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1 Introduction

In this article all groups considered are assumed to be finite. Moreover G always
denotes a group and p always a prime.

We define A(G) to be the set of elementary abelian p-subgroups of G of maximal
order and (G) to be the subgroup generated by the elements of order p of G. Then

J(G) = (A] A e AG))
is the Thompson subgroup of G (with respect to p), and
B(G) == (Cr(UZ(J(T)) | T € Sylp(G))
is the Baumann subgroup of G (with respect to p).
Definition 1.1 Let p divide the order of G, T € Syl,(G) and S < T. Then
C(G,S) :=(Ng(C)|1#C char S),
C(G.T) = (Ca((Z(1))).C(G, B(T))),
(G, T) = (Cal(Z(T))), Na(J(T))).

Notice that every characteristic subgroup of B(T') is characteristic in 7" and J(T')
is characteristic in B(T). In particular

C*(G,T) <C*(G,T) < C(G,T).
Definition 1.2 A group G is of characteristic p if

Ce(0,(G)) < O,(G) (or equivalently F*(G) = O,(G)).



In this paper we will classify those groups G of characteristic p that are not equal to
C(G, T) with respect to some Sylow p-subgroup 7T'; a result called the Local C(G, T)-
Theorem.

The investigation of groups of characteristic p in which G # C(G,T) is a natural
extension of work on failure of Thompson factorization as first studied by Glauberman
[8] in response to the factorization theorems of Thompson [I7]. Indeed Glauberman’s
Theorem is similar to that of our C**(G,T)-Theorem for minimal parabolic subgroups
(see Theorem in the case when G is p-solvable but without the assumption that
G is minimal parabolic.

The Local C(G, T)-Theorem in the case p = 2 was proven by Aschbacher [I] and
there are some key features of Aschbacher’s proof which we have reformulated for use
in our proof. In particular, B(T')-blocks are a generalization of his short groups to the
case of p any prime, together with the extra condition that they are normalized by
B(T). Aschbacher uses the word block for a short subnormal subgroup.

Some of the properties of B(T')-blocks resemble those of components and these are
proven in Chapter @ For example, distinct subnormal B(T)-blocks commute .
Furthermore, our notations Og(V') and Aq (V) are essentially the same as P(G, V') and
P*(G, V) of Aschbacher.

An alternative proof for p = 2 was also given by Gorenstein and Lyons [9]. Their
proof avoids the use of some deep results needed in Aschbacher’s proof. Instead it
requires the K-group hypothesis (that any simple section of G is one of the known
finite simple groups), which is sufficient for the purposes of the classification of the
finite simple groups.

Our proof works for all primes p and does neither use the K-group assumption nor
the deep results used in Aschbacher’s proof. In fact, it is more or less self contained.

Our result can be considered as part of a project of Meierfrankenfeld et. al. [I3] and
we will use standard concepts from this project. In particular, the name characteristic
p for groups with the property C(0,(G)) < O,(G) and the L-Lemma originate there.
Our abstract definition of a minimal parabolic group is also used extensively in this
project, but was originally an idea of McBride.

The Baumann subgroup and the Baumann Argument first appeared in (2.11.1)
of [2], but we prefer to quote [15], where the result is explicitly stated in the form we
require. This result is used to show that certain subgroups satisfy the hypothesis of a
pushing up result [16] which was originally proven by Glauberman and Niles [14] and
independently for the case p = 2 by Baumann [3].

Groups generated by conjugacy classes of transvections were classified by McLaugh-
lin [10], [11] and some of our results in Section {4 follow easily from this classification,
but we prefer to give an independent proof tailored to our particular situation.

The results of Section [2] are elementary and mainly well-known. We have given
explicit proofs rather than searching for original references in order to keep things
reasonably self contained.



To state the main result we need two further definitions.

Definition 1.3 The symmetric group of degree m is denoted by S,,. Let X be a group
and W be a finite simple GF(p)X -module. If X =2 S,,, m > 3, then W is a natural
Sp-module (for X), if p = 2 and W is isomorphic to the unique non-trivial simple
section of the GF(2)S,,-permutation module.

If X = SLy(p™), then W is a natural S Ly(p™)-module (for X), if W is irreducible,
F:=Endx(W)=GF(@™), and W is a 2-dimensional F X -module.

Moreover, for Ay, and SLs(p™)" rather than S, and SLy(p™) the corresponding
module is called a natural A,,-module and a natural SLs(p™) -module, respectively.

It is easy to see that every finite simple GF(2)S,,-module with |WW/Cy (t)| = 2 for
a transposition ¢ € S,, is a natural S,,-module.

Definition 1.4 Let T € Syl,(G). A subgroup E < G is a B(T)-block of G if for
W = QUZ(0,(F))):

(i) E=Or(E) = [E,B(T)], [0y(E), E] = Oy(E), and [E,UZ(T))] # 1.

(i1) EJO,(E) = SLy(p") or p = 2 and EJO(E) = Agpy1, and W/Cw(E) is a
natural SLy(p™)'- resp. Agmi1-module for E/O,(E).

(iti) Op(E) =W, or
(1) p=3, and O5(E)/W is a natural SLy(3™)'-module for E/O3(E),

(
) P
(2) O3(E) = ®(03(E)) = Z(E) = Cw(E) and |Z(E)| = 3", and
(3) no element of B(T) \ Cpry(W) acts quadratically on Os(E)/Z(E).

If E/O,(E) = SLy(p™), then E is a linear block, and in the other case E is a sym-
metric block. Moreover, if (1) — (3) in (iii) hold, then E is an exceptional block.

We will prove the following theorem.

Theorem 1.5 (Local C*(G,T)-Theorem) Let G be of characteristic p with T €
Syl,(G) such that G # C*(G,T). Then there exist B(T)-blocks G1,...,G, of G such
that the following hold:

(a) {Gy,...,G.}¢ =1{Gy,...,G,}.
) (Go, Gyl =1 for i #].
(¢) G =C*G,T)Gy, where Gy :=[[_, G;.



(d) Every B(T)-block of G that is not in C*(G,T) is contained in one of the B(T)-
blocks G, ...,G,.

(e) C*
(i

(id

(14i

G, T)NGy =[], (C*(G,T)NG;). Moreover either
Gi/O,(G;) =2 SLy(p™), p™ > 3, and C*(G,T)NG; = N, (T NG,), or
P = 2, GZ/OQ(Gl) = A2m+1, and (C*(G,T) N GZ)/OQ(GZ) = AQm,

— S N g

Corollary 1.6 (Local C(G,T)-Theorem) Let G be of characteristic p with T €
Syl,(G) such that G # C(G,T). Then G has the same structure as given in Theorem

with the additional restriction that if G; is a symmetric block, then G;/Os(G;) =
A2n+1.

It is easy to see that under the assumption of Theorem every proper subgroup L
with B(T) < L and L £ C*(G, T) satisfies the hypothesis of [I.5] (see [2.3). Hence, those
groups G, where C*(G,T) is the unique maximal subgroup containing B(T), are the
basis for an induction on the order of G. This leads to a class of groups that plays the
same role for groups of local characteristic p as the class of minimal parabolic groups
for groups of Lie type in characteristic p (see [13]).

Definition 1.7 Let T € Syl,(G). Then G is a minimal parabolic group (with
respect to p), if T is not normal in G and there is a unique mazimal subgroup of G
containing T'.

The restricted structure of minimal parabolic groups allows us to prove a Local
C**(G,T)-Theorem that is of interest on its own:

Theorem 1.8 (Local C**(G, T)-Theorem for Minimal Parabolic Groups) Let
G be a minimal parabolic group of characteristic p with T € Syl,(G) such that G #
C*(G,T), and let V := Q(Z(0,(Q®))) and G := G/Cx(V). Then there exist subgroups
Ei,...,E. of G such that

(a) G=J(G)T and J(G) = E, x -+ x E,,

(b) T acts transitively on {E1,...,E,},

(c) V=Cyv(Ey x...x E)I\_,[V, Ej], with [V, E;, E;] = 1,

(d) E; 2 SLy(p") or p=2 and E; = Son 1, for some n € N, and
(e) [V, Eil/Cv,py(E;) is a natural module for E;.



As a corollary of the Local C*(G, T')-Theorem we get a pushing up result for minimal
parabolic groups.

Corollary 1.9 (Pushing Up Theorem for Minimal Parabolic Groups) Let G
be a minimal parabolic group of characteristic p with T € Syl,(G). Suppose that
neither any non-trivial characteristic subgroup of B(T) nor Q(Z(T)) is normal in G.
Then G satisfies the conclusion of the Local C(G,T)-Theorem. Moreover C*(G,T) =
(C*(G,T) AT, Go)T.



2 Preliminary Results

Lemma 2.1 Let D be a conjugacy class of subgroups of G and A and B be subgroups
of G. Suppose that G = (D) and

D={XeD|X<AlU{XeD| X <B}.
Then A =G or B=G(.

Proof. Let

Dy:={X e€D|X £ A} and D := (Dy).
We may assume that A # G, so Dy # 0. Clearly D < B and (A,D) < Ng(D).
Moreover, every element of D is a subgroup of A or D, whence G = (D) < Ng(D).
Since D is a conjugacy class of G and Dy # (), this gives G = D = B. O

Lemma 2.2 Let GG be of characteristic p and L < G. Any of the following conditions
implies that L s of characteristic p :

(a) L 92G.
b) O,(G) < L.

c) L 99 (L, 0,(G)).
(d) O

(
(
»(G) normalizes L.

Proof. (a): Since L IQ G, F*(L) < F*(G) = 0,(G).

(b): 0,(G) < O,(L), 50 CL(Oy(1)) < Cal04(G)) < O,(G) < O,(L)

(c): By (b) (L,O,(G)) has characteristic p. Thus (a) (with (L, O,(G)) in place of
() shows that L has characteristic p.

(d): L I LOL(G). So (d) follows from (c).

0]
Lemma 2.3 Let G be of characteristic p, T € Syl,(G), and Q@ < T with Cr(Q) < Q.
Suppose that L and P are subgroups of G such that Q < L and B(T) < 1T € Syl,(P)
Then the following hold:

(a) Ca(@Q) < Q.
b

(b) L is of characteristic p.
(¢) P is of characteristic p.

(P, Ty) < C*(G, T).

e) If P is minimal with respect to Ty < P and P £ C*(G,T), then P is a minimal
parabolic of characteristic p with C*(P,Ty) # P.

)
)
d)
)

(
(



Proof. (a): Let D := Cg(Q). Since Cp(Q) < Q and O,(G) < T, Co,)(Q) < Q <
Ce(D). So by the P x Q-Lemma, OP(D) centralizes O,(G). Hence D is a p-group
since G is of characteristic p. As T normalizes D, D < T and so D < Cr(Q) < Q.
(b): Let Lo := (QF). Since Q < T, O,(G) normalizes Q and so also L. Hence by
2.2(d) Lo is of characteristic p. Let C' := C(Op(L)). Then C' < C(O,(Lo)) and thus

[Q,C] < Ly C < Cro(0,(Lo)) < Op(Lo) < Oy(L) and [Q,C,C] = 1.

Hence C' normalizes QO,(L), so [QO,(L),C,C] = 1 and [Q,0P(C)] = 1. By (a)
OP(C) =1, and C is a p-group. Thus C' < O,(L), and L is of characteristic p.
(c): Observe that B(T) QT and Cp(B(T)) < B(T). Hence (c) follows from (b).
(d): Let Ty < T € Syl,(G). Then T < Ng(B(T)) < C*(G,T), so C*(G,T) =
C*(G,T). Thus we may assume that Ty < T. Then

O(Z(T)) < Cr(B(T)) < B(T) < Ty,
and so Q(Z(T)) < QZ(Tp)). Tt follows that
Cr((Z(1y))) < Cp(UZ(T))) < Ca(Q(Z(T))) < C*(G,T).

Since B(T) = B(Ty), we conclude that C*(P,Ty) < C*(G,T).
(e): From (c) and (d) we get that P is of characteristic p and

C*(P,T,) < PNC*G,T) # P.

The minimal choice of P shows that PN C*(G,T) is the unique maximal subgroup of
P containing T;. As Np(Ty) < Np(B(T)) < PN C*(G,T), P is a minimal parabolic
subgroup of G. U

Lemma 2.4 Let G = QN, where N is a normal subgroup of G and Q) is a non-abelian
2-subgroup with Q NN = 1. Suppose that there exists 1 #t € Z(Q) N Q" such that

() Cn (@) = Cn(1).
Then [N, Q] is solvable of odd order.

Proof. There exists S € Syla(N) such that @ < Ng(S). Let g € N such that
a:=19 € tS and [t,a] = 1. Then

ta € Cs(t) 2 Cs(Q),
so [@,a] =1, since t € Z(Q). Now (*) implies
Q < Cgla) = Q7 x Cy(Q7).
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Let QQy be the projection of @ in Cn(Q9). Then t centralizes Qy, so by (k) also
(@, Qo] = 1. It follows that Q' < Q' NQ and [Q',g] < Q' QNN <QINN =1. But
now t = a since t € @'.

We have shown that ¢ itself is the only conjugate of ¢ in (¢)S that commutes with ¢. It
follows that ¢ is not conjugate in G to any other element of (¢)S. Hence, Glauberman’s
Z*-Theorem [6] together with (x) implies that [N, Q)] is a group of odd order, and the
Theorem of Feit-Thompson [5] yields the desired result. O

Lemma 2.5 Let G be of characteristic p. Suppose that there exist subgroups E < G
and N Q G with [OP(N),E] = 1, [O,(G),E] < E, and E = OP(E). Then E <
Ng(EN).

Proof. Let Ey := E[E,Ng(EN)] = (EN¢(EN)) and R := EyN N. Then
(*) Ey = ER and O”(R) < Z(Ey).

Note that O,(G) normalizes Ey. Hence by[2.2 Ey has characteristic p, so by (x) OP(R) <
O,(Ey) and OP(R) = 1. Thus R is a p-group. It follows that R < O,(N) < O,(G).
Then OP(E,) = Ey and [O,(G), E] < E imply R < E and E < Ng(EN).

Lemma 2.6 Let E be a group, Q = Os(E), W = Q(Z(Q)) and Z = Cy(E).
Suppose that the following hold:

(1) E/Q = SLy(3™).

(i1) Q/W and W/Z are natural SLo(3")-modules for E/Q.
(iti) Z=®(Q)=Q' = Z(F) and |Z| = 3.
Then the image of Cauyq)(Z) in Aut(Q/W) is isomorphic to SLa(3").
Proof. Let Wy := [W, E]and ¢ := 3". Then W = ZxW,, and Q := Q /W, is a special
group of order ¢®. Let W < A < Q and T € Syl3(E) such that A/W = Z(T/W).
Pick a € A\ W. By (ii) and (iii) [a, Q] = ([a, Q]F) = Q' = Z and thus |Q/Cq(a)| = q.
As also Cg(a) is normalized by T and /W is a natural SLs(¢)-module, we get that

A = Cg(a) and thus A = Cg(a); in particular A is abelian.
Let D := {A°| e € E}. For B € D we have:

(%) Co(b) = B forbe B\ W.

Moreover |D| = g + 1, and the images of the elements of D form a partition of Q/W.
This latter property together with (x) shows that the elements in D are the only abelian
subgroups of order ¢* in Q.



Pick A, B € D, A # B. Then (x) implies
[a,b] # 1 for alla € A\ W and b € B\ W.

The action of E on @ shows that Cp(A/Z) acts regularly on D\ {A}.
Now let a € Y := Cuyyq)(Z). Assume that « centralizes A/Z. If o normalizes B,
then for b€ Banda € A
[b, a] = [b, ala = [bav, al,

so b~ (ba) € W. Hence o centralizes AB/W = Q/W, and so
Cy(A/Z) N Ny (B) = Cy(Q/W).
With a similar argument Cy(aZ/Z) N Ny (B) < Cy(B/Z), so
Cy(aZ/Z) N Ny(B) = Cy(B/Z) N Ny(A4) = Cy(Q/W).

It follows that [Y/Cy (Q/W)| < ¢(g—1)(g+1), because there are (¢ —1)(g+ 1) choices
for @Z and then ¢ choices for B with @ ¢ B. As E induces SLy(q) on Q/W, we are

done.
O

Definition 2.7 Let V' be a finite dimensional GF (p)G-module. Then Og(V) is the
set of subgroups A of G such that:

(i) VAl #1,
(17) |AJ/CA(V)||Cv(A)| > |A*/Ca-(V)||Cy(A")| for all subgroups A* of A, and
(iti) AJCA(V) is an elementary abelian p-group.

Moreover
O(V) :=={A4€ O0c(V) | [A/Ca(V)[|Cv(A)| > [V]}.

Suppose that Og(V) # 0. Then
ma(V) = max{[A/C(V)[|Cv(A)[ | A € Oc(V)},
and Ag (V') is the set of minimal (by inclusion) elements of the set
{A € Oa(V) | [A/CaW)]ICv(A)] = ma(V)}.
Observe that property (i) above with A* =1 gives mg(V) > |V|.

Lemma 2.8 Let V' be a finite dimensional GF (p)G-module, V; < Cy(OP(G)) be a
GF(p)G-submodule, and W < V. Then the following hold for A € Og(V):
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(a

) [W/Cw(A)] <|A/CA(W)].
(b) Let A€ OL(V). Then [W/Cy(A)| < |A/C4(W)| or Ca(W) € O%L(V).
(c) A€ Ongicvimy(Cv(B)) for all B < A with [Cy(B), A £ 1.
(d) Let O,(G/Ca(V)) = 1. Then O(V/Vo) # 0 if Oa(V) £ 0, and O%(V/Vy) # 0

if OL(V) # 0.

(e) Let V be an elementary abelian normal subgroup of G. Then

{A € AG) | A, V] # 1} € Og(V).

Proof. (a), (b) and (c): Set Ay := C4(W). By the definition of Og(V)
[A|Cy (A)] > |Ao]|Cv (Ao)| > [Ao|[WCv (A)| = |Ao|[WIICy (A)]|Cw (A) 7,

and thus |A/Ay| > |W/Cw(A)].

Moreover, if A € OL(V) and [A/A¢| = |W/Cw(A)|, then |A/C4(V)||Cy(A)| =
| Ao/Ca(V)||Cv(Ag)| = ma(V) > |V] and Ag € OL(V).

Assume now that W = Cy(B) for some B < A and set B* := C4(W), so B < B*
and Cy (B*) = Cw(B*). Then Cw(A*) = Cw(A*B*) = Cy(A*B*) for every A* < A,
SO

[AllCw (A)] = |AlICV(A)| = [A*BY|Cy (A"B7)| = [A*B™[|Cw (A7)]

and
|A/B*||Cw (A)| > |A*B*/ B*||Cw (A)| = [A™/A™ N B*||Cw (A")].

Hence (c) follows. B

(d): Let V := V/Vy. Observe that C4(V) = Ca(V), since O,(G/Cq(V)) =1 and
that |V/Cy(A)| < [V/Cy (A)].

(e): Let A € A(G). Then the maximality of |A| gives for every A* < A,

Al =[ACy(4)] = [Al|Cv(A)|[V N A" > [A*Cy (A7)
= [AT[|Cy (A[V A AT[7E = AT Cy (AN IV 0 AT,

and thus with A*C4 (V') in place of A*
|A/Ca(V)[|Cv(A)] = [A"Ca(V)/Ca(V)]|Cv (A%)] = |4/ Ca- (V)| Cv (A7)].

Hence A € Oq(V) if [V, A] # 1. O

Notation 2.9 In the following six lemmas we will give some elementary facts about
Sy in its action on a natural GF(2)-module. For this purpose we fix the following
notation.
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Let G = S, n > 1, and V* be a GF(2)G-permutation module (written multiplica-
tiwely); so there exists a basis 2 := {vy,...,v,} that is permuted by G. We set

W= (vw; |1<14,7<n)andV,:= <Hvz>

=1

Ifn is odd, then'V := W is a natural GF(2)G-module, and if n is even, then V := W /Vj
is a natural GF(2)G-module. Furthermore we fix T € Syls(G), and Y is the subgroup
generated by the transpositions contained in T.

Lemma 2.10 Let G = S,,, n > 4. Then either

(a) mn is even, and Ng(Y') is transitive on the transpositions of G that are not in'Y,
or

(b) n is odd, and Ng(Y') has two orbits on the transpositions not in Y. The elements
of one orbit have a fized point in common with Y and the elements of the other
orbit do not.

Proof. This is an elementary calculation in S,,. U

Lemma 2.11 Let G = S,, n > 5, and V be a natural GF(2)G-module. Then
(Na(Y),Ca(Cy(T))) = S,—1 if nis odd, and G = (Ng(Y),Ce(Cy (1)) if n is even.

Proof. Set M := (Ng(Y),Cq(Cv(T))). Suppose first that n is odd. Then V* =
VoxV and
Cv* (T) = Cv(T)X‘/m

so Ca(Cy(T)) = Ca(Cy<(T)).

There exists a unique v € € such that v € Cy+(Y). This element is centralized by
N¢(Y), and thus also by T. It follows that (Cq(Cy+«(T)), Na(Y)) fixes v; in particular
M # G. Since there are transpositions in Cg(Cy+ (7)) that are not in Y, shows
that M contains all transpositions that fix v. Hence M = 5, _;.

Suppose that n is even. It suffices to show that M contains a transposition that is
not in Y. Since then by M contains all the transpositions of G, so M = G.

Let Qq,...,€Q, be the T-orbits of €2, and let Aq,..., A, be the proper subsets of {2
with [[T,en, v, 77 < Vo. Set

0; \= Hv, t=1,...,r, and {; := Hv, t1=1...,k.
Ueﬂi UEAZ‘
Then
Cw(T) = <01,. . -;Or> and Cv(T) = <£1,. .. ;£k>/%
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Assume first that Cq(Cyv(T)) = Cq(Cw(T)). Since n > 5, we may assume that
|€2;| > 4. Hence there exists a transposition d € Ng(Q) \ Ca(21) with d € Y. Clearly
[0;,d] =1 fori=1,...,r and thus d € Cq(Cw (7)) = Ce(Cy(T)) < M, so M =G.

Assume now that Cg(Cy(T)) # Ca(Cw (T)). Then there exists i € {1,...,k} and
t € T such that [(;,t] # 1. Tt follows that A; U AL = Q, and {A;, AL} is a T-invariant
partition of £2. In particular, every such ¢ acts fixed-point-freely on 2.

Observe that A; N, # O for every j € {1,...,7}; in particular Cp(£2;) < Ng(A;).
If r > 1, then Cr(£23) is transitive on 4, so ©; C A; and consequently T < Ng(A;),
which contradicts ¢ € Ng(A;).

We have shown that 7' is transitive on €2, so [(;,T] # 1 for every i € {1,...,k}. Let
y € T be a 4-cycle acting transitively on €2y C ). As n > 5, y has a fixed point in (2
and thus y € Ng(A;) (for every 7). In particular either

QO QAZ or QO g Q\AZ
In both cases for every i € {1,...,k}
S4 = L = NG*(Q()) N Cg(Q \ Qo) S Ng(AZ) S Cg(ﬁz)

It follows that L < C(Cy (7)), but L contains transpositions that are not in Y. Again
M=G. U

Lemma 2.12 Let G = S, n odd, and V be a natural GF(2)G-module. Then the
following hold:

(a) Cy(Y) =[V,Y].
b) Ce(Cy(Y)) =Y.

(b)
(c) Lett and t' be involutions in T. Then t =t" or Cy(t) # Cy(t).
(d) Let d € G with d®> =1 and |[V,d]| = 4. Then d is conjugate to (123) in G.
(e) If G is a minimal parabolic (with respect to 2), then n = 2™ + 1.
Proof. Properties (a) — (c¢) are elementary consequences of the action of G on V*
and €.
(d): Let v € Q such that [v,d] # 1. Then [V*,d] < (v,v%,v? ), so d fixes all but 3
elements in Q. Hence d is conjugate to (123) in G.
(e): We may assume that n > 5, so by n is odd. Let M be the unique maximal
subgroup containing T'. As n is odd, M = S,, ; and M has a unique fixed point v € ).
Let Q4,...,Q, be the T-orbits on ©Q with Q; = {v}. Then T < Ng(Q2\ ) < M,
so Q\ Qs = {v}, and (e) follows. O
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Lemma 2.13 Let G = S, n odd, T € Syls(G), and U be a GF(2)S,,-module. Suppose
that U = [U, O*(Q)]Cy (1) and that [U, O*(Q)]/C,02(ay(O*(G)) is a natural GF(2)S,-
module. Then

U= CU(O2(G>> X [U7 02(G>]7
in particular [U, O*(Q)] is a natural GF(2)S,-module.

Proof. Let Uy := Cy(O*(@)). Tt is well known that S,, is generated by n — 1 trans-
positions tq,...,%,_1 and it follows from the hypothesis that each of them acts as a
transvection on U/Uy, so |U/Uy| < 2"~ As the natural GF(2)S,-module has order
2"~ we conclude that U = [U, O*(G)]Uy. Without loss of generality we may assume

It suffices to show that |[U,t;]| = 2, since then ([U,¢;] |i=1,...,n—1) =[U,G] is
a GF(2)S,-submodule of order at most 27!, and as above [U, G] has to be a natural
GF(2)S,-module.

Let ¢ be an (n — 2)-cycle in A,,. Then c is centralized by a transposition t. It is
easy to calculate in the natural module that [Cyy,(c)| = 4, so

Cy(c)] = 8 and U = Cy(c) x [U, d].

Then [Cy(c)/Cu(c) N Cy(t)| =2 and |[Cy(c), t]| = 2. Moreover, ¢ centralizes [U/Uy, c|
and thus also [U, ¢]. It follows that |[U, ]| = 2. O

Lemma 2.14 Let G =S, and V be a natural GF(2)S,-module for G, and let ' < G
such that F = O*(F) and [V, F]Cy(F)/Cyv(F) is an irreducible GF(2) F-module. Then
the following hold:

(a) F has a unique non-trivial orbit on €.

(b) Suppose that n is odd, F = Ay, k odd, and [V, F] is a natural Ag-module for F.
Then F' is normalized by a conjugate of Y.

(¢) Suppose that F = SLy(2%) and [V, F]/Cv,p|(F) is a natural SLy(2F)-module for
F. Then k =2, and F has exactly n — 6 fized-points on Q. In particular [V, F]
and Cry,p(F) are normalized by a conjugate of Y.

Proof. Observe that Cy(F) = Cy-(F)/Cy-(G) since F = O*(F), so
[V*, FICy-(F)/Cy-(F) = [V, FICy (F)/Cy (F) & [V, F)/Cuvn (F).
(a): For v € Q, let W, := (v¥). As Q is a basis of V*, we get for v,v €
W, =Wy and v = 0" or W, N W5 = 1.
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Now the irreducibility of [V*, F]|Cy«(F)/Cy+(F) shows that [W,, F] = 1 for all but one
orbit v*".

(b): According to (a) F' has a unique non-trivial orbit Qy C Q. Set m = |Qy|
and Wo := (Qp). Then [Wy| = 2™ and |[Wo, F]| = 2™ !, As [W, F] is also a natural
Ap-module for F we also get that |[[Wp, F]| = 2%, so k = m. Moreover, since k and n
are odd, |\ €| is even. Hence, there exists a conjugate of ¥ normalizing 2 \ €2y and
thus also I

(c): As in the proof of (b) we define Wy using the unique non-trivial orbit Qg of
Fon Q and set m := [Qo|. Observe that Cu,(F) = ([[,cq,w) and that [Wy, F|
is the set of all products of an even number of elements of {25. On the other hand
(W, F]Cw, (F)/Cw,(F) is a natural SLy(2%)-module for F, so F is transitive on the
non-trivial elements of [Wy, F]Cw, (F)/Cw, (F). It follows that every element of [Wy, F]\
Cw, (F") is either the product of m —2 or 2 elements of Q. Since |F'| > 60 we get m > 5
and 4 =m — 2, so m = 6. In particular F' is a subgroup of Ag and thus k = 2.

We have that [Wy, F] = [Wy, Ca(2\ Q)] and Cwy,71(F) = Crwe,r(Ca(2\$)). As
there exists a conjugate of Y normalizing €y and 2\ €2, this conjugate also normalizes
[(Wh, F| and Chy,,#1(F). Now the additional statement in (c) follows.

U

Lemma 2.15 Let G = S, n > 3 and n odd, and let V' be a natural GF(2)S,-module
for G. Suppose that A € Og(V'). Then the following hold:

(a) A is generated by commuting transpositions of G.
(b) [V, A, A] = 1.
(c) [V/Cv(A)| = A].

Proof. We proceed by induction on n. The case n = 3 is trivial, so we assume that
n > 5 and that the result holds for n — 2. Since V* =V x V; we may as well calculate
in V* rather than V.

By the Timmesfeld Replacement Theorem [I2] there exists 1 # Ay < A such
that [V* Ap, A] = 1 and 4y € Og(V*). Let 1 # a € Ay and v € Q such that
v # v* and let ¢ be the transposition of G with v* = v* and V* := Cy-(t). Then
w = vv® = v’ € Cy-(A), so

A < CG(U)) = <t> X L, L= Snfg.

Observe that V;*/(w) is the natural permutation module for L. Thus by induction
and |A/CA(V)| = |V /Cys(A)], and A = (ty,...,t,)Ca(V]), where t1,... 1, are
commuting transpositions of G in L. Moreover, by Ca(V) < {t), so (a) and (c)
follow, and (a) yields (b). O
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Lemma 2.16 Let V be a finite dimensional GF(p)G-module, E 1< G, and W =
[V, E], and let A € Og(V') with [E, A] # 1. Suppose that

(i) E=SLy(p™) orp=2 and E = Agpi1, and
(11) W/Cw(FE) is a natural SLy(p™)'- resp. Agpmy1-module for E.
Then the following hold:

(a) A< Ne(B).

(b) EA:=FEA/Cpa(W) = SLy(p™) and A € Syl,(EA), or p =2, EAZ Sy, and

A is generated by commuting transpositions.
() [W, A, Al =1.
(d) [A/CA(W)| = [W/Cw (A)]

(e) For T' € Syl,(EA) there ezists a unique mazimal element B in Or(V), and
Cra(Cy(B)) = B.

Proof. We may assume that G = (E, A). Let Ay := Ca(F), A = Ay x Ay, and
Vo := Cy(Ap). The P x Q-Lemma shows that E acts faithfully on V5. Moreover,
WCy(A) < Vy since W = [W, E] and W/Cy (F) is an irreducible F-module. In
addition, by (c) A1 € Og(Vy), so Ay, Vi and F satisfy the hypothesis in place of A,
V and E. Hence, we may assume Ag =1 and V = Vj.

(a): This follows from [4] if E is quasi-simple and from [12] 9.3.6] if E is solvable.

(b) — (e): Suppose first that E = As,1. By (a) and EA =2 S,y and
W/Cw(E) is a natural So,,4q-module. Now [2.13] yields Cy(E) = 1, and (b) — (d)
follow. Moreover, again by [2.15] a maximal element B € Op(V) is generated by a set
which corresponds to a maximal set of pairwise commuting transpositions in So,,41, SO
B is unique and vields (e).

Suppose now that E 22 SLy(p™)’. As one can see in Aut(SLy(p™)), |A| < p™ since
A is abelian, so |IW/Cw(A)| < p™. On the other hand, A induces a group of semi-linear
GF(p™)-transformations on W/Cyw (E). Tt follows that [W/Cw(A)| = |A| = p™ and
EA = SLy(p™). Now (b) — (e) are easy to verify. O
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3 Minimal Parabolic Groups
Throughout this section we assume

Hypothesis 3.1 Let P be a minimal parabolic group with respect to p, T' € Syl,(P),
and let M be the unique maximal subgroup of P containing T.

Lemma 3.2 (L-Lemma) Let A <T with A £ Oy(P). Then there exists a subgroup L
containing A such that the following hold:

(a) AO,(L) is contained in exactly one mazimal subgroup My of L, and My = LN MY
for some g € P.

(b) L= (A, A*)O,(L) for all x € L\M,.

(¢) L is not contained in any P-conjugate of M.

Proof. See [15].

O
Lemma 3.3 Suppose N < P. Then the following hold:
(a) If N< M, then NNT < P.
(b) If N £ M, then OP(P) < N.
Proof. See [15, 1.3(b)]. O

Lemma 3.4 Let N be a normal subgroup of P contained in M. Set P := P/N. Then
P is a minimal parabolic group and O,(P) = Oy(P).

Proof. Observe that T € Syl,(P) and M is the unique maximal subgroup of P
containing 7. Suppose that T <1 P. Then TN is a normal subgroup of P. Since
TN < M, Lemma (a) gives T = TN NT < P, which contradicts the assumption
that P is minimal parabolic. Therefore P is a minimal parabolic group.

Let D be the inverse image of Op(F) in P. Then D < P. Since D <TN < M,
by Lemma (a), we have that D N'T < P. Then using the Dedekind Identity,
D = (DNT)N < O,(P)N. Hence O,(P) = D < O,(P). The reverse inclusion always
holds, so O,(P) = O,(P). O

Lemma 3.5 Let V be a faithful GF(p)-module for P. Suppose that there exists an
elementary abelian subgroup A < T such that:
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(i) |[V/Cv(A)| < |A| and |Ao]|Cv (Ao)| < |A||Cv(A)| for every 1 # Ay < A,
(i1) [Cv(T),P)#1, and
(iii) P = (A, A*) for every x € P\ M.

Then P = SLs(q), q := |A|, Cv(A) = [V, A]Cv(P), and V/Cy(P) is a natural SLs(q)-
module for P.

Proof. We will use the following additional notation:
Z = Cy(T), W :=(Z"), V .= V/Cy(P), P := P/Cp(W).
3.5.1 A acts quadratically on V' and [W, A] # 1.

The first part follows from [12] 9.2.1] together with (i) and the second part follows from
(ii) and (iii).

3.5.2 O,(P) = Cp(/Wv/) =1 and M is a maximal subgroup of P.

Note that CP_(W)/CP W) is a p-group, so Cp(W) < O,(P). Let C be the inverse
image of O,(P). Then 3.3 implies that

Cp(W)T =P or C < Cp(W)0,(P) < M.

In the first case P = Cp(Z), which contradicts (ii). In the second case C' = Cp(W),
since O,(P) < Cp(W), so O,(P) = 1. Moreover, M is a maximal subgroup of P, since
C <M.

3.5.3 Co(P) = 1 and Cy (A) = O (A).
Let x € P\ M and put B := A% so P = (A, B) by (iii). The quadratic action of A
implies that
W =[W, AW, B]Z < Cw(A)Cw(B) < W,
and we must have equality. Therefore
W = Ciy (A)C (B) and Ciy (4) N Cy (B) = Cu (P) = 1.
As A and B are conjugate in P, we also get that

— —

Ci(A)NCw(B) =1, and thus Cyw(A) = Cg(A).

Now Cy(P) = 1 follows.
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3.5.4 |[W/C(A)| < |A].

Let Ag := Ca(W). By [Ag, W] = 1. Hence (i) gives

(1) [ Ao |[WCV(A)] < [Ao]|Cr(Ao)| < [A]|Cv(A)].
This shows that

2) W /O (A)| < [W/Chw (A)] < |A/Ag-

3.5.5 There exists a field K with |K| = |A| such that W is a 2-dimensional vector
space over K and P = SL(W,K).

According to - and (iii), P satisfies the hypothesis of [7, Theorem 2] and
B.5.5] follows from this theorem.

From [3.5.3| and [3.5.5| we get that

[W/Cw(A)| = [A] and Cw(A) = [W, A|Cw (P).
Hence (1) and (2) give
| Aol [WCv(A)| = |Ao]|Cv(Ao)| = |A]|Cv(A)],

so by (i), Ag = 1, |[A]| = |A|, and |V/Cy(A)| = |A|. From (iii) we get that V = WCy (P)
and then V = W since Cy(P) < Cy(T) < W. In particular Cp(W) = Cp(V) =1, so
P=r O

Theorem 3.6 Let V be a faithful GF(p)-module for P. Suppose that O,(P) = 1,
Ap(V) £ 0, and Cp(Cy(T)) < M. Then for every A € Ap(V) there exists a subgroup
Lo < P with A < Ly such that the following hold:

(a) [V, A, A] = 1.

(b) Ly =2 SLa(q), q = |A|, V/Cy(Ly) is a natural SLs(q)-module for Lg, and
Cv(A) = [V, A]Cy(Ly); in particular |V/Cy(A)| = |A|.

(c) Cy(A) = Cy(a) for every a € A%
(d) |V/Cv(AB)| = |A||B]| for every B € Ap(V)\ {A} with [A, B] = 1.
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Proof. Let A € Ap(V). Then the maximality of |A||Cy(A)| and minimality of A
give

3.6.1 |V/Cy(A)| < |A], and |Ao||Cv(Ao)| < |A||Cv(A)] for every 1 # Ay < A.

We now apply the L-Lemma [3.2] Then there exists A < L < P and g € P such that
3.6.2 LN MY is the unique mazimal subgroup of L containing AO,(L).

3.6.3 L= (A, A*)O,(L) for every x € L\ MY.

3.6.4 L is not contained in any P-conjugate of M.

Among all z € L\ MY we choose B := A” such that Ly := (A, B) is minimal. We
prove next:

3.6.5 L is minimal parabolic, and Ly and V' satisfy the hypothesis of 3.5

The first part of follows from the fact that L is minimal parabolic by and
that L = LyO,(L). Hypothesis (i) of 3.5 follows from and Hypothesis (iii) follows
from the definition of Ly. Let Ty € Syl,(Lo) with Ty < T and suppose [Lg, Cy(1p)] = 1.
Then

L =0,(L)Lo < Oy(L)CL(Cv(Tv)) < CL(Cv(T)) < LN M,

which contradicts [3.6.41 Thus Hypothesis (ii) of [3.5] holds.

Now properties (a) — (c¢) follow from [3.5] and elementary properties of the natural
S Ly(g)-module.

For the proof of (d), let B € Ap(V) such that [A,B] = 1. If AN B # 1, then
by (iii), Cy(A) = Cy(B) and the maximality of |A||Cy(A)| shows that A = B. If
AN B =1, then the maximality of |A||Cy(A)| = |B||Cy(B)| = |V| gives

|AB| < [V/Cv(AB)| = [V/Cy(A) N Cv(B)| < [V/Cv(A)|IV/Cv(B)| = |Al|B| = |AB.

O

Lemma 3.7 Let P be of characteristicp and W = Q(Z(O,(P))). Suppose that neither
QUZ(T)) nor B(T) is normal in P and that P/Cp(W) = SLy(p"). Then B(T) €
Syly((B(T)")) and Z(B(T)))W < P.
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Proof. See [15] 2.7]. O

Lemma 3.8 Let G be of characteristic p, C*(G,T) # G for T € Syl,(G), and V I G
with
QZ(T)) <V <Q(Z(0,(G))).

Suppose that G/Cq(V) = SLay(p™) or Som1 (with p = 2) and V/Cy(G) is a natural
SLy(p™)- resp. Somy1-module for G/Cq(V). Then there exists a B(T)-block E of G
such that G = B(T)ECg(V) and [E,Q(Z(B(T)))] < V.

Proof. Let E := OP((G). Assume first that G/Cq(V) =2 SLy(p"). Clearly C(V) <
C*(G,T) and with the Frattini argument B(7) £ Cg(V). Then B(T)Cq(V) =
TCq(V), and Ng(T)Cq(V) is the unique a maximal subgroup of G that contains
B(T)Cs(V); in particular C*(G,T) = Ng(B(T))Cq(V). By (e) there exists a

minimal parabolic subgroup P of characteristic p in G such that
B(T) <Tp € Syl,(P), P # C*(P,Tp), and P £ C*(G,T).

Thus PCq(V) £ Ng(B(T))Cq(V) and PCq(V) = G. So we may assume without
loss that P = G and by that also B(T) = T and [OP(P),Q(Z(B(T)))] < V. In
particular, no non-trivial characteristic subgroup of T} is normal in P. Now a standard
pushing up result, see for example [I6], shows that OP(P) is a B(T')-block and the
result holds with E := OP(P).

Assume now that p = 2 and G = G/Cg(V) = Sypy1. Again by the Frattini
argument B(T) £ Cq(V), so 2.8 (e) yields A € Og(V) with [O*(G), A] # 1. Then
by m is generated by a maximal set of pairwise commuting transpositions
1, ..., tym. Since 2m+1 is odd, for every i there exists a 3-cycle d; such that [d;, ;] = 1
for i # 7 and

(di, ;) = S3 22 SLy(2).

Let L; be the inverse image of B(T){(d;,%;) in G and G := (Ly,..., Ly). Then G =
GoCq(V); in particular L; £ C*(G,T) fori=1,...,m.

Now shows that L; satisfies the hypothesis with L;/Cy,([V, L;]
Hence, there exists a B(T)-block E; < L; and [QZ(B(T))), E;] < L
(Ev,...,Ep). Then [E,05(G)UZ(B(T)))] < V and thus Cg(V) < O5(G) since G
is of characteristic 2. It follows that E is a B(T)-block with E/Os(E) = Agpy1 and
G = B(T)ECa(V). O

~—

>~ SLy(2).
et £ =

S =

I
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4 Conjugacy Classes of Transvections
In this section we will work with the following hypotheses:

Hypothesis 4.1 Let P be a group acting faithfully on an elementary abelian p-group
V. Suppose that there exists a normal seﬂ D of non-trivial elementary abelian p-
subgroups of P such that the following hold for A € D :

(i) [V, A, Al = 1.
(ii) |V/Cy(A)| =|A| and Cy(A) = Cy(a) for every a € AL
(i13) |V/Cv(AB)| = |A||B| for every B € D with B # A and [A, B] = 1.
For U < P we set
DNU:={A|AeD,A<U} and Dp(U) := Ngep(D N UY).

Hypothesis 4.2 Assume Hypothesis and, in addition, that T € Syl,(P) and T <
M < P with D # Dp(M) such that

(¥) Ne(DNT) <M and Cp(Cv(T)) < M.

Hypothesis 4.3 Assume Hypothesis[1.2] and in addition that

(xx) [A]|Cv(A)| > |X||Cv(X)| for every A € D and every elementary abelian p-
subgroup X < P.

Notation 4.4 Assume Hypothesis[1.2] For A € D we set
M(A):={M?|ge P, A< M}.
By A we denote the set of all subgroups L < P such that
(1) L= SLy(q) and V/Cy (L) is a natural SLy(q)-module for L,
(2) DN L is the set of Sylow p-subgroups of L,
(3) M(A) # M(B) for A% BeDnN L.
Moreover A(A) :={LeAN|A<LL}.

Lemma 4.5 Assume Hypothesis[d.1] Let A,B € D. Then A=B or ANB=1.

!i.e., invariant under conjugation by G.
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Proof. Let z € AN B. Suppose that z # 1. By [4.1](ii)

Now {.1{(i) gives [V, A, B] < [Cyv(A), B] = 1 and similarly [B,V, A] = 1, so the Three
Subgroups Lemma yields [A, B, V] = 1. Therefore [A, B] = 1, because P acts faithfully
on V. Thus [4.1fiii) gives the result. O

Lemma 4.6 Assume Hypothesis[1.1l Let A, B € D such that A # B and [A, B] = 1.
Then V = Cy(A)Cy(B) and AB acts quadratically on V.

Proof. We have
|A||BIICv(AB)| =2 |AB||Cv(AB)| = | Al G (4)].
Hence
B = [Cv(A4)/Cv(AB)| = |Cv(A)Cv(B) /Cv(B)| < |V/Cv(B)|E 1B,
and thus V = Cy(A)Cy(B). In particular
[V, Al = [Cv(B), A] < Cyv(B)NCy(A)

and similarly [V, B] < Cy(A4) N Cy(B). O

Lemma 4.7 Assume Hypothesis[{.1l Then (DNT) is elementary abelian, and (DNT)
acts quadratically on V.

Proof. If (DNT) is abelian, then by it also acts quadratically on V. Thus, it
suffices to show that (D NT) is abelian.

Suppose on the contrary that (D NT) is not elementary abelian. Then there exist
Ay, Ay € DNT with [A1, As] # 1; in particular A; # Ay. Choose (A;, As) minimal
with this property.

Since a p-group cannot be generated by conjugates of a proper subgroup, we have

4T (AR) £ (A, Ay £ (A1),
Then by the minimality of (A;, Ag):

4.7.2 (A% and (A3Y) are elementary abelian.
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If A1 S NT(AQ) and AQ S NT(Al) then by
[A, 4] S ATNA =1,

and (A;, Ay) is elementary abelian, which is a contradiction. Thus we may assume
without loss that Ay € Np(A4;).

Pick a € Ay \ Ny(A;). Then and [4.6] show that
V = Cy(41)Cv (A7) = Cv(41)Cv (A1) = Cy(An)]V, dl.
Since A, acts quadratically on V', we get
V = Cv(A)Cv (A7) = Cy (A1) Cy(Ay).
Observe that Cy(A;) N Cy(As) < Cy(A;) N Cy(AT). So |.1] gives

Cy (A Cy(A a)| —
4.7.3 |As] = [V/Cv(Ao) = e e 2 fovtniientam = [V/Cv(AD] = A4

If also A} £ Np(Aj), then a symmetric argument shows |A;| < |Ay|, so |4;] = [Ag|. If
Al S NT(AQ), then AlAtll N AQ # 1 and by

Cy (A1) NCy(As) < Cy (A1) NCy(AY) < Cy(A) NCy (A1 AN Ag) = Cy (A1) NCy (Ay),

so Cy(Ay) N Cy(A2) = Cy(A4)) N Cy(Af). This gives equality in and again
|Ai| = |Ag|. But then A; A = A; Ay, which contradicts We have shown:

4.7.4 |A1| = |A2| and also A1 ﬁ NT(AQ)

Pick b € A1 \ NT(AQ) By and
[V/Cv (A1) N Cv(A2)| < [Ai]JAz] = [AL]* = [V/Cy (A1) N Cv (A7),

This gives Cy (A1) N Cy(As) = Cy(Ay) N Cy(Af) and with a symmetric argument
Cv(Al) N Cv(AQ) — Cv(AQ) N Cv(Ag)

On the other hand, by and both subgroups A; A% and Ay A} act quadrati-
cally on V', so

[V, A] < Cy (A1) NCy(AY}) = Cy (A1) NCy(Ay)

and
[V, AQ] S Cv(AQ) ﬂ Cv(Ag) — CV(AI) ﬂ Cv(AQ)

It follows that [V, Ay, As] = [V, A, A;] = 1, and the Three Subgroups Lemma yields
[Ay, Ao, V] = 1. But then [A;, Ay] = 1 since P is faithful on V, a contradiction. O

Lemma 4.8 Assume Hypothesis 1.1l Let A,B € D such that [A,B] # 1 and set
L := (A, B). Then for every C € DN L with [C, A] =1 either C < Z(L) or C' = A.
In particular, for X,Y € D either X and Y are conjugate in (X,Y), or [X,Y] = 1.
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Proof. Let L be a counterexample, so there exists C' € D N L such that [C, A] =1
but C'# A and [C, B] # 1.
Assume first that C' is conjugate to B. Then |C| = |B|, and [4.1] (iii) implies

V/Cv(AC)| = |A]|B].

On the other hand by (i) |V/Cv(L)| < |A]|B], so we get that Cy (L) = Cy(AC).
Now [4.6{ shows that [V, A] < Cy(L). Hence (A") acts quadratically on V and A <
O,(L). But then by 4.7/ [A, B] = 1, a contradiction.

Assume now that C'is not conjugate to B. Then there exists a Sylow p-subgroup of
Ly := (C, B) that contains B and a conjugate C* of C; in particular by [1.7[C*, B] = 1.
With the same argument as in the first case, this time applied to Lo, we get Cy(Lg) =
Cy(C*B) and then [V, B] < Cy(Ly), so as above [C, B] = 1, a contradiction.

We have shown that L has the desired properties. Let x € L such that (B®, A) is
a p-group. Then implies [B*, A] = 1 and thus A = B? since B* £ Z(L). Now the
second part of the assertion follows. O

Lemma 4.9 Assume Hypothesis 1.2 Let H < P such that DNT C DN H and
DNHYZDNM. Then H satisfies Hypothesis with respect to DN H and M N H.

Proof. Let Ty € Syl,(H) such that DNT =DNT,. Then Ng(DNTy) < MNH;in
particular Ty < M and Ty < TY for some g € M. It follows that

Cv(Tg) S Ov(T[)) and CH(O\/(T())) S OH(Cv(Tg)) S MnNH.

O

Lemma 4.10 Assume Hypothesis[1.2] Let Dy C D be a normal subset of P such that
Do € Dp(M). Then (Dy) satisfies Hypothesis with respect to Dy and M N (Dy).

Proof. Tet Dy := D\ Dy, Py := (Dy), and Ty := PyNT. Observe that by
[Py, (D1)] = 1; in particular
D N T - (DO N To) U CDﬂT(PO)-

It follows that
Np,(DyNTy) < Np,(DNT) < MnNF,.

As also
Cp,(Cv(Ty)) < Cr(Cy(T)) < M N Py,

the claim now follows from the fact that Dy € Dp(M). O
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Lemma 4.11 Assume Hypothesis[d.2l Let To € DNT be mazimal (by inclusion) such
that N := Np(To) £ M. Then

DANADANAM and DANNM # T,
and (A, B) € A for every Aec (DNMNON)\ Ty and Be (DNN)\ (DN M).

Proof. Set 7 := DNT. Recall from that the elements in T centralize each
other, and from that Np(T) < Np(T) < M. The Frattini argument shows that
the only P-conjugate of M containing 7 is M itself. Let 71 C 7. As T C Np(Ti), an
elementary argument gives

4.11.1 Fither Np(T1) £ M, or M is the unique conjugate of M containing 7.
In particular DN N #DNNNM,and DNNNM #7T,. Let
Ae (DNNNM)\ Ty, Be (DNN)\ (DN M) and L := (A, B)
such that L is a minimal counterexample. We also set
D*:= A" and H := LN M.
As Np(A) < Np(Ty U {A}), the maximality of Ty and imply:
4.11.2 H is the unique L-conjugate of H containing A; in addition
Np(A) < H, N (H)=H and [A, B] # 1.

By [4.8] A and B are conjugate in L, so ¢ := |A| = |B|. We now divide the proof into
two cases.

4.11.3 Case I : There exists X € D* such that Ly := (A, X) < L and X £ H.

The minimality of L shows that Ly € A; in particular Ly = SLs(q) and V/Cy(Ly) is a
natural SLs(q)-module for Ly. By[d.1](ii) [V/Cyv(L)| < |A||B| = ¢ while |V/Cy(Lg)| =
q?. Since Cy(Lg) > Cy (L) we get that Cy (L) = Cy(Ly).

Let Ay,..., A, be the Sylow p-subgroups of Ly with Ay := A. As V/Cy (L) is a
natural SLs(g)-module, the groups Cy(A;)/Cv(Ly), i = 0,...,q, form a partition of
V/Cy(Lg). Thus, there exists i € {0,...,q} such that

Cv(L) = Cv(Lo) < Ov(B) N CV(Az)

Let L; := (A;, B). Then Cy(L) < Cy(L;), so L; < L. The minimality of L shows that
either V/Cy (L;) is a natural SLs(g)-module, or L; < H* where z € L with B < H”.

The first case contradicts |V/Cy(L;)| < |[V/Cyv(L)] = ¢*. In the second case i
is uniquely determined since any two different Sylow p-subgroups generate L, and
A £ H* by [£.11.9] It follows that Cy (A;) = Cy(B); in particular [A;, B] = 1. Hence
[4.1] (iii) yields A; = B and L = Ly. But then L is not a counterexample.
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4.11.4 Case II : X < H for every X € D* with (A, X) < L.

Let Ty € Syl,(L) with A < Ty, and let x € L\ H. By [4.11.2) A* < H implies z € H.
As we are in Case II, this shows that

L= (A, A®) for every z € L'\ H.

By [4.11.2] Ty < T" < M, for some h € H, so Cy(T") < Cy(Ty), and thus by [4.2]
Cr(Cv(Ty)) < Cr(Cv(T")) < H.

Now (A, L, H) satisfies the hypothesis of in place of (A,P,M) and L is not a

counterexample. O

Lemma 4.12 Assume Hypothesis[4.2 For every A € D\ Dp(M) there exists g € P
and L € A(A) such that A < MY and L £ MY. In particular A(A) # 0.

Proof. Let Dy be the set of all A € D such that there exists a g € P and L € A(A)
such that A < MY and L £ MY9. We set

D" :=DyUDp(M) and D, := D\ D*.

We have to show that D = D*.

Observe that D* and D, are normal sets in P, so no element of D, is conjugate to
an element of D*. Hence [4.8 shows that the elements of D, centralize the elements of
D*.

From now on we assume that D, # ) and derive a contradiction. Let 7, := D*N7T.
Then D, C Np(Th), so Np(T1) £ M, since D, is a normal set. We now choose
To € DN T maximal with respect to 71 C Ty and Np(Ty) £ M. Observe that
D*NNp(To) =D*NT =T.

According to there exist A € (DN M N Np(To)) \ To and L € A(A) such that
L < Np(Tp) and L £ M; in particular A € D*. It follows that A € D* N Np(Ty) =
T: C 7y, a contradiction.

O

Lemma 4.13 Assume Hypothesis[4.2l Let L € A and B € D such that [L,B] # 1
and B £ L. Then there exists a unique A € DN L such that the following hold for
L*:=(L,B), ¢:=|A|] and V :=V/Cy(L*) :

(a) [4,B] =1,

(b) Cv(LM)[V, A] = Cv(L")[V, B] = Cv(AB),

() [V, All =1q,

(d) V] =¢* and

(e) [V,L] =[V,L"] is a natural SLy(q)-module for L invariant under L*.
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Proof. Recall that L 2 SLy(q) and V/Cy (L) is a natural SLs(g)-module for L. Let
Ao, ..., Ay be the ¢ + 1 Sylow p-subgroups of L. We set

[ |Cv( )| L <AZ,B> and V Ov( ) for i = 0
At least one of the groups L; is non-abelian, so implies that A; is Conjugate to B
in L*. In particular |[B| = ¢ and B ¢ Dp(M). From [4.1] we get that |V/V;| < ¢® and
V] = ¢’ < ¢% so

Vil > qo and |Cy(4;)| = |Cv(B)| = qqo-

Suppose that (a) holds for some A € DN L. Then as L is generated by any two of
its Sylow p-subgroups, A must be the unique element of D N L which commutes with
B. Furthermore, by [4.6| we get [V, A][V, B] < Cy(AB) and |V/Cy(AB)| = ¢*. Since
V/Cy (L) is a natural SLy(q)-module for L, this forces go = ¢ = |[V, A]| = |[V, B]| and
(b) - (e) hold.

It suffices to prove that (@) holds for some A € DN L, so we assume that [A, B] # 1
for all A € DN L and aim for a contradiction.

Since V/Cy (L) is a natural SLy(q) module for L and |V/Cy (4;)| = g, the subgroups
Cyv(4;)/Cy(L), 0 < i< g, form a partition of V/Cy (L). Thus

(+) V= U Cv(A

Hence for each b € B* there exists a j € {0,..., ¢} with [V;5]NCy(A4;) # 1. Note that
B and so also L, centralizes [V,b] N Cy(A;). As B and A; are conjugate in L; we get
[V, N Cy(A)) < [V,b]N [V, A;]. Thus, we have:

4.13.1 For every b € B*, there exists j € {0,...,q} such that [V,b] N[V, A;] # 1.

It follows from [4.6] that 1 # [V,b] N[V, DNTY] < Cyv(D NTY), where A; < T9.
Assume that there exists M; € M(4;)\ M(B). By .9 H := Cp(Cv(DN T9) N[V, 0])
satisfies Hypothesis 4. Wlth respect to HNA;. But then by 4.12|there exists Le A(B)

with L < H. By considering the action of L on the natural SLy(¢)-module V/Cy (L) w
get [V, b]NCy (L) = 1, which contradicts [V, b|NCy(DNTY) < Cy(H). We have shovvn
that M(A4;) C M(B), so M(B) = M(A;), since A; and B are conjugate. Recall that
M(A;) # M(D) for every A; # D € DN L. Hence

4.13.2 Cy(A4;) N[V,b] =1 for every i # j and b € B*.

On the other hand, by I[V,b]] = q. As the subgroups Cy(X)/Cy(L), X € DN L,
form a partition of V/Cy (L), (x) implies that [V,b] < Cy(4,) for every b € B*. Using
the Three Subgroups Lemma and the faithful action of P on V' this gives [A;, B] = 1,
which is a contradiction. O

Theorem 4.14 Assume Hypothesis[t.2] and |DNT| = 1. Then (D) = SLy(q), ¢ = |A],
and V/Cy((D)) is a natural SLs(q)-module.
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Proof. By there exists L € A and by L = (D).
U

Lemma 4.15 Assume Hypothesis[£.3] Let A,B € DNT and L € A(A) with L £ M
and A # B. Then [L,B] = 1.

Proof. Assume that [L, B] # 1 and recall that [A, B] = 1 by [1.7] We apply and
use the notation given there. Then

() Cv(L)[V,A] = Cy(AB), [V| = ¢*, and [V/Cv(AB)| = ¢*.

Let W := [V, L|Cy(L*). By W is a natural SLo(q)-module for L and L*-invariant.
For every 1 # x € AB and A # D € DN L we have [L, D*| # 1, since [A, D*] # 1.
Hence also applies to L := (L, D*), if D* £ L. In particular we get Cy(L*) =
Cv(L) and [V, D*] = [V,Y] for some Y € DN L with A # Y. This shows that AB
acts on the set

Qo:={[V,D]|DeDNLand D # A}.

As Q| = q and |AB| = ¢%, we get that [N4p([V, D])| = ¢ for D € DN L with A # D.
On the other hand, [V, AB] = [V, 4], so C := C45(W) has order ¢. Since [V, L*] = W,
we conclude that C' < O,(L*).

Let AB < Tj € Syl,(L*). From we get that Cy (AB) is Ty-invariant. Observe
that Cp, (Cv(AB)) N Cr,(V/Cy(AB)) is elementary abelian.

Hence [4.3] and [4.6] show that

AB = O (Cyv(AB)) N Cr, (V/Cy(AB)),
so AB is normal in Ty. In particular [V, AB| = [V, A|[V, B] is Ty-invariant. This gives
[Va Dn T7 TO] S [CV(AB)7 TO] = [V7 A; TO] S [Va AB] S [‘/7 Dn T]7

so Ty normalizes [V, D N T]. In particular, (D NT)™) acts quadratically on V and
so is p-group. Hence, T normalizes D N'T and Ty, < M. Then there exists x €
M with Cy(T*) < Cy(Ty), and [Cy(Tp), L] # 1 since L £ M. This shows that
W < (Cyv(1)L"), so O,(L*) centralizes W and acts quadratically on V. In particular
O,(L*) is elementary abelian. Hence [£.3/implies C' = O,(L*) and thus [L,C] = 1. Now
Cv(L) is AB-invariant and so Cy (L) < Cy(AB). But then |V/Cy(AB)| = ¢ which
contradicts O

Lemma 4.16 Assume Hypothesis[1.3| Let A, B € D with [A,B] =1 and A ¢ Dp(M).
Then DN AB = {A, B}.
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Proof. We apply Then, possibly after replacing A by a conjugate, we may
assume that A < T and that there exists L € A(A) with L £ M. Hence, by
|IDNAC| =2 for every C € DNT with C' # A. On the other hand, A, B € DNTY for
some g € P, and by DNT9 and DNT are both in Cp(A). Hence conjugation in
Cp(A) gives the claim for [D N AB). O

Lemma 4.17 Assume Hypothesis[1.3] Let B € D and L € A with |X| > 3 for every
X e DNL. Then either B<L or[L,B]=1.

Proof. We may assume that [L, B] # 1 and B £ L. As before we set
L*:=(L,B) and V := V/Cy(L*).

By there exists a unique A € D N L such that

(%) [A, B] =1 and Cy(AB) = Cy(L")[V, A].

We now use the fact that ¢ := |A| > 3. Let K be a complement for A in Nj,(A). Then
|K| =q—1>2and by (x) Cy(AB) is K-invariant. Hence A(B¥) acts quadratically
on V, and thus is abelian. On the other hand, by

Cv(A]|A] = [V| = [Cv(AB)||AB] < [Cv(AB)||A(B®)],

SO implies that AB = A(B¥). In particular AB is K-invariant and by K
normalizes B and Cy (B).

Observe that K acts fixed-point-freely on the natural SLs(g)-module V/C\ (L).
Thus

V =[V,K] x Cy(K) and Cp(K) = Cy (K) = Cy (L).

It follows that Cy(K) N Cy(B) = 1 and Cy(B) < [V,K]. As Cy(B) N Cy(L) <
Cy(L*) = 1, the action of K on V/Cy (L) yields either

Cy(B) =[V,4] or Cy(B) = [V, K].

In the first case Cy(B) = Cy(AB), which contradicts

Thus we have Cy(B) = [V, K]. By [V, K] is L-invariant. It follows that (B~)
acts quadratically on V, so (B¥) is abelian. Now 4.1] (iii) shows that B is normal in
L*, so [L, B] = 1, which contradicts our assumption. a

Theorem 4.18 Assume Hypothesis[4.3] Then there exist subgroups Ey,...,E, of P
such that the following hold for W; .= [V, E;] and i,j € {1,...,r}:

(a) D=Dp(M)U(DNE)U---U(DNE,) and (D) = (Dp(M)) X Ey; x --- X E,.
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(0) Wi, Ej] = Wi, (Dp(M))] =1 for i # j and V = W;Cy (E;).

(¢) E; = SLy(q;) where g; = |A| for A€ DNE;, or E; =2 S, m odd, E;NM = S, 1,
and |A| =2 for A€ DN E,;.

(d) E; =2 SLy(q;) and W;/Cw,(E;) is a natural SLy(q;)-module for E;or E; = S,
and W; is a natural S,,-module for E;. Moreover, in the second case DN FE; acts
as the conjugacy class of transpositions on W;.

Proof. We will prove by induction on |D|+ |P|. Let P be a minimal counterex-
ample. Then by

4.18.1 P = (D).

According to and there exists a partition of D satisfying

4.18.2 D =Dy UD; U---UD, such that for E; := (D;) :
(1) Dy = Dp(M) and D; N D; = O for i # ;.
(2) [Ei, Ej] =1 fori# j, and D; is a conjugacy class of E; for i > 1.
(3) Fori>1, D; and E; satisfy Hypothesis with respect to M N E;.

Assume that D # D; for i > 1. Then induction and (3) show that (a) — (d) hold
for E; and D;; in particular W;/Cw, (E) is an irreducible E;-module. Hence [W;, E;] =1
for i # j, and (b) — (d) hold for P. Since W;Cy(E;) =V, we also get that E;--- E,
is the direct product of the subgroups E; and also (a) holds. But then P is not a
counterexample. We have shown:

4.18.3 D = D1 and P = El.

Assume next that |A] > 3 for A € D. Then by .12 and .17 P = SLy(q) where
g = |A|, and again (a) — (d) follow. Thus we have:

4.18.4 |A|=2=|V/Cy(A)| for A e D.
Then and an elementary argument using dihedral groups yields

4.18.5 Let A€ D and D € D\ Cp(A). Then L := (A, D) = SLy(2), and V/Cy (L)
is a natural SLy(2)-module for L.
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Let A€ DNT. According to 4.7 and [4.9 either C'p(A) C DN M or Cp(A) satisfies
Hypothesis [4.3] with respect to Cp(A) and Cy(A). In the first case by [4.18.5] there
exists L € A(A) with L £ M. Hence by [B, L] =1 for every B € Cp(A) \ {4}, so

Cp(L) = Cp(D) \ {D} for every D € DN L.
Now implies that P = L and P is not a counterexample. We have shown that

4.18.6 Cp(A) € DN M; in particular Cp(A) # {A} and Cp(A) satisfies Hypothesis
with respect to Cp(A) and Cyr(A).

Let Dy := Cp(A) \ {A}. Assume first that D4 is not a conjugacy class of (Dy).
Choose D* C D4 such that D* is a conjugacy class of (D*) and |D*| is maximal with
that property. By our assumption there exists B € Dy N1 with B € D*, and by
[(D*), B] =1 for every such B. Hence the maximality of D* shows that (D*) is normal
in (Dy4) and (D).

Let D € D with D £ M. Then M(D) # M(B) and by [1.18.5 either D € Dp or
(D,B) € A. In the former case D normalizes D* and in the latter case [4.15] implies
that D € D4, so again D normalizes D*. It follows that

D=(DNM)U(DnNNp(D")).

But then [2.1] shows that P = M or P = Np(D*). The first case contradicts
and the second case contradicts D # D* and the fact that D is a conjugacy class by
4.18.2) and [4.18.3] We have shown that D, is a conjugacy class, so [4.18.4] 4.18.6| and

induction give

4.18.7 (Dy) = S,, with n odd, M N (Da) = Sp_1, W = [V,(Da)] is a natural
Sp-module for (D), and D4 acts as the conjugacy class of transpositions on W.

Using the usual generators and relations for S,, we get from 4.18.7
4.18.8 There exist Ty, ..., T,_1 € Dy such that T; e DN M for1 <i<n-—2, and
1, T =1 <= |i—j|#1 and (T;,T;) = SLy(2) < |i—j| =1

By the same elementary observation as above D ¢ M U Cp(A). Hence by [4.18.5| there
exists D € D such that D ¢ M and (A, D) € A(A). Now gives

DN MN{(D,4) C Cp(D);

in particular [D,T;] =1for 1 <i<n—2.
Set Ty,o1 := A and T,, := D. Then T},...,T,.1 generate a subgroup isomorphic
to Sp42 provided we can show that [D, T, 1] # 1. Assume that [D,T,, 1] = 1. Then
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D4 = Dp, and as above applied to (A, D), gives P = (A, D), and P is not a
counterexample.
We have shown that 77,...,7,4; generate a subgroup U isomorphic to S,,1o in P.
In particular Cp(X) C DNU for every X € DN (A, D). Now [£.13]implies that P = U,
and P is not a counterexample.
O
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5 The Proof of the Local C**(G,T)-Theorem for
Minimal Parabolic Groups

In this section we work with the following two hypotheses.

Hypothesis 5.1 Let p be a prime, P a minimal parabolic group acting faithfully on an
elementary abelian p-group V', and let T € Syl,(P) and M < P be the unique mazimal
subgroup of P containing T'. Suppose also that:

(i) Op(P) =1,
(i1) Op(V) # 0P and
(iii) Cp(Cy(T)) < M (s0 [Cy(T), P] #1).

Hypothesis 5.2 Let P be a minimal parabolic group of characteristic p with T €
Syl,(P) and C**(P,T) # P, and let M be the unique mazimal subgroup of P containing
T.

Lemma 5.3 Assume Hypothesis 5.1l Then Hypothesis holds for Ap(V); in par-
ticular |A||Cy (A)| = V| for every A € Ap(V). Moreover, Np(A) acts irreducibly on
V/Cy(A) for every A € Ap(V).

Proof. From [3.6] we get that P satisfies Hypothesis [4.1] with respect to Ap(V) and
that Np(A) acts irreducibly on V/Cy (A) for every A € Ap(V). In addition, since P
is minimal parabolic and O,(P) = 1, we also get Hypothesis . Now Hypothesis
follows from the definition of Ap (V). O

Lemma 5.4 Assume Hypothesis and let
V= Q(Z(0,(P))) and P := P/Cp(V).
Then P and V satisfy Hypothesis and

|A/Ca(W)||Cv(A)| = V| for every A € A(T)with A £ Cp(V).

2Here Op(V) is the set introduced in
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Proof. Since Cp(O,(P)) < O,(P) < T, we have Q(Z(T)) = Cy(T). Hence
Cp(V) < Cp(Cv(T)) < C™(P,T) < M.

By Lemma [3.4]it follows that O,(P) = 1. Tt remains to show that Ox(V) # (.

We first shovv that J(I') £ Cp(V). Suppose on the contrary that J(I') < Cp(V).
Then J(T') < Cr(V) € Syl,(Cp(V)) and, as J(T') = J(Cr(V)) char Cr(V), the
Frattini Argument gives

P = Cp(V)Np(Cr(V)) < Cp(Q(Z(T)))Np(J(T)) < C(P,T),

whichis a contradiction.

Therefore J(T) £ Cp(V) and there exists A € A(T) with A £ Cp(V). Let Ay < A.

Then
[Aol[Cv(Ag)[ |A0||CV(A0)|.

ANV T |Gy (A)]

Thus A € Op(V) and it follows immediately that A € O5(V). Now gives the
additional statement. O

|A] > [AgCy (Ao)| =

Theorem 5.5 Assume Hypothesis holds. Let D := Ap(V). Then there exist
subgroups E1, ..., E, of P so that, for each 1 <1 <r:

(@) P=(E, x...x E)T,

(b) T acts transitively on {F1, ..., E,},

(c) D=(DNE)U---U(DNE,),

(d) V =Cy(Br x ... x Ep) [[i[V, Ei], with [V, E;, Byl = 1,
(e) B; = SLy(p™) or p=2 and E; = Son.y, for some n € N, and
(f) Vi Ei]l/Cv,g)(Es) is a natural module for E;.

Proof. By D satisfies Hypothesis [£.3] so we are allowed to apply with the
notation given there. Since P is minimal parabolic we get from that OP(P) <
Ey x...x E, and as Oy(P) =1, Dp(M) = 0. Therefore (a) — (d) and (f) hold.

For the proof of (e) it suffices to show that m = 2" 4+ 1 if E; = S,,. Observe that
Np(E)E; = Cp(E;)E;, so Np(FE;)E; is a minimal parabolic group. Now (e) follows

from [2.12] (e). O

The proof of the Local C**(G, T')-Theorem for minimal parabolic groups:
Let P := P/Cp(V). By P satisfies the hypothesis of Thus the only thing that

remains to be proven is

J(P)=E, x---x E, = E.
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Let A € A(T). Suppose that Z_ﬁ F_and that |A] is minimal with this property.
By 5.3 and [5.4] there exists B < A with B € Ax(V) and

V] =[AllCy (A)] = [BlICv(B)].

Moreover, Ng(B) acts irreducibly on V/Cy(B). The latter fact shows that there
exists a unique k£ € {1,...,r} such that B < Ej.
Assume that Ey 2 SLy(q). Then B € Syl,(E}) and the structure of Aut(SLs(q))
gives
A=DBx Ay, Ay:=Cu(Ey).

This shows that also AgCy (Ag) € A(T), and the minimal choice of A gives 4y < E.
But then also A < E, which contradicts the choice of A.
Assume next that Ej, 2 Syni;. Then |B| = 2 and by -

Z = E X ZO with A(] < A, and Ov(Z()) g Ov(E)

Similarly, as in the previous case, this shows that A¢Cy(Ag) € A(T) and then that
Ay < E.

Lemma 5.6 Let p be a prime and P be a minimal parabolic group acting faithfully
on an elementary abelian p-group V. Suppose that O,(P) =1 and Op(V') # 0. Then
[Cv(T), P] # 1 for every T € Syl,(P).

Proof. Let Vy:= Cy(OP(P)) and V := V/Vj. ByP also acts faithfully on V. We
also have [Cy(T), P] # 1, for otherwise OP(P) would centralize the inverse image of
Cy(T), contradicting the definition of Vo. Moreover, shows that Op(V) # 0. Hence
(P, V) satisfies the hypothesis ofn so we get (a) — (f) with V in place of V.

Let A € Op(V). Then there exists i € {1,...,r} such that [E;, A] # 1. Hence
shows that A < E,Cp([V, E;])/Cp([V, E;i]) and [V, E;, A] < Cy(T N E;); in particular
Cv(T'NE;) £ Cyv(OP(P)).

If E; 2 SLy(p™), with p™ > 2, then let K be a complement for TN (E; --- E,) in
Ngyos (TO(Ey -+ E,)). Then T = (TN (E, - - E,))Ny(K) and

Cv(O"(P)) ] [ Crvisa(T 1 Ei) = Cu(0P(P)) % [Cv(T 0 (B: -+~ By)), K].

1=1

Since Np(K') normalizes [Cy (TN (E; - -+ E,)), K], it follows that Cy(T) £ Cy(OP(P)).
If E; & Sypy1, then 2.13] shows that V. = Cy(0?(P)) x [V,0%(P)] and again
Cy(T) £ Cv(0P(P)). 0
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6 B(T)-Blocks

In this section we assume
Hypothesis 6.1 Let G be of characteristic p and T € Syl,(G).

Notation 6.2 Let B(T) be the set of B(T)-blocks of G. We set

B(G) := | ] B(T?).

geG
Moreover, B*(G) is the set of mazimal elements of B(G) with respect to inclusion and
B*(T) := B*(G) N B(T).
For E € B(G) we set Wg = [QUZ(0,(E))), E].

Lemma 6.3 Let E € B(T). Suppose that Q is a p-subgroup of G normalized by
B(T)E. Then Q < Ng(E).

Proof. As B(B(T)Q) = B(T), @ normalizes B(T). Moreover, from E = [E, B(T)]
we get that EB(T) = (B(T)”). Hence @Q normalizes EB(T) and thus also F =
OP(EB(T)).
U
Lemma 6.4 Let E € B(T). Then the following hold:
(a) E=O0P(EO,(G)) and Wi < Q(Z(0,(Q))).
(b) Assume that E is not exceptional. Then

Op(E) < Q(Z(0p(G))) and [0y(G), E] = W.
(¢) Assume that E is exceptional. Then Z(E)Wg = Q(Z(05(E))) < UZ(03(G)))
and either

03(E) < 05(G) or [05(G), E] = Wp.

(d) W, J(T)] # 1.
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Proof. (a): From with @ := O,(G) we get O,(G) < Ng(FE). The first part
now follows from the fact that £ = OP(E). Since WpZ(E)/Z(E) is an irreducible
E-module, [Wg, 0,(G)] < Z(E). Hence the Three Subgroups Lemma gives

[We, O0p(G)] = [Wg, E,0p(G)] = 1,

so Wi < Q(Z(0,(G))), since G is of characteristic p.
(b): Note that Wi = O,(E) and Wg = [Wg, E], so the result follows from (a).
(c): Since [O3(F), O3(G)] < QZ(0O3(F))) the Three Subgroups Lemma gives

[05(E), O3(E), O3(G)] = 1.
It follows that Z(E) < Q(Z(03(G))) and by (a)

Z(E)Wg = Q(Z(05(E))) < Q(Z(05(G))).

The other statement in (c) is a direct consequence of the structure of O3(E) and the
fact that £ = O*(E).

(d): From the definition of a B(T)-block we get E = [E, B(T)] and [Wg, E] # 1.
Hence Wy £ Z(B(T)) and (d) follows. O

Lemma 6.5 Let E € B(T) be an exceptional B(T)-block. Then

O*(Na(E) N Cq(Wg)) < Ca(E).

Proof. We fix the following notation:

R = 0*Ng(F)NCe(Wg)), M = Ng(E)NCe(Z(E)),

M, =Cy(05(E)/Z(EYWEg), Ng(F) = Ng(F)/Ca(E).
We first show:

() M/O3(M) = SLy(3").

We put E* := E if E is non-solvable. If E/O3(E) = Qs, then there exists a € B(T)
such that F{a)/O3(F) = SLy(3) and we put E* := E{(a). Then [2.6| applies to E* and
we get M = E*MQ.

Note that E N M, < Os(E) < O3(M). Moreover, Cyz, (Wg) centralizes an E-chief
series of E, so Cyz,(Wg) < O5(M). Hence Schur’s Lemma implies that M,/Os(M) is
a cyclic group whose order divides 3" — 1. In particular, M, normalizes Cy, (B(T))
and so [B(T), M3] < O3(M). This shows that B(T)Cq(FE) is normalized by M.
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Iiﬁg = O3(M), then M = E O3(M) and (%) follows. So assume that M,y #
Os(M). Then there exists a non-trivial 3'-subgroup @ < M, and this subgroup nor-
malizes B(T'). Hence

B(T) = A(B(T) N 03(M)), with A := C57+(Q).
But then A leaves invariant the decomposition
O3(E) = Coy@m) (Q) x W,

and acts quadratically in each factor. This contradicts the definition of an exceptional
B(T)-component and finishes the proof of (x).

According to (x), RNM < O3(M). Thus we may assume that R £ M, for otherwise
the result follows. Consider Ry := Cr(O3(E)/WgZ(FE)). Then [O3(F), Ry) < Z(E)Wg
and the Three Subgroups Lemma yields

[O3(E), O5(E), Ro] = [Z(E), Ro] = 1,
SO Eig Os(M). Again Schur’s Lemma shows that R/R N O3(M) is a cyclic 3'-group.
Let @ be a non-trivial 3’-subgroup of R.
As B(T') normalizes R, we get
[R,B(T)] < RN M = O3(M).

It follows that R normalizes B(T). In particular

B(T) = A(B(T) N 03(M)) with A := C55(Q).

As in the proof of (x), this contradicts the definition of an exceptional B(T')-block. [

Theorem 6.6 Let E € B(T). Then E < ECe(Wg).

Proof. We fix the following notation:
W = Wg, C:=Cg(W), Cy:=Cq(03(E)/Z(EYW), R :=[C,E], G :=G/03(G).

Let G be a minimal counterexample. Then G = CEB(T") and W < G. We will prove
the result in a sequence of steps.

6.6.1 E is exceptional and O3(E) < O3(G); in particular E/O3(E) = SLy(q)', ¢ = 3".
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Assume that F is not exceptional or p = 3 and O3(F) £ O3(G). Then by
[0,(G), E] < W. Hence [E,Cq(W)] centralizes W and O,(G)/W, so

[E,Ca(W)] < 0,(G).
Now (a) implies that £ is normal in ECs(W) and G is not a counterexample.

We now fix in addition an involution ¢ € F with [t, £] < O3(E) and O3(G) <Y < C
such that Y = Cx(¢). Note that Y = Cy (¢)O3(G).

6.6.2 Let N < C be an EB(T)-invariant subgroup. Then either C = N(C N EB(T))
and O3(C) < N, or N < Ng(E).

If NEB(T) < G, then by induction N < Ng(FE), and if NEB(T) = G, then C =
N(CNEB(T)). Since CNEB(T) < O3(EB(T)), the latter case gives 03(0) < N.

6.6.3 O*(C) = F*(C), and O*(C) £ Ng(E).

Let F be the inverse image of F*(C) in G. Assume first that F' < Ng(E). Then
by O3(F) < Cg(E), so [F,E] = 1. It follows that R < Cx(F) < F. Hence
R < F and O*(R) < Cg(E). Now [2.5| (with N := R) implies that E is normal in G, a
contradiction.

We have shown that F' £ Ng(FE), and thus by O3 (C) = F*(C).
6.6.4 Either C =Y, or O3(C) is an r-group, r a prime different from 2 and 3.

Note that Y is FB(T)-invariant. Hence by either C = Y(CNEB(T)) or Y <
Ng(E). As [t, EB(T)] < O3(F) < 03(G), the first case gives C =Y.
Assume that Y < Ng(E). Then

¥V, B|<VYNE<CNE =

since W is a faithful E-module. It follows that Y = Cz(S), where S is a Sylow 2-
subgroup of E. As S is a quaternion group we conclude from . that U := [C,1] is
solvable of odd order. In particular C = YU, so the inverse image U is not in Ng(FE).
As U is EB(T)-invariant, [6.6.2 yields C' = U(C’ﬂ EB(T)), and thus O*(C) < U. Now
m shows that U = F(C). Let r be a prime dividing |U|, so r ¢ {2,3}. Then, again

using , U =0,(0)

6.6.5 C #£Y, s0 O*(C) is an r-group, v a prime different from 2 and 3.
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Assume that C =Y. Then C' = C¢(t)O3(G) and both O3(G) and Ce(t) normalize
[05(G), t] = O3(E). From G = CEB(T') we conclude that O3(E) < G. By 2.6 ECy is
normal in G, so R < EC.

Note that R centralizes O3(G)/O5(E), Z(E) and W, so RNCy < O3(G). Tt follows
that either [E, R] < O3(G) or t € RCj.

In the first case by (a) R < Ng(FE), and thus by [6.5| O3(R) < Cg(FE). Now [2.5
shows that G is not a counterexample.

In the second case there exists an involution a € R such that ¢ € aCj and [a, E] <
RN Cy < O3(G). Now again (a) and give a € Cg(F), and a centralizes
O3(G)/O3(E) and O3(FE), which contradicts the fact that G is of characteristic 3.

We derive a final contradiction. Let @ := [O3(E), G], D := ®(Q), and Q:=Q/WD.
Note that O3(G) centralizes (), so G acts on (). The action of ¢ on () shows that

e ——

Q = [Q, E] x C5(E) and [Q, E] = Os(E).

If [Q, E] = 1, then O3(E) < WD, and thus @ = O3(E) = W, which is impossible.

Hence [@, E|] is a natural SL(3™)-module for F. B
Let A:=TNE and C; be the inverse image of O3(C) in G. Then A acts quadrat-

ically on Q and Ca(A) = Cg(a) for every @ € A*. Recall from [6.6.5] that C) is a
3'-group.

Assume first that ¢ > 3. Then Cy = (Cg (@) |a € Zﬂ> and each Cg (@) normalizes
C5(A) = C5(@). Hence [C1, A] = [C, A, A] centralizes C5(A) and @/CQ(A). As [C, A]
also centralizes W and O3(G)/Q, we conclude that O3([C}, A]) centralizes O3(G), and
thus [C1, A] < O3(G). But then also [Cy, E] < O3(G), which using [6.4)(a) implies that
(' normalizes E. This contradicts [6.6.3

Assume now that ¢ = 3, so E/O3(FE) =2 Qs. For x € C set L := (E, E*). Then
either [E,z] < O3(G), and thus x € Ng(FE), or C; N L £ O3(G). According to[6.6.3) we
may assume that C; N L £ O3(G).

Observe that L acts on Qo := [Q,#][Q, %] and |Qo| < 3% Let Ly be the kernel of
this action. If LN Cy £ Ly, then by the order of GL4(3) and LNCy/LyNnCyis
a cyclic group of order 5 or 13 which is normalized by E/O,(E) = Q)s, but it is easily
checked that this is impossible in GL4(3). Therefore L N C} < Ly. Hence O3(L N C})
centralizes the L-series D < DW < Qo < O3(G), and thus L N C; < O3(L). But this
contradicts L N C; £ O3(G) and O

Lemma 6.7 Let E € B(T) and F € B(G) such that [E,F| < E. Then either F = E,
or [F,E] =1, or p=2 and the following hold:

(a) FF < E and Oo(F) < Oy(E).
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(b) FO3(E)/O9(F) = Agry1 and EJO2(E) = Agyyq, for some r < m.

(¢) There exists g € E such that E, F € B(T9).
Proof. If [Wg, F| =1, then implies [E, F| = 1 and if [Wp, E] = 1, then by
F < Ng(F) and again [6.5] implies [F, F| = 1. Thus we may assume that [Wg, F] # 1

and [Wg, E] # 1. As Wg is normalized by F, we get that Wr < Wi.
We fix the following notation:

R:=Co(Wp)E, FR:= FR/Co(Wg), R := R/O,(R).
Then F induces automorphisms in £ 22 SLy(p")" or Agpir.
6.7.1 The case ' < R.
Let Fy := EF N Ce(Wg). Then
EF =E x R,
ByCG(NWE) < Ce(Wr) < Ng(F), so [F, Fy] < O,(F) and F' < EO,(F). It follows
that F* < E, or one of the following two cases holds:

(i) p=2and F/Oy(F) = Cs, or
(11) D= 37 F/Og(F) = Qg and FE/Og(FE) = SL2(3m), X CQ X 02.

In case (i) neither F nor F are exceptional. Hence (b), applied to E and F,
gives [02(G), EF] = Wg. Then [O2(G), O%(Fy), O*(Fy)] = 1. As G is of characteristic
2, this shows that Fj is a 2-group and F<E.

In case (i) let ¢ be an involution in F. Then ¢t € O*(F') < E and [, E] <
O3(F). Tt follows that O3(FE) = [O3(F),t] = O3(F) and [O3(G), EF]

< O (E). If E is
exceptional, then 6.5 implies [E, O*(Fy)] = 1, so [O3(G), O (Fy),0*(Fy)] = 1. If £ is
not exceptional, then O3(E) = Wy and again [03(G), O°(Fy), O°(Fp)] = 1. Thus, we

have the same property as in case (i). As there we get that F < E.

Thus, in all cases we have established that F < E. Now 6 . ) implies F =
OP(EO, (R)) and thus F = OP(F) < E.

Suppose that £ is a linear block. Then the p/-elements of F act fixed-point-freely
on Wg/Cw,(E). It follows that Wg = WrCyy(E), and thus E = F.

Suppose F is a symmetric block. We first treat the case where [ is a linear block,
so F' 22 SLy(2%). Suppose k > 1. Then by (C) k = 2 and there exists ¢ € E such
that J(T)¢ normalizes Wy and Cy,(F). Put Wp = Wgr/Cw,.(E). By 2.16 (b) there
exist elements in J(T)9 acting as transvections on Wx. On the other hand, F € B(T")
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for some h € G. So J(T") normalizes F' and Wx. Tt follows that J(T") acts GF(4)-
semilinearly on Wy and so no element of J(T™") acts as a transvection on Wpy. But
J(T") and J(T9) are conjugate in Ng(Wr), a contradiction. This contradiction gives
k=1, so F is also a symmetric block.

We have shown that F is always a symmetric block; in particular (a) and (b) hold.
By |2 B(T) ) is generated by a maximal set of commuting transpositions on
Wg. Hence - 1mphes c).

6.7.2 The case F £ R.

Since both Caywy)(E) and Out(E) are solvable, FE/E is solvable. Thus F £ E
implies F' # F', so p = 2,3 and F/O,(F') = SLy(p)’. Moreover, if E is a symmetric
block, then |[FE/E| < 2, while |[F/O,(F)| = 3, a contradiction. Hence E = SLy(p")
with k > 1, O,(F) < E and by 3.7 B(T) € Syl,(E). In particular WrCyy, (E) < Wi.

Assume that [Wg, B(T)" = 1 for some h € E. As F € B(G), there exists g € G
such that F' € B(TY); so [Wg, B(T9)] # 1 while [Wg, B(T)"] = 1. But this is impossible
since B(T)" and B(T9) are conjugate in Ng(Wr). We have shown that [Wr, B(T)"] # 1
for every h € E.

If O,(F) # 1, then F normalizes a Sylow p-subgroup of E and thus a conjugate
B(T)', z € E. If O,(F) < Ce(Wg), then F/Cp(Wg) is a p'-group and Cy,(F) £
Cw, (E). Hence also in this case F normalizes a Sylow p-subgroup of E and thus a
conjugate B(T), z € E.

As we have seen above Wr £ Cy, (B(T)") for every h € E. Since Wp is an
irreducible F-module, we get from the module structure of Wg

(%) [Cw,(B(T)"),F] =1 and Wr = Wg x Cy,(B(T)").

In particular E = SL,(p?) and O,(F) = 1. As |Syl,(F)| = 5 resp. 10 and |F| = 3
resp. 8, there exists a second conjugate B(T)y, y € F, normalized by F. But then also
[Cw, (B(T)Y), F] =1, which contradicts (x) since Wg = Cy . (B(T)Y)Cw, (B(T)").

O

Lemma 6.8 Let E € B(T) be a symmetric block with E £ C*(G,T). Then there
exists F' € B(T) such that ' < E, F £ C*(G,T) and F/Oy(F) = A3 = SLy(2)".

Proof. Note that A € A(T) satisfies ( Of- Hence by [6.4] (d) and (b) there
exist A < B(T) and E* = EA such that E*:= E*/Oy(E*) = 52n+1 and A is generated
by a maximal set of commuting transpositions. We can choose d € F of order 3 to

be inverted by one of these transpositions and commute with the others such that
d ¢ C*(G,T). Then F := (d)[Wg,d] has the required properties. O
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Lemma 6.9 Let B(T) ez be the set of mazximal elements of B(T). Then

B(T)mar = B*(T).

Proof. Let F € B(T)mae and F < E € B*(G). By [6.7 (¢c) there exists ¢ € G such
that F, E < B(TY). Then there exists h € Ng(F) such that B(T9") = B(T). Hence
F < E"e B(T),so F = E" since F € B(T)maz- It follows that E = F and F € B*(G).

U

Lemma 6.10 Let E € B*(T). Then E is the unique element of B*(G) in ECq(Wg)
that is not contained in Cq(Wg).

Proof. Tet F € B*(G) and F < ECg(Wg). Then by [E, F] < E, and thus by
either [E, F] =1 or F < E. In the latter case the maximality of F' implies F' = F.
U

Lemma 6.11 Let E, F € B(G). Suppose that E and F are subnormal in G. Then
E=F or|[E F|=1.

Proof. Let G := G/O
ponent of G or éF(
If [E, F] < ENF, the by. |E, F] < ENF, and[6.7gives E = F or [E, F] = 1.

Thus we may assume

( ). The subnormality of E implies that either E is a com-

QH

(+) E.F| £ ENF.

In particular, () shows that E and F are both solvable, so E = F = (5 or Q.

Let L := (E,F) and W := [Q(Z(0,(G)), L]. Then C(W) < Oy(L), since Cr,(W)
centralizes Oo(G)/W and W. As L is also subnormal in G, we get C (W) = 1.

Assume first that E 22 3. Then by[6.4][W| < 2* and [E, F] < O1(W) since GL4(2)
has abelian Sylow 3-subgroups. Thus Cr(W) = 1 gives [E, F] = 1, which contradicts

Assume that F = Qg. If Z(E) is normal in L, then also [W, Z(E)] = W is L-
invariant. As GLy(3) \ SL2(3) does not contain elements of order 4, F' normalizes
EC(Wg), and thus by also E. But this contradicts ().

Suppose that Z(E) is not normal in L. There exists y € L such that EY # E but
[E, BY] < EN EY. Hence as already seen, [E, Y] =1 and E x E’ = Qs x Qs. On the
other hand, similarly to the above, L is a subgroup of SL4(3). Since a Sylow 2-subgroup
of SL,(3) has order 2%, we get that F N (E x E”) # 1. Hence Z(F) < Z(FE) x Z(E")
and thus Z(F) = Z(E) or Z(E"). In both cases Z(F) is normal in L, a contradiction.

U
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Theorem 6.12 Let E € B(G). Suppose that E is subnormal in G. Then the following
hold:

(a) F < B(G).
(b) E € B(T*) for every x € G.

(c) For every F' € B(G) either ' < E or [F,E] = 1.
Proof. Observe that £ € B*(G), since E is subnormal in G. Let
V= {(Q(Z(1))%), G:=G/Ca(V).

(a): We may assume that E is a B(7")-block. By J(T*) < Ng(E) for all
z € G, so by J(T) also normalizes E. It follows that Wr N Z(B(17)) £ Z(E),
so [Wg, EY] # 1 for all y € B(T*). Now implies that B(T”) < N¢(E). Hence

E < (B(T") |z € G) = B(G).
(b): For every x € G, B(T') and B(T") are conjugate in B(G). Thus, (a) implies
(b).

(c): Let F € B(G). By (a) F normalizes E. Now shows that F¥ < F or
[E,F] = 1. O
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7 The Proof of the Local C*(G,T)-Theorem

In this section we investigate a minimal counterexample to the Local C*(G, T')-Theorem.
We assume in this section:

Hypothesis 7.1 Let G be a group of characteristic p with T € Syl,(G) such that G
is & minimal counterezample to the Local C*(G,T)-Theorem.

Notation 7.2 We use the notation introduced in[6.2] In addition we define

B(T) ={EeB(T)|ELCYGT)}, B.G):=UmaB(T9),
Vo= (QZ(T))S), Z:=QZ(B(T))), G:=G/CsV).

Observe that O,(G) = 1 (see for example [13,2.0.1]).
Moreover, L(T) is the set of proper subgroups L < G satisfying:

B(T) < L and L £ C*(G,T).
Set L(G) := UgeaL(T).

Lemma 7.3 Fvery L € L(G) satisfies the hypothesis and conclusion of the Local
C*(L, S)-Theorem for S € Syl,(L).

Proof. This follows from and the minimality of G as a counterexample. H

Lemma 7.4 Let E € B.(G). Then E is not subnormal in G.

Proof. Let € be the set of all elements in B,(G) that are subnormal in G and assume
that Q # (. We will show that G is not a counterexample to the Local C*(G,T)-
Theorem. Set
Go:=|[ E, R:= Ca([V,Ga)).
EeQ

Clearly no element of 2 is contained in R; in particular RT is a proper subgroup of G.
Now implies that R < C*(G,T), since R is normal in G.

By G satisfies (a), (b), and (d) of the Local C*(G,T)-Theorem; in particular
Gy < G. It remains to show (c¢) and (e) to get the desired contradiction.

Let B, E € Q with E # E. Then by[6.3|[V, E] < E and by [6.12] (¢) E < Ca([V, E)).
The Dedekind identity then yields

ECq(|V, E)) N EC4([V. E]) = EECG([V, E]|V, E)).
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Now an elementary induction argument shows that

() (B(T)EC(IV, EY)) = B(T) () (ECs(IV, E))) = B(T)GoR.

EcQ EeQ

Let x € G. By [6.12] and [2.16
B(T)* < B(T)EC«([V, E]) for every E € Q.
It follows that B(T)GoR = B(T)*GyR, and B(T)GyR is normal in G. So the Frattini

argument gives

G = GyRNG(B(T)) = GoC*(G, T).

Thus also (c) of the Local C*(G,T')-Theorem holds.

Using|6.12|and [2.16|we get that B(T)E/O,(B(T)E) = SLy(p™) or Somy1 for £ € Q.
In the first case B(T') € Syl,(B(T)E) and Npyp(B(T)) is a maximal subgroup of
B(T)E. In the second case Npyg(B(T)) = Npmrye(Y), where YO,(E)/O2(F) is a
subgroup of Sy, 11 generated by a maximal set of commuting transpositions. Further-
more, we get from that W .= [V, E]QZ(T) = Cw(E) x [V, E] and then from
that

(No@)e(B(T)), Came(Q(Z(T N B(T)E))))/O02(B(T)E) = Ap;

in particular (Ngr(B(T)), Cpaye(Q(Z(T N B(T)E)))) is a maximal subgroup of
B(T)E. We conclude that in both cases C*(G,T) N B(T)E is a maximal subgroup of

B(T)E since B(T)E £ C*(G,T). Now also (e) of the Local C*(G,T')-Theorem holds.
But then G is not a counterexample. O

~—

Lemma 7.5 G is not a minimal parabolic group.

Proof. Assume that G is minimal parabolic. Then G satisfies the hypothesis of
the C**(G, T')-Theorem for minimal parabolic groups because C*(G,T) < C*(G,T).
Hence, we can apply this theorem to G, as it was already proven in Chapter 5.

Let U := Q(Z(0,(G))). Then there exists a subnormal subgroup E; of G with

E1 ﬁ C*(G,T) and Cg(U) S E1

such that
EI/CEl (U) = SLQ(pn) or SQm+1 (and p= 2)7

and [U, E1]/Cy,p,(E,) is the corresponding natural module. Moreover, every other
conjugate of I/, in G centralizes [U, |, and U = Cy(I1)[U, E1]. As Cpy,p (J(T)) £
Cro,e(Er), this gives B(T) < Ng(E)).

Let H := B(T)E; and W := Q(Z(O,(H))). Note that [O,(H), 1] < Oy(£1) <
Op(G) and that [U7 El] = [U7 El,El] since U = OU<E1)[U, El] As [U7 El]/C[U,E'ﬂ(El)
is irreducible, the Three Subgroups Lemma yields that [U, E,] < W.
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By (c) H is of characteristic p. The action of E; on [U, E;] also shows that
H = E\Cy([U, E\]), so H satisfies the hypothesis of [3.8) Thus there exists a B(T)-
block F with H = B(T)ECy(W); in particular £ £ C*(G,T). As Wi < W, we get
from [6.6] that E is normal in H. Since E = OF(F) and OP(H) = OP(E;) << G we
conclude that E is subnormal in . But this contradicts O

Lemma 7.6 There exists F € B(T) such that F £ C*(G,T). Moreover, for every
F € B(T) with F £ C*(G,T) there exists E € B.(T) such that F < E. In particular
B.(G) #0.

Proof. By G is not a minimal parabolic group. Hence there exists a proper
subgroup L < G with T < L and L £ C*(G,T). Then L € L(T), and by [7.3| there
exists F' € B(T) such that FF £ C*(G,T).

Let F < E € B(T), where E is a maximal element of B(T). By [6.9 F € B*(G),
and as ' £ C*(G,T), also E £ C*(G,T). Hence E € B,.(G). O

Lemma 7.7 Let E € B.(T). Then EB(T) is contained in a unique mazimal element
L of L(G), and E << L.

Proof. Let U be the set of all L € L(G) containing EB(T). For every L € U define
Y, ={E|geG, B9<9< L},

Let L € U and EY9 € . Since EY = OP(EY), the subnormality of EY in L gives
Op(L) < Ni(E¥) and thus [Q(Z(0,(L))), EY] = Wgs. Using[2.§] (e) and J(T) <
Ni(E). Since EY is a B(TY)-block, J(T) is conjugate to J(7Y) in N.(E) and so
B(T) < N(E). Therefore:

7.7.1 Every element of ¥y, is a subnormal B(T)-block of L.

Now let N be the subgroup generated by all subnormal B(T')-blocks of L. By
either F is one of these B(T)-blocks or [N, E] = 1.

Assume the second case, so E < C(N). Let B(T) < S € Syl,(L). As C(N) does
not contain any subnormal B(T)-block of L, we get from that

E < CL(N)S < CHL,S).

In particular E < C*(G,T9) for S < T9. But then g € Ng(B(T)) < C*(G,T) and
so C*(G,T) = C*(G,T9). This contradicts £ € B,(T'). We have shown that E is
subnormal in L. Hence

7.7.2 FeXy forevery L € U.
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Now let L € U and K € ¥Y7. Suppose that K < L. From applied to Z, we
get that K is a B(T')-block. On the other hand, K = EY for some g € G, so K is
also a B(TY)-block, and B(T) and B(TY) are conjugate in Ng(K). This shows that
K £ C*(G,T). Hence as above, K does not centralize all the subnormal B(T)-blocks
of L, and shows that K has to be one of these blocks. We have shown

7.7.3 Let K € X7 and K < L. Then K € Xy,

Now [12, 6.7.3] shows that B(T")E is contained in a unique maximal element of £(G).
U

Lemma 7.8 Suppose that [V, Z] = 1. Then O,(E) < O,(G) for every E € B(T) with
E £ C*(G,T).

Proof. Observe that Cp(Z) = B(T), so [V, Z] = 1 implies V' < B(T'). Pick E € B(T)
with E £ C*(G,T); in particular [V, E] # 1 and Wy < V. If E is not exceptional,
then O,(FE) = Wi <V, and we are done. Thus we may assume that E is exceptional.
If O3(FE) < Cg(V), then [6.6/ shows that Os(E) < O3(G). Hence, we may also assume
that Os(E) # 1, so W is the only non-central E-chief factor in Cgpy(V). Set

V= (Va |a e Aut(B(T))).

As no element of B(T') \ Cp(ry(Wg) acts quadratically on Os(E)/Z(E), V* centralizes
Wy and

Wg < Cyry(V*) < Crpay(V).
It follows that [Cpy(V*), E] = Wi < Cpey(V*). But Cpy(V*) is a non-trivial
characteristic subgroup of B(T), and thus £ § C*(G,T), a contradiction. O

Lemma 7.9 Let E € B(T) with Wg <V and Ty := Cr(E). Then [Wg, Tg] = 1 and
[V, Ty, E] = 1.

Proof. Note that Tg normalizes Wg. Hence [Wg, Tg| < Z(F) since Wg/Z(F) is an
irreducible E-module. As [Wg, E] = Wy, a first application of the Three Subgroups
Lemma gives [Wg,Tg| = 1. But then [V, E,Tg| = [Wg,Tk] = 1 and [E,Tg, V] = 1,
and another application of the same lemma also yields [V, Tg, E] = 1. O

Notation 7.10 We use Deﬁmtzon . Recall that G # Cg(V)Ng(J(T)), so J(T) £
Ce(V). Hence by. 8 Or(V) # 0, where V= V/Vy and Vi := Cy (OP(G)). We set

Qr(V) :=(A| A e Op(V)).
Moreover, set Ty := Z if Z # 1 and Ty == Qr(V) if Z = 1.

Lemma 7.11 Let E € B(T) such that E & C*(G,T) and (E,T,) < L € L(T). Then
Ty < Cr(E).
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Proof. By [7.3] there exists £ < F < L with F' € B(T). (From [3.§ we get that
F.Z] <V,so [F,Z] =1. Thus [F,T,] = 1 if Ty = Z. Assume that Z = 1. Then
gives O,(F) = 1. On the other hand, [2.16|implies [F, A] < O,(F) for A € O;(V).

Hence also in this case [F, Ty] = 1. This shows that [E,To] = 1.
U

Lemma 7.12 There exists E € B.(T) such that Ty < Cr(F).

Proof. Let T < P < @ such that |P| is minimal with P £ C*(G,T). Then by 2.3 P
is minimal parabolic, and thus by [7.5] P € £(T). Hence[7.3|gives a B(T)-block F' < P
with F' £ C*(G,T), in particular [F,Ty] = 1 by - According to there exists
E € B.(T) with F < E. By [6.7] we may assume that F' and E are both symmetric
and F' < E. In particular p = 2 and Oy(F) < O3(E) < V,s0 E 2 A, and F & A,
3<m' <m,m and m odd.

Pick t € B(T) such that R := [Wg,t] has order 2 and [F,f] # 1, and set E; :=
O*(Cg(t)). Then E; & A,, 5 and also E; is a B(T)-block not in C*(G, T). Moreover
R < Wpg, and thus by (B(T)Ey, Ty) < Cq(R). Observe that (F, E;) = E and that
Ca(R) € L(T). So applying [7.11{ we see that T} centralizes E; and so also E. O

Lemma 7.13 T, = 1.

Proof. By way of contradiction we assume that Ty # 1. Recall that O,(G) = 1; so
Ng(Ty) is a proper subgroup of G. We further set
Tp:=Cr(E), Q:=(A| A e Op(V)).

According to ‘ there exists £ € B,(T') with Ty < Tg; in particular EB(T) <
Ng(Ty). By |7.7 EB(T) is contained in a unique maximal subgroup H of G and
E<J< H.

7.13.1 Hls the unique mazimal subgroup of G containing EB(T); in particular T <
Ng(To) < H.

By . Cq(V) < Ng(FE) and by . Ng(E) < H; so H is a maximal subgroup of G,
and the umqueness property of H implies that of H. As EB(T) < Ng(Ty) and T is
normal in T, we also get the additional assertion.

7.13.2 [E.Q] < O,(E), and Na(Q) < H if Qr(V) # 1.

Note that Cp(V) = Cy(V) because O,(G) = 1. Then applied to H and V,
shows that [E,Q] < O,(E). On the other hand, @ is normal in Ng(QO,(F)), so
EB(T) < Ng(Q). The uniqueness of H gives either Ng(Q) < H or Q = 1. In the
second case 2.8 implies that also Qr(V) = 1.
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7.13.3 Ng(Ty) < H for every B(T)-invariant subgroup 1 # T, < Tg.
As O,(G) =1,
implies Ng(T1)

Ng(T)) is a proper subgroup of G' containing EB(T). Hence [7.13.1
< H.

According to (7 is not minimal parabolic. Thus there exists a proper subgroup
P < G with T < P and P £ H. We choose P such that |P| is minimal with that
property. Then P is minimal parabolic since Ng(T) < H. Observe that G = (P, F)
by the uniqueness of H. Set A := Z N O,(P) and S := (A").

7.13.4 Either A=1 or [Wg,S] # 1.

Recall that E has a unique non-central chief factor in V. Assume that [Wg,S] =
1. Then Cy(S) is P- and B(T)E-invariant, so Cy(S) is G-invariant. But now the
definition of V' shows that V = Cy/(S) and S = 1.

7.13.5 S =1.

Assume that S # 1. Then T, = Z and according to there exists y € P such
that [Wg,Y] # 1 for Y := AY. If Y normalizes W, then by Y also normalizes
E, and [Wg, E] = Wy implies that [Wy,Y, E] # 1. The action of B(T') on W shows
that [Wg,Y|NZ £ Z(G). If Y does not normalize Wy, then by [7.3| Y also does not
normalize (Wr N Z)Cy(G) and WrN Z,Y] £ Z(G).
Hence in both cases R :=[V,Y]N Z £ Z(G), so Cz(R) is a proper subgroup of G.
On the other hand, by
R<[V,Y] <[V, T,

and so by [EY,R] = 1. Thus also [B(T)YEY,R] = 1 since R <Y < Z¥% The
uniqueness of HY implies
B(T) < Ca(R) < 1.

In particular B(T) and B(T')Y, and thus also Z and Z¥ are conjugate in HY. It follows
from [.13.1] that B
EB(T) < Ng(Z) < H’.

The uniqueness of H yields H = HY and y € H. Now shows that F is also an
B(T)¥-block and by [7.9 and [Wg, Y] =1, contradicting the choice of Y.

Let Wy := Cy(OP(P)) and choose 1 # W <V minimal such that W = [W, OP(P)].
Then U := W/W N W, is an irreducible P-module. Observe that by

Cr(W) < ColU) = O,(P).

713.6 Z#1, 50Ty = Z.
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Assume that Z = 1. Then Ty = Qr(V), so Oi(V) # 0 and thus by (C) also
O5(V) # 0. Moreover, by [7.13.2|and [7.8| @ < T and by [7.9|[V, @, E] = 1. This shows

that G = (E, P) < Ne(Op, (p)(V)) and so
O?JP(P)(v) = 0.

Let Qo := QNO,(P), and Wy := [W, Qo). Then [W;,OP(P)] = 1 and by[7.9[[W;, E] = 1,
so Wy <V and W, = 1. Furthermore, let A € O5(V) and Ay := ANO,(P). Then
(b) implies that [A/Aq| > [W/C5/(A)|, and thus also

|A/CaU)] > [U/Cu(A)],

since C7(U) = Op(P) and C4(U) = Ag. On the other hand, by [5.6| and [3.6] applied to
P/Cp(U) we get |[A/C4(U)| = |U/Cy(A)|, a contradiction.

7.13.7 [W,0,(P)] = 1.

By [7.13.5 and [7.13.6 [0,(P), Z] = 1 and Z £ O,(P), so [O,(P),0"(P)] < Cp(W)
using 3.3l The Three Subgroups Lemma gives [W, O,(P)] = 1, since W = [W, O*(P)].

We now derive a final contradiction using [7.13.6| and [7.13.7. From we get that
Cr(U) = Cr(W) = O,(P); in particular O,(P/Cp(W)) = 1. Hence again [.6 and
imply

() [A/CaW)[|Cw (A)] = [W] for A € Op(W).

If W, J(T)] =1, then Z < J(T) < O,(P), which contradicts [7.13.5l Thus we have
[W, J(T)] # 1. But now an elementary argument using (x) gives

(AN O,(P))W € A(T) for every A € A(T),

so W < J(T') and Z < Cp(W) = O,(P), again a contradiction to [7.13.5 O

Lemma 7.14 Let E € B.(T). Then there exists A < B(T) such that the following
hold:

(a) [E,A] =F and [V, A, A] = 1.
(b) |V/Cy(A)| = |A] and Cy(A) = Cy(a) for every a € A\ Cu(V).

o1



Proof. If F is a symmetric block we let F' < E be the B(T)-block given by

with F//O,(F) = SL,(2)" and otherwise set [’ := E. Thus in all cases F' is a
linear block not in C*(G,T). Hence [7.8 and give O,(F) < O,(G). The action of
F on Wr shows that

(1) |B(T)/Cp)(Wr)| = g.
Observe that by V,Z]=1,s0V < B(T). Set
W* = (Wra |a € Aut(B(T))) and V" := (Va | a € Aut(B(T))).

Assume first that F' is not exceptional. Then

implies [O,(G), F] < Wrp < W*. As F £ C*(G,T), this shows that W* £
O,(G). Hence there exists a € Aut(B(T)) such that A := Wpa £ O,(G); in particular
A £ O,(F) and [E, A] = E. The action of A on Wy and (1) give
(2) q=|Wg/Cw,(A)| =|V/Cy(A)| and [V, A, A] = 1.
As Wg/Cw,(F) is a 2-dimensional SLs(g)-module, we also get
(3) Cy(A) = Cy(a) for every a € A\ Cu(V).

Hence, A satisfies (a) and (b).

Assume now that [ is exceptional; so /' = E. Then no element in B(T')\Cp(ry(Wg)
acts quadratically on O3(E)/Z(E). It follows that W* is elementary abelian and
[V*,Wg] = 1. By O3(F) < B(T), so there exists a € Aut(B(T)) with A :=
O3(E)a £ Cpry(E/Os(E)) for otherwise (O3(F)a | a € Aut(B(T))) is a character-
istic subgroup of B(T') normalized by E, contradicting £ £ C*(G,T'). In particular
[E,A] = E.

Observe that V* < Cyry(Wga) N Cpary (W), so

[V*,05(E)] < Q(Z(03(E))) and [E, Cv(E)a™"] < O3(E).
This shows that
[03(E), O3(BE)Cy (E)a™ '] = Z(E)[03(E), Cy (E)a™ '] < [0s(E), Cv(E)a™"]Z(B(T)).
As [03(E), O3(E)Cy(E)a~"] is an E-submodule of Q(Z(03(E))), we get that either
Wi < [03(E),Cv(E)a™1Z(B(T)) or [03(E), Ov(E)a™"] < Z(E).

In the first case Wra < [A,Cy(E)]Z(B(T)) < Cy(E)Z(B(T)) and thus O3(F) <
CB(T)(WEOZ). But then
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[A,05(E)] < Z(A) and [05(E), A, 4] = 1,

which contradicts the definition of an exceptional B(T')-block.
So we are in the second case, in particular

[O5(E),Cy(E)a™", E] = 1 and [E, O3(E), Cy(E)a™"] = [O3(E), Cy-(E)a™"].

Observe that either [Cy(E)a™!, E] = O3(F) or [Cy(E)a™ !, E] < Z(O3(F)). Hence the
Three Subgroups Lemma gives
(04(E),Cy(E)a~] = Z(E) or [Ox(F
Assume that [O3(F),Cy(E)a™'] =
and thus

), Cv(E)a™'] = 1, respectively.
Z(E). Then Z(E)a = [A,Cy(E)] < Cy(E)

[0s5(E), A, Al = [Os(E) N A, A] < Z(E)a < Oy (E) N Op(E) = Z(E).

Now A acts quadratically on O3(E)/Z(FE), which contradicts the definition of an ex-
ceptional B(T')-block.

Thus, we have [O3(E),Cy(F)a™'] = 1 and so [A,Cy(E)] = 1. Now as above (2)
and (3) hold for A, so A satisfies (a) and (b). O

Theorem 7.15 No group satisfies Hypothesis[7.1]

Proof. Let )Y be the set of all subgroups A < B(T) for which there exists E € B,(T)
such that A and F satisfy (a) and (b) of [7.14] and let

D :=Uyc)? and D := {A | A € D}.

We will show that D satisfies Hypothesis .

It is evident from that D satisfies (i) and (ii) of |4.1] . Moreover, shows that
property (#x) of [1.3] holds. Next we prove (iii) of [4.1]

Let A, B € D such that [4, B] = 1. If Cy(4) = CV(B), then [4.3] (%) yields 4 = B.
Assume that Cy(A) # Cy(B). Then by[4.1](ii) ANB = 1 and so |[AB| = [4|[B|. On the
other hand, by (ii) |V/Cv(AB)| < |A]|B|, so again (x*) gives |AB||Cy (AB)| = |V].
This proves (iii) of [4.1]

Finally, we show property (+) of [1.2| with M := C*(G,T). Let L := Ng(DNT) and
recall that C(V) < C*(G,T). Hence

Ng(DNT)< M < L<C*G,T),

so we may assume by way of contradiction that L £ C*(G,T). Then L € L(T), and
by [7.3| there exists a B(T)-block E in L which is not in C*(G,T). According to
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FE < F € B,(T). But then by there exists A € D N B(T) such that [F, A] = F.
This contradicts A €e DNT and F < L.

We have shown that D satisfies Hypothesis By there exists a subnormal
subgroup E* in G such that C(V) < E* £ C*(G,T) and E satisfies (c¢) and (d)
of [4.18] Moreover, by the definition of D and (a) there exists F € B,(G) and
A € D such that EA < E*; in particular B(T) normalizes E*. Now 3.8 applied to
B(T)E*, together with shows that F is normal in £*, and thus subnormal in G.
This contradicts [.4] O

The Proof of Corollary Let M be the unique maximal subgroup of G
containing 7. As every characteristic subgroup X of B(T) is also characteristic in T,
we get T < Ng(X). Hence Ng(X) < M if X is non-trivial. Similarly Cq(Q(Z(T))) <
M. Tt follows that C*(G,T) < M; in particular C*(G,T) # G. Hence G satisfies
the hypothesis of the Local C*(G,T)-Theorem and the Local C**(G,T)-Theorem for
Minimal Parabolic Groups. In particular, for every subnormal symmetric B(T)-block
E not in C*(G,T), E/Os(E) = Asniy. Thus, G satisfies the conclusion of the Local
C(G,T)-Theorem. Moreover, (e) of the Local C*(G,T)-Theorem together with the
fact that GG is a minimal parabolic gives the additional statement in the conclusion of
1.9
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