Lemma 4.1-revised: Let y satisfy

$$y(t) = -\int_0^t \left(\frac{k(t,s)}{\varepsilon} + K(t,s)\right) y(s) ds + E(t) + F(t), \tag{30}$$

a.e. $t \in [0,1]$, where $k \in C^1([0,1] \times [0,1])$ satisfies k(t,t) = 1 for $t \in [0,1]$; $K(\cdot, \cdot)$ is bounded, measurable on $[0,1] \times [0,1]$; $F(\cdot) \in C^1[0,1]$ with F(0) = 0; $E(\cdot)$ is bounded, measurable on [0,1]; and where ε is a positive real number (independent of t). Then $y \in L^{\infty}(0,1)$ and

$$||y||_{\infty} \le (2||E||_{\infty} + \varepsilon||F'||_{\infty}) \exp(||k||_{1,\infty} + 2||K||_{\infty}).$$

Proof. The proof extends the ideas found in [22] (using a variation of an argument in [9]), differing here in the presence of the K and E terms. We first note that the assumptions of the lemma give $y \in L^2(0,1)$ [14] so that from the form of (34) it follows that $y \in L^\infty(0,1)$.

Given $\varepsilon > 0$, define

$$\psi(t,\varepsilon) := \begin{cases} 0, & t < 0, \\ \frac{1}{\varepsilon}e^{-t/\varepsilon}, & t \ge 0. \end{cases}$$
 (31)

Convolving both sides of (34) with $\psi(t,\varepsilon)$ we obtain

$$\begin{split} & \int_0^t \psi(t-s,\varepsilon)y(s)ds \\ & = -\int_0^t \psi(t-\tau,\varepsilon) \int_0^\tau \biggl(\frac{k(\tau,s)}{\varepsilon} + K(\tau,s)\biggr)y(s)\,ds\,d\tau + \psi(t,\varepsilon)*(E(t)+F(t)) \\ & = -\int_0^t \int_s^t \psi(t-\tau,\varepsilon)\biggl(\frac{k(\tau,s)}{\varepsilon} + K(\tau,s)\biggr)d\tau\,y(s)\,ds + \psi(t,\varepsilon)*(E(t)+F(t)), \end{split}$$

where we use an integration by parts on the first term on the right-hand side above to obtain

$$\int_{0}^{t} \psi(t-s,\varepsilon)y(s)ds
= -\int_{0}^{t} \left(\frac{k(t,s)}{\varepsilon} - e^{-(t-s)/\varepsilon}\frac{k(s,s)}{\varepsilon}\right)y(s)ds + \frac{1}{\varepsilon}\int_{0}^{t} \int_{s}^{t} e^{-(t-\tau)/\varepsilon}D_{1}k(\tau,s)d\tau y(s)ds
-\int_{0}^{t} \int_{s}^{t} \psi(t-\tau,\varepsilon)K(\tau,s)d\tau y(s)ds + \psi(t,\varepsilon)*(E(t)+F(t))
= -\int_{0}^{t} \left(\frac{k(t,s)}{\varepsilon} - \psi(t-s,\varepsilon)\right)y(s)ds + \int_{0}^{t} \int_{s}^{t} \psi(t-\tau,\varepsilon)D_{1}k(\tau,s)d\tau y(s)ds
-\int_{0}^{t} \int_{s}^{t} \psi(t-\tau,\varepsilon)K(\tau,s)d\tau y(s)ds + \psi(t,\varepsilon)*(E(t)+F(t)),$$

for $t \in [0,1]$. Subtracting the last equation from equation (34), we have for a.e. $t \in [0,1]$,

$$y(t) = -\int_{0}^{t} \int_{s}^{t} \psi(t - \tau, \varepsilon) D_{1}k(\tau, s) d\tau y(s) ds + \int_{0}^{t} \int_{s}^{t} \psi(t - \tau, \varepsilon) K(\tau, s) d\tau y(s) ds - \int_{0}^{t} K(t, s) y(s) ds + [E(t) - \psi(t, \varepsilon) * E(t)] + [F(t) - \psi(t, \varepsilon) * F(t)],$$

or

$$y(t) = \int_0^t G(t, s) y(s) \, ds + [E(t) - \psi(t, \varepsilon) * E(t)] + [F(t) - \psi(t, \varepsilon) * F(t)], \quad \text{a.e. } t \in [0, 1],$$
(32)

where

$$G(t,s) := \int_{s}^{t} \psi(t-\tau,\varepsilon) \left(K(\tau,s) - D_{1}k(\tau,s) \right) d\tau - K(t,s)$$

for $0 \le s \le t \le 1$. But

$$|G(t,s)| \leq \int_{s}^{t} \frac{e^{-(t-\tau)/\varepsilon}}{\varepsilon} \left(|K(\tau,s)| + |D_{1}k(\tau,s)| \right) d\tau + |K(t,s)|$$

$$\leq (\|k\|_{1,\infty} + \|K\|_{\infty}) \left(1 - e^{-(t-s)/\varepsilon} \right) + \|K\|_{\infty}$$

$$\leq \|k\|_{1,\infty} + 2\|K\|_{\infty},$$

for a.e. $0 \le s \le t \le 1$. Further, for a.e. $t \in [0, 1]$,

$$E(t) - \psi(t, \varepsilon) * E(t) \leq \|E(\cdot)\|_{\infty} \left[1 + \int_0^t \psi(t - \tau, \varepsilon) d\tau \right]$$

$$\leq 2\|E(\cdot)\|_{\infty}.$$

Combining these estimates with equation (32), we see that for a.e. $t \in [0, 1]$,

$$|y(t)| \le \int_0^t (\|k\|_{1,\infty} + 2\|K\|_{\infty}) |y(s)| \, ds + 2\|E(\cdot)\|_{\infty} + |F(t) - \psi(t,\varepsilon) * F(t)|. \tag{33}$$

Now, if $F \in C^1[0,1]$ satisfies F(0) = 0, then we can show that for any $\varepsilon > 0$,

$$|F(t) - \psi(t, \varepsilon) * F(t)| \le \varepsilon ||F'||_{\infty}.$$

Indeed, integrating by parts we have

$$\psi(t,\varepsilon) * F(t) = \int_0^t \frac{1}{\varepsilon} e^{-(t-s)/\varepsilon} F(s) \, ds$$

$$= e^{-(t-s)/\varepsilon} F(s) \Big|_0^t - \int_0^t e^{-(t-s)/\varepsilon} F'(s) \, ds$$

$$= F(t) - \int_0^t e^{-(t-s)/\varepsilon} F'(s) \, ds.$$

Thus

$$|F(t) - \psi(t, \varepsilon) * F(t)| = \left| \int_0^t e^{-(t-s)/\varepsilon} F'(s) \, ds \right|$$

$$\leq \|F'\|_{\infty} \int_0^t e^{-(t-s)/\varepsilon} \, ds$$

$$= \|F'\|_{\infty} \varepsilon e^{-(t-s)/\varepsilon} \Big|_0^t$$

$$= \varepsilon \|F'\|_{\infty} \left(1 - e^{-t/\varepsilon}\right)$$

$$\leq \varepsilon \|F'\|_{\infty}.$$

An application of a generalized Gronwall inequality (see, e.g., [34,37]) to the bound in (33) thus gives

$$|y(t)| \le (2||E||_{\infty} + \varepsilon ||F'||_{\infty}) \exp(||k||_{1,\infty} + 2||K||_{\infty}),$$
 a.a. $t \in [0,1]$.

Corollary 1 to Lemma 4.1-revised: Under the conditions of Lemma 4.1-revised, with $F(t) = 0, t \in [0, 1]$, we have

$$||y||_{\infty} \le 2||E||_{\infty} \exp(||k||_{1,\infty} + 2||K||_{\infty}).$$

Corollary 2 to Lemma 4.1-revised: For each $n = 1, 2, ..., let y_n$ satisfy

$$y_n(t) = -\int_0^t \left(\frac{k(t,s)}{\varepsilon_n} + K_n(t,s)\right) y_n(s) ds + E_n(t) + F(t), \tag{34}$$

a.e. $t \in [0,1]$, where $k \in C^1([0,1] \times [0,1])$ satisfies k(t,t) = 1 for $t \in [0,1]$; $K_n(\cdot,\cdot)$ is bounded, measurable on $[0,1] \times [0,1]$; $F(\cdot) \in C^1[0,1]$ with F(0) = 0; $E_n(\cdot)$ is bounded, measurable on [0,1]; and where ε_n is a positive real number (independent of t) for each $n = 1, 2, \ldots$ Then $y_n \in L^{\infty}(0,1)$ for each $n = 1, 2, \ldots$ Further, if

• $|K_n(t,s)| < M$, a.e. 0 < s < t < 1,

as $n \to \infty$, for some M > 0 independent of n, we have

$$||y_n||_{\infty} \le (2||E_n||_{\infty} + \varepsilon_n||F'||_{\infty}) \exp(||k||_{1,\infty} + 2M).$$

Corollary 3 to Lemma 4.1-revised: Under the conditions of Corollary 2, with the addition of the two assumptions

- $\varepsilon_n \to 0$, and
- $||E_n(\cdot)||_{\infty} \to 0$,

as $n \to \infty$, we have

$$||y_n||_{\infty} \to 0$$
 as $n \to \infty$,

with rate determined by the worse of the two rates of convergence of $\varepsilon_n \to 0$ and $||E_n(\cdot)||_{\infty} \to 0$.

Corollary 4 to Lemma 4.1-revised: Under the conditions of Corollary 2, with the addition of the two assumptions

- $F(t) = 0, t \in [0, 1], \text{ and}$
- $||E_n(\cdot)||_{\infty} \to 0$ as $n \to \infty$,

we have

$$||y_n||_{\infty} \le 2||E_n||_{\infty} \exp(||k||_{1,\infty} + 2M) \to 0 \text{ as } n \to \infty,$$

with rate of convergence the same as the rate for $||E_n(\cdot)||_{\infty} \to 0$.

NOTE: From Corollary 4 we see that when F(t) = 0, we do not require $\varepsilon_n \to 0$ nor do we even require that $\{\varepsilon_n\}$ remain bounded! All that is needed is that each $\varepsilon_n > 0$, for n = 1, 2, ...