
Math 309– Notes and Homework for Days 4-6

Day 4 Read Section 1.2 and the notes below. The following is the main definition of the course.

Definition. A vector space is a set V (whose elements are called vectors) endowed with

• a rule for addition that associates to each pair v,w ∈ V an element v + w ∈ V , and

• a rule for scalar multiplication that associates to each v ∈ V and r ∈ R an element rv ∈ V ,

such that, for all v,w,x ∈ V and r, s ∈ R,

1. v + w = w + v +C Addition is commutative

2. (v + w) + x = w + (v + x) +A Addition is associative

3. ∃ a vector 0 ∈ V s.t. v + 0 = v +0 Additive Identity Property

4. 1 · v = v ×1 Multiplicative Identity Property

5. r(sv) = (rs)v ×A Multiplication is associative

6. For each v ∈ V , ∃ an “opposite vector”
−v ∈ V s.t. v + (−v) = 0 +Inv Additive Inverse Property

7-8. r(v + w) = rv + rw and (r + s)v = rv + sv Dist. Distributive Property

We will refer to these axioms using the abbreviations given in middle column and the words given
in the last column.

Notes (a) These axioms implicitly assume that the properties of the real numbers, of sets, and of the
symbol = (e.g. adding the same thing to both sides preserves equality) are known and will be used
freely. Thus in proofs you will have occasion to use the abbreviations

prop of R prop of sets prop of =

for “properties of the real numbers” , “properties of sets” and “properties of equality”.

(b) In Axioms 3 and 4, the word “identity” means “vector that makes no change”.

(c) When checking whether a given set is a vector space, always begin by checking the two
bulleted requirements at the top. In fact, these are the most important.

Examples of Vector Spaces

1. The real numbers R with the usual addition and scalar multiplication.

2. The vector spaces Rn, Euclidean space with coordinate grid, is the set of n-tuples or real
numbers (written either vertically or horizontally). For v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn),
the sum is defined by adding corresponding components, and the scalar multiplication by r ∈ R is
defined by multiplying every component by r:

v + w = (v1 + w1, v2 + w2, . . . , vn + wn) and rv = (rv1, rv2, . . . , rvn)

Similarly, the vector space Cn consisting of all n-tuples of complex numbers. The textbook uses the
notation Fn to mean either Rn or Cn.
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3. The vector space Mm,n(F ) of all m×n matrices (m rows and n columns) with entries in F = R
or C. Matrices are added by adding corresponding entries. A matrix A is multiplied by a scalar r ∈ R
by multiplying each entry in A by r.

Notation: Write Aij for the number in the ith row and jth column of the matrix A. Then addition
and scalar multiplication can be written as (A + B)ij = Aij + Bij and (rA)ij = rAij .

4. The vector space Pn(F ) of polynomials of degree ≤ n consists of all polynomials p with
coefficients in in F = R or C of the form

p(x) = a0 + a1x + a2x
2 + · · ·+ anx

n,

in the variable x. Note that some, or even all, of the coefficients can be 0. Addition and scalar
multiplication are done on each coefficient separately: if q(x) = b0 + b1x + · · ·+ bnx

n then

(p + q)(x) = (a0 + b0) + (a1 + b1)x + · · ·+ (an + bn)xn (rp)(x) = ra0 + (ra1)x + · · ·+ (ran)xn,

This is the same as thinking of p and q as functions of x and adding and scalar multiplying as in the
next example.

5. The vector spaces C[a, b] of continuous functions. Let C[a, b] denote the set of all real-valued
functions defined and continuous on the interval a ≤ x ≤ b. The sum of functions f + g is defined by
taking the sum of the real numbers f(x) and f(x) at each x: of gegree less than n. Define p+ q and rp
by

(f + g)(x) = f(x) + g(x)

This is an element in C[a, b] because of the calculus fact that the sum of continuous function is contin-
uous. Scalar multiplication by r ∈ R is defined similarly:

(rf)(x) = r · f(x).

Homework 4: Do the following problems (most are taken from Section 1.2 of the textbook):

1. The following are augmented matrices, already in reduced row echelon form. Write down the
solution sets S in terms of free variables r, s, . . . . Use the procedure described in the Day 3 notes.

(a)

 1 0 0 0 2
0 1 0 0 −3
0 0 0 1 −6

 (b)

 1 0 0 0 0 0 9
0 0 1 0 0 0 −1
0 0 0 1 0 0 5


2. There is a “quick method” to solve linear systems, described below. Use this method to write

down the Solution Set to the following two linear systems.

(a) x + 2y + z = 5
2x− 3y + 5z = −17
4x + 8y − z = 30

(b) x1 + x2 − 5x3 + 3x4 − 4x5 = 9
2x1 − x2 + 6x3 − 3x4 + x5 = 18

−x1 + 2x2 + 4x3 − 4x4 + 6x5 = 19

Quick Method: Go to WolframAlpha.com. Type in the equations, separated by commas. Press
Return.

For (b), give the variables simpler names before entering. Write the answer in both the “exact
form” and the “approximate form” given by WolframAlpha.

3. Compare the definition of vector space given above to the one on page 7 of your textbook. Choose
one or the other and copy the entire definition onto your HW sheet. Include the names and
abbreviations given above. This is intended to help you learn the definition.
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Do the following problems from pages 12-13 of the textbook.

4. Problem 1 parts a-i.

5. Problem 2

6. Problem 3

7. Problems 4a, 4c, 4e and 4h.

8. Problem 12

9. Problem 13

10. Problem 16

Day 5 Consequences of the axioms. Read the notes below and do HW 5.

From the axioms, one can derive numerous simple consequences that are useful in calculations. Each
is proved from the axioms and from previously proved facts. Once a fact is proved, it gets added to our
basket of “known facts” and can be used from then on.

Here are several examples. Each is called a “Lemma”, and a proof is given 2-column format. You
will do similar proofs in HW.

Lemma 1. 0 + v = v ∀v ∈ V . (Note that 0 is a number, but 0 (also written
−→
0 ) is a vector.

Proof: 0 + v = v + 0 +C

= v + 1 �

Lemma 2. v + v = 2v ∀v ∈ V .

Proof: v + v = 1 · v + 1 · v ×1

= (1 + 1)v Dist

= 2v prop of R �

Lemma 3. (a) 0 · v = 0 for all v ∈ V , and

(b) s · 0 = 0 for all s ∈ R.

Proof: (a) was proved in class.
(b) 0 = s0 +−(s0) addInv

= s(0 + 0) +−(s0) +0

= (s0 + s0) +−(s0) Dist

= s0 + (s0 +−(s0)) +C

= s0 + 0 +Inv

= s0 +0 �

Lemma 4. (Cancellation Law) If v + x = w + x then v = w. Read the proof
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Lemma 5. (Uniqueness of Additive inverse) If v + x = 0 then x = −v.

Lemma 6. If sv = 0 then s = 0 or v = 0.

Proof: If s 6= 0 then 1
s exists. Then

v = 1 · v

=
...

= 0 �

Background: Axiomatic Systems

Most areas of modern mathematics are organized axiomatically. This is the approach that Euclid
took to developing geometry: he began with 5 axioms (Euclid’s “postulates”) and built the entire
subject from there. In the 19th and early 20th centuries this scheme was applied to other areas of
mathematics and refined into what is known as the axiomatic system. In particular, linear algebra is
organized as an axiomatic system.

There are four parts of an axiomatic system.

1. Terms and definitions. Each axiomatic system begins with a few undefined terms. The undefined
terms in linear algebra are point, vector, set, element, and a few others. After that, new terms are
introduced with precise definitions.

2. Axioms. An axiom or postulate (the words are interchangeable) is a statement that is accepted
without proof. The subject (linear algebra for us) begins with a short list of axioms. Everything else is
logically derived from them.

Sometimes axioms refer to other mathematical subjects or objects. The axioms of linear algebra
assume that you are familiar with the properties of the real numbers, and of sets (which themselves can
be developed as axiomatic systems).

3. Theorems. The largest part, by far, of an axiomatic system consists of theorems and their proofs.
A theorem is a “if–then” statement that has been proved to be a logical consequence of the axioms.
Vocabulary: the words theorem and proposition are synonyms, a lemma is a theorem that is stated as
a step toward some more important result, and a corollary is a theorem that can be quickly and esaily
deduced from a previously-proved theorem.

Theorems are organized in a strict logical order, building on each other. The first theorem is proved
using only the axioms. The second theorem is proved using only the first theorem and the axioms, etc..

4. Models. An axiomatic system is a purely logical construction. The human brain is not good at
understanding complicated logical constructions. Thus it is advantageous to have a way of thinking
about or visualizing the undefined terms that is compatible with human experience.

An interpretation of an axiomatic system is a particular way of giving meaning to the undefined
terms in that system. An interpretation is called a model if the axioms are true statements in that
interpretation. As a result, all of the theorems are also true for the model.

A good model makes it possible to visualize and guess theorems, and it provides guidance in devel-
oping proofs. For linear algebra, the best model is the pictures of vector addition by parallelograms
and scalar multiplication by rescaling vectors described on Day 1.
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Homework 5: Give proofs, similar to those above, that each of the following facts holds for all
v ∈ V and r ∈ R. For each, you are allowed to use the axioms and all previously proved Lemmas
(Lemmas 1-6 for Problem 1, Lemmas 1-7 for Problem 2, etc.).

1. Lemma 7. (−1)v = −v

Hint: start with the words “Let x = (−1)v”. Then show that v + x = 0 and quote Lemma 5.

2. Lemma 8. If v = −v then v = 0.

3. Lemma 9. −(−v) = v.

4. Lemma 10. r(−v) = −(rv).

5. Lemma 11. (−r)v = −(rv).

6. Lemma 12. If v 6= 0 and rv = sv, then r = s.

Hint: start with (r − s)v = (r + (−s))v and use facts 11 and 6 above.

Subtraction of vectors is defined in terms of addition in the obvious manner: v − w is defined to be
v + (−w). Use this definition to prove the following identities hold for each v,w in V and r, s ∈ R.
The reason for some steps will be “def. of subtr.”.

7. Lemma 13. 0− v = −v.

8. Lemma 14. v − (−w) = v + w.

9. Lemma 15. (v −w) + w = v.

Day 6 Subspaces. Read Section 1.4 of the textbook and do HW6.

Definition. A subset S of a vector space V is called a vector subspace of V if S is itself a vector space
(using the addition and scalar multiplication of V ).

Simple Examples: Any line through the origin is a subspace of R2. Each line through the origin, and
each plane through the origin, is a subspace of R3.

Subspace Theorem. A subset S of a vector space V is a vector subspace if and only if it has the
following three properties:

(i) S is not empty.

(ii) S is closed under addition: If v and w are both in S, then so is v + w.

(iii) S is closed under scalar multiplication: If v ∈ S then rv is in S for every
scalar r ∈ R.

Proof: Done in class and in the textbook page 17. �
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Remarks. 1. In a vector space V , one can readily check that {0} and V are vector subspaces. All
other subspaces are called proper subspaces. We refer to {0} as the zero subspace.

2. Every subspace must contain the zero vector (by Axiom 3). Thus a simple way to verify
that a given subset is a subspace is to

(a) Show that 0 ∈ S, and

(b) Prove that v,w ∈ S =⇒ v + w ∈ S.

(c) Prove that v ∈ S =⇒ rv ∈ S ∀r ∈ R.

Alternatively, one can combine the two types of closure by checking closure under linear combinations,
replacing steps (b) and (c) by

(bc) Prove that if v,w ∈ S then rv + sw ∈ S for all r, s ∈ R.

Example. The set S = {(x, y) ∈ R2 |x = y} is a subspace of R2.

Proof: (a) 0 = (0, 0) ∈ S X (i.e. the zero vector of R2 satisfies x = y).

If v = (x1, y1) and w = (x2, y2) are in S then x1 = y1 and x2 = y2. Then

(b) v + w = (x1 + x2, y1 + y2) ∈ S because x1 + x2 = y1 + y2.

(c) For any r ∈ R, rv = (rx1, ry1) ∈ S because rx1 = ry1.

Thus S is a subspace of R2. �

Subspace Theorem. A subspace S of a vector space V is itself a vector space (using the addition
and scalar multiplication of V ).

Intersection Theorem. The intersection of two or more subspaces is a subspace.

Proof: Let V1, . . . , Vk be subspaces of a vector space V . Consider W = V1 ∩ V2 ∩ · · · ∩ Vk.

(a) Because V1 is a subspace, we know 0 ∈ V1. Similarly, 0 ∈ Vi for each i = 2, . . . k. Therefore
0 ∈ V1 ∩ · · · ∩ Vn = W .

(b) Exercise 5 below.

Therefore W is a subspace of V . �

This section also includes two useful definitions about matrices (these appear in the examples).

• The transpose of an n × n matrix A is the m × n matrix At obtained by interchanging the rows
and columns of A. Thus (At)ij = Aji

• The trace of a square n×n matrix A, denoted trA, is the sum of the entries on the diagonal, that
is trA =

∑n
i=1 Aii.
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Homework 6:

1. Finish HW Set 5 if you haven’t already done so. Then give a similar proof of the following fact:

Lemma 16. If rv + sw = 0 with r 6= 0, then v is a multiple of w.

2. Determine whether the following sets are subspaces of R2. If not, explain why, if yes, give a proof.
Draw a graph and give a reason.

(a) A = {(x, y) |x + y = 0}
(b) B = {(x, y) |xy = 0}
(c) C = {(x, y) | y = 3x}
(d) D = {(x, y) | y2 = x2}.

3. Determine whether the following sets are subspaces of P4(R). If not, explain why, if yes, give a
proof. Be careful!

(a) The set E of polynomials in P4(R) of even degree.

(b) The set F of all polynomials of exactly degree 3.

(c) The set G of all polynomials p(x) in P4(R) such that p(0) = 0.

4. Determine whether the following sets are subspaces of C[−1, 1]. If not, explain why, if yes, give a
proof.

(a) The set I of odd functions in C[−1, 1], i.e. those with f(−x) = −f(x) for all x ∈ [−1, 1].

(b) The set J of functions f in C[−1, 1] such that f(−1) = f(1).

(c) The set K of all functions f in C[−1, 1] with average value zero, i.e.
∫ 1

−1
f(x) dx = 0.

5. Finish the proof of the Intersection Theorem (above).

6. The union of subspaces needn’t be a subspace. Show this by giving an example of two subspaces
of R2 whose union is not a subspace.

Do the following problems from pages 19-23 of the textbook.

7. Problem 1, all parts.

8. Problem 2a, 2d and 2h.

9. Problem 5 Hint: use the notation (At)ij = Aji.

10. Problem 6 Hint: use the notation trA =
∑n

i=1 Aii.

11. Problem 20.
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