
Day 23 Kernels, inverses and isomorphisms

Today we will cover Section 2.4 of the textbook, which asks and answers the question “When does a
linear transformation have an inverse?”’

First, recall three basic definitions that apply to maps T : V →W between two sets.

• T is onto if R(T ) = W , that is, for each w ∈W there is a v ∈ V with T (v) = w.

• T is one-to-one if T (v1) = T (v2) implies that v1 = v2.

• The inverse of T : V →W is a transformation S : W → V such that

S ◦ T = IV and T ◦ S = IW (23.1)

where IV : V → V is the identity transformation of V , and IW is the identity transformation on W .

Often, no inverse exists. The above conditions – onto and one-to-one — are exactly what is needed to
guarantee that an inverse exists:

Lemma. A map T : V →W between sets is invertible ⇐⇒ it is onto and one-to-one.

Proof. If T is one-to-one and onto, then for each w ∈ W there is a unique v ∈ V with T (v) = w. Define S
by S(w) = v. Then T (S(w)) = T (v) = w and S(T (v)) = S(w) = v, so (23.1) holds.

Conversely, suppose that T is invertible. Then

• T is onto because for each w ∈W the element v = S(w) ∈ V satisfies T (v) = T (S(w)) = w.

• T is one-to-one because if T (v1) = T (v2) then v1 = S(T (v1)) = S(T (v2)) = v2.

�

Theorem. If a linear transformation T : V →W is invertible, then T−1 is also linear.

Proof. For any w1,w2 ∈ W , set v1 = T−1(w1) and v2 = T−1(w2). Then T (v1) = w1 and T (v2) = w2, so
for any a.b ∈ R we have

T−1(aw1 + bw2) = T−1(aT (v1) + bT (v2)) = T−1(T (av1 + bv2))

= av1 + bv2

= aT−1(w1) + bT−1(w2).

Thus T−1 is a linear transformation. �

Definition (a) A linear map T : V →W is called an isomorphism if it is invertible.

(b) Two vector spaces V and W are isomorphic if there exists an isomorphism T : V →W . (If
there is one, then there will be many such T ).

Isomorphism Theorem. Let V and W be finite-dimensional vector spaces. Then

(a) V and W are isomorphic if and only if dimV = dimW .

(b) For a linear transformation T : V →W between vector spaces of the same dimension

T is an isomorphism ⇐⇒ N(T ) = 0 ⇐⇒ R(T ) = W



Proof. (a) If V and W are isomorphic, then there is an invertible transformation T : V → W . Invertible
transformations are one-to-one and onto, so dim kerT = 0 and dimR(T ) = dimW . Then the Rank-Nullity
Theorem says: dimV = dimN(T ) + dimR(T ) = dimW .

Conversely, if dimV = dimW then we can choose bases {v1, . . .vn} of V and {w1, . . .wn} of W with
the same number of elements. Then

T (a1v1 + · · ·+ anvn) = a1w1 + · · ·+ anwn.

defines a linear transformation that has an inverse, namely T−1(a1w1 + · · ·+ anwn) = a1v1 + · · ·+ anvn.

(b) If dimV = dimW , the Rank-Nullity Theorem says that dimN(T ) + dimR(T ) = dimW , which
implies that N(T ) = 0⇔ dimR(T ) = dimW ⇔ R(T ) = W . We then have

T is an isomorphism ⇐⇒
N(T ) = 0

and
R(T ) = 0

⇐⇒ T is one-to-one and onto

where the first equivalence is from the Lemma above, and the second equivalence is true because, T is
one-to-one if and only if N(T ) = 0 and is onto if and only if R(T ) = W . �

Relating to matrices. After fixing bases α = {v1, . . . ,vn} of V and β = {w1, . . . ,wm} of W , each linear
transformation T : V →W has an associated matrix A = [T ]βα. The properties of T with respect to inverses
carry over to the matrix:

Matrix Invertibility Theorem. With the above notation,

(a) A is invertible if and only if T is invertible, and A−1 is [T−1]αβ .

(b) A is invertible if and only if it is square and its row echelon form has a pivot in every column.

Proof. Statement (a) is an immediate consequence of the matrix composition property:

[T−1]αβ · [T ]βα = [T−1 ◦ T ]αα = [IV ]αα = In

and similarly in the opposite order. Statement (b) then follows from what we already know about matrices.
�

Homework 23

1. Let Q : R4 →M(2, 2) be the transformation Q

a
b
c
d

 =

(
a b
c d

)
.

(a) Show that Q is linear.

(b) Show that Q is invertible by defining a linear map R : M(2, 2)→ R4 and showing that Q ◦R = I
and R ◦Q = I.

2. Prove that the vector spaces P3 and M(2, 2) are isomorphic by defining a transformation T : P3 →
M(2, 2) and showing that it is linear and invertible.

3. Which pairs of the following vector spaces are isomorphic?

R7 R12 M(3, 3) M(3, 4) M(4, 3) P6 P8 P11.



4. Which of the following matrices is invertible? Use the Matrix Invertibility Theorem stated above.

(a)

(
1 5
−2 −6

)
(b)

 1 2 3 4
−1 2 0 1
0 1 0 2

 (c)


1 1 0 −1
2 1 0 0
3 2 0 −1
−1 0 1 1



5. Do Problems 2a-d on page 106 of the textbook.

6. Do Problems 3a-c on the next page.

7. Continuing, do Problem 6. This can be done in one line!

8. Do Problem 7 using these hints:

(a) Start by applying A2 to any non-zero vector.

(b) Find 2× 2 matrices A and B with Range(B) = span(e1) and with e1 ∈ N(A).

9. Do Problem 17 on page 108 using these hints:

(a) For any w1 = T (v1) and w2 = T (v2) in T (V0), show that each linear combination aw1 + bw2 is
in T (V0).

(b) Pick a basis {v1, . . . ,vk} of V0 and show that {T (v1), . . . , T (vk)} is a basis of V0.

Day 24 Changing Bases

Today we will cover Section 2.5 of the textbook. Read the beginning of this section to understand the
motivation. The basic question to be solved is the following.

Suppose that α = {v1, . . . ,vn} and α′ = {v′1, . . . ,v′n} are two different bases of a vector space V . Given
a vector v ∈ V , we can write v = x1v1 + x2v2 + · · ·+ xnvn and form the column vector

[v]α =


x1

x2

...
xn


When the same vector v is expanded in the basis α′ it has different coefficients

[v]α′ =


y1
y2
...
yn


Question: How are the x’s and y’s related?

To answer, recall that whenever we have a linear transformation T : V → W and bases α of V and β of
W , there is an associated matrix [T ]βα. In particular, if T is the identity map I : V → V and we have two
different bases on V , then there is an associated matrix

Q = [IV ]αα′



This matrix is easy to write down because

Q = [IV ]αα′ = the matrix whose ith column is [v′i]α.

That is, expand each element of the α′ basis in terms of the first basis, and assemble the coefficients as
column vectors of a matrix Q.

Basis Change Lemma. The matrix Q = [IV ]αα′

(a) is invertible with Q−1 = [IV ]α
′

α

(b) For any v ∈ V , we have [v]α = [T ]αα′ [v]α′ , i.e. [v]α = Q[v]α′ .

This is proved on page 111 of the textbook. Note that (c) says that it solves the above problem:
x = Qy. Accordingly, Q is called the change of coordinate matrix for changing α′-coordinates to
α-coordinates.

Here are the main facts in this section:

Given two bases α and α′ of a vector space V , write down the matrix

Q = [IV ]αα′ = the matrix whose ith column is [v′i]α.

Then

• Multiplication by Q changes α′-coordinates to α-coordinates:

[v]α = Q[v]α′

• Multiplication by Q−1 changes α-coordinates to α′-coordinates:

[v]α′ = Q−1[v]α What’s usually wanted

• For each linear operator T : V → V

[T ]α
′

α′ = [IV ]α
′

α · [T ]αα · [IV ]αα′ Note how the subscripts are arranged.

Thus if T has matrix A = [T ]αα in the basis α, then its matrix in the basis α′ is

B = Q−1AQ.

Exercise. Verify the formula in the last bullet point by applying the righthand side to a the coordinate
vector [v]α′ of v ∈ V , using the formulas from the first two bullet points, and showing that you obtain
[Tv]α′ .

According to the last formula in the box, the matrices A and B = Q−1AQ represent the same linear
operator T : V → V , but expressed using different bases. When this is the case, the matrices are called
similar.

Defintion. Two n×n matrices A and B are said to be similar if there is an invertible n×n matrix Q such
that B = Q−1AQ.



Example. (a) Let v be the vector whose coordinates are
(

5
−2

)
in the standard basis {e1, e2} of R2. What

are its coordinates in the basis {f1, f2} where f1 =
(
3
1

)
and f2 =

(
−3
4

)
?

(b) If T : R2 → R2 is given by
(
2 3
1 7

)
in the standard basis, what is it in the basis {f1, f2}?

Solution: Q = [I]fe is the matrix whose columns are the f ’s, so Q =
(
3 −3
1 4

)
. Using our trick for writing

down the inverse of a 2× 2 matrix, Q−1 = 1
15

(
4 3
−1 3

)
. Then

(a) [v]f = Q−1[v]e = 1
15

(
4 3
−1 3

)(
5
−2

)
= 1

15

(
14

−11

)

(b) [T ]ff = Q−1AQ = 1
15

(
4 3
−1 3

)(
2 3
1 7

)(
3 −3
1 4

)

In most problems involving change-of-basis, Q is easy to write down but, unfortunately, one usually has
to compute Q−1.

Homework 24

1. In this exercise, you are given a basis f = {f1, f2} for R2 (or for R3) and the e-coordinates of a vector
v. Find Q,Q−1 and [v]f . Follow the example on this handout.

(a) f1 =
(
3
2

)
, f2 =

(
4
3

)
, and [v]e =

(
2
5

)
.

(b) f1 =
(
1
3

)
, f2 =

(
3
1

)
, and [v]e =

(
3
7

)
.

(c) f1 =

(
1
1
1

)
, f2 =

(
2
3
1

)
, f3 =

(
1
2
1

)
, and [v]e =

(
5

−2
3

)
.

2. Problems 2a and 2c on page 116 of the textbook (these ask you just to find Q).

3. Problem 3c.

4. Problem 4.

5. Problem 5.

6. Problem 6a and 6c.



Day 25 Determinants of 2× 2 and 3× 3 matrices

Chapter 4 of the textbook is about determinants. The determinant is a function that assigns to every
square (must be square!) matrix A a number

detA

so that
• detA 6= 0 ⇐⇒ A is invertible.

• det(AB) = detA · detB

• detA is related to volume in a way explained below.

These properties make determinants extremely useful. But, as you will see, the formula for the determi-
nant is far from obvious. Its discovery was one of the triumphs of 19th century mathematics.

Determinants of 2× 2 matrices

Recall that the inverse of a 2× 2 matrix A =

(
a b
c d

)
is given by the formula

A−1 =
1

ad− bc

(
d −b
−c a

)
.

Thus A is invertible if and only if the number ad− bc is not 0. Accordingly, for 2× 2 matrices, we define

det

(
a b
c d

)
= ad− bc. (24.2)

One can then verify that det(AB) = detA · detB (HW Problem 3).
To better understand this formula, consider it as function of row vectors. For row vectors v1 = (a, b) and

v2 = (c, d), write

det

(
v1

v2

)
= det

(
a b
c d

)
= ad− bc.

Thought if this way, the determinant has three algebraic properties:

(a) It is linear in each row vector:

det

(
rv1

v2

)
= r det

(
v1

v2

)
and det

(
v1 + u1

v2

)
= det

(
v1

v2

)
+ det

(
u1

v2

)
and similarly for the second row.

(b) It switches sign when the order of the rows are reversed: det

(
v2

v1

)
= −det

(
v1

v2

)
.

(c) It is equal to 1 if the row vectors are the standard basis vectors: det

(
e1

e2

)
= det

(
1 0
0 1

)
= 1.

The determinant also has a geometric property that should be familiar from calculus:

w

v

T

(24.3)



The sign of the determinant is determined by the “righthand rule”: det

(
v1

v2

)
is positive if v2 points in

a direction obtained by rotating v1 counterclockwise through an angle θ with 0 < θ < π, and is negative if
the same is true for a clockwise rotation.

Example. For the standard basis vectors e1 and e2 of R2,

det

(
e1

e2

)
=

(
1 0
0 1

)
= 1 > 0 det

(
e2

e1

)
=

(
0 1
1 0

)
= −1 < 0.

Determinants of 3× 3 matrices

For row vectors v1 = (a, b, c), v2 = (d, e, f) and v3 = (g, h, k), det

v1

v2

v3

 is defined to be

det

v1

v2

v3

 = det

a b c
d e f
g h k

 = a(ek − hf)− b(dk − gf) + c(dh− eg).

As in the 2× 2case, this satisfies

(a) is linear in each row vector,

(b) switches sign when the order of the rows are reversed, and

(c) It is equal to 1 if the row vectors are the standard basis vectors: det
(

e1
e2
e3

)
= det

(
1 0 0
0 1 0
0 0 1

)
= 1.

(d) The sign of the determinant is positive if v1,v2,v3 are oriented compatibly with e1, e2, e3, and the
absolute value of the determinant satisfies

v

u

wT

Computing 3× 3 Determinants

Definition. For an n × n matrix A, the ijth cofactor is the (n − 1) × (n − 1) submatrix Ãij obtained by
deleting the ith row and jth column of A.

Example. For the matrix A below, the cofactors Ã11 and Ã13 are as show.

A =

3 5 9
2 4 1
0 2 −1

 Ã11 =

(
4 1
2 −1

)
Ã13 =

(
2 4
0 2

)

The determinant of a 3× 3 matrix can be computed by “expanding along the first row” as follows.



1. First visualize the matrix filled with ± signs in the checkerboard pattern

+ − +
− + −
+ − +

.

2. For each entry in the top row, compute

±(entry)(determinant of the corresponding cofactor)

where the ± sign is the one given by the checkerboard.

3. Sum these contributions for the entries in the first row. Thus

detA = A11 det Ã11 −A12 det Ã12 +A13 det Ã13

Example. For the matrix A above,

det

3 5 9
2 4 1
0 2 −1

 = 3 · det

(
4 1
2 −1

)
− 5 · det

(
2 1
0 −1

)
+ 9 · det

(
2 4
0 2

)
= 3(−4− 2)− 5(−2− 0) + 9(4− 0)

= −18 + 10 + 36 = 28.

The same determinant can be found by “expanding” along any row or column in the same manner —
with the same result. For example, we could alternatively have calculated detA for the above matrix A by
expanding along the first column:

det

3 5 9
2 4 1
0 2 −1

 = 3 · det

(
4 1
2 −1

)
− 2 · det

(
5 9
2 −1

)
+ 0 · (something)

= 3(−4− 2)− 2(−5− 18) + 0

= −18 + 46 = 28.

Usually, the calculation is easiest when one expands along a row or column with lots of zeros.

Homework 25

1. Compute the 2× 2 determinants in Problems 2a, 2b, 2c on page 208.

2. Do the same for the complex matrices in Problems 3a and 3b. Use i2 = −1.

3. Prove the formula det(AB) = detA · detB for 2× 2 matrices directly from the definition (24.2).

4. Prove the geometric formula (24.3), as follows. Take v1 as the base, so the area of a parallelogram
is |v1| · h where |v1| denotes the length of v1 and h is the height of the parallelogram. Show that
w = (−b, a) is perpendicular to v1, and then express h in terms of the dot product w · v2.

5. Do Problems 4a and 4c on the same page.

6. Show that detAt = detA for 2× 2 matrices A. (Here At is the transpose, obtained by “flipping” rows
and columns).

The remaining problems are taken from Section 4.2, pages 221-222, of the textbook.

7. Evaluate the determinants in Problems 5, 6, 7, and 9 on page 221.

8. Evaluate the determinants in Problems 13 and 14. Expand along a row or column with lots of zeros!


