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The Setting:

Question: Suppose that changing a single crossing C of a knot produces the
“same” knot:

How does C look like?

Can we characterize such crossing changes?

Do there exist such crossing changes besides the “obvious” ones?

Goal of the talk:

Ask the question “correctly” (precisely)
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Definitions:

Let K be an oriented knot in S3 and C be a crossing of sign ǫ, where ǫ = 1 or
−1 according to whether C is a positive (left picture) or negative (right picture)
crossing.

A crossing disc of K corresponding to C is an embedded disc D ⊂ S3

such that K intersects int(D) twice, once for each branch of C, with zero
algebraic intersection number.
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A non-nugatory crossing on a knot K is called cosmetic if the oriented
knot K ′ obtained from K by changing C is isotopic to K ; that is, there
exists an orientation-preserving diffeomorphism f : S3 −→ S3 with
f (K ) = K ′.

Cosmetic crossing question. Are there knots that admit cosmetic
crossing changes?
In other words, is every crossing change that preserves the oriented
isotopy class of a knot nugatory?
Remarks:
Question is stated as Problem 1.58 of Kirby’s Problem list; attributed to
Xiao-Song Lin.
There are examples of K , K ′ that differ by a single crossing and there is
an orientation reversing f : S3 −→ S3 with f (K ) = K ′. E. g.
K = P(3, 1,−3) and K ′ = P(3,−1,−3).
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Knots without cosmetic crossings:

Unknot: Scharlemann-Thompson (CMH, ’87)— by work of Gabai.

2-bridge knots: I.Torisu (TAIA, ’97)— Montesinos trick, Cyclic Surgery
Theorem.

Torisu also showed that the question reduces to that for prime knots

Important: 2-fold branch covers are Lens spaces.

Fibered Knots: K.– (Crelle, ’11)—Sutured manifold techniques, results on
commutator length of powers of Dehn twists in surface mapping class
groups.

Important: Fibrations of knot complements are unique!

More recently; Genus one knots: w/ Balm, Friedl and Powell—- Abelian
invariants.

Next: More on the genus one case.
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Cosmetic crossings and genus

Let K be an oriented knot and L = ∂D a crossing circle supporting a crossing
C and K ′ obtained from K by changing C. Since the linking number of L and
K is zero, K bounds a Seifert surface in the complement of L. Let S be a
Seifert surface that is of minimal genus in the complement of L. After an
isotopy we can arrange so that S ∩ D is a single arc α .

S

L

D
α

K

The surface S gives rise to Seifert surfaces S and S′ of K and K ′.

Proposition. Suppose C is cosmetic. Then S and S′ are Seifert surfaces of
minimal genus for K and K ′, respectively.

E. Kalfagianni () January 2012 6 / 13



Notation. For a link J in S3 let η(J) denote a regular neighborhood of J in S3

and MJ = S3 r η(J).

Proof of Proposition. Consider the surface S properly embedded in MK∪L so
that it is disjoint from ∂η(L) ⊂ ∂M. Since C is cosmetic MK∪L is irreducible.
Since S has minimum genus, the foliation machinery of Gabai applies. In
particular, S is taut in the Thurston norm. The manifolds MK and MK ′ are
obtained by Dehn filling of MK∪L along ∂η(L). By a deep result of Gabai S can
fail to remain taut in the Thurston norm (i.e. genus minimizing) in at most one
of MK and MK ′ (JDG, ’87). But MK and MK ′ are homeomorphic (by an
orientation-preserving homeomorphism). Thus S remains taut in both of MK

and MK ′ . This implies that S and S′ are Seifert surfaces of minimal genus for
K and K ′, respectively. Q.E.D.
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Conclusion for genus one knots

Cosmetic crossing changes are realized by twisting along an essential arc
α ⊂ S on a genus one surface S; twisting produces S′.

a1 a2

α

Since the genus of S is one, α is non-separating!

Pick s.c.c. a1, a2 on S that give symplectic bases for H1(S) and H1(S′) and a1

intersects α exactly once.
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Abelian obstructions to CC.

Theorem (Balm-K.-Friedl-Powell)
Given an oriented genus one knot K let ∆K (t) denote the Alexander
polynomial of K and let YK denote the double cover of S3 branching over K .
Suppose that K admits a cosmetic crossing. Then

1 K is algebraically slice.
In particular, ∆K (t) .

= f (t)f (t−1) for some linear polynomial f (t) and
det(K ) = |∆K (−1)| = (f (−1))

2; a perfect square.

2 The homology group H1(YK ) is a finite cyclic group.

3 K admits Seifert matrices

V =

(

a b
c 0

)

and V′ =

(

a + ǫ b
c 0

)

where a, b, c ∈ Z and ǫ = ±1.
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Knots with unique surfaces

For knots that admit unique (up to isotopy) minimal genus Seifert surfaces we
have the following stronger result.

Theorem. Let K be an oriented genus one knot with a unique minimal genus
Seifert surface, which admits a cosmetic crossing. Then ∆K (t) .

= 1.

Thus genus one knots with unique Seifert surfaces admit NO cosmetic
crossing changes. Whitehead doubles have unique genus one surfaces –H.
Lyons (Topology ’74), W. Whitten ((Topology ’73).

Corollary. The twisted Whitehead doubles of any knot admit no cosmetic
crossing changes.
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Low crossing knots

KnotInfo gives the 23 knots of genus one with at most 12 crossings, with the
values of their determinants.

K det(K ) K det(K ) K det(K )
31 3 92 15 11a362 39
41 5 95 23 11a363 35
52 7 935 27 11n139 9
61 9 946 9 11n141 21
72 11 101 17 12a803 21
74 15 103 25 12a1287 37
81 13 11a247 19 12a1166 33
83 17 11a343 31 - -

For all but 61, 946, 103 and 11n139 the determinant is NOT a perfect
square. The determinant criterion works for all but four examples.
61 and 103 are 2-bridge knots— no cosmetic crossings (Torisu)
K = 946 is isotopic to the pretzel knot P(3, 3,−3). The first homology
group of the 2-fold branched cover is not cyclic; we have
H1(YK ) ∼= Z3 ⊕ Z3. Thus no cosmetic crossings.
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Low crossing knots Cont’

The knot K = 11n139 is isotopic to the pretzel knot P(−5, 3,−3). There is
a genus one surface for which a Seifert matrix is

V =

(

−1 2
1 0

)

,

Using this Seifert matrix we calculate H1(YK ) ∼= Z9 (cyclic!)— 2-fold cover
fails.

Turn to S-equivalence of matrices: If there are cosmetic crossing
changes then V is (integrally) S-equivalent to to

(

0 2
1 0

)

or to
(

−2 2
1 0

)

.

Since | det(V )| = 2 is prime, by a result of H. Trotter (Inventiones ’73), V
will be congruent to one of these two matrices. Check Impossible!

Corollary. Let K be a genus one knot that has a diagram with at most 12
crossings. Then K admits no cosmetic crossings.

E. Kalfagianni () January 2012 12 / 13



Some Questions:

If K is an algebraically slice knot of genus one then every genus one surface
contains exactly two metabolizers: s.c.c. with self linking number zero.

1 Do slicing obstructions of the metabolizer curves (such us
Casson-Gordon invariants, ρ-invariants of Cochran-Harvey-Leidy )
provide further obstructions to cosmetic crossings of K ? Can they be
used to show

If K admits cosmetic crossing changes then ∆K (t) = 1? (in progress, w/
M. Powell).

2 What about the case ∆K (t) = 1?
3 More invariants that obstruct to cosmetic crossing changes?
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