Day 20 Linear transformation and matrix multiplication

Today and next time we will cover Section 2.3 in the textbook. Recall that for a linear transformation $T: V \to W$

- T is determined by what it does to the basis elements.
- After we choose a basis for V and a basis for W, T is described by a matrix A.

The matrix of a linear transformation $T: V \to W$ is built as follows:

- 1. Fix a basis $\alpha = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ of V and a basis $\beta = {\mathbf{w}_1, \dots, \mathbf{w}_m}$ of W.
- 2. For each *i*, write $T(\mathbf{v}_i)$ as a linear combination of the \mathbf{w}_j and put the coordinates into a column vector: $T(\mathbf{v}_i) = \begin{pmatrix} a_{1i} \\ a_{2i} \\ \vdots \end{pmatrix}$

$$\Gamma(\mathbf{v}_i) = \begin{pmatrix} a_{2i} \\ \vdots \\ a_{mi} \end{pmatrix}$$

3. Build the matrix A whose columns are $T(\mathbf{v}_1), T(\mathbf{v}_2)$, etc. :

$$A = [T]_{\alpha}^{\beta} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix}$$

This is called the *matrix of n* T with respect to the bases α and β .

The point of the matrix is that it gives a simple way of computing, as described in this theorem.

Theorem 0.1. Suppose that is a linear transformation with matrix A with respect to bases α and β . Then the image of

$$\mathbf{v} = x_1 \mathbf{v}_1 + \dots + x_n \mathbf{v}_n$$

is

$$T\mathbf{v} = y_1\mathbf{w}_1 + \dots + y_m\mathbf{w}_m$$

where the $y'_{j}s$ are obtained by matrix multiplication $\mathbf{y} = A\mathbf{x}$:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

For linear transformations $T : \mathbb{R}^n \to \mathbb{R}^m$, we can use the standard bases. The procedure for finding the matrix is then easy:

1. Write
$$T \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 as a column vector.

- 2. Do the same for the other basis vectors.
- 3. Assemble these column vectors into a matrix A.

Then the transformation is given by matrix multiplication by A.

Example 1. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that takes (1,0) to (3,1) and (0,1) to (1,2). In column form

$$T\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}3\\1\end{pmatrix} \text{ and } T\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}1\\2\end{pmatrix}$$

so the matrix of T is $A = \begin{pmatrix}3&1\\1&2\end{pmatrix}$. To find where T takes the vector $\begin{pmatrix}2\\-1\end{pmatrix}$ we calculate
$$T\begin{pmatrix}2\\-1\end{pmatrix} = \begin{pmatrix}3&1\\1&2\end{pmatrix}\begin{pmatrix}2\\-1\end{pmatrix} = \begin{pmatrix}5\\0\end{pmatrix}.$$

Example 2. What is the matrix of the linear transformation $T\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 4x-2y\\ -x+7y \end{pmatrix}$? Solution: taking x = 1 and y = 0, then x = 0 and y = 1 we obtain:

$$T\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}4\\-1\end{pmatrix}$$
 and $T\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}-2\\7\end{pmatrix}$ so the matrix is $A = \begin{pmatrix}4 & -2\\-1 & 7\end{pmatrix}$.

Examples of six types of linear transformations $T : \mathbb{R}^2 \to \mathbb{R}^2$.

- 1. Dilation by factor of 3 horizontally, factor of 5 vertically: $D = \begin{pmatrix} 3 & 0 \\ 0 & 5 \end{pmatrix}$.
- 2. Rotation counterclockwise by 90°: $R_{90} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and by angle θ : $R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.
- 3. The reflection across the *x*-axis: $R_x = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.
- 4. A shear that fixes the first basis vector \mathbf{e}_1 and moves \mathbf{e}_2 to $\mathbf{e}_1 + \mathbf{e}_2$: $S = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

5. The orthogonal projection onto the x-axis: $P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. 6. The embedding $E : \mathbb{R}^2 \to \mathbb{R}^3$ that takes \mathbb{R}^2 into the xy-plane: $E : \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Homework 20

- 1. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that takes $\mathbf{e}_1 = (1,0)$ to $3\mathbf{e}_1 + 4\mathbf{e}_2$ and takes $\mathbf{e}_2 = (0,1)$ to $-2\mathbf{e}_1 + 5\mathbf{e}_2$. What is the matrix for T with respect to the (standard) basis $\{\mathbf{e}_1, \mathbf{e}_2\}$?
- 2. Let $R: \mathbb{R}^2 \to \mathbb{R}^2$ be counterclockwise rotation about the origin by 60°.
 - (a) What is $R(\mathbf{e}_1)$? What is $R(\mathbf{e}_2)$?

- (b) What is the matrix of R with respect to the standard basis?
- (c) What is the image $R(\mathbf{v})$ of the vector $\mathbf{v} = (1, 1)$?
- 3. Let $P : \mathbb{R}^3 \to \mathbb{R}^3$ be the orthogonal projection onto the yz plane, given by P(x, y, z) = (0, y, z).
 - (a) What are $P(\mathbf{e}_1)$, $P(\mathbf{e}_2)$ and $P(\mathbf{e}_3)$?
 - (b) What is the matrix of L with respect to the standard basis?
 - (c) What is the image $P(\mathbf{v})$ of the vector $\mathbf{v} = (1, 2, -1)$?
- 4. Do the following matrix multiplications:

(a)
$$\begin{pmatrix} 2 & -3 & 8 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 2 \\ 4 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & -2 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} 2 \\ -6 \end{pmatrix}$

$$(c) \quad \begin{pmatrix} 2 & 4 & 6 \\ 1 & 3 & 5 \\ -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix} \qquad \qquad (d) \quad \begin{pmatrix} -1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 2 \\ -1 & 0 & 2 & 4 \\ 0 & -2 & 0 & 7 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

5. Sketch the image of the unit square under the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ whose matrix is

$$\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

- 6. Find the matrix of the orthogonal projection $P : \mathbb{R}^3 \to \mathbb{R}^3$ onto the z-axis.
- 7. (a) Using the formula given in Example 2 at the top of this page, find the matrix of the rotation $R: \mathbb{R}^2 \to \mathbb{R}^2$ about the origin by 30°.

(b) This rotation takes $\begin{pmatrix} 4\\ 9 \end{pmatrix}$ to what vector?

- 8. Let $L = \{y = -x\}$ be the "anti-diagonal" line in \mathbb{R}^2 .
 - (a) Find the matrix of the reflection R through L.
 - (b) Where does R take the vector $\begin{pmatrix} -2\\5 \end{pmatrix}$?
- 9. Find a non-zero 2 × 2 matrix A such that A**v** is perpendicular to $\begin{pmatrix} 1\\2 \end{pmatrix}$ for all $\mathbf{v} \in \mathbb{R}^2$. Hint: Find one perpendicular vector **w**, write down the formula for the projection onto **w**, and apply this formula to the basis vectors. Check by calculating $A\begin{pmatrix} x\\y \end{pmatrix} \cdot \begin{pmatrix} 1\\2 \end{pmatrix}$.
- 10. Find the matrices of the following transformations from \mathbb{R}^3 to \mathbb{R}^3 .
 - (a) The reflection across the xz-plane.
 - (b) The rotation about the z-axis trhough an angle θ counterclockwise as viewed from the positive z-axis.
 - (c) Reflection across the plane y = z.
- 11. Let D be the dilation in Example 1 at the top of this page. Show that D takes the unit circle $x^2 + y^2 = 1$ to an ellipse. Sketch the ellipse. *Hint: What is the image of* $\begin{pmatrix} x \\ y \end{pmatrix}$?
- 12. Let $T: P_3 \to P_3$ be the linear transformation that takes a polynomial $p(x) = ax^3 + bx^2 + cx + d$ to p(x-2). What is the matrix for T with respect to the basis $\{x^3, x^2, x, 1\}$ of P_3 ? (Be sure to keep the basis elements in this order.)