
Polyhedral decompositions, essential surfaces and
colored Jones knot polynomials

joint with D. Futer and J. Purcell

November 4, 2011

David Futer, Effie Kalfagianni, and Jessica S. Purcell () November 4, 2011 1 / 40



Given: Diagram of a knot or link

= 4–valent graph with over/under
crossing info at each vertex.

Quantum Topology
Knot invariants esp. colored
Jones polynomials

Geometric topology
Incompressible surfaces in
knot complements

Geometric structures and data
esp. hyperbolic geometry and
volume

Long term goal: Develop a setting
to study both sides and relate
them.
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Outline

Setting:
Given knot diagram construct state graphs (ribbon graphs)..
Build state surfaces spanned by the knot...
Create polyhedral decomposition of surface complements...
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Build state surfaces spanned by the knot...
Create polyhedral decomposition of surface complements...
Ribbon graphs to Jones polynomials...

Applications:
Give diagrammatic conditions for state surface incompressibility.
Understand JSJ-decompositions of surface complements... emphasis on
“Guts” and volume estimates...

Colored Jones polynomial (CPJ) relations:
Boundary slopes relate to degrees of CJP.
Coefficients measure how far certain surfaces are from being fibers
Guts → relate CJP and volume of hyperbolic knots.
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Graphs

Two choices for each crossing, A or B resolution.

Choice of A or B resolutions for all crossings: state σ.

Result: Planar link without crossings. Components: state circles.

Form a graph by adding edges at resolved crossings. Call this graph Hσ.
( Note: n crossings → 2n state graphs)

David Futer, Effie Kalfagianni, and Jessica S. Purcell () November 4, 2011 4 / 40



Example states

Link diagram All A state All B state

Above: HA and HB .
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Example states

Link diagram All A state All B state

Above: HA and HB .

The colored Jones polynomials of the knot can be calculated from HA or
HB : spanning graph expansion arising from the Bollobas-Riordan ribbon
graph polynomial (Dasbach-F-K-Lin-Stoltzfus , 2006).
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State surface

Using graph Hσ and link diagram, form the state surface Sσ.

Each state circle bounds a disk in Sσ (nested disks drawn on top).

At each edge (for each crossing) attach twisted band.

A–resolution

B–resolution
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Example state surfaces

Fig-8 knot SA SB Seifert surface

For alternating knots: SA and SB are checkerboard surfaces.
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Example state surfaces

Fig-8 knot SA SB Seifert surface

For alternating knots: SA and SB are checkerboard surfaces.

For alternating knots SA and SB are essential: incompressible,
∂-incompressible (Menasco-Thistlethwaite, Lackenby)
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When are state surfaces incompressible?

Not always: If HA has edge with both endpoints on a single state circle, then
we form boundary compression disk:

...

...

That’s the only thing that can go wrong.

Theorem
(Ozawa, Futer-K-Purcell)The following are equivalent:

HA has no edge with both endpoints on a single state circle

SA is incompressible and boundary incompressible.

Ozawa proof is different; uses Murasugi sum arguments.— We see more
about SA.
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For example: When is SA a fiber in the complement of
K = ∂SA?

Recall the graph HA.

Collapse each state circle of HA to a vertex to obtain the state graph GA.

Remove redundant edges. Result is a graph G′

A.

Theorem
(FKP) The complement S3

r K fibers over S1 with fiber SA if and only if the
reduced graph G′

A is a tree.

Exercise: Derive Stalling’s classical result: Positive closed braids are fibered.
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Geometry and topology of the state surface
complement

Take JSJ-decomposition of S3\\SA. There are no essential tori. Cut along
essential annuli into components:

1 Solid tori,
2 I–bundles over surfaces,
3 Simple pieces (admitting complete hyperbolic metric).

The union of all the hyperbolic pieces is the guts: Guts (S3\\SA).

Guts (S3\\SA) = ∅ ⇔ S3\\SA is a union of I-bundles and solid tori (i.e. a
book of I-bundles).

χ(Guts (S3\\SA)) measures how far SA is from being “fiber-like” ( a
fibroid).
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Notation: Set χ−(Y ) = max{−χ(Yi), 0}, for Y =connected cell complex. For
non-connected Y sum χ−’s over connected components.

Theorem
Let D(K ) be a diagram such that HA has no edge with both endpoints on a
single state circle, and let SA be the essential spanning surface determined by
this diagram. Then

χ−(Guts (S3\\SA)) = χ−(G′

A) − ||Ec ||,

where ||Ec || ≥ 0 is a diagrammatic quantity.

In several instances ||Ec || = 0. Examples:
1 Alternating links,
2 Montesinos Links,
3 Closures of positive braids where each exponent is at least 3.
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Guts relates to volume:

Theorem (Agol–Storm–W. Thurston 2005)
For K hyperbolic

Vol (S3
r K ) ≥ v8 χ−(Guts (S3\\SA)),

here v8 ≈ 3.66... is the volume of a regular ideal octahedron.

Corollary
Let D = D(K ) be a prime A–adequate diagram of a hyperbolic link K . Then

Vol (S3
r K ) ≥ v8 (χ−(G′

A) − ||Ec ||).

Application example: Volume and twist number

Theorem (Lackenby, 2005)
Let D be a reduced alternating diagram of a hyperbolic link K . Then

v8

2
(t(D) − 1) ≤ Vol (S3

r K ) < 10v3 (t(D) − 1),

where v3 = 1.0149... is the volume of a regular ideal tetrahedron.
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We extended the list of manifolds for which we can compute explicitly the
Euler characteristic of the guts and can be used to derive results analogous
Lackenby’s. Samples:

Theorem
Let D(K ) be a diagram of a hyperbolic link K , obtained as the closure of a
positive braid with at least three crossings in each twist region. Then

2v8

3
t(D) ≤ Vol (S3

r K ) < 10v3(t(D) − 1).

In this case ||Ec || = 0. Similar results for: Montesinos links, Conway sums of
alternating tangles...
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Colored Jones polynomials

For a knot K we write its n-colored Jones polynomial:

JK ,n(t) := αntmn + βntn−1 + · · · + β′

ntm+1 + α′

ntkn .

Some properties:

JK ,n(t) is determined by the Jones polynomials of certain cables of K .

The sequence {JK ,n(t)}n is q-holonomic: for every knot the CJP’s satisfy
linear recursion relations (Garoufalidis-Le , 2004). Then for every K

1 Degrees mn, kn are quadratic (quasi)-polynomials in n

2 Coefficients αn, βn . . . satisfy recursive relations in n.
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JK ,n(t) := αntmn + βntn−1 + · · · + β′

ntm+1 + α′

ntkn .

Some properties:

JK ,n(t) is determined by the Jones polynomials of certain cables of K .

The sequence {JK ,n(t)}n is q-holonomic: for every knot the CJP’s satisfy
linear recursion relations (Garoufalidis-Le , 2004). Then for every K

1 Degrees mn, kn are quadratic (quasi)-polynomials in n

2 Coefficients αn, βn . . . satisfy recursive relations in n.

Properties manifest themselves in strong forms for knots with state
graphs that have no edge with both endpoints on a single state circle!
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Adequate links

Lickorish–Thistlethwaite 1987: Introduced A–adequate links (B–adequate
links) in the context of Jones polynomials.

Definition
A link is A–adequate if has a diagram with its graph HA has no edge with both
endpoints on the same state circle.

A or B-adequate: all alternating knots, Montesinos knots, positive braids,
negative braids, “most” arborescent knots, blackboard cables of adequate
knots, “most” knots on tables up to 15 crossings.
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Jones polynomials and adequate links

Properties of interest:

1 The Jones polynomial detects the unknot within the class of A-adequate
knots.

2 coefficients |α′

n| = 1 are independent of n: α′

K := |αn|.
3 min deg JK ,n(t) quadratic polynomial in n; can be calculated explicitly.
4 (Dasbach-Lin) Coefficients |β′

n| are independent of n:
β′

K := |βn| = 1 − χ(G′

A).
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Properties of interest:

1 The Jones polynomial detects the unknot within the class of A-adequate
knots.

2 coefficients |α′

n| = 1 are independent of n: α′

K := |αn|.
3 min deg JK ,n(t) quadratic polynomial in n; can be calculated explicitly.
4 (Dasbach-Lin) Coefficients |β′

n| are independent of n:
β′

K := |βn| = 1 − χ(G′

A).

We have analogous properties for B-adequate.
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Restate Theorems proved earlier:

1 Diagram is A–adequate ⇔ SA incompressible and boundary
incompressible.

2 SA=state surface corresponding to A–adequate diagram of K .
The complement S3 r K fibers over S1 with fiber SA ⇔ β′

K = 0
3 β′

K = 1 ⇔ SA is a fibroid (but not a fiber!) with
χ(S3\\SA) = χ(GA) − χ(G′

A).
4 In general, β′

K measures distance of SA from being fiber.

β′

K − 1 = χ−(Guts (S3\\SA)) + ||Ec ||.

5 Volume estimates of hyperbolic knots in terms of coefficients of CJP.

limn→∞

min degree of Jn
K(t)

n2 = slope of SA

6 Growth rate of degree of CJP =boundary slope of SA

7 Relations of Jones polynomial and volume: old and new
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Polyhedral decomposition prototype

Menasco (1984): Expand balloons above and below 2-sphere of alternating
projection, obtain polyhedral decomposition of link complement (two 3-cells).
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Polyhedral decomposition prototype

Menasco (1984): Expand balloons above and below 2-sphere of alternating
projection, obtain polyhedral decomposition of link complement (two 3-cells).

For alternating knots this gives polyhedral decomposition of checkerboard
surface complement.—- This is the picture we seek to generalize to all knots.
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Polyhedral decomposition of surface complement

General case:

SA (or SB) hangs below plane of projection. Need more balloons.
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Polyhedral decomposition of complement of SA

3–cells:

One “upper” 3–cell, on top of plane of projection.

One “lower” 3–cell for each nontrivial component of complement of state
circles in A–resolution.

Two nontrivial components
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Polyhedral decomposition of complement of SA

3–cells:

One “upper” 3–cell, on top of plane of projection.

One “lower” 3–cell for each nontrivial component of complement of state
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Two nontrivial components
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Polyhedral decomposition of complement of SA,
continued

“Faces”:

Portions of 3–cell meeting SA. Shade these.
Disks lying slightly below plane of projection, with boundary on SA.

One disk for each region of graph HA.
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Polyhedral decomposition of complement of SA,
continued

“Faces”:

Portions of 3–cell meeting SA. Shade these.
Disks lying slightly below plane of projection, with boundary on SA.

One disk for each region of graph HA.
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Polyhedral decomposition of complement of SA,
continued

Ideal edges:

Run from undercrossing to undercrossing, adjacent to region of HA.

Ideal vertices:

On the link. Portions of the link visible from inside the 3–cell.
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Combinatorics of lower polyhedra:

Ideal edges lie below plane of projection, so cut off view of link from below
except at an undercrossing.

Result: Polyhedron is identical to checkerboard polyhedron of alternating
sublink.
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Combinatorics of upper polyhedron:

“ Faces”: Shaded “faces” contain innermost disks, White faces
correspond to regions of HA.

Ideal edges start and end at undercrossings, stay adjacent to single
region of HA.

Ideal vertices are connected components of overcrossings = diagram
components in usual diagram of link (with breaks at undercrossings).
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Combinatorics of upper polyhedron, continued

Sketch ideal edges onto usual projection of link diagram, or onto HA.
Edges bound white disks, shaded “faces”.
Shaded faces: Innermost disks, along with tentacles adjacent to ideal
edges.
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Combinatorics of upper polyhedron, continued

Sketch ideal edges onto usual projection of link diagram, or onto HA.
Edges bound white disks, shaded “faces”.
Shaded “faces”: Innermost disks, along with tentacles adjacent to ideal
edges.
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Combinatorics of upper polyhedron, continued

Sketch ideal edges onto usual projection of link diagram, or onto HA.
Edges bound white disks, shaded faces.
Shaded faces: Innermost disks, along with tentacles adjacent to ideal
edges.

e

e e e

e

e e e

0

1

3

2

2

3

1
0

David Futer, Effie Kalfagianni, and Jessica S. Purcell () November 4, 2011 30 / 40



One additional issue

Lower polyhedra may not give prime alternating links.

Example:

See bigon in polyhedral decomposition.

Fix: Modify polyhedra — surger along bigon.

Splits 3–cell into two.
Splits white disk into two.
In upper polyhedron: Connects two shaded “faces” along arc.
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Example: Lower polyhedron splits in two
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Example: Upper polyhedron

Generic form of Upper polyhedron
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Summary: Ideal polyhedral decomposition

Result:
The above procedure gives an ideal polyhedral decomposition of S3\\SA if
“faces” are simply connected. This happens when HA has no edge with both
endpoints on a single state circle!
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The above procedure gives an ideal polyhedral decomposition of S3\\SA if
“faces” are simply connected. This happens when HA has no edge with both
endpoints on a single state circle!

Properties of resulting decomposition:

All faces are simply connected.

Checkerboard colored.

Ideal vertices are 4–valent.

Combinatorics determined by graph HA.
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Summary: Ideal polyhedral decomposition

Result:
The above procedure gives an ideal polyhedral decomposition of S3\\SA if
“faces” are simply connected. This happens when HA has no edge with both
endpoints on a single state circle!

Properties of resulting decomposition:

All faces are simply connected.

Checkerboard colored.

Ideal vertices are 4–valent.

Combinatorics determined by graph HA.

Use these polyhedra and normal surface theory to study the topology of
S3\\SA.
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Smallest complexity normal surfaces: Normal bigons

A normal bigon is a disk in normal form whose boundary consists of two arcs:
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Smallest complexity normal surfaces: Normal bigons

A normal bigon is a disk in normal form whose boundary consists of two arcs:
1 An arc on SA and
2 An arc on a white face.

Proposition (FKP)
Under the above polyhedral decomposition, if the graph HA has no edge with
both endpoints on a single state circle, then there are no normal bigons in the
polyhedra.
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Smallest complexity normal surfaces: Normal bigons

A normal bigon is a disk in normal form whose boundary consists of two arcs:
1 An arc on SA and
2 An arc on a white face.

Proposition (FKP)
Under the above polyhedral decomposition, if the graph HA has no edge with
both endpoints on a single state circle, then there are no normal bigons in the
polyhedra.

Example Non-example
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Application: A-adequate ⇒ SA is essential

Suppose HA has no such edge but is compressible or ∂-compressible: Put
compressing disk, boundary compressing disk into normal form.
A compressing disk D for SA would meet white faces of polyhedra in arcs.
Outermost arc on D forms a normal bigon. Contradiction.

∂D ⊂ SA

Normality implies boundary arc of boundary compressing disk E lies in a
single polyhedron. Outermost intersection of E with white face cuts off a disk
E ′ which cannot be a normal bigon, so contains boundary arc. But then
E r E ′ is a disk meeting white faces, obtain normal bigon. Contradiction.
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A closer look at the topology of S3\\SA

Alexander duality: χ(S3\\SA) = χ(SA) = χ(HA)
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A closer look at the topology of S3\\SA

Alexander duality: χ(S3\\SA) = χ(SA) = χ(HA)

χ(Guts (SA)) + χ(I − bundle) = χ(SA)

Use polyhedral decomposition of S3\\SA to find the characteristic
I–bundles with negative χ.

Relate these I–bundles to combinatorial properties of state graph HA;
they relate to 2-edge loops of HA.

What is the difference ||Ec || = |β′| − |χ(Guts (SA))|? What obstructs to
equality in general?
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Example: I–bundles

A twist region is a non-empty string of bigons arranged end to end.
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Example: I–bundles

A twist region is a non-empty string of bigons arranged end to end.

A

SA

S

A

A

S

S

Definition
An essential product disk (EPD) is a normal disk with boundary consisting of
two on SA connecting two ideal vertices (we view these as arcs on parabolic
locus=knot).

David Futer, Effie Kalfagianni, and Jessica S. Purcell () November 4, 2011 38 / 40



Example: I–bundles

A twist region is a non-empty string of bigons arranged end to end.

A

SA

S

A

A

S

S

Definition
An essential product disk (EPD) is a normal disk with boundary consisting of
two on SA connecting two ideal vertices (we view these as arcs on parabolic
locus=knot).

twist regions with with more than one crossings give EPDs.

David Futer, Effie Kalfagianni, and Jessica S. Purcell () November 4, 2011 38 / 40



Example: I–bundles

A twist region is a non-empty string of bigons arranged end to end.

A

SA

S

A

A

S

S

Definition
An essential product disk (EPD) is a normal disk with boundary consisting of
two on SA connecting two ideal vertices (we view these as arcs on parabolic
locus=knot).

twist regions with with more than one crossings give EPDs.
An EPD indicates an I–bundle.

David Futer, Effie Kalfagianni, and Jessica S. Purcell () November 4, 2011 38 / 40



Example: I–bundles

A twist region is a non-empty string of bigons arranged end to end.

A

SA

S

A

A

S

S

Definition
An essential product disk (EPD) is a normal disk with boundary consisting of
two on SA connecting two ideal vertices (we view these as arcs on parabolic
locus=knot).

twist regions with with more than one crossings give EPDs.
An EPD indicates an I–bundle.
(Lackenby) These are the only EPDs in (reduced) alternating links.
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EPDs span I–bundles

S

S

A “non-twist region” EPD
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EPDs span I–bundles

S

S

A “non-twist region” EPD

Theorem (FKP)

Let B be an I–bundle component of the JSJ decomposition of S3\\SA, with
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A “non-twist region” EPD

Theorem (FKP)

Let B be an I–bundle component of the JSJ decomposition of S3\\SA, with
χ(B) < 0. Then B is spanned by EPDs, each embedded in a single
polyhedron of the decomposition.

Goal: search for EPDs in polyhedra.

Lower polyhedra: Correspond to alternating links.
Lackenby result ⇒ EPDs occur only at twists.
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EPDs and “Upper” Polyhedron

In general, an EPD MUST run over a 2–edge loop in state graph HA. The loop
either:

1 Corresponds to two crossings of the same twist region of a lower
polyhedron, or
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EPDs and “Upper” Polyhedron

In general, an EPD MUST run over a 2–edge loop in state graph HA. The loop
either:

1 Corresponds to two crossings of the same twist region of a lower
polyhedron, or

2 Does not.
Complex EPD. It may bound “non-trivial” parts of HA on both sides.

The correction term ||Ec || discussed earlier “counts” complex EPDS (In the
“upper” polyhedron that do not prabolically compress (“simplify”) to EPDs in
“lower” polyhedra.)
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