Geometric structures of 3-manifolds and quantum invariants

Effie Kalfagianni

Michigan State University and IAS
December 11, 2019

Settings and talk theme

3-manifolds: $M=$ compact, orientable, with empty or tori boundary. Links: Smooth embedding $K: \amalg S^{1} \rightarrow M$.
Link complements: $\overline{M \backslash n(K)}$; toroidal boundary

Combinatorial presentations

- knot diagrams, triangulations

3-manifold topology/geometry

- Geometric structures on M and geometric invariants (e.g. hyperbolic volume)

Physics originated invariants

- Quantum invariants of knots/3-manifolds

Warm up: 2-d Model Geometries:

For this talk, an n-dimensional model geometry is a simply connected n-manifold with a "homogeneous" Riemannian metric.
In dimension 2, there are exactly three model geometries, up to scaling:

Spherical

$$
\text { curvature }=+1
$$

$\operatorname{Area}(T)=(\alpha+\beta+\gamma)-\pi$

Eucledian

curvature $=0$
$\alpha+\beta+\gamma=\pi$

Hyperbolic

curvature $=-1$
$\operatorname{Area}(T)=\pi-(\alpha+\beta+\gamma)$

Geometrization (a.k.a. Uniformization) in 2-d:

Every (closed, orientable) surface can be written as $S=X / G$, where X is a model geometry and G is a discrete group of isometries.

$$
X=\mathbf{S}^{2}
$$

$$
X=\mathbb{E}^{2}
$$

$$
X=\mathbb{H}^{2}
$$

- Curvature: $k=1,0,-1$
- Geometry vs topology: $k \cdot \operatorname{Area}(S)=2 \pi \chi(S)$,

Geometrization in 3-d:

In dimension 3, there are eight model geometries:

$$
X=\mathbf{S}^{3} \mathbb{E}^{3} \quad \mathbb{H}^{3}, \mathbf{S}^{2} \times \mathbb{R}, \quad \mathbb{H}^{2} \times \mathbb{R}, \quad \text { Sol, } \quad \text { Nil, } \quad \widetilde{S L_{2}(\mathbb{R})}
$$

Recall $M=$ compact, oriented, $\partial M=$ empty or tori

Theorem (Thurston 1980 + PereIman 2003)

For every 3-manifold M, there is a canonical way to cut M along spheres and tori into pieces M_{1}, \ldots, M_{n}, such that each piece is $M_{i}=X_{i} / G_{i}$, where G_{i} is a discrete group of isometries of the model geometry X_{i}.

- Canonical : "Unique" collection of spheres and tori.
- Poincare conjecture: \mathbf{S}^{3} is the only compact mode.
- Hyperbolic 3-manifolds form a rich and very interesting class.
- Cutting along tori, manifolds with toroidal boundary will naturally arise. Knot complements fit in this class.

Knots complements; nice 3-manifolds with boundary:

Given K remove an open tube around K to obtain the Knot complement: Notation. $M_{K}=S^{3} \backslash n(K)$.

Knot complements can be visualized! (Picture credit: J. Cantarella, UGA)

Geometric decomposition picture for this talk:

Theorem (Knesser, Milnor 60's, Jaco-Shalen, Johanson 1970, Thurston 1980 + Perelman 2003)

$M=o r i e n t e d$, compact, with empty or toroidal boundary.
(1) There is a unique collection of 2-spheres that decompose M

$$
M=M_{1} \# M_{2} \# \ldots \# M_{p} \#\left(\# S^{2} \times S^{1}\right)^{k}
$$

where M_{1}, \ldots, M_{p} are compact orientable irreducible 3-manifolds.
(2) For $M=$ irreducible, there is a unique collection of disjointly embedded essential tori \mathcal{T} such that all the connected components of the manifold obtained by cutting M along \mathcal{T}, are either Seifert fibered manifolds or hyperbolic.

- Seifert fibered manifolds: For this talk, think of it as

$$
S^{1} \times \text { surface with boundary }+ \text { union of solid tori. }
$$

Complete topological classification [Seifert, 60']

- Hyperbolic: Interior admits complete, hyperbolic metric of finite volume.

Thee types of knots:

Satellite Knots: Complement contains embedded "essential" tori; There is a canonical (finite) collection of such tori.

Torus knots: Knot embeds on standard torus in T in S^{3} and is determined by its class in $H_{1}(T)$. Complement is SFM.

Hyperbolic knots: Rest of them.

Rigidity for hyperbolic 3-manifolds:

Theorem (Mostow, Prasad 1973)

Suppose M is compact, oriented, and ∂M is a possibly empty union of tori. If M is hyperbolic (that is: $M \backslash \partial M=\mathbb{H}^{3} / G$), then G is unique up to conjugation by hyperbolic isometries. In other words, a hyperbolic metric on M is essentially unique.
M =hyperbolic 3-manifold:

- By rigidity, every geometric measurement of M is a topological invariant
- Example: Volume of hyperbolic manifolds (important for this talk).
- In practice M is represented by combinatorial data such as, a triangulation, or a knot diagram (in case of knot complements in S^{3}).

Question: How do we "see" geometry in the combinatorial descriptions of M ? Can we calculate/estimate geometric invariants from combinatorial ones?

Gromov Norm/Volume highlights:

- Recall M uniquely decomposes along spheres and tori into disjoint unions of Seifert fibered spaces and hyperbolic pieces $M=S \cup H$,
- Gromov norm of M: (Gromov, Thurston, 80's)

$$
v_{\text {tet }}\|M\|=\operatorname{Vol}(H), \quad \text { where }
$$

- $\operatorname{Vol}(H)=$ sum of the hyperbolic volumes of components of H,
- $v_{\text {tet }}=$ volume of the regular hyperbolic tetrahedron.
- ||M|| is additive under disjoint union and connected sums of manifolds.
- If M hyperbolic $v_{\text {tet }}\|M\|=\operatorname{Vol}(M)$.
- If M Seifert fibered then $\|M\|=0$
- Cutting along tori: If M^{\prime} is obtained from M by cutting along an embedded torus T then

$$
\|M\| \leqslant\left\|M^{\prime}\right\|
$$

with equality if T is incompressible.

Quantum invariants: Jones Polynomials

1980's: Ideas originated in physics and in representation theory led to vast families invariants of knots and 3-manifolds. (Quantum invariants)

- Jones Polynomials: Discovered by V. Jones (1980's); using braid group representations coming from the theory of certain operator algebras (sub factors).
- Can be calculated from any link diagram using, for example, Kaufman states:
- Two choices for each crossing, A or B resolution.

- Choice of A or B resolutions for all crossings: state σ.
- Assign a "weight" to every state.
- JP calculated as a certain "state sum" over all states of any diagram.

Quantum invariants: Colored Jones Polynomials

For this talk we discuss:

- The Colored Jones Polynomials: Infinite sequence of Laurent polynomials $\left\{J_{K}^{n}(t)\right\}_{n}$ encoding the Jones polynomial of K and these of the links K^{s} that are the parallels of K.
- Formulae for $J_{K}^{n}(t)$ come from representation theory of Lie Groups!: representation theory of $S U(2)$ (decomposition of tensor products of representations). For example,
They look like

$$
\begin{gathered}
J_{K}^{1}(t)=1, \quad J_{K}^{2}(t)=J_{K}(t)-\text { Original } J P, \\
J_{K}^{3}(t)=J_{K^{2}}(t)-1, \quad J_{K}^{4}(t)=J_{K^{3}}(t)-2 J_{K}(t), \ldots
\end{gathered}
$$

- $J_{K}^{n}(t)$ can be calculated from any knot diagram
 via processes such as Skein Theory, State sums, R-matrices, Fusion rules....

The CJP predicts Volume?

Question: How do the CJP relate to geometry/topology of knot complements?

Kashaev+ H. Murakami - J. Murakami (2000) proposed
Volume Conjecture. Suppose K is a knot in S^{3}. Then

$$
2 \pi \cdot \lim _{n \rightarrow \infty} \frac{\log \left|J_{K}^{n}\left(e^{2 \pi i / n}\right)\right|}{n}=v_{\text {tet }}\left\|S^{3} \backslash n(K)\right\|
$$

- Wide Open!
- 4_{1} (by Ekholm), knots up to 7 crossings (by Ohtsuki)
- torus knots (by Kashaev and Tirkkonen); special satellites of torus knots (by Zheng).

Some difficulties:

- For families of links we have $J_{K}^{n}\left(e^{2 \pi i / n}\right)=0$, for all n.
- "State sum" for $J_{K}^{n}\left(e^{2 \pi i / n}\right)$ has oscillation/cancelation.
- No good behavior of $J_{K}^{n}\left(e^{2 \pi i / n}\right)$ with respect to geometric decompositions.

Coarse relations: Colored Jones polynomial

For a knot K, and $n=1,2, \ldots$, we write its n-colored Jones polynomial:

$$
J_{K}^{n}(t):=\alpha_{n} t^{m_{n}}+\beta_{n} t^{m_{n}-1}+\cdots+\beta_{n}^{\prime} t^{k_{n}+1}+\alpha_{n}^{\prime} t^{k_{n}} \in \mathbb{Z}\left[t, t^{-1}\right]
$$

- (Garoufalidis-Le, 04): Each of $\alpha_{n}^{\prime}, \beta_{n}^{\prime} \ldots$ satisfies a linear recursive relation in n, with integer coefficients .

$$
\text { (e. g. } \left.\quad \alpha_{n+1}^{\prime}+(-1)^{n} \alpha_{n}^{\prime}=0\right) .
$$

- Given a knot K any diagram $D(K)$, there exist explicitly given functions $M(n, D) m_{n} \leq M(n, D)$. For nice knots where $m_{n}=M(n, D)$ we have stable coefficients
- (Dasbach-Lin, Armond) If $m_{n}=M(n, D)$, then

$$
\beta_{K}^{\prime}:=\left|\beta_{n}^{\prime}\right|=\left|\beta_{2}^{\prime}\right|, \quad \text { and } \beta_{K}:=\left|\beta_{n}\right|=\left|\beta_{2}\right|,
$$

for every $n>1$.

- Stable coefficients control the volume of the link complement.

A Coarse Volume Conjecture

Theorem (Dasbach-Lin, Futer-K.-Purcell, Giambrone, 05-'15')

There universal constants $A, B>0$ such that for any hyperbolic link that is nice we have

$$
A\left(\beta_{K}^{\prime}+\beta_{K}\right) \leq \operatorname{Vol}\left(S^{3} \backslash K\right)<B\left(\beta_{K}^{\prime}+\beta_{K}\right)
$$

Question. Does there exist function $B(K)$ of the coefficients of the colored Jones polynomials of a knot K, that is easy to calculate from a "nice" knot diagram such that for hyperbolic knots, $B(K)$ is coarsely related to hyperbolic volume $\operatorname{Vol}\left(S^{3} \backslash K\right)$?
Are there constants $C_{1} \geq 1$ and $C_{2} \geq 0$ such that

$$
C_{1}^{-1} B(K)-C_{2} \leq \operatorname{Vol}\left(S^{3} \backslash K\right) \leq C_{1} B(K)+C_{2},
$$

for all hyperbolic K ?

- C. Lee, Proved CVC for classes of links that don't satisfy the standard "nice" hypothesis (2017)

Turaev-Viro invariants: A Volume Conjecture for all 3-manifolds

- (Turaev-Viro, 1990): For odd integer r and $q=e^{\frac{2 \pi i}{r}}$

$$
T V_{r}(M):=T V_{r}(M, q),
$$

a real valued invariant of compact oriented 3-manifolds M

- $T V_{r}(M, q)$ are combinatorially defined invariants and can be computed from triangulations of M by a state sum formula. Sums involve quantum 6j-sympols. Terms are highly "oscillating" and there is term canellation. Combinatorics have roots in representation theory of quantum groups.
- For experts: We work with the $S O(3)$ quantum group.
- (Q. Chen- T. Yang, 2015): compelling experimental evidence supporting
- Volume Conjecture : For M compact, orientable

$$
\lim _{r \rightarrow \infty} \frac{2 \pi}{r} \log \left(T V_{r}\left(M, e^{\frac{2 \pi i}{r}}\right)\right)=V_{\mathrm{tet}}\|M\|
$$

where r runs over odd integers.

What we know:

The Conjecture is verified for the following.

- (Detcherrry-K.-Yang, 2016) (First examples) of hyperbolic links in S^{3} : The complement of 4_{1} knot and of the Borromean rings.
- (Ohtsuki, 2017) Infinite family of closed hyperbolic 3-manifolds: Manifolds obtained by Dehn filling along the 4_{1} knot complement.
- (Belletti-Detcherry-K- Yang, 2018) Infinite family of cusped hyperbolic 3-manifolds that are universal: They produce all M by Dehn filling!
- (Kumar, 2019) Infinite families of hyperbolic links in S^{3}.
- (Detcherry-K, 2017) All links zero Gromov norm links in S^{3} and in connected sums of copies of $S^{1} \times S^{2}$.
- (Detcherry, Detcherry-K, 2017) Several families of 3-manifolds with non-zero Gromov, with or with or without boundary.
- For links in S^{3} Turaev-Viro invariants relate to colored Jones polynomials (Next)

Links complements in S^{3} :

For link complements $T V_{r}\left(S^{3} \backslash K, e^{\frac{2 \pi i}{r}}\right)$ are obtained from (multi)-colored Jones link polynomial. For simplicity, we state only for knots here.

Theorem (Detcherry-K., 2017)

For $K \subset S^{3}$ and $r=2 m+1$ there is a constant η_{r} independent of K so that

$$
T V_{r}\left(S^{3} \backslash K, e^{\frac{2 \pi i}{r}}\right)=\eta_{r}^{2} \sum_{n=1}^{m}\left|J_{K}^{n}\left(e^{\frac{4 \pi i}{r}}\right)\right|^{2}
$$

- Theorem implies that the invariants $T V_{r}\left(\left(S^{3} \backslash K\right)\right.$ are not identically zero for any link in S^{3} !
- The quantity $\log \left(T V_{r}\left(\left(S^{3} \backslash K\right)\right)\right.$ is always well defined.
- Remark. The values of CJP in Theorem are different that these in "original" volume conjecture.
- Not known how the two conjectures are related for knots in S^{3}.

Building blocks of TV invariants relate to volumes

- Color the edges of a triangulation with certain "quantum " data

- Colored tetrahedra get " $6 j$-symbol" $\mathbf{Q}:=Q\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)=$ function of the a_{i} and $r . T V_{r}(M)$ is a weighted sum over all tetrahedra of triangulation (State sum).
- (BDKY) Asympotics of \mathbf{Q} relate to volumes of geometric polyhedra:

$$
\frac{2 \pi}{r} \log (\mathbf{Q}) \leqslant v_{\text {oct }}+O\left(\frac{\log r}{r}\right) .
$$

- Proved VC for "octahedral" 3-manifolds, where $T V_{r}$ have "nice" forms. In general, hard to control term cancellation in state sum.

A more Robust statement?:

$$
\operatorname{LTV}(M)=\underset{r \rightarrow \infty}{\limsup } \frac{2 \pi}{r} \log \left(T V_{r}(M)\right), \text { and } I T V(M)=\liminf _{r \rightarrow \infty} \frac{2 \pi}{r} \log \left(T V_{r}(M)\right)
$$

Conjecture: There exists universal constants $B, C, E>0$ such that for any compact orientable 3-manifold M with empty or toroidal boundary we have

$$
B\|M\|-E \leqslant I T V(M) \leqslant L T V(M) \leqslant C\|M\| .
$$

In particular, $\operatorname{ITV}(M)>0$ iff $\| M>0$.

- Half is done:

Theorem (Detcherry-K., 2017)

There exists a universal constant $C>0$ such that for any compact orientable 3-manifold M with empty or toroidal boundary we have

$$
\operatorname{LTV}(M) \leqslant C\|M\|
$$

Why are TV invariants "better"?

- TV invariants are defined for all compact, oriented 3-manifolds.
- TV invariants are defined on triangulations of 3-manifolds: For hyperbolic 3-manifolds the (hyperbolic) volume can be estimated/calculated from appropriate triangulations.
- TV invariants are part of a Topological Quantum Field Theory (TQFT) and they can be computed by cutting and gluing 3-manifolds along surfaces. The TQFT behaves particularly well when cutting along spheres and tori. In particular it behaves well with respect to prime and JSJ decompositions.
- For experts: The TQFT is the $S O(3)$ - Reshetikhin-Turaev and Witten TQFT as constructed by Blanchet, Habegger, Masbaum and Vogel (1995)

Outline of last theorem:

(1) Study the large-r asymptotic behavior of the quantum $6 j$-symbols, and using the state sum formulae for the invariants $T V_{r}$, to prove give linear upper bound of $\operatorname{LTV}(M)$:

$$
\operatorname{ITV}(M) \leq \operatorname{LTV}(M)<v_{8}(\# \text { of tetrahedra needed to triangulate } M) .
$$

(2) Use a theorem of Thurston to show that there is $C>0$ such that for any hyperbolic 3-manifold M

$$
\operatorname{LTV}(M) \leq C\|M\|
$$

(3) Use TQFT properties to show that if M is a Seifert fibered manifold, then

$$
\operatorname{LTV}(M)=\|M\|=0
$$

(a) Show that If M contains an embedded tori T and M^{\prime} is obtained from M by cutting along T then

$$
\operatorname{LTV}(M) \leqslant \operatorname{LTV}\left(M^{\prime}\right)
$$

(5) $\operatorname{LTV}(M)$ is (sub)additive under connected sums.
(6) Use parallel behavior of $\operatorname{LTV}(M)$ and $\|M\|$ under geometric decomposition of 3-manifolds.

Exponential growth results:

- The Invariants $T V_{r}(M)$ grow exponetiallly in r, iff

$$
I T V(M):=\liminf _{r \rightarrow \infty} \frac{2 \pi}{r} \log \left(T V_{r}(M)\right)>0
$$

- AMU Conjecture relation: The statement

$$
\operatorname{ITV}(M)>0 \text { iff }\|M\|>0
$$

implies a conjecture of Andersen-Masbaum-Ueno on the geometric content of the quantum representations of surface mapping class groups.

- Detcherry-K. showed that for M, M^{\prime} compact orientable with empty or toroidal boundary, and such that $M^{\prime \prime}$ is obtained by drilling a link from M we have $\operatorname{ITV}\left(M^{\prime}\right)>\operatorname{ITV}(M)$.
- This led to many constructions of manifolds with ITV $(M)>0$. Used these constructions to build substantial evidence for AMU conjecture.

