
Jordan Canonical Form

Suppose A is a n × n matrix operating on V = Cn.

First Reduction (to a repeated single eigenvalue).

Let

φ(x) = det(x − A) =
r

∏

i=1

(x − λi)
ei (1)

be the characteristic equation of A. Factor φ(x) into relatively prime factors

φ(x) = p(x) q(x) (2)

(if possible). By the euclidean algorithm, there exist polynomials a(x) and
b(x) so that

a(x) p(x) + b(x) q(x) = 1. (3)

Consider the subspaces

Vp = p(A)V and Vq = q(A)V. (4)

Note that

i) Both Vp and Vq are invariant under A since

AVp = Ap(A)V = p(A)AV ⊂ Vp.

ii)
V = Vp + Vq

since by (3),

v = a(A)p(A)v + b(A)q(A)v = vp + vq. (5)

iii)
q(A)Vp = 0 = p(A)Vq (6)
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since by Cayley-Hamilton, A satisfies its characteristic equation (2).
Consequently, the representation in (5) is unique. Moreover,

iv)
Vp ∩ Vq = {0}. (7)

We thus say V is the direct sum of Vp with Vq and write

V = Vp ⊕ Vq.

v) Choosing bases for Vp and Vq, we may move to this new combined basis
for V so that A is now represented by the block diagonal

P−1AP =

(

Ap 0
0 Aq

)

, (8)

vi) where
φ(x) = φAp

(x) φAq
(x), (9)

and where
φAp

(x) = q(x) and φAq
(x) = p(x). (10)

Relation (9) is clear from the block structure. But (10) is not at all clear:
Suppose φAp

(λp) = 0. Then Ap, hence A, possesses a corresponding eigen-
vector vp in Vp. But then by (6),

q(A)vp = 0 =
∏

q(λq)=0

(A − λq)vp =
∏

q(λq)=0

(λp − λq) · vp,

hence some λq = λp. In short, the eigenvalues of Ap are roots of q(x) = 0.
By reversing roles and recalling that p(x) and q(x) are relatively prime we
obtain (10).

This realizes our first goal:
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First Reduction. An n × n matrix A on V = Cn can be brought to block
diagonal form

P−1AP =











A1 0 . . . 0
0 A2 0 . . .
... . . .

. . . 0
0 . . . 0 Ar











, (11a)

where each block has but one distinct eigenvalue, i.e.,

φAi
(x) = (x − λi)

ei . (11b)

Second Reduction (to Jordan blocks).

Suppose A is n × n operator on V = Cn with characteristic polynomial

φ(x) = det(x − A) = (x − λ)n. (12)

Let m ≤ n be the least integer so that

(A − λ)mV = 0. (13)

(The polynomial µ(x) = (x − λ)m is called the minimal polynomial for A.)
Find a vector v0 of V of maximal cyclic order, i.e., where

(A − λ)mv0 = 0, (14a)

(A − λ)m−1v0 6= 0, (14b)

but where m is largest possible.
Consider the invariant subspace of A given by

V0 = span{v0, Av0, A
2v0, . . . , A

m−1v0}. (15)

Note that {v0, Av0, A
2v0, . . . , A

m−1v0} form an independant set, for if not,
by the division algorithm we see (A − λ)m−1v0 = 0. (Alternatively, apply
the operator A − λ repeatedly to any relation among between this putative
basis.)



4

Note also that this tower of ‘pseudoeigenvectors’ vi = (A − λ)i−1v0 over
the eigenvector vm−1 of A satisfies

Avi = (A − λ)vi + λvi = vi−1 + λvi. (16)

Thus cutting A back to V0 with this tower as basis yields the representation

Ji =































λ 0 0 · · · 0
1 λ 0 · · · · · · 0

0 1 λ 0 · · ·
...

... 0 1 λ 0 · · ·

... 1
. . .

... 0

...
...

0 · · · 0 1 λ































, (17)

called a Jordan block.

It remains to show that either V0 = V or that V0 decomposes V , i.e., that
there exists a second invariant subspace V1 with V = V0 ⊕ V1. We can then
continue with the above proceedure on V1.

There are two cases: Either V0 contains the eigenspace of λ or there
exists an eigenvector u not in V0. In the first case, the null space of A− λ
has rank 1, hence its range has rank n−1. In fact, repeatedly applying A−λ
yields the descending sequence of subspaces

V ⊃ (A − λ)V ⊃ (A − λ)2V ⊃ · · · ⊃ (A − λ)m−1V ⊃ (A − λ)mV = 0, (18)

where at each step the rank can decrease by at most 1 since the eigenspace
of A has rank 1. Thus m = n and V0 = V.

In the second case, suppose u is an eigenvector not in V0 and let
U = span{u}. Consider the factor space V/U, that is, consider the collection
of residue classes (blocks) v + U. As we have seen before, these blocks form
a disjoint covering of V . Moreover, these blocks inherit the operations of
addition and scalar multiplication from their representatives making V/U
into a vector space in its own right. The map

π : V −→ V/U
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given by
π(v) = v + U

is a linear transformation with kernel U and hence V/U has dimension n−1.
Note that A induces naturally an operator Ã on the factor space Ṽ = V/U
by the rule Ãπ(v) = Av.

Note also that because V0 meets U only at 0, the image Ṽ0 of V0 under π
is identical algebraically (isomorphic) and of the least dimension m such that
(Ã − λ)mṼ = 0, but it now lies in a vector space V/U of smaller dimension.
Hence we may proceed by induction: The image π(V0) of V0 under this
algebraic projection π decomposes V/U into Ã-invariant subspaces,

V/U = π(V0) ⊕ Ṽ1.

But then pulling back, we have the decomposition

V = V0 ⊕ V1

into invariant subspaces where V1 = π−1(Ṽ1).

Jordan Canonical Form.1 An operator A on V = Cn can be brought to
the form

P−1AP =











J1 0 . . . 0
0 J2 0 . . .
... . . .

. . . 0
0 . . . 0 Jr











, (18)

where each block Ji is a Jordan block (17).

1The above proof scheme first appeared in the American Mathematical Monthly, Vol.
91, No. 1, January 1984 — “A simple proof of the fundamental theorem on finite abelian
groups,” (C. R. MacCluer).
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Suggestion. When the space is factored into these cyclic invariant subspaces

V = V1 ⊕ V2 ⊕ · · · ⊕ Vs,

renumber so that the minimal polynomials of each subspace are nonincreasing
in degree.

So if say A is 6 × 6, then the possible factorizations of V into the direct
sum of invariant subspaces would have minimal polynomials of one of the
following patterns:

(x − λ)6,

(x − λ)5, x − λ,

(x − λ)4, x − λ, x − λ,

(x − λ)4, (x − λ)2,

(x − λ)3, x − λ, x − λ, x − λ,

(x − λ)3, (x − λ)2, x − λ,

(x − λ)3, (x − λ)3,

and so on, each with a distinct Jordan form.


