim for U follows from 2.6.

In the second case 2.5(a) implies $U \leq [S_V(H), F^*(H)] + R_V(H)$ and so

$$U = (U \cap [S_V(H), F^*(H)]) + R_V(H)$$

Since $[S_V(H), F^*(H)]$ is the sum of simple *H*-components of *V*, so is $U \cap [S_V(H), F^*(H)]$. Thus, also in this case the claim holds for *U*.

Lemma 2.8 Let $N \trianglelefteq H$. Then

$$C_{\overline{F_V(H)}}(N) = \overline{C_{F_V(H)}(N)}.$$

Proof: Let C be as in 2.7. Then by 2.7

$$C_{\overline{F_V(H)}}(N) = \langle \overline{W} \in \mathcal{C} \mid [\overline{W}, N] = 0 \rangle.$$

Let W be a H-component of V such that $\overline{W} \neq 0$ and $[\overline{W}, N] = 0$. Since \overline{W} is semisimple and $\operatorname{rad}_W(H)$ is the unique maximal $\mathbb{F}H$ -submodule of W, $\operatorname{rad}_W(H) = W \cap \operatorname{R}_V(H)$. If $\operatorname{rad}_W(H) = 0$, this shows that [W, N] = 0. If $\operatorname{rad}_W(H) \neq 0$, then W is E-quasisimple for $E := \operatorname{E}_H(V)$. In this case 2.2(c) with W in place of V implies that [W, N] = 0, so the lemma holds.

Lemma 2.9 Let W be a set of $\mathbb{F}H$ -submodules of V. Then

$$\operatorname{rad}_{\sum_{W \in \mathcal{W}} W}(H) = \sum_{W \in \mathcal{W}} \operatorname{rad}_{W}(H).$$

Proof: Clearly $\sum_{W \in \mathcal{W}} W / \sum_{W \in \mathcal{W}} \operatorname{rad}_W(H)$ is semisimple and so

$$\operatorname{rad}_{\sum_{W \in \mathcal{W}} W}(H) \le \sum_{W \in \mathcal{W}} \operatorname{rad}_{W}(H).$$

On the other hand, for $W \in \mathcal{W}$, $W + \operatorname{rad}_{\sum_{W \in \mathcal{W}} W}(H) / \operatorname{rad}_{\sum_{W \in \mathcal{W}} W}(H)$ semisimple, so

 $\operatorname{rad}_W(H) \leq \operatorname{rad}_{\sum_{W \in W} W}(H),$

and the reverse inequality holds .

Lemma 2.10 $R_V(H) = rad_{F_V(H)}(H).$

Proof: This follows immediately from 2.9 and the definition of $R_V(H)$.

Lemma 2.11 $C_H(F_V(H)) = C_H(\overline{F_V(H)})$

Proof: Let $N = C_H(F_V(H))$. Then by 2.8, $F_V(H) = C_{F_V(H)}(N) + R_V(H)$, and by 2.10, $F_V(H) = C_{F_V(H)}(N)$.

Theorem 2.12 Suppose that V is faithful and H-reduced. Then $F_V(H)$ and $F_V(H)/R_H(V)$ are faithful and H-reduced $\mathbb{F}H$ -modules.

Proof: By 2.4(b) $F_V(H)$ is reduced. Moreover $\overline{F_V(H)}$ is semisimple and thus also *H*-reduced. From 2.5(b) we get $C_{F^*(H)}(F_V(H)) \leq C_H^*(V) = 1$. Hence $F^*(C_H(F_V(H))) = 1$ and so $C_H(F_V(H)) = 1$. Thus $F_V(H)$ is faithful. Now 2.11 implies that also $\overline{F_V(H)}$ is faithful. \Box

The proof of the Theorems 1.1, 1.3, and 1.4: Theorem 1.3 is 2.4(a), (c) and 2.10, while Theorem 1.4 is 2.12. Moreover, Theorem 1.1 is a direct consequence of these two theorems.

3 The Fitting Submodule for Normal Subgroups

In this section we investigate the relationship between the Fitting submodules for H and for normal subgroups.

Lemma 3.1 Let $N \leq H$. Then $S_V(H) \leq S_V(N)$ and $E_H(V) \cap N = E_N(V)$.

Proof: Using induction on the subnormal defect of N in H, it suffices to treat the case $N \trianglelefteq H$. Let W be a simple H-submodule. Then by Clifford Theory W is a semisimple N-module and so $S_V(H) \le S_V(N)$. Thus together with 2.1 $E_N(V) \le E_H(V) \cap N$.

Conversely, let Y be a simple N-submodule of V and let U be the sum of all N-submodule of V isomorphic to some H-conjugate of Y. Then U is an FH-submodule of V and we can choose a simple H-submodule W of U. As an FN-module, W is a direct sum of modules isomorphic to H-conjugates of Y, with each H-conjugate appearing at least once. Hence $E_H(V) \cap N \leq C_{F^*(N)}(W) \leq C_{F^*(N)}(Y)$. Intersecting over all the possible Y gives $E_H(V) \cap N \leq E_N(V)$.

Lemma 3.2 Let W be a H-component of V and $N \leq A$. Then there exists a $\mathbb{F}N$ -submodule $Y \leq W$ with $W = \langle Y^H \rangle$ such that either Y is an N-component of V or Y is simple and $[W, \mathbb{F}^*(N)] = 1$. In particular, $\mathbb{F}_V(H) \leq \mathbb{S}_V(N) + \mathbb{F}_V(N)$.

Proof: Again we use induction on the defect $d_H(N)$ of N in H. Assume that $d_H(N) > 1$. Then there exists $N \leq N_1 \leq H$ so that $d_{N_1}(N) < d_H(N)$. By induction there exists an $\mathbb{F}N_1$ -submodule Y_1 of W with $W = \langle Y_1^H \rangle$ such that either Y_1 is simple and $[W, F^*(N_1)] = 0$ or Y_1 is a N_1 -component of V. In the first case by 2.1 also $[W, F^*(N)] = 0$ and we can choose a simple $\mathbb{F}N$ -submodule Y of Y_1 . In the second case induction applies to every H-conjugate of Y_1 in W, so either $[W, F^*(N)] = 0$ and $Y_1 = \langle Y^{N_1} \rangle$ for a simple $\mathbb{F}N$ -submodule Y of Y_1 or there exists $h \in H$ and an N-component Y of V with $W^h = \langle Y^{N_1} \rangle$. In any case $W = \langle Y^H \rangle$ and the lemma holds.

Thus it remains to treat the case $N \leq H$. Let $Y \leq W$ be a N-submodule minimal with $Y \nleq \operatorname{rad}_W(H)$. Then $Y/Y \cap \operatorname{rad}_W(H)$ is a simple N-module and $W = \langle Y^H \rangle$.

Suppose that Y is a semisimple $\mathbb{F}N$ -module, then the minimality of Y shows that Y is simple. If $[Y, F^*(N)] = 0$, then also $[W, F^*(N)] = 0$; and if $[Y, F^*(N)] \neq 0$, then Y is a N-component of V.

Suppose that Y is not a semisimple $\mathbb{F}N$ -module. Then $Y \cap \operatorname{rad}_W(H) \neq 0$ and also W is not a semisimple $\mathbb{F}N$ -module. By the definition of a component, W is $E_H(V)$ -quasisimple. Now 2.2(b), with $(N, E_H(V), W)$ in place of (P, E, V), shows that $R := [E_H(V), N] \leq C_H(W)$.

Since W is reduced, R does not act nilpotently on W, so $C_W^*(E_N(V)) \leq C_W^*(R) \leq \operatorname{rad}_W(H)$. On the other hand $E_H(V) \leq C_H^*(\operatorname{rad}_W(H))$ and so by 3.1 $\operatorname{rad}_W(H) \leq C_W^*(E_N(V))$. This shows that $C_W^*(E_N(V)) = \operatorname{rad}_W(H)$. Hence by 2.6, applied to (N, Y) in place of (H, W), and the minimality of Y show that Y is a N-component of V.

Corollary 3.3 $E_{F^*(H)}(V) = E_H(V)$ and $F_V(H) \le F_V(F^*(H))$.

Proof: Since $E_H(V) \leq F^*(H)$ the first statement follows from 3.1 applied with $N := F^*(H)$. Note that $W = [W, F^*(H)]$ for all components of V. The second statement then follows from 3.2 again with $N := F^*(H)$.

Proposition 3.4 Let E and F be two distinct components of $E_H(V)$. Then

$$[\mathbf{F}_V(H)), E, F] = 0$$

Proof: By 3.3 we may assume that $H = F^*(H)$. Let W be an H-component of V with $[W, E] \neq 0$. We can apply 2.3 with $N := E_H(V)$. By part (c) and (d) of that lemma E is the unique normal subgroup of H minimal with $[W, E] \neq 0$. Since [E, F] = 1, part (e) gives [W, F] = 0. Since $F_V(H)$ is the sum of all the components of V the lemma holds.

Recall that a Wedderburn-component for H on V is a maximal sum of isomorphic simple $\mathbb{F}H$ -submodules.

Proposition 3.5 Let W be an H-component of V, $N \leq H$ and $\operatorname{rad}_W(H) \leq Y_1 \leq W$ such that $Y_1/\operatorname{rad}_W(H)$ is a Wedderburn-component for N on $W/\operatorname{rad}_W(H)$. Put $Y := Y_1$ if $\operatorname{rad}_W(H) = 0$, and $Y := [Y_1, \operatorname{E}_H(V)]$ if $\operatorname{rad}_W(H) \neq 0$. Then $\operatorname{E}_H(V) \leq \operatorname{N}_H(Y_1)$, $Y = Y_1 + \operatorname{rad}_W(H)$ and Y is a $\operatorname{N}_H(Y_1)$ -component of V.

Proof: Set $L := N_H(Y_1)$ and $W := W/\operatorname{rad}_W(H)$. Let $D \leq H$ with $[D, N] \leq C_N(Y_1)$ and U be any simple N-submodule of $\widetilde{Y_1}$. Then $[D, N] \leq C_N(U)$, and for all $d \in D$ the map

 $U \to U^d$ with $u \mapsto u^d$ $(u \in U)$

is an $\mathbb{F}N$ -isomorphism. Thus U^d is in the Wedderburn-component \widetilde{Y}_1 , and

$$(*) D \le L$$

By 2.5(c) and 2.1(d), $E_H(V) = C_{E_H(V)}(F_V(H))(E_H(V) \cap N)C_{E_H(V)}(N)$ and so by (*), $E_H(V) \leq L$. This is the first part of the claim.

Since \widetilde{W} is a simple $\mathbb{F}H$ -module, Clifford Theory implies that \widetilde{Y}_1 is a simple $\mathbb{F}L$ -module. Suppose first that $\operatorname{rad}_W(H) \neq 0$. With $\operatorname{E}_H(V)$ in place of N 3.1 gives $\operatorname{E}_H(V) = \operatorname{E}_{\operatorname{E}_H(V)}(V)$. Then with $(L, \operatorname{E}_H(V))$ in place of (H, N) 3.1 gives $\operatorname{E}_H(V) \leq \operatorname{E}_L(V)$. Observe that $W = [W, \operatorname{E}_H(V)]$ since W is $\operatorname{E}_H(V)$ -quasisimple, so $Y = [Y, \operatorname{E}_H(V)] \neq 0$. Hence 2.3(a) applied with $(L, \operatorname{E}_H(V), Y, V)$ in place of (H, N, W, V) shows that Y is a component for L.

Suppose now that $\operatorname{rad}_W(H) = 0$. To show that Y is an L-component of V it suffices to show that $[Y, F^*(L)] \neq 0$. Observe that $[F^*(H), N] \leq F^*(N) \leq F^*(L)$. So if $[F^*(H), N]$ does not centralizes Y, we are done. If $[F^*(H), N] \leq C_N(Y)$, then (*) implies $F^*(H) \leq L$ and so $F^*(H) \leq F^*(L)$. By the definition of a component, $[W, F^*(H)] \neq 1$, and since W is a simple $\mathbb{F}H$ -module also $[Y, F^*(H)] \neq 1$. Thus $[Y, F^*(L)] \neq 1$.

Lemma 3.6 Let $N \subseteq H$. Then the following are equivalent:

- (a) $F_V(H)$ is a semisimple $\mathbb{F}N$ -module.
- (b) If K is a component of $E_H(V)$ with $K \leq N$, then [V, K] = 0.
- (c) $\operatorname{E}_N(V) = \operatorname{E}_H(V) \cap N \leq \operatorname{C}^*_H(V).$
- (d) $[N, E_H(V)] \leq C_H(F_V(H)).$

Proof: (a) \Longrightarrow (b): Let K be a component of $E_H(V)$ with $K \leq N$. By 3.1, $K = E_K(V)$ and

so K centralizes all simple $\mathbb{F}K$ -submodules. Since $F_V(H)$ is semisimple as an $\mathbb{F}N$ -module and so also as an $\mathbb{F}K$ -module, $[F_V(H), K] = 1$. Thus by 2.5(b), K centralizes V.

(b) \Longrightarrow (c): By 2.5(c), $F(E_H(V) \cap N) \leq C_H^*(V)$ and by (b) any component of $E_H(V) \cap N$ is

contained in $C_H(V)$. Hence $E_H(V) \cap N \leq C_H^*(V)$, and 3.1 shows that $E_N(V) = E_H(V) \cap N$. (c) \Longrightarrow (d): By (c) $[N, E_H(V)] \leq C_{F^*(H)}^*(V)$ and by 2.5(c), $C_{F^*(H)}^*(V) \leq C_H(F_V(H))$.

(d) \implies (a): Let W be a component of V. If $\operatorname{rad}_W(H) = 0$, W is a simple H-module and

so a semisimple N-module. Suppose that $\operatorname{rad}_W(H) \neq 0$. Then $W = [W, E_H(V)]$ and by 2.2(b) with $(W, N, E_H(V))$ in place of (V, P, E), W is a semisimple N-module.

Lemma 3.7 Let W be component of V and $N \trianglelefteq H$ such that W is semisimple as an $\mathbb{F}N$ -module. Let Y be a Wedderburn-component for N on W. Then Y is an $N_H(Y)$ -component of V.

Proof: Define $\widetilde{W} := W/\operatorname{rad}_W(H)$. Then since W is a semisimple N-module, \widetilde{Y} is a Wedderburn component for N on \widetilde{W} . If $\operatorname{rad}_W(H) = 0$ we are done by 3.5.

Suppose that $\operatorname{rad}_W(H) \neq 0$. Then $W = [W, \operatorname{E}_H(V)]$ and clearly $W = \operatorname{F}_W(H)$. Since 3.6(a) holds for W in place of V, 3.6(d) implies $[N, \operatorname{E}_H(W)] \leq \operatorname{C}_H(W)$. Thus also $[N, \operatorname{E}_H(V)] \leq \operatorname{C}_H(W)$ since $\operatorname{E}_H(V) \leq \operatorname{E}_H(W)$. This shows that $\operatorname{E}_H(V)$ normalizes every Wedderburn component for N on W.

Let Y_1, \ldots, Y_r be the Wedderburn components of N on W. Then

 $W = Y_1 \oplus \cdots \oplus Y_r$ and $[W, E_H(V)] = [Y_1, E_H(V)] \oplus \cdots \oplus [Y_r, E_H(V)].$

From $W = [W, E_H(V)]$ we conclude that $Y_i = [Y_i, E_H(V)]$ for i = 1, ..., r. On the other hand by 2.2(d) and 3.5

$$[Y_i + \operatorname{rad}_W(H), \mathbb{E}_H(V)] = [Y_i, \mathbb{E}_H(V)] = Y_i$$

is a $N_H(Y_i + \operatorname{rad}_W(H))$ -component of W. Then $N_H(Y_i + \operatorname{rad}_W(H)) = N_H(Y_i)$, and Y_i is a $N_H(Y_i)$ -component.

4 The Structure of an $\mathbf{F}^*(H)$ -component of V

In this section we determine the structure the $F^*(H)$ -components of V for the case that \mathbb{F} is finite or algebraically closed.

Lemma 4.1 Suppose \mathbb{F} is finite or algebraically closed. Let $E, P \leq H$ with [E, P] = 1. Suppose there exists a simple $\mathbb{F}P$ -module Y and $n \in \mathbb{N}$ such that $V \cong Y^n$ has an $\mathbb{F}P$ -module. Put $\mathbb{K} = \operatorname{End}_{\mathbb{F}P}(Y)$. Then \mathbb{K} is a finite field extension of \mathbb{F} and there exists an $\mathbb{K}E$ -module X with $\dim_{\mathbb{K}} X = n$ such that

$$V \cong_{\mathbb{F}(E \times P)} X \otimes_{\mathbb{K}} Y$$

Moreover, the following hold:

- (a) If $\operatorname{End}_{\mathbb{F}EP}(V) = \mathbb{F}$, then $\mathbb{K} = \mathbb{F}$.
- (b) If V is a simple $\mathbb{F}EP$ -module, then X is a simple $\mathbb{K}E$ -module.
- (c) If V is an E-quasisimple $\mathbb{F}EP$ -module, then X is a quasisimple $\mathbb{K}E$ -module.

Proof: By Schur's Lemma \mathbb{K} is a division ring. Since V is finite dimensional, dim_F \mathbb{K} is finite. More precisely, if \mathbb{F} is algebraically closed then $\mathbb{F} = \mathbb{K}$; and if \mathbb{F} is finite then \mathbb{K} is finite. In any case \mathbb{K} is a field.

Let $X = \operatorname{Hom}_{\mathbb{F}^P}(Y, V)$. Then X is a vector space over K via

$$(kx)(y) := x(ky)$$
 for all $k \in \mathbb{K}, y \in Y$ and $x \in X$.

Moreover, E acts on X by $(x^e)(y) := x(y)^e$ and this action is K-linear. Thus X is a K*E*-module. We now regard $X \otimes_{\mathbb{K}} Y$ as an $\mathbb{F}(E \times P)$ -module via $(x \otimes y)^{ea} = x^e \otimes y^a$ for $e \in E$, $a \in P$. Let

$$\phi: X \otimes_{\mathbb{K}} Y \to V \text{ with } x \otimes y \to x(y).$$

Then ϕ is well-defined since $\phi(kx \otimes y) = (kx)(y) = x(ky) = \phi(x \otimes ky)$. Also if $e \in E$ and $a \in P$, then

$$\phi((x \otimes y)^{ea}) = \phi(x^e \otimes y^a) = (x^e)(y^a) = x((y^a))^e = (x(y)^a)^e = x(y)^{ae} = x(y)^{ea} = \phi(x \otimes y)^{ea}.$$

So ϕ is an $\mathbb{F}(E \times P)$ -module homomorphism. Note that for each submodule Z of V isomorphic to Y, there exists $x \in X$ with x(Y) = Z and so $\phi(x \otimes Y) = Z$. Since V is the sum of such submodules, ϕ is surjective. As $V \cong Y^n$,

$$X = \operatorname{Hom}_{\mathbb{F}P}(Y, V) \cong \operatorname{Hom}_{\mathbb{F}P}(Y, Y^n) \cong \operatorname{End}_{\mathbb{F}P}(Y)^n = \mathbb{K}^n.$$

Hence the \mathbb{F} -spaces $X \otimes_{\mathbb{K}} Y$ and Y^n and thus also V have the same finite dimension. So ϕ is also injective and ϕ is an $\mathbb{F}(E \times P)$ -isomorphism.

Observe that $E \times P$ acts K-linearly on $X \otimes_{\mathbb{K}} Y$. So if we view V as a K-space via

$$k\phi(u) = \phi(ku)$$
 for all $k \in \mathbb{K}, u \in X \otimes_{\mathbb{K}} Y$,

then EP acts \mathbb{K} -linearly on V. Hence if $\operatorname{End}_{\mathbb{F}EP}(V) = \mathbb{F}$ we conclude that $\mathbb{K} = \mathbb{F}$. This proves (a).

Let X_0 be a proper $\mathbb{K}E$ -submodule of X, then $\phi(X_0 \otimes_{\mathbb{K}} Y)$ is a proper $\mathbb{K}EP$ -submodule of V. This gives (b). In a similar way [V, E] = V implies [X, E] = X.

Now assume that V is E-quasisimple, so $\operatorname{rad}_V(EP)$ is the unique maximal EP-submodule and $\operatorname{rad}_V(EP) = \operatorname{C}^*_V(E)$. Then

$$X_0 \otimes Y \leq \operatorname{rad}_{X \otimes_{\mathbb{K}} Y}(EP) = \operatorname{C}^*_{X \otimes_{\mathbb{K}} Y}(E) = \operatorname{C}^*_X(E) \otimes_{\mathbb{K}} Y.$$

This yields $X_0 \leq C_X^*(E)$. Since X_0 was an arbitrary proper submodule, it also shows that $C_X^*(E)$ is the unique maximal KE-submodule of X and $C_X^*(E) = \operatorname{rad}_X(E)$ and (c) follows. \Box

Proposition 4.2 Suppose \mathbb{F} is finite or algebraically closed. Let W be an $F^*(H)$ -component of V with $\operatorname{rad}_W(F^*(H)) \neq 0$, and let E be the unique component of $E_H(V)$ with $[W, E] \neq 0$ (see 2.3). Put $P := C_{F^*(H)}(E)$. Then $F^*(H) = EP$ and there exists a finite field extension \mathbb{K} of \mathbb{F} , a quasisimple $\mathbb{K}E$ -module X and an absolutely simple $\mathbb{K}P$ -module Y such that

$$V \cong_{\mathbb{F}^{F^*}(H)} X \otimes_{\mathbb{K}} Y$$

Proof: By 2.1(c), $F^*(H) = EP$. Let Y be a simple $\mathbb{F}P$ -submodule of W. Since [E, P] = 1, any $F^*(H)$ conjugate of Y is isomorphic to Y. Thus by 2.2(b) applied to $F^*(H)$ in place of H, $W \cong_{\mathbb{F}P} Y^n$ for some n. Now 4.1 shows that $V \cong_{\mathbb{F}F^*(H)} X \otimes_{\mathbb{K}} Y$. Moreover, since $\mathbb{K} = \operatorname{End}_{\mathbb{F}P}(Y)$ and \mathbb{K} is commutative, $\mathbb{K} = \operatorname{End}_{\mathbb{K}P}(Y)$, and Y is an absolutely simple $\mathbb{K}P$ -module. Also since W is an E-quasisimple $\mathbb{F}EP$ -module, X is E-quasisimple.

Corollary 4.3 Suppose \mathbb{F} is finite or algebraically closed. Let W be a $\mathbb{F}^*(H)$ -component of V, and let \mathcal{K} be the set consisting of all the components of H and all the $O_r(H)$, r a prime divisor of |H|. Then there exists a finite field extension \mathbb{K} of \mathbb{F} and for each $K \in \mathcal{K}$ a $\mathbb{K}K$ -module W_K such that

$$W \cong_{\mathbb{F}F^*(H)} \bigotimes_{K \in \mathcal{K}} W_K.$$

Moreover, either

- 1. $\operatorname{rad}_W(F^*(H)) = 0$ and W_K is absolutely simple for every $K \in \mathcal{K}$, or
- 2. $\operatorname{rad}_W(F^*(H)) \neq 0$, W_E is *E*-quasisimple and W_K is absolutely simple for every $K \in \mathcal{K} \setminus \{E\}$, where *E* is the unique component of $E_H(V)$ with $[W, E] \neq 0$.

Proof: We may assume that $|\mathcal{K}| > 1$. If $\operatorname{rad}_W(H) = 0$ put Y := W, $\mathbb{K} := \operatorname{End}_{\mathbb{F}^*(H)}(W)$ and $\mathcal{K}_0 := \mathcal{K}$. Otherwise let X, Y and \mathbb{K} be as in 4.2 and put $W_E := X$ and $\mathcal{K}_0 := \mathcal{K} \setminus \{E\}$. Observe that then W_E is *E*-quasisimple.

In any case Y is an absolutely simple $\mathbb{K}P$ -module, where $P := \langle \mathcal{K}_0 \rangle$. If $|\mathcal{K}_0| = 1$, we are done. In the other case pick $K \in \mathcal{K}_0$ and set $\mathcal{K}_1 := \mathcal{K}_0 \setminus \{K\}$. Then 4.1 applies with $(\mathbb{K}, K, \langle \mathcal{K}_1 \rangle, Y)$ in place of (\mathbb{F}, E, P, V) . Note that in addition $\mathbb{K} = \operatorname{End}_{\mathbb{K}K\langle \mathcal{K}_1 \rangle}(Y)$, so 4.1(a) also applies. Now an easy induction finishes the proof.

References

 H. Kurzweil, B. Stellmacher, The Theory of Finite Groups, An Introduction. Springer-Verlag, New York, (2004) 387pp.