Day 31 Applications of diagonalization

Many computations with matrices become easier if one can diagonalize the matrices. Geometrically,
this means thinking of the matrix as a linear transformation and switching to a basis in which the linear
transformation is a dilation in each direction.

Suppose that A is an n X n matrix that can be diagonalized. This means that there is an n x n matrix @

0
) > Multiplying by Q on the left and Q~! on the right

A
so that Q~1AQ is the diagonal matrix D = (01

then gives

A = QDQ . (31.1)

Powers. From (31.1) we obtain 4> = QDQ™'-QDQ™'-QDQ™' = QD?>Q~! and similarly for the k"
power of A
AF = QD@7 (31.2)

Polynomials. Applying (31.2)) to each term in a polynomial, we have
A* 4+ 4A% —TA+ 21, = Q(D*+4D* —7D +21,) Q!

and similarly for any polynomial in A. Note that polynomials in D are wasy to calculate.

Exponentials. For real numbers z, e* can be defined in 3 ways:
(a) As repeated multiplication, e.g. e3> =e¢-e-e.
(b) By the power series e” =1+ x + fa? + $2° + - -.
(¢) As the unique solution of the initial value problem y'(z) = y(x), y(0) = 1.

Each has advantages: (a) is intuitive, (b) is good for calculating, and (c) is good for showing the basic
property et? = % . eb| which is not clear from (b)! If we replace z by a square matrix A, then definition
(a) makes little sense, but (b) and (¢) both do, as follows.

Definition. For a square matriz A, set
ed =1+ A+ FAT + FA + o+ LAm 4+ (31.3)

This series converges absolutely for all matrices A.

Theorem 31.1. Suppose that A = QDQ~' where D is diagonal. Then e* = QePQ~'. Thus if A has a
basis of eigenvectors with eigenvalues A1, ..., \, then

et 0

etA _ Q etr2

0

Q! where Q= matrix with the e-vectors as columns (in order)



Systems of first order ODEs.

Consider two functions y1 (), y2(t) that satisfy the coupled differential equations

Y

(t) = 3y1 + 4y2
Ya(

A
1
5(t) = 3y1 + 2y2

. . yi _ (3 4 Y1 .
This system can be written as (yé) = (3 2) (y2> or simply as
/ 3 4
Y'(t) = AY(¢) where A= 3 9

This generalizes in the obvious way: replace A by an n x n matrix and take Y (¢) to be a column vector
of n unknown functions y;(t). Such a system is called a first order linear system of ODEs with constant
coefficients. Often, one wants to consider the initial value problem in which we are given the values of the
functions y; as some time, say t = 0:

/
% = AY  with  Y(0)=Yo

Theorem 31.2. For any square matrix A,

(a) the set Sa of all solutions of Y’ = AY is a vector space.
(b) If v is an eigenvector with Av = Av, then Y (t) = ce*v is a solution for any c € R.

(c) If A is diagonalizable, then the solution of the initial value problem is

Y(t) = Y.

Example. Solve the initial value problem Y = AY where A = (g ;1) and Y(0) = (f)

Solution. Calculations show that the eigenvalues of A are Ay = 6 and Ao = —1 with eigenvectors v; = (g)

and vg = (711). Thus

A=QDQ ! where D= <g 01) Q= (;1 11)

G0

Therefore

=

e
(48t 4 2e7t
T\ 3ebt —2e7t )

Hint for homework: when doing this last calculation, doing the multiplications right-to-left is easier.

Y(t) — etAYO _ QetDQ—lYO _ <;1 _11) <€8t Ot) .



Homework 31

o (2 -6
1. Find e forA-(1 _3).

. tB . 3 4
2. Find €** for B = (_2 _3>.

Solve Problems 3 and 4 by finding a basis of eigenvectors and using part (b) of Theorem 31.2.

3. Solve the linear system

Yi(t) =y + 2
ya(t) = —2y1 + 4y

4. Solve the linear system

Solve Problems 5 and 6 by diagonalizing the matriz and using part (¢) of Theorem 31.2

5. Solve the initial value problem

Yi(t) = —y1 + 22 y1(0)

3
Yo (t) = 2y1 — Y2 y2(0) =1

Some Solutions:

| 3—27t —6+6et
“\l-—et —243e7t)

3 ae?t + bedt 5 e 3t 4 2¢t
" \ae? 423 ) C\—e T3t 2t )

4 —ae 2 — 4be!
’ ae” 2 +bet )



Day 32

Complex Eigenvalues

Many polynomials with real coefficients have no real roots. Consequently, there are many matrices with
real entries that have no real eigenvalues.

0 -1

Example 1. The characteristic polynomial of A = (1 0

) is pa(\) = A2 + 1, which has no real roots.

You may recognize this matrix A as a rotation of the plane counter-clockwise by 90° (draw a sketch,
noting that A takes e; to e and ez to —ep). Thus A is not a “disguised dilation” — there is no basis in
which A is diagonal.

There is a simple mathematical trick that gets around this problem: regard real matrices as special cases
of complex matrices, and find complex eigenvalues and eigenvectors. This is called working “over C”.

Example 1°. The above characteristic polynomial pa(\) = A2 + 1 factors over C as A2 +1 = (A —i)(A +1),
so A, regarded as a complex matriz, has eigenvalues A = +i.

In fact, eigenvalue problems can always be solved over C. This was one of the main reasons why the
definition of vector space allowed, from the beginning, scalars to be in a field F' which could be R or C.

Review of complex numbers. Read the review of complex numbers in Appendix D of the textbook. Here
is a summary.

The complex plane is C = R? with basis {1,i}. Elements of the complex plane are called complex
numbers. Thus they can be written as o = a + bi where a,b € R, and are added as vectors in R?:

(a+bi)+ (c+di) = (a+c)+ (b+d)i.
Complex numbers can also be multiplied using the distributive rule and the formula 2 = —1:
af = (a+bi)-(c+di) = ac+ adi+bci+bdi®> = (ac— bd) + (ad + be)i.
These operators are commutative, associative, and distributive. One also defines
e The complex conjugate of « = a + bi is @ = a — bi.
e The absolute value or modulus or norm of « is |a| = v/a2 + b2. Note that |a|? = aa.

Geometrically, the map « — @ is reflection through the real axis, and |«/| is the distance from « € C to the
origin. One then sees that each non-zero @ = a + bi € C has a multiplicative inverse, namely

a a—bi

a a—o
aw a2 a2+ b2

These properties mean that C is a field.




Complex numbers can also be written in polar form. As usual, points (a,b) in the plane have polar
coordinates (r,0) as shown in the figure. Then a = rcosf and b = rsinf; with complex number notation

this becomes 4
o = a+bi = r(cosf+ising) = re?

where r = |« is the modulus and 6 is called the argument of a, and where the last equality comes from this
famous fact:

Euler’s formula: ¢ = cosf + isin#.

Proof. f(8) = €% is the unique solution of the initial value problem f’(6) = if() and f(0) = 1. But
g(0) = cos 0 + isin 0 satisfies ¢’ () = ig(f) and g(0) = 1, s0 g(d) =€?. O

All of algebra extends to the complex numbers. For example, a polynomial of degree n in a complex
variable z has the form
p(z) = anzn + an—lznil +---4a1z+ag

where the coefficients a; are complex numbers, i.e. a; € C Vi. A complex number r € C is a root of p(z) if
p(r) = 0. The advantage of working over C is a result of the following remarkable fact.

The Fundamental Theorem of Algebra. If p(z) is a polynomial of degree n > 1 in a complex variable
z, then there are n complex numbers r1,...,r, (not necessarily distinct) such that

p(z) = an(z—r1)(z—12) (2 —1p).

Thus over C, every degree n polynomial has exactly n complex roots. Applying this to the characteristic
polynomial of matrix, we have:

Corollary 32.1. Every n xn matriz A over C has exactly n eigenvalues — the roots of pa(N\) = det(A— ).

Diagonalizing over the complex numbers. Once we agree to work over C, the process of diagonalizing
a matrix is exactly as before.

Example 2. Diagonalize the matrix A = (35 i)

Solution. The characteristic polynomial is p(A) = —A(4—X) +5 = A2 — 4\ + 5. Using the quadratic formula,

the roots are
4416 — 20
2

A= = 2+1V-4 = 2+

To find an eigenvector for Ay = 2 + ¢ we must solve (A — A\ I)v =0, or

(%100

Note that the bottom row is 2 — ¢ times the top row because (2 —4)(—2 — ¢) = —5. This leaves only the top
row, which gives the relation —(2 + i)a + b = 0. For one solution, take a = 1 to get the eigenvector

o)
<_E5+i 2-1H> <Z> - (8>

Similarly for Ao = 2 — i we solve



to get
. 1
Vo = 9 _

(in fact, this is just replacing ¢ by —i everywhere.) The matrix is now diagonalized by Q = (2 <1H 9 i z)
which has det Q@ = (2 —¢) — (2 — i) = —2i. Then

- 1 (2-i —-1\/0 1\(1 1 2+i 0
QIAQ:—%(—z—i 1)(—5 4)(2—1—2’ 2—¢>:<0 2—2’)

Homework 32
Read Appendix D of the textbook (pages 556-561) and answer do the following problems.

1
1. (a) What is =7
i
(b) Write the number 4 — 47 in polar form.

h

2. A complex number z is called a n*" root of unity if 2™ = 1.

(a) How many n*" roots of unity are there? (Apply the Fundamental Theorem of Algebra to p(z) =
2" —1).

Write the n'" roots of unity {z;} (all of them) in polar form, i.e. z; = re? for what r and 6?7

—~
o

3. (a) If z = re'? and w = se’®, what is the polar form of the product zw?

(b) For a fixed complex number z = re?®, show that there are exactly two complex numbers w with

w? = z and find the polar expressions of both of these numbers.

4. The transformation T'(z) = (2 — 3i)z from C to C defines a linear transformation T : R? — R? by
writing z = a + bi. Find the matrix of T as a 2 x 2 real matrix.

5. Write the polynomial p(z) = 23 — 82% + 25z — 26 as a product of linear factors over C.

Hint: z =2 is a root. Divide by (z — 2) and use the quadratic formula.

6. Find all eigenvalues of the following matrices.

11 -15
A= ) B=

(=N el )
o= OO
= O O O
O O O

7. For each of the following matrices find

(a) All complex eigenvalues.
(b) Corresponding (complex) eigenvectors.
(c) A matrix @ so that Q~1CQ is diagonal.

0 1 0
C—(g :g) D—(o 0 1)
5 -7 3



Day 33 More complex eigenvalues — with tricks

Recall that an n x n matrix is diagonalizable if there is an invertible matrix @ usch that

a0
Q'AQ = (0 > (33.1)

is diagonal. This is equivalent to the existence of a basis vi,---v, of eigenvectors. There are three basic
facts about diagonalization:

(1) If the characteristic polynomial p4(A) has distinct real roots A; then A is diagonalizable.
(2) If pa(M) has distinct complex roots A; then A is diagonalizable over C, i.e. (33.1)) holds with @ and D

complex matrices.
(3) If pa(N) has repeated roots then A may not be diagonalizable.

Today we will do more on (2) and give some tricks involving trace and determinants. Next time we will
consider (3).

Lemma 33.1. For a matriz A with real entries, the roots of the characteristic polynomial pa(X\) are of two
types:

e real roots \;

e conjugate pairs /\j,/\ij.
and the corresponding eigenvectors are in corresponding conjugate pairs.

Proof. First, since the coefficients of

pa(z) = det(A—zI) = apz" +ap_12" '+ + a1z + ag

are real we have pa(x) = pa(T). Hence is X is a root then pa(X) = pa(A\) = 0, so A is also a root.

Next, suppose that Av = Av, so v is an eigenvector with eigenvalue A\. Then since A is real,
AV = Av = v = AV

and thus ¥ is an eigenvector with eigenvalue X. Finally, note that v = ¥ if and only if v is real. O

Example 1. The rotation matrix

Ry = ((3056‘ —sm9) (33.2)

sinf  cos6

. - 1 1
has eigenvalues e**? ;

(a conjugate pair), and eigenvectors v = (_Z> and w = ( ) One can then find (cf.
(HW Problem 4) a complex matrix @ so that

0
QRyQ™' = (eo 691'0)'

By Lemma [33.1] any matrix A with distinct eigenvalues can be diagonalized over C to a diagonal matrix
D (i.e. there is a complex matrix @ such that QAQ~! = D) with

D = diag(rla o 'rkv)\1;T17 ceey AZaT@)

for real eigenvalues r; and non-real complex eigenvalues A;. Going backwards through Example 1 above
yields the following fact.



Theorem 33.2. If a real matriz A has distinct roots, then there is a real matriz Q so that D = QAQ™!

has the form
i 0

Tk

D = QAQ™! = |:|
0 D

where each box is a 2 x 2 rotation matriz Ry, of the form for some 0.

Traces, determinants and eigenvalues.

Definition. The trace of a square matriz A is the sum of the diagonal entries of A:

trA = iA“
i=1

Theorem 33.3. For any n X n matrices A and B,
(a) tr (AB) = tr(BA) and tr (B 1AB) = tr(A).
(b) det(AB) = det(BA) and det(B~'AB) = det(A).
Thus similar matrices have the same trace and the same determinant.

Proof. The (ik)!" entry of the product matrix AB is the dot product of the i*" row of A and the k'"* column
of B, so the formula is (AB);; = Zj A;;Bji. Hence

tr(AB) = Z(AB)n‘ = ZZAiiji = ZZBjiAij = Z(BA)jj = tr(BA).

% %

This gives (a), and (b) follows (HW Problem 1). O

Proposition 33.4. For any square matrix A,
(a) The sum of the eigenvalues of A istr A = > A;.
(b) The product of the eigenvalues of A is det A.

a0
Proof. Suppose that A is diagonalizable, so there is a matrix @) such that A = Q=1 DQ where D = ( ) )

0
Then
tr(4) = tr(Q'DQ) = tr(D) = M +da+--+ A,
and
det(A) = det(Q7'DQ) = det(D) = Ai-Ada--- A,
The Proposition is still true for matrices that cannot be diagonalized; we will give a proof later. [

Three useful tricks: for finding the eigenvalues and determinants:
(1.) tr(A) = sum of the eigenvalues.

(2.) det A = product of the eigenvalues.



L A B A 0
(3.) For matrices in block form det <O C’> = detA-detC = det <B C’) .

Example 2. To find the eigenvalues A1, A2 of

5 6
o= (3 2)
note that Ay + Ay = trC' = 3 and A\ Ay = det C' = 2; some trial-and-error then leads to Ay = 1 and Ay = 2.

For larger matrices, the eigenvalues are not determined by the trace and the determinant, but Proposi-
tion [33.4] can still be used to check your calculations and when you already know several eigenvalues.

Example 3.
4

-2 2 3 4 -1
det N det (1 8) - det <3 2) = 13-11 = 143.

SO =N
S O oW
W = =3 ot

Homework 33

1. Use the fact that tr (AB) = tr (BA) to prove that tr (Q~1AQ) = tr (A).

2. Use the “trick” described above (or some other method) to find the eigenvalues for the following
matrices. you do not have to find the eigenvectors.

@ (7 4) o (3 2) @ (3 o)

2 1 -3
3. Consider the matrix A = 4 -1 5
-1 1 0

1
(a) Check that v = <3> is an eigenvector. What is its eigenvalue?
1

(b) Use Tricks 1 and 2 to find the other two eigenvectors of A.
4. Write out the details of Example 1 of this section.
5. Physics books define three standard 3 x 3 matrices that are usually called J,, J, and J,. The last is:
~1

J, = 0
0

o = O
o O O

(a) What are the eigenvalues of J,?

(b) Show that vi = e; — ez, va = €1 + ies and v3 = ej is a basis of eigenvectors for J,.

(¢) Write down the diagonalization of J, over C (order the eigenvalues and eigenvectors as in (b) ).
)

(d) What is e*’= as a complex matrix?



