Lemma 4.1-revised: Let y satisfy

y(t) = — /0 t (k(t’ ) 4 K, s)> y(s)ds + E(t) + F(t), (30)

3

a.e. t € [0,1], where k € C'([0,1] x [0,1]) satisfies k(¢,t) = 1 for ¢t € [0,1]; K(-,-) is bounded,
measurable on [0,1] x [0,1]; F(-) € C'[0,1] with F(0) = 0; E(-) is bounded, measurable on [0, 1];
and where ¢ is a positive real number (mdependent of t). Then y € L>(0,1) and

1Ylloe < (N1 E oo + €llF'lloc) exp (I [l1.00 + 2[1 K lloo) -

Proof. The proof extends the ideas found in [22] (using a variation of an argument in [9]), differing
here in the presence of the K and E terms. We first note that the assumptions of the lemma give
y € L?(0,1) [14] so that from the form of (34) it follows that y € L>(0,1).
Given € > 0, define
0, t <0,
¢(t75> = { %6—t/5’ t>0. (31>

Convolving both sides of (34) with (¢, &) we obtain

/Ot »(t — s,e)y(s)ds

_ _/ Wt —7,) /(U‘S)JrK(r,s))y(s)dsdTJr U(t,e)*(E(t) + F(1))

- [ et
where we use an integration by parts on the first term on the right-hand side above to obtain

t
/wt—s,gys)ds

k ]_ t t
_ _/ ( _ (= 8)/5(87S)> y(g) d3+g/(] /sef(th)/Ele@', S) dT]J(S) ds

€

(T, s)) dry(s)ds + (t,e)x(E(t) + F(t)),

—/ / Yt —7,e)K(1,8)dTy(s)ds +1(t,e) x (E(t) + F(t))
= _/ ( Yt —s 5)) y(s) ds+/0t /:¢(t—7’,5)D1k‘(7’, s)dry(s)ds
_/O / Wt —7,6)K (7, 8) dry(s)ds + o(t,€)  (B(t) + F(t)),

for t € [0,1]. Subtracting the last equation from equation (34), we have for a.e. t € [0, 1],
t ot
yt) = = [ [ vt —re)Dik(r.s) dry(s)ds

+//wt—7'5 s)dTy(s)ds—/OtK(t,s)y(s)ds
— () x EQ)] + [F(t) = ¢(t ) x F(1)],

1



w(0) = [ Gle.9)ls)ds + () — v(t.e) = B() (32)
+ [F(t) —(t,e) x F(t)], ae. tel0,1],

where

Glt,s) = /: Ot —7.2) (K(7,8) — Dik(r,s)) dr — K(t,s)

for 0 <s<t<1. But

t e—(t—7)/e
| UKG.)| + Dik(r, 9)) dr + |K(t.5)

Gts) < [ S
< (Welloe + 15se) (1= €7 %) + 1K
< ke + 20K e

for a.e. 0 < s <t < 1. Further, for a.e. t € [0, 1],

B0 = 6(t,)+ BO) < [BOle |1+ [ 60— 7,0)r]
< 2B

Combining these estimates with equation (32), we see that for a.e. t € [0, 1],

t
ly(t)] < /0 %100 + 21K loo) [y(s)| ds + 2| E(-) [
+E(t) —(t, ) = F(1)]. (33)
Now, if F' € C1[0, 1] satisfies F/(0) = 0, then we can show that for any & > 0,
[F'(t) —¥(te) x F(t)] < & || F]|o.
Indeed, integrating by parts we have

ot.e) s F(t) = | t ie(ts)/EF(s) ds

t

¢
= e_(t_s)/sF(s)‘ —/0 e S (5) ds

0

¢
= F(t)—/ e U= (5) ds.
0

Thus
[F(t) —v(t,e) « F(t)| =

t
< [ e as
0

t
/ e R (5) ds
0

= [Pl & |
0

= ]| Flw (1€
< ef[F)

[\]



An application of a generalized Gronwall inequality (see, e.g., [34,37]) to the bound in (33)
thus gives
YD) < 2l Elloo + €l Flloc) exp (Iklhoe + 2 Kllec) ,  a-a. £ €[0,1].

Corollary 1 to Lemma 4.1-revised: Under the conditions of Lemma 4.1-revised, with
F(t)=0,t € [0,1], we have

1Ylloo < 2[|Elloc exp ([1K[[1,00 + 2[[ K[oc) -

Corollary 2 to Lemma 4.1-revised: For eachn=1,2,..., let y, satisfy
tk(t, )
walt) = = [ (T2 4 Kt s) | yuls) ds + Bo(t) + F (1), (34)

a.e. t € [0,1], where k € C*([0,1] x [0, 1]) satisfies k(t,t) = 1 for ¢ € [0,1]; K,(-,-) is bounded,
measurable on [0,1] x [0, 1]; F(-) € C*0,1] with F(0) = 0; E,(-) is bounded, measurable on [0, 1];
and where g, is a positive real number (independent of t) for eachn = 1,2, .... Then y,, € L*>(0,1)
for each n = 1,2, .... Further, if

o |[K,(t,s)| < M,ae 0<s<t<1,
as n — 0o, for some M > 0 independent of n, we have

[Ynlloo < (20| Enllo + &nll F”llo0) exp (II[|1.00 + 20M)

Corollary 3 to Lemma 4.1-revised: Under the conditions of Corollary 2, with the addition
of the two assumptions

e ¢, — 0, and
e |En()]loc — 0,

as n — 00, we have
lynlloo — 0 as n — oo,

with rate determined by the worse of the two rates of convergence of £, — 0 and || E,,(+)||oc — 0.



Corollary 4 to Lemma 4.1-revised: Under the conditions of Corollary 2, with the addition
of the two assumptions

e F(t)=0, t€0,1], and
 [|En()llc = 0 asn — oo,

we have
[9nlloe < 2| Enlloc exp ([Fll1,00 +2M) — 0 as n — oo,

with rate of convergence the same as the rate for ||E, ()]s — 0.

NOTE: From Corollary 4 we see that when F(t) = 0, we do not require ¢, — 0 nor do we even
require that {¢,} remain bounded! All that is needed is that each ¢, >0, forn =1,2,....



