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Abstract. We consider the problem of finding regularized solutions to ill-posed Volterra integral
equations. The method we consider is a sequential form of Tikhonov regularization that is particularly
suited to problems of Volterra type. We prove that when this sequential regularization method is
coupled with several standard discretizations of the integral equation (collocation, rectangular and
midpoint quadrature), one obtains convergence of the method at an optimal rate with respect to noise
in the data. In addition we describe a fast algorithm for the implementation of sequential Tikhonov
regularization, and show that for small values of the regularization parameter, the method is only
slightly more expensive computationally than the numerical solution of the original unregularized
integral equation. Finally, numerical results are presented to show that the performance of sequential
Tikhonov regularization nearly matches that of standard Tikhonov regularization in practice, but at
considerable savings in cost.
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1. Introduction. Consider the problem of finding f solving

Kf = g(1.1)

where Kf(t) =
∫ t

0
k(t− τ)f(τ) dτ, 0 ≤ t ≤ 1, is a first-kind Volterra integral operator

with convolution kernel k ∈ L2(0, 1), k(t) > 0 on (0, 1], and data g ∈ L2(0, 1). In
particular, we are interested in the case where we only know a perturbation of the
“ideal” data g, the perturbation given by gδ(t) = g(t) + d(t), where ‖d‖ < δ for some
δ > 0, and where ‖ · ‖ is typically the L2 or L∞ norm. We are then forced to consider
the related problem

Kfδ = gδ(1.2)

and it is for this problem that we seek an approximate solution which reasonably
estimates the solution f of (1.1).

Because problem (1.1) is ill-posed, some form of regularization method must be
utilized in order to obtain a useful approximation to the desired solution. In this pa-
per we consider a variation of classical Tikhonov regularization which is sequential in
nature and, as such, is particularly suited for the solution of a first-kind Volterra inte-
gral equation (and other causal problems). This approach was mentioned in Chapter
5 of [1] for a particular Volterra problem, the sideways heat equation (this problem
is discussed in some more detail in §6), although it was not explored further in that
reference because it was said to be too costly to implement. Here we improve upon the
initial idea in [1] by developing an extremely efficient algorithm for implementation
of the method. In addition, we go further and make an analysis of convergence of the
algorithm, obtaining theoretical results which are valid for zeroth order regularization
of a particular class of Volterra problems (i.e., the class of “one-smoothing” Volterra
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problems, which appear in numerous applications but do not include the sideways
heat equation).

The plan of the paper is as follows. In the following section we introduce sequential
Tikhonov regularization in more detail. Then we discuss the relation to standard
Tikhonov regularization in §3, and establish there some notation and estimates useful
in the convergence proofs in §4. In §4, we prove that when the sequential Tikhonov
algorithm is coupled with several standard discretizations (collocation-based methods,
rectangular quadrature, or midpoint quadrature) of the original integral equation, the
method converges at an optimal rate with respect to the level δ of error in the data.

A fast algorithm for the implementation of sequential Tikhonov regularization is
presented in §5. It is shown that for large problems the cost of the proposed method
(in terms of the number of operations) is comparable to that of solving a triangular
system of equations, and thus the new method is considerably more efficient than
standard Tikhonov regularization. In §6 some numerical examples are given, which
indicate that sequential regularization gives about as accurate solutions as standard
Tikhonov regularization.

2. Sequential Tikhonov Regularization. Consider the solution of the system
of equations

Kf = g,(2.1)

which is obtained by discretizing the perturbed equation (1.2). We assume that the
particular discretization method used generates a lower-triangular, Toeplitz matrix
K ∈ Rn×n, given by

K =


k1 0 . . . 0
k2 k1 . . . 0
...

...
. . .

...
kn kn−1 . . . k1

 ,(2.2)

and that ki > 0 for all i.
Discrete Tikhonov regularization stabilizes the solution of (2.1) via the solution

of minimization problem

min
f∈Rn

{
‖Kf − g‖2 + µ‖Lf‖2

}
,(2.3)

where µ > 0 is a given parameter, and L is a lower-triangular Toeplitz matrix (typi-
cally the n× n identity, or a discretized differentiation operator). We propose here a
sequential variation of discrete Tikhonov regularization which is particularly useful for
the stable solution of problems of the form (2.1), (2.2). Assuming that f1, f2, . . . , fi−1

have already been found, this method determines fi by first finding the vector β ∈ Rr,
r < n, which solves the reduced-dimension Tikhonov problem

min
β∈Rr

{
‖Krβ − h(i)‖2 + µ‖Lrβ‖2

}
,(2.4)

where Kr and Lr are the leading r × r blocks of K and L, respectively, and where
h(1) = (g1, . . . , gr)> and h(i) = (h(i)

1 , h
(i)
2 , . . . , h

(i)
r )> for i ≥ 2, with

h(i)
p = gi+p−1 −

i−1∑
j=1

ki+p−jfj , p = 1, . . . , r.(2.5)
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(Here r is typically much smaller than n.) We then take fi to be the first component
of the vector β and discard all remaining components of β. It is not difficult to modify
this algorithm for the case where p components of the solution are retained at each
step, 1 ≤ p < r; however, this variation will not be a focus of attention here.

It is important to note that this sequential approach is not simply a matter of per-
forming a decomposition of the original matrix system into smaller subproblems, with
standard Tikhonov regularization then applied individually to each smaller problem.
In contrast, the method performs Tikhonov regularization sequentially on small over-
lapping subproblems, updating the definition of each subproblem as new information
about the solution is obtained.

Because r−1 “future” values gi+1, . . . , gi+r−1 of data are used to compute fi (for
r ≥ 1 fixed), it is clear that one can only expect to stably compute f1, f2, . . . , fn−r+1

using this algorithm, unless k and gδ are available past the interval [0, 1] and one
assumes that (2.1) is the discrete approximation of (1.2) on this extended interval as
well. In order to simplify the theoretical arguments which follow, we will assume in
§2 and 3 that k and gδ are defined on [0, T ], for some T > 0 sufficiently large, and
that (1.2) holds on [0, T ] as well.

3. Comparison with Tikhonov Regularization. Standard Tikhonov regu-
larization applied to (2.1) can be viewed as a discretized version of Tikhonov regu-
larization applied to the original problem (1.2); in the case of L = I, the associated
infinite-dimensional Tikhonov problem becomes an integral equation in fδ

µ of the form

(K?K + µI)fδ
µ(t) = K?gδ(t), t ∈ [0, 1],(3.1)

where K?u(t) =
∫ 1

t
k(s − t)u(s) ds for u ∈ L2(0, 1). Thus fδ

µ is the solution of a
well-posed second-kind integral equation, and, as such, depends continuously on data
gδ. One disadvantage of this approach however is that (3.1) is non-Volterra in nature,
while the original equation (1.2) is Volterra in form.

In this section we will show how the discrete sequential Tikhonov regularization
also can be viewed as a discretization of a well-posed second-kind integral equation; in
the sequential case however the second-kind equation is still Volterra in form provided
that r is small.

The discretization of (1.2) given by (2.1), (2.2), typically arises from a standard
numerical method such as rectangular quadrature, midpoint quadrature, or colloca-
tion over piecewise constant functions. The details of these methods will be considered
further in the next section, but for the time being we shall make rather general as-
sumptions about the entries ki in K and gi in g, conditions which remain valid for
any of these three methods. That is, we assume that ki = ki(k) is defined using the
kernel k in such a way that (1) k 7→ ki(k) is a linear map for each i = 1, . . . , n, and,
(2) for some fixed ∆t > 0,

ki(S∆tk) = ki+1(k),

where S∆t is the shift operator defined by (S∆tk) (t) = k(t + ∆t) for t ∈ [0, 1].
Typically ∆t is the discretization stepsize of the underlying numerical method, ∆t =
O (1/n). We make similar assumptions concerning the dependence of the discretized
vector g = (g1, . . . , gn)> in (2.1) on gδ ∈ L2(0, T ); that is, we assume that the map
gδ 7→ gi(gδ) is linear and that gi(S∆tg

δ) = gi+1(gδ), for i = 1, . . . , n.
From (2.4) it is seen that, in the sequential Tikhonov algorithm, one uses previ-

ously computed f1, . . . , fi−1 to determine the solution β ∈ Rr of (2.4), or equivalently,
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β solving the normal equations

(K>
r Kr + µL>r Lr)β = K>

r h(i);(3.2)

one then sets fi equal to the first component of β. Using Cramer’s Rule,

fi =
det
(
K>

r h(i)
∣∣∣ t2, . . . , tr

)
det (t1 | t2, . . . , tr)

,

where ti denotes the ith column of K>
r Kr + µL>r Lr. For an arbitrary vector α =

(α1, . . . , αr)> ∈Rr, properties of the determinant may be used to expand along the
first column of (K>

r α | t2, . . . , tr) so that

det
(
K>

r α
∣∣∣ t2, . . . , tr

)
=

r∑
`=1

c` α`(3.3)

for constants ci = ci(µ;Kr,Lr). In fact, the upper-triangular form of K>
r gives α1

appearing only in the first component of K>
r α, so

c1 = k1 det(e1 | t2, . . . , tr)(3.4)

where e1 = (1, 0, . . . , 0)>. Using (3.3) and the fact that

t1 = K>
r


k1

k2

...
kr

+ µL>r `1,

for `1 the first column of Lr, we have

det(K>
r Kr + µL>r Lr) =

r∑
`=1

c`k` + µγr(Kr,Lr)(3.5)

where we have made the definition

γr(Kr,Lr) = det
(
L>r `1

∣∣∣ t2, . . . , tr

)
,

and where γr also depends on µ through its dependence on ti, i = 2, . . . , r. Therefore,

fi =

r∑
`=1

c`h
(i)
`

r∑
`=1

c`k` + µγr(Kr,Lr)

(3.6)

=

r∑
`=1

c`

gi+`−1 −
i−1∑
j=1

ki+`−jfj


r∑

`=1

c`k` + µγr(Kr,Lr)
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for i = 1, . . . , n, so that fi satisfies

i∑
j=1

(
r∑

`=1

c` ki+`−j

)
fj + µγr(Kr,Lr)fi =

r∑
`=1

c` gi+`−1, i = 1, . . . , n.(3.7)

For the particular choice of Lr = Ir, the r×r identity, block matrix multiplication
gives

K>
r Kr + µIr =


k1 k2 . . . kr

0
... K>

r−1

0




k1 0 . . . 0
k2

... Kr−1

kr

+ µ


1 0 . . . 0
0
... Ir−1

0



=


k2
1 + . . . + k2

r + µ (k2 . . . kr)Kr−1

K>
r−1

 k2

...
kr

 K>
r−1Kr−1 + µIr−1

 ,

where Ir−1 denotes the (r − 1) × (r − 1) identity, and Kr−1 is the (r − 1)-square
Toeplitz matrix formed by deleting the first row and column of Kr. Since L>r `1 = e1

in this case, it follows that

γr(Kr,Lr) = det (e1 | t2, . . . , tr)

= det
(
K>

r−1Kr−1 + µIr−1

)
,(3.8)

or, for µ > 0, that γr(Kr,Lr) 6= 0. Further, (3.4) gives that c1 = k1γr is also nonzero;
dividing both sides of equation(3.7) by c1 we obtain

i∑
j=1

(
r∑

`=1

s` ki+`−j

)
fj +

µ

k1
fi =

r∑
`=1

s` gi+`−1, i = 1 . . . , n,(3.9)

where s` ≡ c`/c1 for ` = 1, . . . , r. That is, the fi satisfy


k̃1 0 . . . 0 0
k̃2 k̃1 . . . 0 0
...

...
. . . . . . 0

k̃n k̃n−1 . . . k̃2 k̃1

+
µ

k1
Ir




f1

f2

...
fn

 =


g̃1

g̃2

...
g̃n

(3.10)

where

k̃i ≡
r∑

`=1

s` ki+`−1(k)(3.11)

= ki

(
r∑

`=1

s` S[(`−1)∆t]k

)
,
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using the assumptions on ki; a similar expression holds for g̃i ≡
∑r

`=1 s` gi+`−1(gδ).
Therefore, making the following definitions for t ∈ [0, 1],

k̃(t) =
r∑

`=1

s` k(t + (`− 1)∆t)(3.12)

g̃δ(t) =
r∑

`=1

s` gδ(t + (`− 1)∆t),(3.13)

it follows from the assumptions on ki, gi that (3.10) corresponds to an n-dimensional
discretization of the second-kind Volterra integral equation∫ t

0

k̃(t− s)f(s) ds +
µ

k1
f(t) = g̃δ(t), t ∈ [0, 1].(3.14)

Thus, analogous to the case of standard Tikhonov regularization, the discrete se-
quential Tikhonov algorithm corresponds to a direct discretization of a stable second-
kind integral equation, provided the parameter µ is positive. In addition, this equa-
tion retains the Volterra structure with a new kernel k̃ and data g̃δ, each of which is
constructed using a small (r-dependent) amount of future information at each time t.

4. Convergence of the Sequential Algorithm. The results which follow re-
quire that k and f belong to C1[0, T ], where f is the solution of (1.2) on [0, T ] using
precise data g. The goal of this section is to show that the vector f = (f1, . . . , fn)>

defined by the discrete sequential Tikhonov regularization algorithm is a suitable
approximation for (f(x1), . . . , f(xn))> for appropriate choices of x1, . . . , xn ∈ [0, 1]
(the choice depends on the discretization method) and for n sufficiently large. We
shall consider the cases where the unregularized approximation (2.1) is constructed
using either collocation over piecewise constant functions, rectangular quadrature,
or midpoint quadrature. Throughout we assume that the data gδ in (1.2) satisfies
gδ = g(t) + d(t) with |d(t)| ≤ δ for all t ∈ [0, T ] and δ > 0.

We first present the arguments for convergence of approximations based on collo-
cation over spaces of piecewise constant functions. To this end we let n = 1, 2, . . ., be
fixed, let ∆t ≡ 1/n and ti ≡ i∆t, for i = 0, 1, . . . , n+r−1, for r ≥ 1 a fixed integer. We
designate the space of piecewise-constant functions on [0, 1] by X∆t ≡ span{χ

i
}n

i=1,
where χ

i
is the characteristic function defined by χ

i
(t) = 1, for ti−1 < t ≤ ti, and

χ
i
(t) = 0 otherwise; χ1(0) = 1. We then seek fδ

∆t ∈ X∆t, fδ
∆t(t) =

∑n
i=1 fiχi

(t),
solving the collocation equations

Kfδ
∆t(tj) = g(tj) + d(tj), j = 1, 2, . . . , n,(4.1)

where

Kfδ
∆t(tj) =

j∑
ν=1

fν

∫ tν

tν−1

k(tj − s) ds

=
j∑

ν=1

fν

∫ t1

0

k(tj−ν+1 − s) ds.

Therefore when (2.1), (2.2), corresponds to a discretization of (1.2) based on colloca-
tion over piecewise constants, the entries ki in K are given by

ki ≡
∫ t1

0

k(ti − s) ds(4.2)
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and g = (g(t1) + d(t1), . . . , g(tn) + d(tn))>.
Using the construction in the previous section, the sequential Tikhonov regular-

ization method defines the regularized fj recursively via (3.10), or by

µ

k1
fj +

j∑
ν=1

fν k̃j−ν+1 = g̃(tj) + d̃(tj), j = 1, . . . , n,(4.3)

where g̃(t) =
∑r

`=1 s`g(t + (` − 1)∆t) with d̃(t) defined similarly, and where k̃i =∑r
`=1 s`ki+`−1. Thus the sequential Tikhonov algorithm for collocation defines k̃i =∫ t1

0
k̃(ti − s) ds (using the definition of k̃(t) in (3.12)) and fj via

µ

k1
fj +

j∑
ν=1

fν

∫ tν

tν−1

k̃(tj − s) ds = g̃(tj) + d̃(tj), j = 1, . . . , n.(4.4)

Theorem 4.1. Let r = 1, 2, . . . be a fixed integer and let k, f ∈ C1[0, T ] where
f is the solution of (1.1) on [0, T ] using precise data g. In addition, assume that
k(t) ≥ kmin > 0 on [0, T ] and f(0) = 0, and that for δ > 0, the perturbed data gδ in
(1.2) satisfies gδ(t) = g(t) + d(t), t ∈ [0, T ], with |d(t)| ≤ δ on [0, T ].

Then if µ = µ(∆t) is selected such that µ = µ̂∆t2, with µ̂ > 0 constant, and if
∆t = ∆t(δ) satisfies ∆t(δ) = τ

√
δ, with τ > 0 constant, it follows that as δ → 0, we

have ∆t(δ) → 0, µ(∆t) → 0, and

|fj − f(tj)| ≤ δ1/2C(r) +O(δ) → 0, for j = 1, . . . , n(δ),

where f = (f1, . . . , fn)> is the solution of (4.4), the sequential Tikhonov regulariza-
tion problem for approximations based on collocation over piecewise contants, with
perturbed data gδ. Here n(δ) = 1/∆t(δ) and C(r) is a fixed positive constant.

Proof. The proof, which is lengthy, is accomplished in the following steps.
• Step 1: Let

σj = [f(tj)− fj ]/∆t j = 1, . . . , n.(4.5)

Then the {σj} satisfy a system of difference equations of the form

σ1 = −d1 −R1(4.6)

σj+1 = Wσj −∆t

j∑
ν=1

Vj,νσν − dj+1−Rj+1,(4.7)

for j = 1, . . . , n− 1,

where W , Vj,ν , dj , and Rj , j = 1, . . . , n, are suitable functions of ∆t, δ, r,
and µ (given in (4.17) below).

• Step 2: For the choice µ = µ̂∆t2 (where µ̂ > 0 is constant), the functions
W , Vj,ν , dj , and Rj are bounded as follows

|W (∆t, r, µ)| ≤ w(r),
|Vj,ν(∆t, r, µ)| ≤ v(r), ν = 1, . . . , j; j = 1, . . . , n− 1

|dj(∆t, r, µ)| ≤ e(r)
δ

∆t2
, j = 1, . . . , n(4.8)

|Rj(∆t, r, µ)| ≤ z(r), j = 1, . . . , n,
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where v(r), e(r), and z(r) are nonnegative and 0 < w(r) < 1 for all r =
1, 2, . . ..

• Step 3: Using the bounds in (4.8),

|σj | ≤ 2 C1(δ,∆t, r) exp
(

2v(r)
1− w(r)

)
, j = 1, . . . , n− 1,(4.9)

for suitable C1(δ,∆t, r) and for ∆t sufficiently small, so that using (4.5), the
error estimate

|fj − f(tj)| ≤ 2 ∆t C1(δ,∆t, r) exp
(

2v(r)
1− w(r)

)
, j = 1, . . . , n− 1,

follows for ∆t sufficiently small. The results of the theorem then obtain.

Proof of Step 1:
We first write an equation similar to (4.4) for fj+1, subtracting (4.4) from this

equation to obtain

αfj+1 + fj+1

∫ tj+1

tj
k̃(tj+1 − s) ds

= [g̃(tj+1)− g̃(tj)] + [d̃(tj+1)− d̃(tj)](4.10)

−
j∑

ν=1

fν

∫ tν

tν−1

[
k̃(tj+1 − s)− k̃(tj − s)

]
ds + αfj ,

for j = 1, . . . , n− 1, where we have defined α = µ/k1.
Similarly, the solution f of (1.1) satisfies

r∑
`=1

s`

∫ tj+(`−1)∆t

0

k(tj +(`−1)∆t−s)f(s) ds + αf(tj)

=
r∑

`=1

s`g(tj +(`−1)∆t) + αf(tj), j = 1, . . . , n,

or, ∫ tj

0

k̃(tj − s)f(s) ds + αf(tj)(4.11)

= g̃(tj) + αf(tj)

−
r∑

`=1

s`

∫ (`−1)∆t

0

k((`− 1)∆t− s)f(tj + s) ds, j = 1, . . . , n.

A similar equation holds at tj+1, so subtracting (4.11) from this new equation, and
then subtracting (4.10) from the difference, yields

α[f(tj+1)− fj+1] +
∫ tj+1

tj
k̃(tj+1 − s)[f(s)− fj+1] ds

= −[d̃(tj+1)− d̃(tj)] + α[f(tj+1)− f(tj)] + α[f(tj)− fj ](4.12)
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−
j∑

ν=1

∫ tν

tν−1

[
k̃(tj+1−s)− k̃(tj−s)

]
[f(s)− fν ] ds

−
r∑

`=1

s`

∫ (`−1)∆t

0

k((`− 1)∆t− s) [f(tj+1 + s)− f(tj + s)] ds,

for j = 1, . . . , n− 1. Now let σj be given by (4.5). Then

f(t)− fj = ∆t

[
σj +

(
t− tj
∆t

)
f ′(ζj(t))

]
, t ∈ (tj−1, tj ],

where ζj(t) ∈ (t, tj), and (4.12) becomes

ασj+1 +
∫ tj+1

tj
k̃(tj+1−s)

[
σj+1 +

(
s− tj+1

∆t

)
f ′(ζj+1(s))

]
ds

= − 1
∆t

[d̃(tj+1)− d̃(tj)] + ασj + α
[f(tj+1)− f(tj)]

∆t

−
j∑

ν=1

∫ tν

tν−1

[
k̃(tj+1−s)− k̃(tj−s)

] [
σν +

(
s− tν

∆t

)
f ′(ζν(s))

]
ds

− 1
∆t

r∑
`=1

s`

∫ (`−1)∆t

0

k((`− 1)∆t− s) [f(tj+1 + s)− f(tj + s)] ds,

or, for ξj and ξ̂j suitably defined and j = 1, . . . , n− 1,[
α +

∫ tj+1

tj
k̃(tj+1 − s) ds

]
σj+1

= ασj −∆t

j∑
ν=1

σν

∫ tν

tν−1

k̃
′
(ξj(s)) ds(4.13)

− 1
∆t

[d̃(tj+1)− d̃(tj)]− rj+1

where

rj+1(∆t, r, µ) = −αf ′(ξ̂j)

+
∫ tj+1

tj
k̃(tj+1−s)

(
s−tj+1

∆t

)
f ′(ζj+1(s)) ds

+∆t

j∑
ν=1

∫ tν

tν−1

k̃
′
(ξj(s))

(
s− tν

∆t

)
f ′(ζν(s)) ds

+
r∑

`=1

s`

∫ (`−1)∆t

0

k((`−1)∆t−s)f ′(ξ̂j,`(s)) ds.

An equation in σ1 is obtained by subtracting (4.4) from (4.11) for j = 1 and using
the definition of σ1 in (4.5), i.e.,[

α +
∫ t1

0

k̃(t1 − s) ds

]
σ1 = − d̃(t1)

∆t
− r1(4.14)
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where

r1(∆t, r, µ) =
∫ t1

0

k̃(t1 − s)
(

s− t1
∆t

)
f ′(ζ1(s)) ds

−α
f(t1)
∆t

+
1

∆t

r∑
`=1

s`

∫ (`−1)∆t

0

k((`− 1)∆t− s)f(t1 + s) ds.

Let D(∆t, r, µ) = α +
∫∆t

0
k̃(∆t− s) ds denote the coefficient of σ1 in (4.14),

D(∆t, r, µ) =
µ

k1
+

r∑
`=1

s`

∫ ∆t

0

k(∆t + (`−1)∆t−s) ds.

Then, for r = 1,

D(∆t, 1, µ) =
µ + k2

1

k1
> 0,

which holds for all ∆t > 0 and µ > 0; on the other hand, for general r = 2, 3, . . .,

D(∆t, r, µ) =
1
c1

[
γrµ +

r∑
`=1

c`k`

]

=
1
c1

det(K>
r Kr + µIr)(4.15)

where we have used (3.5) and the relationships c1 = γrk1 and s` = c`/c1 from the
previous section. But (3.8) gives

D(∆t, r, µ) =
1
k1

det(K>
r Kr + µIr)

det(K>
r−1Kr−1 + µIr−1)

or

D(∆t, r, µ) =
1
k1

∏r
i=1(λi,r + µ)∏r−1

i=1 (λi,r−1 + µ)

where 0 < λ1,r ≤ . . . ≤ λr,r denote the eigenvalues of K>
r Kr. Since K>

r−1Kr−1 is
a principal submatrix of K>

r Kr, a standard eigenvalue interlacing theorem (see, for
example, [6], p. 294) may be used to claim that

λi,r ≤ λi,r−1 ≤ λi+1,r, i = 1, . . . , r − 1,

which yields the estimate

D(∆t, r, µ) ≥ 1
k1

(λ1,r + µ),(4.16)

in particular, D(∆t, r, µ) > 0 for all ∆t > 0, µ > 0, and r = 1, 2, . . .. We may
therefore divide both sides of equations (4.13) and (4.14) by D(∆t, r, µ) to obtain
equations (4.6) and (4.7), where

W (∆t, r, µ) =
α

D(∆t, r, µ)
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Vj,ν(∆t, r, µ) =

∫ tν
tν−1

k̃
′
(ξj(s)) ds

D(∆t, r, µ)
, ν = 1, . . . , j ; j = 1, . . . , n− 1

d1(δ;∆t, r, µ) =
1

∆t

d̃(t1)
D(∆t, r, µ)

(4.17)

dj+1(δ;∆t, r, µ) =
1

∆t

[d̃(tj+1)− d̃(tj)]
D(∆t, r, µ)

, j = 1, . . . , n− 1

Rj+1(∆t, r, µ) =
rj+1(∆t, r, µ)
D(∆t, r, µ)

, j = 0, . . . , n− 1.

Thus the proof of Step 1 is complete.

Proof of Step 2:
An observation which aids in obtaining bounds for the quantities in (4.17)) is that

for any ρ = (ρ1, . . . , ρr)> and r = 2, 3, . . .,

1
D(∆t, r, µ)

r∑
`=1

s`ρ` =

1
c1

r∑
`=1

c`ρ`

1
c1

det(K>
r Kr + µIr)

=
det(K>

r ρ | t2, . . . , tr)
det(t1, t2, . . . , tr)

= h1

where we have used the definition of c` and t` from the previous section, and where
h1 is the first component of the solution h of (K>

r Kr + µIr)h = K>
r ρ. Thus,

1
D(∆t, r, µ)

r∑
`=1

s`ρ` ≤ ‖h‖

≤ ‖(K>
r Kr + µIr)−1‖ ‖K>

r ‖ ‖ρ‖

≤ ∆t

µ
r2 ‖k‖∞ ρmax

where ρmax ≡ max1≤j≤r |ρj | and ‖ · ‖∞ denotes the usual C[0, T ] norm, and where
we have used standard relationships between the usual Euclidean norm and the max-
norm on Rr. In the case of r = 1 we obtain the same estimate since∣∣∣∣ s1ρ1

D(∆t, 1, µ)

∣∣∣∣ = k1|ρ1|
k2
1 + µ

≤ ∆t

µ
‖k‖∞ ρmax.

It follows from (4.16) that

α

D(∆t, r, µ)
≤ µ

λ1,r + µ
,

for r = 2, 3, . . ., while for r = 1 the same bound also obtains (in that case, K>
r Kr is

the scalar k2
1).
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Using these observations we may bound the quantities in (4.17) as follows:

0 < W (∆t, r, µ) ≤ 1
λ1,r

µ
+ 1

|Vj,ν(∆t, r, µ)| ≤ 1
D(∆t, r, µ)

r∑
`=1

s`

∫ tν

tν−1

|k′(ξj,`(s))| ds

≤ ∆t2

µ
r2 ‖k‖∞‖k′‖∞

|dj+1(δ;∆t, r, µ)| ≤ 2
∆t

∑r
`=1 s`δ

D(∆t, r, µ)

≤ 2δ

µ
r2‖k‖∞, j = 0, 1, . . . , n− 1,

for suitably defined ξj,`(s) and for all r = 1, 2, . . ., µ > 0, and ∆t > 0. Further,

|Rj+1(∆t, r, µ)| ≤ α

D(∆t, r, µ)
‖f ′‖∞

+
1

D(∆t, r, µ)

r∑
`=1

s`

[∫ tj+1

tj
k(tj+1+(`−1)∆t−s)

(
s− tj+1

∆t

)
f ′(ζj+1(s)) ds

]

+
∆t

D(∆t, r, µ)

r∑
`=1

s`

[
j∑

ν=1

∫ tν

tν−1

k′(ξj,`(s))
(

s− tν
∆t

)
f ′(ζν(s)) ds

]

+
1

D(∆t, r, µ)

r∑
`=1

s`

[∫ (`−1)∆t

0

k((`−1)∆t−s)f ′(ξ̂j,`(s)) ds

]

≤ ‖f ′‖∞
λ1,r

µ + 1
+

∆t2

µ
r2 ‖k‖∞‖f ′‖∞ [ r‖k∞‖+ ‖k′‖∞ ] ,

for j = 1, . . . N − 1 and r = 1, 2, . . .. Under the additional assumption that f(0) = 0,
it follows that

R1(∆t, r, µ) = − α

D(∆t, r, µ)
f(t1)
∆t

+
1

D(∆t, r, µ)

r∑
`−1

s`

[∫ t1

0

k(t1+(`−1)∆t−s)
(

s− t1
∆t

)
f ′(ζ1(s)) ds

]

+
1

∆t

1
D(∆t, r, µ)

r∑
`=1

s`

[∫ (`−1)∆t

0

k((`− s)∆t− s)f(t1 + s) ds

]

≤ ‖f ′‖∞
λ1,r

µ + 1
+

∆t2

µ
r4 ‖k‖2∞ ‖f ′‖∞.

for r = 1, 2, . . ..

We have yet to use the last assumed property of the kernel k, namely, k(t) ≥
kmin > 0 for t ∈ [0, T ]. For this case, ki ≡

∫∆t

0
k(ti − s) ds = κi∆t for some κi ∈
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[kmin, ‖k‖∞] independent of ∆t. Thus,

λ1,r = min
x∈Rr

x>K>
r Krx

x>x

= ∆t2 min
x∈Rr

x>K̂
>
r K̂rx

x>x

= ∆t2ρ(r)

where ρ(r) > 0 is the smallest eigenvalue of K̂
>
r K̂r,

K̂r =


κ1 0 . . . 0
κ2 κ1 . . . 0
...

...
. . .

...
κr κr−1 . . . κ1

 ;

it follows that ρ(r) is independent of ∆t. The choice of µ = µ(∆t) given by µ = µ̂∆t2

ensures that λ1,r/µ = ρ(r)/µ̂ > 0 for all ∆t > 0. Thus, we obtain bounds for W , Vj,ν ,
dj and Rj as given by (4.8), and the proof of Step 2 is complete.

Proof of Step 3:
Using the results of Steps 1 and 2, a simple induction argument may be applied

to (4.6),(4.7), to show that |σj | ≤ Bj for j = 1, . . . , n, where

B1 = e(r)
δ

∆t2
+ z(r)

Bj+1 = w(r)Bj + ∆t v(r)
j∑

ν=1

Bν + e(r)
δ

∆t2
+ z(r), j = 1, . . . , n− 1,

and where each coefficient in this system of difference equations is bounded in the
limit provided ∆t = ∆t(δ) is selected such that δ/∆t(δ)2 remains bounded as δ → 0.
It follows (see, for example, [5]) from the theory of finite difference equations that

|σj | ≤ C1(δ,∆t, r) [τ1(∆t, r)]j + C2(δ,∆t, r) [τ2(∆t, r)]j , for j = 1, . . . , n,

where

τ1(∆t, r) = 1 + ∆t
v(r)

1− w(r)
+O(∆t2)

τ2(∆t, r) = w(r)
(

1−∆t
v(r)

1− w(r)

)
+O(∆t2)

C1(δ,∆t, r) =
z(r) + e(r)δ/∆t2

1− w(r)
+O(∆t)

C2(δ,∆t, r) = −w(r)
z(r) + e(r)δ/∆t2

1− w(r)
+O(∆t).

Thus, we have that (4.9) holds and the remainder of the proof of Step 3 (and the
theorem) follows.

Remark: We note that under the assumption that k(0) 6= 0 for the kernel k of (1.1),
it follows that the convergence rate of O(δ1/2) we obtain in the last theorem is optimal
with regard to the level δ of noise in the data [5, 8, 9].
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We obtain similar results for sequential Tikhonov regularization where the dis-
cretization in (2.1), (2.2), is based on rectangular quadrature or midpoint quadrature.
For rectangular quadrature the sequential Tikhonov iteration is given by (4.3) where
k̃k is defined by (3.11) and ki is given in this case by

ki = ∆t k(ti),(4.18)

while for midpoint quadrature, the approximation leads to (4.3) with

ki = ∆t k(ti−1/2),(4.19)

where ti−1/2 = (i− 1
2 )∆t for i = 1, . . . , n + r − 1.

Theorem 4.2. Assume that the conditions of Theorem 4.1 hold. Then if µ =
µ(∆t) is selected such that µ = µ̂∆t2, with µ̂ > 0 constant, and if ∆t = ∆t(δ) satisfies
∆t(δ) = τ

√
δ, with τ > 0 constant, it follows that ∆t(δ) → 0, µ(∆t) → 0, and

|fj − f(tj−1)| ≤ δ1/2C(r) +O(δ) → 0, for j = 1, . . . , n(δ),

as δ → 0, where f = (f1, . . . , fn)> is the solution of the sequential Tikhonov regu-
larization problem for approximations based on rectangular quadrature and perturbed
data gδ (i.e., f solves (4.3) with k̃i =

∑r
`=1 s`ki+`−1, where ki is given by (4.18)).

Here n(δ) = 1/∆t(δ) and C(r) is a fixed positive constant.
Proof. The proof is a slight alteration of the proof of Theorem 4.1, due to the

fact that here the equations satisfied by the solution f of (1.1) are written

αf(tj−1) +
j∑

ν=1

k̃j−ν+1f(tν−1) = g̃(tj) + αf(tj−1)

−
r∑

`=1

s`

∫ (`−1)∆t

0

k((`− 1)∆t− s)f(tj + s) ds

−
j∑

ν=1

[∫ tν

tν−1

k̃(tj − s)f(s) ds− k̃j−ν+1f(tν−1)

]
,

for j = 1, . . . , n (in place of the equations given in (4.11) for collocation). Thus in
this case, (4.12) becomes

[α + k̃1][f(tj)− fj+1]

= −[d̃(tj+1)− d̃(tj)] + α[f(tj)− f(tj−1)]

+α[f(tj−1)− fj ]−
j∑

ν=1

[
k̃j−ν+2 − k̃j−ν+1

]
[f(tν−1)− fν ]

−
r∑

`=1

s`

∫ (`−1)∆t

0

k((`− 1)∆t− s) [f(tj+1 + s)− f(tj + s)] ds

−

[∫ tj+1

tj

k̃(tj+1 − s)f(s) ds− k̃1f(tj)

]

−
j∑

ν=1

{∫ tν

tν−1

[
k̃(tj+1 − s)−k̃(tj − s)

]
f(s) ds−

[
k̃j−ν+2−k̃j−ν+1

]
f(tν−1)

}
.
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Letting σj+1 = [f(tj)− fj+1]/∆t, we derive equations that are simple modifications
of (4.13). Equations for σ1 are similar, and the remaining analysis for convergence of
the rectangular quadrature approximation follows in a standard way from the proof
of Theorem 4.1, where we need only add the result that rectangular quadrature is an
O(∆t) approximation of the integrals which appear above.

The proof of a similar result for midpoint quadrature is an easy modification
of the last proof. Although midpoint quadrature is more accurate than rectangular
quadrature, the presence of perturbed data gδ in the equations for sequential Tikhonov
regularization means that the order of convergence with respect to δ is unchanged from
that given in the last two theorems.

Theorem 4.3. Assume that the conditions of Theorem 4.1 hold. Then if µ =
µ(∆t) is selected such that µ = µ̂∆t2, with µ̂ > 0 constant, and if ∆t = ∆t(δ) satisfies
∆t(δ) = τ

√
δ, with τ > 0 constant, it follows that ∆t(δ) → 0, µ(∆t) → 0, and

|fj − f(tj−1/2)| ≤ δ1/2C(r) +O(δ) → 0, for j = 1, . . . , n(δ),

as δ → 0, where f = (f1, . . . , fn)> is the solution of the sequential Tikhonov regular-
ization problem for approximations based on midpoint quadrature and using perturbed
data gδ (i.e., f solves (4.3) with k̃i =

∑r
`=1 s`ki+`−1, where ki is given by (4.19)).

Here n(δ) = 1/∆t(δ) and C(r) is a fixed positive constant.

5. Implementation. For algorithmic purposes it is more useful to write the
Tikhonov problem (2.4) in the form

min
β

∥∥∥∥( Kr

µLr

)
β −

(
h(i)

0

)∥∥∥∥ .(5.1)

The algorithm described in §2 can be written as follows.

Sequential regularization algorithm, preliminary version.
1. for i := 1 to n− r + 1

(a) Solve (5.1) for β.
(b) Put fi := β1.

We will now discuss how to implement this algorithm efficiently. We assume that i−1
iterations have been completed and that we shall next perform iteration i.

Consider first the computation of the right hand side h(i). Using the definition
(2.5) we immediately see that the first r−1 components of h(i) can be obtained easily
by updating quantities from the previous step. Thus we can compute h(i) from

h(i)
p = h

(i−1)
p+1 − kpfi−1, p = 1, . . . , r − 1,(5.2)

h(i)
r = gi+r−1 −

i−1∑
j=1

ki+r−jfj .(5.3)

The operation count for this step is r + i− 2 multiplications.
A least squares problem (5.1) is solved in each step of the algorithm. For reasons

of numerical stability it not recommended [4, p. 230] to solve this using the normal
equations (3.2). Instead a method based on an orthogonal decomposition of the
matrix should be used. The matrices Kr and Lr in (5.1) both have lower triangular
Toeplitz structure, and therefore (5.1) can be efficiently and accurately solved using



16 P. K. LAMM AND L. ELDÉN

the method in [2]. In this algorithm an orthogonal Q matrix is determined, which
transforms the matrix in (5.1) to the form,

Q>
(

Kr

µLr

)
=
(

K̂r

0

)
,(5.4)

where K̂r is lower triangular but no longer has Toeplitz structure. The matrix Q
is represented as a product of Givens rotations, and is never formed explicitly. The
operation count for this transformation is 2r2 multiplications [2]. Note that this
computation needs to be done only once, as a preprocessing step.

After multiplying the right hand side by Q>,

Q>
(

h(i)

0

)
=

(
ĥ

(i)

h̃
(i)

)
,(5.5)

the first component of the solution is obtained from

fi := β1 :=
ĥ

(i)
1

k̂1

,(5.6)

where k̂1 is the element in position (1, 1) in K̂r. The transformation (5.5) requires
approximately 2r2 multiplications [2].

Below we present the overall algorithm.

Sequential regularization algorithm.
1. (a) Compute the decomposition (5.4) and store the matrix Q as a product

of Givens rotations.
(b) Initialize h(0) = (g1, . . . , gr)>.

2. for i := 1 to n− r + 1
(a) Compute h(i) from (5.2) and (5.3).
(b) Perform the multiplication (5.5).
(c) Compute fi from (5.6).

Assuming that r � n, we can disregard the cost for Step 1. Similarly, in the
operation count for Step 2(a) we omit terms that are O(n + nr + r2). We obtain the
following simplified operation count for the algorithm,

n2

2
+ 2nr2,

multiplications, where the first term comes from the forward substitution (5.2) and
(5.3), and the second from (5.5). This should be compared to the cost of solving
a triangular system of dimension n, which is n2/2 multiplications, and the cost for
standard Tikhonov regularization (using the fast algorithm in [2]), which is 4.5n2

multiplications1. Thus, the sequential algorithm is faster than standard regularization
for r <

√
2n.

In some cases it may be desired to retain more than one component of the vector
β in each iteration of the algorithm. It is easy to modify the above algorithm to the

1The algorithm in [2] takes advantage of the Toeplitz structure. If this is not done, then the
operation count is O(n3).
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case when p > 1 components of the solution are retained. For example, in the case
p = r/2 and n is large, we get the operation count n2/2 +O(nr) multiplications.

One potentially important special case is when K and L are band matrices. For
example, this may happen when the sideways heat equation2 is solved over a very
long time interval. Here it seems appropriate not to let measurements from long ago
influence the present. In such cases one can define the kernel function of the Volterra
equation (1.2) to be equal to zero for t > t0, for some value of t0. This leads to a
matrix K with band structure, i.e., the elements of K satisfy kj = 0, for j > w.

Since in most cases, the matrix L is a discretization of the identity or a differen-
tiation operator, it is usually a band matrix with a narrow band.

It is trivial to modify the sequential regularization algorithm for this case. If
r ≤ w, then only the forward substitution (5.2) and (5.3) is affected, and it is easy
to see that the operation count (in the case when only one unknown is computed in
each step) becomes

nw + 2nr2,

multiplications. If r is considerably larger than w, then more savings can be done in
Steps 1 and 2(b), by taking advantage of band structure also here.

Of course, when n � w the sequential method is much faster than standard
Tikhonov regularization.

6. Numerical Examples. In this section we give a few numerical examples
that illustrate sequential regularization. The purpose is not to investigate in detail
the numerical properties but rather to demonstrate the usefulness of the proposed
method. More extensive numerical experiments will be reported elsewhere.

Example I. Consider the Volterra equation of the first kind

gm(t) = Kf(t) =
∫ t

0

kκ(t− τ)f(τ)dτ, 0 ≤ t ≤ 1,

where the kernel function is defined by

kκ(t) =
1

2t3/2
√

κπ
exp

[
−1
4κt

]
.(6.1)

This corresponds to the sideways heat equation (IHCP) in a quarter plane, where
temperature measurements are done at x = 1 and f(t) is the unknown temperature
at x = 0. The parameter κ determines the heat conduction properties of the material:
the smaller κ, the more ill-conditioned the discretized system. For information about
this problem, see e.g. the recent surveys [1], [7], [3], and the references therein. This
application is very important, and we choose to consider the example, in spite of the
fact that since kκ(0) = 0, the Volterra equation is considerably more ill-conditioned
than is assumed in the theory in §4.

A solution function f(t) was constructed, and the integral equation was discretized
using midpoint quadrature, giving a lower triangular system of equations of dimension
256. The right hand side was formed by multiplying the vector f by the matrix K,
and then adding a random perturbation, normally distributed with mean zero and
standard deviation d.

2Or Inverse Heat Conduction Problem (IHCP). For recent surveys of numerical procedures for
the sideways heat equation, see [1], [7], [3].
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Fig. 6.1. Numerical results for Example I, using sequential and standard regularization, with
κ = 1, d = 10−3, µ = 0.25 · 10−4, and r = 18.

In all graphs, the solid curve is the exact solution, and the dashed curve is the
approximation using sequential regularization with Lr equal to the identity matrix.
For comparison we also plot the result of standard Tikhonov regularization (2.3)
(dashed-dotted curve), where we have used L equal to the identity matrix and chosen
the same value of the regularization parameter as in sequential regularization.

In the examples given, we have chosen r as small as possible, such that the results
using standard and sequential regularization agree well visually. Therefore, in a couple
of the graphs it is difficult to distinguish between the two approximations.

In the first test case, we chose d = 10−3 and κ = 1, and the results are shown
in Figure 6.1. It is seen that a relatively large value of r is needed to make sequen-
tial regularization perform almost as well as standard regularization. However, note
that with r = 18 sequential regularization is slightly more efficient than standard
regularization.

Figure 6.2 shows that the value of r can be chosen considerably smaller, if κ is
larger. Note that the standard deviation of the random perturbation is the same as
in the previous example. If the noise level is lower, 10−4 say, then it is possible to get
good results with r as small as 4.

Example II. Consider the Volterra equation with kernel function k̂(t) = kκ(t)+θ,



SEQUENTIAL TIKHONOV REGULARIZATION 19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 6.2. Example I with κ = 2, d = 10−3, µ = 0.49 · 10−4, and r = 8.

where κ = 2, θ = 10−3, and kκ is defined by (6.1). Since k̂(t) > 0, the assumptions
of the previous sections are satisfied. The problem was discretized, and a solution
and a right hand side were constructed exactly as in Example I. The matrix K has
a condition number of the order 1018 so the problem cannot be solved without some
kind of regularization.

The results are shown in Figure 6.3. Notice that here a very small value of r
can be used, which makes sequential regularization much more efficent than standard
regularization.

Our examples indicate that when the noise level is not too high and the problem
is not too ill-conditioned, then r can be chosen so small that the sequential algorithm
is considerably faster than and about as accurate as standard Tikhonov regularization
(using the fast algorithm in [2]). For ill-conditioned problems with k(t) > 0 it may
be possible to choose r as small as 4. More research is needed to find a recipe for
choosing r, depending on the kernel function and the noise level.
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