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Abstract. We prove that for any closed, connected, oriented 3-manifold M ,
there exists an infinite family of 2-fold branched covers of M that are hyperbolic
3-manifolds and surface bundles over the circle with arbitrarily large volume.

1. Introduction

Sakuma [17] proved that every closed, connected, oriented 3-manifold M with a
Heegaard splitting of genus g admits a 2-fold branched cover of M that is a genus g
surface bundle over the circle S1. See also Sakuma-Koda [10, Theorem 9.1]. Brooks
[3] showed that the 2-fold branched cover of M in Sakuma’s theorem can be chosen
to be hyperbolic if g ≥ max(2, g(M)), where g(M) is the Heegaard genus of M .

Montesinos gave different proofs of results by Sakuma and Brooks by using open
book decompositions of M . To state his theorem, let Σ = Σg,m be a compact, con-
nected, oriented surface of genus g with m boundary components, and let Σg = Σg,0.
The mapping class group MCG(Σ) is the group of isotopy classes of orientation-
preserving self-homeomorphisms on Σ. By the Nielsen-Thurston classification, el-
ements in MCG(Σ) fall into three types: periodic, reducible, pseudo-Anosov [21].
For f ∈ MCG(Σ), we consider the mapping torus

Tf = Σ× [−1, 1]/(x,1)∼(f(x),−1).

We call Σ the fiber of Tf . The 3-manifold Tf is a Σ-bundle over the circle S1 with the
monodromy f . It is known by Thurston [22] that Tf admits a hyperbolic structure
of finite volume if and only if f is pseudo-Anosov. The following result is a starting
point of our paper.

Theorem 1 (Montesinos [14]). Let M be a closed, connected, oriented 3-manifold
containing a hyperbolic fibered knot of genus g0 ≥ 1. Then there exists a 2-fold
branched cover of M branched over a 2-component link that is a hyperbolic 3-
manifold and a Σ2g0-bundle over S1.

In this paper, building on the approach of Montesinos, we prove the following
result. Here vol(W ) denotes the volume of a hyperbolic 3-manifold W .
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Theorem 2. Let M be a closed, connected, oriented 3-manifold containing a hyper-
bolic fibered knot of genus g0 ≥ 2. Then for any g ≥ g0 and j ∈ {1, 2}, there exists
an infinite family {Nℓ}ℓ∈N of hyperbolic 3-manifolds such that

(a) Nℓ is a Σ2g+j−1-surface bundle over S1,
(b) Nℓ is a 2-fold branched cover of M branched over a 2j-component link, and
(c) the inequalities

1

2
g < vol(Nℓ) < vol(Nℓ+1) for ℓ ∈ N

hold.

By Soma [18], every closed oriented, connected 3-manifold M contains a hyper-
bolic fibered knot of genus g0 for some g0 ≥ 1. Equivalently there exists an open
book decomposition (Σg0,1, h) of M , where the monodromy h is isotopic to a pseudo-
Anosov homeomorphism. By stabilizing open book decompositions along suitable
arcs, one may assume that M contains a hyperbolic fibered knot of genus g for some
g ≥ 2, see Colin-Honda [4], Detcherry-Kalfagianni [16] for example. Hence Theorem
2 applies to all 3-manifolds M .

Let Dg(M) be the subset of MCG(Σg) on the closed surface of genus g consisting
of elements f such that its mapping torus Tf is homeomorphic to a 2-fold branched
cover of M branched over a link. The above result by Sakuma tells us that Dg(M) ̸=
∅ if g ≥ g(M), and there exist infinitely many pseudo-Anosov elements in Dg(M) if
g ≥ max(2, g(M)), see [3]. For a study of stretch factors of pseudo-Anosov elements
of Dg(M), see [9]. As an immediate corollary of Theorem 2, we have following.

Corollary 3. Let M be a closed, connected, oriented 3-manifold containing a hy-
perbolic fibered knot of genus g0 ≥ 2. Then there exists an infinite family {ϕg}∞g=1

of pseudo-Anosov elements ϕg ∈ D2g0+g−1(M) such that the volume vol(Tϕg) of the
mapping torus of ϕg goes to ∞ as g → ∞.

We ask the following question.

Question 4. For g sufficiently large, does the set Dg(M) contain an infinite family
pseudo-Anosov elements whose mapping tori have arbitrarily large volume?

Note that Futer, Purcell and Schleimer [7] give a positive answer to Question
4 when M = S2 × S1. Using the results of [7], in Corollary 11, we also obtain a
positive answer to Question 4 when M = S3 and g is even.

2. Fathi’s theorem and volume variation

This section is devoted to prove a result which is a generalization of a theorem
by Fathi [5]. Given a surface Σ = Σg,m of genus g with m boundary compo-
nents, let MCG(Σ) be the group of isotopy classes of orientation preserving self-
homeomorphisms of Σ. In this section, we do not require that the maps and iso-
topies fix the boundary ∂Σ of Σ pointwise. In Sections 3 and 4, we restrict our
attention to the open book decompositions (Σ, h) of closed 3-manifolds, where the
monodromy h : Σ → Σ preserves ∂Σ pointwise. By abuse of notations, we denote a
representative of a mapping class f ∈ MCG(Σ) by the same notation f .
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A simple closed curve γ in Σ is essential if it is not homotopic to a point or
a boundary component. For simplicity, we may not distinguish between a simple
closed curve γ and its isotopy class [γ]. Let τγ denote the positive (i.e. right-handed)
Dehn twist about γ.

Let γ1, . . . , γk be essential simple closed curves in Σ. We say that the set
{γ1, . . . , γk} fills Σ if for each essential simple closed curve γ′ in Σ, there exists
some j ∈ {1, . . . , k} such that iΣ(γ

′, γj) > 0, where iΣ(·, ·) is the geometric intersec-
tion number on Σ. In this case, we also say that γ1, . . . , γk fill Σ.

Given f ∈ MCG(Σ), we call Of (γ) = {f ℓ(γ) | ℓ ∈ Z} the orbit of γ under f .

Strictly speaking, this is the set of isotopy classes [f ℓ(γ)] of simple closed curves
f ℓ(γ). We say that orbits of γ1, . . . , γk under f are distinct if Of (γi) ̸= Of (γj) for
any i, j ∈ {1, . . . , k} with i ̸= j. Notice that Of (γi) = Of (γj) if and only if there

exists an integer ℓ ∈ Z such that f ℓ(γi) = γj . We say that the orbits of γ1, . . . , γk
under f fill Σ if there exists an integer n > 0 such that the set {f ℓ(γj) | j ∈
{1, . . . , k}, ℓ ∈ {0,±1, . . . ,±n}} fills Σ.

Suppose that ∂Σ ̸= ∅. A properly embedded arc α in Σ is essential if it is not
parallel to ∂Σ. As in the case of simple closed curves, we do not distinguish between
an arc α and its isotopy class [α]. We allow that endpoints of the arcs are free to
move around ∂Σ, and an arc α′ that is isotopic to α may have the different endpoints
from the ones of α. Given f ∈ MCG(Σ), we call Of (α) = {f ℓ(α) | ℓ ∈ Z} the orbit
of α under f .

Let α1, . . . , αk be essential arcs. We say that the orbits of α1, . . . , αk under f are
distinct if Of (αi) ̸= Of (αj) for any i, j ∈ {1, . . . , k} with i ̸= j.

Theorem 5. Let γ1, . . . , γk be essential simple closed curves in Σ = Σg,m, where
k ≥ 1 and 3g − 3 +m > 0 (possibly m = 0). For any mapping class f ∈ MCG(Σ),
suppose that the orbits of γ1, . . . , γk under f are distinct and fill Σ. (i.e. Of (γi) ̸=
Of (γj) for any i, j ∈ {1, . . . , k} with i ̸= j, and the orbits of γ1, . . . , γk under f fill
Σ.) Then there exists n ∈ N which satisfies the following.

(a) For any n = (n1, . . . , nk) ∈ Zk with |ni| ≥ n for i = 1, . . . , k, the mapping
class

fn = τnk
γk

. . . τn1
γ1 f ∈ MCG(Σ)

is pseudo-Anosov.
(b) There exists a sequence {nℓ}ℓ∈N of the k-tuple of integers nℓ = (nℓ1 , . . . , nℓk) ∈

Zk with |nℓi | ≥ n for i = 1, . . . , k such that the mapping tori Tfnℓ
of

fnℓ
= τ

nℓk
γk . . . τ

nℓ1
γ1 f are hyperbolic 3-manifolds with strictly increasing vol-

umes:
1

2
k < vol(Tfnℓ

) < vol(Tfnℓ+1
) for ℓ ∈ N.

In the case of ∂Σ = ∅, Theorem 5(a) is due to Fathi [5, Theorem 0.2]. The result
by Fathi is a generalization of a theorem by Long-Morton [11]. The argument we
give below follows the line of the proof in [11]. In our setting, the mapping tori of
the pseudo-Anosovs obtained in Theorem 5(a) are given by the Dehn filling along
hyperbolic 3-manifolds. This allows us to use results on volume variation under the
Dehn filling to prove Theorem 5(b).
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Proof of Theorem 5. We take numbers 0 < t1 < t2 < · · · < tk < 1. Let δi = γi×{ti}
be a curve lying on the fiber Fi = Σ×{ti} for i = 1, . . . , k of the mapping torus Tf .
Now Lk = δ1 ∪ · · · ∪ δk is a link in Tf .

Claim 1. Let N (Lk) denote a regular neighborhood of the link Lk. Then the

3-manifold N = Tf \ N (Lk) is hyperbolic.

Proof of Claim 1. Since γ1, . . . , γk are essential simple closed curves in Σ, the 3-
manifold N is irreducible and boundary irreducible.

We first show that N is atoroidal, i.e. N contains no essential embedded tori.
Assume that there exists a torus T embedded in N that is incompressible and not
peripheral. Since the fundamental group of a thickened surface Σ× I, where I is an
interval, does not contain free abelian subgroups of rank 2, the torus T must intersect
some of the fibers Fi of Tf , where the curves δi lie. Without loss of generality, we
may suppose that T intersects the fiber F1, where δ1 = γ1 × {t1} lies.

We identify Σ with the t1-level F1 = Σ×{t1} in Tf . Let WΣ denote the manifold
obtained by cutting Tf open along Σ. By using the irreducibility of Tf and the
incompressibility of Σ, we may isotope the torus T so that all components of T \Σ
are annuli, and each component A of T \ Σ is either vertical with respect to the

I-product (i.e. A runs around the S1 factor of Tf ), or there exists an annulus Â in

one copy of Σ ⊂ ∂WΣ such that A∪ Â bounds a solid torus in WΣ and ∂A lies in the

same copy of Σ, where the annulus Â sits. The former and latter annuli are called
the vertical and horizontal annuli respectively. There are two types (A1), (A2) for
a horizontal annulus A.

(A1) There exist no curves δi which is contained in the solid torus bounded by

A ∪ Â.
(A2) There exists a curve δi which is contained in the solid torus bounded by

A ∪ Â.

If A is a horizontal annulus of type (A2), then the curve δi in the condition of (A2) is

unique: If δi and δj (i ̸= j) are contained in the solid torus bounded by A∪ Â, then
δi and δj are isotopic in WΣ, which implies that Of (γi) = Of (γj). This contradicts
the assumption that the orbits of γ1, . . . , γk under f are distinct. Hence the curve
δi in (A2) is unique. In particular ∂A consists of two curves which are parallel to
γi × {t1} since Σ is identified with the t1-level F1 = Σ× {t1}.

Notice that each horizontal annulus of type (A1) can be removed by an isotopy
of the torus T , and hence we may suppose that each component of T \Σ is a vertical
annulus or a horizontal annulus of type (A2).

If there exists a horizontal annulus of type (A2), then by replacing the fiber Fi

(containing the curve δi) with F1 if necessary, we have a horizontal annulus A1 of
T \ Σ whose components of ∂A1 are parallel to δ1 = γ1 × {t1}.

Suppose that there exist no vertical annuli of T \Σ. Then a horizontal annulus A1

can only connect to a horizontal annulus A2 with ∂A2 running parallel to f±1(γ1)×
{t1}. But then T will be boundary parallel (peripheral) in N , contrary to our
assumption.
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From the above discussion, we may suppose that T \Σ contains a vertical annulus
A. Let P and f(P ) be the components of ∂A which lie on the different boundary
components of WΣ. Then we have two cases.

(1) T \ Σ contains a horizontal annulus A1, or
(2) all of the components of T \ Σ are vertical annuli.

We first consider the case (1). Then the horizontal annulus A1 connects a vertical
annulus A, and this vertical annulus A eventually connects to another horizontal

annulus A′ of type (A2) such that the solid torus bounded by A′ ∪ Â′ contains a
curve δj for some j ∈ {1, . . . , k}. Assume that j = 1. Then the torus T must have
a self-intersection in N , and this is a contradiction.

Next, we assume that j ∈ {2, . . . , k}. Then ∂A′ is formed by two curves parallel
to γj × {t1}, and ∂A1 is formed by two curves parallel to γ1 × {t1}. This tells us
that for the components P and f(P ) of ∂A, we have P, f(P ) ∈ Of (γj)∩Of (γ1) ̸= ∅.
This contradicts the assumption that the orbits of γ1, . . . , γk under f are distinct.

We turn to the case (2). To form the torus T from vertical annuli, we have
fm(P ) = P for some m > 0. The curves P, f(P ), . . . , fm−1(P ) lie on the torus T .
Since T is embedded in N and all of the components of T \ Σ are vertical annuli,
we have γi ∩ f j(P ) = ∅ for any i = 1, . . . , k and j = 1, . . . ,m. Equivalently we
have f−j(γi) ∩ P = ∅ for any i = 1, . . . , k and j = 1, . . . ,m. For any n ∈ Z, write
n = mℓ− j for some ℓ ∈ Z and some j = 1, . . . ,m. For any i = 1, . . . , k, we obtain

fmℓ(f−j(γi) ∩ P ) = fmℓ(f−j(γi)) ∩ fmℓ(P ) = fmℓ−j(γi) ∩ P = fn(γi) ∩ P = ∅.

Thus for any i = 1, . . . , k, the curve P must be disjoint from Of (γi). However this
contradicts our assumption that the orbits of γ1, . . . , γk under f fill Σ. This implies
that N is atoroidal.

To finish the proof of Claim 1, it is enough to show that N contains no essential
annuli. Suppose that there exists an essential annulus A in N . Then N must be a
Seifert manifold (see [8, Lemma 1.16]), and the components of ∂N consist of fibers of
the Seifert fibration of N . In N , we can find a copy of the fiber Σ of Tf , say S, that
is disjoint from the components T1, . . . , Tk of ∂N that are created by drilling out the
curves δ1, . . . , δk. Then S is a surface that is essential in the Seifert manifold N with
non-empty boundary. Since we assumed that 3g− 3+m > 0, S is not a torus or an
annulus. Thus up to isotopy, we can make S horizontal which means that S must
intersect all the fibers of the Seifert fibration of N transversely, see [8, Proposition
1.11]. Since S is disjoint from the components T1, . . . , Tk of ∂N , it cannot become
horizontal. This contradiction implies that N contains no essential annuli. Thus by
work of Thurston [20], the manifold N is hyperbolic. This completes the proof of
Claim 1.

We now prove the claim (a). We denote by Nn, the mapping torus Tfn of

fn = τnk
γk

. . . τn1
γ1 f for n = (n1, . . . , nk) ∈ Zk. We use the fact that Nn is obtained

from N by the Dehn filling, where the boundary component Ti ⊂ ∂N corresponding
to δi is filled. Given n = (n1, . . . , nk) ∈ Zk, let si denote the Dehn filling slope
on Ti ⊂ ∂N to obtain Nn for i = 1, . . . , k. Since N is hyperbolic, each torus
boundary component of N corresponds to a cusp of Tf \ Lk. Taking a maximal
disjoint horoball neighborhood about the cusps, each torus Ti inherits a Euclidean
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structure, well-defined up to similarity. The slope si can then be given a geodesic
representative. We define the length of si, denoted by ℓ(si), to be the length of
this geodesic representative. (Note that when k > 1, this definition of slope length
depends on the choice of maximal horoball neighborhood. See [15].)

The length ℓ(si) of the slope si is an increasing function of |ni|. Let λ > 0 denote
the minimum length of the slopes, that is

λ = min{ℓ(si) | i = 1, . . . , k}.

By Thurston’s hyperbolic Dehn surgery theorem [19], there exists n ∈ N such that
for all n = (n1, . . . , nk) ∈ Zk with |ni| > n for i = 1, . . . , k, the resulting manifold
Nn(= Tfn) obtained by filling N is hyperbolic, and hence fn is pseudo-Anosov.
Thus the claim (a) holds.

We turn to the claim (b). As |ni| → ∞ for all i = 1, . . . , k, the volumes of the
filled manifolds Nn’s approach the volume of the 3-manifold Tf \ Lk from bellow.
To make things more concrete, we use an effective form proved in [6, Theorem 1.1],
which states that if λ > 2π, then Nn is hyperbolic and we have

(2.1)

(
1−

(
2π

λ

)2
)3/2

vol(Tf \ Lk) ⩽ vol(Nn) < vol(Tf \ Lk).

Since Tf \ Lk is a hyperbolic 3-manifold with at least k cusps, we have

k v3 < vol(Tf \ Lk),

where v3 = 1.01494 . . . is the volume of the regular hyperbolic tetrahedron, see [1,
Theorem 7].

On the other hand, by taking n = (n1, . . . , nk) ∈ Zk with all |ni| sufficiently
larger than n, we can assure that

1

2
<

(
1−

(
2π

λ

)2
)3/2

.

By (2.1), we obtain

(2.2)
1

2
k <

1

2
kv3 <

1

2
vol(Tf \ Lk) < vol(Nn).

We set n1 = n with the above inequality 1
2 k < vol(Nn1). Suppose that there

exists a finite sequence {nℓ}mℓ=1 of the k-tuple of integers nℓ ∈ Zk such that

1

2
k < vol(Nn1) < · · · < vol(Nnm) < vol(Tf \ Lk).

Now we choose nm+1 = (n′
1, . . . , n

′
k) ∈ Zk with all |n′

i| sufficiently larger than n
so that if we let λ = λnm+1 be the minimal length of the slopes corresponding to

nm+1 ∈ Zk, then we have

λ >
2π√

1− x
2/3
m

> 2π, where xm =
vol(Nnm)

vol(Tf \ Lk)
.
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1
c

2
c

Figure 1. Case (g,m) = (3.2). An example of simple closed curves
c1, . . . , cg−1 in Σg,m.

Hence
(
2π
λ

)2
< 1− x

2/3
m . This tells us that

vol(Nnm)

vol(Tf \ Lk)
= xm <

(
1−

(
2π

λ

)2
)3/2

.

Thus

vol(Nnm) <

(
1−

(
2π

λ

)2
)3/2

vol(Tf \ Lk).

By (2.1), we have (
1−

(
2π

λ

)2
)3/2

vol(Tf \ Lk) ≤ vol(Nnm+1).

Putting them together, we obtain

vol(Nnm) <

(
1−

(
2π

λ

)2
)3/2

vol(Tf \ Lk) ≤ vol(Nnm+1),

and the conclusion follows inductively. This completes the proof of Theorem 5. □

3. Curves on surfaces and open book decompositions

In this section, we quickly review curve graphs and open book decompositions of
3-manifolds. We prove a lemma that is needed for the proof of Theorem 2.

3.1. Curves on surfaces. Suppose that g ≥ 2. The curve graph C(Σ) for Σ = Σg,m

is defined as follows. The set of vertices C0(Σ) is the set of isotopy classes of essential
simple closed curves. Two vertices in C0(Σ) are connected by an edge if they can be
represented by disjoint essential simple closed curves. The space C(Σ) is a geodesic
metric space with the path metric d(·, ·) that assigns length 1 to each edge of the
graph. The mapping class group MCG(Σ) acts on C(Σ) as isometries.

Lemma 6. Let f ∈ MCG(Σ) be a pseudo-Anosov mapping class defined on Σ =
Σg,m, where g ≥ 2. Then for any 1 ≤ k ≤ g, there exist mutually disjoint, essential
simple closed curves γ1, . . . , γk in Σ such that

(a) the orbits of γ1, . . . , γk under f are distinct and fill Σ, and
(b) the surface Σ \ {γ1, . . . , γk} obtained from Σ cutting along γ1 ∪ · · · ∪ γk is

connected.
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Remark 7. The curve graph C(Σ) is locally infinite, i.e. for each vertex v ∈ C0(Σ),
there exist infinitely many vertices of C0(Σ) that are at distance 1 from v. It is not
hard to see that if d(a, b) ≥ 3 for a, b ∈ C0(Σ), then {a, b} fills Σ. Furthermore, if
f ∈ MCG(Σ) is pseudo-Anosov, then the distance d(a, fn(a)) grows linearly with |n|
for any a ∈ C0(Σ), see [12, Proposition 4.6]. We define the ball

B1(a) = {b ∈ C0(Σ) | d(a, b) ≤ 1}.

Since d(a, fn(a)) → ∞ as |n| → ∞, a single orbit Of (a) of a ∈ C0(Σ) under f fills
Σ. Take any b ∈ C0(Σ). Then the cardinality of the set B1(a)∩Of (b) is finite, since
d(b, fn(b)) → ∞ as |n| → ∞. Moreover B1(a) \Of (b) is an infinite set, since C(Σ)
is locally infinite. Hence one can pick an element of B1(a) \ Of (b) at distance 1
from a.

Proof of Lemma 6. We first take mutually disjoint, essential simple closed curves
c1, . . . , cg−1 in Σ so that the surface obtained from Σ by cutting along c1∪· · ·∪ cg−1

has g connected components Σ(1), . . . ,Σ(g), each of which is a surface of genus 1
with nonempty boundary. See Figure 1.

For each 1 ≤ k ≤ g, there exists an infinite family {a(k)i }i∈N of C0(Σ) such that

a
(k)
i ̸= a

(k)
j ∈ C0(Σ) if i ̸= j and a

(k)
i is represented by a non-separating simple closed

curve in the surface Σ(k). Then

(3.1) d(a
(k)
i , a

(ℓ)
j ) = 1 if k ̸= ℓ and i, j ∈ N.

In the family {a(1)i }i∈N, take any a
(1)
i1

= [γ1]. Then the orbit of γ1 under f fills Σ by
Remark 7. The statement of the lemma holds in the case k = 1.

We turn to the case k = 2. By (3.1), we have {a(2)i }i∈N ⊂ B1([γ1]) = B1(a
(1)
i1

). By

Remark 7, one sees that {a(2)i }i∈N ∩ Of (γ1)
(
⊂ B1([γ1]) ∩ Of (γ1)

)
is finite. Hence

one can pick an element a
(2)
i2

= [γ2] ∈ {a(2)i }i∈N \ Of (γ1). Then the orbits of γ1
and γ2 under f are distinct by the choice of γ2. By (3.1), two curves γ1 and γ2 are
disjoint. Moreover the orbits of γ1 and γ2 under f fill Σ, since a single orbit of γ1
under f fills Σ. Since γ1 (resp. γ2) is non-separating in the surface Σ(1) (resp. Σ(2)),
one sees that Σ \ {γ1, γ2} is connected. Thus the statement of the lemma holds in
the case k = 2.

Similarly for 3 ≤ k ≤ g, one can find the vertices a
(3)
i3

= [γ3], . . . , a
(k)
ik

= [γk]

such that the orbits of γ1, γ2, γ3, . . . , γk under f are distinct and fill Σ. By (3.1),

γ1, γ2, γ3 . . . , γk are mutually disjoint. Each γi is non-separating in the surface Σ(i)

for i = 1, . . . , k, and this implies that Σ \ {γ1, . . . , γk} is connected. This completes
the proof. □

3.2. Open book decompositions of closed 3-manifolds. An open book decom-
position of M is a pair (K, θ), where K is a link in M and θ : M \ K → S1 is a
fibration whose fiber is an interior of a Seifert surface of K. We call K the binding
of the open book decomposition. We also call K the fibered link in M . An open
book decomposition of M is determined by the closure Σ = θ−1(t) ⊂ M of a fiber
θ−1(t) (t ∈ S1) of the fibration θ together with the monodromy h : Σ → Σ with
h|∂Σ = id. Conversely, each pair (Σ, h) with h|∂Σ = id gives rise to an open book
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decomposition of some 3-manifold M as the relative mapping torus of h, i.e. M is
homeomorphic to the quotient of the mapping torus Th of h under the identification
(y, t) ∼ (y, t′) for all y ∈ ∂Σ and t, t′ ∈ [−1, 1]. We also call such a pair (Σ, h) the
open book decomposition of a 3-manifold.

By the proof of [4, Theorem 1.1] by Colin-Honda, the following result holds. See
also Detcherry-Kalfagianni [16, Propositions 4.9, 4.10].

Theorem 8. Let M be a closed, connected, oriented 3-manifold containing a hyper-
bolic fibered knot of genus g0 ≥ 2. Then for any g ≥ g0 and j ∈ {1, 2}, the manifold
M admits an open book decomposition (Σg,j , hg,j), where ∂Σg,j has j components
and hg,j is isotopic to a pseudo-Anosov homeomorphism.

4. Proof of Theorem 2

Theorem 2 in Section 1 follows from the following result.

Theorem 9. Let M be a closed, connected, oriented 3-manifold containing a hyper-
bolic fibered knot of genus g0 ≥ 2. Then for any g ≥ g0, j ∈ {1, 2} and 2 ≤ k ≤ g,
there exists n ∈ N which satisfies the following. For any n = (n1, . . . , nk) ∈ Zk with
|ni| ≥ n for i = 1, . . . , k, there exists a hyperbolic 3-manifold Nn such that

(a) Nn is a Σ2g+j−1-surface bundle over S1,
(b) Nn is a 2-fold branched cover of M branched over a 2j-component link, and
(c) there exists a sequence {nℓ}ℓ∈N of the k-tuple of integers nℓ = (nℓ1 , . . . , nℓk) ∈

Zk with |nℓi | ≥ n for i = 1, . . . , k such that

1

2
k < vol(Nnℓ

) < vol(Nnℓ+1
) for ℓ ∈ N.

Proof. By Theorem 8, for any g ≥ g0 and j ∈ {1, 2}, there exists an open book
decomposition (Σg,j , hg,j) of M , where hg,j is isotopic to a pseudo-Anosov home-
omorphism. We set Fg,j = Σg,j . Then by Lemma 6, we have mutually disjoint,
essential simple closed curves γ1, . . . , γk in Fg,j such that the orbits of γ1, . . . , γk
under hg,j are distinct and fill Fg,j . Moreover Fg,j \ {γ1, . . . , γk} is connected.

Let B = ∂Fg,1 when j = 1, and let B and B′ be the components of ∂Fg,2 when
j = 2. When j = 1, let β1, . . . , βk be properly embedded, mutually disjoint arcs
in Fg,1 \ {γ1, . . . , γk} so that one of the endpoints of each βi lies on γi and the
other endpoint of βi lies on B = ∂Fg,1. Since Fg,1 \ {γ1, . . . , γk} is connected, one
can choose those arcs β1, . . . , βk ⊂ Fg,1 \ {γ1, . . . , γk} so that they are mutually
disjoint. When j = 2, let β1, . . . , βk be properly embedded, mutually disjoint arcs
in Fg,2 \ {γ1, . . . , γk} so that one of the endpoints of each βi lies on γi and the other
endpoint of βi lies on B (resp. B′) if i = 1, . . . , k − 1 (resp. i = k). In both cases
j = 1, 2, consider a small neighborhood N = N (γi ∪ βi) in Fg,j . We set αi to be a
component of ∂N \ ∂Fg,j which is not parallel to γi. See Figures 2(1), 3(1). Then
α1, . . . , αk are mutually disjoint, essential arcs in Fg,j .

We claim that the orbits of α1, . . . , αk under hg,j are distinct. Assume that
Ohg,j

(αi) = Ohg,j
(αi′) for some i, i′ ∈ {1, . . . , k} with i ̸= i′. This implies that

Ohg,j
(γi) = Ohg,j

(γi′), since γi is obtained from each αi by concatenating with an
arc of B or B′. This contradicts the choice of γ1, . . . , γk.
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Let us consider the closed surface Σ2g+j−1 = DFg,j of genus 2g + j − 1 that is
obtained as the double DFg,j of Fg,j along ∂Fg,j . There exists an involution

ι : Σ2g+j−1 → Σ2g+j−1

that interchanges the two copies of Fg,j and ι|∂Fg,j
= id holds. (Notice that ι

is orientation reversing.) For the above essential arc αi, there is a corresponding
arc ι(αi) on the second copy of Fg,j so that γ̂i = αi ∪ ι(αi) becomes an essential
simple closed curve in Σ2g+j−1. Since α1, . . . , αk are mutually disjoint, γ̂1, . . . , γ̂k
are mutually disjoint, essential simple closed curves in Σ2g+j−1. See Figures 2(2),
3(2).

Let

ĥg,j = hg,j#h−1
g,j : Σ2g+j−1 → Σ2g+j−1

be a homeomorphim induced by hg,j . More precisely, ĥg,j(x) = hg,j(x) if x is in one

copy of Fg,j and ĥg,j(ι(x)) = ι(h−1
g,j(x)) if ι(x) is in the second copy of Fg,j .

Note that ĥg,j is a reducible homeomorphism, since ĥg,j preserves the essential
simple closed curves ∂Fg,j ⊂ Σ2g+j−1.

γi

αi

(1)

γi

B B

^

(2)Fg,1 DFg,1

�i

Figure 2. Case (g, j) = (2, 1). (1) The arc αi in Fg,1(= Σg,1). (2)
The simple closed curve γ̂i in Σ2g = DFg,1.

(1)

B

Fg,2

�k

B'
�k �k̂

B

B'

(2)DFg,2

βk

Figure 3. Case (g, j) = (2, 2). (1) The arc αk in Fg,2(= Σg,2). (2)
The simple closed curve γ̂k in Σ2g+1 = DFg,2.

Claim 1. For j ∈ {1, 2}, the orbits of γ̂1, . . . , γ̂k under ĥg,j are distinct.

Proof of Claim 1. By the definition of ĥg,j , we have ĥg,j |∂Fg,j
= id, and the orbits of
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the arc αi ⊂ γ̂i under ĥg,j are contained in one copy of Fg,j for i = 1, . . . , k. Claim
1 follows, since the orbits of α1, . . . , αk under hg,j are distinct.

Claim 2. For j ∈ {1, 2}, the orbits of γ̂1, . . . , γ̂g under ĥg,j fill Σ2g+j−1.

Proof of Claim 2. We prove the claim when j = 2. (The proof for the case of
j = 1 is similar.) By the proof of Lemma 6, a single orbit of γ1 under hg,2 fill
Fg,2. This means that there exists an integer n > 0 such that each component of

Fg,2 \ {hℓg,2(γ1) | ℓ ∈ {0,±1, . . . ,±n}} is a disk or a once-holed disk. Let A (resp.

A′) be the annular component of Fg,2 \ {hℓg,2(γ1) | ℓ ∈ {0,±1, . . . ,±n}} such that

one of the boundary components of A (resp. A′) coincides with B ⊂ ∂Fg,2 (resp.
B′ ⊂ ∂Fg,2). Then the annulus A is cut into disks by cutting Fg,2 along the arc α1

(since ∂α1 lies on B). The other annulus A′ is also cut into disks by cutting Fg,2

along the arc αk (since ∂αk lies on B′). Thus the surface obtained from the double

Σ2g+1 = DFg,2 by cutting along all ĥℓg,2(γ̂1) and ĥℓg,2(γ̂k) (ℓ ∈ {0,±1, . . . ,±n}) is a
disjoint union of disks. This means that the orbits of γ̂1, γ̂k under ĥg,2 fill Σ2g+1.

Thus the orbits of γ̂1, . . . , γ̂k under ĥg,2 fill Σ2g+1. This completes the proof of Claim
2.

We build the mapping torus

T
ĥg,j

= Σ2g+j−1 × [−1, 1]/
(x,1)∼(ĥg,j(x),−1)

.

Claim 3. For j ∈ {1, 2}, the mapping torus T
ĥg,j

is a 2-fold branched cover of M

branched over a 2j-component link.

Proof of Claim 3. The statement of Claim 3 follows from the proof of [14, Lemma 1].
Here we prove the claim for completeness. Consider the involution u : T

ĥg,j
→ T

ĥg,j

defined by

u(x, t) = (ι(x),−t) for (x, t) ∈ Σ2g+j−1 × [−1, 1],

where ι is the previous involution on Σ2g+j−1. In the case j = 1, u fixes 2 = 2j
curves B × {1}(= B × {−1}) and B × {0}. In the case j = 2, u fixes 4 = 2j curves
B × {1}, B × {0} and B′ × {1}, B′ × {0}.

The quotient of T
ĥg,j

by the action of u is the mapping torus Thg,j
of hg,j under

the identification (y, t) ∼ (y,−t) for all (y, t) ∈ ∂Thg,j
= ∂Fg,j × [−1, 1]/(y,1)∼(y,−1).

This is equivalent to identifying {y}× [−1, 0] with {y}× [0, 1] for all y ∈ ∂Fg,j . The
resulting quotient is homeomorphic to the manifold obtained from Thg,j

by collapsing

the set {y} × S1 to a point for all y ∈ ∂Fg,j . Thus the quotient of T
ĥg,j

under u is

the relative mapping torus of hg,j which is the open book decomposition (Fg,j , hg,j)

of M . In other words, the mapping torus T
ĥg,j

of ĥg,j is a 2-fold branched cover of

M branched cover the 2j-component link that comes from the above 2j curves fixed
by u.

This completes the proof of Claim 3.

By Claims 1 and 2, one can apply Theorem 5 to the orbits of γ̂1, . . . , γ̂k under

ĥg,j . Then we have n ∈ N given by Theorem 5. For n = (n1, . . . , nk) ∈ Zk, we set

fn = τnk

γ̂k
. . . τn1

γ̂1
ĥg,j and Nn = Tfn .
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(1) (2) (3)

(4) (5) (6)

αi γ
i
^

Figure 4. (1) The regular neighborhood of αi × {0} in M , which
is a 3-ball. (2) The regular neighborhood of γ̂i × {0} in T

ĥg,j
, which

is a solid torus. (3) In order to obtain T
τ2
γ̂i
ĥg,j

, we remove the solid

torus from T
ĥg,j

and glue this solid torus again so that the boundary

of its meridian is identified with one of the circles on the torus. (4)
Isotope the circles to be invariant by the elliptic involution. (5) Take
a quotient by the elliptic involution. (6) Push the arcs into the 3-ball,
then we have the branched set of the new 2-fold branched cover of
M after the Dehn surgery.

By Theorem 5(a), if |ni| ≥ n for i = 1, . . . , k, then fn is pseudo-Anosov and
Nn is a hyperbolic 3-manifold which is a Σ2g+j−1-bundle over S1. Thus Nn has a
property of Theorem 9(a). By Theorem 5(b), Nn also has a property of Theorem
9(c).

Claim 4. For j ∈ {1, 2} and n = (n1, . . . , nk) ∈ Zk, the mapping torus Nn of

fn = τnk

γ̂k
. . . τn1

γ̂1
ĥg,j is a 2-fold branched cover of M branched over a 2j-component

link.

Proof of Claim 4. We use Montesinos’ trick [13, 14]. (cf. Auckly [2, Example
1].) See Figure 4, which illustrates Montesinos’ trick. Since γ̂1, . . . , γ̂k are mutually
disjoint simple closed curves in Σ2g+j−1, the curves δ∗i = γ̂i × {0} ⊂ Σ2g+j−1 × {0}
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for i = 1, . . . , k are mutually disjoint. We consider the link L∗
k = δ∗1 ∪ · · · ∪ δ∗k in

T
ĥg,j

. Then the 3-manifold Nn is obtained from the mapping torus T
ĥg,j

of ĥg,j by

the Dehn surgery along the link L∗
k.

Notice that each δ∗i is invariant under the involution u : T
ĥg,j

→ T
ĥg,j

. Now we do

Dehn surgery along L∗
k. For i = 1, . . . , k, we remove the interior of a neighborhood

Ni of δ∗i , and replace it with a new solid torus Vi. The involution ui := u|∂Ni
:

∂Ni → ∂Ni extends to an elliptic involution on the solid torus Vi added with Dehn
filling. The effect of the Dehn surgery on the quotient by the elliptic involution on
Vi is a modification of the 3-manifold M inside a collection of 3-balls that changes
the branched set for the 2-fold branched cover T

ĥg,j
→ M , but not the ambient

manifold M . Thus Nn is still a 2-fold branched covers of M branched over a link
with 2j components. This completes the proof of Claim 3.

By Claim 4, the manifold Nn satisfies a property of Theorem 9(b), and we have
finished the proof of Theorem 9. □

5. Large volume vs. fixed genus

In this section we discuss conditions on 3-manifolds under which Question 4 has
a positive answer.

Theorem 10. Let M be a closed, connected, oriented 3-manifold containing a hy-
perbolic fibered knot of genus g0 ≥ 2. Suppose that for any g ≥ g0 and j ∈ {1, 2},
M contains a family {Kj

r (g)}r∈N of hyperbolic fibered links of genus g with j com-

ponents such that vol(M \Kj
r (g)) → ∞ as r → ∞. Then Question 4 has a positive

answer for M .

Proof. For notational simplicity we will assume that j = 1. The case j = 2 is
analogous. Fix g ≥ g0, we consider the family of the hyperbolic knots {Kr :=
K1

r (g)}r∈N satisfying the assumption of Theorem 10, where Fr = Σg,1 denotes the
fiber of Kr and hr := hg,1 the monodromy. As in the proof of Theorem 9, for any
r ∈ N, we build the 2-fold branched cover T

ĥr
of M with fiber Σ2g = DFr and

monordomy ĥr = hr#h−1
r . We apply the process in the proof of Claims 1–4 of the

proof of Theorem 9: For 1 < k ≤ g, say for k = 2, we take simple closed curves
γ̂r1, γ̂

r
2 on Σ2g so that Theorem 5 can be applied. By pushing γ̂r1, γ̂

r
2, we get

a hyperbolic link Lr in T
ĥr
. Recall that for n = (n1, n2) ∈ Z2 with n1, n2 large

enough, the mapping class f r
n := τn2

γ̂r
2
τn1

γ̂r
1
ĥr defined on Σ2g is pseudo-Anosov and

its mapping torus N r
n is hyperbolic. Furthermore, N r

n is obtained by Dehn filling of

T
ĥr

\ N (Lr), and we have

(5.1)
1

2
vol(T

ĥr
\ Lr) < vol(N r

n),

where (5.1) follows from (2.2). To finish the proof of the theorem, we need to
show that vol(N r

n) → ∞ as r → ∞. This follows immediately from (5.1) and the
following.

Claim 1. We have vol(T
ĥr

\ Lr) → ∞ as r → ∞.
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Proof of Claim 1. For any orientable 3-manifold X with ∂X empty or ∂X consisting
only of tori, let ||X|| denote the Gromov norm of X. See [19, Definition 6.1.2, the
beginning of Section 6.5]. If X is closed and hyperbolic, or if ∂X consists only of tori
and the interior of X is hyperbolic, then v3||X|| = vol(X), where v3 is the volume
of the regular hyperbolic tetrahedron. (See [19, Theorem 6.2, Lemma 6.5.4].) By
construction, M \ Kr ≃ M \ N (Kr) is a submanifold of T

ĥr
and ∂(M \ Kr) is an

incompressible torus in T
ĥr
. Indeed, we can think of T

ĥr
as obtained by identifying

two copies of M \Kr along their torus boundary. By [19, Theorem 6.5.5], we have

v3 ||T
ĥr
|| ≥ vol(M \Kr),

which implies that ||T
ĥr
|| → ∞ as r → ∞. Since T

ĥr
is obtained from T

ĥr
\ Lr by

adding solid tori, by [19, Proposition 6.5.2] we obtain

vol(T
ĥr

\ Lr) = v3 ||T
ĥr

\ Lr|| ≥ v3 ||T
ĥr
||,

and vol(T
ĥr

\ Lr) → ∞ as r → ∞. □

For M = S3, families of knots satisfying the assumption of Theorem 10 are
constructed in Futer-Purcell-Schleimer [7, Theorem 1]. Thus we have the following
result.

Corollary 11. For any g ≥ 2, the set D2g(S
3) contains an infinite family of pseudo-

Anosov elements whose mapping tori have arbitrarily large volume.
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