Math 309 - Exam 2 Review

Exam 2 will be given in class, Friday Feb 21. The exam covers all the material done so far in the course, which corresponds to Sections 1.1-1.6, 2.1 and 2.2, and 3.4 in the textbook.

What to study:

1. Definitions. You should be able to give precise definitions of the following important terms:

vector space	subspace	linear combination
linearly independent	$\operatorname{span}\left(\mathbf{v}_{1}, \ldots \mathbf{v}_{n}\right)$	basis
linear transformation	one-to-one	onto
Null space $N(T)$	Range $R(T)$	coordinate vector $[\mathbf{v}]_{\alpha}$ of a vector in a basis α.
$\operatorname{rank} T$	nullity T	matrix $[T]_{\alpha}^{\beta}$ of T with respect to bases α, β.

2. Theorems. You should be able to apply the lemmas and theorems stated in the class notes for Days 1-16.
3. Calculations. You should know how to

- Show that a given set of vectors is (i) linearly independent, (ii) spans and (iii) is a basis.
- Find a basis of $N(T)$ for a given linear transformation $T: V \rightarrow W$.
- Find a basis of $R(T)$ for a given linear transformation $T: V \rightarrow W$.
- Find the rank and nullity of a given linear transformation.
- Find the matrix of a given linear transformation with respect to given bases.

4. Proofs. There will be one or two proofs on the exam.

Review Problems for Exam 2

1. Let $T: \mathbb{P}_{3} \rightarrow \mathbb{P}_{3}$ be the function defined by $T(f(x))=x f^{\prime}(x)$, where $f^{\prime}(x)$ is the derivative of $f(x)$.
(a) Show that T is a linear transformation.
(b) Find the matrix of T with respect to the ordered basis $\beta=\left\{1, x, x^{2}, x^{3}\right\}$ of \mathbb{P}_{3}.
2. Let $T: \mathbb{M}(2 ; 4) \rightarrow \mathbb{R}^{8}$ be a linear transformation that is one-to-one. Show that T is onto.
3. Let S be the subspace of \mathbb{R}^{4} spanned by the the vectors

$$
\mathbf{u}_{1}=(2,-1,3,1), \quad \mathbf{u}_{2}=(7,-6,5,2), \quad \mathbf{u}_{3}=(-3,4,1,0)
$$

Find a basis for S and determine its dimension.
4. Let $T: V \rightarrow W$ be a linear transformation. Prove that the range $R(T)$ is a subspace of W.
5. Determine if the following 3 vectors form a basis for \mathbb{R}^{3} :

$$
\mathbf{v}_{1}=(1,1,-2) \quad \mathbf{v}_{2}=(3,2,-4), \quad \mathbf{v}_{3}=(0,1,0)
$$

5. Use the Rank-Nullity Theorem to show that if a linear transformation $T: V \rightarrow W$ is onto, then $\operatorname{dim} V \geq \operatorname{dim} W$.
6. Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is defined by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-2 x_{2},-3 x_{1}+6 x_{2}, 2 x_{1}-4 x_{2}\right) .
$$

Find a basis for $N(T)$ and $R(T)$.
7. Determine if the following 3 vectors form a basis for \mathbb{R}^{3} :

$$
\mathbf{v}_{1}=(1,1,-2) \quad \mathbf{v}_{2}=(3,2,-4), \quad \mathbf{v}_{3}=(0,1,0)
$$

8. Let W be a subspace of a vector space V. Prove that there is a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ of V whose first k vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is a basis of W.
9. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

$$
T(x, y, z)=(x, x+y, x+y+z)
$$

Show that T maps \mathbb{R}^{3} onto \mathbb{R}^{3}. Use the fact that the rank is the number of pivot columns.
10. Prove that a linear transformation $T: V \rightarrow W$ is one-to-one if and only if $N(T)=\{0\}$.

