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General theme

Knots: Smooth embedding K : St — S3.
Equivalence: Ky, K, are equivalent if f(K;) = K, f homeomorphism of S3.

Knot diagrams
@ Combinatorial invariants
( 3-manifold topology/geometry
(\/ @ S3® K is 3-manifold. Geometric

structures and invariants arising from

\/ geometry
Physics originated invariants

@ Jones polynomials
@ Quantum invariants

Talk Goal: Relations
among the three
perspectives.

A,
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Knots and 3-manifolds:

Given K remove an open tube around K to obtain the

Knot complement: Mg = S® <~ K
Compact, orientable 3-manifold with torus boundary.

Papakyriakopoulos, 1950's

@ Map 71 (0Mk ) — m1(Mk ) is injection unless K=Trivial Knot. Thus 71 (0Mk )
always contains a Z & Z subgroup.

Schreirer (1920's), Schubert (1950's), Burde-Zieschang (1960’),
Jaco-Shalen-Johannson (1970's), W. Thurston (1980°s), ........

Three distinct types of knot complements according to 71:
@ Toroidal: 71(Mg ) contains Z & Z subgroups not conjugate to 1 (OM ).
® Annular: Center of w1 (M) is non-trivial (It is Z).

@ Hyperbolic: w1(Mk ) has no center and contains no Z @ Z subgroup not
conjugate to 1 (OMk ).
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Thee types of knots:

Satellite Knots: Complement contains embedded “essential” tori carrying
Z & Z subgroups of m;. There is a canonical (finite) collection of such tori.

Torus knots: Complement contains embedded “essential” annulus carrying
the center of 7. Knot embeds on standard torus in T in S2 and is determined
by its class in Hy(T).
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Thee types of knots con't.

Hyperbolic knots: Knot complement can be given a complete Riemannian
metric of constant negative curvature.

@ Mostow-Prasad Rigidity Theorem: Hyperbolic metrics in three
dimensions are essentially unique: any two are isometric. Hence,
invariants of hyperbolic metric are topological invariants of complement.

Important invariant:  Volume of a hyperbolic knot: Vol (S \ K).
@ Volume Can be defined for all knots:
@ For torus knots Vol (S \ K) = 0.

@ For satellite knots: Decompose S® ~ K along the canonical collection of
tori— add the volumes of the hyperbolic pieces.
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Surfaces spanned by knots

@ Homological reasons imply that every knot bounds a Seifert surface: an
embedded, oriented 2-manifold.
@ Knots also bound non-orientable surfaces

(&

@ (S,K) can be viewed as properly embedded in the knot complement M.
@ S is essential if inclusion induces injection

m1(S,K) — m1(Mk , OMK).

All knots bound essential surfaces (e.g. minimum genus surfaces).

@ Essential surfaces are important for geometry and topology.

@ Given essential S cut the knot complement along S; the 3-manifold
Ms := S3\\S carries information about topology/geometry of S3 < K.
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Fibered Knots

K =Knot, ¥= surface bounded by K, Mx = S% \. K= Knot complement.
@ Y is afiber for K iff M = S3 \. K cut along '@ S
Y is a product ¥ x [0, 1].

@ M is a fiber-bundle over St with fiber X.
@ A “fan” of surfaces around K, fills entire S3. @ 2 x0

Fibered knots are important in several mathematics areas: e.g. 3-manifold
and 4-manifold theory, symplectic geometry;, ...
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Jones Polynomial-Quantum invariants

@ 1980’s: Ideas originated in physics and constructions, often, inspired by
representation theory led to invariants of knots and 3-manifolds.
(Quantum invariants)

@ Knots and 3-manifolds often enter the picture through their combinatorial
descriptions: e.g. knot diagrams, Dehn surgery presentations..

@ Knot invariants can be calculated from diagrams via “Skein theory”.

Jones, Witten, Reshetikhin-Turaev, Kauffman, HOMFLY-PT,...

Of particular interest for this talk are:

@ The Colored Jones Polynomials: Infinite
sequence of Laurent polynomials {Jk n(t)}n
encoding the Jones polynomial of K and
these of the parallels of K.

@ Key Question: How do the CJP relate to
geometric structures of knot complements
and to incompressible surfaces in them?

@ Talk Focus. Discuss joint work with Futer
(Temple), Purcell (BYU), Lee (MSU)- state

known conjectures.
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Plan of rest of talk

Given a diagram D(K) construct a certain graph G (state graph) such that,

@ G encodes information about the (colored) Jones polynomial of K.
@ G embeds “canonically” on a surface Sg spanned by K.

@ Combinatorics of G determine when Sg is essential in S3 < K and the
geometric decomposition of surface complement Mg := S3\\Sg.

@ Mg carries a lot of geometric information about S® \ K. Use this to relate
Jones polynomials to topology/geometry of S3 < K.

@ CPJ encode information about:
@ Boundary slopes of knots
@ Fibers in knot complement.
@ volume of knot complements.

@ Tools: ldeal polyhedral decompositions- Normal surface theory.

@ Conjectures/Motivation:
@ Slopes Conjecture
@ Volume conjecture
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State Graphs

Two choices for each crossing, of knot diagram D: A or B resolution.
/\ ——

@ A Kauffman state ¢(D) is a choice of A or B resolutions for all crossings.

@ o(D): state circles

@ Form a fat graph H,, by adding edges at resolved crossings.

@ Get a state surface S,: Each state circle bounds a disk in S, (nested
disks drawn on top).

@ At each edge (for each crossing) attach twisted band.

@ Contract state circles to vertices to get state graph G,: surface is
orientable iff the state graph is bipartite.

b ¢
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Example: Two component link

Working with the all A-state:
Diagram D(K)) of a two-component link, and graphs Ha, the surface Sa.

Bl =

State graph Ga and reduced graph G.

XX
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Example: Two component link

Working with the all A-state:
Diagram D(K)) of a two-component link, and graphs Ha, the surface Sa.

&

State graph Ga and reduced graph G.

KX

@ The Jones polynomial of the knot can be calculated from Ha: spanning
graph expansion arising from the Bollobas-Riordan fat graph polynomial
(Dasbach-Futer-K-Lin-Stoltzfus, 2006).
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The CJP and state graphs and surfaces

@ As said, given any link diagram D(K) the Jones polynomial Jk »(t) can be
computed from the fat graph Ha.

@ The n-colored Jones polynomial Jk n(t), is expressed as a function that,
roughly speaking, counts spanning subgraphs of Hy and of A-state
graphs of certain parallels of D(K).

@ (K.-Lee) Studied asymptotic behavior of this function (n — o) and
obtained a linear polynomial (invariant of K)

< (t) = o + 31,

detecting exactly when the state surface Sa(D) is essential in S3 \ K!

Theorem (K.-Lee, 2013)

We have, 7 (t) # 0 iff K admits a diagram D(K) such that the state surface
Sa(D) is essential in the complement S3 \ K.
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The CJP and state graphs and surfaces

@ As said, given any link diagram D(K) the Jones polynomial Jk »(t) can be
computed from the fat graph Ha.

@ The n-colored Jones polynomial Jk n(t), is expressed as a function that,
roughly speaking, counts spanning subgraphs of Hy and of A-state
graphs of certain parallels of D(K).

@ (K.-Lee) Studied asymptotic behavior of this function (n — o) and
obtained a linear polynomial (invariant of K)

< (t) = o + 31,

detecting exactly when the state surface Sa(D) is essential in S3 \ K!

Theorem (K.-Lee, 2013)

We have, 7 (t) # 0 iff K admits a diagram D(K) such that the state surface
Sa(D) is essential in the complement S3 \ K.

So what?
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When is S, essential?

@ (Ozawa, Futer-K.-Purcell) The surface S, is essential in S2 \ K iff the
corresponding the state graph Ha has no 1-edge loops.

@ Lickorish—Thistlethwaite 1980’s: Introduced A—adequate links in the
context of Jones polynomials.

@ Definition. A link is A—adequate if has a diagram where Ha has no
1-edge loops.
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When is S, essential?

@ (Ozawa, Futer-K.-Purcell) The surface S, is essential in S2 \ K iff the
corresponding the state graph Ha has no 1-edge loops.

@ Lickorish—Thistlethwaite 1980’s: Introduced A—adequate links in the
context of Jones polynomials.

@ Definition. A link is A—adequate if has a diagram where Ha has no
1-edge loops.

@ All, but two, prime knots up to 11 crossings.
@ Torus knots: all

@ hyperbolic: non-torus, alternating, Montesinos Knots, positive knots,
closed 3-braids, “complicated” plat closures...

@ Satellites: planar cables, Whitehead doubles
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Colored Jones polynomial prelims

ForaknotK,andn =1,2,..., we write its n-colored Jones polynomial:
Jin(t) := ant™ + But™ o gttt ol € Z[t t

Some properties:

@ Jk 1(t) = 1 and Jk »(t) is the ordinary Jones polynomial of K.

@ Jk n(t) is determined by the Jones polynomials of certain cables of K.

@ (Garoufalidis-Le, 2004): The sequence {Jk n(t)}n is g-holonomic. This
implies, that for every K the sequence {Jk n(t)}n is determined by finitely
many terms.

@ Degrees my, k, grow quadratically in n. Furthermore, each of the two
sequences

—4 —4
{Fkn}n {an}ny
has finitely many cluster points.
@ Each of o}, 3, . . . satisfies a linear recursive relation in n, with integer
coefficients . (e. g. oy, + (—1)"ay, = 0).
Remark. Properties manifest themselves in strong forms when K is
A-adequate (next).
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CJP of A-adequate links facts

State graph Ga; remove multiple edges to get simple graph G/,.

o b |

Lickorish-Thistlethwaite (80's), Dasbach-Lin (2006)
Armond (2011), Armond-Dasbach (2011), Garoufalidis-Le (2011)..

Ji n(t) i= ant™ + Bpt™ 4o gkt ol ke,
@ Last two coefficients oy, = |ap| =1, Bx = |6n] =1 — x(G)), n > 1.
@ Invariant studied by K.-Lee now becomes 7 (t) = 1 + i t.
@ Minimum degree k, = —sn? + O(n), s is an integer.

@ (the abs. values of) m-th to last coefficients of Jk »(t) is independent on n,
for n > m. They get stable coefficients for all. They define the Tail of JCP.

@ Stable coefficients depend only on G!



CJP and the surface Sa: Boundary slopes

@ The class [0Sa] in H1(9(S® \ K)) is determined by an element in
Q U {00}, called a boundary slope of K.

@ (Hatcher, 1980) Every knot has finitely many boundary-slopes.

Theorem (Futer-K-Purcell, 2010)

For an A—adequate diagram,
s = bdry slope of S = lim ;—

Kn :=min deg Jk n(t).
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CJP and the surface Sa: Boundary slopes

@ The class [0Sa] in H1(9(S® \ K)) is determined by an element in
Q U {00}, called a boundary slope of K.

@ (Hatcher, 1980) Every knot has finitely many boundary-slopes.

Theorem (Futer-K-Purcell, 2010)

For an A—adequate diagram,
s = bdry slope of S = lim ;—

Kn :=min deg Jk n(t).

@ Slopes Conjecture. (Garoufalidis, motivated by work of Garoufalidis-Le
and Frohman- Gelca- Lofaro) For every knot K each of the finitely many
cluster points {;—z“kn}n is a boundary slope of K.

@ (Dunfield-Garoufalidis) Verified conjecture for class of knots that are not
A-adequate. (Degree of CJP was found by computer calculation).

Effie Kalfagianni (MSU) J 16 /29



CJP and the surface Sa: Coefficients

For an A-adequate link, gy is the stabilized penultimate coefficient of CJP.

Theorem (Futer—K—Purcell)
For an A—adequate diagram D(K), the following are equivalent:

@ The penultimate coefficient is 3, = 0.
@ Spisafiberin S K.

Exercise. Derive Stalling’s classical result: positive closed braids are fibered
with fiber obtained from Seifert’s algorithm to the braid diagram.
Next:

@ What about when G« > 0?

@ When gy is large, Sa is far from being a fiber, in a sense we will specify
below.

@ This, combined with work of Agol- W. Thurston- Storm, gives that large
By implies large Vol (S® \ K).
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Topology of complement of Sp

@ Mp = S3\\S, is obtained by removing a neighborhood of S, from S2.

® On OMp we have
parabolic locus P = remains from 9(S® \ K) after cutting along Sa.

@ We work with pair (Ma, P).

@ You may think as if M, is “decorated”; decompositions of Ma below do
not disturb decorations.

@ There is a version of Jaco-Shalen-Johannson decomposition theory for

paired 3-manifolds that assures that M, cut along a canonical collection
of essential annuli results in three kinds of pieces:

© |-bundles (think of ¥ x | for ¥ C Sa, . Y x1
although X x| can also occur),

@ Seifert fibered solid tori,

© Guts(S® < K, Sa). By Thurston’s theory °@ Y x0

the guts admits hyperbolic structure.
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Topology of Guts and Volume

Guts serve as an indication that a surface Sy is far from being a fiber.
@ If Sais afiber of My = Sa x I: no guts. (Recall, 5 =0)

@ Guts(S3 K, Sa) = 0 M4 is union I-bundles and solid tori. — Sx is
“almost fiber” .

@ We want to calculate x(Guts (M, S)) because it estimates volume via the
following theorem:

Theorem (Agol-Storm—-W. Thurston, 2007)

Let M be a compact 3—manifold with hyperbolic interior of finite volume, and
S C M an embedded essential surface. Then

Vol (M) > —vg x(Guts (M, S)),

where vg ~ 3.6638 is the volume of a regular ideal octahedron.
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A glimpse into the meaning of g, : Special case

D(K) =an A-adequate diagram with Sp the corresponding all-A state surface.

Theorem (FKP, 2011) m

Let D(K) be an A—adequate diagram such that
every 2—edge loop in Ga comes from a twist region.
Then the surface Sa satisfies

V(Guts (S?~ K, Sp)) = 1 Xxx

In General ,
x(Guts (S \ K, Sp)) = 1 — g+ explicit correction term

twist region

Under the hypotheses of theorem,

Vol (S3 \K) > vg (Bk — 1).

Alternating knots: follows from work of Lackenby and Dasbach-Lin.
A. Giambrone: large families of non-alternating knots satisfying hypethesis.
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A worked example
D(K) all-A state

e s
Gk
9s)

1- |ﬂl| = X(Ga) = x(Sa)

Ga = G

Effie Kalfagianni (MSU)



A worked example
D(K) all-A state

e s
Gk
9s)

1—168'] = x(Ga) = x(Sa) = x(S*\\Sa) = x(Guts) = -3

Ga = G

vg (|[#'] — 1) = —vgx(Gh) = 10.99...

Vol (S® W K) = 13.64...

Exercise. Above diagram is also B-adequate and the reduced state graph Sg
is a tree. Thus K is fibered knot with fiber the state surface Sg.
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Sample family: positive braids

W/—US\ X s
\:J—U\\; 201030503

Theorem (FKP)

Suppose that K is the closure of a positive braid b = oj'0? - - - o7, where
r; > 3 for all j. In other words, there are k twist regions, each with at least 3

crossings.
Then K is hyperbolic, and

% k < Vol (S® < K) < 10vs(k — 1).
Similarly,

Vg (B —1) < VoI(S® <\ K) < 15v3 By — 25v3.

y
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Sample family: positive braids
Y00 00X

~
\

N
4 3 3 3 4
\ 0,01030,03

Theorem (FKP)

Suppose that K is the closure of a positive braid b = oj'0? - - - o7, where
r; > 3 for all j. In other words, there are k twist regions, each with at least 3

crossings.
Then K is hyperbolic, and

% k < Vol (S® < K) < 10vs(k — 1).
Similarly,

Vg (B —1) < VoI(S® <\ K) < 15v3 By — 25v3.

Here, vz = 1.0149... is the volume of a regular ideal tetrahedron and
vg = 3.6638... is the volume of a regular ideal octahedron.
The gap between the upper and lower bounds is a factor of 4.155...

y
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Sample family: Montesinos links

A Montesinos knot or
link is constructed by

connecting n rational
tangles in a cyclic g\ \
fashion. N

QOO

Every Montesinos link is either A— or B—adequate.

&
§’\

Theorem (FKP + Finlinson)
Let K be an A—adequate Montesinos link. Then

vg (B —2) < Vol (S K).

o
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Sample family: Montesinos links

A Montesinos knot or
link is constructed by

connecting n rational
tangles in a cyclic g\ \
fashion. N

QOO

Every Montesinos link is either A— or B—adequate.

&
§’\

Theorem (FKP + Finlinson)
Let K be an A—adequate Montesinos link. Then

vg (B —2) < Vol (S K).
If K has length at least four we get two-sided volume estimates:
Vg (max{fx, Bk} —2) < Vol (S®\K) < 4vg (Bk + Bc — 2) + 2vg (#K),
where #K is the number of link components of K.

o
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Volume Conjecture

Results and experimental evidence prompt (A coarse Volume conjecture?):

Question. Does there exist function B(K) of the coefficients of the colored
Jones polynomials of a knot K, that is easy to calculate from state graphs
such that for hyperbolic knots, B(K) is coarsely related to hyperbolic volume
Vol (S® W K) ?

Are there constants C; > 1 and C, > 0 such that

C,;'B(K)—C, < VoI (S*\K) < C1B(K) + Cy,
for all hyperbolic K?

@ Results and stabilization properties of CJP prompt more guided
speculations as to where one might look for B(K).

@ Volume Conjecture (Kashaev 1990's, H. Murakami-J. Murakami, 2001)
predicts relations between volume and coefficients of CJP— The entire
JCP should determine the volume exactly.

27 lim = Vol (S® \ K).

n—oo
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speculations as to where one might look for B(K).

@ Volume Conjecture (Kashaev 1990's, H. Murakami-J. Murakami, 2001)
predicts relations between volume and coefficients of CJP— The entire
JCP should determine the volume exactly.

27 lim = Vol (S® \ K).

n—oo

Effie Kalfagianni (MSU) J 2429

log |9 (/M)
n



2—edge loops and I-bundles of S3\\Sa

Every 2—edge loop in Ga gives rise to a disk D that intersects K twice — a
essential product disk (EPD) in the complement of the state surface Sa.

>y b
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2—edge loops and I-bundles of S3\\Sa

Every 2—edge loop in Ga gives rise to a disk D that intersects K twice — a
essential product disk (EPD) in the complement of the state surface Sa.

>y b

@ To find Guts (S3\\Sa), start with S\\S, and remove I-bundle pieces.

@ When we remove and EPD from S3\\Sa, Euler number x(S3\\Sa) goes
up by 1. Removing a redundant edge from G also increases x(Ga) by 1.

@ Initially, before the cutting, x(Ga) = x(Sa) = x(S3\\Sa).

@ We prove that the maximal I-bundle of S3\\S, is spanned by EPD’s that
correspond to 2—edge loops in Ga.
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2—edge loops and I-bundles of S3\\Sa

Every 2—edge loop in Ga gives rise to a disk D that intersects K twice — a
essential product disk (EPD) in the complement of the state surface Sa.

>y b

@ To find Guts (S3\\Sa), start with S\\S, and remove I-bundle pieces.

@ When we remove and EPD from S3\\Sa, Euler number x(S3\\Sa) goes
up by 1. Removing a redundant edge from G also increases x(Ga) by 1.

@ Initially, before the cutting, x(Ga) = x(Sa) = x(S3\\Sa).

@ We prove that the maximal I-bundle of S®\\S, is spanned by EPD’s that
correspond to 2—edge loops in G,. If this correspondence is bijective,

x(Guts) = x(Sa) + #EPDs = x(Ga \ extra edges) = x(Gj).
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Topology of 3 : most general form

A 2—edge loop in G may correspond to multiple product disks, some of which
are complex. The number of complex disksis  ||Ec|| > 0.
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Topology of 3 : most general form

A 2—edge loop in G may correspond to multiple product disks, some of which
are complex. The number of complex disksis  ||Ec|| > 0.

Theorem (FKP)

Let D(K) be an A—adequate diagram. Then the state surface Sp satisfies

X(Guts (S°\K, Sa)) — [[Ec|]| = x(Gx) = 14k,
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Topology of 3 : most general form

A 2—edge loop in G may correspond to multiple product disks, some of which
are complex. The number of complex disksis  ||Ec|| > 0.

Theorem (FKP)

Let D(K) be an A—adequate diagram. Then the state surface Sp satisfies

X(Guts (S°\K, Sa)) — [[Ec|]| = x(Gx) = 14k,

Under favorable conditions (positive braids, “long” Montesinos links, 3-braids),
we get a diagram for which ||E¢|| = 0, hence x(Guts) =1 — |5'|.
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Topology of 3 : most general form

A 2—edge loop in G may correspond to multiple product disks, some of which
are complex. The number of complex disksis  ||Ec|| > 0.

Theorem (FKP)

Let D(K) be an A—adequate diagram. Then the state surface Sp satisfies

X(Guts (S°\K, Sa)) — [[Ec|]| = x(Gx) = 14k,

Under favorable conditions (positive braids, “long” Montesinos links, 3-braids),
we get a diagram for which ||E¢|| = 0, hence x(Guts) =1 — |5'|.

Question: For each A—adequate link, is there a diagram with ||E¢|| = 0?
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Tool for the proof: a nice polyhedral decomposition

Our results are proved using normal surface theory in a suitable polyhedral
decomposition of the surface complement S3\\Sa.

For alternating links, this is Menasco’s polyhedral decomposition:

)

o
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@ The two polyhedra are “balloons”
above and below projection plane.
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@ Faces are regions of the diagram.
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decomposition of the surface complement S3\\Sa.

For alternating links, this is Menasco’s polyhedral decomposition:

@ The two polyhedra are “balloons”
above and below projection plane.

@ Faces are regions of the diagram.

@ Edges are at crossings, 4—valent.
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Our results are proved using normal surface theory in a suitable polyhedral
decomposition of the surface complement S3\\Sa.

For alternating links, this is Menasco’s polyhedral decomposition:

@ The two polyhedra are “balloons”
above and below projection plane.

@ Faces are regions of the diagram.

@ Edges are at crossings, 4—valent.

@ Vertices are ideal (at infinity, on K). C//-\]7
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Tool for the proof: a nice polyhedral decomposition

Our results are proved using normal surface theory in a suitable polyhedral
decomposition of the surface complement S3\\Sa.

For alternating links, this is Menasco’s polyhedral decomposition:

@ The two polyhedra are “balloons”
above and below projection plane.

@ Faces are regions of the diagram.
@ Edges are at crossings, 4—valent.

@ Vertices are ideal (at infinity, on K). C//-\]7

@ Faces are checkerboard colored.

@ The union of all the shaded faces is a
checkerboard surface Sp.
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Tool for the proof: a nice polyhedral decomposition

Our results are proved using normal surface theory in a suitable polyhedral
decomposition of the surface complement S3\\Sa.

For alternating links, this is Menasco’s polyhedral decomposition:

@ The two polyhedra are “balloons”
above and below projection plane.

Faces are regions of the diagram.
Edges are at crossings, 4—valent.

Vertices are ideal (at infinity, on K). C//-\]7

Faces are checkerboard colored.

The union of all the shaded faces is a
checkerboard surface Sp.
@ Hence, gluing along white faces only

produces a decomposition of S3\\Sa.
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Polyhedral decomposition of the surface complement

Our surface S, is layered below the plane of projection. We need more
balloons to subdivide S3\\Sa.
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Combinatorial descriptions of Polyhedra

Lower polyhedra are identical to checkerboard polyhedra of alternating
sublinks.

Upper polyhedron: Ideal edges and shaded faces are sketched by tentacles
on projection of Ha
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