Day 20 Linear transformation and matrix multiplication

Today and next time we will cover Section 2.3 in the textbook. Recall that for a linear transformation $T: V \rightarrow W$

- T is determined by what it does to the basis elements.
- After we choose a basis for V and a basis for W, T is described by a matrix A.

The matrix of a linear transformation $T: V \rightarrow W$ is built as follows:

1. Fix a basis $\alpha=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ of V and a basis $\beta=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right\}$ of W.
2. For each i, write $T\left(\mathbf{v}_{i}\right)$ as a linear combination of the \mathbf{w}_{j} and put the coordinates into a column vector:

$$
T\left(\mathbf{v}_{i}\right)=\left(\begin{array}{c}
a_{1 i} \\
a_{2 i} \\
\vdots \\
a_{m i}
\end{array}\right)
$$

3. Build the matrix A whose columns are $T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right)$, etc. :

$$
A=[T]_{\alpha}^{\beta}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 m} \\
a_{21} & a_{22} & \cdots & a_{2 m} \\
\vdots & & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n m}
\end{array}\right)
$$

This is called the matrix of $n T$ with respect to the bases α and β.

The point of the matrix is that it gives a simple way of computing, as described in this theorem.
Theorem 0.1. Suppose that is a linear transformation with matrix A with respect to bases α and β. Then the image of

$$
\mathbf{v}=x_{1} \mathbf{v}_{1}+\cdots+x_{n} \mathbf{v}_{n}
$$

is

$$
T \mathbf{v}=y_{1} \mathbf{w}_{1}+\cdots+y_{m} \mathbf{w}_{m}
$$

where the $y_{j}^{\prime} s$ are obtained by matrix multiplication $\mathbf{y}=A \mathbf{x}$:

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 m} \\
a_{21} & a_{22} & \cdots & a_{2 m} \\
\vdots & & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n m}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)
$$

For linear transformations $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, we can use the standard bases. The procedure for finding the matrix is then easy:

1. Write $T\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right)$ as a column vector.
2. Do the same for the other basis vectors.
3. Assemble these column vectors into a matrix A.

Then the transformation is given by matrix multiplication by A.

Example 1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that takes $(1,0)$ to $(3,1)$ and $(0,1)$ to $(1,2)$. In column form

$$
T\binom{1}{0}=\binom{3}{1} \quad \text { and } \quad T\binom{0}{1}=\binom{1}{2}
$$

so the matrix of T is $A=\left(\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right)$. To find where T takes the vector $\binom{2}{-1}$ we calculate

$$
T\binom{2}{-1}=\left(\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right)\binom{2}{-1}=\binom{5}{0}
$$

Example 2. What is the matrix of the linear transformation $T\binom{x}{y}=\binom{4 x-2 y}{-x+7 y}$?
Solution: taking $x=1$ and $y=0$, then $x=0$ and $y=1$ we obtain:

$$
T\binom{1}{0}=\binom{4}{-1} \quad \text { and } \quad T\binom{0}{1}=\binom{-2}{7} \quad \text { so the matrix is } \quad A=\left(\begin{array}{cc}
4 & -2 \\
-1 & 7
\end{array}\right)
$$

Examples of six types of linear transformations $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.

1. Dilation by factor of 3 horizontally, factor of 5 vertically: $D=\left(\begin{array}{ll}3 & 0 \\ 0 & 5\end{array}\right)$.
2. Rotation counterclockwise by $90^{\circ}: R_{90}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and by angle $\theta: R_{\theta}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$.
3. The reflection across the x-axis: $R_{x}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
4. A shear that fixes the first basis vector \mathbf{e}_{1} and moves \mathbf{e}_{2} to $\mathbf{e}_{1}+\mathbf{e}_{2}: S=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
5. The orthogonal projection onto the x-axis: $P=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.
6. The embedding $E: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ that takes \mathbb{R}^{2} into the $x y$-plane: $E:\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$.

Homework 20

1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that takes $\mathbf{e}_{1}=(1,0)$ to $3 \mathbf{e}_{1}+4 \mathbf{e}_{2}$ and takes $\mathbf{e}_{2}=(0,1)$ to $-2 \mathbf{e}_{1}+5 \mathbf{e}_{2}$. What is the matrix for T with respect to the (standard) basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$?
2. Let $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be counterclockwise rotation about the origin by 60°.
(a) What is $R\left(\mathbf{e}_{1}\right)$? What is $R\left(\mathbf{e}_{2}\right)$?
(b) What is the matrix of R with respect to the standard basis?
(c) What is the image $R(\mathbf{v})$ of the vector $\mathbf{v}=(1,1)$?
3. Let $P: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the orthogonal projection onto the $y z$ plane, given by $P(x, y, z)=(0, y, z)$.
(a) What are $P\left(\mathbf{e}_{1}\right), P\left(\mathbf{e}_{2}\right)$ and $P\left(\mathbf{e}_{3}\right)$?
(b) What is the matrix of L with respect to the standard basis?
(c) What is the image $P(\mathbf{v})$ of the vector $\mathbf{v}=(1,2,-1)$?
4. Do the following matrix multiplications:
(a) $\left.\begin{array}{llll}2 & -3 & 8 & -1\end{array}\right)\left(\begin{array}{l}1 \\ 3 \\ 2 \\ 4\end{array}\right)$
(b) $\left(\begin{array}{cc}1 & -2 \\ 3 & 5\end{array}\right)\binom{2}{-6}$
(c) $\left(\begin{array}{ccc}2 & 4 & 6 \\ 1 & 3 & 5 \\ -1 & 0 & 2\end{array}\right)\left(\begin{array}{c}1 \\ -3 \\ 4\end{array}\right)$
(d) $\left(\begin{array}{cccc}-1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 2 \\ -1 & 0 & 2 & 4 \\ 0 & -2 & 0 & 7\end{array}\right)\left(\begin{array}{c}3 \\ 0 \\ -1 \\ 1\end{array}\right)$
5. Sketch the image of the unit square under the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ whose matrix is

$$
\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)
$$

6. Find the matrix of the orthogonal projection $P: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ onto the z-axis.
7. (a) Using the formula given in Example 2 at the top of this page, find the matrix of the rotation $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ about the origin by 30°.
(b) This rotation takes $\binom{4}{9}$ to what vector?
8. Let $L=\{y=-x\}$ be the "anti-diagonal" line in \mathbb{R}^{2}.
(a) Find the matrix of the reflection R through L.
(b) Where does R take the vector $\binom{-2}{5}$?
9. Find a non-zero 2×2 matrix A such that $A \mathbf{v}$ is perpendicular to $\binom{1}{2}$ for all $\mathbf{v} \in \mathbb{R}^{2}$. Hint: Find one perpendicular vector \mathbf{w}, write down the formula for the projection onto \mathbf{w}, and apply this formula to the basis vectors. Check by calculating $A\binom{x}{y} \cdot\binom{1}{2}$.
10. Find the matrices of the following transformations from \mathbb{R}^{3} to \mathbb{R}^{3}.
(a) The reflection across the $x z$-plane.
(b) The rotation about the z-axis trhough an angle θ counterclockwise as viewed from the positive z-axis.
(c) Reflection across the plane $y=z$.
11. Let D be the dilation in Example 1 at the top of this page. Show that D takes the unit circle $x^{2}+y^{2}=1$ to an ellipse. Sketch the ellipse. Hint: What is the image of $\binom{x}{y}$?
12. Let $T: P_{3} \rightarrow P_{3}$ be the linear transformation that takes a polynomial $p(x)=a x^{3}+b x^{2}+c x+d$ to $p(x-2)$. What is the matrix for T with respect to the basis $\left\{x^{3}, x^{2}, x, 1\right\}$ of P_{3} ? (Be sure to keep the basis elements in this order.)
