
Day 35 Dot products and geometry in Rn

Vectors in Rn can be written as linear combinations x =
∑

xi ei of the the standard basis elements {ei}.
As long as one works only with the standard basis, one can omit the ei and record each vector as the row
x = (x1, x2, . . . , xn) of its coordinates.

Definition. For vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Rn, the dot product is

x · y = x1y2 + x2y2 + · · ·+ xnyn

and the norm of x is
‖x‖ =

√
x · x.

The norm and dot product have simple geometric interpretations:

• ‖x‖ is the length of the vector x, regarded as an arrow from the origin to the point x ∈ Rn.

• The dot product is related to the angle θ between x and y by

x · y = ‖x‖ ‖y‖ cos θ,

(the span of x and y is a plane in Rn, and this formula holds in that plane). Thus one can determine
the angle between two vectors by the formula cos θ = x·y

‖x‖ ‖y‖ .

• Two vectors x and y are perpendicular (or “orthogonal”) if and only if x · y = 0.

• The unit vector in the direction of x is
x

‖x‖ .

• Given vectors x and y with x 6= 0, we can write y as the sum of a vector parallel to x and one
orthogonal to x. The parallel one is called the projection of y onto x and is given by

Proj
x
(y) = (‖y‖ · cos θ)(unit vector in the x direction) =

x · y
‖x‖2 x.

x

y

Proj
x
(y) =

x · y
‖x‖2 x

Properties. The dot product if a function Rn × Rn → R by (x,y) 7→ x · y with three properties. It is:

(a) Bilinear: (ax+ by) · z = ax · z+ by · z and
x · (ay + bz) = ax · y + bx · z.

(b) Symmetric: x · y = y · x.

(c) Positive Definite: x · x ≥ 0 for all x ∈ Rn with equality if and only if x = 0.

In fact, many facts about dot products follow using only these three properties. Here are two examples:
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Lemma 35.1 (Pythagorean Theorem). If x and y are orthogonal, then

x

y
x+ y‖x+ y‖2 = ‖x‖2 + ‖y‖2

Proof. Using the definition of the norm and bilinearity, we have

‖x+ y‖2 = (x+ y) · (x+ y) = x · x + 2✘✘
✘✘✿

0
(x · y) + y · y = ‖x‖2 + ‖y‖2.

�

Lemma 35.2 (Cauchy-Schwarz Inequality). For any vectors x,y in Rn,

|x · y| ≤ ‖x‖ ‖y‖

with equality if and only if one of the vectors is a multiple of the other.

Proof. The inequality follows by taking the absolute value of both sides of the equation x·y = ‖x‖ ‖y‖ cos θ
and noting that | cos θ| ≤ 1. Equality holds if and only if cos θ = ±1, which means that one vector is a
(positive or negative) multiple of the other. �

Application to statistics

Frequently in statistics, a characteristic of some population is sampled and the results recorded as vector
in Rn where n is the number sampled. For example, if 8 students are sampled and asked how many courses
they are currently taking, the resulting data might be recorded as the vector

x = (4, 4, 5, 4, 3, 6, 4, 5) ∈ R
8.

Definition. Suppose that two characteristics of a population are measured and the resulting data displayed
as vectors x and y in Rn.

1. The mean of the vector x = (x1, x2, . . . , xn) is x̄ = 1

n

∑

i x
i.

2. The deviation vectors xd and yd are obtained by subtracting the mean from each entry.

Example: The vector x = (1, 2, 3, 4, 5) has mean x̄ = 15

5
= 3 and deviation vector xd = (−2,−1, 0, 1, 2).

3. The correlation coefficient r between the characteristics is the cosine of the angle θ between the
deviations vectors xd and yd:

r = cos θ =
xd · yd

‖xd‖ ‖yd‖
.

One says that the two characteristics are:

• positively correlated if r > 0,

• negatively correlated if r < 0, and

• uncorrelated if r = 0.

If there is a perfect positive correlation (r = 1) or a perfect negative correlation (r = −1) one can exactly
predict the value of one characteristic given the other. When r is close to ±1 one can almost predict, and
one says the two characteristics are “highly correlated”.
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Homework 35

For the following problems, use a calculator to find the square roots and cosines. Minimize the number of
decimal places.

1. Find the length of u = (7, 11), v = (2, 3, 4) and w = (2, 3, 4, 5).

2. Find the angle between (a) u = (1, 2, 3) and v = (2, 3, 4), (b) u = (1,−1, 2,−2) and v = (2, 3, 4, 5).

3. For each pair of vectors, determine whether the angle between them is acute (< 90◦), obtuse (> 90◦)
or right.

(a) u = (2,−2) and v = (5, 4).

(b) u = (2, 3, 4) and v = (2,−8, 5).

(c) u = (1,−1, 1,−1) and v = (3, 4, 5, 3).

4. For which choice of k are the vectors u = (2, 3, 4) and v = (1, k, 1) orthogonal?

5. Consider the vectors u = (1, 1, 1, · · · , 1) and v = (1, 0, 0, 0, · · · , 0) in R
n. Determine the angle between

them for n = 2, 3, 4 and find the limit of this angle as n → ∞.

6. Find the orthogonal projection of u = (49, 49, 49)

(a) onto the vector v = (2, 3, 6)

(b) onto the subspace spanned by v = (2, 3, 6) and w = (3,−6, 2).

7. Find the orthogonal projection of u = (1, 0, 0, 0) onto the subspace of R4 spanned by v1 = (1, 1, 1, 1) ,
v2 = (1, 1,−1,−1) and v3 = (1,−1,−1, 1).

8. Let v be a vector in Rn. Prove that the set

v⊥ =
{

w ∈ R
n
∣

∣

∣
w · v = 0

}

is a subspace of Rn (called the orthogonal subspace to v).

9. Consider the vector v = (1, 2, 3, 4) in R4. Find a basis of the subspace of R4 consisting of all vectors
perpendicular to v.

10. Five students took aptitude exams in English, mathematics and science. Their scores are shown below.

(a) Write down the deviation vectors Ed, Md and Sd.

(b) Find the correlation coefficients rEM , rES and rMS between the three pairs of variables. Which
pairs of variables are positively/negatively correlated?

Student E=English M=Math S=Science

S1 61 53 53

S2 63 73 78

S3 78 61 82

S4 65 84 96

S5 63 59 71

Mean 66 66 76
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Day 36 Inner Product Spaces

On Rn the standard dot product gives

• lengths ‖v‖

• angles cos θ =
u · v

‖u‖ ‖v‖

• projections Proj
x
(y) =

x · y
‖x‖2 x.

Inner products are “generalized dot products” that allow us to define lengths, angles and projections in a
general vector space.

Definition 36.1. An inner product on a real vector space V is a way of assigning a real number 〈v,w〉 to
each pair of vectors v,w of V with three properties:

(a) (Positive definite) 〈v,v〉 ≥ 0, with equality if and only if v = 0.

(b) (Symmetric) 〈v,w〉 = 〈w,v〉 for all v,w ∈ V .

(c) (Bilinear) (a) 〈au+ bv,w〉 = a〈u,w〉+ b〈v,w〉 and
(b) 〈u, cv + dw〉 = c〈u,v〉+ d〈u,w〉 for all u,v,w ∈ V .

Properties (2) and (3a) imply (3b), so to check the properties one needs only verify (1), (2) and (3a).

An inner product is an addition structure on a vector space; a vector space together with an inner product
is called an inner product space (V, 〈 , 〉). Notice that the definition does not involve any basis.

Given an inner product, one defines the norm of a vector v ∈ V by

‖v‖ =
√

〈v,v〉. (36.1)

Important fact to bear in mind: Each vector space has many inner products — we must choose one.
Some vector spaces have “standard” inner products.

Examples. (1) On V = Rn, the dot product defines an inner product 〈v,w〉 = v ·w.

(2) One can define many other inner products on R
n. For example, on V = R

2, we can write
v = (v1, v2) and w = (w1, w2) and define an inner product by

〈v,w〉 = 2v1w1 + 5v2w2.

(3) The space V = MR(n,m) of real n× n matrices has a standard inner product defined by

〈A,B〉 = tr (BtA)

where Bt is the transpose of B. In terms of the entries Aij and Bij , this is

〈A,B〉 =
∑

j

(BtA)jj =
∑

j

∑

i

(Bt)jiAij =
∑

j

∑

i

BijAij .

This clearly symmetric and satisfies 〈A,A〉 =
∑

ij |Aij |2 ≥ 0 with equality if and only if A = 0. It is also
clear that 〈aA + b, C〉 = 〈A,C〉 + b〈B,C〉 for any matrices A,B,C ∈ V . Thus this formula defines an inner
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product on MR(n, n) .

(4) On the vector space V = C[a, b] of continuous functions on the interval [a, b], the L2 inner
product is defined on f, g ∈ V by

〈f, g〉 =

∫ 1

0

f(x)g(x) dx.

The following important facts follow algebraically from the definition of inner products, so are true in
any inner product space.

Theorem 36.2. For any two vectors v,w ∈ V we have

(a) ‖v+w‖2 = ‖v‖2 + 2〈v,w〉+ ‖w‖2.
(b) The Cauchy-Schwarz Inequality |(v,w)| ≤ ‖v‖ · ‖w‖ with equality if and only if one of these

vectors is a multiple of the other.

(c) The Triangle Inequality ‖v + w‖ ≤ ‖v‖ + ‖w‖, also with equality if and only if one of these
vectors is a multiple of the other.

Proof. (a) Here’s a proof in two-column format using the properties in the definition of inner product:

‖v +w‖2 = 〈v +w,v +w〉 def. of norm

= 〈v,v〉 + 〈v,w〉 + 〈w,v〉 + 〈w,w〉 bilinearity

= 〈v,v〉 + 2〈v,w〉+ 〈w,w〉 symmetric

= ‖v‖2 + 2〈v,w〉 + ‖w‖2 def. of norm

(b) If ‖w‖ = 0 then w = 0 and hence the Cauchy-Schwarz inequality holds because both sides are

0. Therefore we can assume that ‖w‖ 6= 0. Set t =
〈v,w〉
‖w‖2 . Then the vector v − tw satisfies

0 ≤ ‖v− tw‖2 = ‖v‖2 − 2t 〈v,w〉 + t2‖w‖2

= ‖v‖2 − 2
|〈v,w〉|2
‖w‖2 +

|〈v,w〉|2
‖w‖2

= ‖v‖2 − |〈v,w〉|2
‖w‖2 .

After rearranging, this gives |〈v,w〉|2 ≤ ‖v‖2 · ‖w‖2. The Cauchy-Schwarz inequality follows by taking
square roots. Finally, note that equality holds if and only if either w = 0 or v = tw, which exactly means
that one of the vectors is a multiple of the other.

(c) The Triangle Inequality follows from (a) and (b) (HW Problem 5). �

The great thing about inner products is that one can think geometrically, even about an abstract vector
space. Suppose that V is an inner product space. By analogy with what is done with dot products, we can
define the angle’ θ between two vectors v,w ∈ V by

cos θ =
〈v,w〉

‖v‖ · ‖w‖ .

(This makes sense because the right-hand side is between −1 and 1 by the Cauchy-Schwarz inequality.) We
then say that v,w ∈ V are orthogonal if 〈v,w〉 = 0. In the same spirit, we define the projection of w onto
v by the same formula we used in Rn:

Proj
v
(w) =

〈v,w〉
‖v‖2 v.
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Examples. (5) In MR(2, 2) with its standard metric 〈A,B〉 = tr (BtA), write A =
(

1 5

2 3

)

as the sum

A = cI2 +B for some constant c ∈ R and a matrix B ⊥ A.

Solution. Note that 〈A, I〉 = tr (IA) = 4 and ‖I‖2 = tr (I) = 2. Hence ProjI2(A) = 〈A,I2〉
‖I2‖2 I = 4

2
I2 = 2I2,

so

A = 2I2 +B where B = A− 2I2 =

(

−1 5
2 1

)

.

(6) In V = C[0, 1] with the L2 inner product, the angle between the f(x) = x3 and g(x) = x5.

Solution. Using the formula cos θ =
〈f, g〉

‖f‖ · ‖g‖ and computing



















〈f, g〉 =
∫ 1

0
x8 dx = 1

9

‖f‖2 =
∫ 1

0
x6 dx = 1

7

‖g‖2 =
∫ 1

0
x10 dx = 1

11

shows that cos θ =
√
77

9
. Taking arccos gives θ = 12.8◦.

Homework 36

1. Verify the statement made after Definition 36.1 that Properties (2) and (3a) imply (3b). one line!.

2. Read Example 2 above. Show that the formula 〈v,w〉 = 2v1w1 + 5v2w2 does indeed define an inner
product on R2.

3. Show that the formula given in Example 4 above defines an inner product on C[0, 1].

4. Use the formula given in Example 4 to evaluate the inner products between the following pairs of
functions:

(a) x and x2 in C[0, 1].
(b) x and x2 in C[−1, 1].

(c) sinx and cosx in C[0, 2π]. Note that sin 2x = 2 sinx cosx

(d) Find ‖ sin 5x‖ in C[0, 2π]. Note that sin2 x = 1

2
(1 − cos 2x)

5. Use parts (a) and (b) of Theorem 36.2 to prove part (c) (the Triangle Inequality).

6. Let V be a vector space with an inner product. Prove the Parallelogram Law: for any v,w ∈ V

‖v +w‖2 + ‖v −w‖2 = 2‖v‖2 + 2‖w‖2.

Use the same format as the proof of Theorem 36.2a) above.

7. Consider the matrix A =

(

1 3 −1

2 0 4

3 −1 1

)

in MR(3, 3) with its standard metric (cf. Examples 3 and 5).

(a) Find angle between A and I3.

(b) Find the projection of A onto I3

(c) Write A = cI3 +B for some matrix B ⊥ I3.

(d) What does B ⊥ I3 mean in terms of the trace of B?

8. Consider the functions f(x) = 1

2
x and g(x) =

√
x in C[0, 4] with the L2 inner product. Write g as the

sum of a multiple of f and a function h orthogonal to f .
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Day 37 Orthonormal sets and Gram-Schmidt

We start with a topic — distance functions — that gives another way that inner products allow one to
think about linear algebra geometrically.

Distance Function. In an inner product space V , we define the distance between two vectors v and w by

d(v,w) = ‖v −w‖ (36.1)

This makes V into a metric space, i.e. V is a set with a distance function V × V → R that satisfies, for all
v,w and u in V ,

1. d(v,w) ≥ 0 with equality if and only if v = w.

2. d(v,w) = d(w,v).

3. (Triangle inequality) d(v,w) ≤ d(v,u) + d(u,w)

The distance function allows us to talk about perpendicular projections onto subspaces, and about con-
verging sequences of vectors in V ; more on these below. Using the distance function, we can think about
abstract vector spaces (even infinite-dimensional ones) in rather intuitive geometric terms.

Example. What is the distance between f(x) =
√
x and g(x) = x in C[0, 1] with the L2 inner product?

Solution. Computing the square of the distance:

(d(f, g))2 = ‖f − g‖2 =

∫ 1

0

(
√
x− x)2 dx =

∫ 1

0

x− 2x3/2 + x2 dx =
1

2
− 2 · 2

5
+

1

3
=

1

30
,

so d(f, g) = 1√
30
.

We now come to the main topic of the day:

Definition. Let V be a vector space with an inner product. A set {e1, . . . , } of vectors is called

• orthogonal if 〈ei, ej〉 = 0 for all i 6= j.

• orthonormal if, in addition, each ei is a unit vector,this is equivalent to

More concisely, {e1, . . . , en} is orthonormal if 〈ei, ej〉 = δij =

{

1 i = j

0 i 6= j.

Orthonormal sets are extremely convenient for computations. This is true because, for vectors that are
linear combinations of elements in an orthonormal set, one can compute the coordinates of a vector by taking
inner products, and can compute inner products from the coordinates:

Theorem 36.1 (Fourier Expansion Theorem Important!). If {e1, e2, . . . } is an orthonormal set and
v,w ∈ V are sums

v =
∑

i

ai ei w =
∑

i

bi ei
then

(a) The coefficients of v are ai = 〈v, ei〉; these are called the Fourier coefficients of v.

(b) 〈v,w〉 =
∑

i aibi. In particular, ‖v‖2 =
∑

i |ai|2.
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Proof. (a) Take the inner product of v with ej:

〈v, ej〉 =

〈

∑

i

aiei, ej

〉

=
∑

ai〈ei, ej〉 =
∑

i

δij = aj .

(b) Similarly, using bilinearity,

〈v,w〉 =

〈

∑

i

aiei,
∑

j

bjej

〉

=
∑

i

∑

j

aibj〈ei, ej〉 =
∑

i

∑

j

aibj δij =
∑

i

aibi.

�

Two immediate consequences of Theorem 36.1 are:

• All orthogonal sets are linearly independent.

• In an n-dimensional vector space, any orthogonal set has at most n vectors, and if it has n vectors
then it is a basis.

Proof: To show linear independence, suppose that
∑

i aiei = 0. Then by Theorem 36.1a) with v = 0 we
have ai = 〈0, ei〉 = 0 for all i, as needed. The second fact follows because any set of n linearly independent
vectors in an n-dimensional vector space is a basis. �

Orthogonal Projections. In R
3 there is an obvious notion of the perpendicular projection of a vector

onto a plane. We now show how to extend the idea to the perpendicular projection onto a subspace in any
inner product space. Let V be an inner product space (possibly infinite-dimensional).

Definition. Let W ⊂ V be a subspace with an orthonormal basis {e1, . . . , ek} where k = dimW is finite.
The orthogonal projection of v ∈ V onto W is the vector

ProjW (v) =
∑

〈 v, ej〉 ej .

v

v⊥ = v − ProjW (v)W

ProjW (v)

Proposition 36.2. (a) v⊥ = v − ProjW (v) is perpendicular to W , and

(b) ProjW (v) is the vector in W closest to v.

Proof. (a) Note that for an arbitrary vector w =
∑

xiei in W

〈v⊥,w〉 =
〈

v − ProjW (v),
∑

xiei

〉

= 〈v,w〉 −
〈

∑

j

〈 v, ej〉 ej ,
∑

i

xiei

〉

= 〈v,w〉 −
∑

ij

xi〈 v, ej〉 δij ,

which is 0 because
∑

ij x
i〈 v, ej〉 δij ,=

∑

i〈v, xiei〉 = 〈v,w〉.
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(b ) The distance from v to an arbitrary vector w =
∑

xiei in W , regarded as a function of the xi, is

D(x1, · · ·xk) = dist(v,w) =
∥

∥

∥
v −

∑

xiei

∥

∥

∥
,

Again write v = ProjW (v) + v⊥. Then ProjW (v) −w =
∑

(〈v, ei − xi) ei lies in W , so by part (a)

‖v −w‖2 = ‖(ProjW (v)−w) + v⊥‖2 = ‖(ProjW (v) −w)‖2 + ‖v⊥‖2

=
∑

i

∣

∣

∣〈v, ei〉 − xi
∣

∣

∣

2

+ ‖v⊥‖2.

where we have used Theorem 36.1b) in the last step. Thus

D(x1, · · ·xk) =

√

∑

i

|
〈

v, ei〉 − xi
∣

∣

2
+ C2

where C = ‖v⊥‖ ≥ 0 is a constant independent of the numbers xi. Thus D(x) ≥ C with equality if and only
if xi = 〈v, ei〉 for all i, that is, if and only if w =

∑

xiei is ProjW (v).
�

Corollary (Bessel’s inequality). If {ei} is orthonormal and v =
∑

aiei, then
∑

i

|ai|2 ≤ ‖v‖2

with equality if and only if v ∈ span(ei).

Proof. Writing v = ProjW (v) + v⊥ and noting that 〈ProjW (v), v⊥〉 = 0, we have

‖v‖2 =
∥

∥

∥
ProjW (v)

∥

∥

∥

2

+ ‖v⊥‖2 ≥
∥

∥

∥
ProjW (v)

∥

∥

∥

2

=
∑

|〈v, ei〉|2 ‖ei‖2 =
∑

i

|ai|2.

Equality holds if and only if v⊥ = 0, which means that v ∈ span(ei). �

Homework 37

1. Use the Definition 36.1 of inner product to prove that the distance function (36.1) has the three
properties stated.

2. Find the distance between each pair of vectors:

(a) v = (1, 2, 3, 4) and w = (2, 1, 0, 5) in R4 with the standard inner product.

(b) v =
(

1 2

0 −3

)

and w =
(

2 −3

4 1

)

in MR(2, 2) with the standard inner product 〈A,B〉 = tr (BtA).

(c) f(x) = sinx and g(x) = cosx in C[0, 2π].

3. In R2 with the standard dot product, let e1 = 1√
2
(1, 1) and e2 = 1√

2
(1,−1).

(a) Show that {e1, e2} is an orthonormal set.

(b) Find the Fourier coefficients of (3, 4) and write (3, 4) as a linear combination of e1 and e2.

4. Let W be the subspace of C[0, 1] spanned by the functions f(x) =
√
3x and g(x) =

√
5(4x2 − 3x).

(a) Show that {f, g} is an orthonormal set.

(b) Find the projection of h(x) = x3 onto W . Draw a picture with labels.

(c) How close is h to W?
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Day 38 Gram-Schmidt and complex inner products

We have seen that computations are easier and more systematic when one works with an orthonormal
basis {ei}. In particular, for vectors

v =
∑

i

ai ei w =
∑

i

bi ei

• ai = 〈v, ei〉.

• 〈v,w〉 =
∑

i aibi and ‖v‖2 =
∑

i |ai|2.

• The orthogonal projection of v ∈ V onto W = span(e1, . . . , ek) is

ProjW (v) =
k
∑

i=1

〈 v, ei〉 ei.

Of course, to make this work one needs to be able to find an orthonormal basis. There is a simple algorithm
for doing so called the Gram-Schmidt Process. It starts with any basis, and systematically transmutes it
into an orthonormal basis.

The Gram-Schmidt Process. Given a basis {u1, . . . ,un} of an inner product space, we can form an
orthonormal basis {e1, . . . en} by these steps:

Step 1. Normalize u1 by setting e1 =
u1

‖u1‖
.

Step 2a. Replace u2 by the vector v2 = v2 − Proj
e1
(u2) perpendicular to e1.

Step 2b. Normalize v2 by setting e2 =
v2

‖v2‖
.

Step 3a. Replace u3 by v3 = u3 − ProjW2
(u3) perpendicular to W2 = span(e1, e2).

Step 3b. Normalize v3, etc.

At the kth step, calculate

vk = uk − 〈uk, e1〉 e1 − · · · − 〈uk, ek−1〉 ek−1

and then set ek =
vk

‖vk‖
.

Tips: When applying the Gram-Schmidt process with specific vectors, it is helpful to:

(i) Pull out common factors. For example, write
√
2(1, 1, 1) instead of (

√
2,
√
2,
√
2).

(ii) Erase the common factor before normalizing. For example, the normalization of (
√
2,
√
2,
√
2) is the

same as the normalization of (1, 1, 1), which is much easier to compute.

Example 1. Find an orthonormal basis for the subspace W of R4 generated by the vectors

u1 = (1, 0, 1, 1) u2 = (1, 0,−2, 0) u3 = (1,−1, 0, 2).
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Solution. Apply the Gram-Schmidt process to u1,u2,u3.

Step 1. Since ‖u1‖2 = (1, 0, 1, 1) · (1, 0, 1, 1) = 3 the normalization of u1 is

e1 =
u1

‖u1‖
=

1√
3
(1, 0, 1, 1).

Step 2.

v2 = u2 − 〈u2, e1〉 e1 = (1, 0,−2, 0)− 1

3
(−1) (1, 0, 1, 1)

= 1

3

[

(3, 0,−6, 0) + (1, 0, 1, 1)
]

= 1

3
(4, 0,−5, 1)

To normalize, erase the 1

3
and compute (4, 0,−5, 1) · (4, 0,−5, 1) = 42. Hence the normalization is

e2 =
v2

‖v2‖
=

1√
42

(4, 0,−5, 1).

Step 3.

v3 = u3 − 〈u2, e1〉 e1 − 〈u3, e2〉 e2 = (1,−1, 0, 2)− 1

3
(3) (1, 0, 1, 1)− 1

42
(6) (4, 0,−5, 1)

=
1

7

[

(7,−7, 0, 14)− (7, 0, 7, 7)− (4, 0,−5, 1)
]

= (−4,−7,−2, 6).

Thus we obtain the orthonormal basis {e1, e2, e3} for W where

e1 = 1√
3
(1, 0, 1, 1), e1 = 1√

42
(4, 0,−5, 1), e1 = 1√

105
(−4,−7,−2, 6).

Corollary 38.1. Every vector space with a countable basis has an orthonormal basis {ei}.

Proof. Start with any basis and apply the Gram-Schmidt process (this works even for infinite dimensional
vector spaces). �

Inner products in complex vector spaces. Recall that each complex number z = a+ bi has a conjugate
z = a− bi and a norm

|z|2 = zz = (a+ bi)(a− bi) = a2 + b2,

which is real. On the other hand, z2 = (a2 − b2) + 2abi is usually not real. Accordingly, for complex vector
spaces we must modify the definition of inner product so that 〈v,w〉 is real.

Definition 38.2. The standard hermitian inner product on Cn is

v ·w =
n
∑

i=1

viwi.

Taking the conjugate of the second vector ensures that ‖v‖2 = v · v =
∑

vivi =
∑ |vi|2 is real.

Example 1. (1, 3− i, 4i) · (1, 1 + 2i, 2 + 3i) = 1 + (3− i)(1− 2i) + 4i(2 + 3i)

= 1 + (3− 2− 7i) + (−12 + 8i) = −10 + i.
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More generally, the definition of an inner product on a complex vector space is the same as the real case,
except that a conjugate appears in the “ symmetric” and “bilinear” properties:

Definition 38.3. Let V be a complex vector space. A (hermitian) inner product on V is a map V ×V → C

so that

(a) (Positive definite) 〈v,v〉 ≥ 0, with equality if and only if v = 0.

(b) (Conjugate Symmetric) 〈v,w〉 = 〈w,v〉 for all v,w ∈ V .

(c) (Sesquilinear) (a) 〈au+ bv,w〉 = a〈u,w〉+ b〈v,w〉 and

(b) 〈u, cv + dw〉 = c〈u,v〉 + d〈u,w〉 for all u,v,w ∈ V .

“Sesquilinear” means “ one-and-one-half linear”; a more descriptive phrase is “conjugate linear in the second
variable”. Caution: Some books – about half – put the conjugate on the first vector.

Again, Properties (2) and (3a) imply (3b), and again we define the norm by

‖v‖ =
√

〈v,v〉.

See Section 6.1 of the textbook for details on the following examples:

Example 2. The standard hermitian inner product on V = Cn above.

Example 3. On MC(n,m), define the inner product of two complex matrices A,B by 〈A,B〉 = tr (B∗A)

where B∗ = B
t
is the conjugate of the transpose of B.

Example 4. On the vector space V = CC[a, b] of continuous complex-valued functions on the interval
[a, b] ⊂ R, define the L2 inner product by

〈f, g〉 =

∫ b

a

f(x)g(x) dx.

Everything we have done with inner products and projections carries over to the complex case, with conju-
gates appearing in the obvious places. In particular, if v =

∑

i ai ei, w =
∑

i bi ei and W = span(e1, . . . , ek),
then

ai = 〈v, ei〉, 〈v,w〉 =
∑

i

aibi, ‖v‖2 =
∑

i

|ai|2, ProjW (v) =
k
∑

i=1

〈 v, ei〉 ei.

where the first and last of these formulas must have 〈 v, ei〉 rather than 〈 ei,v〉.

Homework 38

1. Normalize the vectors (2, 1,−2) ∈ R
3 and (1, 7, 1, 7) ∈ R

4.

2. Show that v1 = 1

7
(3, 6,−2), v2 = 1

7
(−2, 3, 6) and v3 = 1

7
(6,−2, 3) are an orthonormal set in R3.

Without further computations, explain why they are a basis of R3.

3. Perform the Gram-Schmidt process on the following basis of R2:

v1 =

(

−3
4

)

v2 =

(

1
7

)

Illustrate your work with sketches showing the perpendicular projection you are using.
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4. Perform the Gram-Schmidt process on the following basis of R3:

v1 =





a

0
0



 v2 =





b

c

0



 v3 =





d

e

f





Here a, c, f are positive numbers and the other constants are arbitrary. Illustrate your work with a
sketch as in the previous problem.

5. Consider the following vectors in R4:

v1 =









4
2
2
1









v2 =









2
0
0
2









v3 =









1
1
−1
1









v =









0
5
1
−2









(a) Use the Gram-Schmidt process to find an orthonormal basis of the subspace W = span(v1,v2,v3).

(b) Find the orthogonal projection of v onto W .

6. Let {v1, . . . ,vk,vk+1, . . . ,vn} be an orthonormal basis for an inner product space V . Let W be the
subspace spanned by v1, . . . ,vk and let W ′ be the subspace spanned by vk+1, . . . ,vn. Prove that
W ⊥ W ′, that is, 〈w,w′〉 = 0 for every w ∈ W and w′ ∈ W ′. This can be done in one line!

7. Consider the vector space of C[−1, 1] with its L2 inner product

〈f, g〉 =

∫ 1

−1

f(x)g(x) dx.

Apply the Gram-Schmidt process to u1 = 1,u2 = x,u3 = x2 and u4 = x3 to obtain an orthonormal
basis {P0(x), P1(x), P2(x), P3(x)} of the subspace P3(R) of C[−1, 1].

One could continue, obtaining a sequence of polynomials P1, P2, P3, . . . that are orthonormal with
degPn = n. These are (up to normalization) the Legendre polynomials that occur in physics and
differential equations. The next two are (again up to normalization)

P4(x) =
1

8
(35x4 − 30x2 + 3). P5(x) =

1

8
(63x5 − 70x3 + 15x).

8. For the vectors x = (2, 1+ i, i) and y = (2− i, 2, 1+ i) in C3 with the standard hermitian inner product
(Definition 38.2), compute 〈x,y〉, ‖x‖, and ‖y‖, and use these to find ‖x+ y‖.

9. Use the inner product on MC(2, 2) given in Example 3 above to find 〈A,B〉 and ‖A‖ for

A =

(

1 2 + i

3 i

)

and B =

(

1 + i 0
i −i

)
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