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General theme

Knots: Smooth embedding K : S1 → S3.
Equivalence: K1, K2 are equivalent if f (K1) = K2, f homeomorphism of S3.

Talk Goal: Relations
among the three
perspectives.

Knot diagrams
Combinatorial invariants

3-manifold topology/geometry

S3
r K is 3-manifold. Geometric

structures and invariants arising from
geometry

Physics originated invariants
Jones polynomials

Quantum invariants
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Knots and 3-manifolds:

Given K remove an open tube around K to obtain the

Knot complement: MK = S3 r K
Compact, orientable 3-manifold with torus boundary.

Papakyriakopoulos, 1950’s

Map π1(∂MK ) → π1(MK ) is injection unless K =Trivial Knot. Thus π1(∂MK )
always contains a Z ⊕ Z subgroup.

Schreirer (1920’s), Schubert (1950’s), Burde-Zieschang (1960’),
Jaco-Shalen-Johannson (1970’s), W. Thurston (1980’s), ........

Three distinct types of knot complements according to π1:

Toroidal: π1(MK ) contains Z ⊕ Z subgroups not conjugate to π1(∂MK ).

Annular: Center of π1(MK ) is non-trivial (It is Z).

Hyperbolic: π1(MK ) has no center and contains no Z ⊕ Z subgroup not
conjugate to π1(∂MK ).
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Thee types of knots:

Satellite Knots: Complement contains embedded “essential” tori carrying
Z ⊕ Z subgroups of π1. There is a canonical (finite) collection of such tori.

Torus knots: Complement contains embedded “essential” annulus carrying
the center of π1. Knot embeds on standard torus in T in S3 and is determined
by its class in H1(T ).
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Thee types of knots con’t.

Hyperbolic knots: Knot complement can be given a complete Riemannian
metric of constant negative curvature.

Mostow-Prasad Rigidity Theorem: Hyperbolic metrics in three
dimensions are essentially unique: any two are isometric. Hence,
invariants of hyperbolic metric are topological invariants of complement.

Important invariant: Volume of a hyperbolic knot: Vol (S3 r K ).

Volume Can be defined for all knots:

For torus knots Vol (S3 r K ) = 0.

For satellite knots: Decompose S3 r K along the canonical collection of
tori– add the volumes of the hyperbolic pieces.
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Surfaces spanned by knots

Homological reasons imply that every knot bounds a Seifert surface: an
embedded, oriented 2-manifold.
Knots also bound non-orientable surfaces

(S, K ) can be viewed as properly embedded in the knot complement MK .
S is essential if inclusion induces injection

π1(S, K ) −→ π1(MK , ∂MK ).

All knots bound essential surfaces (e.g. minimum genus surfaces).
Essential surfaces are important for geometry and topology.
Given essential S cut the knot complement along S; the 3-manifold
MS := S3\\S carries information about topology/geometry of S3 r K .

Effie Kalfagianni (MSU) J 6 / 29



Fibered Knots

K =Knot, Σ= surface bounded by K , MK = S3 r K = Knot complement.

Σ is a fiber for K iff MK = S3 r K cut along
Σ is a product Σ × [0, 1].

MK is a fiber-bundle over S1 with fiber Σ.

A “fan” of surfaces around K , fills entire S3.

Σ × 1

Σ × 0

Fibered knots are important in several mathematics areas: e.g. 3-manifold
and 4-manifold theory, symplectic geometry, ...
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Jones Polynomial–Quantum invariants

1980’s: Ideas originated in physics and constructions, often, inspired by
representation theory led to invariants of knots and 3-manifolds.
(Quantum invariants)
Knots and 3-manifolds often enter the picture through their combinatorial
descriptions: e.g. knot diagrams, Dehn surgery presentations..
Knot invariants can be calculated from diagrams via “Skein theory”.

Jones, Witten, Reshetikhin-Turaev, Kauffman, HOMFLY-PT,...

Of particular interest for this talk are:

The Colored Jones Polynomials: Infinite
sequence of Laurent polynomials {JK ,n(t)}n

encoding the Jones polynomial of K and
these of the parallels of K .

Key Question: How do the CJP relate to
geometric structures of knot complements
and to incompressible surfaces in them?

Talk Focus. Discuss joint work with Futer
(Temple), Purcell (BYU), Lee (MSU)- state
known conjectures.
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Plan of rest of talk

Given a diagram D(K ) construct a certain graph G (state graph) such that,

G encodes information about the (colored) Jones polynomial of K .

G embeds “canonically” on a surface SG spanned by K .

Combinatorics of G determine when SG is essential in S3
r K and the

geometric decomposition of surface complement MS := S3\\SG.

MS carries a lot of geometric information about S3 r K . Use this to relate
Jones polynomials to topology/geometry of S3 r K .

CPJ encode information about:
Boundary slopes of knots
Fibers in knot complement.
volume of knot complements.

Tools: Ideal polyhedral decompositions- Normal surface theory.

Conjectures/Motivation:
Slopes Conjecture

Volume conjecture
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State Graphs

Two choices for each crossing, of knot diagram D: A or B resolution.

A Kauffman state σ(D) is a choice of A or B resolutions for all crossings.
σ(D): state circles
Form a fat graph Hσ by adding edges at resolved crossings.
Get a state surface Sσ: Each state circle bounds a disk in Sσ (nested
disks drawn on top).
At each edge (for each crossing) attach twisted band.
Contract state circles to vertices to get state graph Gσ: surface is
orientable iff the state graph is bipartite.
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Example: Two component link

Working with the all A-state:
Diagram D(K ) of a two-component link, and graphs HA, the surface SA.

State graph GA and reduced graph G′

A.
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Example: Two component link

Working with the all A-state:
Diagram D(K ) of a two-component link, and graphs HA, the surface SA.

State graph GA and reduced graph G′

A.

The Jones polynomial of the knot can be calculated from HA: spanning
graph expansion arising from the Bollobas-Riordan fat graph polynomial
(Dasbach-Futer-K-Lin-Stoltzfus, 2006).
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The CJP and state graphs and surfaces

As said, given any link diagram D(K ) the Jones polynomial JK ,2(t) can be
computed from the fat graph HA.

The n-colored Jones polynomial JK ,n(t), is expressed as a function that,
roughly speaking, counts spanning subgraphs of HA and of A-state
graphs of certain parallels of D(K ).

(K.-Lee) Studied asymptotic behavior of this function (n → ∞) and
obtained a linear polynomial (invariant of K )

τK (t) = α′ + β′t ,

detecting exactly when the state surface SA(D) is essential in S3 r K !

Theorem (K.-Lee, 2013)
We have, τK (t) 6= 0 iff K admits a diagram D(K ) such that the state surface
SA(D) is essential in the complement S3 r K .
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The CJP and state graphs and surfaces

As said, given any link diagram D(K ) the Jones polynomial JK ,2(t) can be
computed from the fat graph HA.

The n-colored Jones polynomial JK ,n(t), is expressed as a function that,
roughly speaking, counts spanning subgraphs of HA and of A-state
graphs of certain parallels of D(K ).

(K.-Lee) Studied asymptotic behavior of this function (n → ∞) and
obtained a linear polynomial (invariant of K )

τK (t) = α′ + β′t ,

detecting exactly when the state surface SA(D) is essential in S3 r K !

Theorem (K.-Lee, 2013)
We have, τK (t) 6= 0 iff K admits a diagram D(K ) such that the state surface
SA(D) is essential in the complement S3 r K .

So what?
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When is SA essential?

(Ozawa, Futer-K.-Purcell) The surface SA is essential in S3 r K iff the
corresponding the state graph HA has no 1-edge loops.

Lickorish–Thistlethwaite 1980’s: Introduced A–adequate links in the
context of Jones polynomials.

Definition. A link is A–adequate if has a diagram where HA has no
1-edge loops.
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When is SA essential?

(Ozawa, Futer-K.-Purcell) The surface SA is essential in S3 r K iff the
corresponding the state graph HA has no 1-edge loops.

Lickorish–Thistlethwaite 1980’s: Introduced A–adequate links in the
context of Jones polynomials.

Definition. A link is A–adequate if has a diagram where HA has no
1-edge loops.

All, but two, prime knots up to 11 crossings.

Torus knots: all

hyperbolic: non-torus, alternating, Montesinos Knots, positive knots,
closed 3-braids, “complicated” plat closures...

Satellites: planar cables, Whitehead doubles

Effie Kalfagianni (MSU) J 13 / 29



Colored Jones polynomial prelims

For a knot K , and n = 1, 2, . . . , we write its n-colored Jones polynomial:

JK ,n(t) := αntmn + βntmn−1 + · · · + β′

ntkn+1 + α′

ntkn ∈ Z[t , t−1]

Some properties:
JK ,1(t) = 1 and JK ,2(t) is the ordinary Jones polynomial of K .
JK ,n(t) is determined by the Jones polynomials of certain cables of K .
(Garoufalidis-Le, 2004): The sequence {JK ,n(t)}n is q-holonomic. This
implies, that for every K the sequence {JK ,n(t)}n is determined by finitely
many terms.
Degrees mn, kn grow quadratically in n. Furthermore, each of the two
sequences

{
−4
n2 kn}n {

−4
n2 mn}n,

has finitely many cluster points.
Each of α′

n, β
′

n . . . satisfies a linear recursive relation in n, with integer
coefficients . (e. g. α′

n+1 + (−1)nα′

n = 0).
Remark. Properties manifest themselves in strong forms when K is
A-adequate (next).

Effie Kalfagianni (MSU) J 14 / 29



Colored Jones polynomial prelims

For a knot K , and n = 1, 2, . . . , we write its n-colored Jones polynomial:

JK ,n(t) := αntmn + βntmn−1 + · · · + β′

ntkn+1 + α′

ntkn ∈ Z[t , t−1]

Some properties:
JK ,1(t) = 1 and JK ,2(t) is the ordinary Jones polynomial of K .
JK ,n(t) is determined by the Jones polynomials of certain cables of K .
(Garoufalidis-Le, 2004): The sequence {JK ,n(t)}n is q-holonomic. This
implies, that for every K the sequence {JK ,n(t)}n is determined by finitely
many terms.
Degrees mn, kn grow quadratically in n. Furthermore, each of the two
sequences

{
−4
n2 kn}n {

−4
n2 mn}n,

has finitely many cluster points.
Each of α′

n, β
′

n . . . satisfies a linear recursive relation in n, with integer
coefficients . (e. g. α′

n+1 + (−1)nα′

n = 0).
Remark. Properties manifest themselves in strong forms when K is
A-adequate (next).

Effie Kalfagianni (MSU) J 14 / 29



CJP of A-adequate links facts

State graph GA; remove multiple edges to get simple graph G′

A.

Lickorish-Thistlethwaite (80’s), Dasbach-Lin (2006)
Armond (2011), Armond-Dasbach (2011), Garoufalidis-Le (2011)..

JK ,n(t) := αntmn + βntmn−1 + · · · + β′

ntkn+1 + α′

ntkn .

Last two coefficients α′

K = |α′

n| = 1, β′

K := |βn| = 1 − χ(G′

A), n > 1.

Invariant studied by K.-Lee now becomes τK (t) = 1 + β′

K t .

Minimum degree kn = −sn2 + O(n), s is an integer.

(the abs. values of) m-th to last coefficients of JK ,n(t) is independent on n,
for n ≥ m. They get stable coefficients for all. They define the Tail of JCP.

Stable coefficients depend only on G′

A!
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CJP and the surface SA: Boundary slopes

The class [∂SA] in H1(∂(S3 r K )) is determined by an element in
Q ∪ {∞}, called a boundary slope of K .

(Hatcher, 1980) Every knot has finitely many boundary-slopes.

Theorem (Futer-K-Purcell, 2010)
For an A–adequate diagram,

s = bdry slope of SA = lim
n→∞

−4
n2 kn,

kn :=min deg JK ,n(t).
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CJP and the surface SA: Boundary slopes

The class [∂SA] in H1(∂(S3 r K )) is determined by an element in
Q ∪ {∞}, called a boundary slope of K .

(Hatcher, 1980) Every knot has finitely many boundary-slopes.

Theorem (Futer-K-Purcell, 2010)
For an A–adequate diagram,

s = bdry slope of SA = lim
n→∞

−4
n2 kn,

kn :=min deg JK ,n(t).

Slopes Conjecture. (Garoufalidis, motivated by work of Garoufalidis-Le
and Frohman- Gelca- Lofaro) For every knot K each of the finitely many
cluster points {−4

n2 kn}n is a boundary slope of K .

(Dunfield-Garoufalidis) Verified conjecture for class of knots that are not
A-adequate. (Degree of CJP was found by computer calculation).

Effie Kalfagianni (MSU) J 16 / 29



CJP and the surface SA: Coefficients

For an A-adequate link, β′

K is the stabilized penultimate coefficient of CJP.

Theorem (Futer–K–Purcell)
For an A–adequate diagram D(K ), the following are equivalent:

1 The penultimate coefficient is β′

K = 0.
2 SA is a fiber in S3 r K .

Exercise. Derive Stalling’s classical result: positive closed braids are fibered
with fiber obtained from Seifert’s algorithm to the braid diagram.

Next:

What about when βK > 0?

When β′

K is large, SA is far from being a fiber, in a sense we will specify
below.

This, combined with work of Agol- W. Thurston- Storm, gives that large
β′

K implies large Vol (S3 r K ).
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Topology of complement of SA

MA = S3\\SA is obtained by removing a neighborhood of SA from S3.

On ∂MA we have
parabolic locus P = remains from ∂(S3 r K ) after cutting along SA.

We work with pair (MA, P).

You may think as if ∂MA is “decorated”; decompositions of MA below do
not disturb decorations.

There is a version of Jaco-Shalen-Johannson decomposition theory for
paired 3-manifolds that assures that MA cut along a canonical collection
of essential annuli results in three kinds of pieces:

1 I–bundles (think of Σ × I for Σ ⊂ SA,
although Σ×̃I can also occur),

2 Seifert fibered solid tori,

3 Guts (S3 r K , SA). By Thurston’s theory
the guts admits hyperbolic structure.

Σ × 1

Σ × 0
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Topology of Guts and Volume

Guts serve as an indication that a surface SA is far from being a fiber.

1 If SA is a fiber of MA = SA × I: no guts. (Recall, β′

K =0)

2 Guts (S3
r K , SA) = ∅ MA is union I-bundles and solid tori. – SA is

“almost fiber” .

3 We want to calculate χ(Guts (M, S)) because it estimates volume via the
following theorem:

Theorem (Agol–Storm–W. Thurston, 2007)
Let M be a compact 3–manifold with hyperbolic interior of finite volume, and
S ⊂ M an embedded essential surface. Then

Vol (M) ≥ −v8 χ(Guts (M, S)),

where v8 ≈ 3.6638 is the volume of a regular ideal octahedron.

Effie Kalfagianni (MSU) J 19 / 29



A glimpse into the meaning of β ′
K : Special case

D(K ) =an A-adequate diagram with SA the corresponding all-A state surface.

Theorem (FKP, 2011)
Let D(K ) be an A–adequate diagram such that
every 2–edge loop in GA comes from a twist region.
Then the surface SA satisfies

χ(Guts (S3
r K , SA)) = 1 − β′

K

twist region

In General ,
χ(Guts (S3

r K , SA)) = 1 − β′

K + explicit correction term

Corollary
Under the hypotheses of theorem,

Vol (S3
r K ) ≥ v8 (β′

K − 1).

Alternating knots: follows from work of Lackenby and Dasbach–Lin.
A. Giambrone: large families of non-alternating knots satisfying hypethesis.
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A worked example
D(K ) all–A state

GA = G′

A

1 − |β′| = χ(GA) = χ(SA)
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A worked example
D(K ) all–A state

GA = G′

A

1 − |β′| = χ(GA) = χ(SA) = χ(S3\\SA) = χ(Guts ) = −3

v8 (|β′| − 1) = −v8 χ(G′

A) = 10.99...

Vol (S3
r K ) = 13.64...

Exercise. Above diagram is also B-adequate and the reduced state graph SB

is a tree. Thus K is fibered knot with fiber the state surface SB .
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Sample family: positive braids

σ4
2 σ3

1 σ3
3 σ3

2 σ4
3

Theorem (FKP)

Suppose that K is the closure of a positive braid b = σr1
i1
σr2

i2
· · ·σrk

ik
, where

rj ≥ 3 for all j. In other words, there are k twist regions, each with at least 3
crossings.
Then K is hyperbolic, and

2v8

3
k ≤ Vol (S3

r K ) < 10v3(k − 1) .

Similarly,
v8 (β′

K − 1) ≤ Vol (S3
r K ) < 15v3 β′

K − 25v3 .
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Sample family: positive braids

σ4
2 σ3

1 σ3
3 σ3

2 σ4
3

Theorem (FKP)

Suppose that K is the closure of a positive braid b = σr1
i1
σr2

i2
· · ·σrk

ik
, where

rj ≥ 3 for all j. In other words, there are k twist regions, each with at least 3
crossings.
Then K is hyperbolic, and

2v8

3
k ≤ Vol (S3

r K ) < 10v3(k − 1) .

Similarly,
v8 (β′

K − 1) ≤ Vol (S3
r K ) < 15v3 β′

K − 25v3 .

Here, v3 = 1.0149... is the volume of a regular ideal tetrahedron and
v8 = 3.6638... is the volume of a regular ideal octahedron.
The gap between the upper and lower bounds is a factor of 4.155...
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Sample family: Montesinos links

A Montesinos knot or
link is constructed by
connecting n rational
tangles in a cyclic
fashion.

Every Montesinos link is either A– or B–adequate.

Theorem (FKP + Finlinson)
Let K be an A–adequate Montesinos link. Then

v8 (β′

K − 2) ≤ Vol (S3
r K ).
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Sample family: Montesinos links

A Montesinos knot or
link is constructed by
connecting n rational
tangles in a cyclic
fashion.

Every Montesinos link is either A– or B–adequate.

Theorem (FKP + Finlinson)
Let K be an A–adequate Montesinos link. Then

v8 (β′

K − 2) ≤ Vol (S3
r K ).

If K has length at least four we get two-sided volume estimates:

v8 (max{βK , β′

K} − 2) ≤ Vol (S3
r K ) < 4v8 (β′

K + βK − 2) + 2v8 (#K ),

where #K is the number of link components of K .
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Volume Conjecture

Results and experimental evidence prompt (A coarse Volume conjecture?):

Question. Does there exist function B(K ) of the coefficients of the colored
Jones polynomials of a knot K , that is easy to calculate from state graphs
such that for hyperbolic knots, B(K ) is coarsely related to hyperbolic volume
Vol (S3 r K ) ?
Are there constants C1 ≥ 1 and C2 ≥ 0 such that

C−1
1 B(K ) − C2 ≤ Vol (S3

r K ) ≤ C1B(K ) + C2,

for all hyperbolic K ?

Results and stabilization properties of CJP prompt more guided
speculations as to where one might look for B(K ).
Volume Conjecture (Kashaev 1990’s, H. Murakami-J. Murakami, 2001)
predicts relations between volume and coefficients of CJP.– The entire
JCP should determine the volume exactly.

2π lim
n→∞

log
∣∣Jn

K (e2πi/n)
∣∣

n
= Vol (S3

r K ).
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2–edge loops and I–bundles of S3\\SA

Every 2–edge loop in GA gives rise to a disk D that intersects K twice — a
essential product disk (EPD) in the complement of the state surface SA.

SA

SA
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2–edge loops and I–bundles of S3\\SA

Every 2–edge loop in GA gives rise to a disk D that intersects K twice — a
essential product disk (EPD) in the complement of the state surface SA.

SA

SA

To find Guts (S3\\SA), start with S3\\SA and remove I–bundle pieces.

When we remove and EPD from S3\\SA, Euler number χ(S3\\SA) goes
up by 1. Removing a redundant edge from GA also increases χ(GA) by 1.

Initially, before the cutting, χ(GA) = χ(SA) = χ(S3\\SA).

We prove that the maximal I–bundle of S3\\SA is spanned by EPD’s that
correspond to 2–edge loops in GA.
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2–edge loops and I–bundles of S3\\SA

Every 2–edge loop in GA gives rise to a disk D that intersects K twice — a
essential product disk (EPD) in the complement of the state surface SA.

SA

SA

To find Guts (S3\\SA), start with S3\\SA and remove I–bundle pieces.

When we remove and EPD from S3\\SA, Euler number χ(S3\\SA) goes
up by 1. Removing a redundant edge from GA also increases χ(GA) by 1.

Initially, before the cutting, χ(GA) = χ(SA) = χ(S3\\SA).

We prove that the maximal I–bundle of S3\\SA is spanned by EPD’s that
correspond to 2–edge loops in GA. If this correspondence is bijective,

χ(Guts ) = χ(SA) + #EPDs = χ(GA r extra edges) = χ(G′

A).
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Topology of β ′
K : most general form

A 2–edge loop in GA may correspond to multiple product disks, some of which
are complex. The number of complex disks is ||Ec || ≥ 0.
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Topology of β ′
K : most general form

A 2–edge loop in GA may correspond to multiple product disks, some of which
are complex. The number of complex disks is ||Ec || ≥ 0.

Theorem (FKP)
Let D(K ) be an A–adequate diagram. Then the state surface SA satisfies

χ(Guts (S3
rK , SA)) − ||Ec || = χ(G′

A) = 1 − β′

K ,
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Topology of β ′
K : most general form

A 2–edge loop in GA may correspond to multiple product disks, some of which
are complex. The number of complex disks is ||Ec || ≥ 0.

Theorem (FKP)
Let D(K ) be an A–adequate diagram. Then the state surface SA satisfies

χ(Guts (S3
rK , SA)) − ||Ec || = χ(G′

A) = 1 − β′

K ,

Under favorable conditions (positive braids, “long” Montesinos links, 3-braids),
we get a diagram for which ||Ec || = 0, hence χ(Guts ) = 1 − |β′|.
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Topology of β ′
K : most general form

A 2–edge loop in GA may correspond to multiple product disks, some of which
are complex. The number of complex disks is ||Ec || ≥ 0.

Theorem (FKP)
Let D(K ) be an A–adequate diagram. Then the state surface SA satisfies

χ(Guts (S3
rK , SA)) − ||Ec || = χ(G′

A) = 1 − β′

K ,

Under favorable conditions (positive braids, “long” Montesinos links, 3-braids),
we get a diagram for which ||Ec || = 0, hence χ(Guts ) = 1 − |β′|.

Question: For each A–adequate link, is there a diagram with ||Ec || = 0?
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Tool for the proof: a nice polyhedral decomposition

Our results are proved using normal surface theory in a suitable polyhedral
decomposition of the surface complement S3\\SA.

For alternating links, this is Menasco’s polyhedral decomposition:
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Tool for the proof: a nice polyhedral decomposition

Our results are proved using normal surface theory in a suitable polyhedral
decomposition of the surface complement S3\\SA.

For alternating links, this is Menasco’s polyhedral decomposition:

The two polyhedra are “balloons”
above and below projection plane.
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Tool for the proof: a nice polyhedral decomposition

Our results are proved using normal surface theory in a suitable polyhedral
decomposition of the surface complement S3\\SA.

For alternating links, this is Menasco’s polyhedral decomposition:

The two polyhedra are “balloons”
above and below projection plane.

Faces are regions of the diagram.
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Tool for the proof: a nice polyhedral decomposition

Our results are proved using normal surface theory in a suitable polyhedral
decomposition of the surface complement S3\\SA.

For alternating links, this is Menasco’s polyhedral decomposition:
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For alternating links, this is Menasco’s polyhedral decomposition:
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Faces are regions of the diagram.

Edges are at crossings, 4–valent.

Vertices are ideal (at infinity, on K ).

Faces are checkerboard colored.

The union of all the shaded faces is a
checkerboard surface SA.

Hence, gluing along white faces only
produces a decomposition of S3\\SA.
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Polyhedral decomposition of the surface complement

Our surface SA is layered below the plane of projection. We need more
balloons to subdivide S3\\SA.
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Combinatorial descriptions of Polyhedra

Lower polyhedra are identical to checkerboard polyhedra of alternating
sublinks.

Upper polyhedron: Ideal edges and shaded faces are sketched by tentacles
on projection of HA
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