Jordan Canonical Form

Suppose A is a $n \times n$ matrix operating on $V=\mathbf{C}^{n}$.

First Reduction (to a repeated single eigenvalue).

Let

$$
\begin{equation*}
\phi(x)=\operatorname{det}(x-A)=\prod_{i=1}^{r}\left(x-\lambda_{i}\right)^{e_{i}} \tag{1}
\end{equation*}
$$

be the characteristic equation of A. Factor $\phi(x)$ into relatively prime factors

$$
\begin{equation*}
\phi(x)=p(x) q(x) \tag{2}
\end{equation*}
$$

(if possible). By the euclidean algorithm, there exist polynomials $a(x)$ and $b(x)$ so that

$$
\begin{equation*}
a(x) p(x)+b(x) q(x)=1 . \tag{3}
\end{equation*}
$$

Consider the subspaces

$$
\begin{equation*}
V_{p}=p(A) V \quad \text { and } \quad V_{q}=q(A) V . \tag{4}
\end{equation*}
$$

Note that
i) Both V_{p} and V_{q} are invariant under A since

$$
A V_{p}=A p(A) V=p(A) A V \subset V_{p}
$$

ii)

$$
V=V_{p}+V_{q}
$$

since by (3),

$$
\begin{equation*}
v=a(A) p(A) v+b(A) q(A) v=v_{p}+v_{q} . \tag{5}
\end{equation*}
$$

iii)

$$
\begin{equation*}
q(A) V_{p}=0=p(A) V_{q} \tag{6}
\end{equation*}
$$

since by Cayley-Hamilton, A satisfies its characteristic equation (2).
Consequently, the representation in (5) is unique. Moreover,
iv)

$$
\begin{equation*}
V_{p} \cap V_{q}=\{0\} . \tag{7}
\end{equation*}
$$

We thus say V is the direct sum of V_{p} with V_{q} and write

$$
V=V_{p} \oplus V_{q} .
$$

v) Choosing bases for V_{p} and V_{q}, we may move to this new combined basis for V so that A is now represented by the block diagonal

$$
P^{-1} A P=\left(\begin{array}{cc}
A_{p} & 0 \tag{8}\\
0 & A_{q}
\end{array}\right),
$$

vi) where

$$
\begin{equation*}
\phi(x)=\phi_{A_{p}}(x) \phi_{A_{q}}(x), \tag{9}
\end{equation*}
$$

and where

$$
\begin{equation*}
\phi_{A_{p}}(x)=q(x) \quad \text { and } \quad \phi_{A_{q}}(x)=p(x) . \tag{10}
\end{equation*}
$$

Relation (9) is clear from the block structure. But (10) is not at all clear: Suppose $\phi_{A_{p}}\left(\lambda_{p}\right)=0$. Then A_{p}, hence A, possesses a corresponding eigenvector v_{p} in V_{p}. But then by (6),

$$
q(A) v_{p}=0=\prod_{q\left(\lambda_{q}\right)=0}\left(A-\lambda_{q}\right) v_{p}=\prod_{q\left(\lambda_{q}\right)=0}\left(\lambda_{p}-\lambda_{q}\right) \cdot v_{p}
$$

hence some $\lambda_{q}=\lambda_{p}$. In short, the eigenvalues of A_{p} are roots of $q(x)=0$. By reversing roles and recalling that $p(x)$ and $q(x)$ are relatively prime we obtain (10).

This realizes our first goal:

First Reduction. An $n \times n$ matrix A on $V=\mathbf{C}^{n}$ can be brought to block diagonal form

$$
P^{-1} A P=\left(\begin{array}{cccc}
A_{1} & 0 & \ldots & 0 \tag{11a}\\
0 & A_{2} & 0 & \ldots \\
\vdots & \ldots & \ddots & 0 \\
0 & \ldots & 0 & A_{r}
\end{array}\right)
$$

where each block has but one distinct eigenvalue, i.e.,

$$
\begin{equation*}
\phi_{A_{i}}(x)=\left(x-\lambda_{i}\right)^{e_{i}} . \tag{11b}
\end{equation*}
$$

Second Reduction (to Jordan blocks).

Suppose A is $n \times n$ operator on $V=\mathbf{C}^{n}$ with characteristic polynomial

$$
\begin{equation*}
\phi(x)=\operatorname{det}(x-A)=(x-\lambda)^{n} . \tag{12}
\end{equation*}
$$

Let $m \leq n$ be the least integer so that

$$
\begin{equation*}
(A-\lambda)^{m} V=0 \tag{13}
\end{equation*}
$$

(The polynomial $\mu(x)=(x-\lambda)^{m}$ is called the minimal polynomial for A.) Find a vector v_{0} of V of maximal cyclic order, i.e., where

$$
\begin{gather*}
(A-\lambda)^{m} v_{0}=0 \tag{14a}\\
(A-\lambda)^{m-1} v_{0} \neq 0 \tag{14b}
\end{gather*}
$$

but where m is largest possible.
Consider the invariant subspace of A given by

$$
\begin{equation*}
V_{0}=\operatorname{span}\left\{v_{0}, A v_{0}, A^{2} v_{0}, \ldots, A^{m-1} v_{0}\right\} . \tag{15}
\end{equation*}
$$

Note that $\left\{v_{0}, A v_{0}, A^{2} v_{0}, \ldots, A^{m-1} v_{0}\right\}$ form an independant set, for if not, by the division algorithm we see $(A-\lambda)^{m-1} v_{0}=0$. (Alternatively, apply the operator $A-\lambda$ repeatedly to any relation among between this putative basis.)

Note also that this tower of 'pseudoeigenvectors' $v_{i}=(A-\lambda)^{i-1} v_{0}$ over the eigenvector v_{m-1} of A satisfies

$$
\begin{equation*}
A v_{i}=(A-\lambda) v_{i}+\lambda v_{i}=v_{i-1}+\lambda v_{i} . \tag{16}
\end{equation*}
$$

Thus cutting A back to V_{0} with this tower as basis yields the representation

$$
J_{i}=\left(\begin{array}{cccccc}
\lambda & 0 & 0 & \cdots & & 0 \tag{17}\\
1 & \lambda & 0 & \cdots & \cdots & 0 \\
0 & 1 & \lambda & 0 & \cdots & \vdots \\
\vdots & 0 & 1 & \lambda & 0 & \cdots \\
\vdots & & & 1 & \ddots & \\
\vdots & & & 0 & & \\
\vdots & & & \vdots & & \\
0 & \cdots & & 0 & 1 & \lambda
\end{array}\right)
$$

called a Jordan block.
It remains to show that either $V_{0}=V$ or that V_{0} decomposes V, i.e., that there exists a second invariant subspace V_{1} with $V=V_{0} \oplus V_{1}$. We can then continue with the above proceedure on V_{1}.

There are two cases: Either V_{0} contains the eigenspace of λ or there exists an eigenvector u not in V_{0}. In the first case, the null space of $A-\lambda$ has rank 1 , hence its range has rank $n-1$. In fact, repeatedly applying $A-\lambda$ yields the descending sequence of subspaces

$$
\begin{equation*}
V \supset(A-\lambda) V \supset(A-\lambda)^{2} V \supset \cdots \supset(A-\lambda)^{m-1} V \supset(A-\lambda)^{m} V=0 \tag{18}
\end{equation*}
$$

where at each step the rank can decrease by at most 1 since the eigenspace of A has rank 1. Thus $m=n$ and $V_{0}=V$.

In the second case, suppose u is an eigenvector not in V_{0} and let $U=\operatorname{span}\{u\}$. Consider the factor space V / U, that is, consider the collection of residue classes (blocks) $v+U$. As we have seen before, these blocks form a disjoint covering of V. Moreover, these blocks inherit the operations of addition and scalar multiplication from their representatives making V / U into a vector space in its own right. The map

$$
\pi: V \longrightarrow V / U
$$

given by

$$
\pi(v)=v+U
$$

is a linear transformation with kernel U and hence V / U has dimension $n-1$. Note that A induces naturally an operator \tilde{A} on the factor space $\tilde{V}=V / U$ by the rule $\tilde{A} \pi(v)=A v$.

Note also that because V_{0} meets U only at 0 , the image \tilde{V}_{0} of V_{0} under π is identical algebraically (isomorphic) and of the least dimension m such that $(\tilde{A}-\lambda)^{m} \tilde{V}=0$, but it now lies in a vector space V / U of smaller dimension. Hence we may proceed by induction: The image $\pi\left(V_{0}\right)$ of V_{0} under this algebraic projection π decomposes V / U into \tilde{A}-invariant subspaces,

$$
V / U=\pi\left(V_{0}\right) \oplus \tilde{V}_{1} .
$$

But then pulling back, we have the decomposition

$$
V=V_{0} \oplus V_{1}
$$

into invariant subspaces where $V_{1}=\pi^{-1}\left(\tilde{V}_{1}\right)$.

Jordan Canonical Form. ${ }^{1}$ An operator A on $V=\mathbf{C}^{n}$ can be brought to the form

$$
P^{-1} A P=\left(\begin{array}{cccc}
J_{1} & 0 & \ldots & 0 \tag{18}\\
0 & J_{2} & 0 & \ldots \\
\vdots & \ldots & \ddots & 0 \\
0 & \ldots & 0 & J_{r}
\end{array}\right)
$$

where each block J_{i} is a Jordan block (17).

[^0]Suggestion. When the space is factored into these cyclic invariant subspaces

$$
V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{s}
$$

renumber so that the minimal polynomials of each subspace are nonincreasing in degree.

So if say A is 6×6, then the possible factorizations of V into the direct sum of invariant subspaces would have minimal polynomials of one of the following patterns:

$$
\begin{gathered}
(x-\lambda)^{6}, \\
(x-\lambda)^{5}, x-\lambda, \\
(x-\lambda)^{4}, x-\lambda, x-\lambda, \\
(x-\lambda)^{4},(x-\lambda)^{2}, \\
(x-\lambda)^{3}, x-\lambda, x-\lambda, x-\lambda, \\
(x-\lambda)^{3},(x-\lambda)^{2}, x-\lambda, \\
(x-\lambda)^{3},(x-\lambda)^{3},
\end{gathered}
$$

and so on, each with a distinct Jordan form.

[^0]: ${ }^{1}$ The above proof scheme first appeared in the American Mathematical Monthly, Vol. 91, No. 1, January 1984 - "A simple proof of the fundamental theorem on finite abelian groups," (C. R. MacCluer).

