Pants graph, TQFT and hyperbolic geometry

E. Kalfagianni (w. Renaud Detcherry)

Michigan State University

Quantum Topology and Geometry conference in the honor of Vladimir Turaev, Paris June 13-17

General theme

Three phases of 3-manifold/knot theory:

(1) Hyperbolic geometry
(2) Quantum topology
(3) "Combinatorial presentations/models" (e.g. knot diagrams, triangulations of 2 and 3 -dimensional manifolds, pants decompositions...)

Relations?

- Constructions of quantum invariants use combinatorial models in low dimensional topology
- Research has shed light on relations between hyperbolic geometry and combinatorial models/descriptions in LDT
- Question (vague) Do these relations reflect on the "quantum side"?

General theme of talk

Talk: Relations between features of $S U(2)$-Witten-Reshetikhin-Turaev TQFT and hyperbolic geometry via the pants graph.

Surface pant decompositions

- Quantum Topology: relate to bases of the TQFT spaces
- Geometry: Form a metric space that "coarsely models" the WP metric geometry of the Teichmüller space

General theme of talk

Talk: Relations between features of $S U(2)$-Witten-Reshetikhin-Turaev TQFT and hyperbolic geometry via the pants graph.

Surface pant decompositions

- Quantum Topology: relate to bases of the TQFT spaces
- Geometry: Form a metric space that "coarsely models" the WP metric geometry of the Teichmüller space

TQFT features

- "Large-r" asymptotics of curve operators on TQFT spaces

General theme of talk

Talk: Relations between features of $S U(2)$-Witten-Reshetikhin-Turaev TQFT and hyperbolic geometry via the pants graph.

Surface pant decompositions

- Quantum Topology: relate to bases of the TQFT spaces
- Geometry: Form a metric space that "coarsely models" the WP metric geometry of the Teichmüller space

TQFT features

- "Large-r" asymptotics of curve operators on TQFT spaces

Hyperbolic geometry features

- WP geometry of Teichmüller space
- volumes of hyperbolic 3-manifolds

Outline

$\Sigma=$ closed orientable surface of genus $g:=g(\Sigma)>1$.
(1) TQFT prelims. Work with skein theoretic version of SU(2)-WRT-TQFT (Blanchet, Habegger, Masbaum and Vogel).
(2) For $r \geq 3$, and $\zeta_{r}=-e^{\frac{\pi i}{2 r}}$, we have a finite dimensional Hermitian vector space $V_{r}(\Sigma)$; and
(3) curve operators: Hermitian operators $T_{r}^{\gamma}: V_{r}(\Sigma) \longrightarrow V_{r}(\Sigma)$, for any multicurve γ on Σ.

Outline

$\Sigma=$ closed orientable surface of genus $g:=g(\Sigma)>1$.

- TQFT prelims. Work with skein theoretic version of SU(2)-WRT-TQFT (Blanchet, Habegger, Masbaum and Vogel).
(2) For $r \geq 3$, and $\zeta_{r}=-e^{\frac{\pi i}{2 r}}$, we have a finite dimensional Hermitian vector space $V_{r}(\Sigma)$; and
(3) curve operators: Hermitian operators $T_{r}^{\gamma}: V_{r}(\Sigma) \longrightarrow V_{r}(\Sigma)$, for any multicurve γ on Σ.
- A pairing. Data from "large-r" asymptotics analysis of curve operators gives a pairing, called quantum intersection number, on the set of pants decompositions of Σ.
- Geometric content of quantum intersection number.
(1) Relates to geometric intersection number of curves.
(2) Leads to two sided bounds of volumes of hyperbolic surface bundles.
(3) leads to a metric space that is quasi-isometric to the Teichmüller space with its Weil-Petersson metric.
(9) Relations with Nielsen-Thurston classification of mapping classes.

Prelims

- $P=$ pants decomposition: 3g-3 disjointly embedded curves decomposing Σ into pants (3-holed 2-spheres).
- Dual graph $\Gamma=\Gamma_{P}$: trivalent graph; each vertex of Γ lies in single pants of P, and each edge of Γ intersects a single curve of P exactly once.

Prelims

- $P=$ pants decomposition: 3g-3 disjointly embedded curves decomposing Σ into pants (3-holed 2-spheres).
- Dual graph $\Gamma=\Gamma_{P}$: trivalent graph; each vertex of Γ lies in single pants of P, and each edge of Γ intersects a single curve of P exactly once.

Figure: Elementary moves: blue curve $\gamma \longrightarrow$ red curve intersecting γ

- Elementary moves : Replace a single γ curve in a pants decomposition by one that intersects γ minimally.
- A-move happens on a 4-holed subsurface $\Sigma_{0,4}$ of Σ (Top row of figure).
- S-move happens on one-holed torus subsurface $\Sigma_{1,1}$ of $\Sigma_{\text {(Bottom row }}$ (o).

Skein theoretic SU(2)-TQFT by BHMV

- $P=$ pants decomposition of Σ with dual (banded) Γ with edge set E.
- For $r \geq 3$, let $\mathcal{C}_{r}=\{1,2, \ldots, r-1\}$ and let $\zeta_{r}=-e^{\frac{\pi i}{2 r}}$.
- TQFT spaces. $V_{r}(\Sigma)$ finite v. space w. non-degenerate Hermitian pairing

$$
\left\rangle: V_{r}(\Sigma) \times V_{r}(\Sigma) \longrightarrow \mathbb{C}\right.
$$

- $V_{r}(\Sigma)=$ certain quotient of a version the Kauffman skein algebra $K\left(H, \zeta_{r}\right)$, where $H=$ handlebody with $\partial H=\Sigma$

Skein theoretic SU(2)-TQFT by BHMV

- $P=$ pants decomposition of Σ with dual (banded) Γ with edge set E.
- For $r \geq 3$, let $\mathcal{C}_{r}=\{1,2, \ldots, r-1\}$ and let $\zeta_{r}=-e^{\frac{\pi i}{2 r}}$.
- TQFT spaces. $V_{r}(\Sigma)$ finite v. space w. non-degenerate Hermitian pairing

$$
\left\rangle: V_{r}(\Sigma) \times V_{r}(\Sigma) \longrightarrow \mathbb{C}\right.
$$

- $V_{r}(\Sigma)=$ certain quotient of a version the Kauffman skein algebra $K\left(H, \zeta_{r}\right)$, where $H=$ handlebody with $\partial H=\Sigma$
- Bases. Given an admissible coloring, c : $E \longrightarrow \mathcal{C}_{r}$, BHMV constructs a vector $\phi_{\mathbf{c}} \in V_{r}(\Sigma)$ and gets an orthonormal basis

$$
\mathcal{B}_{P}=\left\{\phi_{\mathbf{c}}\right\}_{\mathbf{c}} .
$$

Skein theoretic SU(2)-TQFT by BHMV

- $P=$ pants decomposition of Σ with dual (banded) Γ with edge set E.
- For $r \geq 3$, let $\mathcal{C}_{r}=\{1,2, \ldots, r-1\}$ and let $\zeta_{r}=-e^{\frac{\pi i}{2 r}}$.
- TQFT spaces. $V_{r}(\Sigma)$ finite v. space w. non-degenerate Hermitian pairing

$$
\left\rangle: V_{r}(\Sigma) \times V_{r}(\Sigma) \longrightarrow \mathbb{C} .\right.
$$

- $V_{r}(\Sigma)=$ certain quotient of a version the Kauffman skein algebra $K\left(H, \zeta_{r}\right)$, where $H=$ handlebody with $\partial H=\Sigma$
- Bases. Given an admissible coloring, $\mathbf{c}: E \longrightarrow \mathcal{C}_{r}$, BHMV constructs a vector $\phi_{\mathbf{c}} \in V_{r}(\Sigma)$ and gets an orthonormal basis

$$
\mathcal{B}_{P}=\left\{\phi_{\mathbf{c}}\right\}_{\mathbf{c}}
$$

- Curve operators. For a multicurve γ on Σ there are Hermitian operators

$$
T_{r}^{\gamma}: V_{r}(\Sigma) \longrightarrow V_{r}(\Sigma)
$$

defined by descend of the product on $K\left(H, \zeta_{r}\right)$.

- The map $K\left(\Sigma, \zeta_{r}\right) \longrightarrow \operatorname{End}\left(V_{r}(\Sigma)\right)$ where $\gamma \longrightarrow T_{r}^{\gamma}$ is an algebra morphism.

Asymptotics of curve operators

Key: Given γ, P, for r "large enough" the presentation matrix of T_{r}^{γ} in the basis $\mathcal{B}_{P}=\left\{\phi_{\mathbf{c}}\right\}_{\mathbf{c}}$, has the same number of diagonals containing non-zero entries.

Asymptotics of curve operators

Key: Given γ, P, for r "large enough" the presentation matrix of T_{r}^{γ} in the basis $\mathcal{B}_{P}=\left\{\phi_{\mathbf{c}}\right\}_{\mathbf{c}}$, has the same number of diagonals containing non-zero entries.

- For admissible colorings $\mathbf{c}: \mathbf{E} \longrightarrow \mathcal{C}_{\mathbf{r}}$,

$$
\frac{\mathbf{c}}{r} \in \mathbb{R}^{E}:=\{\text { set of functions } E \longrightarrow[0,1]\} .
$$

Theorem (Detcherry, 2015)

Given P and γ, there are analytic functions

$$
G_{\mathbf{k}}^{\gamma}=G_{\mathbf{k}}^{\gamma}\left(\frac{\mathbf{c}}{r}, \frac{1}{r}\right): \text { certain subset of } \mathbb{R}^{E} \times[0,1] \longrightarrow \mathbb{C}
$$

indexed by functions $\mathbf{k}: E \longrightarrow \mathbb{Z}$, so that

$$
T_{r}^{\gamma}\left(\phi_{\mathbf{c}}\right)=\sum_{\mathbf{k}} G_{\mathbf{k}}^{\gamma}\left(\frac{c}{r}, \frac{1}{r}\right) \phi_{\mathbf{c}+\mathbf{k}}
$$

and only finitely many of $\left\{G_{\mathbf{k}}^{\gamma}\right\}_{\mathbf{k} \neq 0}$ are non-zero functions.

Quantum intersection number

Definition. The quantum intersection number of γ with respect to P is $n(\gamma, P):=$ the number of $\mathbf{k} \neq \mathbf{0}$ such that $\mathrm{G}_{\mathbf{k}}^{\gamma} \neq \mathbf{0}$.

Quantum intersection number

Definition. The quantum intersection number of γ with respect to P is

$$
n(\gamma, P):=\text { the number of } \mathbf{k} \neq \mathbf{0} \text { such that } \mathrm{G}_{\mathbf{k}}^{\gamma} \neq \mathbf{0} .
$$

- Question: (vague) What is the geometric content of $n(\gamma, P)$?

Quantum intersection number

Definition. The quantum intersection number of γ with respect to P is

$$
n(\gamma, P):=\text { the number of } \mathbf{k} \neq \mathbf{0} \text { such that } \mathrm{G}_{\mathbf{k}}^{\gamma} \neq \mathbf{0} .
$$

- Question: (vague) What is the geometric content of $n(\gamma, P)$?
- We get a pairing $n: C_{P}^{0}(\Sigma) \times C_{P}^{0}(\Sigma) \longrightarrow \mathbb{Z}$, where $C_{P}^{0}(\Sigma)=$ isotopy classes of pants decompositions of Σ
- Question: (vague) Does this pairing see any of the geometric connections of the pants graph of Σ ? (more later).

Quantum intersection number

Definition. The quantum intersection number of γ with respect to P is

$$
n(\gamma, P):=\text { the number of } \mathbf{k} \neq \mathbf{0} \text { such that } \mathrm{G}_{\mathbf{k}}^{\gamma} \neq \mathbf{0} .
$$

- Question: (vague) What is the geometric content of $n(\gamma, P)$?
- We get a pairing $n: C_{P}^{0}(\Sigma) \times C_{P}^{0}(\Sigma) \longrightarrow \mathbb{Z}$, where $C_{P}^{0}(\Sigma)=$ isotopy classes of pants decompositions of Σ
- Question: (vague) Does this pairing see any of the geometric connections of the pants graph of Σ ? (more later).
- Total geometric intersection number. For simple curves α, β on Σ, we denote $I(\alpha, \beta)$ the minimum geometric intersection number within the isotopy classes of α, β. We have

$$
I(\gamma, P):=\sum_{\alpha \in \gamma \text { and } \beta \in P} I(\alpha, \beta) .
$$

Quantum vs geometric intersection

Theorem (Detcherry-K., 2021)

For any γ and P, on a surface Σ of genus $g>1$, we have

$$
\frac{I(\gamma, P)}{3 g-3} \leq n(\gamma, P) \leq(I(\gamma, P)+1)^{3 g-3}-1
$$

Quantum vs geometric intersection

Theorem (Detcherry-K., 2021)

For any γ and P, on a surface Σ of genus $g>1$, we have

$$
\frac{I(\gamma, P)}{3 g-3} \leq n(\gamma, P) \leq(I(\gamma, P)+1)^{3 g-3}-1
$$

- We get a skein theoretic proof of the following.

Corollary (Charles- Marché, 2012)

$n(\gamma, P)=0$ if and only if $I(\gamma, P)=0$.

Quantum vs geometric intersection

Theorem (Detcherry-K., 2021)

For any γ and P, on a surface Σ of genus $g>1$, we have

$$
\frac{I(\gamma, P)}{3 g-3} \leq n(\gamma, P) \leq(I(\gamma, P)+1)^{3 g-3}-1
$$

- We get a skein theoretic proof of the following.

Corollary (Charles- Marché, 2012)

$n(\gamma, P)=0$ if and only if $I(\gamma, P)=0$.

-and a glimpse of hyperbolic geometry:(Why volume?)

Corollary (Detcherry-K., 2021)

There is a constant $N>0$, only depending on the topology of Σ, so that for any pseudo-Anosov mapping class $\phi \in \operatorname{Mod}(\Sigma)$ and any $P \in C_{P}^{0}(\Sigma)$ we have

$$
n(P, \phi(P)) \geq N \operatorname{Vol}\left(M_{\phi}\right)
$$

Pants graph prelims

- Pants graph of Σ. (Hatcher-Thurston) Abstract graph $C_{P}^{1}(\Sigma)$ with
- vertices $C_{P}^{0}(\Sigma)$ are in one-to-one correspondence with pants decompositions of Σ.
- Two vertices are connected by an edge if they are related by a single elementary move (i.e. an A-move or an S-move).

Figure: Elementary moves of pants decompositions and dual graphs.

The path metric and a model of the Teichmüller space

- Path metric. The metric $d_{\pi}: C_{P}^{1}(\Sigma) \times C_{P}^{1}(\Sigma) \rightarrow[0, \infty)$, where
- it assigns the length 1 to each edge of the pants graph; and
- $d_{\pi}(P, Q)=$ minimum number of edges over all paths in $C_{P}^{1}(\Sigma)$ from P to Q.

The path metric and a model of the Teichmüller space

- Path metric. The metric $d_{\pi}: C_{P}^{1}(\Sigma) \times C_{P}^{1}(\Sigma) \rightarrow[0, \infty)$, where
- it assigns the length 1 to each edge of the pants graph; and
- $d_{\pi}(P, Q)=$ minimum number of edges over all paths in $C_{P}^{1}(\Sigma)$ from P to Q.
- Some properties: $C_{P}^{1}(\Sigma)$ is connected; $\operatorname{Mod}(\Sigma)$ acts by isometries.

The path metric and a model of the Teichmüller space

- Path metric. The metric $d_{\pi}: C_{P}^{1}(\Sigma) \times C_{P}^{1}(\Sigma) \rightarrow[0, \infty)$, where
- it assigns the length 1 to each edge of the pants graph; and
- $d_{\pi}(P, Q)=$ minimum number of edges over all paths in $C_{P}^{1}(\Sigma)$ from P to Q.
- Some properties: $C_{P}^{1}(\Sigma)$ is connected; $\operatorname{Mod}(\Sigma)$ acts by isometries.
- $\left(C_{P}^{0}(\Sigma), d_{\pi}\right)$ is "combinatorial model" for coarse geometry of $\mathcal{T}(\Sigma)=$ Teichmüller space of Σ.

The path metric and a model of the Teichmüller space

- Path metric. The metric $d_{\pi}: C_{P}^{1}(\Sigma) \times C_{P}^{1}(\Sigma) \rightarrow[0, \infty)$, where
- it assigns the length 1 to each edge of the pants graph; and
- $d_{\pi}(P, Q)=$ minimum number of edges over all paths in $C_{P}^{1}(\Sigma)$ from P to Q.
- Some properties: $C_{P}^{1}(\Sigma)$ is connected; $\operatorname{Mod}(\Sigma)$ acts by isometries.
- $\left(C_{P}^{0}(\Sigma), d_{\pi}\right)$ is "combinatorial model" for coarse geometry of $\mathcal{T}(\Sigma)=$ Teichmüller space of Σ.

Theorem (Brock, 2001)

The metric space $\left(C_{P}^{0}(\Sigma), d_{\pi}\right)$ is quasi-isometric to $\mathcal{T}(\Sigma)$ equipped with the Weil-Petersson metric .

The path metric and a model of the Teichmüller space

- Path metric. The metric $d_{\pi}: C_{P}^{1}(\Sigma) \times C_{P}^{1}(\Sigma) \rightarrow[0, \infty)$, where
- it assigns the length 1 to each edge of the pants graph; and
- $d_{\pi}(P, Q)=$ minimum number of edges over all paths in $C_{P}^{1}(\Sigma)$ from P to Q.
- Some properties: $C_{P}^{1}(\Sigma)$ is connected; $\operatorname{Mod}(\Sigma)$ acts by isometries.
- $\left(C_{P}^{0}(\Sigma), d_{\pi}\right)$ is "combinatorial model" for coarse geometry of $\mathcal{T}(\Sigma)=$ Teichmüller space of Σ.

Theorem (Brock, 2001)

The metric space $\left(C_{P}^{0}(\Sigma), d_{\pi}\right)$ is quasi-isometric to $\mathcal{T}(\Sigma)$ equipped with the Weil-Petersson metric .

- That is there is a map $g: C_{P}^{0}(\Sigma) \longrightarrow \mathcal{T}(\Sigma)$, so that
(1) $g\left(C_{P}^{0}(\Sigma)\right)$ is uniformly dense in $\mathcal{T}(\Sigma)$;

The path metric and a model of the Teichmüller space

- Path metric. The metric $d_{\pi}: C_{P}^{1}(\Sigma) \times C_{P}^{1}(\Sigma) \rightarrow[0, \infty)$, where
- it assigns the length 1 to each edge of the pants graph; and
- $d_{\pi}(P, Q)=$ minimum number of edges over all paths in $C_{P}^{1}(\Sigma)$ from P to Q.
- Some properties: $C_{P}^{1}(\Sigma)$ is connected; $\operatorname{Mod}(\Sigma)$ acts by isometries.
- $\left(C_{P}^{0}(\Sigma), d_{\pi}\right)$ is "combinatorial model" for coarse geometry of $\mathcal{T}(\Sigma)=$ Teichmüller space of Σ.

Theorem (Brock, 2001)

The metric space $\left(C_{P}^{0}(\Sigma), d_{\pi}\right)$ is quasi-isometric to $\mathcal{T}(\Sigma)$ equipped with the Weil-Petersson metric .

- That is there is a map $g: C_{P}^{0}(\Sigma) \longrightarrow \mathcal{T}(\Sigma)$, so that
(1) $g\left(C_{P}^{0}(\Sigma)\right)$ is uniformly dense in $\mathcal{T}(\Sigma)$;
(2) there are constants $B_{1}, B_{2}>0$, so that for all $P, Q \in C_{P}^{0}(\Sigma)$,

$$
\frac{1}{B_{1}} d_{\pi}(P, Q)-B_{2} \leq d_{W P}(g(P), g(Q)) \leq B_{1} d_{\pi}(P, Q)+B_{2}
$$

A metric from TQFT on the pants graph

- TQFT properties imply that the quantum intersection number $n: C_{P}^{0}(\Sigma) \times C_{P}^{0}(\Sigma) \rightarrow[0, \infty)$, is invariant under the action of $\operatorname{Mod}(\Sigma)$:

$$
n(f(P), f(Q))=n(P, Q)
$$

for any $\phi \in M$ and $P, Q \in C_{P}^{0}(\Sigma)$.

A metric from TQFT on the pants graph

- TQFT properties imply that the quantum intersection number $n: C_{P}^{0}(\Sigma) \times C_{P}^{0}(\Sigma) \rightarrow[0, \infty)$, is invariant under the action of $\operatorname{Mod}(\Sigma)$:

$$
n(f(P), f(Q))=n(P, Q)
$$

for any $\phi \in M$ and $P, Q \in C_{P}^{0}(\Sigma)$.

- We use "metrification" to promote the function n to a metric $d_{q t}: C_{P}^{0}(\Sigma) \times C_{P}^{0}(\Sigma) \rightarrow[0, \infty)$, so that

A metric from TQFT on the pants graph

- TQFT properties imply that the quantum intersection number $n: C_{P}^{0}(\Sigma) \times C_{P}^{0}(\Sigma) \rightarrow[0, \infty)$, is invariant under the action of $\operatorname{Mod}(\Sigma)$:

$$
n(f(P), f(Q))=n(P, Q)
$$

for any $\phi \in M$ and $P, Q \in C_{P}^{0}(\Sigma)$.

- We use "metrification" to promote the function n to a metric $d_{q t}: C_{P}^{0}(\Sigma) \times C_{P}^{0}(\Sigma) \rightarrow[0, \infty)$, so that
(1) For any $P, Q \in C_{P}^{0}(\Sigma)$, we have $d_{q t}(P, Q) \leq n(P, Q)$.
(2) $\operatorname{Mod}(\Sigma)$ acts on $\left(C_{P}^{0}(\Sigma), d_{q t}\right)$ by isometries.
(3) The metric $d_{q t}$ coarsely records the geometry of the Weil-Petersson metric on the Teichmüller $\mathcal{T}(\Sigma)$:

A metric from TQFT on the pants graph

- TQFT properties imply that the quantum intersection number $n: C_{P}^{0}(\Sigma) \times C_{P}^{0}(\Sigma) \rightarrow[0, \infty)$, is invariant under the action of $\operatorname{Mod}(\Sigma)$:

$$
n(f(P), f(Q))=n(P, Q)
$$

for any $\phi \in M$ and $P, Q \in C_{P}^{0}(\Sigma)$.

- We use "metrification" to promote the function n to a metric $d_{q t}: C_{P}^{0}(\Sigma) \times C_{P}^{0}(\Sigma) \rightarrow[0, \infty)$, so that
(Por any $P, Q \in C_{P}^{0}(\Sigma)$, we have $d_{q t}(P, Q) \leq n(P, Q)$.
(2) $\operatorname{Mod}(\Sigma)$ acts on $\left(C_{P}^{0}(\Sigma), d_{q t}\right)$ by isometries.
(3) The metric $d_{q t}$ coarsely records the geometry of the Weil-Petersson metric on the Teichmüller $\mathcal{T}(\Sigma)$:

Theorem (Detcherry-K, 2001)

The metric space $\left(C_{P}^{0}(\Sigma), d_{q t}\right)$ is quasi-isometric to the Teichmüller space equipped with its the Weil-Petersson metric.

A closer look at the quasi-isometry

- The Teichmüller space: $\mathcal{T}(\Sigma)$ parametrizes finite area hyperbolic structures on Σ.
- Points in $\mathcal{T}(\Sigma)$: =equivalence classes of pairs (X, ϕ), of a finite area hyperbolic surface and a homomorphism $\phi: X \longrightarrow \Sigma$, up to isometry.

A closer look at the quasi-isometry

- The Teichmüller space: $\mathcal{T}(\Sigma)$ parametrizes finite area hyperbolic structures on Σ.
- Points in $\mathcal{T}(\Sigma)$: =equivalence classes of pairs (X, ϕ), of a finite area hyperbolic surface and a homomorphism $\phi: X \longrightarrow \Sigma$, up to isometry.
- Ber's constant: $L:=L(\Sigma)>0$, so that given $X \in \mathcal{T}(\Sigma)$ there is $P_{X} \in C_{P}^{0}(\Sigma)$, with length ${ }_{X}(\gamma)<L$, for each $\gamma \in P_{X}$.

A closer look at the quasi-isometry

- The Teichmüller space: $\mathcal{T}(\Sigma)$ parametrizes finite area hyperbolic structures on Σ.
- Points in $\mathcal{T}(\Sigma)$: =equivalence classes of pairs (X, ϕ), of a finite area hyperbolic surface and a homomorphism $\phi: X \longrightarrow \Sigma$, up to isometry.
- Ber's constant: $L:=L(\Sigma)>0$, so that given $X \in \mathcal{T}(\Sigma)$ there is $P_{X} \in C_{P}^{0}(\Sigma)$, with length ${ }_{X}(\gamma)<L$, for each $\gamma \in P_{X}$.
- We get a cover $\{V(P)\}_{P \in C_{P}^{0}(\Sigma)}$ of $\mathcal{T}(\Sigma)$, with

$$
V(P):=\left\{X \in \mathcal{T}(\Sigma) \mid \max _{\gamma \in P}\left\{\operatorname{length}_{X}(\gamma)\right\}<L\right\} .
$$

A closer look at the quasi-isometry

- The Teichmüller space: $\mathcal{T}(\Sigma)$ parametrizes finite area hyperbolic structures on Σ.
- Points in $\mathcal{T}(\Sigma)$: =equivalence classes of pairs (X, ϕ), of a finite area hyperbolic surface and a homomorphism $\phi: X \longrightarrow \Sigma$, up to isometry.
- Ber's constant: $L:=L(\Sigma)>0$, so that given $X \in \mathcal{T}(\Sigma)$ there is $P_{X} \in C_{P}^{0}(\Sigma)$, with length ${ }_{X}(\gamma)<L$, for each $\gamma \in P_{X}$.
- We get a cover $\{V(P)\}_{P \in C_{P}^{0}(\Sigma)}$ of $\mathcal{T}(\Sigma)$, with

$$
V(P):=\left\{X \in \mathcal{T}(\Sigma) \mid \max _{\gamma \in P}\left\{\operatorname{length}_{X}(\gamma)\right\}<L\right\} .
$$

- Any map $g: C_{P}^{0}(\Sigma) \longrightarrow \mathcal{T}(\Sigma)$, with $P \longrightarrow g(P) \in V(P)$, is a quasi-isometry of $\left(C_{P}^{0}(\Sigma), d_{q t}\right)$ to $\left(\mathcal{T}(\Sigma), d_{w P}\right)$. That is,

A closer look at the quasi-isometry

- The Teichmüller space: $\mathcal{T}(\Sigma)$ parametrizes finite area hyperbolic structures on Σ.
- Points in $\mathcal{T}(\Sigma)$: =equivalence classes of pairs (X, ϕ), of a finite area hyperbolic surface and a homomorphism $\phi: X \longrightarrow \Sigma$, up to isometry.
- Ber's constant: $L:=L(\Sigma)>0$, so that given $X \in \mathcal{T}(\Sigma)$ there is $P_{X} \in C_{P}^{0}(\Sigma)$, with length ${ }_{X}(\gamma)<L$, for each $\gamma \in P_{X}$.
- We get a cover $\{V(P)\}_{P \in C_{P}^{0}(\Sigma)}$ of $\mathcal{T}(\Sigma)$, with

$$
V(P):=\left\{X \in \mathcal{T}(\Sigma) \mid \max _{\gamma \in P}\left\{\operatorname{length}_{X}(\gamma)\right\}<L\right\} .
$$

- Any map $g: C_{P}^{0}(\Sigma) \longrightarrow \mathcal{T}(\Sigma)$, with $P \longrightarrow g(P) \in V(P)$, is a quasi-isometry of $\left(C_{P}^{0}(\Sigma), d_{q t}\right)$ to $\left(\mathcal{T}(\Sigma), d_{w P}\right)$. That is,
- there are constants $A_{1}, A_{2}>0$, only depending on Σ, such that

$$
\frac{1}{A_{1}} d_{q t}\left(P_{X}, P_{Y}\right)-A_{2} \leq d_{W P}(X, Y) \leq A_{1} d_{q t}\left(P_{X}, P_{Y}\right)+A_{2}
$$

for any $X, Y \in \mathcal{T}(\Sigma)$.

Key ingredients

- To prove that the pants graph with the TQFT metric $d_{q t}$ is quasi-isometric to the Teichmüller $\mathcal{T}(\Sigma)$ with the Weil-Petersson metric $d_{w p}$:

Key ingredients

- To prove that the pants graph with the TQFT metric $d_{q t}$ is quasi-isometric to the Teichmüller $\mathcal{T}(\Sigma)$ with the Weil-Petersson metric $d_{w p}$:
(1) Use the relation of quantum and geometric intersection numbers of pants decompositions, and a result of Aougab, Taylor and Webb to relate the path metric d_{π} and the quantum metric $d_{q t}$.

Key ingredients

- To prove that the pants graph with the TQFT metric $d_{q t}$ is quasi-isometric to the Teichmüller $\mathcal{T}(\Sigma)$ with the Weil-Petersson metric $d_{w p}$:
(1) Use the relation of quantum and geometric intersection numbers of pants decompositions, and a result of Aougab, Taylor and Webb to relate the path metric d_{π} and the quantum metric $d_{q t}$.
(2) We show that there is a constant A, only depending on the topology of the surface Σ, such that

$$
\begin{equation*}
\frac{A}{3 g-3} d_{\pi}(P, Q) \leq d_{q t}(P, Q) \leq 2 d_{\pi}(P, Q) \tag{1}
\end{equation*}
$$

for any $P, Q \in C_{P}^{0}(\Sigma)$.

Key ingredients

- To prove that the pants graph with the TQFT metric $d_{q t}$ is quasi-isometric to the Teichmüller $\mathcal{T}(\Sigma)$ with the Weil-Petersson metric $d_{w p}$:
(1) Use the relation of quantum and geometric intersection numbers of pants decompositions, and a result of Aougab, Taylor and Webb to relate the path metric d_{π} and the quantum metric $d_{q t}$.
(2) We show that there is a constant A, only depending on the topology of the surface Σ, such that

$$
\begin{equation*}
\frac{A}{3 g-3} d_{\pi}(P, Q) \leq d_{q t}(P, Q) \leq 2 d_{\pi}(P, Q) \tag{1}
\end{equation*}
$$

for any $P, Q \in C_{P}^{0}(\Sigma)$.
(c) Combine Brock's theorem that $\left(C_{P}^{0}(\Sigma), d_{\pi}\right)$ is quasi-isometric to $\left(\mathcal{T}(\Sigma), d_{W P}\right)$ with (1) above.

Sample applications: Volumes of surface bundles

- The translation length of an isometry ϕ on a metric space (X, d) is

$$
L^{d}(\phi):=\inf \{d(\phi(x), x) \mid x \in X\} .
$$

Sample applications: Volumes of surface bundles

- The translation length of an isometry ϕ on a metric space (X, d) is

$$
L^{d}(\phi):=\inf \{d(\phi(x), x) \mid x \in X\} .
$$

- Mapping classes $\phi \in \operatorname{Mod}(\Sigma)$ act as isometries on $\left(C_{P}^{0}(\Sigma), d_{q t}\right)$; we can consider the translation lengths $L^{d_{q t}}(\phi)$.

Sample applications: Volumes of surface bundles

- The translation length of an isometry ϕ on a metric space (X, d) is

$$
L^{d}(\phi):=\inf \{d(\phi(x), x) \mid x \in X\} .
$$

- Mapping classes $\phi \in \operatorname{Mod}(\Sigma)$ act as isometries on $\left(C_{P}^{0}(\Sigma), d_{q t}\right)$; we can consider the translation lengths $L^{d_{q t}}(\phi)$.
- Mapping classes $\phi \in \operatorname{Mod}(\Sigma)$ act as isometries on $\left(\mathcal{T}(\Sigma), d_{\text {WP }}\right)$; we can consider the translation lengths $L^{d_{W P}}(\phi)$.

Sample applications: Volumes of surface bundles

- The translation length of an isometry ϕ on a metric space (X, d) is

$$
L^{d}(\phi):=\inf \{d(\phi(x), x) \mid x \in X\}
$$

- Mapping classes $\phi \in \operatorname{Mod}(\Sigma)$ act as isometries on $\left(C_{P}^{0}(\Sigma), d_{q t}\right)$; we can consider the translation lengths $L^{d_{q t}}(\phi)$.
- Mapping classes $\phi \in \operatorname{Mod}(\Sigma)$ act as isometries on $\left(\mathcal{T}(\Sigma), d_{\text {wP }}\right)$; we can consider the translation lengths $L^{d_{w P}}(\phi)$.
- If ϕ is a pseudo-Anosov mapping class, the mapping torus

$$
M_{\phi}:=F \times[0,1] /(x, 1) \sim(\phi(x), 0),
$$

is a hyperbolic 3-manifold that fibers over the circle.

Sample applications: Volumes of surface bundles

- The translation length of an isometry ϕ on a metric space (X, d) is

$$
L^{d}(\phi):=\inf \{d(\phi(x), x) \mid x \in X\}
$$

- Mapping classes $\phi \in \operatorname{Mod}(\Sigma)$ act as isometries on $\left(C_{P}^{0}(\Sigma), d_{q t}\right)$; we can consider the translation lengths $L^{d_{q t}}(\phi)$.
- Mapping classes $\phi \in \operatorname{Mod}(\Sigma)$ act as isometries on $\left(\mathcal{T}(\Sigma), d_{W P}\right)$; we can consider the translation lengths $L^{d_{\text {wP }}}(\phi)$.
- If ϕ is a pseudo-Anosov mapping class, the mapping torus

$$
M_{\phi}:=F \times[0,1] /(x, 1) \sim(\phi(x), 0),
$$

is a hyperbolic 3-manifold that fibers over the circle.

- Main Theorem implies that for any $\phi \in \operatorname{Mod}(\Sigma)$ the translation lengths $L^{d_{q t}}(\phi)$ and $L^{d_{w P}}(\phi)$ are within bounded ratios from each other, with bounds depending only on the topology of Σ.

Volumes of surface bundles, cont'

Corollary (D-K, '21)

There exist a positive constant N, depending only on Σ, so that for any pseudo-Anosov mapping class $\phi \in \operatorname{Mod}(\Sigma)$ we have

$$
\frac{1}{N} L^{d_{q t}}(\phi) \leq \operatorname{Vol}\left(M_{\phi}\right) \leq N L^{d_{q t}}(\phi) .
$$

Volumes of surface bundles, cont'

Corollary (D-K, '21)

There exist a positive constant N, depending only on Σ, so that for any pseudo-Anosov mapping class $\phi \in \operatorname{Mod}(\Sigma)$ we have

$$
\frac{1}{N} L^{d_{q t}}(\phi) \leq \operatorname{Vol}\left(M_{\phi}\right) \leq N L^{d_{q t}}(\phi) .
$$

Proof ingredients:

- A result of Brock (2003) states that the hyperbolic volume $\operatorname{Vol}\left(M_{\phi}\right)$ and the translation length $L^{d_{W P}}(\phi)$ are within bounded ratios from each other, with bounds depending only on Σ.

Volumes of surface bundles, cont'

Corollary (D-K, '21)

There exist a positive constant N, depending only on Σ, so that for any pseudo-Anosov mapping class $\phi \in \operatorname{Mod}(\Sigma)$ we have

$$
\frac{1}{N} L^{d_{q t}}(\phi) \leq \operatorname{Vol}\left(M_{\phi}\right) \leq N L^{d_{q t}}(\phi) .
$$

Proof ingredients:

- A result of Brock (2003) states that the hyperbolic volume $\operatorname{Vol}\left(M_{\phi}\right)$ and the translation length $L^{d_{\text {wP }}}(\phi)$ are within bounded ratios from each other, with bounds depending only on Σ.
- Combining Brock's result with Main Theorem gives that the hyperbolic volume $\operatorname{Vol}\left(M_{\phi}\right)$ and the translation length of TQFT metric $L^{d_{q t}}(\phi)$ are within bounded ratios from each other, with bounds depending only on Σ.

Volumes of surface bundles, cont'

Corollary (D-K, '21)

There exist a positive constant N, depending only on Σ, so that for any pseudo-Anosov mapping class $\phi \in \operatorname{Mod}(\Sigma)$ we have

$$
\frac{1}{N} L^{d_{q t}}(\phi) \leq \operatorname{Vol}\left(M_{\phi}\right) \leq N L^{d_{q t}}(\phi) .
$$

Proof ingredients:

- A result of Brock (2003) states that the hyperbolic volume $\operatorname{Vol}\left(M_{\phi}\right)$ and the translation length $L^{d_{\text {WP }}}(\phi)$ are within bounded ratios from each other, with bounds depending only on Σ.
- Combining Brock's result with Main Theorem gives that the hyperbolic volume $\operatorname{Vol}\left(M_{\phi}\right)$ and the translation length of TQFT metric $L^{d_{q t}}(\phi)$ are within bounded ratios from each other, with bounds depending only on Σ.
Remark. Corollary gives relation of quantum intersection number and volume mentioned earlier. (next)

Sample applications: Detecting pseudo-Anosov's

- Recall that we have $L^{\alpha_{q t}}(\phi) \leq n(P, \phi(P))$, for any pants decomposition P of Σ.

Sample applications: Detecting pseudo-Anosov's

- Recall that we have $L^{\alpha_{q t}}(\phi) \leq n(P, \phi(P))$, for any pants decomposition P of Σ. Hence, we have

Corollary

There is a constant $N>0$, only depending on the topology of Σ, so that for any pseudo-Anosov mapping class $\phi \in \operatorname{Mod}(\Sigma)$ and any $P \in C_{P}^{0}(\Sigma)$ we have

$$
n(P, \phi(P)) \geq N \operatorname{Vol}\left(M_{\phi}\right) .
$$

Sample applications: Detecting pseudo-Anosov's

- Recall that we have $L^{\alpha_{q t}}(\phi) \leq n(P, \phi(P))$, for any pants decomposition P of Σ. Hence, we have

Corollary

There is a constant $N>0$, only depending on the topology of Σ, so that for any pseudo-Anosov mapping class $\phi \in \operatorname{Mod}(\Sigma)$ and any $P \in C_{P}^{0}(\Sigma)$ we have

$$
n(P, \phi(P)) \geq N \operatorname{Vol}\left(M_{\phi}\right)
$$

- Looking at the behavior of quantum intersection numbers under iteration in $\operatorname{Mod}(\Sigma)$ we derive a characterization of PA mapping classes:

Sample applications: Detecting pseudo-Anosov's

- Recall that we have $L^{\alpha_{q t}}(\phi) \leq n(P, \phi(P))$, for any pants decomposition P of Σ. Hence, we have

Corollary

There is a constant $N>0$, only depending on the topology of Σ, so that for any pseudo-Anosov mapping class $\phi \in \operatorname{Mod}(\Sigma)$ and any $P \in C_{P}^{0}(\Sigma)$ we have

$$
n(P, \phi(P)) \geq N \operatorname{Vol}\left(M_{\phi}\right)
$$

- Looking at the behavior of quantum intersection numbers under iteration in $\operatorname{Mod}(\Sigma)$ we derive a characterization of PA mapping classes:

Corollary

A mapping class $\phi \in \operatorname{Mod}(\Sigma)$ is pseudo-Anosov if and only if for any multicurve γ, we have

$$
\lim _{k \rightarrow \infty} n\left(\phi^{k}(\gamma), P\right)=\infty
$$

for all $P \in C_{P}^{0}(\Sigma)$.

Applications con't: Norms and stretch factor

Applications con't: Norms and stretch factor

- $P=$ pants decomposition of $\Sigma, \mathcal{B}_{P}=\left\{\phi_{\mathbf{c}}\right\}_{\mathbf{c}}$ corresponding bases of $V_{r}(\Sigma)$.

Applications con't: Norms and stretch factor

- $P=$ pants decomposition of $\Sigma, \mathcal{B}_{P}=\left\{\phi_{\mathbf{c}}\right\}_{\mathbf{c}}$ corresponding bases of $V_{r}(\Sigma)$.
- Consider the I^{1} and I^{2}-norms of T_{r}^{γ}, with respect to \mathcal{B}_{P}, $(s=1,2)$

$$
\left\|T_{r}^{\gamma}\right\|_{\{\mid s, P\}}=\left(\sum_{\mathbf{c}, \mathbf{d} \in U_{r}}\left|\left\langle T_{r}^{\gamma} \phi_{\mathbf{c}}, \phi_{\mathbf{d}}\right\rangle\right|^{2}\right)^{\frac{1}{s}}
$$

Applications con't: Norms and stretch factor

- $P=$ pants decomposition of $\Sigma, \mathcal{B}_{P}=\left\{\phi_{\mathbf{c}}\right\}_{\mathbf{c}}$ corresponding bases of $V_{r}(\Sigma)$.
- Consider the I^{1} and I^{2}-norms of T_{r}^{γ}, with respect to \mathcal{B}_{P}, $(s=1,2)$

$$
\left\|\boldsymbol{T}_{r}^{\gamma}\right\|_{\{\mid s, P\}}=\left(\sum_{\mathbf{c}, \mathbf{d} \in U_{r}}\left|\left\langle T_{r}^{\gamma} \phi_{\mathbf{c}}, \phi_{\mathbf{d}}\right\rangle\right|^{2}\right)^{\frac{1}{s}} .
$$

- $\left\|T_{r}^{\gamma}\right\|_{\{/ s, P\}}$ is independent of P; write $\left\|T_{r}^{\gamma}\right\|_{I_{2}}$, and

$$
T(\gamma, P):=\limsup _{r \rightarrow \infty} \frac{\left\|T_{r}^{\gamma}\right\|_{\left\{1^{1}, P\right\}}}{\left\|T_{r}^{\gamma}\right\|_{r^{2}}} .
$$

Applications con't: Norms and stretch factor

- $P=$ pants decomposition of $\Sigma, \mathcal{B}_{P}=\left\{\phi_{\mathbf{c}}\right\}_{\mathbf{c}}$ corresponding bases of $V_{r}(\Sigma)$.
- Consider the I^{1} and I^{2}-norms of T_{r}^{γ}, with respect to \mathcal{B}_{P}, $(s=1,2)$

$$
\left\|\boldsymbol{T}_{r}^{\gamma}\right\|_{\{\mid s, P\}}=\left(\sum_{\mathbf{c}, \mathbf{d} \in U_{r}}\left|\left\langle\boldsymbol{T}_{r}^{\gamma} \phi_{\mathbf{c}}, \phi_{\mathbf{d}}\right\rangle\right|^{2}\right)^{\frac{1}{s}} .
$$

- $\left\|T_{r}^{\gamma}\right\|_{\{\mid s, P\}}$ is independent of P; write $\left\|T_{r}^{\gamma}\right\|_{R^{2}}$, and

$$
T(\gamma, P):=\underset{r \rightarrow \infty}{\limsup } \frac{\left\|T_{r}^{\gamma}\right\|_{\left\{1^{1}, P\right\}}}{\left\|T_{r}^{\gamma}\right\|_{r^{2}}} .
$$

Corollary

Let $\phi \in \operatorname{Mod}(\Sigma)$ be a pseudo-Anosov mapping class with stretch factor λ_{ϕ}. Then, for any $P \in C_{P}^{0}(\Sigma)$ and any simple closed curve γ, we have

$$
\limsup _{k \rightarrow \infty} \sqrt[k]{T\left(\phi^{k}(\gamma), P\right)} \leq \lambda_{\phi}^{\frac{3 g-3}{2}}
$$

Proof outline of Main Theorem

- Given $P \in C_{P}^{0}(\Sigma)$ and $\gamma=$ a multicurve,
- We have

$$
\frac{I(\gamma, P)}{3 g-3} \leq n(\gamma, P) \leq(I(\gamma, P)+1)^{3 g-3}-1
$$

- Upper bound follows easily from Detcherry's work. Lower bound takes work.

Proof outline of Main Theorem

- Given $P \in C_{P}^{0}(\Sigma)$ and $\gamma=$ a multicurve,
- We have

$$
\frac{I(\gamma, P)}{3 g-3} \leq n(\gamma, P) \leq(I(\gamma, P)+1)^{3 g-3}-1
$$

- Upper bound follows easily from Detcherry's work. Lower bound takes work.
- $\Gamma:=\Gamma_{p}=$ dual graph, $E=$ edges of $\Gamma, \mathbf{c}=$ admissible coloring of E. Recall asymptotic expansion

$$
T_{r}^{\gamma}\left(\phi_{\mathbf{c}}\right)=\sum_{\mathbf{k}} G_{\mathbf{k}}^{\gamma}\left(\frac{c}{r}, \frac{1}{r}\right) \phi_{\mathbf{c}+\mathbf{k}},
$$

where $G_{\mathbf{k}}^{\gamma}=G_{\mathbf{k}}^{\gamma}\left(\frac{\mathbf{c}}{r}, \frac{1}{r}\right)$ are finitely many analytic functions indexed by functions $\mathbf{k}: E \longrightarrow \mathbb{Z}$.

- Must show: $G_{\mathbf{k}}^{\gamma} \neq 0$, for at least $\frac{I(\gamma, P)}{3 g-3}$ functions \mathbf{k}.

How matrix coefficients computed?

Recall

- take $P^{\prime}=$ parallel copies of curves in P so $P \cup P^{\prime}$ gives decomposition system of Σ : Pieces are pairs of pants or annuli.

How matrix coefficients computed?

Recall

- take $P^{\prime}=$ parallel copies of curves in P so $P \cup P^{\prime}$ gives decomposition system of Σ : Pieces are pairs of pants or annuli.
- Put γ in Thurston-Dehn position with respect to the decomposition system. The portions of γ on each piece look like:

- Black : γ in Dehn-Thurston position on pieces of a decomposition system
- Red: The dual graph Γ.
- Use Masbaum-Vogel fusion rules for $S U(2)$-skein theory to compute matrix coefficients of curve operators.

Outline:

- For γ in Dehn-Thurston position set

$$
M(\gamma, P):=\max _{\alpha \in P}\{I(\gamma, \alpha)\}
$$

(2) Consider the limit of the functions G_{k}^{γ}, when $r \rightarrow \infty$, and $c_{e}=$ a for all edges $e \in E$, and $\frac{a}{r} \rightarrow \theta,(0 \leq \theta \leq 1)$. This computes $G_{k}^{Q}(\theta, 0)$.

Outline:

(For γ in Dehn-Thurston position set

$$
M(\gamma, P):=\max _{\alpha \in P}\{I(\gamma, \alpha)\}
$$

(2) Consider the limit of the functions G_{k}^{γ}, when $r \rightarrow \infty$, and $c_{e}=$ a for all edges $e \in E$, and $\frac{a}{r} \rightarrow \theta,(0 \leq \theta \leq 1)$. This computes $G_{k}^{Q}(\theta, 0)$.
(3) Define states on the endpoints of arcs of γ on pieces of decomposition system, and weights on the arcs themselves, and obtain state-sum expressions for $G_{k}^{Q}(\theta, 0)$.

Outline:

(- For γ in Dehn-Thurston position set

$$
M(\gamma, P):=\max _{\alpha \in P}\{I(\gamma, \alpha)\}
$$

(2) Consider the limit of the functions G_{k}^{γ}, when $r \rightarrow \infty$, and $c_{e}=$ a for all edges $e \in E$, and $\frac{a}{r} \rightarrow \theta,(0 \leq \theta \leq 1)$. This computes $G_{k}^{Q}(\theta, 0)$.
(3) Define states on the endpoints of arcs of γ on pieces of decomposition system, and weights on the arcs themselves, and obtain state-sum expressions for $G_{k}^{Q}(\theta, 0)$.
(9) Show that functions $G_{k}^{Q}(\theta, 0)$ are determined by certain Laurent polynomials with rational coefficients.

Outline:

(- For γ in Dehn-Thurston position set

$$
M(\gamma, P):=\max _{\alpha \in P}\{I(\gamma, \alpha)\}
$$

(2) Consider the limit of the functions G_{k}^{γ}, when $r \rightarrow \infty$, and $c_{e}=$ a for all edges $e \in E$, and $\frac{a}{r} \rightarrow \theta,(0 \leq \theta \leq 1)$. This computes $G_{k}^{Q}(\theta, 0)$.
(3) Define states on the endpoints of arcs of γ on pieces of decomposition system, and weights on the arcs themselves, and obtain state-sum expressions for $G_{k}^{Q}(\theta, 0)$.
(9) Show that functions $G_{k}^{Q}(\theta, 0)$ are determined by certain Laurent polynomials with rational coefficients.
(6) Analyze structure of these Laurent polynomials to produce $M(\gamma, P)$ non-zero functions $G_{k}^{Q}(\theta, 0)$.

Outline:

(1) For γ in Dehn-Thurston position set

$$
M(\gamma, P):=\max _{\alpha \in P}\{I(\gamma, \alpha)\}
$$

(2) Consider the limit of the functions G_{k}^{γ}, when $r \rightarrow \infty$, and $c_{e}=$ a for all edges $e \in E$, and $\frac{a}{r} \rightarrow \theta,(0 \leq \theta \leq 1)$. This computes $G_{k}^{Q}(\theta, 0)$.
(3) Define states on the endpoints of arcs of γ on pieces of decomposition system, and weights on the arcs themselves, and obtain state-sum expressions for $G_{k}^{Q}(\theta, 0)$.
(9) Show that functions $G_{k}^{Q}(\theta, 0)$ are determined by certain Laurent polynomials with rational coefficients.
(3) Analyze structure of these Laurent polynomials to produce $M(\gamma, P)$ non-zero functions $G_{k}^{Q}(\theta, 0)$.
(6) Get $M(\gamma, P)$ non-zero funtions $G_{\mathbf{k}}^{Q}\left(\frac{\mathbf{c}}{r}, \frac{1}{r}\right)$, giving that $M(P, Q) \leq n(Q, P)$.
(Since $I(Q, P) \leq(3 g-3)$. $M(Q, P)$ result follows.

More detail: Fusing at a limit

- At the limit of G_{k}^{γ}, as $r \rightarrow \infty, c_{e}=a$ for all edges $e \in E$ and $\frac{a}{r} \rightarrow \theta$, we work with "limit versions" of fusion rules.

More detail: Fusing at a limit

- At the limit of G_{k}^{γ}, as $r \rightarrow \infty, c_{e}=a$ for all edges $e \in E$ and $\frac{a}{r} \rightarrow \theta$, we work with "limit versions" of fusion rules.
- Sample of Fusion rules at the limit $(\langle\theta\rangle=\sin (\pi \theta)$.)

$$
\| \begin{array}{lll}
\hat{\mathrm{A}} & Y a+1 \\
= & \\
& \\
& \\
\end{array}
$$

Fusing at a limit: two identities

- $P=\left\{\alpha_{e} \mid e \in E\right\}$. Use fusion for $\Gamma \cup \gamma$ rules and the following two key identities that hold at the limit to calculate the limits coefficients of matrices for curve operators.
- The color on black edges is 2.
- First Identity: Sliding Lemma. For $\epsilon, \mu \in\{ \pm 1\}$, we have
- Second Identity: We have ($z=e^{i \frac{\pi \theta}{2}}, t=\#$ of black arcs)

The process in Pictures

- Patterns $\gamma \cup \Gamma$ on pieces of a decomposition system of Σ.

(1) Top. Patterns of γ on an annulus piece: Before fusion rules (left), after fusion rules (middle) and after Slidding Lemma (right).
(2) Bottom. Patterns of γ on a pair of pants piece.
(3) Apply more fusion rules and "second identity" on right side to complete the computation.

Restricted colorings

- Decomposition system $P \cup P^{\prime}=\left\{\alpha_{e}, \alpha_{e}^{\prime} \mid \boldsymbol{e} \in E\right\}$ of Σ, where $\alpha_{e}^{\prime}=$ parallel copy of α_{e}.
- $\gamma=$ multicurve in Dehn-Thurston position with respect to $P \cup P^{\prime}$.

Restricted colorings

- Decomposition system $P \cup P^{\prime}=\left\{\alpha_{e}, \alpha_{e}^{\prime} \mid e \in E\right\}$ of Σ, where $\alpha_{e}^{\prime}=$ parallel copy of α_{e}.
- $\gamma=$ multicurve in Dehn-Thurston position with respect to $P \cup P^{\prime}$.
- Pick edge $e_{0} \in E$ so that dual curve in P realizes maximum geometric intersection number $M(\gamma, P)=I\left(\gamma, \alpha_{e_{0}}\right)$.

Restricted colorings

- Decomposition system $P \cup P^{\prime}=\left\{\alpha_{e}, \alpha_{e}^{\prime} \mid e \in E\right\}$ of Σ, where $\alpha_{e}^{\prime}=$ parallel copy of α_{e}.
- $\gamma=$ multicurve in Dehn-Thurston position with respect to $P \cup P^{\prime}$.
- Pick edge $e_{0} \in E$ so that dual curve in P realizes maximum geometric intersection number $M(\gamma, P)=I\left(\gamma, \alpha_{e_{0}}\right)$.
- For integers δ, with $|\delta| \leq M(\gamma, P)$ consider coloring functions $\mathbf{k}: E \longrightarrow \mathbb{Z}$ given by

$$
\mathbf{k}_{\delta}(e)= \begin{cases}\delta & \text { if } e=e_{0} \\ l\left(\gamma, \alpha_{e}\right) & \text { if } e \neq e_{0}\end{cases}
$$

where $\alpha_{e} \in P=$ dual to the edge $e \in \Gamma$.

Restricted colorings

- Decomposition system $P \cup P^{\prime}=\left\{\alpha_{e}, \alpha_{e}^{\prime} \mid e \in E\right\}$ of Σ, where $\alpha_{e}^{\prime}=$ parallel copy of α_{e}.
- $\gamma=$ multicurve in Dehn-Thurston position with respect to $P \cup P^{\prime}$.
- Pick edge $e_{0} \in E$ so that dual curve in P realizes maximum geometric intersection number $M(\gamma, P)=I\left(\gamma, \alpha_{e_{0}}\right)$.
- For integers δ, with $|\delta| \leq M(\gamma, P)$ consider coloring functions $\mathbf{k}: E \longrightarrow \mathbb{Z}$ given by

$$
\mathbf{k}_{\delta}(e)= \begin{cases}\delta & \text { if } e=e_{0} \\ l\left(\gamma, \alpha_{e}\right) & \text { if } e \neq e_{0}\end{cases}
$$

where $\alpha_{e} \in P=$ dual to the edge $e \in \Gamma$.

- Non-vanishing coefficient functions are obtained by showing:

Theorem

For each $|\delta| \leq M(\gamma, P)$ with $\delta \equiv M(\gamma, P)(\bmod 2)$, we have $G_{\mathbf{k}_{\delta}}^{\gamma} \neq 0$.

How is done

(1) Use state-sum expressions for $G_{\mathbf{k}_{\delta}}^{\gamma}$ to show that there is a Laurent polynomial $P_{\delta}(z) \in \mathbb{Q}\left[z^{ \pm 1}\right]$ so that

$$
G_{\mathbf{k}_{\delta}}^{\gamma}=A(\theta) P_{\delta}\left(e^{i \frac{\pi \theta}{2}}\right)
$$

for some $A(\theta) \neq 0$ and $z=e^{i \frac{\pi \theta}{2}}$.

How is done

(1) Use state-sum expressions for $G_{\mathbf{k}_{\delta}}^{\gamma}$ to show that there is a Laurent polynomial $P_{\delta}(z) \in \mathbb{Q}\left[z^{ \pm 1}\right]$ so that

$$
G_{\mathbf{k}_{\delta}}^{\gamma}=A(\theta) P_{\delta}\left(e^{i \frac{\pi \theta}{2}}\right)
$$

for some $A(\theta) \neq 0$ and $z=e^{i \frac{\pi \theta}{2}}$.
(2) Show that for each $|\delta| \leq M(\gamma, P)$ with $\delta \equiv M(\gamma, P)(\bmod 2)$, we have $P_{\delta}(z) \neq 0$ in $\mathbb{Q}\left[z^{ \pm 1}\right]$.
(3) Suppose that $G_{\mathbf{k}_{\delta}}^{\gamma}=P_{\delta}\left(e^{i \frac{\pi \theta}{2}}\right)=0$.
(9) We can choose θ so that $e^{i \frac{\pi \theta}{2}}$ is a transcendental number.
(3) Since $P_{\delta}(z) \neq 0$ is a polynomial with rational coefficients and $e^{i \frac{\pi \theta}{2}}$ is a root, we conclude that $e^{i \frac{\pi \theta}{2}}$ is an algebraic number (contradiction).

How is done

(1) Use state-sum expressions for $G_{\mathbf{k}_{\delta}}^{\gamma}$ to show that there is a Laurent polynomial $P_{\delta}(z) \in \mathbb{Q}\left[z^{ \pm 1}\right]$ so that

$$
G_{\mathbf{k}_{\delta}}^{\gamma}=A(\theta) P_{\delta}\left(e^{i \frac{\pi \theta}{2}}\right)
$$

for some $A(\theta) \neq 0$ and $z=e^{i \frac{\pi \theta}{2}}$.
(2) Show that for each $|\delta| \leq M(\gamma, P)$ with $\delta \equiv M(\gamma, P)(\bmod 2)$, we have $P_{\delta}(z) \neq 0$ in $\mathbb{Q}\left[z^{ \pm 1}\right]$.
(3) Suppose that $G_{\mathbf{k}_{\delta}}^{\gamma}=P_{\delta}\left(e^{i \frac{\pi \theta}{2}}\right)=0$.
(9) We can choose θ so that $e^{i \frac{\pi \theta}{2}}$ is a transcendental number.
(3) Since $P_{\delta}(z) \neq 0$ is a polynomial with rational coefficients and $e^{i \frac{\pi \theta}{2}}$ is a root, we conclude that $e^{i \frac{\pi \theta}{2}}$ is an algebraic number (contradiction).

Remark.

- In Goldman's picture: P induces torus-action on SU(2)-moduli space.
- Trace functions f_{γ} admit a Fourier decomposition w.r.t. to this torus action.
- By Detcherry's work, $G_{k}^{Q}(\theta, 0)$ compute these Fourier coefficients.

