Math 110 SS 2007
Lecture \#1. Factoring Polynomials. Rational Expressions. P5, P6 (PART I).

Factoring Polynomials.

- Definition of a Polynomial in x.

A polynomial in x is an algebraic expression in the form $a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0}$,
where
$a_{n}, a_{n-1}, a_{n-2}, \ldots, a_{1}$, and a_{0} are real numbers, $a_{n} \neq 0$, n is a nonnegative integer.
n is the degree of polynomial
a_{n} is the leading coefficient, a_{0} is the constant term.

- Factoring is the process of writing a polynomial as the product of two or more polynomials. We will do factoring with integer coefficients. Polynomials that cannot be factored using integer coefficients are called irreducible over the integers, or prime.
- Methods of Factoring.
A. Factoring out the Greatest Common Factor.

Problem \#1. Factor

a) $25 x^{5}-15 x^{3}$
b) $3 x(x-2)-24(x-2)$

Math 110 SS 2007
Lecture \#1. Factoring Polynomials. Rational Expressions. P5, P6 (PART I).
B. Factoring by grouping.

Problem \#2. Factor
$x^{4}-5 x^{3}-3 x+15$
C. Factoring Trinomials $a x^{2}+b x+c$.

Problem \#3. Factor
a) $x^{2}+5 x+6$
b) $6 x^{2}+13 x-5$
D. Factoring the Difference of Two Squares.

$$
A^{2}-B^{2}=(A+B)(A-B)
$$

Problem \#4. Factor
a) $121 x^{2}-4 y^{2}$
b) $x^{2}-5$
E. Factoring Perfect Square Trinomials.

$$
\begin{aligned}
& A^{2}+2 A B+B^{2}=(A+B)^{2} \\
& A^{2}-2 A B+B^{2}=(A-B)^{2}
\end{aligned}
$$

Problem \#5. Factor

a) $x^{2}-10 x+25$
b) $2 x^{3}+12 x+18$
F. Factoring Sums and Differences of Two Cubes.

$$
\begin{aligned}
& A^{3}+B^{3}=(A+B)\left(A^{2}-A B+B^{2}\right) \\
& A^{3}-B^{3}=(A-B)\left(A^{2}+A B+B^{2}\right)
\end{aligned}
$$

Rational Expressions.

- Definition.

A Rational Expression is the quotient of two polynomials. Examples:

$$
\frac{x^{2}-2 x+5}{x-1}, \quad \frac{1}{x}, \quad \frac{x-1}{5}, \quad \frac{x+4}{x^{3}+x^{2}+x+1}
$$

- The Domain of the Rational Expression.

The Domain of the Rational Expression is the set of real numbers for which the expression is defined.

Lecture \#1. Factoring Polynomials. Rational Expressions. P5, P6 (PART I).
Problem \#6. Find the domain for the following rational expressions.
a) $\frac{x^{2}-2 x+5}{x-1}$
b) $\frac{1}{x}$
c) $\frac{x}{x^{2}+5 x+6}$

- Simplifying Rational Expressions.

A Rational Expression is simplified if its numerator and denominator have no common factors other than 1 or -1 .

- Simplifying Rational Expressions.

1. Factor the numerator and denominator completely.
2. Divide both the numerator and denominator by the common factors.

Problem \#7. Simplify the following rational expressions.
a) $\frac{x+2}{x^{2}-4}$
b) $\frac{x^{2}-2 x+1}{x^{2}-1}$

Math 110 SS 2007
Lecture \#1. Factoring Polynomials. Rational Expressions. P5, P6 (PART I).

- Arithmetic with Rational Expressions.
A. We can add and subtract rational expressions with the same denominator, thus we need to find the Least Common Denominator and re-write in terms of Least Common Denominator.

Problem \#8. Perform operations.
a) $\frac{2}{x+3}-\frac{x}{x+3}$
b) $\frac{2}{x+3}+\frac{x}{x-3}$
c) $\frac{x}{x^{2}-2 x}-\frac{1}{x+1}$
B. Multiplication.

The product of two rational expressions is the product of their numerators divided by the product of their denominators.

Problem \#9. Perform multiplication. Simplify your answer.

$$
\frac{x-5}{x+2} \cdot \frac{x+6}{x^{2}-25}
$$

C. Dividing rational expressions.

The quotient of two rational expressions is the product of first expression and reciprocal of second.

Problem \#10. Divide and simplify

$$
\frac{x-3}{x^{2}-1} \div \frac{x^{2}-9}{x^{2}-2 x+1}
$$

Math 110 SS 2007
Lecture \#1. Factoring Polynomials. Rational Expressions. P5, P6 (PART I).

- Simplifying Complex Rational Expressions (complex fractions).

Main idea: Re-write the numerator and denominator of a given rational expression as a single term, then perform the division.

Problem \#11. Simplify.

$$
\frac{\frac{x}{x-2}+1}{\frac{x}{x^{2}-4}+1}
$$

