
Day 31 Applications of diagonalization

Many computations with matrices become easier if one can diagonalize the matrices. Geometrically,
this means thinking of the matrix as a linear transformation and switching to a basis in which the linear
transformation is a dilation in each direction.

Suppose that A is an n×n matrix that can be diagonalized. This means that there is an n×n matrix Q

so that Q−1AQ is the diagonal matrix D =

(
λ1 0

0
. . .

)
. Multiplying by Q on the left and Q−1 on the right

then gives

A = QDQ−1. (31.1)

Powers. From (31.1) we obtain A3 = QDQ−1 ·QDQ−1 ·QDQ−1 = QD3Q−1 and similarly for the kth

power of A
Ak = QDkQ−1. (31.2)

Polynomials. Applying (31.2) to each term in a polynomial, we have

A3 + 4A2 − 7A+ 2In = Q
(
D3 + 4D2 − 7D + 2In

)
Q−1

and similarly for any polynomial in A. Note that polynomials in D are wasy to calculate.

Exponentials. For real numbers x, ex can be defined in 3 ways:

(a) As repeated multiplication, e.g. e3 = e · e · e.

(b) By the power series ex = 1 + x+ 1
2x

2 + 1
6x

3 + · · · .

(c) As the unique solution of the initial value problem y′(x) = y(x), y(0) = 1.

Each has advantages: (a) is intuitive, (b) is good for calculating, and (c) is good for showing the basic
property ea+b = ea · eb, which is not clear from (b)! If we replace x by a square matrix A, then definition
(a) makes little sense, but (b) and (c) both do, as follows.

Definition. For a square matrix A, set

eA = I + A + 1
2!A

2 + 1
3!A

3 + · · · + 1
n!A

n + · · · (31.3)

This series converges absolutely for all matrices A.

Theorem 31.1. Suppose that A = QDQ−1 where D is diagonal. Then eA = QeDQ−1. Thus if A has a
basis of eigenvectors with eigenvalues λ1, . . . , λn then

etA = Q

etλ1 0
etλ2

0
. . .

Q−1 where Q= matrix with the e-vectors as columns (in order)



Systems of first order ODEs.

Consider two functions y1(t), y2(t) that satisfy the coupled differential equations

y′1(t) = 3y1 + 4y2

y′2(t) = 3y1 + 2y2

This system can be written as

(
y′1
y′2

)
=

(
3 4
3 2

)(
y1
y2

)
or simply as

Y′(t) = AY(t) where A =

(
3 4
3 2

)
This generalizes in the obvious way: replace A by an n × n matrix and take Y(t) to be a column vector
of n unknown functions yi(t). Such a system is called a first order linear system of ODEs with constant
coefficients. Often, one wants to consider the initial value problem in which we are given the values of the
functions yi as some time, say t = 0:

dY

dt

′
= AY with Y(0) = Y0

Theorem 31.2. For any square matrix A,

(a) the set SA of all solutions of Y′ = AY is a vector space.

(b) If v is an eigenvector with Av = λv, then Y(t) = c eλtv is a solution for any c ∈ R.

(c) If A is diagonalizable, then the solution of the initial value problem is

Y(t) = etAY0.

Example. Solve the initial value problem Y = AY where A =
(
3 4
3 2

)
and Y(0) =

(
6
1

)
.

Solution. Calculations show that the eigenvalues of A are λ1 = 6 and λ2 = −1 with eigenvectors v1 =
(
4
3

)
and v2 =

(
1

−1

)
. Thus

A = QDQ−1 where D =

(
6 0
0 −1

)
Q =

(
4 1
3 −1

)
Therefore

Y(t) = etAY0 = QetDQ−1Y0 =

(
4 1
3 −1

)(
e6t 0
0 e−t

)
· 17

(
1 1
3 −4

)(
6
1

)

=

(
4e6t + 2e−t

3e6t − 2e−t

)
.

Hint for homework: when doing this last calculation, doing the multiplications right-to-left is easier.



Homework 31

1. Find etA for A =

(
2 −6
1 −3

)
.

2. Find etB for B =

(
3 4

−2 −3

)
.

Solve Problems 3 and 4 by finding a basis of eigenvectors and using part (b) of Theorem 31.2.

3. Solve the linear system

y′1(t) = y1 + y2

y′2(t) = −2y1 + 4y2

4. Solve the linear system

y′1(t) = 2y1 + 4y2

y′2(t) = −1y1 − 3y2

Solve Problems 5 and 6 by diagonalizing the matrix and using part (c) of Theorem 31.2

5. Solve the initial value problem

y′1(t) = −y1 + 2y2 y1(0) = 3

y′2(t) = 2y1 − y2 y2(0) = 1.

Some Solutions:

1.

(
3− 2e−t −6 + 6e−t

1− e−t −2 + 3e−t

)
.

3.

(
ae2t + be3t

ae2t + 2e3t

)
.

4.

(
−ae−2t − 4bet

ae−2t + bet

)
.

5.

(
e−3t + 2et

−e−3t + 2et

)
.



Day 32 Complex Eigenvalues

Many polynomials with real coefficients have no real roots. Consequently, there are many matrices with
real entries that have no real eigenvalues.

Example 1. The characteristic polynomial of A =
(
0 −1
1 0

)
is pA(λ) = λ2 + 1, which has no real roots.

You may recognize this matrix A as a rotation of the plane counter-clockwise by 90◦ (draw a sketch,
noting that A takes e1 to e2 and e2 to −e1). Thus A is not a “disguised dilation” — there is no basis in
which A is diagonal.

There is a simple mathematical trick that gets around this problem: regard real matrices as special cases
of complex matrices, and find complex eigenvalues and eigenvectors. This is called working “over C”.

Example 1’. The above characteristic polynomial pA(λ) = λ2 + 1 factors over C as λ2 + 1 = (λ− i)(λ+ i),
so A, regarded as a complex matrix, has eigenvalues λ = ±i.

In fact, eigenvalue problems can always be solved over C. This was one of the main reasons why the
definition of vector space allowed, from the beginning, scalars to be in a field F which could be R or C.

Review of complex numbers. Read the review of complex numbers in Appendix D of the textbook. Here
is a summary.

The complex plane is C = R2 with basis {1, i}. Elements of the complex plane are called complex
numbers. Thus they can be written as α = a+ bi where a, b ∈ R, and are added as vectors in R2:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i.

Complex numbers can also be multiplied using the distributive rule and the formula i2 = −1:

αβ = (a+ bi) · (c+ di) = ac+ adi+ bci+ bd i2 = (ac− bd) + (ad+ bc)i.

These operators are commutative, associative, and distributive. One also defines

• The complex conjugate of α = a+ bi is α = a− bi.

• The absolute value or modulus or norm of α is |α| =
√
a2 + b2. Note that |α|2 = αα.

Geometrically, the map α 7→ α is reflection through the real axis, and |α| is the distance from α ∈ C to the
origin. One then sees that each non-zero α = a+ bi ∈ C has a multiplicative inverse, namely

1

α
=

α

αα
=

α

|α|2
=

a− bi
a2 + b2

These properties mean that C is a field.

t

r



Complex numbers can also be written in polar form. As usual, points (a, b) in the plane have polar
coordinates (r, θ) as shown in the figure. Then a = r cos θ and b = r sin θ; with complex number notation
this becomes

α = a+ bi = r(cos θ + i sin θ) = reiθ

where r = |α| is the modulus and θ is called the argument of α, and where the last equality comes from this
famous fact:

Euler’s formula: eiθ = cos θ + i sin θ.

Proof. f(θ) = eiθ is the unique solution of the initial value problem f ′(θ) = if(θ) and f(0) = 1. But
g(θ) = cos θ + i sin θ satisfies g′(θ) = ig(θ) and g(0) = 1, so g(θ) = eiθ. �

All of algebra extends to the complex numbers. For example, a polynomial of degree n in a complex
variable z has the form

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0

where the coefficients ai are complex numbers, i.e. ai ∈ C ∀i. A complex number r ∈ C is a root of p(z) if
p(r) = 0. The advantage of working over C is a result of the following remarkable fact.

The Fundamental Theorem of Algebra. If p(z) is a polynomial of degree n ≥ 1 in a complex variable
z, then there are n complex numbers r1, . . . , rn (not necessarily distinct) such that

p(z) = an(z − r1)(z − r2) · · · (z − rn).

Thus over C, every degree n polynomial has exactly n complex roots. Applying this to the characteristic
polynomial of matrix, we have:

Corollary 32.1. Every n×n matrix A over C has exactly n eigenvalues – the roots of pA(λ) = det(A−λI).

Diagonalizing over the complex numbers. Once we agree to work over C, the process of diagonalizing
a matrix is exactly as before.

Example 2. Diagonalize the matrix A =
(

0 1
−5 4

)
.

Solution. The characteristic polynomial is p(λ) = −λ(4−λ) + 5 = λ2− 4λ+ 5. Using the quadratic formula,
the roots are

λ =
4±
√

16− 20

2
= 2± 1

2

√
−4 = 2± i.

To find an eigenvector for λ1 = 2 + i we must solve (A− λ1I)v = 0, or(
−2− i 1
−5 2− i

)(
a
b

)
=

(
0
0

)
Note that the bottom row is 2− i times the top row because (2− i)(−2− i) = −5. This leaves only the top
row, which gives the relation −(2 + i)a+ b = 0. For one solution, take a = 1 to get the eigenvector

v1 =

(
1

2 + i

)
Similarly for λ2 = 2− i we solve (

−2 + i 1
−5 2 + i

)(
a
b

)
=

(
0
0

)



to get

v2 =

(
1

2− i

)
(in fact, this is just replacing i by −i everywhere.) The matrix is now diagonalized by Q =

(
1 1

2 + i 2− i

)
which has detQ = (2− i)− (2− i) = −2i. Then

Q−1AQ =
1

−2i

(
2− i −1
−2− i 1

)(
0 1
−5 4

)(
1 1

2 + i 2− i

)
=

(
2 + i 0

0 2− i

)

Homework 32

Read Appendix D of the textbook (pages 556-561) and answer do the following problems.

1. (a) What is
1

i
?

(b) Write the number 4− 4i in polar form.

2. A complex number z is called a nth root of unity if zn = 1.

(a) How many nth roots of unity are there? (Apply the Fundamental Theorem of Algebra to p(z) =
zn − 1).

(b) Write the nth roots of unity {zk} (all of them) in polar form, i.e. zk = reiθ for what r and θ?

3. (a) If z = reiθ and w = seiφ, what is the polar form of the product zw?

(b) For a fixed complex number z = reiθ, show that there are exactly two complex numbers w with
w2 = z and find the polar expressions of both of these numbers.

4. The transformation T (z) = (2 − 3i)z from C to C defines a linear transformation T : R2 → R2 by
writing z = a+ bi. Find the matrix of T as a 2× 2 real matrix.

5. Write the polynomial p(z) = z3 − 8z2 + 25z − 26 as a product of linear factors over C.

Hint: z = 2 is a root. Divide by (z − 2) and use the quadratic formula.

6. Find all eigenvalues of the following matrices.

A =

(
11 −15
6 −7

)
B =

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


7. For each of the following matrices find

(a) All complex eigenvalues.

(b) Corresponding (complex) eigenvectors.

(c) A matrix Q so that Q−1CQ is diagonal.

C =

(
3 −5
2 −3

)
D =

(
0 1 0
0 0 1
5 −7 3

)



Day 33 More complex eigenvalues – with tricks

Recall that an n× n matrix is diagonalizable if there is an invertible matrix Q usch that

Q−1AQ =

(
λ1 0

0
. . .

)
(33.1)

is diagonal. This is equivalent to the existence of a basis v1, · · ·vn of eigenvectors. There are three basic
facts about diagonalization:

(1) If the characteristic polynomial pA(λ) has distinct real roots λi then A is diagonalizable.

(2) If pA(λ) has distinct complex roots λi then A is diagonalizable over C, i.e. (33.1) holds with Q and D
complex matrices.

(3) If pA(λ) has repeated roots then A may not be diagonalizable.

Today we will do more on (2) and give some tricks involving trace and determinants. Next time we will
consider (3).

Lemma 33.1. For a matrix A with real entries, the roots of the characteristic polynomial pA(λ) are of two
types:

• real roots λi

• conjugate pairs λj , λj.

and the corresponding eigenvectors are in corresponding conjugate pairs.

Proof. First, since the coefficients of

pA(x) = det(A− xI) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

are real we have pA(x) = pA(x). Hence is λ is a root then pA(λ) = pA(λ) = 0, so λ is also a root.

Next, suppose that Av = λv, so v is an eigenvector with eigenvalue λ. Then since A is real,

Av = Av = λv = λv

and thus v is an eigenvector with eigenvalue λ. Finally, note that v = v if and only if v is real. �

Example 1. The rotation matrix

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
(33.2)

has eigenvalues e±iθ (a conjugate pair), and eigenvectors v =
(

1
−i

)
and w =

(
1
i

)
. One can then find (cf.

(HW Problem 4) a complex matrix Q so that

QRθQ
−1 =

(
eiθ 0
0 e−iθ

)
.

By Lemma 33.1, any matrix A with distinct eigenvalues can be diagonalized over C to a diagonal matrix
D (i.e. there is a complex matrix Q such that QAQ−1 = D) with

D = diag(r1, · · · rk, λ1, λ1, . . . , λ`, λ`)

for real eigenvalues ri and non-real complex eigenvalues λj . Going backwards through Example 1 above
yields the following fact.



Theorem 33.2. If a real matrix A has distinct roots, then there is a real matrix Q so that D = QAQ−1

has the form

D = QAQ−1 =


r1 0

rk

�
�

0
. . .


where each box is a 2× 2 rotation matrix Rθk of the form (33.2) for some θk.

Traces, determinants and eigenvalues.

Definition. The trace of a square matrix A is the sum of the diagonal entries of A:

trA =

n∑
i=1

Aii.

Theorem 33.3. For any n× n matrices A and B,

(a) tr (AB) = tr (BA) and tr (B−1AB) = tr (A).

(b) det(AB) = det(BA) and det(B−1AB) = det(A).

Thus similar matrices have the same trace and the same determinant.

Proof. The (ik)th entry of the product matrix AB is the dot product of the ith row of A and the kth column
of B, so the formula is (AB)ik =

∑
j AijBjk. Hence

tr (AB) =
∑
i

(AB)ii =
∑
i

∑
j

AijBji =
∑
i

∑
j

BjiAij =
∑
i

(BA)jj = tr (BA).

This gives (a), and (b) follows (HW Problem 1). �

Proposition 33.4. For any square matrix A,

(a) The sum of the eigenvalues of A is trA =
∑
λi.

(b) The product of the eigenvalues of A is detA.

Proof. Suppose that A is diagonalizable, so there is a matrix Q such that A = Q−1DQ where D =

(
λ1 0

0
. . .

)
Then

tr (A) = tr (Q−1DQ) = tr (D) = λ1 + λ2 + · · ·+ λn

and
det(A) = det(Q−1DQ) = det(D) = λ1 · λ2 · · ·λn.

The Proposition is still true for matrices that cannot be diagonalized; we will give a proof later. �

Three useful tricks: for finding the eigenvalues and determinants:

(1.) tr (A) = sum of the eigenvalues.

(2.) detA = product of the eigenvalues.



(3.) For matrices in block form det

(
A B
0 C

)
= detA · detC = det

(
A 0
B C

)
.

Example 2. To find the eigenvalues λ1, λ2 of

C =

(
5 6

−2 −2

)
,

note that λ1 + λ2 = trC = 3 and λ1λ2 = detC = 2; some trial-and-error then leads to λ1 = 1 and λ2 = 2.

For larger matrices, the eigenvalues are not determined by the trace and the determinant, but Proposi-
tion 33.4 can still be used to check your calculations and when you already know several eigenvalues.

Example 3.

det


2 3 5 4
1 8 7 −2
0 0 4 −1
0 0 3 2

 = det

(
2 3
1 8

)
· det

(
4 −1
3 2

)
= 13 · 11 = 143.

Homework 33

1. Use the fact that tr (AB) = tr (BA) to prove that tr (Q−1AQ) = tr (A).

2. Use the “trick” described above (or some other method) to find the eigenvalues for the following
matrices. you do not have to find the eigenvectors.

(a)

(
5 11
1 −5

)
(b)

(
3 −1
6 −2

)
(c)

(
2 1
5 0

)

3. Consider the matrix A =

 2 1 −3
4 −1 5
−1 1 0

.

(a) Check that v =

(
1
3
1

)
is an eigenvector. What is its eigenvalue?

(b) Use Tricks 1 and 2 to find the other two eigenvectors of A.

4. Write out the details of Example 1 of this section.

5. Physics books define three standard 3× 3 matrices that are usually called Jx, Jy and Jz. The last is:

Jz =

0 −1 0
1 0 0
0 0 0

 .

(a) What are the eigenvalues of Jx?

(b) Show that v1 = e1 − ie2,v2 = e1 + ie2 and v3 = e3 is a basis of eigenvectors for Jz.

(c) Write down the diagonalization of Jz over C (order the eigenvalues and eigenvectors as in (b) ).

(d) What is etJz as a complex matrix?


