
Day 26 Calculating determinants for larger matrices

We now proceed to define detA for n× n matrices A. As before, we are looking for a function of A that
satisfies the product formula

det(AB) = detA · detB.

The key to understanding determinants is not to focus on a formula, but instead to think about the properties
of determinants in terms of the rows of the matrix. The following theorem lists three properties that
completely characterize the determinant function (without giving a formula for it!).

Determinant Theorem. There is a one and only one function det : Mn×n(R)→ R which, when considered
as a function of the row vectors
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2. detA changes sign when two rows of A are interchanged.

3. det In = 1.

Before giving the proof, we give develop some consequences. Conditions 1, 2, and 3 imply:

4. detA = 0 if one row of A is all 0’s, or if two rows are equal.

5. Adding a multiple of one row to another doesn’t change detA:
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6. The determinant of an upper triangular matrix is the product of the diagonal entries:
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7. Determinants can be computed by expansion along any row: e.g. for the first row

detA =

n∑
i=1

(−1)i a1i detm1i(A)

where m1i(A) is the 1i cofactor of A.

8. Repeatedly substituting the above formula into itself yields:

detA =
∑∑

· · ·
∑

R=i1,i2,···in

(−1)signR a1iia2i2 · · · anin (0.1)

where the sum if over all n! rearrangements of the numbers {1, 2, · · · , n}.



Proof. of the Determinant Theorem. We have just shown that any function f(A) that satisfies Properties
1-3 must be given by the formula (0.1). Thus there is at most one such function. On the other hand, it is
easy to check that the function detA defined by formula (0.1) satisfies Properties 1-3, giving existence. �

Important Tip – how to calculate. While detA is defined by (0.1), this ugly and complicated
formula is seldom used! In practice, one calculates determinants by row-reducing the matrix, using Properties
1-6 to see how the determinant changes at each step.

Example.

det

2 4 6
0 3 1
0 2 8

 = 2 det

1 2 3
0 3 1
0 2 8

 = −4 det

1 2 3
0 1 4
0 3 1

 = −4 det

1 2 3
0 1 4
0 0 −11

 = −4(−11) = 44.

Determinant Invertibility Test. A square matrix A is invertible (i.e. non-singular) if and only if detA 6= 0.

Proof. We can convert A to a nearly row echelon matrix B by interchanging rows and adding a multiple of
one row to another. By Properties 2, 5 and 6 we then have

detA = ±detB = ±det


b11 ∗ · · · ∗
0 b22 ∗
0 · · ·
0 · · · bnn

 = ±b11b22 · · · bnn.

Thus detA 6= 0 if and only if every pivot bkk of B is non-zero. But having non-zero pivots on the diagonal
is exactly the criterion for A to be invertible.

�

Determinant Product Theorem. detAB = detA · detB for any two n× n matrices A,B.

This very important fact is very difficult to verify directly from the formula (0.1). The trick to proving
it is to use the properties, rather than the formula.

Proof. Fix a matrix B. If detB = 0 then B is singular by the Determinant Invertibility Test, so there is a
vector v with Bv = 0. But then AB(v) = 0, so AB is singular and hence detAB = 0. Thus the formula
detAB = detA · detB is trivially true in this case. We can therefore that detB 6= 0 for the rest of the
proof.

Define a function f of A by
f(A) = det(AB)

This satisfies properties 1. and 2. of the Determinant Theorem, and f(In) = det(InB) = detB. Therefore
the function

g(A) =
1

detB
f(A)

satisfies 1. 2. and 3., so by the uniqueness in the Determinant Theorem must be the function g(A) = detA.
Thus

1

detB
det(AB) = detA

as needed. �



Homework 26

1. Use the product theorem to prove that the following hold for any n× n matrices A and B

(a) detAB = detBA.

(b) If A is non-singular then detA−1 = (detA)−1.

(c) If B is a non-singular then det(B−1AB) = detA.

2. Use row operations to find the determinant of the matrix A in Problem 18 on page 222 of the textbook.

3. Do the same for the matrix in Problem 21.

4. (a) Use the formula for detA to prove that det(rA) = rn detA for any n× n matrix A and r ∈ R.

(b) Given a second explanation using the fact that detA is linear in the row vectors of A (i.e. Property 1
of the Determinant Theorem).

5. Read Section 4.4 of the textbook. Then answer all parts of Problem 1 on page 236 (these are
True-False questions).

Day 27 Eigenvalues and Eigenvectors

Linear transformations T : V → V that go from a vector space to itself are often called linear operators.
Many linear operators can be understood geometrically by identifying directions in which T acts as a dilation:
for each vector v in these directions, T (v) is a multiple of v. Such vectors v are called eigenvectors and the
corresponding multiples are called eigenvalues. Chapter 5 explains how to find eigenvalues and eigenvectors,
and how to use them to understand linear operators.

Here is the main definition (memorize this!)

Definition. Let T : V → V be a linear operator. A scalar λ (“lambda”) is called an eigenvalue of T if
there is a non-zero vector v in V such that

T (v) = λv.

The vector v is called an eigenvector of T corresponding to the eigenvalue λ.

Each n× n matrix A specifies an operator A : Rn → Rn, so we can express the above definition in terms
of the matrix: A scalar λ is an eigenvalue of A if there is a non-zero v ∈ Rn such that

Av = λv.

The vector v is called an eigenvector of A corresponding to λ.

Finding Eigenvalues. To solve the equation Av = λv, we treat both v and λ as unknowns — think of λ
as a variable much like one treats x in high school algebra. The key fact is:

Theorem 5.2 Let A be an n×n matrix. Then a scalar λ is an eigenvalue of A if and only if det(A−λIn) = 0.



Proof.
Av = λv ⇐⇒ (A− λI)v = 0

⇐⇒ (A− λI) is singular

⇐⇒ det(A− λI) = 0.

�

Definition. The characteristic polynomial of a square matrix A is

pA(λ) = det(A− λI)

If A is an n× n matrix, pA(λ) is a polynomial in λ of the form

pA(λ) = (−1)nλn + lower degree terms.

Theorem 5.2 can then be rephrased as follows.

Theorem 5.2 The eigenvalues of A are precisely the roots of the characteristic polynomial.

This gives a way of finding the eigenvalues:

Finding Eigenvectors. Looking at the eigenvalue λi one at a time, one solves the equation Av = λv for
each. The set of solutions is a subspace:

Definition. For each eigenvalue λ of a linear operator T : V → V , the corresponding eigenspace is the set
of all eigenvectors for with eigenvalue λ:

Eλ(T ) =
{
v ∈ V

∣∣ T (v) = λv
}
.

This is a subspace for each λ (see Problem 1 below).

Method for finding eigenvalues and eigenspaces: Given a square matrix A,

1. Find the characteristic polynomial by writing down the matrix A−λI (= A with λ subtracted
from each diagonal entry), and calculating the determinant (and changing sign if necessary).

2. Factor the characteristic polynomial as much as possible; each linear factor (λ− c) then gives
an eigenvalue c.

3. For each eigenvalue λi, the eigenspace EA(λi) is the set of solutions to (A− λiI)v = 0. Solve
this system by Gaussian elimination or by inspection.

Caution: For some matrices A, the characteristic polynomial has no linear factors, so there are no eigenvalues.

Homework 27

Read Section 5.1 of the textbook through the end of Example 7.

1. Let T : V → V be a linear operator. Prove that Eλ(T ) is a subspace (not just a subset) of V .

2. (a) Explain why E0(T ) is the null space N(T ) of T (recall that the null space is often called the kernel
kerT of T ).

(b) Similarly explain why Eλ(T ) is the null space N(T − λI) of the linear transformation T − λI.



3. The matrix A =

(
1 2
5 −2

)
has λ = 3 as an eigenvalue. Find the corresponding eigenvector.

4. Let B =

(
0 1 1
1 0 1
1 1 0

)
. Find a basis for E2(A) and a basis for E−1(A).

5. Let L : P5 → P5 by L = d2

dx2 .

(a) Find a basis for E0(L). Hint: polynomials in E0(L) must satisfy what equation?

(b) Show that L has no non-zero eigenvalues.

6. Find the eigenvalues of the following matrices. For each eigneblaue, find a basis for the corresponding
eigenspace.

A =

(
1 2
3 2

)
B =

6 −24 −4
2 −10 −2
1 4 1

 C =

 3 −7 −4
−1 9 4
2 −14 −6

 D =

4 1 0
0 4 1
0 0 4


7. Find all eigenvalues and eigenvectors of the following matrices.

E =

(
−2 7
0 3

)
F =

5 −4 3
0 −1 9
0 0 1

 G =

a b c
0 d e
0 0 f

 H =


3 7 4 1
0 −1 2 8
0 0 2 −7
0 0 0 8


(e) What feature of these matrices make it easy to find their eigenvalues?

8. Write down a 2× 2 matrix with eigenvalues 2 and 5. Make your matrix as simple as possible.

9. (a) Show that any symmetric 2× 2 matrix, that is one of the form

(
a b
b c

)
has eigenvalues.

(b) Under what conditions on a and b will the matrix have two distinct eigenvalues?

10. Prove that a square matrix is singular if and only 0 is one of its eigenvalue.

Day 28 Similarity and Diagonalizability

Let V be the vector space Rn or Cn with standard basis {e1, . . . , en}. Then each linear operator T :
V → V can be written as a matrix A = [T ]αα and, going backwards, each n×n matrix A determines a linear

operator T : V → V . Furthermore, if β = {v1, . . . ,vn} is another basis, then the matrix B = [T ]ββ of T in
this β basis is

B = Q−1AQ (0.2)

where Q = [I]αβ is the change-of-basis matrix (whose ith column is the coordinates of vi in the standard
basis). This formula motivates the following definition.

Definition Two n × n matrices A and B are similar if there is an invertible n × n matrix Q such that
B = Q−1AQ.

Proposition 1. Two similar matrices have (a) the same determinant, (b) the same characteristic polyno-
mial, and (c) the same eigenvalues.

Proof. As shown in class, all three statements follow from the fact that det(AB) = detA · detB. �



Example 1. The matrices A =

(
2 −4
3 5

)
and B =

(
7 1
4 2

)
are not similar because detA = 22, while

detB = 10.

It is natural to ask whether a given matrix is similar to one that has an especially simple form, specifically
whether it is similar to a diagonal matrix

D =


λ1 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 λn


Definition A square matrix A is diagonalizable if it is similar to a diagonal matrix.

Lemma 2. Let T : V → V be a linear operator. Then any set {v1,v2, . . . ,vk} of non-zero eigenvectors of
T with distinct eigenvalues are linearly independent.

Proof. This is proved on page 261 of the textbook, and was done in a slightly different way in class. �

Theorem 3. An n× n matrix A is has distinct eigenvalues, then A is diagonalizable.

Proof. Let T : Rn → Rn be the linear operator whose matrix in the standard basis {e1, . . . , en} is A.
The hypothesis that A has distinct eigenvalues means that there are vectors {v1,v2, . . . ,vn} and constants
{λ1,v2, . . . , λn}, all different, so that Tvi = λivi for each i. By Lemma 2, β = {v1,v2, . . . ,vn} is a set of n
linearly independent vectors in an n-dimensional space, so is a basis. Since T multiplies each vi by λi, the
matrix of T in the β basis is

D = [T ]ββ =


λ1 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 λn


The change-of-basis formula (0.2) above then shows that D = Q−1AQ, so A is diagonalizable.

�

Procedure: To diagonalize an n× n matrix A with distinct eigenvalues:

1. Find the characteristic polynomial pA(λ) = det(A− λI).

2. Factor as much as possible to find the eigenvalues λi (check the discriminant b2−4ac to see if quadratics
factor).

If the eigenvalues are distinct, then A is diagonalizable. To diagonalize:

3. Find an eigenvector for each eigenvalue λi.

4. Write down the matrix Q whose columns are your basis eigenvectors.

5. Compute Q−1.

6. Then D = Q−1AQ is the diagonal matrix with the eigenvalues down the diagonal.

Notice that you can find D without first finding Q because D is a diagonal matrix with the eigenvalues
λi (found in Step 2) on the diagonal. Furthermore, Homework Problem 4 below shows that the order to the
λi doesn’t matter: if A is similar to the diagonal matrix D with λs down the diagonal in one order, it is also
similar to the diagonal matrix D′ with the same λs on the diagonal in any other order.



Example 2. Diagonalize A =

(
5 6
−2 −2

)
.

The characteristic polynomial is p(λ) = det

(
5 − λ 6
−2 −2 − λ

)
= λ2 − 3λ + 2 = (λ − 1)(λ − 2), so the

eigenvalues are λ = 1, 2. These are different, so A is diagonalizable.

Next solve Av = λv in the form (A− λI)v = 0 using augmented matrices in the two cases:

• For λ = 1, solve (A− I)v = 0

(
4 − λ 6 0
−2 −3 0

)
∼
(

2 3 0
0 0 0

)
so one solution is v1 =

(
3
−2

)
.

• For λ = 2, solve (A− 2I)v = 0

(
3 6 0
−2 −4 0

)
∼
(

1 2 0
0 0 0

)
so one solution is v1 =

(
2
−1

)
.

Q is the matrix whose columns are these eigenvectors, and we can write down Q−1 by the usual trick:

Q =

(
3 2

−2 −1

)
Q−1 =

(
−1 −2
2 3

)

and then D = Q−1AQ =

(
−1 −2

2 3

)(
5 6
−2 −2

)(
3 2

−2 −1

)
=

(
1 0
0 2

)
is diagonal.

Homework 28

1. Do Problem 1 on page 256 of the textbook.

2. Do Problem 2(a)(c) on the same page.

3. Do Problem 3 on page 257 of the textbook.

4. Show that A =

(
2 0
0 3

)
is similar to B =

(
3 0
0 2

)
. Hint: write down the change-of-basis

matrix P that changes the standard basis {e1, e2} to {e2, e1}.

5. Do Problem 8a on page 258.

6. Then do Problem 8b.

7. Do Problem 9 on the same page.

8. For the matrix A =

(
2 −3
2 −5

)
follow the procedure and the Example above to find:

(a) Find the characteristic polynomial and the eigenvalues.

(b) Find eigenvectors for each eigenvalue.

(c) Write down a matrix Q so that Q−1AQ is diagonal.

(d) Find Q−1 and explicitly calculate Q−1AQ to show that it is diagonal.


