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1 Introduction
In this article all groups considered are assumed to be �nite. Moreover G alwaysdenotes a group and p always a prime.We de�ne A(G) to be the set of elementary abelian p-subgroups of G of maximalorder and 
(G) to be the subgroup generated by the elements of order p of G. Then

J(G) := hA j A 2 A(G)i
is the Thompson subgroup of G (with respect to p), and

B(G) := hCT (
(Z(J(T )))) j T 2 Sylp(G)i
is the Baumann subgroup of G (with respect to p).
De�nition 1.1 Let p divide the order of G, T 2 Sylp(G) and S � T . Then

C(G;S) := hNG(C) j 1 6= C char Si;
C�(G; T ) := hCG(
(Z(T ))); C(G;B(T ))i;
C��(G; T ) := hCG(
(Z(T ))); NG(J(T ))i:

Notice that every characteristic subgroup of B(T ) is characteristic in T and J(T )is characteristic in B(T ). In particular
C��(G; T ) � C�(G; T ) � C(G; T ):

De�nition 1.2 A group G is of characteristic p if
CG(Op(G)) � Op(G) (or equivalently F �(G) = Op(G)):
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In this paper we will classify those groups G of characteristic p that are not equal toC(G; T ) with respect to some Sylow p-subgroup T ; a result called the Local C(G; T )-Theorem.The investigation of groups of characteristic p in which G 6= C(G; T ) is a naturalextension of work on failure of Thompson factorization as �rst studied by Glauberman[8] in response to the factorization theorems of Thompson [17]. Indeed Glauberman'sTheorem is similar to that of our C��(G; T )-Theorem for minimal parabolic subgroups(see Theorem 1.5) in the case when G is p-solvable but without the assumption thatG is minimal parabolic.The Local C(G; T )-Theorem in the case p = 2 was proven by Aschbacher [1] andthere are some key features of Aschbacher's proof which we have reformulated for usein our proof. In particular, B(T )-blocks are a generalization of his short groups to thecase of p any prime, together with the extra condition that they are normalized byB(T ). Aschbacher uses the word block for a short subnormal subgroup.Some of the properties of B(T )-blocks resemble those of components and these areproven in Chapter 6. For example, distinct subnormal B(T )-blocks commute (6.11).Furthermore, our notations OG(V ) and AG(V ) are essentially the same as P(G; V ) andP�(G; V ) of Aschbacher.An alternative proof for p = 2 was also given by Gorenstein and Lyons [9]. Theirproof avoids the use of some deep results needed in Aschbacher's proof. Instead itrequires the K-group hypothesis (that any simple section of G is one of the known�nite simple groups), which is su�cient for the purposes of the classi�cation of the�nite simple groups.Our proof works for all primes p and does neither use the K-group assumption northe deep results used in Aschbacher's proof. In fact, it is more or less self contained.Our result can be considered as part of a project of Meierfrankenfeld et. al. [13] andwe will use standard concepts from this project. In particular, the name characteristicp for groups with the property CG(Op(G)) � Op(G) and the L-Lemma originate there.Our abstract de�nition of a minimal parabolic group is also used extensively in thisproject, but was originally an idea of McBride.The Baumann subgroup and the Baumann Argument (3.7) �rst appeared in (2.11.1)of [2], but we prefer to quote [15], where the result is explicitly stated in the form werequire. This result is used to show that certain subgroups satisfy the hypothesis of apushing up result [16] which was originally proven by Glauberman and Niles [14] andindependently for the case p = 2 by Baumann [3].Groups generated by conjugacy classes of transvections were classi�ed by McLaugh-lin [10], [11] and some of our results in Section 4 follow easily from this classi�cation,but we prefer to give an independent proof tailored to our particular situation.The results of Section 2 are elementary and mainly well-known. We have givenexplicit proofs rather than searching for original references in order to keep thingsreasonably self contained.
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To state the main result we need two further de�nitions.
De�nition 1.3 The symmetric group of degree m is denoted by Sm. Let X be a groupand W be a �nite simple GF (p)X-module. If X �= Sm, m � 3, then W is a naturalSm-module (for X), if p = 2 and W is isomorphic to the unique non-trivial simplesection of the GF (2)Sm-permutation module.If X �= SL2(pm), then W is a natural SL2(pm)-module (for X), if W is irreducible,F := EndX(W ) �= GF (pm), and W is a 2-dimensional FX-module.Moreover, for Am and SL2(pm)0 rather than Sm and SL2(pm) the correspondingmodule is called a natural Am-module and a natural SL2(pm)0-module, respectively.

It is easy to see that every �nite simple GF (2)Sm-module with jW=CW (t)j = 2 fora transposition t 2 Sm is a natural Sm-module.
De�nition 1.4 Let T 2 Sylp(G). A subgroup E � G is a B(T )-block of G if forW := 
(Z(Op(E))):
(i) E = Op(E) = [E;B(T )], [Op(E); E] = Op(E), and [E;
(Z(T ))] 6= 1.
(ii) E=Op(E) �= SL2(pn)0 or p = 2 and E=O2(E) �= A2m+1, and W=CW (E) is anatural SL2(pn)0- resp. A2m+1-module for E=Op(E).
(iii) Op(E) = W , or

(1) p = 3, and O3(E)=W is a natural SL2(3n)0-module for E=O3(E),
(2) O3(E)0 = �(O3(E)) = Z(E) = CW (E) and jZ(E)j = 3n, and
(3) no element of B(T ) n CB(T )(W ) acts quadratically on O3(E)=Z(E).

If E=Op(E) �= SL2(pn)0, then E is a linear block, and in the other case E is a sym-metric block. Moreover, if (1) { (3) in (iii) hold, then E is an exceptional block.
We will prove the following theorem.

Theorem 1.5 (Local C�(G; T )-Theorem) Let G be of characteristic p with T 2Sylp(G) such that G 6= C�(G; T ). Then there exist B(T )-blocks G1; : : : ; Gr of G suchthat the following hold:
(a) fG1; : : : ; GrgG = fG1; : : : ; Grg.
(b) [Gi; Gj] = 1 for i 6= j.
(c) G = C�(G; T )G0, where G0 :=Qri=1Gi.
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(d) Every B(T )-block of G that is not in C�(G; T ) is contained in one of the B(T )-blocks G1; : : : ; Gr.
(e) C�(G; T ) \G0 =Qri=1(C�(G; T ) \Gi). Moreover either

(i) Gi=Op(Gi) �= SL2(pm), pm > 3, and C�(G; T ) \Gi = NGi(T \Gi), or
(ii) p = 2, Gi=O2(Gi) �= A2m+1, and (C�(G; T ) \Gi)=O2(Gi) �= A2m,
(iii) p = 3, Gi=O3(Gi) �= SL2(3)0 and (C�(G; T ) \Gi)=O3(Gi) = Z(Gi=O3(Gi)).

Corollary 1.6 (Local C(G; T )-Theorem) Let G be of characteristic p with T 2Sylp(G) such that G 6= C(G; T ). Then G has the same structure as given in Theorem1:5 with the additional restriction that if Gi is a symmetric block, then Gi=O2(Gi) �=A2n+1.
It is easy to see that under the assumption of Theorem 1.5 every proper subgroup Lwith B(T ) � L and L 6� C�(G; T ) satis�es the hypothesis of 1.5 (see 2.3). Hence, thosegroups G, where C�(G; T ) is the unique maximal subgroup containing B(T ), are thebasis for an induction on the order of G. This leads to a class of groups that plays thesame role for groups of local characteristic p as the class of minimal parabolic groupsfor groups of Lie type in characteristic p (see [13]).

De�nition 1.7 Let T 2 Sylp(G). Then G is a minimal parabolic group (withrespect to p), if T is not normal in G and there is a unique maximal subgroup of Gcontaining T .
The restricted structure of minimal parabolic groups allows us to prove a LocalC��(G; T )-Theorem that is of interest on its own:

Theorem 1.8 (Local C��(G; T )-Theorem for Minimal Parabolic Groups) LetG be a minimal parabolic group of characteristic p with T 2 Sylp(G) such that G 6=C��(G; T ), and let V := 
(Z(Op(G))) and G := G=CG(V ). Then there exist subgroupsE1; : : : ; Er of G such that
(a) G = J(G)T and J(G) = E1 � � � � � Er,
(b) T acts transitively on fE1; : : : ; Erg,
(c) V = CV (E1 � : : :� Er)Qri=1[V;Ei], with [V;Ei; Ej] = 1,
(d) Ei �= SL2(pn) or p = 2 and Ei �= S2n+1, for some n 2 N, and
(e) [V;Ei]=C[V;Ei](Ei) is a natural module for Ei.
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As a corollary of the Local C�(G; T )-Theorem we get a pushing up result for minimalparabolic groups.
Corollary 1.9 (Pushing Up Theorem for Minimal Parabolic Groups) Let Gbe a minimal parabolic group of characteristic p with T 2 Sylp(G). Suppose thatneither any non-trivial characteristic subgroup of B(T ) nor 
(Z(T )) is normal in G.Then G satis�es the conclusion of the Local C(G; T )-Theorem. Moreover C�(G; T ) =(C�(G; T ) \Qri=1Gi)T .
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2 Preliminary Results
Lemma 2.1 Let D be a conjugacy class of subgroups of G and A and B be subgroupsof G. Suppose that G = hDi and

D = fX 2 D j X � Ag [ fX 2 D j X � Bg:
Then A = G or B = G.
Proof. Let D0 := fX 2 D j X 6� Ag and D := hD0i:
We may assume that A 6= G, so D0 6= ;. Clearly D � B and hA;Di � NG(D).Moreover, every element of D is a subgroup of A or D, whence G = hDi � NG(D).Since D is a conjugacy class of G and D0 6= ;, this gives G = D = B. �

Lemma 2.2 Let G be of characteristic p and L � G. Any of the following conditionsimplies that L is of characteristic p :
(a) L EE G.
(b) Op(G) � L.
(c) L EE hL;Op(G)i.
(d) Op(G) normalizes L.

Proof. (a): Since L EE G, F �(L) � F �(G) = Op(G).(b): Op(G) � Op(L), so CL(Op(L)) � CG(Op(G)) � Op(G) � Op(L).(c): By (b) hL;Op(G)i has characteristic p. Thus (a) (with hL;Op(G)i in place ofG) shows that L has characteristic p.(d): LE LOp(G). So (d) follows from (c).
�

Lemma 2.3 Let G be of characteristic p, T 2 Sylp(G), and Q E T with CT (Q) � Q.Suppose that L and P are subgroups of G such that Q � L and B(T ) � T0 2 Sylp(P ).Then the following hold:
(a) CG(Q) � Q.
(b) L is of characteristic p.
(c) P is of characteristic p.
(d) C�(P; T0) � C�(G; T ).
(e) If P is minimal with respect to T0 � P and P 6� C�(G; T ), then P is a minimalparabolic of characteristic p with C�(P; T0) 6= P .
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Proof. (a): Let D := CG(Q). Since CT (Q) � Q and Op(G) � T , COp(G)(Q) � Q �CG(D). So by the P � Q-Lemma, Op(D) centralizes Op(G). Hence D is a p-groupsince G is of characteristic p. As T normalizes D, D � T and so D � CT (Q) � Q.(b): Let L0 := hQLi. Since Q E T , Op(G) normalizes Q and so also L0. Hence by2.2(d) L0 is of characteristic p. Let C := CL(Op(L)). Then C � CL(Op(L0)) and thus
[Q;C] � L0 \ C � CL0(Op(L0)) � Op(L0) � Op(L) and [Q;C;C] = 1:

Hence C normalizes QOp(L), so [QOp(L); C; C] = 1 and [Q;Op(C)] = 1. By (a)Op(C) = 1, and C is a p-group. Thus C � Op(L), and L is of characteristic p.(c): Observe that B(T ) E T and CT (B(T )) � B(T ). Hence (c) follows from (b).
(d): Let T0 � eT 2 Sylp(G). Then eT � NG(B(T )) � C�(G; T ), so C�(G; T ) =

C�(G; eT ). Thus we may assume that T0 � T . Then

(Z(T )) � CT (B(T )) � B(T ) � T0;

and so 
(Z(T )) � 
(Z(T0)). It follows that
CP (
(Z(T0))) � CP (
(Z(T ))) � CG(
(Z(T ))) � C�(G; T ):

Since B(T ) = B(T0), we conclude that C�(P; T0) � C�(G; T ).(e): From (c) and (d) we get that P is of characteristic p and
C�(P; T0) � P \ C�(G; T ) 6= P:

The minimal choice of P shows that P \ C�(G; T ) is the unique maximal subgroup ofP containing T0. As NP (T0) � NP (B(T )) � P \ C�(G; T ), P is a minimal parabolicsubgroup of G. �

Lemma 2.4 Let G = QN , where N is a normal subgroup of G and Q is a non-abelian2-subgroup with Q \N = 1. Suppose that there exists 1 6= t 2 Z(Q) \Q0 such that
(�) CN(Q) = CN(t):
Then [N;Q] is solvable of odd order.
Proof. There exists S 2 Syl2(N) such that Q � NG(S). Let g 2 N such thata := tg 2 tS and [t; a] = 1. Then

ta 2 CS(t) (�)= CS(Q);
so [Q; a] = 1, since t 2 Z(Q). Now (�) implies

Q � CG(a) = Qg � CN(Qg):
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Let Q0 be the projection of Q in CN(Qg). Then t centralizes Q0, so by (�) also[Q;Q0] = 1. It follows that Q0 � Qg \Q and [Q0; g] � Q0Q0g \N � Qg \N = 1. Butnow t = a since t 2 Q0.We have shown that t itself is the only conjugate of t in htiS that commutes with t. Itfollows that t is not conjugate in G to any other element of htiS. Hence, Glauberman'sZ�-Theorem [6] together with (�) implies that [N;Q] is a group of odd order, and theTheorem of Feit-Thompson [5] yields the desired result. �

Lemma 2.5 Let G be of characteristic p. Suppose that there exist subgroups E � Gand N E G with [Op(N); E] = 1, [Op(G); E] � E, and E = Op(E). Then E ENG(EN).
Proof. Let E0 := E[E;NG(EN)] = hENG(EN)i and R := E0 \N . Then
(�) E0 = ER and Op(R) � Z(E0):
Note thatOp(G) normalizes E0. Hence by 2.2 E0 has characteristic p, so by (�)Op(R) �Op(E0) and Op(R) = 1. Thus R is a p-group. It follows that R � Op(N) � Op(G).Then Op(E0) = E0 and [Op(G); E] � E imply R � E and E E NG(EN). �

Lemma 2.6 Let E be a group, Q := O3(E), W := 
(Z(Q)) and Z := CW (E).Suppose that the following hold:
(i) E=Q �= SL2(3n).
(ii) Q=W and W=Z are natural SL2(3n)-modules for E=Q.
(iii) Z = �(Q) = Q0 = Z(E) and jZj = 3n.
Then the image of CAut(Q)(Z) in Aut(Q=W ) is isomorphic to SL2(3n).
Proof. LetW0 := [W;E] and q := 3n. ThenW = Z�W0, and Q := Q=W0 is a specialgroup of order q3. Let W � A � Q and T 2 Syl3(E) such that A=W = Z(T=W ).Pick a 2 A nW . By (ii) and (iii) [a;Q] = h[a;Q]Ei = Q0 = Z and thus jQ=CQ(a)j = q.
As also CQ(a) is normalized by T and Q=W is a natural SL2(q)-module, we get that
A = CQ(a) and thus A = CQ(a); in particular A is abelian.Let D := fAe j e 2 Eg. For B 2 D we have:
(�) CQ(b) = B for b 2 B nW:
Moreover jDj = q + 1, and the images of the elements of D form a partition of Q=W .This latter property together with (�) shows that the elements in D are the only abeliansubgroups of order q4 in Q.
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Pick A;B 2 D, A 6= B. Then (�) implies
[a; b] 6= 1 for all a 2 A nW and b 2 B nW:

The action of E on Q shows that CE(A=Z) acts regularly on D n fAg.Now let � 2 Y := CAut(Q)(Z). Assume that � centralizes A=Z. If � normalizes B,then for b 2 B and a 2 A [b; a] = [b; a]� = [b�; a];
so b�1(b�) 2 W . Hence � centralizes AB=W = Q=W , and so

CY (A=Z) \NY (B) = CY (Q=W ):
With a similar argument CY (aZ=Z) \NY (B) � CY (B=Z), so

CY (aZ=Z) \NY (B) = CY (B=Z) \NY (A) = CY (Q=W ):
It follows that jY=CY (Q=W )j � q(q�1)(q+1), because there are (q�1)(q+1) choicesfor aZ and then q choices for B with a 62 B. As E induces SL2(q) on Q=W , we aredone.

�

De�nition 2.7 Let V be a �nite dimensional GF (p)G-module. Then OG(V ) is theset of subgroups A of G such that:
(i) [V;A] 6= 1,
(ii) jA=CA(V )jjCV (A)j � jA�=CA�(V )jjCV (A�)j for all subgroups A� of A, and
(iii) A=CA(V ) is an elementary abelian p-group.
Moreover O�G(V ) := fA 2 OG(V ) j jA=CA(V )jjCV (A)j > jV jg:
Suppose that OG(V ) 6= ;. Then

mG(V ) := maxfjA=CA(V )jjCV (A)j j A 2 OG(V )g;
and AG(V ) is the set of minimal (by inclusion) elements of the set

fA 2 OG(V ) j jA=CA(V )jjCV (A)j = mG(V )g:
Observe that property (ii) above with A� = 1 gives mG(V ) � jV j.

Lemma 2.8 Let V be a �nite dimensional GF (p)G-module, V0 � CV (Op(G)) be aGF (p)G-submodule, and W � V . Then the following hold for A 2 OG(V ):
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(a) jW=CW (A)j � jA=CA(W )j.
(b) Let A 2 O�G(V ). Then jW=CW (A)j < jA=CA(W )j or CA(W ) 2 O�G(V ).
(c) A 2 ONG(CV (B))(CV (B)) for all B � A with [CV (B); A] 6= 1.
(d) Let Op(G=CG(V )) = 1. Then OG(V=V0) 6= ; if OG(V ) 6= ;, and O�G(V=V0) 6= ;if O�G(V ) 6= ;.
(e) Let V be an elementary abelian normal subgroup of G. ThenfA 2 A(G) j [A; V ] 6= 1g � OG(V ):

Proof. (a), (b) and (c): Set A0 := CA(W ). By the de�nition of OG(V )
jAjjCV (A)j � jA0jjCV (A0)j � jA0jjWCV (A)j = jA0jjW jjCV (A)jjCW (A)j�1;

and thus jA=A0j � jW=CW (A)j.Moreover, if A 2 O�G(V ) and jA=A0j = jW=CW (A)j, then jA=CA(V )jjCV (A)j =jA0=CA(V )jjCV (A0)j = mG(V ) > jV j and A0 2 O�G(V ).Assume now that W = CV (B) for some B � A and set B� := CA(W ), so B � B�
and CV (B�) = CW (B�). Then CW (A�) = CW (A�B�) = CV (A�B�) for every A� � A,so jAjjCW (A)j = jAjjCV (A)j � jA�B�jjCV (A�B�)j � jA�B�jjCW (A�)j
and jA=B�jjCW (A)j � jA�B�=B�jjCW (A�)j = jA�=A� \B�jjCW (A�)j:
Hence (c) follows.(d): Let V := V=V0. Observe that CA(V ) = CA(V ), since Op(G=CG(V )) = 1 andthat jV =CV (A)j � jV=CV (A)j.(e): Let A 2 A(G). Then the maximality of jAj gives for every A� � A,

jAj = jACV (A)j = jAjjCV (A)jjV \ Aj�1 � jA�CV (A�)j= jA�jjCV (A�)jjV \ A�j�1 � jA�jjCV (A�)jjV \ Aj�1;
and thus with A�CA(V ) in place of A�

jA=CA(V )jjCV (A)j � jA�CA(V )=CA(V )jjCV (A�)j = jA�=CA�(V )jjCV (A�)j:
Hence A 2 OG(V ) if [V;A] 6= 1. �

Notation 2.9 In the following six lemmas we will give some elementary facts aboutSn in its action on a natural GF (2)-module. For this purpose we �x the followingnotation.
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Let G = Sn, n > 1, and V � be a GF (2)G-permutation module (written multiplica-tively); so there exists a basis 
 := fv1; : : : ; vng that is permuted by G. We set
W := hvivj j 1 � i; j � ni and V0 := h

nY
i=1 vii:

If n is odd, then V := W is a natural GF (2)G-module, and if n is even, then V := W=V0is a natural GF (2)G-module. Furthermore we �x T 2 Syl2(G), and Y is the subgroupgenerated by the transpositions contained in T .
Lemma 2.10 Let G = Sn, n � 4. Then either
(a) n is even, and NG(Y ) is transitive on the transpositions of G that are not in Y ,or
(b) n is odd, and NG(Y ) has two orbits on the transpositions not in Y . The elementsof one orbit have a �xed point in common with Y and the elements of the otherorbit do not.

Proof. This is an elementary calculation in Sn. �

Lemma 2.11 Let G = Sn, n � 5, and V be a natural GF (2)G-module. ThenhNG(Y ); CG(CV (T ))i �= Sn�1 if n is odd, and G = hNG(Y ); CG(CV (T ))i if n is even.
Proof. Set M := hNG(Y ); CG(CV (T ))i. Suppose �rst that n is odd. Then V � =V0�V and CV �(T ) = CV (T )�V0;
so CG(CV (T )) = CG(CV �(T )).There exists a unique v 2 
 such that v 2 CV �(Y ). This element is centralized byNG(Y ), and thus also by T . It follows that hCG(CV �(T )); NG(Y )i �xes v; in particularM 6= G. Since there are transpositions in CG(CV �(T )) that are not in Y , 2.10 showsthat M contains all transpositions that �x v. Hence M �= Sn�1.Suppose that n is even. It su�ces to show that M contains a transposition that isnot in Y . Since then by 2.10 M contains all the transpositions of G, so M = G.Let 
1; : : : ;
r be the T -orbits of 
, and let �1; : : : ;�k be the proper subsets of 
with [Qv2�i v; T ] � V0. Set

oi := Yv2
i
v; i = 1; : : : ; r; and `i := Yv2�i

v; i = 1 : : : ; k:
Then CW (T ) = ho1; : : : ; ori and CV (T ) = h`1; : : : ; `ki=V0:
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Assume �rst that CG(CV (T )) = CG(CW (T )). Since n � 5, we may assume thatj
1j � 4. Hence there exists a transposition d 2 NG(
1) nCG(
1) with d 62 Y . Clearly[oi; d] = 1 for i = 1; : : : ; r and thus d 2 CG(CW (T )) = CG(CV (T )) �M , so M = G.Assume now that CG(CV (T )) 6= CG(CW (T )). Then there exists i 2 f1; : : : ; kg andt 2 T such that [`i; t] 6= 1. It follows that �i [ �ti = 
, and f�i;�tig is a T -invariantpartition of 
. In particular, every such t acts �xed-point-freely on 
.Observe that �i \ 
j 6= ; for every j 2 f1; : : : ; rg; in particular CT (
j) � NG(�i).If r > 1, then CT (
2) is transitive on 
1, so 
1 � �i and consequently T � NG(�i),which contradicts t 62 NG(�i).We have shown that T is transitive on 
, so [`i; T ] 6= 1 for every i 2 f1; : : : ; kg. Lety 2 T be a 4-cycle acting transitively on 
0 � 
. As n � 5, y has a �xed point in 
and thus y 2 NG(�i) (for every i). In particular either

0 � �i or 
0 � 
 n �i:

In both cases for every i 2 f1; : : : ; kg
S4 �= L := NG(
0) \ CG(
 n 
0) � NG(�i) � CG(`i):

It follows that L � CG(CV (T )), but L contains transpositions that are not in Y . AgainM = G. �

Lemma 2.12 Let G = Sn, n odd, and V be a natural GF (2)G-module. Then thefollowing hold:
(a) CV (Y ) = [V; Y ].
(b) CG(CV (Y )) = Y .
(c) Let t and t0 be involutions in T . Then t = t0 or CV (t) 6= CV (t0).
(d) Let d 2 G with d3 = 1 and j[V; d]j = 4. Then d is conjugate to (123) in G.
(e) If G is a minimal parabolic (with respect to 2), then n = 2m + 1.

Proof. Properties (a) { (c) are elementary consequences of the action of G on V �
and 
.(d): Let v 2 
 such that [v; d] 6= 1. Then [V �; d] � hv; vd; vd�1i, so d �xes all but 3elements in 
. Hence d is conjugate to (123) in G.(e): We may assume that n � 5, so by 2.11 n is odd. LetM be the unique maximalsubgroup containing T . As n is odd, M �= Sn�1 and M has a unique �xed point v 2 
.Let 
1; : : : ;
r be the T -orbits on 
 with 
1 = fvg. Then T � NG(
 n 
2) � M ,so 
 n 
2 = fvg, and (e) follows. �
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Lemma 2.13 Let G = Sn, n odd, T 2 Syl2(G), and U be a GF (2)Sn-module. Supposethat U = [U;O2(G)]CU(T ) and that [U;O2(G)]=C[U;O2(G)](O2(G)) is a natural GF (2)Sn-module. Then U = CU(O2(G))� [U;O2(G)];
in particular [U;O2(G)] is a natural GF (2)Sn-module.
Proof. Let U0 := CU(O2(G)). It is well known that Sn is generated by n� 1 trans-positions t1; : : : ; tn�1 and it follows from the hypothesis that each of them acts as atransvection on U=U0, so jU=U0j � 2n�1. As the natural GF (2)Sn-module has order2n�1, we conclude that U = [U;O2(G)]U0. Without loss of generality we may assumethat jU0j = 2.It su�ces to show that j[U; ti]j = 2, since then h[U; ti] j i = 1; : : : ; n� 1i = [U;G] isa GF (2)Sn-submodule of order at most 2n�1, and as above [U;G] has to be a naturalGF (2)Sn-module.Let c be an (n � 2)-cycle in An. Then c is centralized by a transposition t. It iseasy to calculate in the natural module that jCU=U0(c)j = 4, so

jCU(c)j = 8 and U = CU(c)� [U; c]:
Then [CU(c)=CU(c) \ CU(t)j = 2 and j[CU(c); t]j = 2. Moreover, t centralizes [U=U0; c]and thus also [U; c]. It follows that j[U; t]j = 2. �

Lemma 2.14 Let G = Sn and V be a natural GF (2)Sn-module for G, and let F � Gsuch that F = O2(F ) and [V; F ]CV (F )=CV (F ) is an irreducible GF (2)F -module. Thenthe following hold:
(a) F has a unique non-trivial orbit on 
.
(b) Suppose that n is odd, F �= Ak, k odd, and [V; F ] is a natural Ak-module for F .Then F is normalized by a conjugate of Y .
(c) Suppose that F �= SL2(2k) and [V; F ]=C[V;F ](F ) is a natural SL2(2k)-module forF . Then k = 2, and F has exactly n � 6 �xed-points on 
. In particular [V; F ]and C[V;F ](F ) are normalized by a conjugate of Y .

Proof. Observe that CV (F ) = CV �(F )=CV �(G) since F = O2(F ), so
[V �; F ]CV �(F )=CV �(F ) �= [V; F ]CV (F )=CV (F ) �= [V; F ]=C[V;F ](F ):

(a): For v 2 
, let Wv := hvF i. As 
 is a basis of V �, we get for v; ev 2 

Wv = Wev and vF = evF or Wv \Wev = 1:

13



Now the irreducibility of [V �; F ]CV �(F )=CV �(F ) shows that [Wv; F ] = 1 for all but oneorbit vF .(b): According to (a) F has a unique non-trivial orbit 
0 � 
. Set m := j
0jand W0 := h
0i. Then jW0j = 2m and j[W0; F ]j = 2m�1. As [W0; F ] is also a naturalAk-module for F we also get that j[W0; F ]j = 2k�1, so k = m. Moreover, since k and nare odd, j
 n
0j is even. Hence, there exists a conjugate of Y normalizing 
 n
0 andthus also F .(c): As in the proof of (b) we de�ne W0 using the unique non-trivial orbit 
0 ofF on 
 and set m := j
0j. Observe that CW0(F ) = hQw2
0 wi and that [W0; F ]is the set of all products of an even number of elements of 
0. On the other hand[W0; F ]CW0(F )=CW0(F ) is a natural SL2(2k)-module for F , so F is transitive on thenon-trivial elements of [W0; F ]CW0(F )=CW0(F ). It follows that every element of [W0; F ]nCW0(F ) is either the product of m�2 or 2 elements of 
0. Since jF j � 60 we get m � 5and 4 = m� 2, so m = 6. In particular F is a subgroup of A6 and thus k = 2.We have that [W0; F ] = [W0; CG(
n
0)] and C[W0;F ](F ) = C[W0;F ](CG(
n
0)). Asthere exists a conjugate of Y normalizing 
0 and 
n
0, this conjugate also normalizes[W0; F ] and C[W0;F ](F ). Now the additional statement in (c) follows.
�

Lemma 2.15 Let G = Sn, n � 3 and n odd, and let V be a natural GF (2)Sn-modulefor G. Suppose that A 2 OG(V ). Then the following hold:
(a) A is generated by commuting transpositions of G.
(b) [V;A;A] = 1.
(c) jV=CV (A)j = jAj.

Proof. We proceed by induction on n. The case n = 3 is trivial, so we assume thatn � 5 and that the result holds for n� 2. Since V � = V � V0 we may as well calculatein V � rather than V .By the Timmesfeld Replacement Theorem [12] there exists 1 6= A0 � A suchthat [V �; A0; A] = 1 and A0 2 OG(V �). Let 1 6= a 2 A0 and v 2 
 such thatv 6= va and let t be the transposition of G with vt = va and V �t := CV �(t). Thenw := vva = vvt 2 CV �(A), so
A � CG(w) = hti � L; L �= Sn�2:

Observe that V �t =hwi is the natural permutation module for L. Thus by inductionand 2.8 jA=CA(V �t )j = jV �t =CV �t (A)j, and A = ht1; : : : ; triCA(V �t ), where t1; : : : ; tr arecommuting transpositions of G in L. Moreover, by 2.12 CA(V �t ) � hti, so (a) and (c)follow, and 2.12 (a) yields (b). �
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Lemma 2.16 Let V be a �nite dimensional GF (p)G-module, E EE G, and W :=[V;E], and let A 2 OG(V ) with [E;A] 6= 1. Suppose that
(i) E �= SL2(pm)0 or p = 2 and E �= A2m+1, and
(ii) W=CW (E) is a natural SL2(pm)0- resp. A2m+1-module for E.
Then the following hold:

(a) A � NG(E).
(b) EA := EA=CEA(W ) �= SL2(pm) and A 2 Sylp(EA), or p = 2, EA �= S2m+1 andA is generated by commuting transpositions.
(c) [W;A;A] = 1.
(d) jA=CA(W )j = jW=CW (A)j.
(e) For T 2 Sylp(EA) there exists a unique maximal element B in OT (V ), andCEA(CV (B)) = B.

Proof. We may assume that G = hE;Ai. Let A0 := CA(E), A = A0 � A1, andV0 := CV (A0). The P � Q-Lemma shows that E acts faithfully on V0. Moreover,WCV (A) � V0 since W = [W;E] and W=CW (E) is an irreducible E-module. Inaddition, by 2.8 (c) A1 2 OG(V0), so A1, V0 and E satisfy the hypothesis in place of A,V and E. Hence, we may assume A0 = 1 and V = V0.(a): This follows from [4] if E is quasi-simple and from [12, 9.3.6] if E is solvable.(b) { (e): Suppose �rst that E �= A2m+1. By (a) and 2.15 EA �= S2m+1 andW=CW (E) is a natural S2m+1-module. Now 2.13 yields CW (E) = 1, and (b) { (d)follow. Moreover, again by 2.15, a maximal element B 2 OT (V ) is generated by a setwhich corresponds to a maximal set of pairwise commuting transpositions in S2m+1, soB is unique and 2.12 yields (e).Suppose now that E �= SL2(pm)0. As one can see in Aut(SL2(pm)), jAj � pm sinceA is abelian, so jW=CW (A)j � pm. On the other hand, A induces a group of semi-linearGF (pm)-transformations on W=CW (E). It follows that jW=CW (A)j = jAj = pm andEA �= SL2(pm). Now (b) { (e) are easy to verify. �
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3 Minimal Parabolic Groups
Throughout this section we assume
Hypothesis 3.1 Let P be a minimal parabolic group with respect to p, T 2 Sylp(P ),and let M be the unique maximal subgroup of P containing T .
Lemma 3.2 (L-Lemma) Let A � T with A � Op(P ). Then there exists a subgroup Lcontaining A such that the following hold:
(a) AOp(L) is contained in exactly one maximal subgroup M0 of L, and M0 = L\M g

for some g 2 P .
(b) L = hA;AxiOp(L) for all x 2 LnM0.
(c) L is not contained in any P -conjugate of M .

Proof. See [15].
�

Lemma 3.3 Suppose N E P . Then the following hold:
(a) If N �M , then N \ T C P .
(b) If N �M , then Op(P ) � N .

Proof. See [15, 1.3(b)]. �

Lemma 3.4 Let N be a normal subgroup of P contained in M . Set P := P=N . ThenP is a minimal parabolic group and Op(P ) = Op(P ).
Proof. Observe that T 2 Sylp(P ) and M is the unique maximal subgroup of Pcontaining T . Suppose that T C P . Then TN is a normal subgroup of P . SinceTN � M , Lemma 3.3 (a) gives T = TN \ T C P , which contradicts the assumptionthat P is minimal parabolic. Therefore P is a minimal parabolic group.Let D be the inverse image of Op(P ) in P . Then D E P . Since D � TN � M ,by Lemma 3.3 (a), we have that D \ T C P . Then using the Dedekind Identity,D = (D \ T )N � Op(P )N . Hence Op(P ) = D � Op(P ). The reverse inclusion always
holds, so Op(P ) = Op(P ). �

Lemma 3.5 Let V be a faithful GF (p)-module for P . Suppose that there exists anelementary abelian subgroup A � T such that:
16



(i) jV=CV (A)j � jAj and jA0jjCV (A0)j < jAjjCV (A)j for every 1 6= A0 < A,
(ii) [CV (T ); P ] 6= 1, and
(iii) P = hA;Axi for every x 2 P nM .
Then P �= SL2(q), q := jAj, CV (A) = [V;A]CV (P ), and V=CV (P ) is a natural SL2(q)-module for P .
Proof. We will use the following additional notation:

Z := CV (T ); W := hZP i; eV := V=CV (P ); P := P=CP (W ):
3.5.1 A acts quadratically on V and [W;A] 6= 1.
The �rst part follows from [12, 9.2.1] together with (i) and the second part follows from(ii) and (iii).
3.5.2 Op(P ) = CP (fW ) = 1 and M is a maximal subgroup of P .
Note that CP (fW )=CP (W ) is a p-group, so CP (fW ) � Op(P ). Let C be the inverseimage of Op(P ). Then 3.3 implies that

CP (W )T = P or C � CP (W )Op(P ) �M:
In the �rst case P = CP (Z), which contradicts (ii). In the second case C = CP (W ),since Op(P ) � CP (W ), so Op(P ) = 1. Moreover, M is a maximal subgroup of P , sinceC �M .
3.5.3 CfW (P ) = 1 and ĈW (A) = CfW (A).
Let x 2 P nM and put B := Ax, so P = hA;Bi by (iii). The quadratic action of Aimplies that W = [W;A][W;B]Z � CW (A)CW (B) � W;
and we must have equality. Therefore

fW = ĈW (A)ĈW (B) and ĈW (A) \ ĈW (B) = ĈW (P ) = 1:
As A and B are conjugate in P , we also get that

CfW (A) \ ĈW (B) = 1; and thus ĈW (A) = CfW (A):
Now CfW (P ) = 1 follows.
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3.5.4 jfW=CfW (A)j � jAj.
Let A0 := CA(fW ). By 3.5.2 [A0;W ] = 1. Hence (i) gives
(1) jA0jjWCV (A)j � jA0jjCV (A0)j � jAjjCV (A)j:
This shows that
(2) jfW=CfW (A)j � jW=CW (A)j � jA=A0j:

3.5.5 There exists a �eld K with jKj = jAj such that fW is a 2-dimensional vector
space over K and P = SL(fW;K).
According to 3.5.1 { 3.5.4 and (iii), P satis�es the hypothesis of [7, Theorem 2] and3.5.5 follows from this theorem.

From 3.5.3 and 3.5.5 we get that
jW=CW (A)j = jAj and CW (A) = [W;A]CW (P ):

Hence (1) and (2) give
jA0jjWCV (A)j = jA0jjCV (A0)j = jAjjCV (A)j;

so by (i), A0 = 1, jAj = jAj, and jV=CV (A)j = jAj. From (iii) we get that V = WCV (P )and then V = W since CV (P ) � CV (T ) � W . In particular CP (W ) = CP (V ) = 1, soP = P . �

Theorem 3.6 Let V be a faithful GF (p)-module for P . Suppose that Op(P ) = 1,AP (V ) 6= ;, and CP (CV (T )) �M . Then for every A 2 AP (V ) there exists a subgroupL0 � P with A � L0 such that the following hold:
(a) [V;A;A] = 1.
(b) L0 �= SL2(q), q := jAj, V=CV (L0) is a natural SL2(q)-module for L0, andCV (A) = [V;A]CV (L0); in particular jV=CV (A)j = jAj.
(c) CV (A) = CV (a) for every a 2 A].
(d) jV=CV (AB)j = jAjjBj for every B 2 AP (V ) n fAg with [A;B] = 1.
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Proof. Let A 2 AP (V ). Then the maximality of jAjjCV (A)j and minimality of Agive
3.6.1 jV=CV (A)j � jAj, and jA0jjCV (A0)j < jAjjCV (A)j for every 1 6= A0 < A.
We now apply the L-Lemma 3.2. Then there exists A � L � P and g 2 P such that
3.6.2 L \M g is the unique maximal subgroup of L containing AOp(L).
3.6.3 L = hA;AxiOp(L) for every x 2 L nM g.
3.6.4 L is not contained in any P -conjugate of M .

Among all x 2 L nM g we choose B := Ax such that L0 := hA;Bi is minimal. Weprove next:
3.6.5 L0 is minimal parabolic, and L0 and V satisfy the hypothesis of 3:5.
The �rst part of 3.6.5 follows from the fact that L is minimal parabolic by 3.6.3 andthat L = L0Op(L). Hypothesis (i) of 3.5 follows from 3.6.1 and Hypothesis (iii) followsfrom the de�nition of L0. Let T0 2 Sylp(L0) with T0 � T and suppose [L0; CV (T0)] = 1.Then L = Op(L)L0 � Op(L)CL(CV (T0)) � CL(CV (T )) � L \M;
which contradicts 3.6.4. Thus Hypothesis (ii) of 3.5 holds.

Now properties (a) { (c) follow from 3.5 and elementary properties of the naturalSL2(q)-module.For the proof of (d), let B 2 AP (V ) such that [A;B] = 1. If A \ B 6= 1, thenby (iii), CV (A) = CV (B) and the maximality of jAjjCV (A)j shows that A = B. IfA \B = 1, then the maximality of jAjjCV (A)j = jBjjCV (B)j = jV j gives
jABj � jV=CV (AB)j = jV=CV (A) \ CV (B)j � jV=CV (A)jjV=CV (B)j = jAjjBj = jABj:

�

Lemma 3.7 Let P be of characteristic p andW := 
(Z(Op(P ))). Suppose that neither
(Z(T )) nor B(T ) is normal in P and that P=CP (W ) �= SL2(pn). Then B(T ) 2Sylp(hB(T )P i) and 
(Z(B(T )))W E P .
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Proof. See [15, 2.7]. �

Lemma 3.8 Let G be of characteristic p, C�(G; T ) 6= G for T 2 Sylp(G), and V E Gwith 
(Z(T )) � V � 
(Z(Op(G))):
Suppose that G=CG(V ) �= SL2(pn) or S2m+1 (with p = 2) and V=CV (G) is a naturalSL2(pn)- resp. S2m+1-module for G=CG(V ). Then there exists a B(T )-block E of Gsuch that G = B(T )ECG(V ) and [E;
(Z(B(T )))] � V .

Proof. Let E := Op(G). Assume �rst that G=CG(V ) �= SL2(pn). Clearly CG(V ) �C�(G; T ) and with the Frattini argument B(T ) 6� CG(V ). Then B(T )CG(V ) =TCG(V ), and NG(T )CG(V ) is the unique a maximal subgroup of G that containsB(T )CG(V ); in particular C�(G; T ) = NG(B(T ))CG(V ). By 2.3 (e) there exists aminimal parabolic subgroup P of characteristic p in G such that
B(T ) � T0 2 Sylp(P ); P 6= C�(P; T0); and P 6� C�(G; T ):

Thus PCG(V ) 6� NG(B(T ))CG(V ) and PCG(V ) = G. So we may assume withoutloss that P = G and by 3.7 that also B(T ) = T0 and [Op(P );
(Z(B(T )))] � V . Inparticular, no non-trivial characteristic subgroup of T0 is normal in P . Now a standardpushing up result, see for example [16], shows that Op(P ) is a B(T )-block and theresult holds with E := Op(P ).Assume now that p = 2 and G := G=CG(V ) �= S2m+1. Again by the Frattiniargument B(T ) 6� CG(V ), so 2.8 (e) yields A 2 OG(V ) with [O2(G); A] 6= 1. Thenby 2.16 B(T ) is generated by a maximal set of pairwise commuting transpositionst1; : : : ; tm. Since 2m+1 is odd, for every i there exists a 3-cycle di such that [di; tj] = 1for i 6= j and hdi; tii �= S3 �= SL2(2):
Let Li be the inverse image of B(T )hdi; tii in G and G0 := hL1; : : : ; Lmi. Then G =G0CG(V ); in particular Li 6� C�(G; T ) for i = 1; : : : ;m.Now 2.3 shows that Li satis�es the hypothesis with Li=CLi([V; Li]) �= SL2(2).Hence, there exists a B(T )-block Ei � Li and [
(Z(B(T ))); Ei] � V . Let E =hE1; : : : ; Emi. Then [E;O2(G)
(Z(B(T )))] � V and thus CE(V ) � O2(G) since Gis of characteristic 2. It follows that E is a B(T )-block with E=O2(E) �= A2m+1 andG = B(T )ECG(V ). �
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4 Conjugacy Classes of Transvections
In this section we will work with the following hypotheses:
Hypothesis 4.1 Let P be a group acting faithfully on an elementary abelian p-groupV . Suppose that there exists a normal set1 D of non-trivial elementary abelian p-subgroups of P such that the following hold for A 2 D :
(i) [V;A;A] = 1.
(ii) jV=CV (A)j = jAj and CV (A) = CV (a) for every a 2 A].
(iii) jV=CV (AB)j = jAjjBj for every B 2 D with B 6= A and [A;B] = 1.
For U � P we set

D \ U := fA j A 2 D; A � Ug and DP (U) := \g2P (D \ U g):
Hypothesis 4.2 Assume Hypothesis 4:1 and, in addition, that T 2 Sylp(P ) and T �M � P with D 6= DP (M) such that
(�) NP (D \ T ) �M and CP (CV (T )) �M .

Hypothesis 4.3 Assume Hypothesis 4:2 and in addition that
(��) jAjjCV (A)j � jXjjCV (X)j for every A 2 D and every elementary abelian p-subgroup X � P .
Notation 4.4 Assume Hypothesis 4:2. For A 2 D we set

M(A) := fM g j g 2 P; A �M gg:
By � we denote the set of all subgroups L � P such that
(1) L �= SL2(q) and V=CV (L) is a natural SL2(q)-module for L,
(2) D \ L is the set of Sylow p-subgroups of L,
(3) M(A) 6=M(B) for A 6= B 2 D \ L.

Moreover �(A) := fL 2 � j A � Lg.
Lemma 4.5 Assume Hypothesis 4:1. Let A;B 2 D. Then A = B or A \B = 1.

1i.e., invariant under conjugation by G.
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Proof. Let x 2 A \B. Suppose that x 6= 1. By 4.1(ii)
CV (A) = CV (x) = CV (B):

Now 4.1(i) gives [V;A;B] � [CV (A); B] = 1 and similarly [B; V;A] = 1, so the ThreeSubgroups Lemma yields [A;B; V ] = 1. Therefore [A;B] = 1, because P acts faithfullyon V . Thus 4.1(iii) gives the result. �

Lemma 4.6 Assume Hypothesis 4:1. Let A;B 2 D such that A 6= B and [A;B] = 1.Then V = CV (A)CV (B) and AB acts quadratically on V .
Proof. We have

jAjjBjjCV (AB)j 4:5= jABjjCV (AB)j 4:1= jAjjCV (A)j:
Hence

jBj = jCV (A)=CV (AB)j = jCV (A)CV (B)=CV (B)j � jV=CV (B)j 4:1= jBj;
and thus V = CV (A)CV (B). In particular

[V;A] = [CV (B); A] � CV (B) \ CV (A)
and similarly [V;B] � CV (A) \ CV (B). �

Lemma 4.7 Assume Hypothesis 4:1. Then hD\T i is elementary abelian, and hD\T iacts quadratically on V .
Proof. If hD \ T i is abelian, then by 4.6 it also acts quadratically on V . Thus, itsu�ces to show that hD \ T i is abelian.Suppose on the contrary that hD \ T i is not elementary abelian. Then there existA1; A2 2 D \ T with [A1; A2] 6= 1; in particular A1 6= A2. Choose hA1; A2i minimalwith this property.Since a p-group cannot be generated by conjugates of a proper subgroup, we have
4.7.1 hAA21 i 6= hA1; A2i 6= hAA12 i.
Then by the minimality of hA1; A2i:
4.7.2 hAA21 i and hAA12 i are elementary abelian.
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If A1 � NT (A2) and A2 � NT (A1) then by 4.5
[A1; A2] � A1 \ A2 = 1;

and hA1; A2i is elementary abelian, which is a contradiction. Thus we may assumewithout loss that A2 6� NT (A1).Pick a 2 A2 nNT (A1). Then 4.7.2 and 4.6 show that
V = CV (A1)CV (Aa1) = CV (A1)CV (A1)a = CV (A1)[V; a]:

Since A2 acts quadratically on V , we get
V = CV (A1)CV (Aa1) = CV (A1)CV (A2):

Observe that CV (A1) \ CV (A2) � CV (A1) \ CV (Aa1). So 4.1 gives
4.7.3 jA2j = jV=CV (A2)j = jCV (A1)jjCV (A1)\CV (A2)j � jCV (A1)jjCV (A1)\CV (Aa1)j = jV=CV (Aa1)j = jA1j:
If also A1 6� NT (A2), then a symmetric argument shows jA1j � jA2j, so jA1j = jA2j. IfA1 � NT (A2), then A1Aa1 \ A2 6= 1 and by 4.1
CV (A1)\CV (A2) � CV (A1)\CV (Aa1) � CV (A1)\CV (A1Aa1\A2) = CV (A1)\CV (A2);
so CV (A1) \ CV (A2) = CV (A1) \ CV (Aa1). This gives equality in 4.7.3 and againjA1j = jA2j. But then A1Aa1 = A1A2, which contradicts 4.7.1. We have shown:
4.7.4 jA1j = jA2j and also A1 6� NT (A2).
Pick b 2 A1 nNT (A2). By 4.1 and 4.7.4

jV=CV (A1) \ CV (A2)j � jA1jjA2j = jA1j2 = jV=CV (A1) \ CV (Aa1)j;
This gives CV (A1) \ CV (A2) = CV (A1) \ CV (Aa1) and with a symmetric argumentCV (A1) \ CV (A2) = CV (A2) \ CV (Ab2).On the other hand, by 4.7.2 and 4.6 both subgroups A1Aa1 and A2Ab2 act quadrati-cally on V , so [V;A1] � CV (A1) \ CV (Aa1) = CV (A1) \ CV (A2)
and [V;A2] � CV (A2) \ CV (Ab2) = CV (A1) \ CV (A2):
It follows that [V;A1; A2] = [V;A2; A1] = 1, and the Three Subgroups Lemma yields[A1; A2; V ] = 1. But then [A1; A2] = 1 since P is faithful on V , a contradiction. �

Lemma 4.8 Assume Hypothesis 4:1. Let A;B 2 D such that [A;B] 6= 1 and setL := hA;Bi. Then for every C 2 D \ L with [C;A] = 1 either C � Z(L) or C = A.In particular, for X; Y 2 D either X and Y are conjugate in hX; Y i, or [X; Y ] = 1.
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Proof. Let L be a counterexample, so there exists C 2 D \ L such that [C;A] = 1but C 6= A and [C;B] 6= 1.Assume �rst that C is conjugate to B. Then jCj = jBj, and 4.1 (iii) implies
jV=CV (AC)j = jAjjBj:

On the other hand by 4.1 (ii) jV=CV (L)j � jAjjBj, so we get that CV (L) = CV (AC).Now 4.6 shows that [V;A] � CV (L). Hence hALi acts quadratically on V and A �Op(L). But then by 4.7 [A;B] = 1, a contradiction.Assume now that C is not conjugate to B. Then there exists a Sylow p-subgroup ofL0 := hC;Bi that contains B and a conjugate C� of C; in particular by 4.7 [C�; B] = 1.With the same argument as in the �rst case, this time applied to L0, we get CV (L0) =CV (C�B) and then [V;B] � CV (L0), so as above [C;B] = 1, a contradiction.We have shown that L has the desired properties. Let x 2 L such that hBx; Ai isa p-group. Then 4.7 implies [Bx; A] = 1 and thus A = Bx since Bx 6� Z(L). Now thesecond part of the assertion follows. �

Lemma 4.9 Assume Hypothesis 4:2. Let H � P such that D \ T � D \ H andD \H 6� D \M . Then H satis�es Hypothesis 4:2 with respect to D \H and M \H.
Proof. Let T0 2 Sylp(H) such that D \ T = D \ T0. Then NH(D \ T0) �M \H; inparticular T0 �M and T0 � T g for some g 2M . It follows that

CV (T g) � CV (T0) and CH(CV (T0)) � CH(CV (T g)) �M \H:
�

Lemma 4.10 Assume Hypothesis 4:2. Let D0 � D be a normal subset of P such thatD0 6� DP (M). Then hD0i satis�es Hypothesis 4:2 with respect to D0 and M \ hD0i.
Proof. Let D1 := D n D0, P0 := hD0i, and T0 := P0 \ T . Observe that by 4.8[P0; hD1i] = 1; in particular

D \ T = (D0 \ T0) [ CD\T (P0):
It follows that NP0(D0 \ T0) � NP0(D \ T ) �M \ P0:
As also CP0(CV (T0)) � CP0(CV (T )) �M \ P0;
the claim now follows from the fact that D0 6� DP (M). �
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Lemma 4.11 Assume Hypothesis 4:2. Let T0 � D\T be maximal (by inclusion) suchthat N := NP (T0) 6�M . Then
D \N 6= D \N \M and D \N \M 6= T0;

and hA;Bi 2 � for every A 2 (D \M \N) n T0 and B 2 (D \N) n (D \M).
Proof. Set T := D \ T . Recall from 4.7 that the elements in T centralize eachother, and from 4.2 that NP (T ) � NP (T ) � M . The Frattini argument shows thatthe only P -conjugate of M containing T is M itself. Let T1 � T . As T � NP (T1), anelementary argument gives
4.11.1 Either NP (T1) 6�M , or M is the unique conjugate of M containing T1.
In particular D \N 6= D \N \M , and D \N \M 6= T0. Let

A 2 (D \N \M) n T0; B 2 (D \N) n (D \M) and L := hA;Bi
such that L is a minimal counterexample. We also set

D� := AL and H := L \M:
As NL(A) � NP (T0 [ fAg), the maximality of T0 and 4.11.1 imply:
4.11.2 H is the unique L-conjugate of H containing A; in addition

NL(A) � H; NL(H) = H and [A;B] 6= 1:
By 4.8 A and B are conjugate in L, so q := jAj = jBj. We now divide the proof intotwo cases.
4.11.3 Case I : There exists X 2 D� such that L0 := hA;Xi < L and X 6� H.
The minimality of L shows that L0 2 �; in particular L0 �= SL2(q) and V=CV (L0) is anatural SL2(q)-module for L0. By 4.1 (ii) jV=CV (L)j � jAjjBj = q2 while jV=CV (L0)j =q2. Since CV (L0) � CV (L) we get that CV (L) = CV (L0).Let A0; : : : ; Aq be the Sylow p-subgroups of L0 with A0 := A. As V=CV (L0) is anatural SL2(q)-module, the groups CV (Ai)=CV (L0), i = 0; : : : ; q, form a partition ofV=CV (L0). Thus, there exists i 2 f0; : : : ; qg such that

CV (L) = CV (L0) < CV (B) \ CV (Ai):
Let Li := hAi; Bi. Then CV (L) < CV (Li), so Li < L. The minimality of L shows thateither V=CV (Li) is a natural SL2(q)-module, or Li � Hx where x 2 L with B � Hx.The �rst case contradicts jV=CV (Li)j < jV=CV (L)j = q2. In the second case iis uniquely determined since any two di�erent Sylow p-subgroups generate L0 andA 6� Hx by 4.11.2. It follows that CV (Ai) = CV (B); in particular [Ai; B] = 1. Hence4.1 (iii) yields Ai = B and L = L0. But then L is not a counterexample.
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4.11.4 Case II : X � H for every X 2 D� with hA;Xi < L.
Let T0 2 Sylp(L) with A � T0, and let x 2 L nH. By 4.11.2 Ax � H implies x 2 H.As we are in Case II, this shows that

L = hA;Axi for every x 2 L nH:
By 4.11.2 T0 � T h �M , for some h 2 H, so CV (T h) � CV (T0), and thus by 4.2

CL(CV (T0)) � CL(CV (T h)) � H:
Now (A;L;H) satis�es the hypothesis of 3.5 in place of (A;P;M) and L is not acounterexample. �

Lemma 4.12 Assume Hypothesis 4:2. For every A 2 D n DP (M) there exists g 2 Pand L 2 �(A) such that A �M g and L 6�M g. In particular �(A) 6= ;.
Proof. Let D0 be the set of all A 2 D such that there exists a g 2 P and L 2 �(A)such that A �M g and L 6�M g. We set

D� := D0 [ DP (M) and D� := D n D�:
We have to show that D = D�.Observe that D� and D� are normal sets in P , so no element of D� is conjugate toan element of D�. Hence 4.8 shows that the elements of D� centralize the elements ofD�.From now on we assume that D� 6= ; and derive a contradiction. Let T1 := D� \T .Then D� � NP (T1), so NP (T1) 6� M , since D� is a normal set. We now chooseT0 � D \ T maximal with respect to T1 � T0 and NP (T0) 6� M . Observe thatD� \NP (T0) = D� \ T = T1.According to 4.11 there exist A 2 (D \M \NP (T0)) n T0 and L 2 �(A) such thatL � NP (T0) and L 6� M ; in particular A 2 D�. It follows that A 2 D� \ NP (T0) =T1 � T0, a contradiction.

�

Lemma 4.13 Assume Hypothesis 4:2. Let L 2 � and B 2 D such that [L;B] 6= 1and B � L. Then there exists a unique A 2 D \ L such that the following hold forL� := hL;Bi, q := jAj and V := V=CV (L�) :
(a) [A;B] = 1,
(b) CV (L�)[V;A] = CV (L�)[V;B] = CV (AB),
(c) j[V ;A]j = q,
(d) jV j = q3, and
(e) [V ; L] = [V ; L�] is a natural SL2(q)-module for L invariant under L�.
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Proof. Recall that L �= SL2(q) and V=CV (L) is a natural SL2(q)-module for L. LetA0; : : : ; Aq be the q + 1 Sylow p-subgroups of L. We set
q0 := jCV (L)j; Li := hAi; Bi; and Vi := CV (Li); for i = 0; : : : ; q:

At least one of the groups Li is non-abelian, so 4.8 implies that Ai is conjugate to Bin L�. In particular jBj = q and B 62 DP (M). From 4.1 we get that jV=Vij � q2 andjV j = q2q0 � q3, so
jV ij � q0 and jCV (Ai)j = jCV (B)j = qq0:

Suppose that (a) holds for some A 2 D \ L. Then as L is generated by any two ofits Sylow p-subgroups, A must be the unique element of D \ L which commutes withB. Furthermore, by 4.6 we get [V;A][V;B] � CV (AB) and jV=CV (AB)j = q2. SinceV=CV (L) is a natural SL2(q)-module for L, this forces q0 = q = j[V ;A]j = j[V ;B]j and(b) - (e) hold.It su�ces to prove that (a) holds for some A 2 D\L, so we assume that [A;B] 6= 1for all A 2 D \ L and aim for a contradiction.Since V=CV (L) is a natural SL2(q) module for L and jV=CV (Ai)j = q, the subgroupsCV (Ai)=CV (L), 0 � i � q, form a partition of V=CV (L). Thus
(�) V =

q[
i=0CV (Ai):

Hence for each b 2 B] there exists a j 2 f0; : : : ; qg with [V; b]\CV (Aj) 6= 1. Note thatB and so also Lj centralizes [V; b] \ CV (Aj). As B and Aj are conjugate in Lj we get[V; b] \ CV (Aj) � [V; b] \ [V;Aj]. Thus, we have:
4.13.1 For every b 2 B], there exists j 2 f0; : : : ; qg such that [V; b] \ [V;Aj] 6= 1.

It follows from 4.6 that 1 6= [V; b] \ [V;D \ T g] � CV (D \ T g), where Aj � T g.Assume that there exists Mj 2M(Aj) nM(B). By 4.9 H := CP (CV (D \ T g) \ [V; b])
satis�es Hypothesis 4.2 with respect to H\Mj. But then by 4.12 there exists L̂ 2 �(B)
with L̂ � H. By considering the action of L̂ on the natural SL2(q)-module V=CV (L̂) weget [V; b]\CV (L̂) = 1, which contradicts [V; b]\CV (D\T g) � CV (H). We have shownthat M(Aj) �M(B), so M(B) =M(Aj), since Aj and B are conjugate. Recall thatM(Aj) 6=M(D) for every Aj 6= D 2 D \ L. Hence
4.13.2 CV (Ai) \ [V; b] = 1 for every i 6= j and b 2 B].
On the other hand, by 4.1 j[V; b]j = q. As the subgroups CV (X)=CV (L), X 2 D \ L,form a partition of V=CV (L), (�) implies that [V; b] � CV (Aj) for every b 2 B]. Usingthe Three Subgroups Lemma and the faithful action of P on V this gives [Aj; B] = 1,which is a contradiction. �

Theorem 4.14 Assume Hypothesis 4:2 and jD\T j = 1. Then hDi �= SL2(q), q = jAj,and V=CV (hDi) is a natural SL2(q)-module.
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Proof. By 4.12 there exists L 2 � and by 4.13 L = hDi.
�

Lemma 4.15 Assume Hypothesis 4:3. Let A;B 2 D \ T and L 2 �(A) with L 6� Mand A 6= B. Then [L;B] = 1.
Proof. Assume that [L;B] 6= 1 and recall that [A;B] = 1 by 4.7. We apply 4.13 anduse the notation given there. Then
(�) CV (L�)[V;A] = CV (AB); jV j = q3; and jV=CV (AB)j = q2:
Let W := [V; L]CV (L�). By 4.13 W is a natural SL2(q)-module for L and L�-invariant.For every 1 6= x 2 AB and A 6= D 2 D \ L we have [L;Dx] 6= 1, since [A;Dx] 6= 1.Hence 4.13 also applies to L̂ := hL;Dxi, if Dx 6� L. In particular we get CV (L�) =CV (L̂) and [V ;Dx] = [V ; Y ] for some Y 2 D \ L with A 6= Y . This shows that ABacts on the set 
0 := f[V ;D] j D 2 D \ L and D 6= Ag:
As j
0j = q and jABj = q2, we get that jNAB([V ;D])j = q for D 2 D \L with A 6= D.On the other hand, [V ;AB] = [V ;A], so C := CAB(W ) has order q. Since [V ; L�] = W ,we conclude that C � Op(L�).Let AB � T0 2 Sylp(L�). From 4.13 we get that CV (AB) is T0-invariant. Observethat CT0(CV (AB)) \ CT0(V=CV (AB)) is elementary abelian.Hence 4.3 and 4.6 show that

AB = CT0(CV (AB)) \ CT0(V=CV (AB));
so AB is normal in T0. In particular [V;AB] = [V;A][V;B] is T0-invariant. This gives

[V;D \ T; T0] � [CV (AB); T0] = [V;A; T0] � [V;AB] � [V;D \ T ];
so T0 normalizes [V;D \ T ]. In particular, h(D \ T )T0i acts quadratically on V andso is p-group. Hence, T0 normalizes D \ T and T0 � M . Then there exists x 2M with CV (T x) � CV (T0), and [CV (T0); L] 6= 1 since L 6� M . This shows thatW � hCV (T0)L�i, so Op(L�) centralizes W and acts quadratically on V . In particularOp(L�) is elementary abelian. Hence 4.3 implies C = Op(L�) and thus [L;C] = 1. NowCV (L) is AB-invariant and so CV (L) � CV (AB). But then jV=CV (AB)j = q whichcontradicts 4.1. �

Lemma 4.16 Assume Hypothesis 4:3. Let A;B 2 D with [A;B] = 1 and A 62 DP (M).Then D \ AB = fA;Bg.
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Proof. We apply 4.12. Then, possibly after replacing A by a conjugate, we mayassume that A � T and that there exists L 2 �(A) with L 6� M . Hence, by 4.15jD \ACj = 2 for every C 2 D \ T with C 6= A. On the other hand, A;B 2 D \ T g forsome g 2 P , and by 4.7 D \ T g and D \ T are both in CP (A). Hence conjugation inCP (A) gives the claim for jD \ ABj. �

Lemma 4.17 Assume Hypothesis 4:3. Let B 2 D and L 2 � with jXj � 3 for everyX 2 D \ L. Then either B � L or [L;B] = 1.
Proof. We may assume that [L;B] 6= 1 and B 6� L. As before we set

L� := hL;Bi and V := V=CV (L�):
By 4.13 there exists a unique A 2 D \ L such that
(�) [A;B] = 1 and CV (AB) = CV (L�)[V;A]:
We now use the fact that q := jAj � 3. Let K be a complement for A in NL(A). ThenjKj = q � 1 � 2 and by (�) CV (AB) is K-invariant. Hence AhBKi acts quadraticallyon V , and thus is abelian. On the other hand, by 4.1

jCV (A)jjAj = jV j = jCV (AB)jjABj � jCV (AB)jjAhBKij;
so 4.3 implies that AB = AhBKi. In particular AB is K-invariant and by 4.16 Knormalizes B and CV (B).Observe that K acts �xed-point-freely on the natural SL2(q)-module V=CV (L).Thus V = [V ;K]� CV (K) and CV (K) = CV (K) = CV (L):
It follows that CV (K) \ CV (B) = 1 and CV (B) � [V ;K]. As CV (B) \ CV (L) �CV (L�) = 1, the action of K on V=CV (L) yields either

CV (B) = [V ;A] or CV (B) = [V ;K]:
In the �rst case CV (B) = CV (AB), which contradicts 4.1.Thus we have CV (B) = [V ;K]. By 4.13 [V ;K] is L-invariant. It follows that hBLiacts quadratically on V , so hBLi is abelian. Now 4.1 (iii) shows that B is normal inL�, so [L;B] = 1, which contradicts our assumption. �

Theorem 4.18 Assume Hypothesis 4:3. Then there exist subgroups E1; : : : ; Er of Psuch that the following hold for Wi := [V;Ei] and i; j 2 f1; : : : ; rg :
(a) D = DP (M) [ (D \ E1) [ � � � [ (D \ Er) and hDi = hDP (M)i � E1 � � � � � Er.
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(b) [Wi; Ej] = [Wi; hDP (M)i] = 1 for i 6= j and V = WiCV (Ei).
(c) Ei �= SL2(qi) where qi = jAj for A 2 D\Ei, or Ei �= Sm, m odd, Ei\M �= Sm�1,and jAj = 2 for A 2 D \ Ei.
(d) Ei �= SL2(qi) and Wi=CWi(Ei) is a natural SL2(qi)-module for Ei,or Ei �= Smand Wi is a natural Sm-module for Ei. Moreover, in the second case D \Ei actsas the conjugacy class of transpositions on Wi.

Proof. We will prove 4.18 by induction on jDj+ jP j. Let P be a minimal counterex-ample. Then by 4.9:
4.18.1 P = hDi.
According to 4.8 and 4.10 there exists a partition of D satisfying
4.18.2 D = D0 [ D1 [ � � � [ Dr such that for Ei := hDii :
(1) D0 = DP (M) and Di \ Dj = ; for i 6= j.
(2) [Ei; Ej] = 1 for i 6= j, and Di is a conjugacy class of Ei for i � 1.
(3) For i � 1, Di and Ei satisfy Hypothesis 4.3 with respect to M \ Ei.

Assume that D 6= Di for i � 1. Then induction and 4.18.2 (3) show that (a) { (d) holdfor Ei and Di; in particularWi=CWi(E) is an irreducible Ei-module. Hence [Wi; Ej] = 1for i 6= j, and (b) { (d) hold for P . Since WiCV (Ei) = V , we also get that E1 � � �Eris the direct product of the subgroups Ej and also (a) holds. But then P is not acounterexample. We have shown:
4.18.3 D = D1 and P = E1.
Assume next that jAj � 3 for A 2 D. Then by 4.12 and 4.17 P �= SL2(q) whereq = jAj, and again (a) { (d) follow. Thus we have:
4.18.4 jAj = 2 = jV=CV (A)j for A 2 D.
Then 4.7 and an elementary argument using dihedral groups yields
4.18.5 Let A 2 D and D 2 D n CD(A). Then L := hA;Di �= SL2(2), and V=CV (L)is a natural SL2(2)-module for L.
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Let A 2 D \ T . According to 4.7 and 4.9 either CD(A) � D \M or CP (A) satis�esHypothesis 4.3 with respect to CD(A) and CM(A). In the �rst case by 4.18.5 thereexists L 2 �(A) with L 6�M . Hence by 4.15 [B;L] = 1 for every B 2 CD(A) n fAg, so
CD(L) = CD(D) n fDg for every D 2 D \ L:

Now 4.13 implies that P = L and P is not a counterexample. We have shown that
4.18.6 CD(A) 6� D \M ; in particular CD(A) 6= fAg and CP (A) satis�es Hypothesis4:3 with respect to CD(A) and CM(A).
Let DA := CD(A) n fAg. Assume �rst that DA is not a conjugacy class of hDAi.Choose D� � DA such that D� is a conjugacy class of hD�i and jD�j is maximal withthat property. By our assumption there exists B 2 DA \ T with B 62 D�, and by 4.8[hD�i; B] = 1 for every such B. Hence the maximality of D� shows that hD�i is normalin hDAi and hDBi.Let D 2 D with D � M . Then M(D) 6= M(B) and by 4.18.5 either D 2 DB orhD;Bi 2 �. In the former case D normalizes D� and in the latter case 4.15 impliesthat D 2 DA, so again D normalizes D�. It follows that

D = (D \M) [ (D \NP (D�)):
But then 2.1 shows that P = M or P = NP (D�). The �rst case contradicts 4.2and the second case contradicts D 6= D� and the fact that D is a conjugacy class by4.18.2 and 4.18.3. We have shown that DA is a conjugacy class, so 4.18.4, 4.18.6 andinduction give

4.18.7 hDAi �= Sn, with n odd, M \ hDAi �= Sn�1, W := [V; hDAi] is a naturalSn-module for hDAi, and DA acts as the conjugacy class of transpositions on W .
Using the usual generators and relations for Sn we get from 4.18.7
4.18.8 There exist T1; : : : ; Tn�1 2 DA such that Ti 2 D \M for 1 � i � n� 2, and

[Ti; Tj] = 1 () ji� jj 6= 1 and hTi; Tji �= SL2(2) () ji� jj = 1:
By the same elementary observation as above D 6�M [CP (A). Hence by 4.18.5 thereexists D 2 D such that D 62M and hA;Di 2 �(A). Now 4.15 gives

D \M \ hDAi � CD(D);
in particular [D;Ti] = 1 for 1 � i � n� 2.Set Tn+1 := A and Tn := D. Then T1; : : : ; Tn+1 generate a subgroup isomorphicto Sn+2 provided we can show that [D;Tn�1] 6= 1. Assume that [D;Tn�1] = 1. Then
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DA = DD, and as above 4.13, applied to hA;Di, gives P = hA;Di, and P is not acounterexample.We have shown that T1; : : : ; Tn+1 generate a subgroup U isomorphic to Sn+2 in P .In particular CD(X) � D\U for every X 2 D\hA;Di. Now 4.13 implies that P = U ,and P is not a counterexample.
�
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5 The Proof of the Local C ��(G,T)-Theorem for
Minimal Parabolic Groups

In this section we work with the following two hypotheses.
Hypothesis 5.1 Let p be a prime, P a minimal parabolic group acting faithfully on anelementary abelian p-group V , and let T 2 Sylp(P ) and M � P be the unique maximalsubgroup of P containing T . Suppose also that:
(i) Op(P ) = 1,
(ii) OP (V ) 6= ;,2 and
(iii) CP (CV (T )) �M (so [CV (T ); P ] 6= 1).
Hypothesis 5.2 Let P be a minimal parabolic group of characteristic p with T 2Sylp(P ) and C��(P; T ) 6= P , and letM be the unique maximal subgroup of P containingT .
Lemma 5.3 Assume Hypothesis 5:1. Then Hypothesis 4:3 holds for AP (V ); in par-ticular jAjjCV (A)j = jV j for every A 2 AP (V ). Moreover, NP (A) acts irreducibly onV=CV (A) for every A 2 AP (V ).
Proof. From 3.6 we get that P satis�es Hypothesis 4.1 with respect to AP (V ) andthat NP (A) acts irreducibly on V=CV (A) for every A 2 AP (V ). In addition, since Pis minimal parabolic and Op(P ) = 1, we also get Hypothesis 4.2. Now Hypothesis 4.3follows from the de�nition of AP (V ). �

Lemma 5.4 Assume Hypothesis 5:2 and let
V := 
(Z(Op(P ))) and P := P=CP (V ):

Then P and V satisfy Hypothesis 5:1, and
jA=CA(V )jjCV (A)j = jV j for every A 2 A(T )with A 6� CP (V ):

2Here OP (V ) is the set introduced in 2:7.

33



Proof. Since CP (Op(P )) � Op(P ) � T , we have 
(Z(T )) = CV (T ). Hence
CP (V ) � CP (CV (T )) � C��(P; T ) �M:

By Lemma 3.4 it follows that Op(P ) = 1. It remains to show that OP (V ) 6= ;.We �rst show that J(T ) � CP (V ). Suppose on the contrary that J(T ) � CP (V ).Then J(T ) � CT (V ) 2 Sylp(CP (V )) and, as J(T ) = J(CT (V )) char CT (V ), theFrattini Argument gives
P = CP (V )NP (CT (V )) � CP (
(Z(T )))NP (J(T )) � C��(P; T );

whichis a contradiction.Therefore J(T ) � CP (V ) and there exists A 2 A(T ) with A � CP (V ). Let A0 � A.Then
jAj � jA0CV (A0)j = jA0jjCV (A0)jjA0 \ V j � jA0jjCV (A0)jjCV (A)j :

Thus A 2 OP (V ) and it follows immediately that A 2 OP (V ). Now 5.3 gives theadditional statement. �

Theorem 5.5 Assume Hypothesis 5:1 holds. Let D := AP (V ). Then there existsubgroups E1; : : : ; Er of P so that, for each 1 � i � r:
(a) P = (E1 � : : :� Er)T ,
(b) T acts transitively on fE1; : : : ; Erg,
(c) D = (D \ E1) [ � � � [ (D \ Er),
(d) V = CV (E1 � : : :� Er)Qri=1[V;Ei], with [V;Ei; Ej] = 1,
(e) Ei �= SL2(pn) or p = 2 and Ei �= S2n+1, for some n 2 N, and
(f) [V;Ei]=C[V;Ei](Ei) is a natural module for Ei.
Proof. By 5.3, D satis�es Hypothesis 4.3, so we are allowed to apply 4.18 with thenotation given there. Since P is minimal parabolic we get from 3.3 that Op(P ) �E1 � : : :� Er and as Op(P ) = 1, DP (M) = ;. Therefore (a) { (d) and (f) hold.For the proof of (e) it su�ces to show that m = 2n + 1 if Ei �= Sm. Observe thatNT (Ei)Ei = CT (Ei)Ei, so NT (Ei)Ei is a minimal parabolic group. Now (e) followsfrom 2.12 (e). �

The proof of the Local C��(G; T )-Theorem for minimal parabolic groups:Let P := P=CP (V ). By 5.4 P satis�es the hypothesis of 5.5. Thus the only thing thatremains to be proven is J(P ) = E1 � � � � � Er =: E:
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Let A 2 A(T ). Suppose that A 6� E and that jAj is minimal with this property.By 5.3 and 5.4 there exists B � A with B 2 AP (V ) and
jV j = jAjjCV (A)j = jBjjCV (B)j:

Moreover, NP (B) acts irreducibly on V=CV (B). The latter fact shows that thereexists a unique k 2 f1; : : : ; rg such that B � Ek.Assume that Ek �= SL2(q). Then B 2 Sylp(Ek) and the structure of Aut(SL2(q))gives A = B � A0; A0 := CA(Ek):
This shows that also A0CV (A0) 2 A(T ), and the minimal choice of A gives A0 � E.But then also A � E, which contradicts the choice of A.Assume next that Ek �= S2n+1. Then jBj = 2 and by 2.16 (b)

A = B � A0 with A0 � A; and CV (A0) 6� CV (B):
Similarly, as in the previous case, this shows that A0CV (A0) 2 A(T ) and then thatA0 � E.
Lemma 5.6 Let p be a prime and P be a minimal parabolic group acting faithfullyon an elementary abelian p-group V . Suppose that Op(P ) = 1 and OP (V ) 6= ;. Then[CV (T ); P ] 6= 1 for every T 2 Sylp(P ).
Proof. Let V0 := CV (Op(P )) and eV := V=V0. By 3.3 P also acts faithfully on eV . Wealso have [CeV (T ); P ] 6= 1, for otherwise Op(P ) would centralize the inverse image of
CeV (T ), contradicting the de�nition of V0. Moreover, 2.8 shows that OP (eV ) 6= ;: Hence
(P; eV ) satis�es the hypothesis of 5.5, so we get (a) { (f) with eV in place of V .Let A 2 OT (V ). Then there exists i 2 f1; : : : ; rg such that [Ei; A] 6= 1. Hence 2.16shows that A � EiCP ([V;Ei])=CP ([V;Ei]) and [V;Ei; A] � CV (T \ Ei); in particularCV (T \ Ei) 6� CV (Op(P )).If Ei �= SL2(pn), with pn > 2, then let K be a complement for T \ (E1 � � �Er) inNE1���Er(T \ (E1 � � �Er)). Then T = (T \ (E1 � � �Er))NT (K) and

CV (Op(P ))
rY
i=1 C[V;Ei](T \ Ei) = CV (Op(P ))� [CV (T \ (E1 � � �Er)); K]:

Since NT (K) normalizes [CV (T \ (E1 � � �Er)); K], it follows that CV (T ) � CV (Op(P )).If Ei �= S2m+1, then 2.13 shows that V = CV (O2(P )) � [V;O2(P )] and againCV (T ) 6� CV (Op(P )). �
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6 B(T )-Blocks
In this section we assume
Hypothesis 6.1 Let G be of characteristic p and T 2 Sylp(G).
Notation 6.2 Let B(T ) be the set of B(T )-blocks of G. We set

B(G) := [g2GB(T
g):

Moreover, B�(G) is the set of maximal elements of B(G) with respect to inclusion and
B�(T ) := B�(G) \ B(T ):

For E 2 B(G) we set WE := [
(Z(Op(E))); E].
Lemma 6.3 Let E 2 B(T ). Suppose that Q is a p-subgroup of G normalized byB(T )E. Then Q � NG(E).
Proof. As B(B(T )Q) = B(T ), Q normalizes B(T ). Moreover, from E = [E;B(T )]we get that EB(T ) = hB(T )Ei. Hence Q normalizes EB(T ) and thus also E =Op(EB(T )).

�

Lemma 6.4 Let E 2 B(T ). Then the following hold:
(a) E = Op(EOp(G)) and WE � 
(Z(Op(G))).
(b) Assume that E is not exceptional. Then

Op(E) � 
(Z(Op(G))) and [Op(G); E] = WE:
(c) Assume that E is exceptional. Then Z(E)WE = 
(Z(O3(E))) � 
(Z(O3(G)))and either O3(E) � O3(G) or [O3(G); E] = WE:
(d) [WE; J(T )] 6= 1.
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Proof. (a): From 6.3 with Q := Op(G) we get Op(G) � NG(E). The �rst partnow follows from the fact that E = Op(E). Since WEZ(E)=Z(E) is an irreducibleE-module, [WE; Op(G)] � Z(E). Hence the Three Subgroups Lemma gives
[WE; Op(G)] = [WE; E;Op(G)] = 1;

so WE � 
(Z(Op(G))), since G is of characteristic p.(b): Note that WE = Op(E) and WE = [WE; E], so the result follows from (a).(c): Since [O3(E); O3(G)] � 
(Z(O3(E))) the Three Subgroups Lemma gives
[O3(E); O3(E); O3(G)] = 1:

It follows that Z(E) � 
(Z(O3(G))) and by (a)
Z(E)WE = 
(Z(O3(E))) � 
(Z(O3(G))):

The other statement in (c) is a direct consequence of the structure of O3(E) and thefact that E = O3(E).(d): From the de�nition of a B(T )-block we get E = [E;B(T )] and [WE; E] 6= 1.Hence WE 6� Z(B(T )) and (d) follows. �

Lemma 6.5 Let E 2 B(T ) be an exceptional B(T )-block. Then
O3(NG(E) \ CG(WE)) � CG(E):

Proof. We �x the following notation:
R := O3(NG(E) \ CG(WE)); M := NG(E) \ CG(Z(E));
M2 := CM(O3(E)=Z(E)WE); NG(E) := NG(E)=CG(E):

We �rst show:
(�) M=O3(M) �= SL2(3n):
We put E� := E if E is non-solvable. If E=O3(E) �= Q8, then there exists a 2 B(T )such that Ehai=O3(E) �= SL2(3) and we put E� := Ehai. Then 2.6 applies to E� andwe get M = E�M2.Note that E \M2 � O3(E) � O3(M). Moreover, CM2(WE) centralizes an E-chief
series of E, so CM2(WE) � O3(M). Hence Schur's Lemma implies that M2=O3(M) isa cyclic group whose order divides 3n � 1. In particular, M2 normalizes CWE(B(T ))and so [B(T );M2] � O3(M). This shows that B(T )CG(E) is normalized by M2.
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If M2 = O3(M), then M = E�O3(M) and (�) follows. So assume that M2 6=O3(M). Then there exists a non-trivial 30-subgroup Q � M2 and this subgroup nor-malizes B(T ). Hence
B(T ) = A(B(T ) \O3(M)); with A := CB(T )(Q):

But then A leaves invariant the decomposition
O3(E) = CO3(E)(Q)�WE;

and acts quadratically in each factor. This contradicts the de�nition of an exceptionalB(T )-component and �nishes the proof of (�).
According to (�), R\M � O3(M). Thus we may assume that R 6�M , for otherwisethe result follows. Consider R0 := CR(O3(E)=WEZ(E)). Then [O3(E); R0] � Z(E)WEand the Three Subgroups Lemma yields

[O3(E); O3(E); R0] = [Z(E); R0] = 1;
so R0 � O3(M). Again Schur's Lemma shows that R=R \ O3(M) is a cyclic 30-group.Let Q be a non-trivial 30-subgroup of R.As B(T ) normalizes R, we get

[R;B(T )] � R \M = O3(M):
It follows that R normalizes B(T ). In particular

B(T ) = A(B(T ) \O3(M)) with A := CB(T )(Q):
As in the proof of (�), this contradicts the de�nition of an exceptional B(T )-block. �
Theorem 6.6 Let E 2 B(T ). Then E E ECG(WE).
Proof. We �x the following notation:
W := WE; C := CG(W ); C0 := CG(O3(E)=Z(E)W ); R := [C;E]; G := G=O3(G):

Let G be a minimal counterexample. Then G = CEB(T ) and W E G. We will provethe result in a sequence of steps.
6.6.1 E is exceptional and O3(E) � O3(G); in particular E=O3(E) �= SL2(q)0, q = 3n.
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Assume that E is not exceptional or p = 3 and O3(E) 6� O3(G). Then by 6.4[Op(G); E] � W . Hence [E;CG(W )] centralizes W and Op(G)=W , so
[E;CG(W )] � Op(G):

Now 6.4 (a) implies that E is normal in ECG(W ) and G is not a counterexample.
We now �x in addition an involution t 2 E with [t; E] � O3(E) and O3(G) � Y � Csuch that Y = CC(t). Note that Y = CY (t)O3(G).

6.6.2 Let N � C be an EB(T )-invariant subgroup. Then either C = N(C \EB(T ))and O3(C) � N , or N � NG(E).
If NEB(T ) < G, then by induction N � NG(E), and if NEB(T ) = G, then C =N(C \ EB(T )). Since C \ EB(T ) � O3(EB(T )), the latter case gives O3(C) � N .
6.6.3 O3(C) = F �(C), and O3(C) 6� NG(E).
Let F be the inverse image of F �(C) in G. Assume �rst that F � NG(E). Thenby 6.5 O3(F ) � CG(E), so [F ;E] = 1. It follows that R � CC(F ) � F . HenceR � F and O3(R) � CG(E). Now 2.5 (with N := R) implies that E is normal in G, acontradiction.We have shown that F 6� NG(E), and thus by 6.6.2 O3(C) = F �(C).
6.6.4 Either C = Y , or O3(C) is an r-group, r a prime di�erent from 2 and 3.
Note that Y is EB(T )-invariant. Hence by 6.6.2 either C = Y (C \ EB(T )) or Y �NG(E). As [t; EB(T )] � O3(E) � O3(G), the �rst case gives C = Y .Assume that Y � NG(E). Then

[Y ;E] � Y \ E � C \ E = 1;
since W is a faithful E-module. It follows that Y = CC(S), where S is a Sylow 2-subgroup of E. As S is a quaternion group we conclude from 2.4 that U := [C; t] issolvable of odd order. In particular C = Y U , so the inverse image U is not in NG(E).As U is EB(T )-invariant, 6.6.2 yields C = U(C \EB(T )), and thus O3(C) � U . Now6.6.3 shows that U = F (C). Let r be a prime dividing jU j, so r 62 f2; 3g. Then, againusing 6.6.2, U = Or(C).
6.6.5 C 6= Y , so O3(C) is an r-group, r a prime di�erent from 2 and 3.
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Assume that C = Y . Then C = CC(t)O3(G) and both O3(G) and CC(t) normalize[O3(G); t] = O3(E). From G = CEB(T ) we conclude that O3(E) E G. By 2.6, EC0 isnormal in G, so R � EC0.Note that R centralizes O3(G)=O3(E), Z(E) and W , so R\C0 � O3(G). It followsthat either [E;R] � O3(G) or t 2 RC0.In the �rst case by 6.4 (a) R � NG(E), and thus by 6.5 O3(R) � CG(E). Now 2.5shows that G is not a counterexample.In the second case there exists an involution a 2 R such that t 2 aC0 and [a;E] �R \ C0 � O3(G). Now again 6.4 (a) and 6.5 give a 2 CG(E), and a centralizesO3(G)=O3(E) and O3(E), which contradicts the fact that G is of characteristic 3.
We derive a �nal contradiction. LetQ := [O3(E); G], D := �(Q), and eQ := Q=WD.

Note that O3(G) centralizes eQ, so G acts on eQ. The action of t on Q shows that
eQ = [ eQ;E]� C eQ(E) and [ eQ;E] = Ô3(E):

If [ eQ;E] = 1, then O3(E) � WD, and thus Q = O3(E) = W , which is impossible.
Hence [ eQ;E] is a natural SL2(3n)0-module for E.Let A := T \E and C1 be the inverse image of O3(C) in G. Then A acts quadrat-
ically on eQ and C eQ(A) = C eQ(a) for every a 2 A]. Recall from 6.6.5 that C1 is a30-group.

Assume �rst that q > 3. Then C1 = hCC1(a) j a 2 A]i and each CC1(a) normalizes
C eQ(A) = C eQ(a). Hence [C1; A] = [C1; A;A] centralizes C eQ(A) and eQ=C eQ(A). As [C;A]also centralizes W and O3(G)=Q, we conclude that O3([C1; A]) centralizes O3(G), andthus [C1; A] � O3(G). But then also [C1; E] � O3(G), which using 6.4(a) implies thatC1 normalizes E. This contradicts 6.6.3.Assume now that q = 3, so E=O3(E) �= Q8. For x 2 C1 set L := hE;Exi. Theneither [E; x] � O3(G), and thus x 2 NG(E), or C1 \L 6� O3(G). According to 6.6.3 wemay assume that C1 \ L 6� O3(G).Observe that L acts on eQ0 := [ eQ; t][ eQ; tx] and j eQ0j � 34. Let L0 be the kernel ofthis action. If L \ C1 � L0, then by the order of GL4(3) and 6.6.5, L \ C1=L0 \ C1 isa cyclic group of order 5 or 13 which is normalized by E=Op(E) �= Q8, but it is easilychecked that this is impossible in GL4(3). Therefore L \ C1 � L0. Hence O3(L \ C1)centralizes the L-series D � DW � Q0 � O3(G), and thus L \ C1 � O3(L). But thiscontradicts L \ C1 6� O3(G) and 6.6.5. �

Lemma 6.7 Let E 2 B(T ) and F 2 B(G) such that [E;F ] � E. Then either F = E,or [F;E] = 1, or p = 2 and the following hold:
(a) F � E and O2(F ) � O2(E).
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(b) FO3(E)=O2(E) �= A2r+1 and E=O2(E) �= A2m+1, for some r � m.
(c) There exists g 2 E such that E;F 2 B(T g).

Proof. If [WE; F ] = 1, then 6.5 implies [E;F ] = 1 and if [WF ; E] = 1, then by 6.6E � NG(F ) and again 6.5 implies [E;F ] = 1. Thus we may assume that [WE; F ] 6= 1and [WF ; E] 6= 1. As WE is normalized by F , we get that WF � WE.We �x the following notation:
R := CG(WE)E; FR := FR=CG(WE); eR := R=Op(R):

Then F induces automorphisms in E �= SL2(pn)0 or A2m+1.
6.7.1 The case F � R.
Let F0 := EF \ CG(WE). Then

eE eF = eE � eF0:
By 6.6 CG(WE) � CG(WF ) � NG(F ), so [F; F0] � Op(F ) and F 0 � EOp(F ). It followsthat eF � eE, or one of the following two cases holds:
(i) p = 2 and F=O2(F ) �= C3, or
(ii) p = 3, F=O3(F ) �= Q8 and FE=O3(FE) �= SL2(3m)0 � C2 � C2.
In case (i) neither E nor F are exceptional. Hence 6.4 (b), applied to E and F ,gives [O2(G); EF ] = WE. Then [O2(G); O2(F0); O2(F0)] = 1. As G is of characteristic

2, this shows that F0 is a 2-group and eF � eE.In case (ii) let t be an involution in F . Then t 2 O3(F 0) � E and [t; E] �O3(E). It follows that O3(E) = [O3(E); t] = O3(F ) and [O3(G); EF ] � O3(E). If E isexceptional, then 6.5 implies [E;O3(F0)] = 1, so [O3(G); O3(F0); O3(F0)] = 1. If E isnot exceptional, then O3(E) = WE and again [O3(G); O3(F0); O3(F0)] = 1. Thus, we
have the same property as in case (i). As there we get that eF � eE.

Thus, in all cases we have established that eF � eE. Now 6.4 (a) implies E =Op(EOp(R)), and thus F = Op(F ) � E.Suppose that E is a linear block. Then the p0-elements of E act �xed-point-freelyon WE=CWE(E). It follows that WE = WFCWE(E), and thus E = F .Suppose E is a symmetric block. We �rst treat the case where F is a linear block,so F �= SL2(2k)0. Suppose k > 1. Then by 2.14 (c) k = 2 and there exists g 2 E suchthat J(T )g normalizes WF and CWF (F ). Put �WF = WF=CWF (E). By 2.16 (b) thereexist elements in J(T )g acting as transvections on �WF . On the other hand, F 2 B(T h)
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for some h 2 G. So J(T h) normalizes F and �WF . It follows that J(T h) acts GF (4)-semilinearly on �WF and so no element of J(T h) acts as a transvection on �WF . ButJ(T h) and J(T g) are conjugate in NG( �WF ), a contradiction. This contradiction givesk = 1, so F is also a symmetric block.We have shown that F is always a symmetric block; in particular (a) and (b) hold.By 2.16 (b), (e) B(T ) is generated by a maximal set of commuting transpositions onWE. Hence 2.14 (b) implies (c).
6.7.2 The case F 6� R.

Since both CAut(WE)(E) and Out(E) are solvable, FE=E is solvable. Thus F � Eimplies F 6= F 0, so p = 2; 3 and F=Op(F ) �= SL2(p)0. Moreover, if E is a symmetricblock, then jFE=Ej � 2, while jF=O2(F )j = 3, a contradiction. Hence E �= SL2(pk)with k > 1, Op(F ) � E and by 3.7 B(T ) 2 Sylp(E). In particular WFCWE(E) < WE.Assume that [WF ; B(T )h] = 1 for some h 2 E. As F 2 B(G), there exists g 2 Gsuch that F 2 B(T g); so [WF ; B(T g)] 6= 1 while [WF ; B(T )h] = 1. But this is impossiblesinceB(T )h andB(T g) are conjugate inNG(WF ). We have shown that [WF ; B(T )h] 6= 1for every h 2 E.If Op(F ) 6= 1, then F normalizes a Sylow p-subgroup of E and thus a conjugate
B(T )x, x 2 E. If Op(F ) � CG(WE), then F=CF (WE) is a p0-group and CWE(F ) 6�CWE(E). Hence also in this case F normalizes a Sylow p-subgroup of E and thus a
conjugate B(T )x, x 2 E.As we have seen above WF 6� CWE(B(T )h) for every h 2 E. Since WF is anirreducible F -module, we get from the module structure of WE
(�) [CWE(B(T )x); F ] = 1 and WE = WF � CWE(B(T )x):
In particular E �= SL2(p2) and Op(F ) = 1. As jSylp(E)j = 5 resp. 10 and jF j = 3
resp. 8, there exists a second conjugate B(T )y, y 2 E, normalized by F . But then also[CWE(B(T )y); F ] = 1, which contradicts (�) since WE = CWE(B(T )y)CWE(B(T )x).

�

Lemma 6.8 Let E 2 B(T ) be a symmetric block with E � C�(G; T ). Then thereexists F 2 B(T ) such that F � E, F � C�(G; T ) and F=O2(F ) �= A3 �= SL2(2)0.
Proof. Note that A 2 A(T ) satis�es (�) of 2.16. Hence by 6.4 (d) and 2.16 (b) there
exist A � B(T ) and E� = EA such that fE� := E�=O2(E�) �= S2n+1 and eA is generated
by a maximal set of commuting transpositions. We can choose ed 2 eE of order 3 tobe inverted by one of these transpositions and commute with the others such thatd 62 C�(G; T ). Then F := hdi[WE; d] has the required properties. �
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Lemma 6.9 Let B(T )max be the set of maximal elements of B(T ). Then
B(T )max = B�(T ):

Proof. Let F 2 B(T )max and F � E 2 B�(G). By 6.7 (c) there exists g 2 G suchthat F;E � B(T g). Then there exists h 2 NG(F ) such that B(T gh) = B(T ). HenceF � Eh 2 B(T ), so F = Eh, since F 2 B(T )max. It follows that E = F and F 2 B�(G).
�

Lemma 6.10 Let E 2 B�(T ). Then E is the unique element of B�(G) in ECG(WE)that is not contained in CG(WE).
Proof. Let F 2 B�(G) and F � ECG(WE). Then by 6.6 [E;F ] � E, and thus by6.7 either [E;F ] = 1 or F � E. In the latter case the maximality of F implies F = E.

�

Lemma 6.11 Let E;F 2 B(G). Suppose that E and F are subnormal in G. ThenE = F or [E;F ] = 1.
Proof. Let G := G=Op(G). The subnormality of E implies that either E is a com-ponent of G or E � F (G).If [E;F ] � E\F , then by 6.4 (a) [E;F ] � E\F , and 6.7 gives E = F or [E;F ] = 1.Thus we may assume
(�) [E;F ] 6� E \ F :
In particular, (�) shows that E and F are both solvable, so E �= F �= C3 or Q8.Let L := hE;F i and W := [
(Z(Op(G)); L]. Then CL(W ) � O2(L), since CL(W )
centralizes O2(G)=W and W . As L is also subnormal in G, we get CL(W ) = 1.Assume �rst that E �= C3. Then by 6.4 jW j � 24 and [E;F ] � CL(W ) since GL4(2)has abelian Sylow 3-subgroups. Thus CL(W ) = 1 gives [E;F ] = 1, which contradicts(�).Assume that E �= Q8. If Z(E) is normal in L, then also [W;Z(E)] = WE is L-invariant. As GL2(3) n SL2(3) does not contain elements of order 4, F normalizesECG(WE), and thus by 6.10 also E. But this contradicts (�).Suppose that Z(E) is not normal in L. There exists y 2 L such that Ey 6= E but[E;Ey] � E \Ey. Hence as already seen, [E;Ey] = 1 and E �Ey �= Q8 �Q8. On theother hand, similarly to the above, L is a subgroup of SL4(3). Since a Sylow 2-subgroupof SL4(3) has order 28, we get that F \ (E � Ey) 6= 1. Hence Z(F ) � Z(E)� Z(Ey)and thus Z(F ) = Z(E) or Z(Ey). In both cases Z(E) is normal in L, a contradiction.

�
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Theorem 6.12 Let E 2 B(G). Suppose that E is subnormal in G. Then the followinghold:
(a) E E B(G).
(b) E 2 B(T x) for every x 2 G.
(c) For every F 2 B(G) either F � E or [F;E] = 1.

Proof. Observe that E 2 B�(G), since E is subnormal in G. Let
V := h
(Z(T ))Gi; G := G=CG(V ):

(a): We may assume that E is a B(T )-block. By 2.16 J(T x) � NG(E) for allx 2 G, so by 6.10 J(T x) also normalizes E. It follows that WE \ Z(B(T x)) 6� Z(E),so [WE; Ey] 6= 1 for all y 2 B(T x). Now 6.11 implies that B(T x) � NG(E). Hence
E E hB(T x) j x 2 Gi = B(G):

(b): For every x 2 G, B(T ) and B(T x) are conjugate in B(G). Thus, (a) implies(b).(c): Let F 2 B(G). By (a) F normalizes E. Now 6.7 shows that F � E or[E;F ] = 1. �
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7 The Proof of the Local C �(G,T)-Theorem
In this section we investigate a minimal counterexample to the Local C�(G; T )-Theorem.We assume in this section:
Hypothesis 7.1 Let G be a group of characteristic p with T 2 Sylp(G) such that Gis a minimal counterexample to the Local C�(G; T )-Theorem.
Notation 7.2 We use the notation introduced in 6:2. In addition we de�ne

B�(T ) := fE 2 B�(T ) j E 6� C�(G; T )g; B�(G) := [g2GB�(T g);
V := h
(Z(T ))Gi; Z := 
(Z(B(T ))); G := G=CG(V ):

Observe that Op(G) = 1 (see for example [13; 2:0:1]).Moreover, L(T ) is the set of proper subgroups L < G satisfying:
B(T ) � L and L � C�(G; T ):

Set L(G) := [g2GL(T ).
Lemma 7.3 Every L 2 L(G) satis�es the hypothesis and conclusion of the LocalC�(L; S)-Theorem for S 2 Sylp(L).
Proof. This follows from 2.3 and the minimality of G as a counterexample. �

Lemma 7.4 Let E 2 B�(G). Then E is not subnormal in G.
Proof. Let 
 be the set of all elements in B�(G) that are subnormal in G and assumethat 
 6= ;. We will show that G is not a counterexample to the Local C�(G; T )-Theorem. Set G0 := YE2
E; R := CG([V;G0]):
Clearly no element of 
 is contained in R; in particular RT is a proper subgroup of G.Now 7.3 implies that R � C�(G; T ), since R is normal in G.By 6.12 G satis�es (a), (b), and (d) of the Local C�(G; T )-Theorem; in particularG0 E G. It remains to show (c) and (e) to get the desired contradiction.

Let E; eE 2 
 with E 6= eE. Then by 6.3 [V;E] � E and by 6.12 (c) eE � CG([V;E]).The Dedekind identity then yields
ECG([V;E]) \ eECG([V; eE]) = E eECG([V;E][V; eE]):
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Now an elementary induction argument shows that\
E2
(B(T )ECG([V;E])) = B(T ) \E2
(ECG([V;E])) = B(T )G0R:

Let x 2 G. By 6.12 and 2.16
B(T )x � B(T )ECG([V;E]) for every E 2 
:

It follows that B(T )G0R = B(T )xG0R, and B(T )G0R is normal in G. So the Frattiniargument gives G = G0RNG(B(T )) = G0C�(G; T ):
Thus also (c) of the Local C�(G; T )-Theorem holds.Using 6.12 and 2.16 we get that B(T )E=Op(B(T )E) �= SL2(pm) or S2m+1 for E 2 
.In the �rst case B(T ) 2 Sylp(B(T )E) and NB(T )E(B(T )) is a maximal subgroup ofB(T )E. In the second case NB(T )E(B(T )) = NB(T )E(Y ), where Y O2(E)=O2(E) is asubgroup of S2m+1 generated by a maximal set of commuting transpositions. Further-more, we get from 2.13 that W := [V;E]
Z(T ) = CW (E)� [V;E] and then from 2.11that hNB(T )E(B(T )); CB(T )E(
(Z(T \B(T )E)))i=O2(B(T )E) �= A2m;
in particular hNB(T )E(B(T )); CB(T )E(
(Z(T \ B(T )E)))i is a maximal subgroup ofB(T )E. We conclude that in both cases C�(G; T ) \ B(T )E is a maximal subgroup ofB(T )E since B(T )E 6� C�(G; T ). Now also (e) of the Local C�(G; T )-Theorem holds.But then G is not a counterexample. �

Lemma 7.5 G is not a minimal parabolic group.
Proof. Assume that G is minimal parabolic. Then G satis�es the hypothesis ofthe C��(G; T )-Theorem for minimal parabolic groups because C��(G; T ) � C�(G; T ).Hence, we can apply this theorem to G, as it was already proven in Chapter 5.Let U := 
(Z(Op(G))). Then there exists a subnormal subgroup E1 of G with

E1 6� C�(G; T ) and CG(U) � E1
such that E1=CE1(U) �= SL2(pn) or S2m+1 (and p = 2),
and [U;E1]=C[U;E1](E1) is the corresponding natural module. Moreover, every otherconjugate of E1 in G centralizes [U;E1], and U = CU(E1)[U;E1]. As C[U;E1](J(T )) 6�C[U;E1](E1), this gives B(T ) � NG(E1).Let H := B(T )E1 and W := 
(Z(Op(H))). Note that [Op(H); E1] � Op(E1) �Op(G) and that [U;E1] = [U;E1; E1] since U = CU(E1)[U;E1]. As [U;E1]=C[U;E1](E1)is irreducible, the Three Subgroups Lemma yields that [U;E1] � W .
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By 2.3 (c) H is of characteristic p. The action of E1 on [U;E1] also shows thatH = E1CH([U;E1]), so H satis�es the hypothesis of 3.8. Thus there exists a B(T )-block E with H = B(T )ECH(W ); in particular E 6� C�(G; T ). As WE � W , we getfrom 6.6 that E is normal in H. Since E = Op(E) and Op(H) = Op(E1) EE G weconclude that E is subnormal in G. But this contradicts 7.4. �

Lemma 7.6 There exists F 2 B(T ) such that F 6� C�(G; T ). Moreover, for everyF 2 B(T ) with F 6� C�(G; T ) there exists E 2 B�(T ) such that F � E. In particularB�(G) 6= ;.
Proof. By 7.5 G is not a minimal parabolic group. Hence there exists a propersubgroup L � G with T � L and L � C�(G; T ). Then L 2 L(T ), and by 7.3 thereexists F 2 B(T ) such that F 6� C�(G; T ).Let F � E 2 B(T ), where E is a maximal element of B(T ). By 6.9 E 2 B�(G),and as F 6� C�(G; T ), also E 6� C�(G; T ). Hence E 2 B�(G). �

Lemma 7.7 Let E 2 B�(T ). Then EB(T ) is contained in a unique maximal elementL of L(G), and E EE L.
Proof. Let U be the set of all L 2 L(G) containing EB(T ). For every L 2 U de�ne

�L := fEg j g 2 G; Eg EE Lg:
Let L 2 U and Eg 2 �L. Since Eg = Op(Eg), the subnormality of Eg in L givesOp(L) � NL(Eg) and thus [
(Z(Op(L))); Eg] = WEg . Using 2.8 (e) and 2.16 J(T ) �NL(E). Since Eg is a B(T g)-block, J(T ) is conjugate to J(T g) in NL(E) and soB(T ) � NL(E). Therefore:
7.7.1 Every element of �L is a subnormal B(T )-block of L.
Now let N be the subgroup generated by all subnormal B(T )-blocks of L. By 6.12either E is one of these B(T )-blocks or [N;E] = 1.Assume the second case, so E � CL(N). Let B(T ) � S 2 Sylp(L). As CL(N) doesnot contain any subnormal B(T )-block of L, we get from 7.3 that

E � CL(N)S � C�(L; S):
In particular E � C�(G; T g) for S � T g. But then g 2 NG(B(T )) � C�(G; T ) andso C�(G; T ) = C�(G; T g). This contradicts E 2 B�(T ). We have shown that E issubnormal in L. Hence
7.7.2 E 2 �L for every L 2 U .
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Now let eL 2 U and K 2 �eL. Suppose that K � L. From 7.7.1, applied to eL, weget that K is a B(T )-block. On the other hand, K = Eg for some g 2 G, so K isalso a B(T g)-block, and B(T ) and B(T g) are conjugate in NG(K). This shows thatK 6� C�(G; T ). Hence as above, K does not centralize all the subnormal B(T )-blocksof L, and 6.12 shows that K has to be one of these blocks. We have shown
7.7.3 Let K 2 �eL and K � L. Then K 2 �L.
Now [12, 6.7.3] shows that B(T )E is contained in a unique maximal element of L(G).

�

Lemma 7.8 Suppose that [V; Z] = 1. Then Op(E) � Op(G) for every E 2 B(T ) withE 6� C�(G; T ).
Proof. Observe that CT (Z) = B(T ), so [V; Z] = 1 implies V � B(T ). Pick E 2 B(T )with E 6� C�(G; T ); in particular [V;E] 6= 1 and WE � V . If E is not exceptional,then Op(E) = WE � V , and we are done. Thus we may assume that E is exceptional.If O3(E) � CG(V ), then 6.6 shows that O3(E) � O3(G). Hence, we may also assumethat O3(E) 6= 1, so WE is the only non-central E-chief factor in CEB(T )(V ). Set

V � := hV � j � 2 Aut(B(T ))i:
As no element of B(T ) nCB(T )(WE) acts quadratically on O3(E)=Z(E), V � centralizesWE and WE � CB(T )(V �) � CEB(T )(V ):
It follows that [CB(T )(V �); E] = WE � CB(T )(V �). But CB(T )(V �) is a non-trivialcharacteristic subgroup of B(T ), and thus E � C�(G; T ), a contradiction. �

Lemma 7.9 Let E 2 B(T ) with WE � V and TE := CT (E). Then [WE; TE] = 1 and[V; TE; E] = 1.
Proof. Note that TE normalizes WE. Hence [WE; TE] � Z(E) since WE=Z(E) is anirreducible E-module. As [WE; E] = WE, a �rst application of the Three SubgroupsLemma gives [WE; TE] = 1. But then [V;E; TE] = [WE; TE] = 1 and [E; TE; V ] = 1,and another application of the same lemma also yields [V; TE; E] = 1. �

Notation 7.10 We use De�nition 2:7. Recall that G 6= CG(V )NG(J(T )), so J(T ) 6�CG(V ). Hence by 2:8 OT (eV ) 6= ;, where eV := V=V0 and V0 := CV (Op(G)). We set
QT (V ) := hA j A 2 O�T (V )i:

Moreover, set T0 := Z if Z 6= 1 and T0 := QT (V ) if Z = 1.
Lemma 7.11 Let E 2 B(T ) such that E � C�(G; T ) and hE; T0i � L 2 L(T ). ThenT0 � CT (E).
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Proof. By 7.3 there exists E � F EE L with F 2 B(T ). >From 3.8 we get that[F;Z] � V , so [F ;Z] = 1. Thus [F ; T 0] = 1 if T0 = Z. Assume that Z = 1. Then7.8 gives Op(F ) = 1. On the other hand, 2.16 implies [F;A] � Op(F ) for A 2 O�T (V ).Hence also in this case [F ; T 0] = 1. This shows that [E; T 0] = 1.
�

Lemma 7.12 There exists E 2 B�(T ) such that T0 � CT (E).
Proof. Let T � P � G such that jP j is minimal with P 6� C�(G; T ). Then by 2.3 Pis minimal parabolic, and thus by 7.5 P 2 L(T ). Hence 7.3 gives a B(T )-block F � Pwith F 6� C�(G; T ), in particular [F ; T 0] = 1 by 7.11. According to 6.9 there existsE 2 B�(T ) with F � E. By 6.7 we may assume that F and E are both symmetricand F < E. In particular p = 2 and O2(F ) � O2(E) � V , so E �= Am and F �= Am0 ,3 � m0 < m, m0 and m odd.Pick t 2 B(T ) such that R := [WE; t] has order 2 and [F ; t] 6= 1, and set Et :=O2(CE(t)). Then Et �= Am�2 and also Et is a B(T )-block not in C�(G; T ). MoreoverR � WF , and thus by 7.11 hB(T )Et; T0i � CG(R). Observe that hF;Eti = E and thatCG(R) 2 L(T ). So applying 7.11 we see that T0 centralizes Et and so also E. �

Lemma 7.13 T 0 = 1.
Proof. By way of contradiction we assume that T 0 6= 1. Recall that Op(G) = 1; soNG(T 0) is a proper subgroup of G. We further set

TE := CT (E); Q := hA j A 2 O�T (eV )i:
According to 7.12 there exists E 2 B�(T ) with T0 � TE; in particular EB(T ) �NG(T 0). By 7.7 EB(T ) is contained in a unique maximal subgroup H of G andE EE H.
7.13.1 H is the unique maximal subgroup of G containing EB(T ); in particular T �NG(T 0) � H.
By 6.6 CG(V ) � NG(E) and by 7.4 NG(E) � H; so H is a maximal subgroup of G,and the uniqueness property of H implies that of H. As EB(T ) � NG(T 0) and T 0 isnormal in T , we also get the additional assertion.
7.13.2 [E;Q] � Op(E), and NG(Q) � H if QT (V ) 6= 1.
Note that CH(eV ) = CH(V ) because Op(G) = 1. Then 2.16, applied to H and eV ,shows that [E;Q] � Op(E). On the other hand, Q is normal in NG(QOp(E)), soEB(T ) � NG(Q). The uniqueness of H gives either NG(Q) � H or Q = 1. In thesecond case 2.8 implies that also QT (V ) = 1.
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7.13.3 NG(T 1) � H for every B(T )-invariant subgroup 1 6= T 1 � TE.
As Op(G) = 1, NG(T 1) is a proper subgroup of G containing EB(T ). Hence 7.13.1implies NG(T 1) � H.

According to 7.5 G is not minimal parabolic. Thus there exists a proper subgroupP � G with T � P and P 6� H. We choose P such that jP j is minimal with thatproperty. Then P is minimal parabolic since NG(T ) � H. Observe that G = hP;Eiby the uniqueness of H. Set A := Z \Op(P ) and S := hAP i.
7.13.4 Either A = 1 or [WE; S] 6= 1.
Recall that E has a unique non-central chief factor in V . Assume that [WE; S] =1. Then CV (S) is P - and B(T )E-invariant, so CV (S) is G-invariant. But now thede�nition of V shows that V = CV (S) and S = 1.
7.13.5 S = 1.
Assume that S 6= 1. Then T0 = Z and according to 7.13.4 there exists y 2 P suchthat [WE; Y ] 6= 1 for Y := Ay. If Y normalizes WE, then by 7.3 Y also normalizesE, and [WE; E] = WE implies that [WE; Y; E] 6= 1. The action of B(T ) on WE showsthat [WE; Y ] \ Z 6� Z(G). If Y does not normalize WE, then by 7.3 Y also does notnormalize (WE \ Z)CV (G) and [WE \ Z; Y ] 6� Z(G).Hence in both cases R := [V; Y ] \ Z 6� Z(G), so CG(R) is a proper subgroup of G.On the other hand, by 7.11 R � [V; Y ] � [V; T yE];
and so by 7.9 [Ey; R] = 1. Thus also [B(T )yEy; R] = 1 since R � Y � Zy. Theuniqueness of Hy implies B(T ) � CG(R) � Hy:
In particular B(T ) and B(T )y, and thus also Z and Zy are conjugate in Hy. It followsfrom 7.13.1 that EB(T ) � NG(Z) � Hy:
The uniqueness of H yields H = Hy and y 2 H. Now 6.12 shows that E is also anB(T )y-block and by 7.9 and 7.11 [WE; Y ] = 1, contradicting the choice of Y .

Let W0 := CV (Op(P )) and choose 1 6= W � V minimal such that W = [W;Op(P )].Then U := W=W \W0 is an irreducible P -module. Observe that by 3.3
CT (W ) � CT (U) = Op(P ):

7.13.6 Z 6= 1, so T0 = Z.
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Assume that Z = 1. Then T0 = QT (V ), so O�T (V ) 6= ; and thus by 2.8(c) also
O�T (eV ) 6= ;. Moreover, by 7.13.2 and 7.8 Q � TE and by 7.9 [V;Q;E] = 1. This shows
that G = hE;P i � NG(O�Op(P )(eV )) and so

O�Op(P )(eV ) = ;:
LetQ0 := Q\Op(P ), andW1 := [W;Q0]. Then [W1; Op(P )] = 1 and by 7.9 [W1; E] = 1,
so W1 � V0 and fW1 = 1. Furthermore, let A 2 O�T (eV ) and A0 := A\Op(P ). Then 2.8
(b) implies that jA=A0j > jfW=CfW (A)j, and thus also

jA=CA(U)j > jU=CU(A)j;
since CT (U) = Op(P ) and CA(U) = A0. On the other hand, by 5.6 and 3.6 applied toP=CP (U) we get jA=CA(U)j = jU=CU(A)j, a contradiction.
7.13.7 [W;Op(P )] = 1.
By 7.13.5 and 7.13.6 [Op(P ); Z] = 1 and Z 6� Op(P ), so [Op(P ); Op(P )] � CP (W )using 3.3. The Three Subgroups Lemma gives [W;Op(P )] = 1, since W = [W;Op(P )].

We now derive a �nal contradiction using 7.13.6 and 7.13.7. From 3.3 we get thatCT (U) = CT (W ) = Op(P ); in particular Op(P=CP (W )) = 1. Hence again 5.6 and 3.6imply
(�) jA=CA(W )jjCW (A)j = jW j for A 2 OP (W ):
If [W;J(T )] = 1, then Z � J(T ) � Op(P ), which contradicts 7.13.5. Thus we have[W;J(T )] 6= 1. But now an elementary argument using (�) gives

(A \Op(P ))W 2 A(T ) for every A 2 A(T );
so W � J(T ) and Z � CT (W ) = Op(P ), again a contradiction to 7.13.5. �

Lemma 7.14 Let E 2 B�(T ). Then there exists A � B(T ) such that the followinghold:
(a) [E;A] = E and [V;A;A] = 1.
(b) jV=CV (A)j = jAj and CV (A) = CV (a) for every a 2 A n CA(V ).
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Proof. If E is a symmetric block we let F � E be the B(T )-block given by6.8 with F=Op(F ) �= SL2(2)0 and otherwise set F := E. Thus in all cases F is alinear block not in C�(G; T ). Hence 7.8 and 7.13 give Op(F ) � Op(G). The action ofF on WF shows that
(1) jB(T )=CB(T )(WF )j = q:
Observe that by 7.13 [V; Z] = 1, so V � B(T ). Set

W � := hWF� j � 2 Aut(B(T ))i and V � := hV � j � 2 Aut(B(T ))i:
Assume �rst that F is not exceptional. Then6.3 implies [Op(G); F ] � WF � W �. As F 6� C�(G; T ), this shows that W � 6�Op(G). Hence there exists � 2 Aut(B(T )) such that A := WF� 6� Op(G); in particularA 6� Op(F ) and [E;A] = E. The action of A on WF and (1) give
(2) q = jWF=CWF (A)j = jV=CV (A)j and [V;A;A] = 1:
As WF=CWF (F ) is a 2-dimensional SL2(q)-module, we also get
(3) CV (A) = CV (a) for every a 2 A n CA(V ):
Hence, A satis�es (a) and (b).Assume now that F is exceptional; so F = E. Then no element in B(T )nCB(T )(WE)acts quadratically on O3(E)=Z(E). It follows that W � is elementary abelian and[V �;WE] = 1. By 3.7 O3(E) � B(T ), so there exists � 2 Aut(B(T )) with A :=O3(E)� 6� CB(T )(E=O3(E)) for otherwise hO3(E)� j � 2 Aut(B(T ))i is a character-istic subgroup of B(T ) normalized by E, contradicting E � C�(G; T ). In particular[E;A] = E.Observe that V � � CB(T )(WE�) \ CB(T )(WE), so

[V �; O3(E)] � 
(Z(O3(E))) and [E;CV (E)��1] � O3(E):
This shows that
[O3(E); O3(E)CV (E)��1] = Z(E)[O3(E); CV (E)��1] � [O3(E); CV (E)��1]Z(B(T )):
As [O3(E); O3(E)CV (E)��1] is an E-submodule of 
(Z(O3(E))), we get that either

WE � [O3(E); CV (E)��1]Z(B(T )) or [O3(E); CV (E)��1] � Z(E):
In the �rst case WE� � [A;CV (E)]Z(B(T )) � CV (E)Z(B(T )) and thus O3(E) �CB(T )(WE�). But then
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[A;O3(E)] � Z(A) and [O3(E); A;A] = 1;
which contradicts the de�nition of an exceptional B(T )-block.So we are in the second case, in particular

[O3(E); CV (E)��1; E] = 1 and [E;O3(E); CV (E)��1] = [O3(E); CV (E)��1]:
Observe that either [CV (E)��1; E] = O3(E) or [CV (E)��1; E] � Z(O3(E)). Hence theThree Subgroups Lemma gives[O3(E); CV (E)��1] = Z(E) or [O3(E); CV (E)��1] = 1, respectively.Assume that [O3(E); CV (E)��1] = Z(E). Then Z(E)� = [A;CV (E)] � CV (E)and thus

[O3(E); A;A] = [O3(E) \ A;A] � Z(E)� � CV (E) \Op(E) = Z(E):
Now A acts quadratically on O3(E)=Z(E), which contradicts the de�nition of an ex-ceptional B(T )-block.Thus, we have [O3(E); CV (E)��1] = 1 and so [A;CV (E)] = 1. Now as above (2)and (3) hold for A, so A satis�es (a) and (b). �

Theorem 7.15 No group satis�es Hypothesis 7:1.
Proof. Let Y be the set of all subgroups A � B(T ) for which there exists E 2 B�(T )such that A and E satisfy (a) and (b) of 7.14, and let

D := [g2GYg and D := fA j A 2 Dg:
We will show that D satis�es Hypothesis 4.3.It is evident from 7.14 that D satis�es (i) and (ii) of 4.1. Moreover, 7.13 shows thatproperty (��) of 4.3 holds. Next we prove (iii) of 4.1.Let A;B 2 D such that [A;B] = 1. If CV (A) = CV (B), then 4.3 (��) yields A = B.Assume that CV (A) 6= CV (B). Then by 4.1 (ii) A\B = 1 and so jABj = jAjjBj. On theother hand, by 4.1 (ii) jV=CV (AB)j � jAjjBj, so again (��) gives jABjjCV (AB)j = jV j.This proves (iii) of 4.1.Finally, we show property (�) of 4.2 with M := C�(G; T ). Let L := NG(D\T ) andrecall that CG(V ) � C�(G; T ). Hence

NG(D \ T ) �M () L � C�(G; T );
so we may assume by way of contradiction that L 6� C�(G; T ). Then L 2 L(T ), andby 7.3 there exists a B(T )-block E in L which is not in C�(G; T ). According to 7.6
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E � F 2 B�(T ). But then by 7.14 there exists A 2 D \ B(T ) such that [F;A] = F .This contradicts A 2 D \ T and F � L.We have shown that D satis�es Hypothesis 4.3. By 4.18 there exists a subnormalsubgroup E� in G such that CG(V ) � E� 6� C�(G; T ) and E� satis�es (c) and (d)of 4.18. Moreover, by the de�nition of D and 4.18 (a) there exists E 2 B�(G) andA 2 D such that EA � E�; in particular B(T ) normalizes E�. Now 3.8, applied toB(T )E�, together with 6.6 shows that E is normal in E�, and thus subnormal in G.This contradicts 7.4. �
The Proof of Corollary 1.9: Let M be the unique maximal subgroup of Gcontaining T . As every characteristic subgroup X of B(T ) is also characteristic in T ,we get T � NG(X). Hence NG(X) �M if X is non-trivial. Similarly CG(
(Z(T ))) �M . It follows that C�(G; T ) � M ; in particular C�(G; T ) 6= G. Hence G satis�esthe hypothesis of the Local C�(G; T )-Theorem and the Local C��(G; T )-Theorem forMinimal Parabolic Groups. In particular, for every subnormal symmetric B(T )-blockE not in C�(G; T ), E=O2(E) �= A2n+1. Thus, G satis�es the conclusion of the LocalC(G; T )-Theorem. Moreover, (e) of the Local C�(G; T )-Theorem together with thefact that G is a minimal parabolic gives the additional statement in the conclusion of1.9.
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