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1. Introduction

We consider the following inverse problem. Given a suitable function f , find ū satisfying

the first-kind Volterra integral equation

Au(t) = f(t), (1.1)

for a.e. t ∈ [0, 1], where A is the bounded linear operator on L2(0, 1) defined by

Au(t) :=

∫ t

0

k(t, s)u(s) ds, a.e. t ∈ [0, 1]. (1.2)

Problems based on (1.1) are ill-posed due to lack of continuous dependence on data

f ∈ L2(0, 1), with the severity of ill-posedness related to properties of the kernel k.

For example, if k ∈ C1([0, 1] × [0, 1]) satisfies k(t, t) 6= 0 for all t ∈ [0, 1], it is well

known that under this condition differentiation of (1.1) with respect to t (for sufficiently

smooth f) leads to a well-posed second-kind Volterra equation with solutions depending

continuously on the (new) data f ′ ∈ L2(0, 1). We will say that the operator A is “one-

smoothing” in this case. But even if the “true” data function f is smooth, the usual

situation is that we only have available a nonsmooth perturbation of f . Thus, in the

case of problems with one-smoothing operators A, the “degree” of ill-posedness of (1.1)

is that associated with first order differentiation of noisy data.

More generally, if the kernel k is such that ∂νk/∂tν is continuous with

(∂ν−1k/∂tν−1) (t, t) 6= 0,
(
∂`k/∂t`

)
(t, t) = 0, for ` = 0, . . . , ν − 2 (ν ≥ 2 integer) and

0 ≤ t ≤ 1, then it takes ν differentiations of equation (1.1) (for sufficiently smooth f)

to obtain a well-posed second-kind equation, with solutions depending continuously on

f (ν). We will say that the operator A is “ν-smoothing” in this case, and “infinitely-

smoothing” in the case of smooth k with
(
∂`k/∂t`

)
(t, t) = 0, for 0 ≤ t ≤ 1 and all

` = 0, 1, 2, . . .. Of course, not all equations of the form (1.1) fall into one of these

classes of problems; however, these terms will be useful in discussing below the severity

of ill-posedness associated with particular Volterra equations.

Equations of the form (1.1) arise in a number of applications. For example, the

inverse heat conduction problem (or sideways heat equation) [2] is based on such a

model with infinitely-smoothing operator A, while the differentiation problem [12] is

associated with a one-smoothing operator A. In both of these examples the operator A
has a convolution kernel; however numerous nonconvolution kernels may also be found

in applications (see, e.g., a recent example from capillary viscometry in [26]).

A regularization method must be used to solve (1.1), and certainly the classical

method of Tikhonov regularization is a simple and effective approach. However,

a disadvantage of this method when applied to Volterra problems is that it

replaces the original “causal” problem (1.1) with a “full-domain” regularized problem,

(A?A+ αI)u = A?f , where A? is the adjoint operator associated with A and α > 0

is the Tikhonov regularization parameter. By a “full-domain” problem we mean that,

instead of using only values of f on the interval [0, t] to recover ū on the same interval,

Tikhonov regularization requires that data values from [t, 1] also be used, destroying
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the causal nature of the original problem and leading to inefficient solution of Volterra

problems. This is true for all regularization methods based on the computation of

(suitably defined) gα(A?A) [12] for the reason that, although the original operator A in

(1.2) is non-anticipatory (causal), the adjoint A? is an anticipatory operator.

In addition to destroying the causal nature of Volterra problems, classical methods

such as Tikhonov regularization tend to oversmooth solutions. Other regularization

approaches, such as the technique of bounded variation regularization [1, 5, 8, 15, 16, 35]

and the idea of regularization for curve representations [27], have been developed to

handle the problem of oversmoothing. Although quite promising, such methods do not

retain the causal nature of the Volterra problem and, in addition, require either the

formulation of a nondifferentiable or nonlinear optimization problem.

The goal of this paper is to establish convergence results for a discrete regularization

method for the solution of (1.1), a method which retains the causal nature of the original

problem and also has the potential for avoiding excessive oversmoothing. This approach

falls into a broad class of “local regularization” methods for Volterra equations [17].

In addition to retaining both the causal and linear structure of Volterra problems, it

also has the advantage of being formulated as a differentiable optimization technique

in local regions of the solution. Numerical implementation of this local regularization

method leads to a sequential algorithm which exhibits certain “predictor-corrector”

characteristics. Indeed, at each step in the sequential algorithm, solutions are held

rigid for a short time into the future, yielding a locally-regularized “prediction” of

the desired solution. Then, in a “correction” step, the local solution is truncated in

order to avoid oversmoothing and to improve accuracy. The result is a method that

is easily implemented numerically and which, due to its sequential nature, has the

capability of providing very fast solutions. In fact, as we will see in Section 2.1, the

method we consider requires only O(N2) arithmetic operations while standard Tikhonov

regularization requires O(N3) operations. In the case of k a convolution kernel the local

regularization method is still more efficient, although the difference in cost (to highest

order in N) is less dramatic; in this case the local method takes N2/2 multiplications

while standard Tikhonov regularization requires 9N2/2 multiplications.

The method we present here is a generalization of previous work [18], where

now we consider functional regularization parameters, a sequence of penalized local

regularization problems (with functional penalty parameter µ = µ(t) ), and an extension

to the case of nonconvolution kernels k. We note that the extension of [18] to the

case of functional regularization parameters required nontrivial theoretical changes. In

this paper we additionally formulate a sequential discrepancy principle for the adaptive

selection of the penalty parameter µ.

It is worth noting that, although computational costs tend to be smaller with a

method which preserves the original Volterra structure of the problem, there is generally

additional cost in terms of the assumptions which must be made in order to prove

convergence of the method. Classical (non-causal) methods based on the operator A?A
are generally associated with well-developed convergence theories for even infinitely-
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smoothing problems because such theories may be advanced using the special spectral

properties of A?A. The same cannot be said, in general, of “Volterra-preserving”

methods because they are based on the operator A alone and do not make use of

the non-causal operator A?A. Thus, theoretical results for such methods are generally

limited by the assumption that the underlying equation is only moderately ill-posed [17].

It is worth noting that this is often only a theoretical limitation, as a given Volterra-

preserving method may work quite well in practice for even severely ill-posed problems.

Among methods which retain the Volterra/causal nature of the original problem we

mention the following. Lavrent′ev’s classical method, or the small parameter method, is

associated with a well-developed convergence theory for one-smoothing operators A [7]

(see [9, 24, 25, 37] to name only a few of the references in this area). The method works

quite well if ū(0) is known precisely, but suffers from boundary layer effects (requiring

solution methods for stiff singularly perturbed equations) if ū(0) is not exactly known

[17]. A related method has been developed to include general ν-smoothing problems

[37], but in this case precise knowledge is required of ū and higher order derivatives of

ū at t = 0 in order to avoid the boundary layer effects.

Other Volterra-preserving methods include Lavrent′ev’s m-times iterated method

[29, 30], Richardson iteration [32, 38, 39], and certain implicit iterative methods

[28, 30, 31, 32]. The regularized convergence theory for these methods, in the case

of noisy data, appears to be limited to only very moderately ill-posed problems (such as

the classical Abel integral equation, which is generally considered “half-smoothing”); we

are not aware of successful application of these methods (in practice) to more severely

ill-posed problems. See [17] for an expanded discussion of these methods and underlying

theoretical assumptions, and for additional references on these and other methods (e.g.,

mollification methods).

The method that is the focus of this paper is no different from those mentioned

above in that our theoretical convergence proofs are limited to only moderately ill-posed

problems. We present a convergence theory for the case of one-smoothing problems, and

make the assumption throughout that k ∈ C1, k(t, t) 6= 0 for t ∈ [0, 1]. (Without loss

of generality we will assume k(t, t) = 1, t ∈ [0, 1].) However, despite the fact that the

theoretical development presented here is based on such an assumption, our method is

a generalization of a numerical technique developed by J. V. Beck which has been used

successfully for over thirty years for the severely ill-posed (infinitely-smoothing) inverse

heat conduction problem [2]. In Section 2.4 we also illustrate the effectiveness of the

method when applied to a two-smoothing example. Indeed, practical application seems

to indicate that the method applies to a wide variety ill-posed Volterra problems, with

both finitely- and infinitely-smoothing operators A.

The paper is organized as follows. In Section 2 we describe implementation and

convergence results for a predictor-corrector regularization algorithm that is a special

case of the more general class of discrete local regularization methods to be considered in

this paper. In this section we also illustrate, via numerical examples, the effectiveness

of the method and of a strategy for adaptively selecting the penalty parameter. In
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Section 3 we formulate the hypotheses and more general structure in which convergence

is to be examined, stating convergence results in Section 4. Finally, proofs of these

results are presented in Section 5.

2. Discrete predictor-corrector regularization methods

2.1. A sequential collocation-based discretization

We will motivate the discrete local regularization method to be considered in this

paper by first examining a collocation-based discretization of (1.1). To this end, let

N = 1, 2, . . . be fixed and divide [0, 1] into N subintervals [ti−1, ti], i = 1, . . . N , each of

width h = 1/N . We seek constants ci, i = 1, . . . , N , so that the step function

uh(t) :=
N∑

i=1

ciχi(t), t ∈ [0, 1], (2.1)

satisfies (1.1) at the collocation points t = tj, j = 1, . . . , N . That is,

A

(
j∑

i=1

ciχi

)
(tj) = f(tj), j = 1, . . . , N. (2.2)

In the above, χi is the usual characteristic function on the interval (ti−1, ti] for

i = 2, . . . , N , while χ1 is the characteristic function on the interval [0, t1]. Because

the operator A is of Volterra type, equation (2.2) is a triangular system of equations for

which the solution is determined sequentially provided the diagonal entries are nonzero

(guaranteed under reasonable assumptions on the kernel k).

It is useful at this point to mention an equivalent formulation of the same procedure,

which we state as follows. Assuming c1, . . . , cj−1 have already been found, determine the

h-dependent constant cj satisfying

cj = arg min
c∈R

Jj(c), (2.3)

Jj(c) :=

(
A

(
j−1∑
i=1

ciχi + cχj

)
(tj)− f(tj)

)2

. (2.4)

Although the procedure (2.2), equivalently (2.3)–(2.4), for determining an

approximate solution of (1.1) is a well-posed problem (because it is finite-dimensional), it

is not well-conditioned and can lead to poor approximations. The idea for a regularized

improvement of this simple algorithm may be traced back to a numerical method

developed by J. V. Beck in the 1960’s for the inverse heat conduction problem. This

particular approach was generalized in [6, 18, 19, 20, 22] and examined in those references

from the point of view of stability and convergence. (Other relevant treatments of

Beck’s method may be found, for example, in [33, 34].) Here we extend these ideas even

further by considering a similar method but now with a functional “local regularization

parameter” r. For example, given h = 1/N , define an h-dependent regularization
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function r = r(t) by

r(t) :=
N∑

i=1

ri χi(t), t ∈ [0, 1], (2.5)

ri := γih, for integer γi ≥ 0, i = 1, . . . , N. (2.6)

The idea behind the new method is to seek uh of the form (2.1) as before but instead to

determine the coefficients in (2.1) in the following manner. Assuming c1, . . . , cj−1 have

already been found, the jth step in the process is to determine cj such that

cj = arg min
c∈R

Jj, r(c), (2.7)

Jj, r(c) :=

γj∑
s=0

(
A

(
j−1∑
i=1

ciχi + c

j+s∑
`=j

χ`

)
(tj+s)− f(tj+s)

)2

. (2.8)

Thus the constant cj determined via (2.7)–(2.8) is the best constant-valued solution (in

a least-squares sense) over the interval [tj−1, tj + r(tj)] = [tj−1, tj + γjh]. This process of

temporarily holding the solution rigid over a small future interval leads to a regularized

“prediction” of the optimal solution uh(·) = uh(·; r) on the interval [tj−1, tj + r(tj)]. We

“correct” this over-regularized solution by only retaining this solution on the interval

[tj−1, tj] (i.e., the predicted value of uh on [tj, tj + r(tj)] is not retained) at the jth step

of the process. We note that in the case of γj = 0, j = 1, . . . , N , we have r(t) = 0,

t ∈ [0, 1], and the algorithm (2.7)–(2.8) reduces to the discrete algorithm (2.3)–(2.4) for

the original (unregularized) problem.

We can generalize these ideas even further by considering a penalized version of

the process described in (2.7)–(2.8). Suppose, for example, an h-dependent function

µ = µ(t) is given by

µ(t) :=
N∑

i=1

µi χi(t), t ∈ [0, 1], µi ≥ 0, i = 1, . . . , N. (2.9)

We now find uh of the form (2.1) where the coefficients cj in this expression are

determined as follows. Assuming that c1, . . . , cj−1 have already been found, the idea

is to determine cj such that

cj = arg min
c∈R

Jj, r, µ(c), (2.10)

Jj, r, µ(c) := Jj, r(c) + µj c2, (2.11)

with Jj, r given by (2.8) for j = 1, . . . , N . Thus the parameter µj = µ(tj) > 0 serves to

penalize large values of the constant being determined in the jth step of the numerical

process. Obviously, in the case of µj = 0, j = 1, . . . , N , the process reduces to (2.7)–

(2.8).

The jth coefficient cj found by each of the above algorithms may be written

explicitly. Indeed, making the definition of the h-dependent quantity ∆nm,

∆nm := Aχm(tn) =

∫ t1

0

k(tn, tm−1 + s) ds,
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for 1 ≤ m ≤ n ≤ N , it follows that Jj, r, µ(c) may be written as

Jj, r, µ(c) = ‖bjc− dj‖2
j + µj c2 (2.12)

where ‖·‖j denotes the usual Euclidean norm in Rγj+1. Here the h-dependent quantities

bj and dj are given by bj :=
(
b
(j)
1 , . . . , b

(j)
γj+1

)
>, with

b
(j)
` :=

∑̀
i=1

∆j+`−1, j+i−1 , ` = 1, . . . , γj + 1, (2.13)

and the `th entry in dj ∈ Rγj+1 is given by

(dj)` = f(tj+`−1)−
j−1∑
i=1

ci ∆j+`−1, i, ` = 1, . . . , γj + 1. (2.14)

Thus the scalar cj which solves the penalized algorithm (2.10)–(2.11) is given by

cj =
(
‖bj‖2

j + µj

)−1
b>j dj, (2.15)

where ‖bj‖2
j + µj ≥ ‖bj‖2

j > 0 under reasonable assumptions on the kernel k (see, e.g.,

the assumptions in Section 3.2). By making specific choices of the parameters µj and γj

in (2.15) (where γj +1 is the vector dimension of bj, dj in (2.15) ), one may also recover

the solutions cj to the remaining two algorithms considered above. In particular, the

choices γj = 0 and µj = 0 in (2.15) prescribe the solution cj of the original collocation

algorithm (2.3)–(2.4) while the choices γj ≥ 0, µj = 0, determine cj as the solution of

the unpenalized predictor-corrector algorithm (2.7)–(2.8).

The operation count for the algorithm in the case of nonconvolution kernel k is

as follows. The biggest expense is the computation of dj, but the cost is lowered

by noting that, for j = 2, . . . , N , the `th entry (dj)` of dj may be written (dj)` =

(dj−1)`+1 − cj−1∆`+j−1, j−1, for ` = 1, . . . , γj + 1. The computation of (dj)` requires

no multiplications for j = 1, while for j = 2, . . . , N , one multiplication is required for

each `. Thus the worst-case cost of computing all dj’s is
∑N

j=2(γmax + N − j + 1) =

N2/2 + (γmax − 1/2)N − γmax, where γmax = max1≤i≤N γi.

The computation of cj in (2.15) requires 2(γj + 1) + 1 additional multiplications

for each N , bringing the total algorithm count to N2/2 + (3γmax + 5/2)N − γmax

multiplications. Since γmax is generally taken to be much smaller than N in practice, this

estimate compares quite favorably to standard Tikhonov regularization which requires

O(N3) multiplications in the nonconvolution case [22].

In the case of a convolution kernel, k(t, s) = κ(t − s), it can be shown that the

algorithm presented here requires N2/2 + (2γmax + 3/2)N + 1 multiplications, which

compares favorably to the multiplication count of 4.5N2 (to highest order) for standard

Tikhonov regularization as applied to the convolution case [11]. Our local regularization

method is less expensive (to highest order) than standard Tikhonov regularization for

the convolution problem provided γmax ≤ 2N − 1 (again, in numerical examples it is

seen that an appropriate value of γmax is generally much less than N , even for severely

ill-posed problems).
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2.2. Convergence of the discrete predictor-corrector regularization method

Since the local regularization algorithm (2.10)–(2.11) involves solving optimization

problems over small future intervals, the theory we develop will require that we either

seek a regularized approximation to ū on an interval of the form [0, 1 − ε], for ε > 0

small, or else slightly extend the domain of definition of the original problem. We take

the latter route here and make the following standing hypothesis.

Let T > 1 and assume k ∈ C1([0, T ]× [0, T ]) with k(t, t) = 1 for 0 ≤ t ≤ T .

In Sections 3–5, we will generalize the local regularization algorithm given above and

develop an associated convergence theory. Because this generalization is somewhat

technical, it is worth stating here the results of these sections as they apply to the more

practical algorithm given in Section 2.1 above. The result demonstrates convergence of

the regularized approximation scheme in the case where true data f is used, as well as

in the more usual case where only a perturbation f δ of f is available. Convergence of

approximations will be in the following sense.

Definition 2.1 We say that uh(·) converges to u(·) uniformly at collocation points as

h → 0 if for each ε > 0 there exists H = H(ε) > 0 for which |uh(tl) − u(tl)| < ε for

each tl = lh, l = 1, . . . , 1/h, whenever 0 < h ≤ H(ε).

Because convergence occurs as h → 0, we will need sequences (rh) and (µh) of

regularization parameters, selected satisfying certain conditions in the limit as h → 0.

Theorem 2.1 Assume f : [0, T ] → R is a bounded Borel measurable function for which

the unique solution ū of (1.1) corresponding to f is in C1[0, T ]. For each h = 1/N ,

N = 1, 2, . . ., let the regularization parameters rh and µh be given by (2.5) and (2.9),

respectively, i.e.,

rh(t) :=
N∑

i=1

rh, i χi(t), µh(t) :=
N∑

i=1

µh, i χi(t), t ∈ [0, 1],

where we assume

rh, i = γ(ti)h, µh,i = `(ti)h
2, i = 1, . . . N,

for all h sufficiently small. Here γ is piecewise continuous and integer-valued, with

γ(t+) ≥ γ(t−) − 1, t ∈ [0, 1], and ` : [0, 1] 7→ (0,∞) bounded. Then the solution

uh =
∑N

i=1 cjχj(·) of (2.10)–(2.11) (where rh and µh are used in place of r and µ)

converges to ū uniformly at collocation points tj, j = 1, . . . , N , as h → 0.

In addition, let δ > 0 and f δ be bounded Borel measurable with ‖f − f δ‖∞ ≤ δ. If

h = h(δ) is selected so that

δ/h2(δ) ≤ M, h(δ) → 0, as δ → 0,

then uδ
h =

∑N
i=1 cjχj of (2.10)–(2.11) (defined additionally using f δ in place of f)

converges to ū(·) uniformly at collocation points tj, j = 1, . . . , N(δ), as δ → 0. This

convergence is at the best possible rate with respect to δ, that is,

|uδ
h(tj)− ū(tj)| ≤ Kδ1/2 +O(δ), j = 1, . . . , N(δ)
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as δ → 0, where K > 0 is independent of h and δ.

The implications of the theorem (the proof of which follows immediately from

Theorem 4.2) are that the penalty regularization parameter µh(·) may be t-varying

provided it is not too large (relative to h2) and, in fact, µh may be zero. In addition, the

local regularization parameter rh may also vary with t, provided it too is not excessively

large (relative to h) and provided it does not decrease too rapidly as t increases. We

note that there are no limitations on increases in rh.

2.3. Sequential selection of the penalty parameter µ

As is true with all regularization methods, proper selection of the regularization

parameter(s) is an important issue. For simplicity we will assume that h = 1/N is

given and that the regularization function r is fixed and given by (2.5)–(2.6). We

note that a principle for the sequential selection of r has been considered in numerical

examples for the inverse heat conduction problem in [3], but we will not address selection

of this parameter here. Our main interest in this section concerns the selection of the

regularization parameter µ = µ(t) of the form (2.9) in the regularization algorithm

(2.10)–(2.11), in the case of perturbed data f δ. We will give an explicit formula for

µj = µ(tj) at the jth step in the sequential process.

Let j ≥ 1. Then if cδ
1, . . . , c

δ
j−1 have already been found, we determine the (h-

dependent constant) cδ
j from (2.10), (2.12), where now the perturbed data f δ will be

used in place of f . That is,

cδ
j = arg min

c∈R
Jδ

j, r, µ(c), (2.16)

Jδ
j, r, µ(c) :=

∥∥bjc− dδ
j

∥∥2

j
+ µj c2, (2.17)

with bj ∈ Rγj+1 defined via (2.13) and the `th entry in dδ
j ∈ Rγj+1 given by

(
dδ

j

)
`
= f δ(tj+`−1)−

j−1∑
i=1

cδ
i ∆j+`−1, i ,

for ` = 1, . . . , γj + 1. For a given value of µj = µ(tj) ≥ 0, the solution cδ
j = cδ

j(µj) of

(2.16)–(2.17) is then given by

cδ
j(µj) =

(
‖bj‖2

j + µj

)−1 (
b>j dδ

j

)
, (2.18)

where ‖bj‖2
j + µj ≥ ‖bj‖2

j > 0 when ∆jj 6= 0 (which occurs under the standing

assumptions on the kernel k given in Section 2.2).

In order to determine an appropriate value of µj = µ(tj) at the jth step, we apply

a Morozov discrepancy principle. To this end we let Cj ≥ 1 be fixed and assume that

we know δj for which

‖dδ
j − dj‖j ≤ δj (2.19)

(where dj is given by (2.14)), where we assume that the signal-to-noise assumption,

Cjδ
2
j < ‖dδ

j‖2
j , (2.20)
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is satisfied at the jth step. Then a discrete Morozov discrepancy principle determines

the selection of µj at this step via

Fj(µj) = Cjδ
2
j , (2.21)

where Fj represents the jth discrete discrepancy function. That is, for ν ≥ 0,

Fj(ν) = ‖bjc
δ
j(ν)− dδ

j‖2
j =

∥∥∥(‖b‖2
j + ν

)−1
bj b>j dδ

j − dδ
j

∥∥∥2

j
. (2.22)

The unique µj determined by this process is given by the following theorem.

Theorem 2.2 Let h = 1/N > 0 and let r be given by (2.5)–(2.6). For j ≥ 1, assume

that cδ
1, . . . , c

δ
j−1 have already been determined. Then if δj satisfies (2.19)–(2.20) for fixed

Cj ≥ 1, an application of the discrete Morozov discrepancy principle (2.21) determines

a unique µj at the jth step given by

µj =

{
0, if Cjδ

2
j ≤ Dj,

σj

(
σj +

∣∣b>j dδ
j

∣∣) (‖dδ
j‖2

j − Cjδ
2
j

)−1
, if Cjδ

2
j > Dj.

(2.23)

Here Dj ≥ 0 and σj ∈ R, σj > 0, are given respectively by

Dj := ‖bj‖−2
j

(
‖bj‖2

j ‖dδ
j‖2

j −
(
b>j dδ

j

)2)
, (2.24)

σj :=
((

b>j dδ
j

)2 − ‖bj‖2
j

(
‖dδ

j‖2
j − Cjδ

2
j

))1/2

in the case of Cjδ
2
j > Dj. Using this value of µj, the solution cδ

j at the jth step is then

given by (2.18).

Proof: It is not difficult to show that Fj(0) = Dj and that F ′
j > 0 on (0,∞).

Thus there is a unique µj > 0 satisfying the jth discrete discrepancy equation (2.21) for

all Cjδ
2
j ∈ (Dj, ‖dδ

j‖2
j).

Let Cjδ
2
j > Dj. We note from (2.24) that this condition is equivalent to(

b>j dδ
j

)2 − ‖b‖2
j

(
‖dδ

j‖2
j − Cjδ

2
j

)
> 0, from which it follows that σj is real-valued and

positive. In addition, it is easy to see from the definition of σj that |b>j dδ
j | > σj so that

|b>j dδ
j | 6= 0.

Rewriting Fj(ν) in (2.22), we have

Fj(ν) = τ−2(ν)
(
τ 2(ν)‖dδ

j‖2
j − 2 τ(ν)

(
b>j dδ

j

)2
+ ‖bj‖2

j

(
b>j dδ

j

)2)
(2.25)

where τ(ν) = ‖b‖2
j + ν > 0 for ν ≥ 0 since ∆jj 6= 0. We seek µj > 0 which uniquely

solves Fj(ν) = Cjδ
2
j , or, equivalently, ν satisfying

0 = τ 2(ν)
(
‖dδ

j‖2
j − Cjδ

2
j

)
− 2 τ(ν)

(
b>j dδ

j

)2
+ ‖bj‖2

j

(
b>j dδ

j

)2
.

Solving this equation for τ(ν) we obtain explicit values of µj = τ(ν)− ‖bj‖2
j , i.e.,

µj =

(
σ2

j ±
√(

b>j dδ
j

)2
σ2

j

)(
‖dδ

j‖2
j − Cjδ

2
j

)−1
. (2.26)

But σj < |b>j dδ
j | implies

√(
b>j dδ

j

)2
σ2

j > σ2
j , so that there is only one nonnegative µj in

(2.26) above. This is the unique µj found by a discrete Morozov discrepancy principle

at the jth sequential step. The remainder of the theorem follows easily. 2



Discrete predictor-corrector regularization methods 11

2.4. Numerical implementation

We consider an example in which the true solution ū has a discontinuous derivative. In

Figures 1–4, this solution is represented by a dashed curve. Approximate solutions are

computed using N = 40 (h = 1/40) and in these figures are represented by solid curves

joining midpoints of piecewise constant approximations by line segments. The operator

A is given by (1.2) where the kernel k is given by k(t, s) = t − s, for 0 ≤ s ≤ t ≤ 1.

The data f δ used in the regularization process is a (uniformly distributed) random

perturbation of f = Aū, where f δ differs from f with approximately 3% relative error.
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Figure 1. Results from Tikhonov regularization for various α values

As a baseline for comparison, we show in Figure 1 the results of standard Tikhonov

regularization as applied to this example, using various choices of the Tikhonov

parameter α. We show results for the same example in Figure 2 where now the local

regularization (“predictor-corrector”) ideas of this paper are used to find approximate

solutions. In each graph in this figure, a constant value of r ≡ 2h is used, while different

values of the penalty parameter µ are selected. In the first three graphs in Figure 2, µ

is constant-valued (taking the values µ ≡ 0.0, 1.5×10−6, and 2.5×10−6, respectively); in
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Figure 2. Results using the “local regularization” method with
various choices of µ(t) (mu).

the final graph in that figure, an a priori selection of a functional parameter µ = µ(t)

is made, with values of µ in this case varying from 10−8 at the beginning of the interval

to 10−4 at the end of the interval. (See Figure 3 for an even better choice of variable µ

for this problem.) Further improvements in the results are obtained if r is also allowed

to vary with t, however the advantages of variable r have been illustrated in numerical

examples elsewhere (see [23] for an example similar to that considered here and [36] for

other numerical results). For this reason, we keep r constant and focus here instead on

results obtained through the use of a variable penalty parameter µ.

It is worth making a comparison between the first graph in Figure 1 (standard

Tikhonov regularization with α = 0, i.e., the solution to the discrete equations (2.3)–

(2.4)) and the first graph in Figure 2 (local regularization with µ ≡ 0). The latter graph

shows an improved approximate solution, but this is because the choice of r ≡ 2h offers

some regularization even when µ ≡ 0.

In Figure 3 we illustrate an application of a sequential discrepancy principle to select

µ(t). As given in Theorem 2.2, we have an explicit representation for µj ≡ µ(tj) given

an estimate of δj at the jth step in the sequential process. It is our experience that useful

results require a fairly reasonable estimate of both the data error component and the

propagated error component (the latter being more difficult to estimate) which comprises

δj. We note that this is in contrast to initial findings for the method of sequential

Tikhonov regularization (in which a local, reduced-dimension Tikhonov regularization

problem is solved at the jth step). Indeed, numerical tests for this particular method

seem to indicate that one need only provide an estimate of the average data error
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Figure 3. Results obtained using the sequential computation of µ(t)
(as prescribed by Theorem 2.2). In the above graphs, the maximum
relative errors refer to the computation of the δj needed in Theorem 2.2.

(ignoring the effect of propagated error) in order to sequentially determine a variable

Tikhonov-like parameter which works well in practice [21].

For the results in Figure 3 we use δj = δ̄j(1 + νj) where δ̄j is the exact error (exact

data error, plus exact propagated error) at the jth step in the sequential process, and

νj is a uniformly distributed random variable scaled to obtain 50%, 10%, 5%, and 0%,

respectively, maximum relative error in δj. In each example we use Cj = 1, j = 1, . . . , N ,

in the formula (2.23) for µj, j = 1, . . . , N . In Figure 4, we repeat the graph of the

approximate solution found using 0% relative error in δj. In the second graph in Figure

4, we graph the µ that was determined by the sequential discrepancy principle. In the

third graph in this figure, we rescale the y-axis for µ so that the detail on the first half

of the interval can be clearly seen. It is interesting to note that decreases in values

of predicted µ correspond to locations of larger/steeper values of the true solution (at

which points less regularization is required). In addition, the sequentially-determined

µ increases greatly toward the end of the interval, when propagated error is having the

largest effect.
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Figure 4. Sequential selection of µ(t) (mu)

3. Generalized discrete predictor-corrector methods

3.1. An equivalent representation of the predictor-corrector algorithm

Assuming we are given r, µ of the form (2.5)–(2.6) and (2.9) respectively, it is useful

to view the penalized predictor-corrector algorithm (2.10)–(2.11) in a slightly different

context. Recall that (2.15) gives an explicit solution of this algorithm at the jth step.

Rewriting (2.15) we have

γj+1∑
`=1

b
(j)
`

(
j−1∑
i=1

ci ∆j+`−1, i

)
+
(
‖bj‖2

j + µj

)
cj =

γj+1∑
`=1

b
(j)
` f(tj+`−1) (3.1)



Discrete predictor-corrector regularization methods 15

where, using (2.1),

j−1∑
i=1

ci∆j+`−1, i =

∫ tj−1

0

k(tj+`−1, s)uh(s) ds

and

cj‖bj‖2
j = cj

γj+1∑
`=1

b
(j)
` ∆j+`−1, j + cj

γj+1∑
`=1

b
(j)
`

∑̀
i=2

∆j+`−1, j+i−1

=

γj+1∑
`=1

b
(j)
`

∫ tj

tj−1

k(tj+`−1, s)uh(s) ds + uh(tj)

γj+1∑
`=1

b
(j)
`

∫ t`−1

0

k(tj+`−1, s + tj) ds.

Thus (3.1) becomes∫ tj

0

(
γj+1∑
`=1

b
(j)
` k(tj + t`−1, s)

)
uh(s) ds +

[
γj+1∑
`=1

b
(j)
`

∫ t`−1

0

k(tj + t`−1, s + tj)ds + µj

]
uh(tj)

=

γj+1∑
`=1

b
(j)
` f(tj + t`−1),

or ∫ tj

0

k̃(tj, s; r, h)uh(s) ds + [α(tj; r, h) + µ(tj)]uh(tj) = f̃(tj; r, h), (3.2)

for j = 1, . . . , N , where for t ∈ [0, 1],

k̃(t, s; r, h) :=

∫ r(t)

0

k(t + ρ, s) dη(ρ; t), (3.3)

α(t; r, h) :=

∫ r(t)

0

∫ ρ

0

k(t + ρ, s + t) ds dη(ρ; t), (3.4)

f̃(t; r, h) :=

∫ r(t)

0

f(t + ρ) dη(ρ; t). (3.5)

Here, for each t ∈ [0, 1], η(·; t) is an (r, h)-dependent Borel measure on [0, r(t)] defined

via ∫ r(t)

0

g(ρ) dη(ρ; t) :=

K(t)∑
`=1

s`(t) g(t`−1), (3.6)

for g a Borel function on [0, r(t)], where the h-dependent functions K and s` are given

by

K(t) := r(t)/h + 1, (3.7)

s`(t) :=

∫ t`

0

k(t + t`−1, t + (s− h)) ds, ` = 1, . . . , K(t). (3.8)

The equivalence of (3.1) and (3.2) results from the fact that s`(tj) = b
(j)
` , for j =

1, . . . , N , and thus
∫ r(tj)

0
g(ρ) dη(ρ; tj) =

∑γj+1
`=1 b

(j)
` g(t`−1), j = 1, . . . , N . We summarize

our findings in the following lemma.
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Lemma 3.1 Let r and µ be given by (2.5)–(2.6) and (2.9), respectively. The problem

of finding cj solving the penalized predictor-corrector algorithm (2.10)–(2.11) for j =

1, . . . , N , is equivalent to the problem of seeking uh of the form (2.1) which solves the

Volterra equation∫ t

0

k̃(t, s; r, h)u(s) ds + [α(t; r, h) + µ(t)]u(t) = f̃(t; r, h), (3.9)

precisely at collocation points t = tj, j = 1, . . . , N . The quantities k̃, α, and f̃ are

defined in (3.3), (3.4), and (3.5), respectively, and η is given by (3.6).

Under our standing assumptions on k, the coefficient of u(t) in (3.9) is nonzero and

relevant quantities in that equation are square-integrable; thus the above lemma gives

that the predictor-corrector algorithm is a collocation-based discretization of a well-

posed second-kind Volterra equation. This is in contrast to the unregularized algorithm

(2.3)–(2.4), which results from a collocation-based discretization of the original ill-posed

first-kind Volterra equation (1.1).

The selection of η above can be generalized, as can the choices of r and µ. We do

this in the next section, and make rigorous the assumptions needed in the more general

framework. Theoretical convergence arguments will also be constructed in this setting,

with convergence results given in Sections 4–5.

3.2. Definitions and hypotheses

For a generalization of the method presented in Section 2, we let T > 1 and k be given

as in Section 2.2, let (F , ‖ · ‖F) denote a normed linear space of functions defined on

[0, T ], and let the subspace FD of F denote the admissible space of data functions,

where it is assumed that all g ∈ FD are Borel functions. We assume that the data f

defined in (1.1) belongs to FD and is such that (1.1) has a unique solution ū ∈ C1[0, T ].

The perturbation f δ of f will be assumed to be such that f δ ∈ FD, where f δ is close to

f in an appropriate sense.

For a functional local regularization parameter r of more general form than that

considered in the last section, we assume r ∈ Γ, where

Γ := {r : [0, 1] → R : r piecewise continuous, min
t∈[0,1]

r(t) > 0, max
t∈[0,1]

t + r(t) ≤ T}.

For r ∈ Γ, we will use the notation rmin := mint∈[0,1] r(t) > 0 and ‖r‖∞ :=

maxt∈[0,1] r(t) ≤ T . Corresponding to r ∈ Γ and h > 0 we make the following definition

of a family N = N (r, h) of measures which are compatible with r and h in a specific

sense.

Definition 3.1 Given r ∈ Γ and h > 0, we say that the one-parameter family

N = {η(·; t), t ∈ [0, 1]} is an (r, h)-suitable family of measures if, for each t ∈ [0, 1],

η(·; t) is a finite, positive Borel measure defined on [0, r(t)] satisfying∫ r(t)

0

ρ dη(ρ; t) > 0, t ∈ [0, 1], (3.10)
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and for which∫ r(t)

0

f(t + ρ) dη(ρ; t) is well-defined for all f ∈ FD, t ∈ [0, 1]. (3.11)

We note that, in general, the family N depends on both r and h, as well as the selection

of F . We give two examples of (r, h)-suitable N below. In each case we will define

η(·, t) on [0, ‖r‖∞] for t ∈ [0, 1], where it will be understood that
∫ r(t)

0
g(ρ) dη(ρ; t) :=∫ ‖r‖∞

0
g(ρ)χ[0,r(t)](ρ) dη(ρ; t), t ∈ [0, 1], where χ[0,r(t)] is the characteristic function on

[0, r(t)].

Our first example is a generalization of the family of measures defined via (3.6)–

(3.8).

Example 3.1 Let h = 1/N and r ∈ Γ be given, and suppose FD ⊆ F := {f : [0, T ] →
R : ‖f‖F := sup

t∈[0,T ]

|f(t)| < ∞}. Define N = {η(·, t), t ∈ [0, 1]} where for each t ∈ [0, 1],

∫ ‖r‖∞

0

g(ρ) dη(ρ; t) :=
K∑

`=1

s`(t)g(τ`)

for bounded Borel-measurable g on [0, ‖r‖∞], where the (r, h)-dependent parameters K,

s`, τ`, satisfy 0 < K < ∞, K integer; 0 < s`(t) ≤ ‖s`‖∞ < ∞, t ∈ [0, 1], ` = 1, . . . , K;

and 0 ≤ τ1 < τ2 < . . . < τK ≤ ‖r‖∞, with τ` ∈ (0, rmin] for some `. It then follows that

N is an (r, h)-suitable family of measures.

Example 3.2 Let h, r, FD, F , and g be as in Example 3.1, and assume that the (r, h)-

dependent function ω satisfies 0 < ω ≤ ω(ρ, t) ≤ ω̄ < ∞, a.a. (ρ, t) ∈ [0, ‖r‖∞]× [0, T ].

Then if N = {η(·; t), t ∈ [0, 1]}, where for each t ∈ [0, 1],∫ ‖r‖∞

0

g(ρ)dη(ρ; t) :=

∫ ‖r‖∞

0

g(ρ)ω(ρ, t)dρ, (3.12)

it follows that N is an (r, h)-suitable family of measures.

Given noisy data f δ, the discrete regularization problem Pδ
h (which generalizes the

problem described in Section 2 and in Lemma 3.1) is as follows:

Definition 3.2 Let f δ ∈ FD and µ : [0, 1] → [0,∞) be specified. Given h = 1/N and

r ∈ Γ, let N = {η(·; t), t ∈ [0, 1]} denote an (r, h)-suitable family of measures. We define

the discrete regularization problem, denoted by Pδ
h ≡ Pδ

h(r; µ;N ), to be the problem of

determining uδ
h = uδ

h(·; r; µ;N ), a step-function of the form (2.1), which satisfies the

regularization equation∫ t

0

k̃(t, s; r, h)u(s) ds + [α(t; r, h) + µ(t)]u(t) = f̃ δ(t; r, h), (3.13)

exactly at collocation points t = tj, j = 1, . . . , N . We will also use the notation

Ph ≡ Ph(r; µ;N ) to designate the same problem as above, but with f δ replaced by the

true data f .
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In the above definition, k̃ and α are given by (3.3) and (3.4), respectively, while f̃ δ is

defined by (3.5) with f δ used in place of f . Well-posedness of the discrete regularization

problem Pδ
h is guaranteed by the following theorem.

Theorem 3.1 Let f δ ∈ FD and µ : [0, 1] → [0,∞) be specified. Given h = 1/N and

r ∈ Γ, let N = {η(·; t), t ∈ [0, 1]} denote an (r, h)-suitable family of measures. Then if

‖r‖∞ and h are sufficiently small, there is a unique solution uδ
h = uδ

h(·; r; µ;N ) of the

discrete regularization problem Pδ
h = Pδ

h(r; µ;N ).

Proof: Substituting (2.1) into (3.13) and evaluating at tj, we have

j∑
i=1

ci

∫ ti

ti−1

k̃(tj, s; r, h) ds + [α(tj; r, h) + µ(tj)]cj = f̃ δ(tj; r, h), j = 1, . . . N, (3.14)

a lower-triangular linear system in the vector (c1, . . . , cN)>, with diagonal elements in

the governing matrix given by∫ tj

tj−1

k̃(tj, s; r, h) ds + α(tj; r, h) + µ(tj)

=

∫ tj

tj−1

∫ r(tj)

0

k(tj+ρ, s) dη(ρ; tj) ds +

∫ r(tj)

0

∫ ρ

0

k(tj+ρ, s+tj) ds dη(ρ; tj) + µ(tj),

for j = 1, . . . , N . But we have assumed that k ∈ C1 has been normalized so that

k(t, t) = 1 for t ∈ [0, 1], so it follows that for h and ‖r‖∞ sufficiently small, the inte-

grands in the first two terms on the right above are positive, bounded below by some

k = k(r, h) > 0. Thus, for j = 1, . . . , N ,
∫ tj

tj−1

∫ r(tj)

0
k(tj + ρ, s) dη(ρ; tj) ds ≥ 0, and∫ r(tj)

0

∫ ρ

0
k(tj + ρ, s + tj) ds dη(ρ; tj) ≥ k

∫ r(tj)

0
ρ dη(ρ; tj) > 0, where we have used the

assumption (3.10) on η(·, t). Therefore, the lower-triangular matrix system determined

by (3.14) has a unique solution (c1, . . . , cN)>. 2

In the next section we focus on the problem of convergence for discrete

approximations of equation (3.13). Before doing so, it is worth noting that if no

discretization is performed, then equation (3.13) may alternatively be used to define

a continuous regularization method. This idea is pursued in [23] and there one may

find conditions guaranteeing well-posedness of the continuous regularization problem

associated with (3.13), along with convergence results depending on choices of the

functional regularization parameters r = r(·; δ) and µ(·; δ) as δ → 0. The theory in

[23] serves to generalize the continuous regularization ideas in [19] to nonconvolution

kernels and, more importantly, to the case of a variable regularization parameter r.

4. Convergence results

Throughout this section we will assume f ∈ FD, k, and ū satisfy the assumptions made

at the beginning of Section 3.2. Let h = 1/N for N = 1, 2, . . .. We are interested here

in the limiting behavior as h → 0 of solutions uh of the discrete regularization problem

Ph, given
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• a sequence (rh) ⊂ Γ of functional local regularization parameters;

• a sequence (Nh), where each Nh = {ηh(·, t), t ∈ [0, 1]} is an (rh, h)-suitable family

of measures; and,

• a sequence (µh) of functional penalty parameters, with µh(t) ≥ 0, t ∈ [0, 1].

In Theorem 5.1 and Corollary 5.1, we will state convergence results under fairly general

conditions on the above quantities. We will also examine convergence of uδ
h (the solution

of problem Pδ
h) to ū, given f δ ∈ FD, |f(t)− f δ(t)| ≤ δ, t ∈ [0, T ], and under conditions

relating h to δ as δ → 0.

Before turning to the main convergence theorem (for which the statement of results

becomes somewhat technical), we first describe a couple of useful special cases of

these findings. The first special case requires one of the following conditions on local

regularization parameters rh(·), given a positive constant Mr:

(1a) The parameters rh ∈ Γ are constant functions given by

rh(t) = Chh, t ∈ [0, 1],

where 0 < Ch ≤ Mr < ∞ for all h sufficiently small;

(1b) The parameters rh ∈ Γ are functions satisfying

rh(t) ≤ Mrh, t ∈ [0, 1],

for all h sufficiently small, where Mr < 1.

When condition (1a) holds we will need the following condition on the families Nh of

measures:

(2a) For some ε > 0 and each h > 0, there exists a finite, positive

(t-independent) Borel measure η̄h on [0, ε] for which (3.10) and (3.11)

hold, and such that, for m = 0, 1 and ηh(·; t) ∈ Nh∫ rh(t)

0

ρm dηh(ρ; t) = (1 + w̄m(t; h))

∫ rh(t)

0

ρm dη̄h(ρ), t ∈ [0, 1],

where ‖w̄m(·; h)‖∞ = O(h) as h → 0.

Finally, we require the following condition on the penalty regularization parameters µh:

(3) For some Mµ > 0, the penalty parameters µh satisfy

0 ≤ µh(t) ≤ h2Mµ

∫ rh(t)

0

dηh(ρ; t), t ∈ [0, 1],

for all h sufficiently small.

We note that condition (3) relates the size of µh to h, rh, and ηh, and allows for the

possibility of µh ≡ 0 for all h = 1/N , N = 1, 2, . . .. More general conditions on µh are

allowed, as can be seen in Section 5.
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Remark 4.1 Condition (2a) on ηh requires that the measures be approximately t-

independent (in some sense) for all h small. Although technical, this condition is satisfied

by the families of measures most commonly used in practice. Indeed, the discrete

measure defined via (3.6)–(3.8) (which is the measure associated with the predictor-

corrector algorithms of Section 2) can be seen to satisfy this condition provided we

make the natural assumption (which is more general than (1a)) that rh ∈ Γ is of the

form rh(t) = γ(t)h, where γ is a fixed nonnegative integer-valued function on [0, 1].

(We note that we may equivalently assume, as in Section 2, that rh ∈ Γ is of the form

rh(t) =
∑N

i=1 γ(ti)hχi(t) since only rh(tj), j = 1, . . . , N , will be required in constructing

the solution of Pδ
h.) In this case, using a Taylor expansion on k, the functions s` = s`(t),

` = 1, . . . K = ‖γ‖∞ + 1, in (3.8) satisfy

s`(t) =

∫ t`

0

[k(t, t) + t`−1D1k(ζ1, ζ2) + (s− h)D2k(ζ1, ζ2)] ds,

where ζi = ζi(t, s, h, `), so that s`(t) = `h(1 + ŝ`(t, h)), ` = 1, . . . , K, with ‖ŝ`(·, h)‖∞ =

O(h) as h → 0. Thus, the “approximate t-independence” of the quantity s`(·) in ηh is

sufficient to argue that condition (2a) above holds for the associated family of measures.

It is also not difficult to see how other families of measures (such as those in Examples

3.1–3.2) may be constructed in order to easily satisfy condition (2a) above.

The next theorem follows immediately from Theorem 5.1 and Corollary 5.1, both

of which are proven in the next section.

Theorem 4.1 For h = 1/N , N = 1, 2, . . ., assume the parameters rh ∈ Γ satisfy

either conditions (1a) (in which case the (rh, h)-suitable families Nh of measures satisfy

condition (2a) ) or (1b), and that the parameters µh satisfy condition (3). Then the

solution uh(·) = uh(·; rh; ηh; µh) of the discretization problem Ph converges to ū(·)
uniformly at collocation points tj, j = 1, . . . , N, as h → 0.

If, in addition, f δ ∈ FD satisfies |f(t) − f δ(t)| ≤ δ, t ∈ [0, T ], and h = h(δ) is

selected so that

δ/h2(δ) ≤ M

and h(δ) → 0 as δ → 0, then the solution uδ
h(·) = uδ

h(·; rh; ηh; µh) of discretization

problem Pδ
h converges to ū(·) uniformly at collocation points tj, j = 1, . . . , N(δ), as

δ → 0. This convergence is at the best possible rate with respect to δ, that is,

|uδ
h(tj)− ū(tj)| ≤ Kδ1/2 +O(δ), j = 1, . . . , N(δ)

as δ → 0, where K > 0 is independent of h and δ.

We note that when rh is specified to satisfy condition (1a) in Theorem 4.1, this

theorem generalizes the results in [18] to a penalized (i.e., µ 6= 0) predictor-corrector

method, to nonconvolution kernels k, and to the case of more general measures.

The above result is fairly limited for truly variable rh in that condition (1b) implies

that rh(t) < h for all t ∈ [0, 1]. In practical numerical calculations, we are interested in

using rh as in Section 2.1 and Remark 4.1, e.g., rh of the form rh(t) = γ(t)h where γ(t)
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is integer-valued for t ∈ [0, 1]; such a choice allows us to coordinate the length rh(tj) of

the jth future regularization interval with the discretization stepsize. But condition (1b)

requires 0 < γ(t) < 1, t ∈ [0, 1], thus ruling out integer-valued γ. However, in fact we

can allow integer-valued γ under an additional condition on the measures ηh, a property

which is satisfied by measures of practical interest in computations. We give a definition

prescribing this “p-condition” below, and note that the condition is of greatest interest

when p ≥ 1 is an integer.

Definition 4.1 Let h = 1/N , N = 1, 2, . . .. Suppose we are given a sequence (rh) ⊂ Γ

with |rh(t)| ≤ Mrh, t ∈ [0, 1], for some Mr > 0, and assume that for each h we have an

associated (rh, h)-suitable family Nh = {ηh(·; t), t ∈ [0, 1]} of measures. For p > 0, we

say that (Nh) satisfies a p-condition with respect to (rh) if there is b1 ∈ (0, 1/p), C1 > 0,

so that, for all h sufficiently small,∫ rh(t)

0
ρ dηh(ρ; t)∫ rh(t)

0
dηh(ρ; t)

= b1rh(t) + c1(t; h), t ∈ [0, 1], (4.1)

where

|c1(t; h)| ≤ C1h
2, t ∈ [0, 1].

We consider in Examples 4.1 and 4.2 below some measures standardly used in

computations, and demonstrate that these classes of measures satisfy a p-condition

with p = 1 for reasonable choices of (rh). But before giving these examples, we state

a theorem which shows how we may relax conditions on (rh) when the p-condition is

satisfied by (ηh).

Theorem 4.2 Suppose that the sequence (rh) ⊂ Γ is given, with

rh(t) = γ(t)h, 0 < γmin ≤ γ(t) ≤ Mr, (4.2)

for some γmin, Mr, and all t ∈ [0, 1]. Suppose further that there is a corresponding

sequence (Nh) of families of measures, each (rh, h)-suitable, which satisfies a p-condition

with respect to (rh) for some p > 0. Then if

γ(t+) ≥ γ(t−)− p, t ∈ [0, 1], (4.3)

and if penalty parameters µh satisfy condition (3), then the conclusion of the first part

of Theorem 4.1 holds.

If, in addition, f δ ∈ FD satisfies |f(t) − f δ(t)| ≤ δ, t ∈ [0, T ], and h = h(δ) is

selected so that

δ/h2(δ) ≤ M

and h(δ) → 0 as δ → 0, then the conclusions of the second part of Theorem 4.1 hold.

The significance of this theorem (the proof of which appears in Section 5) is clearly

seen when p ≥ 1 is an integer. In this case condition (4.3) allows γ to be integer valued

with “decreasing jumps” of at most p, and no limit on “increasing jumps” (other than
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the fact that γ must remain finite on [0, 1]). In other words, as t increases, one may

increase the level of regularization quickly, but one must decrease it more deliberately.

Below we give some examples of standard measures satisfying p-conditions for p = 1,

and a final example where the p-condition may be satisfied using arbitrary p ≥ 2.

Example 4.1 Let (rh) ⊂ Γ be given satisfying (4.2), with piecewise continuous, integer-

valued γ, and, for each (rh, h), let Nh = {ηh(·; t), t ∈ [0, 1]} where ηh is given by (3.6)–

(3.8) (which is the standard measure associated with the predictor-corrector scheme

described in Section 2, and a special case of Example 3.1). From Remark 4.1 we have

that s`(t) = `h(1 +O(h)), t ∈ [0, 1], for ` = 1, . . . , K. Thus,∫ rh(t)

0
ρ dηh(ρ; t)∫ rh(t)

0
dηh(ρ; t)

=
(∑γ(t)+1

`=1 s`((`− 1)h)
)(∑γ(t)+1

`=1 s`

)−1

= h (1 +O(h))
(∑γ(t)+1

`=1 `(`− 1)
)(∑γ(t)+1

`=1 `
)−1

= (2/3) hγ(t) +O(h2).

It follows that (Nh) satisfies (4.1) with b1 = 2/3 and thus with p = 1.

Example 4.2 Let FD and g be as in Example 3.1, let (rh) ⊂ Γ with ‖rh‖∞ ≤ Mrh,

and suppose Nh = {ηh(·; t), t ∈ [0, 1]}, where ηh is defined (similar to Example 3.2) for

each h = 1/N , N = 1, 2, . . ., by∫ ‖rh‖∞

0

g(ρ)dηh(ρ; t) :=

∫ ‖rh‖∞

0

g(ρ)ωh(ρ, t) dρ. (4.4)

Here we assume ωh(ρ, t) = ω̂(ρ)(1 + ω0(ρ, t; h)) for fixed ω̂ ∈ C1[0, T ], 0 < ω̂ ≤ ω̂(ρ),

ρ ∈ [0, T ], and for ‖ω0(·, ·; h)‖∞ = O(h). Then (Nh) satisfies a p-condition with p = 1.

Indeed, for all t ∈ [0, 1], a Taylor expansion of ω̂(ρ) about ρ = 0 gives∫ rh(t)

0
ρ ωh(ρ, t) dρ∫ rh(t)

0
ωh(ρ, t) dρ

=
ω̂(0)

∫ rh(t)

0
ρ dρ

ω̂(0)
∫ rh(t)

0
dρ

(1 +O(h))

= (1/2) rh(t) +O(h2)

as h → 0. Thus (4.1) is satisfied with b1 = 1/2, and (Nh) satisfies a p-condition with

p = 1.

Example 4.3 Let p ≥ 2 be arbitrary. Following the ideas of the last example (with

the same FD, g, and (rh)), we may construct families Nh of measures satisfying a p-

condition for this prescribed p if we define ηh via (4.4) using instead an unbounded ω̂,

here given by ω̂(ρ) = ρ−m/(m+1), ρ ∈ (0, 1], for m > p−2. Then it’s not difficult to show

that (4.1) holds with b1 = 1/(m + 2) < 1/p.

5. Proofs of convergence

The proofs of Theorems 4.1 and 4.2 follow from the results below and will be presented

at the end of this section. Our main convergence theorem, a rather technical result, is

given first.
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Theorem 5.1 Suppose f ∈ FD, k, and ū satisfy the conditions at the beginning of

Section 3.2, and let εr, Mr, and Mµ be fixed positive scalars. For each N = 1, 2, . . .,

let h = 1/N and suppose we are given rh ∈ Γ and an (rh, h)-suitable family Nh =

{ηh(·; t), t ∈ [0, 1]} of measures for which

rh(t) ≤ Mr h, t ∈ [0, 1], (5.1)

and ∫ rh(tj+1)

0
ρ dηh(ρ; tj+1)

h
∫ rh(tj+1)

0
dηh(ρ; tj+1)

−
∫ rh(tj)

0
ρ dηh(ρ; tj)

h
∫ rh(tj)

0
dηh(ρ; tj)

+ 1 ≥ εr, j = 0, . . . , N−1, (5.2)

for all N sufficiently large. Then if µh : [0, 1] 7→ [0,∞) is selected satisfying

1

h

(
µh(0)∫ rh(0)

0
dηh(ρ; 0)

)
≤ Mµ, (5.3)

1

h2

∣∣∣∣∣ µh(tj+1)∫ rh(tj+1)

0
dηh(ρ; tj+1)

− µh(tj)∫ rh(tj)

0
dηh(ρ; tj)

∣∣∣∣∣ ≤ Mµ, j = 0, . . . , N−1, (5.4)

for all h sufficiently small, and if ū(0) = 0, the solution uh(·) = uh(·; rh; µh;Nh) of

the discretization problem Ph converges to ū(·) uniformly at collocation points t = tj,

j = 1, . . . , N , as h → 0.

If, in addition, f δ ∈ FD satisfies |f(t) − f δ(t)| ≤ δ, t ∈ [0, T ], and h = h(δ) is

selected so that

δ/h2(δ) ≤ M

and h(δ) → 0 as δ → 0, then the solution uδ
h(·) = uδ

h(·; rh; µh;Nh) of discretization

problem Pδ
h converges to ū(·) uniformly at collocation points tj, j = 1, . . . , N(δ), as

δ → 0. This convergence is at the best possible rate with respect to δ, that is,

|uδ
h(tj)− ū(tj)| ≤ Cδ1/2 +O(δ), j = 1, . . . , N(δ)

as δ → 0, where C > 0 is independent of h and δ.

Proof: Let N = 1, 2, . . ., and h = 1/N . Let d(t) := f δ(t) − f(t), t ∈ [0, 1]. Since the

sequences (rh) and (µh) are indexed by the discretization parameter h, we will simplify

notation throughout the proof by writing α(t; h) := α(t; rh, h), f̃ δ(t; h) := f̃ δ(t; rh, h),

t ∈ [0, 1], and k̃(t, s; h) := k̃(t, s; rh, h), for 0 ≤ s ≤ t ≤ 1. In addition, it will be useful

to define, for t ∈ [0, 1],

νh(t) := (α(t; h) + µh(t))/a0(t; h),

am(t; h) :=

∫ rh(t)

0

ρm dηh(ρ, t), (5.5)

for m = 0, 1. Clearly a0(t; h) ≥ a1(t; h)/‖rh‖∞ > 0 for all t ∈ [0, 1], h = 1/N ,

N = 1, 2, . . .. We will also make the definitions

k̃0(t, s; h) := k̃(t, s; h)/a0(t; h), f δ
0 (t) := f δ(t)/a0(t; h)

with similar definitions for f0, d0, and ū0.
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Using these definitions, (3.14) may be written, after a division by a0(tj; h) as

j∑
i=1

ci

∫ ti

ti−1

k̃0(tj, s; h) ds + νh(tj)cj =

∫ rh(tj)

0

f δ
0 (tj + ρ) dηh(ρ; tj), (5.6)

for j = 1, . . . , N .

We will use a differencing technique similar to that used in [18] to analyze

convergence. To this end, we replace j in equation (5.6) by j + 1 (for j = 0, . . . , N − 1)

and subtracting (5.6) from the resulting equation we obtain

νh(tj+1)cj+1 +

∫ tj+1

tj

k̃0(tj+1, s; h)cj+1χj+1(s) ds

=

∫ rh(tj+1)

0

[f0(tj+1 + ρ) + d0(tj+1 + ρ)] dηh(ρ; tj+1)

−
∫ rh(tj)

0

[f0(tj + ρ) + d0(tj + ρ)] dηh(ρ; tj) + νh(tj)cj

−
j∑

i=1

∫ ti

ti−1

[
k̃0(tj+1, s; h)− k̃0(tj, s; h)

]
ciχi(s) ds, (5.7)

for j = 1, . . . , N − 1.

For given h = 1/N and rh, the true solution ū of (1.1) satisfies∫ t

0

k̃(t, s; h)ū(s) ds +

∫ rh(t)

0

∫ ρ

0

k(t + ρ, s + t) [ū(s + t)− ū(t)] ds dηh(ρ; t)

+[α(t; h) + µh(t)]ū(t) =

∫ rh(t)

0

f(t + ρ) dηh(ρ; t) + µh(t)ū(t), (5.8)

for all t ∈ [0, 1]. We evaluate (5.8) at t = tj and divide through by a0(tj; h), and then

subtract the resulting equation from the one arising from evaluation at t = tj+1 and

division by a0(tj+1; h). Then, subtracting (5.7) from the resulting equation in ū, the

result is (for j = 1, . . . , N−1)

νh(tj+1) [ū(tj+1)− cj+1] +

∫ tj+1

tj

k̃0(tj+1, s; h)[ū(s)− cj+1χj+1(s)] ds

= νh(tj)[ū(tj)− cj] + µh(tj+1)ū0(tj+1)− µh(tj)ū0(tj)

−
∫ rh(tj+1)

0

d0(tj+1 + ρ) dηh(ρ; tj+1) +

∫ rh(tj)

0

d0(tj + ρ) dηh(ρ; tj)

−
j∑

i=1

∫ ti

ti−1

[
k̃0(tj+1, s; h)− k̃0(tj, s; h)

]
[ū(s)− ciχi(s)] ds

−
∫ rh(tj+1)

0

∫ ρ

0

k(tj+1+ρ, s+tj+1)
ū(s+tj+1)− ū(tj+1)

a0(tj+1; h)
ds dηh(ρ; tj+1)

+

∫ rh(tj)

0

∫ ρ

0

k(tj+ρ, s+tj)
ū(s+tj)− ū(tj)

a0(tj; h)
ds dηh(ρ; tj). (5.9)

Using a Taylor expansion we can write, for t ∈ (tj, tj+1] and j = 0, . . . , N − 1,

ū(t)− cj+1χj+1(t) = h
[
βj+1 + h−1(t− tj+1)ū

′(zj+1(t))
]
, (5.10)
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for some zj+1(t) between t and tj+1, and where βj+1 := h−1(ū(tj+1)− cj+1). Using this

expansion and dividing through by h, (5.9) becomes

βj+1 = Wj(h)βj − h

j∑
i=1

Vj,i(h)βi −
1

h2
Ej(δ, h)− Zj(h), (5.11)

for j = 1, . . . , N − 1, where

Dj(h) := νh(tj+1) +

∫ tj+1

tj

k̃0(tj+1, s; h) ds, (5.12)

Wj(h) := νh(tj)/Dj(h), (5.13)

Ej(δ, h) :=
h

Dj(h)

[∫ rh(tj+1)

0

d0(tj+1+ρ) dηh(ρ; tj+1)−
∫ rh(tj)

0

d0(tj+ρ) dηh(ρ; tj)

]
, (5.14)

Vj,i(h) := (hDj(h))−1

∫ ti

ti−1

[
k̃0(tj+1, s; h)− k̃0(tj, s; h)

]
ds, (5.15)

Zj(h) := (hDj(h))−1Rj(h), (5.16)

Rj(h) :=

∫ rh(tj+1)

0

∫ ρ

0

k(tj+1 + ρ, s + tj+1)
ū(s + tj+1)− ū(tj+1)

a0(tj+1; h)
ds dηh(ρ; tj+1) (5.17)

−
∫ rh(tj)

0

∫ ρ

0

k(tj + ρ, s + tj)
ū(tj + s)− ū(tj)

a0(tj; h)
ds dηh(ρ; tj)

+

j∑
i=1

∫ ti

ti−1

[
k̃0(tj+1, s; h)− k̃0(tj, s; h)

]
(s− ti)ū

′(zi(s)) ds

+

∫ tj+1

tj

k̃0(tj+1, s; h)(s− tj+1)ū
′(zj+1(s)) ds− µh(tj+1)ū0(tj+1) + µh(tj)ū0(tj),

for i = 1, . . . , j, j = 1, . . . , N − 1.

Similarly, if we evaluate (5.6) at j = 1 and (5.8) at t = t1 (dividing through the

resulting equation by a0(t1; h)) and then subtract the two equations, we get

β1 = − 1

h2
E0(δ, h)− Z0(h), (5.18)

where D0(h) and Z0(h) are defined by (5.12) and (5.16), respectively (using j = 0 in

each) and where

E0(δ, h) := hD−1
0 (h)

∫ rh(t1)

0

d0(t1 + ρ) dηh(ρ, t1), (5.19)

R0(h) :=

∫ rh(t1)

0

∫ ρ

0

k(t1 + ρ, s + t1) [ū(s + t1)− ū(t1)] a
−1
0 (t1; h) ds dηh(ρ, t1)

+

∫ t1

0

k̃0(t1, s; h)(s− t1)ū
′(z1(s)) ds− µh(t1)ū0(t1). (5.20)

Now suppose we can show that there are positive constants w, v, ε, and z, all independent

of h for which

Wj(h) ≤ w, Vj,i(h) ≤ v, (5.21)
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for i = 1, . . . , j, j = 1, . . . , N − 1, and w ∈ (0, 1), and

Ej(δ, h) ≤ ε δ, Zj(h) ≤ z, (5.22)

for j = 0, . . . , N − 1. Then applying the arguments found in [18], it follows that

|βj| ≤ B, for j = 1, . . . , N , where B is independent of N and h; the bound is

obtained using the assumption of a uniform bound on δ/h2(δ). Thus, using (5.10),∣∣ū(tj)− uδ
h(tj)

∣∣ = |ū(tj)− cj| ≤ B h(δ) so that
∣∣ū(tj)− uδ

h(tj)
∣∣ → 0 as δ → 0, for

j = 1, . . . , N .

It remains only to show that the bounds in (5.21)–(5.22) hold. We first show

Dj(h) > 0 for all h sufficiently small and obtain estimates on D−1
j (h) for j = 0, . . . , N−1

and h sufficiently small. To this end we note that the quantity a0(tj+1; h)Dj(h) is the

(j + 1)st diagonal entry in the matrix system in (3.14) for j = 0, . . . , N−1. Thus from

the proof of Theorem 3.1, Dj(h) > 0 for j = 0, . . . , N−1 and all h sufficiently small. In

addition, after a change of integration variable,∫ tj+1

tj

k̃(tj+1, s; h) ds =

∫ t1

0

∫ rh(tj+1)

0

k(tj+1 + ρ, tj + s) dηh(ρ; tj+1) ds

=

∫ t1

0

∫ rh(tj+1)

0

[k(tj, tj) + (ρ + h)D1k(ξj, ζj) + sD2k(ξj, ζj)] dηh(ρ; tj+1) ds

for suitable ξj = ξj(ρ, s), ζj = ζj(ρ, s), j = 0, . . . , N−1. Thus∫ tj+1

tj

k̃(tj+1, s; h) ds = h a0(tj+1; h) [1 + g(tj+1; h)] , (5.23)

where for j = 0, . . . , N−1, |g(tj+1; h)| ≤ ‖k‖1,∞h(Mr + 2). Thus for all h sufficiently

small,
∫ tj+1

tj
k̃(tj+1, s; h) ds ≥ h a0(tj+1; h)/2 > 0, for j = 0, . . . , N−1, and

D−1
j (h) ≤ 2/h, j = 0, . . . , N−1. (5.24)

Using this estimate on D−1
j (h), we return to the computation of the bounds in

(5.21)–(5.22) and see that

|Ej(δ, h)| ≤ 2h−1

(
h δ a−1

0 (tj+1; h)

∫ rh(tj+1)

0

dηh(ρ; tj+1) + h δ a−1
0 (tj; h)

∫ rh(tj)

0

dηh(ρ; tj)

)
,

so that |Ej(δ, h)| ≤ 4δ for j = 1, . . . , N − 1, and likewise the same bound is obtained for

|E0(δ, h)|. Thus we obtain the needed bound for Ej in (5.22) with ε = 4.

In considering the bound for Vj,i(h) in (5.21), we note that

k̃(tj, s; h) =

∫ rh(tj)

0

[
k(tj, s) + ρ D1k(tj + ξs,tj(ρ), s)

]
dηh(ρ; tj)

= a0(tj; h)k(tj, s) +

∫ rh(tj)

0

ρ D1k(tj + ξs,tj(ρ), s) dηh(ρ; tj), (5.25)

for j = 1, . . . , N , and suitable ξs,tj(ρ). Thus, for i = 1, . . . , j, j = 1, . . . , N−1,∫ ti

ti−1

∣∣∣k̃0(tj+1, s; h)− k̃0(tj, s; h)
∣∣∣ ds ≤ ‖k‖1,∞(1 + 2Mr)h

2.
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From this estimate and (5.24), it follows that |Vj,i(h)| ≤ 2‖k‖1,∞(1 + 2Mr), i = 1, . . . , j,

j = 1, . . . , N − 1, so that the bound for Vj,i in (5.21) is established.

Turning to Zj(h), we see from (5.16) and (5.24) that we need only show that each

of the terms in Rj(h) is O(h2), j = 0, . . . , N−1, as h → 0. We have that the first term

in Rj(h), j = 1, . . . , N−1, satisfies

a−1
0 (tj+1; h)

∣∣∣∣∣
∫ rh(tj+1)

0

∫ ρ

0

k(tj+1 + ρ, s + tj+1)(ū(s + tj+1)− ū(tj+1)) ds dηh(ρ; tj+1)

∣∣∣∣∣
≤ ‖k‖∞‖ū‖1,∞ a−1

0 (tj+1; h) rh(tj+1)

∫ rh(tj+1)

0

ρ dηh(ρ; tj+1)

≤ ‖k‖∞‖ū‖1,∞M2
r h2.

The first term of R0(h) is bounded similarly, as is the second term in the expression for

Rj(h), j = 1, . . . , N − 1.

The above estimates for bounding Vj,i(h) may be used to show that∣∣∣∣∣
j∑

i=1

∫ ti

ti−1

[
k̃0(tj+1, s; h)− k̃0(tj, s; h)

]
(s− ti)ū

′(zi(s)) ds

∣∣∣∣∣ ≤ ‖ū‖1,∞‖k‖1,∞(1 + 2Mr)Nh3

so that the summation term in Rj(h) is O(h2), j = 1, . . . , N − 1. The fourth term

in Rj(h) for these same values of j is handled similarly, as is the second term in

the expression for R0(h). Using the conditions (5.3)–(5.4) on µh(tj), the remaining

terms from Rj(h), j = 1, . . . , N − 1, are estimated as follows. First we note that for

j = 1, . . . , N−1,

µh(tj)a
−1
0 (tj; h) =

j−1∑
i=0

{∣∣µh(ti+1)a
−1
0 (ti+1; h)

∣∣− ∣∣µh(ti)a
−1
0 (ti; h)

∣∣}+
∣∣µh(t0)a

−1
0 (t0; h)

∣∣
≤

N−1∑
i=0

∣∣µh(ti+1)a
−1
0 (ti+1; h)− µh(ti)a

−1
0 (ti; h)

∣∣+ ∣∣µh(t0)a
−1
0 (t0; h)

∣∣
≤ Nh2Mµ + hMµ (5.26)

so that

|µh(tj+1)ū0(tj+1)− µh(tj)ū0(tj)| ≤ ‖ū‖∞Mµh
2 + 2Mµh

2‖ū‖1,∞, (5.27)

where we have added and subtracted a term of the form ū(tj+1)µh(tj)a
−1
0 (tj; h). Since

ū(0) = 0, the final term in the expression for R0(h) can be written as

a−1
0 (t1; h) |µh(t1)ū(t1)| = |µh(t1)ū0(t1)− µh(0)ū0(0)| (5.28)

and is handled similarly. Thus the bound in (5.22) is obtained.

Finally, we have that Wj(h) = (1 + Kj(h))−1, for j = 1, . . . , N − 1, where

Kj(h) := ν−1
h (tj)

(
νh(tj+1)− νh(tj) + a−1

0 (tj+1; h)

∫ tj+1

tj

k̃(tj+1, s; h) ds

)

= ν−1
h (tj)

(
α(tj+1; h) + µh(tj+1)

a0(tj+1; h)
− α(tj; h) + µh(tj)

a0(tj; h)
+ h [1 + g(tj+1; h)]

)
,
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where we have used (5.23). Thus

Kj(h) = h ν−1
h (tj)

(
α(tj+1; h)

h a0(tj+1; h)
− α(tj; h)

h a0(tj; h)
+ ĝ(tj+1; h) + 1 + g(tj+1; h)

)
where |ĝ(tj+1; h)| := h−1|µh(tj+1)a

−1
0 (tj+1; h) − µh(tj)a

−1
0 (tj; h)| ≤ Mµh, for j =

1, . . . , N−1. In addition,

α(tj; h) =

∫ rh(tj)

0

∫ ρ

0

[1 + ρD1k(ξj, ζj) + sD2k(ξj, ζj)] ds dηh(ρ; tj),

for ξj = ξj(ρ, s), ζj = ζj(ρ, s), so that α(tj; h)(h a0(tj; h))−1 = a1(tj; h)(h a0(tj; h))−1 +

g̃(tj; h), where |g̃(tj, h)| ≤ 3
2
‖k‖1,∞M2

r h, for j = 1, . . . , N−1. Thus, for j = 1, . . . , N−1,

Kj(h) = hν−1
h (tj)

[
a1(tj+1; h)(h a0(tj+1; h))−1 − a1(tj; h)(h a0(tj; h))−1 + 1 +O(h)

]
≥ hν−1

h (tj)(εr/2)

≥ h
[
‖k‖∞rh(tj) + µh(tj)a

−1
0 (tj; h)

]−1
(εr/2),

for all h sufficiently small, where we have used assumption (5.2). Then, using (5.1) and

(5.26), we have that Kj(h) ≥ K for j = 1, . . . , N−1 (for all h sufficiently small), where

K := εr(2‖k‖∞Mr + 4Mµ)−1 > 0. (5.29)

Thus Wj(h) = 1/(1 + Kj(h)) ≤ w for j = 1, . . . , N−1, where w = 1/(1 + K) ∈ (0, 1).

Thus the bound in (5.21) holds and the proof of the theorem is complete. 2

We may relax the condition ū(0) = 0 in the statement of Theorem 5.1 under stricter

restrictions on µ than those given in (5.3) and (5.4). The proof of the following corollary

is identical to the proof of Theorem 5.1 except for fairly obvious changes in the estimates

in equations (5.26)–(5.28), and (5.29).

Corollary 5.1 Suppose f ∈ FD, k, and ū satisfy the conditions at the beginning

of Section 3.2, and let εr, Mr, and Mµ be fixed positive scalars. For each N =

1, 2, . . ., let h = 1/N and suppose we are given rh ∈ Γ and an (rh, h)-suitable family

Nh = {ηh(·, t), t ∈ [0, 1]} of measures for which (5.1) and (5.2) are satisfied for all N

sufficiently large. Then if µh : [0, 1] 7→ [0,∞) is selected satisfying

1

h2

(
µh(tj)∫ rh(tj)

0
dηh(ρ, tj)

)
≤ Mµ, j = 0, . . . , N, (5.30)

for all h sufficiently small, the conclusions of Theorem 5.1 still hold.

We conclude with the proofs of Theorem 4.1 and 4.2 from Section 3.

Proof of Theorem 4.1: The proof follows from Corollary 5.1. The only estimate

that is not immediate is that condition (1b) in the statement of Theorem 4.1 implies

the inequality in (5.2). Indeed∫ rh(tj+1)

0
ρ dηh(ρ; tj+1)

h
∫ rh(tj+1)

0
dηh(ρ; tj+1)

−
∫ rh(tj)

0
ρ dηh(ρ; tj)

h
∫ rh(tj)

0
dηh(ρ; tj)

+ 1 ≥≥ 0−Mr + 1
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so that εr = −Mr + 1 > 0 under the assumptions of the theorem. 2

Proof of Theorem 4.2: The proof follows from Corollary 5.1 provided we show that

condition (5.2) holds. In fact, under the conditions of Theorem 4.2,∫ rh(tj+1)

0
ρ dηh(ρ; tj+1)

h
∫ rh(tj+1)

0
dηh(ρ; tj+1)

−
∫ rh(tj)

0
ρ dηh(ρ; tj)

h
∫ rh(tj)

0
dηh(ρ; tj)

+ 1 = b1 (γ(tj+1)− γ(tj) + 1/b1 + ĉ2(h)/b1)

≥ b1[γ(tj+1)− γ(tj) + p̂]

where ĉ2(h) = O(h), and the inequality is valid for all h sufficiently small, using

p̂ = 1/b1−(1/b1−p)/2 > p. Thus if γ satisfies (4.3), condition (5.2) holds with εr > 0. 2

6. Conclusions

We have considered a local regularization method for the solution of ill-posed Volterra

problems, focusing in particular on discrete realizations of the method. We have

provided theoretical results guaranteeing convergence of the discretized method, and

have examined the role played by functional regularization parameters rh and µh.

Further, we have developed a sequential discrepancy principle to select the penalty

parameter µh = µh(t), presenting numerical examples to illustrate the effectiveness of

this adaptive procedure.

We should mention that several parts of the analysis and practical use of this

sequential discrepancy principle have not been presented here. Current study involves

the development of a convergence theory guaranteeing that this selection of µh leads to

a convergent approximation method as h → 0 and the level of the noise decreases to

zero. In addition, we are investigating models of propagated error in order to make best

use of the results in Theorem 2.2. Finally, the results in [20] give hope that we may

be able to extend our theoretical results to ν-smoothing problems (most likely for small

integer ν), under additional assumptions on the problems.

Acknowledgments

This work was supported in part (for the first author) by the National Science

Foundation under contract number NSF DMS 9704899. The authors wish to thank

the referees for comments which simplified some of the assumptions in our theory and

improved the exposition of the paper.



References

[1] Acar R and Vogel C 1994 Analysis of bounded variation penalty methods for ill-posed problems
Inverse Problems 10 1217–1229

[2] Beck J V, Blackwell B and St Clair C R Jr 1985 Inverse Heat Conduction (New York: Wiley-
Interscience)

[3] Blanc G, Beck J V and Raynaud M 1997 Solution of the inverse heat conduction problem with a
time-variable number of future temperatures Numerical Heat Transfer, Part B 32 437–451

[4] Burton T A 1983 Volterra Integral and Differential Equations (New York: Academic Press)
[5] Chambolle A and Lions P-L 1997 Image recovery via total variation minimization and related

problems Numer Math. 72 167–188
[6] Cinzori A C and Lamm P K 1998 Future polynomial regularization of first-kind Volterra operators

SIAM J. Numerical Analysis, to appear
[7] Corduneanu C 1991 Integral Equations and Applications (Cambridge: Cambridge University Press)
[8] Dobson D C and Vogel C R 1997 Convergence of an iterative method for total variation denoising

SIAM J. Numerical Analysis 34 1779–1971
[9] Denisov A M 1975 The approximate solution of a Volterra equation of the first kind Ž. Vyčisl.
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