On the growth of Turaev-Viro 3-manifold invariants

E. Kalfagianni (based on work w. R. Detcherry and T. Yang)

Michigan State University

Redbud Topology Conference, OSU, April 2018

Notation/Definitions

Quantum integer: $r \geqslant 3$ odd integer and $q=e^{\frac{2 i \pi}{r}}$.
$\{n\}=q^{n}-q^{-n}=2 \sin \left(\frac{2 n \pi}{r}\right)=2 \sin \left(\frac{2 \pi}{r}\right)[n]$, where $[n]=\frac{q^{n}-q^{-n}}{q-q^{-1}}=\frac{2 \sin \left(\frac{2 n \pi}{r}\right)}{2 \sin \left(\frac{2 \pi}{r}\right)}$.
Quantum factorial: $\{n\}!=\prod_{i=1}^{n}\{i\}$.
Set of colors: $I_{r}=\{0,2,4 \ldots, r-3\}$ even integers less than $r-2$. Admissible Triple: $\left(a_{i}, a_{j}, a_{k}\right)$ of elements in I_{r},

$$
a_{i}+a_{j}+a_{k} \leqslant 2(r-2), \quad \text { and }
$$

$$
a_{i} \leqslant a_{j}+a_{k}, a_{j} \leqslant a_{i}+a_{k}, \quad a_{k} \leqslant a_{i}+a_{j} .
$$

$$
\Delta\left(a_{i}, a_{j}, a_{k}\right)=\zeta_{r}^{\frac{1}{2}}\left(\frac{\left\{\frac{a_{i}+a_{j}-a_{k}}{2}\right\}!\left\{\frac{a_{j}+a_{k}-a_{j}}{2}\right\}!\left\{\frac{a_{i}+a_{k}-a_{j}}{2}\right\}!}{\left\{\frac{a_{i}+a_{j}+a_{k}}{2}+1\right\}!}\right)^{\frac{1}{2}}
$$

where $\zeta_{r}=2 \sin \left(\frac{2 \pi}{r}\right)$.

Admissible 6-tuple: $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right) \in I_{r}^{6}$ each triple is dmisibble

$$
F_{1}=\left(a_{1}, a_{2}, a_{3}\right), \quad F_{2}=\left(a_{2}, a_{4}, a_{6}\right), \quad F_{3}=\left(a_{1}, a_{5}, a_{6}\right) \text { and } F_{4}=\left(a_{3}, a_{4}, a_{5}\right) .
$$

Tetrahedron colorings: Given an admissible 6-tuple:

Faces : $T_{1}=\frac{a_{1}+a_{2}+a_{3}}{2}, \quad T_{2}=\frac{a_{1}+a_{5}+a_{6}}{2}, \quad T_{3}=\ldots$ and $T_{4}=\ldots$.
Quadrilaterals:
$Q_{1}=\frac{a_{1}+a_{2}+a_{4}+a_{5}}{2}, Q_{2}=\frac{a_{1}+a_{3}+a_{4}+a_{6}}{2}$ and $Q_{3}=\frac{a_{2}+a_{3}+a_{5}+a_{6}}{2}$.

Quantum 6j-symbol: Given admissible 6-tuple $\alpha:=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right) \in I_{r}^{6}$,

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \tag{1}\\
a_{4} & a_{5} & a_{6}
\end{array}\right|=\Delta(\alpha) \times \sum_{z=\max \left\{T_{1}, T_{2}, T_{3}, T_{4}\right\}}^{\min \left\{Q_{1}, Q_{2}, Q_{3}\right\}} \frac{(-1)^{z}\{z+1\}!}{\prod_{j=1}^{4}\left\{z-T_{j}\right\}!\prod_{k=1}^{3}\left\{Q_{k}-z\right\}!}
$$

where

$$
\Delta(\alpha):=\left(\zeta_{r}\right)^{-1}(\sqrt{-1})^{\lambda} \prod_{i=1}^{4} \Delta\left(F_{i}\right)
$$

and

$$
\lambda=\sum_{i=1}^{6} a_{i},
$$

and

$$
\zeta_{r}=2 \sin \left(\frac{2 \pi}{r}\right)
$$

Colorings of Triangulations

Given a compact orientable 3-manifold M consider a triangulation τ of M. If $\partial M \neq \emptyset$ allow τ to be a (partially) ideal triangulation: some vertices of the tetrahedra are truncated and the truncated faces triangulate ∂M.

- $V=$ set of vertices of τ which do not lie on ∂M.
- $E=$ set of interior edges (thus excluding edges coming from the truncation of vertices).
- Admissible coloring at level r : An assignment

$$
c: E \longrightarrow I_{r}
$$

so that edges of each tetrahedron get an admissible 6-tuple.

- Given a coloring c and an edge $e \in E$ let

$$
|e|_{c}=(-1)^{c(e)}[c(e)+1] .
$$

- For Δ a tetrahedron in τ let $|\Delta|_{c}$ be the quantum $6 j$-symbol corresponding to the admissible 6-tuple assigned to Δ by c.

The invariant

- $A_{r}(\tau)=$ the set of r-admissible colorings of τ
- $\eta_{r}=\frac{2 \sin \left(\frac{2 \pi}{r}\right)}{\sqrt{r}}$.
- Turaev-Viro invariants as a state-sum over $A_{r}(\tau)$.

Theorem (Turaev-Viro 1990)

Let M be a compact, connected, orientable manifold closed or with boundary. Let b_{2} denote the second \mathbb{Z}_{2}-Betti number of M. Then the state sum

$$
\begin{equation*}
T V_{r}(M)=2^{b_{2}-1} \eta_{r}^{2|V|} \sum_{c \in A_{r}(\tau)} \prod_{e \in E}|e|_{c} \prod_{\Delta \in \tau}|\Delta|_{c} \tag{2}
\end{equation*}
$$

is independent of the partially ideal triangulation τ of M, and thus defines a topological invariant of M.

- 6j-sympols satisfy identities (Biedenharn-Elliot identity, Orthogonality relation). These identities are used to show that state sum in 2 is invariant under Pachner moves of triangulations of M. Thus invariant of M.

Turaev-Viro invariants and hyperbolic volume

- Families of of real valued invariants $T V_{r}(M, q)$ by Turaev-Viro.
- For this talk: $T V_{r}(M):=T V_{r}\left(M, e^{\frac{2 \pi i}{r}}\right), r=o d d$ and $q=e^{\frac{2 \pi i}{r}}$.
- For experts: These correspond to the $S O(3)$ quantum group.
- (Q. Chen- T. Yang, 2015): studied the "large r" asymptotics for hyperbolic 3-manifolds experimentally. Looked at

$$
\frac{2 \pi}{r} \log \left(T V_{r}\left(M, e^{\frac{2 \pi i}{r}}\right)\right), \text { as } r \longrightarrow \infty
$$

- Gave experimental evidence supporting (volume conjecture).

Conjecture. [C-Y] For M hyperbolic 3-manifold of finite volume

$$
\lim _{r \rightarrow \infty} \frac{2 \pi}{r} \log \left(T V_{r}\left(M, e^{\frac{2 \pi i}{r}}\right)\right)=\operatorname{Vol}(M)
$$

where r runs over odd integers.

Colored Jones Polynomial connection

- For $M=S^{3} \backslash L$, a link complement in S^{3}, the invariants $T V_{r}(M)$ can be expressed in terms of the colored Jones polynomial of L.
- Colored Jones Polynomials: Infinite sequence of Laurent polynomials $\left\{J_{K, n}(t)\right\}_{n}$ encoding the Jones polynomial of K and these of the links K^{s} that are the parallels of K.
- Formulae for $J_{K, n}(t)$ come from representation theory of $S U(2)$ (decomposition of tensor products of representations). For example, They look like

$$
J_{K, 1}(t)=1, \quad J_{K, 2}(t)=J_{K}(t)-\text { Original } J P
$$

$J_{K, 3}(t)=J_{K^{2}}(t)-1, \quad J_{K, 4}(t)=J_{K^{3}}(t)-2 J_{K}(t), \ldots$

- Kashaev-Murakami-Murakami Volume Conjecture (2000).

Relation-calculations

Theorem (Detcherry-K.-Yang, 2016)

Let L be a link in S^{3} with n components.

$$
T V_{r}\left(S^{3} \backslash L, q\right)=2^{n-1}\left(\eta_{r}^{\prime}\right)^{2} \sum_{1 \leqslant i \leqslant \frac{r-1}{2}}\left|J_{L, i}\left(q^{2}\right)\right|^{2}
$$

- Verified the Chen-Yang conjecture for some examples: Borromean rings, Figure-eight knot.
- Numerical evidence: Asymprotics of $T V_{r}$ behave well under "cutting/glueing" along boundary tori-Recover Gromov norm (simplicial volume) State "simplicial volume conjecture" that is compatible with disjoint unions of links and connect sums (Warning: Original volume conjecture is not!).
- Observe "new" exponential growth phenomena of the colored Jones polynomial at values that are not predicted by the Kashaev-Murakami-Murakami conjecture or generalizations.

Relation-calculations

Theorem (Detcherry-K.-Yang, 2016)

Let L be a link in S^{3} with n components.

$$
T V_{r}\left(S^{3} \backslash L, q\right)=2^{n-1}\left(\eta_{r}^{\prime}\right)^{2} \sum_{1 \leqslant i \leqslant \frac{r-1}{2}}\left|J_{L, \mathbf{i}}\left(q^{2}\right)\right|^{2}
$$

- Verified the Chen-Yang conjecture for some examples: Borromean rings, Figure-eight knot.
- Numerical evidence: Asymprotics of $T V_{r}$ behave well under "cutting/glueing" along boundary tori-Recover Gromov norm (simplicial volume) State "simplicial volume conjecture" that is compatible with disjoint unions of links and connect sums (Warning: Original volume conjecture is not!).
- Observe "new" exponential growth phenomena of the colored Jones polynomial at values that are not predicted by the Kashaev-Murakami-Murakami conjecture or generalizations.
Remark C-Y conjecture holds for.3-manifolds obtained by integer surgery on figure-8 (Ohtsuki, 2017), infinite family of hyperbolic links in $S^{1} \times S^{2}$ (DKY).

Geometric decomposition

Theorem (Knesser, Milnor 60's, Jaco-Shalen, Johanson 1970, Thurston 1980 + Perelman 2003)

$M=o r i e n t e d$, compact, with empty or toroidal boundary.
(1) There is a unique collection of 2-spheres that decompose M

$$
M=M_{1} \# M_{2} \# \ldots \# M_{p} \#\left(\# S^{2} \times S^{1}\right)^{k}
$$

where M_{1}, \ldots, M_{p} are compact orientable irreducible 3-manifolds.
(2) For $M=$ irreducible, there is a unique collection of disjointly embedded essential tori \mathcal{T} such that all the connected components of the manifold obtained by cutting M along \mathcal{T}, are either Seifert fibered manifolds or hyperbolic.

- Seifert fibered manifolds: For this talk, think of it as $S^{1} \times$ surface with boundary + union of solid tori.
- Hyperbolic: Interior admits complete, hyperbolic metric of finite volume. Hyperbolic metric is essentially unique (Mostow rigidity).

Gromov Norm/Volume highlights:

- Recall M uniquely decomposes along spheres and tori into disjoint unions of Seifert fibered spaces and hyperbolic pieces $M=S \cup H$,
- Gromov, Thurston, 80's:
- Gromov norm of M : $\|M\|=v_{\text {tet }} \operatorname{Vol}(H)$, $\operatorname{Vol}(H)$ is the sum of the hyperbolic volumes of components of H and $v_{\text {tet }}$ is the volume of the regular hyperbolic tetrahedron.
- ||M|| is additive under disjoint union and connected sums of manifolds.
- If M hyperbolic $\|M\|=v_{\text {tet }} \operatorname{Vol}(M)$.
- If M Seifert fibered then $\|M\|=0$
- If M contains an embedded torus T and M^{\prime} is obtained from M by cutting along T then

$$
\|M\| \leqslant\left\|M^{\prime}\right\| .
$$

Moreover, the inequality is an equality if T is incompressible in M.

Turaev-Viro invariants and Gromov norm?

- M compact, orientable 3-manifold with empty or toroidal boundary. $T V_{r}(M):=T V_{r}\left(M, e^{\frac{2 \pi i}{r}}\right), r=o d d$ and $q=e^{\frac{2 \pi i}{r}}$. One can ask

$$
\lim _{r \rightarrow \infty} \frac{2 \pi}{r} \log \left(T V_{r}\left(M, e^{\frac{2 \pi i}{r}}\right)\right)=v_{\mathrm{tet}}\|M\| ?
$$

- Let

$$
\operatorname{LTV}(M)=\underset{r \rightarrow \infty}{\limsup } \frac{2 \pi}{r} \log \left(T V_{r}(M)\right), \quad I T V(M)=\liminf _{r \rightarrow \infty} \frac{2 \pi}{r} \log \left(T V_{r}(M)\right)
$$

- What can we say? $\operatorname{LTV}(M)<\infty$? ITV $(M) \geq 0$? $\operatorname{ITV}(M)>0$?
- Perhaps more robust conjecture
- Question. (Coarse Volume Conjecture?) Are there universal constants $A, B>0$ such that for every M we have

$$
A \cdot\|M\| \leqslant I T V(M) \leqslant \operatorname{LTV}(M) \leqslant B \cdot\|M\| ?
$$

Results:

Theorem (Detcherry-K., 2017)

There exists a universal constant $B>0$ such that for any compact orientable 3 -manifold M with empty or toroidal boundary we have

$$
\operatorname{LTV}(M) \leqslant B \cdot\|M\|
$$

where the constant B is about 8.3581×10^{9}.

- Better bounds in special cases— For "most" links in S^{3}, $\operatorname{LTV}\left(S^{3} \backslash L\right) \leqslant 10.5 \mathrm{Vol}\left(S^{3} \backslash L\right)$
- If $M=S^{3} \backslash L$ hyperbolic link complement with $L T V(M)=\operatorname{Vol}(M)$ (e.g. Borromean rings). We have

$$
\operatorname{LTV}\left(M\left(s_{1}, \ldots, s_{k}\right)\right) \leqslant B\left(\ell_{\min }\right) \operatorname{Vol}\left(M\left(s_{1}, \ldots, s_{k}\right)\right)
$$

where $B\left(\ell_{\min }\right)$ is a function that approaches 1 as $\ell_{\min } \rightarrow \infty$.

Manifolds with $\|M\|=0$

- $L T$ is subadditive under connect sum:

$$
\operatorname{LTV}\left(M_{1} \# M_{2}\right) \leq \operatorname{LTV}\left(M_{1}\right)+\operatorname{LTV}\left(M_{2}\right)
$$

- and under disjoint unions of 3-manifolds.
- Suppose M compact, orientable with empty or toroidal boundary and such that $\|M\|=0$ (e.g. M a Seifert fibered manifold.) Then

$$
\operatorname{LTV}(M) \leq 0
$$

Corollary

For any link $K \subset S^{3}\left(\right.$ or $\left.K \subset S^{1} \times S^{2}\right)$ with $\left\|S^{3} \backslash K\right\|=0$, we have

$$
\operatorname{LTV}(M)=\lim _{r \rightarrow \infty} \frac{2 \pi}{r} \log \left(T V_{r}(M \backslash K)\right)=v_{\mathrm{tet}} \cdot\left\|S^{3} \backslash K\right\|=0
$$

where r runs over all odd integers.

Lower bounds?

- We want: There is $A>0$, such that for $r \gg 0, \log \left|T V_{r}(M)\right| \geqslant A\|M\| r$, or

$$
I T V(M)=\underset{r \rightarrow \infty}{\limsup } \frac{2 \pi}{r} \log \left(T V_{r}(M)\right) \geqslant A\|M\|
$$

- Weaker: Establish exponential growth: If $\|M\|>0$, then $\operatorname{ITV}(M)>0$. Results:

Corollary (Detcherry-K, 2017)

Let M the complement of the Figure- 8 knot. Then for every link $L \subset M$, we have

$$
\operatorname{ITV}(M \backslash L)>2 v_{\mathrm{tet}}, \quad \text { where } v_{\mathrm{tet}}=1.0149
$$

- Let M the complement of the Figure-8 or the Borromean rings. Then for any link $L \subset M$, we have $\operatorname{ITV}(M \backslash L)>2 v_{\text {oct }}$, where $v_{\text {oct }}=3.6638$.
- (w. Detcherry-Yang) Any closed 3-manifold N contains a hyp. link K s.t.

$$
\operatorname{LTV}(N \backslash K)=\operatorname{ITV}(N \backslash K)=\operatorname{vol}(N \backslash K)
$$

- For $M:=N \backslash K$ and any $L \subset M$, we have $I T V(M \backslash(L \cup K))>\operatorname{Vol}(N \backslash K)$.

Key point: Cutting along tori

- Invariants $I T V(M)$ and $L T V(M)$ do not increase under glueing along tori.

Theorem (Detcherry-K)

Let M be a compact oriented 3-manifold with empty or toroidal boundary. Let $T \subset M$ be an embedded torus and let M^{\prime} be the manifold obtained by cutting M along T. Then

$$
\operatorname{ITV}(M) \leqslant \operatorname{ITV}\left(M^{\prime}\right) \text { and } \operatorname{LTV}(M) \leqslant \operatorname{LTV}\left(M^{\prime}\right)
$$

- In particular, $\operatorname{ITV}(M), \operatorname{LTV}(M)$ do not increase under Dehn filling! (compare, Gromov norm)
- Ingredients:[Roberts, Beneditti-Petronio, 90's] T-V invariants can be computed as part of a Topological Quantum Field Theory (TQFT); this involves by cutting and gluing 3-manifolds along surfaces.
- For experts: The TQFT is the $S O(3)$ - Reshetikhin-Turaev and Witten TQFT as constructed by Blanchet, Habegger, Masbaum and Vogel (1995)

An example: Knot 5_{2} and parents

- $K(p)=3$-manifold obtained by p-surgery on M.
- $\operatorname{LTV}\left(4_{1}(-5)\right)=\operatorname{Vol}\left(4_{1}(-5)\right) \simeq 0.9813688>0$ [Ohtsuki, 2017]
- Observe $5_{2}(5)$ is homeomorphic to $4_{1}(-5)$.

- Dehn filling result implies $\operatorname{ITV}\left(S^{3} \backslash 5_{2}\right) \geqslant \operatorname{ITV}\left(5_{2}(5)\right)=I T V\left(4_{1}(-5)\right)>0$
- But Dehn filling result also implies that for any link containing 5_{2} as a component we have exponential growth

$$
\operatorname{ITV}\left(S^{3} \backslash L\right) \geqslant \operatorname{ITV}\left(S^{3} \backslash 5_{2}\right)>0
$$

Outline of proof of main result: (Upper bound)

(1) Study the large-r asymptotic behavior of the quantum $6 j$-symbols, and using the state sum formulae for the invariants $T V_{r}$, to give a linear upper bound of $\operatorname{LTV}(M)$ in terms of the number of tetrahedra in any triangulation of M. In particular, $\operatorname{LTV}(M)<\infty$.
(2) involves analytical estimates of quantum $6 j$-sympols.
(3) Combine with work of W. of Thurston to establish the hyperbolic case:
(9) Hyperbolic Case: There is a constant $B>0$ such that for any hyperbolic 3-manifold M, then $\operatorname{LTV}(M) \leq B\|M\|$.
(5) Use TQFT properties to show that if M is a Seifert fibered manifold, then $\operatorname{LTV}(M) \leq 0=\|M\|$.
(6) Use the geometric decomposition of 3-manifolds and the compatibility properties (subadditivity) of the Gromov norm and the invariant LTV with respect to this decomposition.

Bounding LTV

- Quantum factorials estimates with Lobachevsky function give: For any r-admissible 6-tuple (a, b, c, d, e, f), we have that

$$
\frac{2 \pi}{r} \log \left(e v_{r}\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6}
\end{array}\right|\right) \leqslant v_{8}+8 \wedge\left(\frac{\pi}{8}\right)+O\left(\frac{\log r}{r}\right)
$$

- Optimal estimate: Upper bound should be v_{8}. (Related work: Constantino, Chen-J. Murakami, Detcherry-K.-Yang).
- This gives

Theorem

Suppose that M is a compact, oriented manifold with a triangulation consisting of tetrahedra. Then, we have

$$
\operatorname{LTV}(M) \leqslant 2.08 v_{8} t
$$

where $v_{8} \simeq 3.6638$.. is the volume of a regular ideal octahedron.

Bounding LTV, cont'

- The analysis in the proof of the so called Jorgensen-Thurston Theorem in Thurston's Notes gives the following:

Theorem (Thurston, 80's)

There exists a universal constant C_{2}, such that for any complete hyperbolic 3-manifold M of finite volume, there exists a link L in M and a partially ideal triangulation of $M \backslash L$ with less than $C_{2} \| M| |$ tetrahedra.

- Proof comes from the thick-thin decomposition of hyperbolic manifolds. The constant C_{2} in this theorem can be explicitly estimated, $C_{2}=1.101 \times 10^{9}$.
- This Theorem combined with bound of $L T V$ in terms of tetrahedra (last theorem) finishes the Hyperbolic Case.

