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1 Introduction

A groupoid [3, 17] is a set Q endowed with a binary product, that is, a map
from Q × Q to Q. In his 1964 paper [7], Bernd Fischer studied distributive
quasigroups, which by definition are groupoids Q for which right multiplication
by any fixed element gives an automorphism of Q as does left multiplication.
Fischer proved that the right multiplication group R(Q) of a finite distributive
quasigroup Q is solvable. He did this by showing that, for a minimal counterex-
ample, the right multiplications T = {µa : g 7→ ga | a ∈ Q } are a generating
conjugacy class of involutions in R(Q) ≤ Aut(Q) with the additional property
that |tr| = 3 for distinct t and r from T . He then proved that this property
forces finite R(Q) to have a normal 3-group of index 2.

This led Fischer to consider [8, 9, 10] the extent to which finite symmetric
groups can be characterized through being generated by a conjugacy class of
involutions with all products of order 1, 2, or 3—a class of 3-transpositions,
since the model is the transposition (2-cycle) class of Sym(Ω), the symmetric
group on the set Ω. In a landmark theorem [10], Fischer found all finite 3-
transposition groups with no nontrivial solvable normal subgroups, discovering
three new sporadic simple groups along the way.

At the same time that Fischer was considering distributive quasigroups,
George Glauberman was working on certain special groupoids, called Bruck
loops. Glauberman [13] proved that finite Bruck and finite Moufang loops of
odd order are solvable. His approach was similar to Fischer’s. He constructed a
canonical conjugacy class T of involutory loop permutations with the additional
property that |tr| was always odd for t and r from T . In his famous Z∗-theorem
[14], Glauberman then proved that a finite group generated by such a class T
has a normal subgroup of odd order and index 2 (a result also proved by Fischer
[7] in the special case where all orders |tr| are powers of some fixed odd prime).

Fischer’s and Glauberman’s work on finite quasigroups and loops had a pro-
found effect on the theory of finite simple groups. For a normal set of involutions
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T in the group G, let the order spectrum of T be the set Spec(T ) = { |tr| | t, r ∈
G }. Fischer’s questions concerned groups generated by a class T with spec-
trum contained in {1, 2, 3}, and Glauberman’s work dealt with a class whose
spectrum was entirely odd.

If G = 〈T 〉, then by convention G is called an S-transposition group, where
S = Spec(T ) \ {1, 2} (since 1 is always in the spectrum and Glauberman’s Z∗-
theorem largely handles the case when 2 is not in the spectrum). Fischer’s
ideas motivated a great deal of work characterizing finite groups in terms of
the spectrum of an involution class. Notable early examples were Timmesfeld’s
results [19] on finite {3, 4}-transposition groups and Aschbacher’s classification
[1] of finite odd-transposition groups (order spectrum in {1, 2, 3, 5, 7, 9, . . .}) with
no nontrivial solvable normal subgroup.

Much later Cuypers and the present author [5] classified all 3-transposition
groups with trivial center and having order spectrum {1, 2, 3}. In contrast to
Fischer’s theorem where the groups that occur are nearly simple, there are
conclusions with relatively complicated normal structure. In particular, the
following construction due to Zara and, in part, Doro becomes relevant. (Here
FSym(Ω) is the subgroup of Sym(Ω) generated by transpositions; see Section
2.2 below.)

( 1.1) Theorem. (Zara [21], Doro [6]) Let T be the transposition class of
the full wreath product K oΩ FSym(Ω) with |Ω| ≥ 2. Let the associated projection
homomorphism be π : K oΩ FSym(Ω) −→ FSym(Ω). Then, for all t, r ∈ T , we
have

if π(t) 6= π(r), then |π(t)π(r)| = |tr| .

The order spectrum Spec(T ) = { |tr| | t, r ∈ T } is equal to { |k| | k ∈ K } when
|Ω| = 2, equal to {3}∪{ |k| | k ∈ K } when |Ω| = 3, and equal to {2, 3}∪{ |k| | k ∈
K } when |Ω| > 3.

Therefore, in considering general 3-transposition groups in [15, Theorem 8.2],
the author needed to characterize full wreath products in which the wreathed
group K had all elements of order 1, 2, or 3. Similarly, in Aschbacher’s work
on odd-transpositions, he had to characterize [1, Lemma 3.11] wreath products
with K isomorphic to PSL2(2a), for a ≥ 2, as these are simple groups each of
whose elements has order 2 or odd order.

Let Wr(K, Ω) be the subgroup of K oΩ FSym(Ω) that is generated by the
transposition class. The next theorem is the main result of this paper and
provides a nearly complete converse to Theorem 1.1.

( 1.2) Theorem. Let T be a conjugacy class of involutions in the group
G = 〈T 〉; and let π : G −→ FSym(Ω), with |Ω| ≥ 4, be a homomorphism in
which π(T ) is the transposition class of FSym(Ω). Further assume that, for all
t, r ∈ T , we have

if π(t) 6= π(r), then |π(t)π(r)| = |tr| .
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Then there is a group K with

G/Z(G) ' Wr(K, Ω)/Z(Wr(K, Ω)) .

For π(t) 6= π(r) the only possible orders |π(t)π(r)| are 2 and 3. A version of
the theorem holds even if we only assume, for all t, r ∈ T , that we have

(†) if |π(t)π(r)| = 2, then |tr| = 2 .

Section 2 provides various properties of wreath products, in particular a
proof of the Zara-Doro Theorem 1.1. Section 3 then proves Theorem 1.2 in
a more precise form and presents some related results, such as that on (†)
mentioned in the previous paragraph. Section 4 deals with symmetric quotients
Sym(Ω) for which we only assume

(‡) if |π(t)π(r)| = 3, then |tr| = 3 ,

the focus and critical case being |Ω| = 3. We see that such groups are in-
timately connected with Moufang loops; so we have come full circle, arriving
back at quasigroups and loops—Fischer’s and Glauberman’s original motiva-
tions. We use Theorem 1.2 to characterize and illuminate certain Moufang
loops first discussed by Chein [4]1. We close Section 4 and the paper by noting
that a counterpart to Theorem 1.2 assuming only (‡) would have a much longer
list of conclusions.

Our general references for quasigroups and loops are [3, 17]. For group
theory, see [2].

2 Wreath products

2.1 Relative universal central extensions

Let G be a group generated by the normal subset T of involutions. Consider
the group U(G, T ) given by the presentation

U(G, T ) = 〈 t̃, t ∈ T | t̃r̃t̃ = t̃rt, t, r ∈ T 〉 .

The group U(G, T ) is the universal central extension of G relative to T . We
also write UT(G, T ) = { t̃ | t ∈ T }. The terminology is justified by

( 2.1) Proposition. The map t̃ 7→ t extends to a homomorphism from
U(G, T ) onto G with kernel Z central in U(G, T ). Indeed let G0 be a group
generated by a normal set of involutions T0 for which there exists a bijection
φ : T −→ T0 with φ(t)φ(r)φ(t) = φ(trt), for all t, r ∈ T . Then there is a central
subgroup Z0 of U(G, T ) with G0 ' U(G, T )/Z0 and UT(G, T )Z0/Z0 = T0.

Furthermore, for all t, r ∈ T , we have |tr| = |φ(t)φ(r)| = |t̃r̃|.
1After this paper was submitted, the author learned that R.T. Curtis had, in a Rayleigh

Prize essay submitted to the University of Cambridge in early 1970, given a Moufang loop
construction essentially the same as that of Chein.
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Proof. There is a canonical isomorphism between U(G, T ) and U(G0, T0),
so we need only verify the remarks relating G̃ = U(G, T ) and G. Set T̃ =
UT(G, T ). By design G is a homomorphic image of G̃. In particular, each t̃ has
even order and each |t̃r̃| is a multiple of |tr|.

The elements t̃ of even order are indeed involutions, since t̃ = t̃tt = t̃t̃t̃ for
all t ∈ T . Therefore t̃r̃t̃ = t̃−1r̃t̃, and the set T̃ is a normal generating set for
G̃. Considering the image G̃/Z ' G, we find T̃ ∩ t̃Z = {t̃} for each t̃ ∈ T̃ . Thus
Z fixes each t̃ and so is central in G̃ = 〈T̃ 〉, as claimed.

Let |tr| = k, so that k divides |t̃r̃|. The relation (tr)k = 1 is equivalent
to the relation trt · · · trt = r, which says that two elements from T are equal.
This leads in G̃ to the corresponding relation in t̃ and r̃ and thus to (t̃r̃)k = 1.
Therefore t̃r̃ has order k. For instance, if tr has order 3, then t̃(r̃t̃r̃)t̃ = t̃ r̃tr t̃ =
(t(rtr)t)∼ = r̃; so (t̃r̃)3 = 1, and t̃r̃ has order 3.

Remarks. (1) Start from the free group with a generator ĝ for each element
g of the group G. The multiplication table for G then gives a natural set of
relations ĝĥ = ĝh that defines G. Similarly here, the transform table for the
generating normal set T defines G up to a central subgroup (not visible in the
transform data).

(2) An equivalent set of relations would consist of all t̃2 = 1 and t̃r̃ = t̃r.
For a normal generating subset with elements of arbitrary order, the orders
and transform table can again be used to define a relative universal central
extension, although orders of products do not behave in general. For instance,
if T = {t1, . . . , t4} is a conjugacy class of elements of order 3 in Sym(4), then
the corresponding universal group

〈 t̃i, 1 ≤ i ≤ 4 | t̃3i = 1, t̃−1
i t̃j t̃i = t̃−1

i tjti, 1 ≤ i, j ≤ 4 〉

is SL2(3), where |t̃it̃j | = 6 whenever |titj | = 3.

2.2 Some properties of wreath products

If Ω is a set, then the finitary symmetric group FSym(Ω) is the group of all
permutations of Ω that only move a finite number of letters. Thus when Ω is
finite FSym(Ω) = Sym(Ω), but when Ω is infinite FSym(Ω) is a proper normal
subgroup of Sym(Ω). Here FSym(Ω) might best be thought of as the normal
subgroup generated by the conjugacy class (a, b)Sym(Ω) = (a, b)FSym(Ω) of all
2-cycles or transpositions.

Any automorphism of FSym(Ω) that takes transpositions to transpositions
actually belongs to Sym(Ω). In particular, since we always will identify the
transposition class, we will not need to worry about the distinction between
FSym(Ω) as permutation group and as abstract group. A subgroup H of
FSym(Ω) that is generated by transpositions must be the subgroup

⊕
FSym(∆),

where ∆ runs through the nontrivial orbits of H on Ω.

Let G be a group that acts permuting the G-space Ω. Given a group K, the
wreath product K oΩ G is the split extension of B = KΩ by G. The base group
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B is the group of all functions from Ω to K with pointwise multiplication, the
action of G on B being given by fg(xg) = f(x), for f ∈ B, x ∈ Ω, and g ∈ G.
In the special case G = Sym(Ω), we call K oΩ Sym(Ω) the (unrestricted) full
wreath product.

For each x ∈ Ω, there is an injection of K into B written k 7→ kx with image
Kx, where the function kx has values kx(x) = k and kx(y) = 1 for y ∈ Ω with
y 6= x. The subgroup B0 '

⊕
x∈Ω Kx spanned by the various Kx is invariant

under G, and the subgroup B0 : Sym(Ω) is the restricted full wreath product.
The action simplifies to kg

x = kx.g.
We shall be interested in normal subgroups B : FSym(Ω) (= K oΩ FSym(Ω))

and B0 : FSym(Ω), the finitary full wreath products. Of course for finite Ω we
have

K oΩ Sym(Ω) = B0 : Sym(Ω) = B0 : FSym(Ω) = B : FSym(Ω) .

Indeed, essentially all our calculations will be done within the group

Wr(K, Ω) = [B,FSym(Ω)] FSym(Ω) ≤ B0 : FSym(Ω) ,

which we call the augmented full wreath product. The group Wr(K, Ω) is again
best thought of as the normal subgroup of the wreath product generated by the
conjugacy class T = (a, b)KoΩFSym(Ω) containing the 2-cycle class of FSym(Ω)
(see Lemma 2.2 below). We call T = T(K, Ω) the set of transpositions of
K oΩ FSym(Ω).

For each of the various versions of the wreath product, the intersection with
B is the corresponding base subgroup. The homomorphism π with the base
subgroup as kernel is projection onto the corresponding version of the symmetric
group. We write B(K, Ω) for B ∩Wr(K, Ω) = [B,FSym(Ω)].

Throughout we will write Sym(n) for the group Sym({1, 2, . . . , n}), Wr(K, n)
for Wr(K, {1, 2, . . . , n}), and so forth.

( 2.2) Lemma. Let (a, b) be a transposition of FSym(Ω) ≤ K oΩ Sym(Ω).
Then T ∩ (a, b)B = (a, b)B = { kak−1

b (a, b) | k ∈ K }. In particular, Wr(K, Ω) =
〈T(K, Ω)〉. If |Ω| ≥ 3 then (a, b)B = (a, b)[B,(b,c)].

Proof. The normalizer of the coset (a, b)B is generated by (a, b)B and
Sym(Ω \ {a, b}), which centralizes (a, b). Therefore T ∩ (a, b)B = (a, b)(a,b)B =
(a, b)B , giving the first equality.

For f ∈ B we have (a, b)f = [f, (a, b)](a, b), so we calculate [f, (a, b)] =
f−1f (a,b). If x ∈ Ω\{a, b}, then f−1f (a,b)(x) = f−1(x)f (a,b)(x) = f(x)−1f(x) =
1. On the other hand f−1f (a,b)(a) = f(a)−1f(b) = k, say, and f−1f (a,b)(b) =
f(b)−1f(a) = k−1. Therefore [f, (a, b)] = f−1f (a,b) = kak−1

b , as claimed. All
possible k do occur, as seen by taking f = kb or indeed any function with
f(a) = 1 and f(b) = k, for instance f(c) = k−1.

( 2.3) Corollary. Assume |Ω| ≥ 3. Then

[B(K, Ω), (a, b)] = [B, (a, b)] = (K ′
a ×K ′

b){ kak−1
b | k ∈ K } .
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In particular [B(K, Ω), (a, b)] ∩ [B(K, Ω), (b, c)] = K ′
b and

K ' [B(K, Ω), (a, b)]/[B(K, Ω), (a, b)] ∩ [B(K, Ω), (b, c)] .

Proof. Clearly [B(K, Ω), (a, b)] ≤ [B, (a, b)] ≤ (K ′
a ×K ′

b){ kak−1
b | k ∈ K },

so it is enough to show K ′
a ≤ [B(K, Ω), (a, b)]. But [kak−1

c , [hbh
−1
c , (a, b)]] =

[k, h]a.

( 2.4) Proposition. For arbitrary k, h ∈ K and distinct a, b, c, d ∈ Ω (as
possible), we have:

(1)
(
kak−1

b (a, b)
)hah−1

b (a,b)
= (hk−1h)a(hk−1h)−1

b (a, b);

(2)
(
kak−1

b (a, b)
)hbh−1

c (b,c)
= (kh)a(kh)−1

b (a, c);

(3)
(
kak−1

b (a, b)
)hah−1

b (c,d)
= kak−1

b (a, b).

Proof. These are routine and direct calculations.

Proof of Zara and Doro’s Theorem 1.1:
For t, r ∈ T , if |π(t)π(r)| = 2, then π(t) = (a, b) and π(r) = (c, d) for distinct

a, b, c, d ∈ Ω. Therefore tr = t by Proposition 2.4.3, so |tr| = 2.
If |π(t)π(r)| = 3, then there are h, k ∈ K and distinct a, b, c ∈ Ω with t =

kak−1
b (a, b) and r = hbh

−1
c (b, c). By Proposition 2.4.2, tr = (kh)a(kh)−1

c (a, c).
Also by Proposition 2.4.2

rt =
(
(h−1)c(h−1)−1

b (c, b)
)(k−1)b(k

−1)−1
a (b,a)

= (h−1k−1)c(h−1k−1)−1
a (c, a) .

Therefore rt = (kh)a(kh)−1
c (a, c) = tr, so that (tr)3 = (trt)(rtr) = (rt)(tr) = 1.

To find the order spectrum of T , it remains to calculate |tr| when π(t) =
π(r). Suppose t, r ∈ (a, b)B , say t = (a, b)f and r = (a, b)g. Thus |tr| =
|(a, b)f (a, b)g| = |(a, b)fg−1

(a, b)| = |(a, b)h(a, b)| with h = fg−1. If (a, b)h =
mam−1

b (a, b) then |tr| = |mam−1
b | = |m|. Therefore the order spectrum is

contained in the given set. On the other hand, for arbitrary k ∈ K, if we take
t = kak−1

b (a, b) and r = (a, b) then |tr| = |k|; and the order spectrum is equal
to the given set.

For a group K and set Ω of size at least 2, consider the following

( 2.5) Presentation. Let UWr(K, Ω) be the group with presentation:
Generators:
〈〈k ; a , b〉〉 for arbitrary k ∈ K and distinct a, b ∈ Ω;

Relations:
for arbitrary k, h ∈ K and distinct a, b, c, d ∈ Ω (as possible)
(1) 〈〈k ; a , b〉〉2 = 1;
(2) 〈〈k ; a , b〉〉 = 〈〈k−1 ; b , a〉〉;
(3) 〈〈k ; a , b〉〉〈〈h ; a ,b〉〉 = 〈〈hk−1h ; a , b〉〉;
(4) 〈〈k ; a , b〉〉〈〈h ; b ,c〉〉 = 〈〈kh ; a , c〉〉;
(5) 〈〈k ; a , b〉〉〈〈h ; c ,d〉〉 = 〈〈k ; a , b〉〉.
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( 2.6) Theorem. Let K be a group and Ω a set with |Ω| ≥ 2. The group
UWr(K, Ω) of Presentation 2.5 is isomorphic to the universal central extension
U(Wr(K, Ω), T ) of the augmented wreath product Wr(K, Ω) relative to its set
T = T(K, Ω) of transpositions. In particular, we have 〈〈k ; a , b〉〉 = 〈〈h ; c , d〉〉 in
UWr(K, Ω) if and only if either h = k, c = a, and d = b or h = k−1, c = b, and
d = a.

Proof. For

t = kak−1
b (a, b) = (k−1)b(k−1)−1

a (b, a) ∈ T

set
t̃ = 〈〈k ; a , b〉〉 = 〈〈k−1 ; b , a〉〉 ∈ UT(K, Ω)

in accordance with relation (2.5.2). The elements t̃ have square 1 by relation
(2.5.1), so by Proposition 2.4 the relations (2.5.3-5) are the transform table
relations t̃r̃t̃ = t̃rt for the normal generating set T of Wr(K, Ω), giving the
theorem.

Because of the natural bijection with T(K, Ω), we call the elements of the
set UT(K, Ω) = { 〈〈k ; a , b〉〉 | k ∈ K, a, b ∈ Ω } the transpositions of UWr(K, Ω).
This normal generating set is in bijection with T(K, Ω). The map 〈〈k ; a , b〉〉 7→
(a, b) extends to the projection homomorphism πU : UWr(K, Ω) −→ FSym(Ω).
The kernel UB(K, Ω) of πU is called the base subgroup of UWr(K, Ω). If we
let Z be the central kernel of the natural map from UWr(K, Ω) to Wr(K, Ω),
then the natural projection π : Wr(B,Ω) −→ FSym(Ω) factors through πU since
Z ≤ UB(K, Ω) and UB(K, Ω)/Z = B(K, Ω).

( 2.7) Remark. For |Ω| ≥ 3, the relations (2.5.3) are redundant, being
consequences of the relations (2.5.1), (2.5.2), and (2.5.4). Specifically, we have

〈〈k ; a , b〉〉〈〈h ; a ,b〉〉 = 〈〈k−1 ; b , a〉〉〈〈h ; a ,b〉〉

=
(
〈〈k−1 ; c , a〉〉〈〈1 ; b , c〉〉〈〈k−1 ; c , a〉〉

)〈〈h ; a ,b〉〉

= 〈〈k−1 ; c , a〉〉〈〈h; a ,b〉〉〈〈1 ; c , b〉〉〈〈h
−1; b ,a〉〉〈〈k−1 ; c , a〉〉〈〈h; a,b〉〉

= 〈〈k−1h ; c , b〉〉〈〈h−1 ; c , a〉〉〈〈k−1h ; c , b〉〉
= 〈〈k−1h ; c , b〉〉〈〈h ; a , c〉〉〈〈k−1h ; c , b〉〉
= 〈〈h(k−1h) ; a , b〉〉 .

3 A characterization of the full wreath product

We now look for sensible converses to Zara and Doro’s Theorem 1.1. Thus
throughout this section we will be concerned with the various forms of the

( 3.1) Hypothesis. Let T be a normal set of involutions in the group G =
〈T 〉; and let π : G −→ FSym(Ω) be a homomorphism in which π(T ) is the
transposition class of FSym(Ω) with |Ω| ≥ 3. Assume additionally one of:
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(1) T is a conjugacy class of G and, for all t, r ∈ T , if π(t) 6= π(r),
then |π(t)π(r)| = |tr|;
(2) for all t, r ∈ T , if π(t) 6= π(r), then |π(t)π(r)| = |tr|;
(3) T is a conjugacy class of G and, for all t, r ∈ T , if |π(t)π(r)| = 2,
then |tr| = 2;

(4) for all t, r ∈ T , if |π(t)π(r)| = 2, then |tr| = 2;

(5) T is a conjugacy class of G and, for all t, r ∈ T , if |π(t)π(r)| = 3,
then |tr| = 3;

(6) for all t, r ∈ T , if |π(t)π(r)| = 3, then |tr| = 3.

For |Ω| = 2 the hypothesis would only say that G is an imperfect group
generated by involutions (from a single class in 3.1.1, 3.1.3, and 3.1.5). There
is little to be added in this case.

Under any version of the hypothesis and for ∆ a subset of Ω, we let G∆ =
〈 t ∈ T |π(t) = (a, b), a, b ∈ ∆ 〉 and G∆ = 〈 t ∈ T |π(t) = (a, b), a, b 6∈ ∆ 〉. We
shall frequently write Ga,b for G{a,b} = 〈 t ∈ T |π(t) = (a, b) 〉, Ga for G{a}, and
so forth.

(3.2) Lemma. Under any version of Hypothesis 3.1, suppose Ga,b ≤ H =
〈T ∩H〉 with π(H) transitive on Ω. Then H = G.

Proof. The image π(H) is a transitive subgroup generated by transposi-
tions and so is all FSym(Ω). Thus H contains every Gx,y and so all T .

The six hypotheses are not all distinct.

(3.3) Lemma. Assume Hypothesis 3.1.2 or 3.1.6. Then the normal set T is
in fact a conjugacy class, so we have Hypothesis 3.1.1 or 3.1.5 (respectively).
We also have, for t ∈ T , that tZ(G) ∩ T = {t}.

Proof. For distinct t, r ∈ T , there is an s with |π(t)π(s)| = |π(r)π(s)| = 3.
Therefore |ts| = |rs| = 3; so 〈t, s〉 ' 〈r, s〉 ' Sym(3), and t and r are conjugate
to s and each other in 〈t, r, s〉. If tr ∈ Z(G), then 〈t, r, s〉 = 〈tr〉 × 〈r, s〉 =
2× Sym(3), within which r and t are not conjugate.

By Theorem 1.1 and Proposition 2.1, the groups Wr(K, Ω) and UWr(K, Ω),
for |Ω| ≥ 3, enjoy all versions of Hypothesis 3.1 and so any of the properties
verified in this section. In particular we have:

( 3.4) Corollary. Let K be a group and Ω a set with |Ω| ≥ 3.
(1) The transposition class T = T(K, Ω) of K oΩ FSym(Ω) remains a conju-

gacy class in Wr(K, Ω). For each t ∈ T we have T ∩ tZ(Wr(K, Ω)) = {t}.
(2) In the group UWr(K, Ω) with Presentation 2.5 the set of transpositions

UT(K, Ω) is a conjugacy class. For each t ∈ UT(K, Ω) we have UT(K, Ω) ∩
tZ(UWr(K, Ω)) = {t}.

(3) For Z ≤ Z(UWr(K, Ω)), we have Z(UWr(K, Ω)/Z) = Z(UWr(K, Ω))/Z.
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Proof. Only (3) needs discussion. Let W be the preimage of the cen-
ter Z(UWr(K, Ω)/Z) in UWr(K, Ω). Certainly Z ≤ Z(UWr(K, Ω)) ≤ W .
Suppose for t, r ∈ UT(K, Ω) that tW = rW . Then by Lemma 3.3 applied
to UWr(K, Ω)/Z we have tZ = rZ. Next by (2) we have t = r. That is,
UT(K, Ω) ∩ tW = {t}. The subgroup W therefore fixes each transposition of
UT(K, Ω) and so is central in 〈UT(K, Ω)〉 = UWr(K, Ω), as claimed.

Remarks. (1) Parts (1) and (2) of the corollary can be false when |Ω| = 2.
For instance with |K| = 2 the group 2 o 2 is dihedral of order 8, so Wr(2, 2) is
2× 2.

(2) We already know from Proposition 2.1 that there is a “largest” group gen-
erated by a class with the same transform table as T(K, Ω), namely UWr(K, Ω).
The lemma and corollary tell us, for |Ω| ≥ 3, that UWr(K, Ω)/Z(UWr(K, Ω)) is
the “smallest” such group. That is, for any G generated by a class of involutions
having the same transform table as T(K, Ω), we must have G/Z(G) isomorphic
to UWr(K, Ω)/Z(UWr(K, Ω)). This smallest group UWr(K, Ω)/Z(UWr(K, Ω))
is uniquely determined up to isomorphism as a group with trivial center and
generated by a class of involutions with the same transform table as T(K, Ω).

We leave Hypothesis 3.1.5 and the equivalent 3.1.6 for now and concentrate
on the four Hypotheses 3.1.1-4, those under which products of order two are
respected.

( 3.5) Lemma. Assume that we have Hypothesis 3.1.4. For ∆ ⊆ Ω, we have
[G∆, G∆] = 1.

Proof. This is immediate.

We saw in Lemma 3.3 that Hypotheses 3.1.1 and 3.1.2 are equivalent to
each other as are Hypotheses 3.1.5 and 3.1.6. Hypotheses 3.1.3 and 3.1.4 are
not equivalent, as the following example demonstrates:

Let E be a nontrivial elementary abelian 2-group generated by S.
Then E × Wr(K, Ω) (for |Ω| ≥ 3) has generating set S × T =
{ st | s ∈ S, t ∈ T }, where T is the transposition class of Wr(K, Ω).
The set S × T is a union of |S| conjugacy classes (determined by
the projection onto central S) and satisfies Hypothesis 3.1.4 (with
π(st) = π(t)). Indeed, if u, v ∈ S × T with |π(u)π(v)| = 3, then |uv|
is 3 or 6 and (uv)3 ∈ E.

For Hypotheses 3.1.3 and 3.1.4 to have teeth, we must additionally assume
that |Ω| ≥ 4. The next result shows that in this case the example above is
essentially all that separates Hypothesis 3.1.4, the weakest of Hypotheses 3.1.1-
4, from the strongest, Hypothesis 3.1.1.

( 3.6) Proposition. Assume we have Hypothesis 3.1.4 and |Ω| ≥ 4. Then G
has a central elementary abelian 2-subgroup

E = { (tr)3 | t, r ∈ T, |π(t)π(r)| = 3 } = { tr | t, r ∈ T, tr ∈ Z(G) }
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contained in ker π and such that G/E satisfies Hypothesis 3.1.1 with respect
to the conjugacy class TE/E and the induced homomorphism πE : G/E −→
FSym(Ω).

Proof. Let a, b, c, d ∈ Ω be distinct, and let s, u ∈ T with π(s) = (a, c)
and π(u) = (b, c). Then 3 divides |su|; and e = (su)3 = (sus)(usu) = xy,
where x = sus and y = usu are both in T with π(x) = π(y) = (a, b). The
element e = xy is therefore in Ga,b and is centralized by Ga,b by Lemma 3.5.
Also e = (su)3 is in 〈s, u〉, a dihedral group, and so is inverted by s and u.
Therefore 〈e〉 is normalized by 〈s, u,Ga,b〉. As Ga,b ≥ Gc,d, this is G by Lemma
3.2. Indeed, since the normal subgroup 〈e〉 is centralized by Gc,d, whose normal
closure is G, 〈e〉 is centralized by G. As e is now both inverted and centralized
by s and u, it is a central element of order 1 or 2.

Let E = { (tr)3 | t, r ∈ T, |π(t)π(r)| = 3 }. By the previous paragraph, E is
a central elementary abelian 2-subgroup. As |Ω| 6= 2, central E is contained in
ker π; and by construction G/E satisfies Hypothesis 3.1.2 with respect to TE/E
and the induced homomorphism πE : G/E −→ FSym(Ω). By Lemma 3.3 the
normal set TE/E is a single conjugacy class, and G/E satisfies Hypothesis 3.1.1.

We saw above that the central element e is xy with x, y ∈ T . Therefore
E ≤ { tr | t, r ∈ T, tr ∈ Z(G) }. On the other hand, suppose t, r ∈ T with
tr = z ∈ Z(G). As |Ω| 6= 2, π(t) and π(r) must be equal, say (a, c). Choose a
v ∈ T with π(v) = (b, c). Replacing v by rvr if necessary, we may assume that
|rv| = 3. Then z = (tv)3 ∈ E, so E ≥ { tr | t, r ∈ T, tr ∈ Z(G) }.

( 3.7) Theorem. Assume we have Hypothesis 3.1.1 and |Ω| ≥ 4. Then there
is a group K, unique up to isomorphism, and a central subgroup Z of the group
UWr(K, Ω) with Presentation 2.5 such that

(i) G is isomorphic to UWr(K, Ω)/Z;

(ii) the isomorphism induces a bijection between the transposition
class UT(K, Ω) of UWr(K, Ω) and the class T of G;

(iii) kerπ = UB(K, Ω)/Z.

Before embarking upon our proof of the theorem, we observe that Theorem
1.2 is a direct consequence.

Proof of Theorem 1.2:
By assumption we have a group G satisfying Hypothesis 3.1.1 with |Ω| ≥ 4.

By Theorem 3.7 there is a group K and a central subgroup Z of UWr(K, Ω)
with G isomorphic to UWr(K, Ω)/Z, so by Corollary 3.4.3 the central quotient
G/Z(G) is isomorphic to UWr(K, Ω)/Z(UWr(K, Ω)). On the other hand, by
Theorem 2.6 and Corollary 3.4.3 again we also have Wr(K, Ω)/Z(Wr(K, Ω))
isomorphic to UWr(K, Ω)/Z(UWr(K, Ω)). In particular the groups G/Z(G) and
Wr(K, Ω)/Z(Wr(K, Ω)) are isomorphic, which is the conclusion of Theorem 1.2.
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We now pursue Theorem 3.7. For the balance of this section assume that
we have a group G as in Hypothesis 3.1.1, with all the attendant assumptions
and notation, and additionally that |Ω| ≥ 4. Set B = kerπ.

( 3.8) Lemma. There is a subgroup F ' FSym(Ω) with G = B.F , F ∩B = 1,
and T ∩ F the transposition class of F .

Proof. Compare [15, Lemma 8.4]. Choose ∞ ∈ Ω and for each transposi-
tion (∞, i) of π(G) ' FSym(Ω) select an element ti,∞ ∈ T with π(t∞,i) = (∞, i).
For all distinct i, j ∈ Ω, set ti,j = tj,i = ti,∞tj,∞ti,∞ = tj,∞ti,∞tj,∞, the last
equality true by hypothesis as (ti,∞tj,∞)3 = 1.

The set T0 = { ti,j | i, j ∈ Ω } contains a unique element t0 of each coset tB
for t ∈ T , so F = 〈T0〉 supplements B in G.

For distinct a, b, c ∈ Ω \ {∞}, we have 〈t∞,a, t∞,b, t∞,c〉 = 〈t∞,a, ta,b, tb,c〉 '
Sym(4), since the second generating set satisfies the relations of the Weyl group
W(A3). If |Ω| = 4, then this subgroup is F and splits the extension, as claimed.

For distinct a, b, c, d ∈ Ω \ {∞}, similarly we find 〈t∞,a, t∞,b, t∞,c, t∞,d〉 =
〈t∞,a, ta,b, tb,c, tc,d〉 ' W(A4) ' Sym(5). This implies that T0 is closed under
conjugation and that the F -class T0 = T ∩ F meets each coset tB, for t ∈ T ,
exactly once. In particular F ∩ B, the kernel of the map F −→ FSym(Ω), is
central in F . Let z be an element of F ∩B. As T0 generates F , there is a finite
subset ∆ of size m ≥ 3 with z ∈ F1 = 〈 ti,j | i, j ∈ ∆ 〉. Arguing as before we see
that F1 has a generating set with the relations of W(Am−1) ' Sym(m) and so
has trivial center. Therefore z = 1 and F ∩B = 1, completing the lemma.

The following is immediate for |Ω| ≤ 3 and otherwise comes from the lemma.

(3.9) Corollary. The group UWr(1,Ω) of Presentation 2.5 is isomorphic
to FSym(Ω) and is isomorphic to the subgroup 〈 〈〈1 ; a , b〉〉 | a, b ∈ Ω 〉 of each
group UWr(K, Ω), giving a complement to the corresponding base subgroup.

By the lemma we can and do identify F with FSym(Ω). For distinct a, b ∈ Ω,
set Ba,b = [B, (a, b)] ≤ B ∩Ga,b and Ba =

⋂
x6=a Ba,x.

( 3.10) Lemma. Let a, b, c ∈ Ω be distinct.
(1) Ba = Ba,b ∩Ba,c = CBa,b(Ga).
(2) T ∩ (a, c)B = (a, c)B = (a, c)Ba,b

, and B ∩Ga,c = Ba,c .
(3) { t(a, b) | t ∈ T ∩ (a, b)B } is a set of coset representatives for Bb in Ba,b.
(4) Ba,b ∩ Z(G) = Ba ∩ Z(G).

Proof. We have

Ba ≤ Ba,b ∩Ba,c

≤ CBa,b(〈Ga,b, Ga,c〉) = CBa,b(Ga)

≤
⋂

g∈Ga

(CBa,b(Ga))g ≤
⋂

g∈Ga

(Ba,b)g = Ba ,

11



since Ga = 〈Ga,b, Ga,c〉 is transitive on Ω \ {a} (by Lemma 3.2 and |Ω| ≥ 4!).
This gives (1).

For (2) and (3), we let Σ = T ∩ (a, c)B and consider the action of Ba,b on
Σ. For r ∈ Σ, CBa,b(r) = CBa,b(〈r, Ga,b〉) = CBa,b(Gb) = Bb by (1). So Ba,b

induces semiregular action on Σ with all stabilizers equal to Bb.
Let r1, r2 ∈ Σ. Set u = r

(a,b)
1 ∈ T ∩ (b, c)B and t = ur2 ∈ T ∩ (a, b)B. Then

rt
2 = tr2 = u = r

(a,b)
1 , hence r

t(a,b)
2 = r1 with t(a, b) ∈ B ∩ Ga,b. In particular,

Σ = (a, c)B and

Ba,c〈(a, c)〉 ≤ (B∩Ga,c)〈(a, c)〉 = Ga,c = 〈Σ〉 = [B, (a, c)]〈(a, c)〉 = Ba,c〈(a, c)〉 ;

so B ∩Ga,c = Ba,c and B ∩Ga,b = Ba,b as well, giving (2).
We also know that { t(a, b) | t ∈ T ∩ (a, b)B } contains a set of coset repre-

sentatives for Bb in Ba,b. Suppose s(a, b) and t(a, b) represent the same coset.
Then st is in the stabilizer Bb and so is centralized by Gb. The subgroup 〈st〉
is also inverted by s and t. Therefore 〈st〉 is normal in G = 〈t, Gb〉. Since it is
centralized by Gb, whose normal closure is all G, the element st is central in G.
By Lemma 3.3 we have t = s. We conclude that { t(a, b) | t ∈ T ∩ (a, b)B } is a
set of coset representatives for Bb in Ba,b as in (3).

For (4) we have Ba ≤ Ba,b, so certainly Ba ∩ Z(G) ≤ Ba,b ∩ Z(G). On the
other hand Ba,b ∩ Z(G) ≤

⋂
g∈Ga

(Ba,b)g = Ba.

( 3.11) Corollary. B = [B,FSym(Ω)] and G = [B,FSym(Ω)] FSym(Ω).

Proof. The group G/[B,FSym(Ω)] is a central quotient of UWr(1,Ω) and
so is FSym(Ω) by Corollary 3.9. Thus G = 〈T 〉 ≤ [B,FSym(Ω)] FSym(Ω) ≤ G.

Set Ka,b = Ba,b/Bb. As [Ba,b, Ga,b] = 1, we have, for all g ∈ FSym(Ω), that
(Ka,b)g = Kag,bg. Indeed, if we let K be an abstract group isomorphic to each
Ka,b, then we can choose isomorphisms K −→ Ka,b given by k 7→ ka,b so that
(ka,b)g = kag,bg for all g ∈ FSym(Ω). The inverse isomorphism Ka,b −→ K will
be given by h 7→ ha,b. That is, k = (ka,b)a,b for k ∈ K.

We wish to show that the map

µ : UT(K, Ω) −→ T given by µ (〈〈k ; a , b〉〉) = t ,

where
π(t) = (a, b) and k = (t(a, b)Bb)a,b ,

is a well-defined bijection and extends to a homomorphism from UWr(K, Ω)
onto G with central kernel.

( 3.12) Lemma. The map µ is a well-defined bijection between the conjugacy
class UT(K, Ω) of UWr(K, Ω) and the class T of G. Furthermore the map
respects the relation (2.5.2); that is, µ(〈〈k ; a , b〉〉) = µ(〈〈k−1 ; b , a〉〉) for all k ∈
K and distinct a, b ∈ Ω.
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Proof. If t ∈ T with π(t) = (a, b), then t(a, b)Bb is a coset of Bb in Ba,b

by Lemma 3.10.2 and so an element of Ka,b. Hence (t(a, b)Bb)a,b is an element
of K as claimed. Therefore if the map µ is a well-defined injection, it is also a
surjection and hence a bijection.

By Lemma 3.10.3, for each k ∈ K and distinct a, b ∈ Ω, there is a unique
t ∈ T with π(t) = (a, b) and (t(a, b)Bb)a,b = k. Therefore µ is well-defined at
least as a map from the set of ordered triples { (k, a, b) ∈ K × Ω × Ω | a 6= b }
to T . By Theorem 2.6 different triples (k, a, b) and (h, c, d) correspond to equal
transpositions 〈〈k ; a , b〉〉 = 〈〈h ; c , d〉〉 if and only if h = k−1, c = b, and d = a.
Suppose µ(〈〈k ; a , b〉〉) = t. Then π(t) = (a, b) = (b, a) and

k = (t(a, b)Bb)a,b

ka,b = t(a, b)Bb

(k−1)a,b = (a, b)tBb

(k−1)b,a = (a, b)
(
(a, b)tBb

)
(a, b) = t(b, a)Ba

k−1 = (t(b, a)Ba)b,a .

Therefore t = µ(〈〈k−1 ; b , a〉〉) as well, and µ is indeed well-defined on UT(K, Ω).
Additionally, we see that relation (2.5.2) is respected: µ(〈〈k ; a , b〉〉) = t =
µ(〈〈k−1 ; b , a〉〉) for all appropriate k, a, b.

Finally, suppose that µ(〈〈k ; a , b〉〉) = µ(〈〈h ; c , d〉〉) = t, say. Then (a, b) =
π(t) = (c, d). Hence either a = c and b = d or a = d and b = c. In the first
case we have h = (t(c, d)Bd)c,d = (t(a, b)Bb)a,b = k and in the second case
h = (t(c, d)Bd)c,d = (t(b, a)Ba)b,a = k−1, as above. In either case 〈〈k ; a , b〉〉 =
〈〈h ; c , d〉〉; so µ is injective, as desired.

( 3.13) Lemma. The map µ respects the relations (2.5.1) and (2.5.5).

Proof. The members of UT(K, Ω) and T are all involutions, so (2.5.1) is
respected.

Suppose µ(〈〈k ; a , b〉〉) = t and µ(〈〈h ; c , d〉〉) = r with a, b, c, d distinct. Then
|π(t)π(r)| = |(a, b)(c, d)| = 2 = |tr| by Hypothesis 3.1.1. That is,

µ(〈〈k ; a , b〉〉)µ(〈〈h ; c ,d〉〉) = tr = t = µ(〈〈k ; a , b〉〉) ,

as required for relation (2.5.5).

( 3.14) Lemma. The map µ respects the relation (2.5.4).

Proof. For distinct a, b, c ∈ Ω, let t = µ(〈〈k ; a , b〉〉) and r = µ(〈〈h ; b , c〉〉)
so that tr = µ(〈〈g ; a , c〉〉) To prove the lemma we must verify

µ(〈〈k ; a , b〉〉)µ(〈〈h ; b ,c〉〉) = µ(〈〈kh ; a , c〉〉) .

That is, we must prove kh = g, where k = (t(a, b)Bb)a,b, h = (r(b, c)Bc)b,c, and
g = (rtr(a, c)Bc)a,c.
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We have ka,b = t(a, b)Bb and hb,c = r(b, c)Bc, so

(kh)a,c = ka,cha,c = (ka,b)(b,c)(hb,c)(a,b)

= (b, c)t(a, b)Bb(b, c)(a, b)r(b, c)Bc(a, b)
= (b, c)t(a, b)(b, c)(a, b)r(b, c)(a, b)Bc

= (b, c)t(a, c)r(a, b)(a, c)Bc .

What needs to be verified is then

(b, c)t(a, c)r(a, b)(a, c)Bc = rtr(a, c)Bc

or equivalently
rtr(b, c)t(a, c)r(a, b) ∈ Ba .

Although this could be checked directly, it seems easier (and perhaps more
enlightening) to take a different approach. (Compare [15, Lemma 8.6].)

Set H = Ga,b,c = (B ∩H).Sym({a, b, c}). As Ba,b = [B, (a, b)], the element
(a, b) of G normalizes Ba,bBb,c = Ba,bBb,cBa,c. Therefore by Lemma 3.10.2 we
have B ∩H = Ba,bBb,c. Let

Ka = (B ∩H)/Bb,c, Kb = (B ∩H)/Ba,c, Kc = (B ∩H)/Ba,b .

Then, for {x, y, z} = {a, b, c},

Kx = (B ∩H)/By,z = Bx,yBy,z/By,z ' Bx,y/Bx,y ∩By,z = Bx,y/By ' K .

By design (x, y) is trivial on Kz and switches Kx and Ky, so

(Ka ×Kb ×Kc) : Sym({a, b, c}) = K o{a,b,c} Sym({a, b, c}) .

Consider the map H −→ K o{a,b,c}Sym({a, b, c}) given by h = vσ 7→ h̄ = v̄σ,
where σ ∈ Sym({a, b, c}) and v ∈ B∩H has image v̄ = (vBb,c)a(vBa,c)b(vBa,b)c.
By the Chinese Remainder Theorem, this map is a homomorphism with kernel
Bb,c ∩ Ba,c ∩ Ba,b ≤ Ba. So what remains is to check that the image of the
element rtr(b, c)t(a, c)r(a, b) is in the image of Ba.

By Lemma 2.2 there are m,n ∈ K with t̄ = mam−1
b (a, b) and r̄ = nbn

−1
c (b, c).

We now easily calculate

r̄t̄r̄(b, c)t̄(a, c)r̄(a, b) = (mnm−1n−1)a .

Therefore rtr(b, c)t(a, c)r(a, b) ∈ Ba,c ∩Ba,b = Ba, as desired.

( 3.15) Lemma. The map µ respects the relation (2.5.3).

Proof. This can be calculated directly as in Lemma 3.12, verified within the
wreath product subgroup H of Lemma 3.14, or deduced from relations (2.5.1),
(2.5.2), and (2.5.4) as in Remark 2.7.
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Proof of Theorem 3.7:
The group UWr(K, Ω) is its own universal central extension relative to the

class UT(K, Ω). Therefore, by Proposition 2.1 and Lemmas 3.12 through 3.15,
the bijection µ between UT(K, Ω) and T extends to a homomorphism (also µ)
from UWr(K, Ω) to G whose kernel Z is central in UWr(K, Ω).

By Lemma 3.10 and Corollary 3.11,

ker π = B = 〈Ba,b | a, b ∈ Ω 〉
= 〈 tr | t, r ∈ (a, b)B , a, b ∈ Ω 〉
= 〈µ(〈〈k ; a , b〉〉)µ(〈〈h ; a , b〉〉) | k, h ∈ K, a, b ∈ Ω 〉
= µ(UB(K, Ω)) .

Suppose K0 is a group and Z0 a central subgroup of UWr(K0,Ω) for which
we have (i)-(iii) of the theorem. By Lemma 3.10.1 our group K was chosen to
be isomorphic to

Ba,b/Bb = [kerπ, (a, b)]/[kerπ, (a, b)] ∩ [kerπ, (b, c)] ,

and by Lemma 3.10.4 this calculation is not affected by central elements. This
observation and Corollary 2.3 give

K ' [B(K, Ω), (a, b)]/[B(K, Ω), (a, b)] ∩ [B(K, Ω), (b, c)]
' [UB(K, Ω), (a, b)]/[UB(K, Ω), (a, b)] ∩ [UB(K, Ω), (b, c)]
' Ba,b/Bb

' [UB(K0,Ω), (a, b)]/[UB(K0,Ω), (a, b)] ∩ [UB(K0,Ω), (b, c)]
' [B(K0,Ω), (a, b)]/[B(K0,Ω), (a, b)] ∩ [B(K0,Ω), (b, c)]
' K0 .

Therefore K is uniquely determined up to isomorphism, and the proof of the
theorem is complete.

4 Respecting three

We return to Hypothesis 3.1.5 and the equivalent 3.1.6, those hypotheses under
which products of order three are respected. Although we can no longer force
things to commute, Hypothesis 3.1.5 is still strong, as we have seen in Remark
2.7. If t and r are distinct involutions, then the following three statements are
equivalent

(i) |tr| = 3;

(ii) 〈t, r〉 ' Sym(3);

(iii) tr = rt.

Which form is most helpful will depend upon the situation.
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4.1 Moufang loops

Most of our discussion has focused on situations described by the data (G, T, πΩ),
where T is a conjugacy class of involutions in the group G = 〈T 〉 and πΩ = π is a
homomorphism π : G −→ FSym(Ω) for which π(T ) is the transposition class of
FSym(Ω). Theorem 3.7 can then be thought of as saying that, provided |Ω| ≥ 4,
the following two statements are equivalent:

(∗) For all t, r ∈ T , if π(t) 6= π(r), then |π(t)π(r)| = |tr|.
(∗∗) There is a group K (unique up to isomorphism) and a central
subgroup Z of the group UWr(K, Ω) with Presentation 2.5 such that

(i) G is isomorphic to UWr(K, Ω)/Z;
(ii) the isomorphism induces a bijection between the trans-
position class UT(K, Ω) of UWr(K, Ω) and the class T of
G, both of cardinality 3|K|;
(iii) kerπ = UB(K, Ω)/Z.

We have already remarked that (∗) is nearly useless for |Ω| = 2. For |Ω| = 3,
the groups and triples (G, T, π3) satisfying (∗) have in fact been studied exten-
sively, starting with Glauberman [13] and Doro [6], under the name of groups
with triality (or triality groups); see [11, 12, 16, 20], for instance. Such groups
need not arise from wreath products, Cartan’s triality groups PΩ+

8 (F) : Sym(3),
for F a field, furnishing the canonical examples (and the name) of groups with
triality. This makes it all the more surprising that something very close to
Theorem 3.7 remains true.

( 4.1) Theorem. Let T be a conjugacy class of involutions in the group
G = 〈T 〉. Furthermore let π3 : G −→ Sym(3) be a homomorphism in which
π3(T ) is the transposition class of Sym(3). Then the following two statements
are equivalent:

(∗) For all t, r ∈ T , if π3(t) 6= π3(r), then |π3(t)π3(r)| = |tr|.
(∗∗∗) There is a loop L (unique up to isotopy) with the Moufang
Property and a central subgroup Z of the group UWr(L, 3) with Pre-
sentation 2.5 such that

(i) G is isomorphic to UWr(L, 3)/Z;
(ii) the isomorphism induces a bijection between the trans-
position class UT(L, 3) of UWr(L, 3) and the class T of G,
both of cardinality 3|L|;
(iii) kerπ3 = UB(L, 3)/Z.

Results near or equivalent to this can be found in all the above references (for
instance, [16, Theorem 3.6]), so we do not give a proof. A few remarks are
appropriate.

A loop is a “not necessarily associative group.” That is, L is a loop if
it has a binary multiplication with an identity element and furthermore right
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multiplication by any fixed element is a permutation of L as is left multiplication
by that element. A Moufang loop is a loop that satisfies a weak form of the
associative law called the Moufang Property: (a(bc))a = (ab)(ca), for all a, b, c ∈
L. In particular a group is a Moufang loop, and it was in this context that Doro
[6, p. 385] noted that wreath products of groups with Sym(3) produce groups
with triality. (Equivalently, wreath products respect transposition products of
order 3—Doro’s contribution to the Zara-Doro Theorem 1.1.)

Two loops L and M are isotopic if there are bijections α, β, γ from L to M
with aαbβ = (ab)γ , for all a, b ∈ L. Few results on loops are needed for our
arguments. One is this pleasant exercise: a loop isotopic to the group G is,
in fact, a group isomorphic to G (which explains why isotopy is not a concept
discussed in group theory; see [3, (i), p. 57] and [17, Corollary III.2.3]). Also we
need to know that in Moufang loops right inverses and left inverses are equal:
xy = 1 if and only if yx = 1, in which case we write y = x−1. This is part of
Theorem 4.1, or see [3, Lemma VII.3.1] and [17, I.4.2, IV.1.4].

As before UWr(L, 3) is a universal central extension relative to the invo-
lution class UT(L, 3). The above remarks about inverses show that (2.5.2) is
unambiguous. Since |Ω| = 3, relation (2.5.5) is not relevant for Theorem 4.1.
The loop L might not be associative, so relation (2.5.3) needs discussion. For
the purposes of Theorem 4.1, this relation should be written

〈〈k ; a , b〉〉〈〈h ; a ,b〉〉 = 〈〈h(k−1h) ; a , b〉〉

and remains, as in Remark 2.7, a consequence of relations (2.5.1), (2.5.2), and
(2.5.4).

We view Theorem 4.1 as saying the any group G with triality can be “co-
ordinatized” by the Moufang loop L via the bijection µ(〈〈k ; a , b〉〉) = t of (ii).
Furthermore, any loop L that coordinatizes G as in Presentation 2.5 must be
a Moufang loop and isotopic to L. Conversely, any Moufang loop coordinatizes
a group with triality, and all triality groups that it coordinatizes are central
quotients of a fixed relative universal central extension.

There are many Moufang loops that are not groups, but easily described
families of examples are hard to come by. All octonian algebras satisfy the
Moufang Property [18, 1.4.1], so their loops of units are Moufang loops. In
particular, the norm 1 split octonians over F give rise to the triality group
PΩ+

8 (F) : Sym(3).
Another easily described class of Moufang loops was given by Chein.

( 4.2) Theorem. (Chein [4, Theorem 1]) Let L be a Moufang loop in which
the subloop L0 generated by all elements of order not 2 is a proper subloop.
Then there is a subgroup H containing L0 and an element x of order 2 in L\H
such that each element of L may be uniquely expressed in the form hxa, where
h ∈ H, a = 0, 1; and the product of elements of L is given by

(h1x
d)(h2x

e) = (hn
1hm

2 )nxd+e

where n = (−1)e and m = (−1)d+e.
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Conversely, given any group H, the loop L constructed as above is a Moufang
loop. The loop L is a group if and only if the group H is abelian.

Chein’s proof is short and elementary (but somewhat messy). For the char-
acterization of the first paragraph he uses a hypothesis that is slightly stronger
than L0 < L. The two hypotheses are equivalent for finite loops, the case of
interest to Chein.

Chein’s loops can be thought of as “generalized dihedral” loops, since every
element outside the subgroup H is an element of order 2 that inverts each
element of h by conjugation. The group case is very elementary (and versions
can be found as exercises in various texts).

( 4.3) Lemma. (1) Let H be a group and L = H∪Hx a loop with multiplication
given by

(h1x
d)(h2x

e) = (hn
1hm

2 )nx(d+e mod 2)

where d = 0, 1, n = (−1)e and m = (−1)d+e. Then the loop L is a group if and
only if the group H is abelian and conjugation by x inverts each element of H.

(2) Let L be a group in which the subgroup L0 generated by all elements of
order not 2 is proper. Then there is an abelian subgroup H containing L0 and
an element x of order 2 in L \H such that L is the semidirect product of H by
〈x〉 with x inverting each element of H by conjugacy.

Proof. (1) Assume L is a group. Then h1 = 1 and d = e = 1 gives x2 = 1
when h2 = 1 and in general gives x−1h2x = xh2x = h−1

2 . Thus x inverts abelian
H, as claimed.

Conversely, if H is an abelian group and x an element of order 2 that inverts
H, then in the semidirect product H o〈x〉 we find (h1x

d)(h2x
e) = (hn

1hm
2 )nxd+e

(as is easily checked). Thus the loop L is isomorphic to the semidirect product
group H o 〈x〉.

(2) Let H0 be any subgroup with L > H0 ≥ L0. Then, for arbitrary h ∈ H0

and x ∈ L \ H, the element h is the product of the two involutions x and xh
and so is inverted by x in the dihedral subgroup they generate. Therefore if
H = L0CL(L0) is proper in L, then any choice of x in L \ H works. On the
other hand if L = L0CL(L0), then with H0 = L0 any choice of x ∈ CL(L0) \L0

reveals L to be an elementary abelian 2-group, and H can be chosen as maximal
subject to x 6∈ H.

We wish to put Chein’s construction and result into the context of the present
paper. Aside from Theorem 4.1, almost everything in this section comes from
the trivial but crucial observation that

there is a homomorphism from Sym(4) onto Sym(3) that takes trans-
positions to transpositions. Therefore, for any group H, the aug-
mented wreath product Wr(H, 4) has Sym(3) as an image, and so
Wr(H, 4) is a group with triality.

18



To make this precise, choose the homomorphism ρ : Sym(4) −→ Sym(3) so
that ρ((a, b)) = ρ((c, 4)) = (a, b), for {a, b, c} = {1, 2, 3}. Let Wr(H, 4) have
transposition class T and projection π4 from Wr(H, 4) to Sym(4). Then π3 =
ρπ4 maps Wr(H, 4) onto Sym(3) taking T to transpositions. By the Zara-Doro
Theorem 1.1 all transposition products of order 3 in Sym(4) are respected by
Wr(H, 4) and π4, and this carries over to π3 and its image Sym(3). That is,
(Wr(H, 4), T, π3) is a group with triality.

By Theorem 4.1 the triality group (Wr(H, 4), T, π3) is coordinatized by some
Moufang loop L. As we see next, this is precisely Chein’s generalized dihedral
loop from Theorem 4.2.

( 4.4) Theorem. Let H be a group, and let T = UT(H, 4) be the transposition
class of the group UWr(H, 4) whose projection map onto Sym(4) is πU

4 .
For x a new symbol, set Hx = {hx |h ∈ H } and L = H ∪Hx. We give new

names to the members of the transposition class T :

for {a, b, c} = {1, 2, 3} set
{

[h ; a , b ] = 〈〈h ; a , b〉〉
[hx ; a , b ] = 〈〈h ; 4 , c〉〉 .

Define the multiplication ◦ : L× L −→ L by

[k ; 1 , 2 ][j ; 2 ,3 ] = [k ◦ j ; 1 , 3 ]

for all k, j ∈ L.
Then L = (L, ◦) is a Moufang loop that coordinatizes the triality group

(UWr(H, 4), T, πU
3 ) (where πU

3 = ρπU
4 ) in the sense that 〈〈k ; a , b〉〉 7→ [k ; a , b ]

is an isomorphism of the group UWr(L, 3) of Theorem 4.1 with UWr(H, 4).
Furthermore, H is naturally embedded as a subgroup of L; all the elements of

the coset Hx have order 2; and the multiplication is that of the Chein generalized
dihedral loop:

(h1x
d) ◦ (h2x

e) = (hn
1hm

2 )nx(d+e mod 2)

where d = 0, 1, n = (−1)e and m = (−1)d+e.

Proof. We always have π4([k ; a , b ]) equal to (a, b) or (4, c) (for {a, b, c} =
{1, 2, 3}). Thus π4

(
[k ; a , b ][j ; b ,c ]

)
is (a, c) or (4, b), and π3

(
[k ; a , b ][j ; b ,c ]

)
is

(a, c). We conclude that [k ; a , b ][j ; b ,c ] = [m ; a , c ], for some m ∈ L. Especially,
◦ is well-defined.

Since, for h ∈ H,

[1 ; 1 , 2 ][hx ; 2 ,3 ] = 〈〈1 ; 1 , 2〉〉〈〈h ; 4 ,1〉〉 = 〈〈1 ; 2 , 1〉〉〈〈h
−1 ; 1 ,4〉〉

= 〈〈h−1 ; 2 , 4〉〉 = 〈〈h ; 4 , 2〉〉 = [hx ; 1 , 3 ] ,

always 1 ◦ hx = hx; and the identity element 1 of H is a left identity element
for (L, ◦). Similarly 1 is a right identity and so an identity element.

We have [k ; 1 , 2 ][j ; 2 ,3 ] = [kj ; 1 , 3 ] = [kj ; 1 , 2 ][1 ; 2 ,3 ], whence

[k ; 1 , 2 ][j ; 2 ,3 ][1 ; 2 ,3 ] = [kj ; 1 , 2 ] ;
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so right multiplication by the element j is a permutation of L and similarly
for left multiplication. We conclude that the operation ◦ gives the set L the
structure of a loop.

We now must show that the symbols [∗ ; ∗ , ∗ ] admit the relations (2.5.1),
(2.5.2), and (2.5.4). (Relation (2.5.5) is empty since |Ω| = 3, and again (2.5.3)
is a consequence of the other relations as in Remark 2.7.)

All the elements of T have order 2, so (2.5.1) holds. Also, for h ∈ H, we have
[h ; a , b ] = 〈〈h ; a , b〉〉 = 〈〈h−1 ; b , a〉〉 = [h−1 ; b , a ]; so at least in this case we
have (2.5.2). By definition [hx ; a , b ] = [hx ; b , a ] = 〈〈h ; 4 , c〉〉, so to complete
(2.5.2) we need to show that hx ◦ hx = 1 always (as claimed). But

[hx ◦ hx ; 1 , 3 ] = [hx ; 1 , 2 ][hx ; 2 ,3 ]

= 〈〈h ; 4 , 3〉〉〈〈h ; 4 ,1〉〉 = 〈〈h−1 ; 3 , 4〉〉〈〈h ; 4 ,1〉〉

= 〈〈1 ; 3 , 1〉〉 = 〈〈1 ; 1 , 3〉〉 = [1 ; 1 , 3 ] ,

as desired. This also shows that right inverses are left inverses in (L, ◦).
For relation (2.5.3), we have already shown that [k ; a , b ][j ; b ,c ] = [m ; a , c ],

for some m ∈ L; so it remains to prove k ◦ j = m. We have the special case

[hx ; a , b ][1 ; b ,c ] = [hx ; a , b ](b,c) = 〈〈h ; 4 , c〉〉(b,c) = 〈〈h ; 4 , b〉〉 = [hx ; a , c ] ,

for h ∈ H, and similarly [hx ; a , b ][1 ; a ,c ] = [hx ; c , b ]. Therefore in general
[k ; a , b ](b,c) = [k ; a , c ] and [k ; a , b ](a,c) = [k ; c , b ]. We conclude that, for
arbitrary σ ∈ Sym(3) = 〈(a, c), (b, c)〉, always [k ; a , b ]σ = [k ; aσ , bσ ].

Let σ be the element of Sym(3) given by a 7→ 1, b 7→ 2, and c 7→ 3. Then by
the previous paragraph

[k ; 1 , 2 ][j ; 2 ,3 ] = ([k ; a , b ]σ)[j ; b ,c ]σ

=
(
[k ; a , b ][j ; b ,c ]

)σ

= [m ; a , c ]σ = [m ; 1 , 3 ] ,

By the definition of ◦, we thus have k ◦ j = m and have finished our check of
relation (2.5.3).

We therefore have found a bijection 〈〈k ; a , b〉〉 7→ [k ; a , b ] from the class
UT(L, 3) of UWr(L, 3) to the class T = UT(H, 4) of UWr(H, 4) and have verified
that, via this bijection, the two classes have the same transform table. Since each
group is the universal central extension relative to its chosen class, we conclude
that this bijection extends to an isomorphism of the two groups UWr(L, 3)
and UWr(H, 4). Additionally we see that this isomorphism relates the two
projections maps by πU

3 = ρπU
4 . Also note that by Theorem 4.1 the loop L is

a Moufang loop. (The Moufang property could also be checked directly thus
rendering the present theorem independent of Theorem 4.1.)

For h ∈ H, we always have [h ; a , b ] = 〈〈h ; a , b〉〉; so h1 ◦ h2 = h1h2, and
the group H is naturally embedded in the loop L, as claimed. We have already
seen that the coset Hx consists of elements of order 2 in L. It remains to check
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Chein’s multiplication, which is summerized in the following table:

◦ h2 h2x
h1 h1h2 (h2h1)x
h1x (h1h

−1
2 )x h−1

2 h1

.

We have already observed h1 ◦ h2 = h1h2. We have h1 ◦ h2x = (h2h1)x since

[h1 ; 1 , 2 ][h2x ; 2 ,3 ] = 〈〈h1 ; 1 , 2〉〉〈〈h2 ; 4 ,1〉〉 = 〈〈h−1
1 ; 2 , 1〉〉〈〈h

−1
2 ; 1 ,4〉〉

= 〈〈h−1
1 h−1

2 ; 2 , 4〉〉 = 〈〈h2h1 ; 4 , 2〉〉
= [(h2h1)x ; 1 , 3 ] ,

and the other entries in the table are easily verified in the same way.

When H is a subloop of L, we write 〈〈h ; a , b〉〉H and 〈〈h ; a , b〉〉L to distinguish
between 〈〈h ; a , b〉〉 as an element of UWr(H, 3) and of UWr(L, 3).

( 4.5) Lemma. (1) Let H be a subloop of L. Then the natural injection
UT(H, 3) −→ UT(L, 3) given by 〈〈h ; a , b〉〉H 7→ 〈〈h ; a , b〉〉L extends to a homo-
morphism from UWr(H, 3) onto 〈 〈〈h ; a , b〉〉L |h ∈ H 〉 ≤ UWr(L, 3) with central
kernel.

(2) If the subgroup G = 〈G ∩ UT(L, 3)〉 of UWr(L, 3) contains Sym(3) =
〈〈〈1 ; 1 , 2〉〉, 〈〈1 ; 2 , 3〉〉〉, then there is a subloop H of L such that G∩UT(L, 3) =
{ 〈〈h ; a , b〉〉L |h ∈ H }.

Proof. The first part is immediate by Proposition 2.1. For (2) let H be
the set of all h ∈ L for which there is a pair a, b with 〈〈h ; a , b〉〉 ∈ G. As
Sym(3) ≤ G, once this happens for one pair a, b, then it happens for all pairs
by relation (2.5.4). By assumption 1 ∈ H, and by relation (2.5.3) the set H is
closed under inverses. Finally it is closed under multiplication by (2.5.4) again.

We now complete our recasting of Chein’s Theorem 4.2 in the present con-
text.

( 4.6) Theorem. Let L be a Moufang loop in which the subloop L0 generated
by all elements of order not 2 is a proper subloop. Then there is a subgroup H
containing L0 and an element x of order 2 in L\H such that each element of L
may be uniquely expressed in the form hxa, where h ∈ H, a = 0, 1. Furthermore
the triality group UWr(L, 3) is isomorphic to UWr(H, 4) with πU

3 = ρπU
4 .

Proof. We actually prove something a little stronger:

(a) There is a subloop H containing L0 and an element x ∈ L \ H
with L = 〈H,x〉.
(b) Suppose H is a subloop containing L0 and that x ∈ L \H with
L = 〈H,x〉. Then H is a subgroup, and the triality group UWr(L, 3)
is isomorphic to UWr(H, 4) with πU

3 = ρπU
4 .
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We first claim that (a) is a consequence of (b). In proving this we may
assume (b) and also, in view of Lemma 4.3.2, that L is not associative. On
the other hand, (b) applied to any subloop 〈x, L0〉 (for x /∈ L0) shows that
L0 is associative. Choose x1, x2, x3 ∈ L with (x1x2)x3 6= x1(x2x3). Then
L = 〈x1, x2, x3, L0〉, as otherwise we could apply (b) to 〈x, x1, x2, x3, L0〉, for
any x 6∈ 〈x1, x2, x3, L0〉, to reveal 〈x1, x2, x3, L0〉 as associative. Let i be the
smallest index with x = xi 6∈ 〈L0, xj | j > i 〉 = H. Then L = 〈x,H〉, as desired.

Our proof of (b) proceeds in a series of steps, the first of which is the main
point since it shows that, using H, we can partition the involutions of UT(L, 3)
in a way compatible with the involutions of Sym(4).

Step (1). Let h ∈ H and l ∈ L\H. Then 〈〈h ; a , b〉〉 and 〈〈l ; a , b〉〉 have product
of order 2.

Proof. Set t = 〈〈h ; a , b〉〉〈〈h−1 ; b ,c〉〉 = 〈〈1 ; a , c〉〉, r = 〈〈l ; a , b〉〉〈〈h−1 ; b ,c〉〉 =
〈〈lh−1 ; a , c〉〉. Then by relation (2.5.3)

tr = 〈〈1 ; a , c〉〉〈〈lh
−1 ; a ,c〉〉 = 〈〈(lh−1)2 ; a , c〉〉 = 〈〈1 ; a , c〉〉 = t ,

since lh−1 ∈ L \H has order 2. Therefore 2 = |tr| = |〈〈h ; a , b〉〉〈〈l ; a , b〉〉|.

Step (2). For {a, b, c} = {1, 2, 3}, set

P a,b = P b,a = { 〈〈h ; a , b〉〉 |h ∈ H } and P c,4 = P 4,c = { 〈〈hx ; a , b〉〉 |h ∈ H } .

Then, for σ ∈ Sym(3) = 〈〈〈1 ; 1 , 2〉〉, 〈〈1 ; 2 , 3〉〉〉, we have (P d,e)σ = P dσ,eσ

.

Proof. Immediate.

Step (3). For h, k ∈ H, we have 〈〈hk−1 ; a , b〉〉〈〈k ; b ,c〉〉 = 〈〈h ; a , c〉〉 and
〈〈hx ; a , b〉〉〈〈x ; b ,c〉〉 = 〈〈h ; a , c〉〉.

Proof. These are the special cases (u, v) = (h, k−1) and (u, v) = (h, x) of
the Right Inverse Property: (uv)v−1 = u, valid in any Moufang loop. To verify
the property, conjugate 〈〈u ; a , b〉〉〈〈v ; b ,c〉〉 = 〈〈uv ; a , c〉〉 by (b, c) to find

〈〈u ; a , c〉〉 = 〈〈uv ; a , b〉〉〈〈v ; c ,b〉〉 = 〈〈uv ; a , b〉〉〈〈v
−1 ; b ,c〉〉 = 〈〈(uv)v−1 ; a , c〉〉 ,

as desired.

Step (4). For h, k ∈ H and {a, b, c} = {1, 2, 3}, we have 〈〈hx ; a , b〉〉〈〈k ; b ,c〉〉 =
〈〈(hk−1)x ; a , c〉〉.

Proof. Set t = 〈〈h ; a , c〉〉. We have by Step (3) that 〈〈hk−1 ; a , b〉〉t =
〈〈k ; b , c〉〉 and 〈〈hx ; a , b〉〉t = 〈〈x ; b , c〉〉. Thus(

〈〈hk−1 ; a , b〉〉〈〈x ; b ,c〉〉
)t

= 〈〈k ; b , c〉〉〈〈hx ; a ,b〉〉 = 〈〈hx ; a , b〉〉〈〈k ; b ,c〉〉

〈〈(hk−1)x ; a , c〉〉t = 〈〈(hx)k ; a , c〉〉 .
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However, t = 〈〈h ; a , c〉〉 with h ∈ H, while (hk−1)x is in L \ H. Therefore by
Step (1) the element t commutes with 〈〈(hk−1)x ; a , c〉〉, giving

〈〈(hk−1)x ; a , c〉〉 = 〈〈(hk−1)x ; a , c〉〉t = 〈〈(hx)k ; a , c〉〉 .

Step (5). For t ∈ P d,e and r ∈ P f,g, we have rt ∈ P f(d,e),g(d,e)
.

Proof. If |{d, e, f, g}| = 4, then this follows from Step (1).
If |{d, e, f, g}| = 3, then there are four separate cases. For h, k ∈ H and

{a, b, c} = {1, 2, 3} we must show

(i) 〈〈h ; a , b〉〉〈〈k ; b ,c〉〉 ∈ P a,c;

(ii) 〈〈hx ; a , b〉〉〈〈k ; b ,c〉〉 ∈ P b,4;

(iii) 〈〈h ; a , b〉〉〈〈kx ; b ,c〉〉 ∈ P b,4;

(iv) 〈〈hx ; a , b〉〉〈〈kx ; b ,c〉〉 ∈ P a,c.

Part (i) is immediate, and part (ii) comes directly from Step (4). For (iii),

〈〈h ; a , b〉〉〈〈kx ; b ,c〉〉 = 〈〈kx ; b , c〉〉〈〈h ; a ,b〉〉 = 〈〈kx ; c , b〉〉〈〈h
−1 ; b ,a〉〉 ∈ P b,4

by (ii).
Using Step (4), we have for all n, k ∈ H

〈〈n ; c , a〉〉〈〈kx ; b ,c〉〉 = 〈〈kx ; b , c〉〉〈〈n ; c ,a〉〉 = 〈〈(kn−1)x ; b , a〉〉 ,

hence

〈〈(kn−1)x ; a , b〉〉〈〈kx ; b ,c〉〉 = 〈〈(kn−1)x ; b , a〉〉〈〈kx ; b ,c〉〉 = 〈〈n ; c , a〉〉 ∈ P a,c .

Since inversion and left multiplication by k are permutations of H, we can
replace kn−1 by h and find (iv) to be valid for all h, k ∈H.

We are left with the case |{d, e, f, g}| = 2. If {d, e} = {f, g} = {a, b} ⊂
{1, 2, 3}, then 〈〈h ; a , b〉〉〈〈k ; a ,b〉〉 = 〈〈k(h−1k) ; a , b〉〉 ∈ P a,b by relation (2.5.3).
If instead {d, e} = {f, g} = {c, 4} with {a, b, c} = {1, 2, 3}, then an argument
similar to that of Remark 2.7 applies. Specifically

〈〈hx ; a , b〉〉〈〈kx ; a ,b〉〉 = (〈〈1 ; c , a〉〉〈〈hx ; c , b〉〉〈〈1 ; c , a〉〉)〈〈kx ; a ,b〉〉

= 〈〈kx ; c , b〉〉〈〈hx ; c , b〉〉〈〈kx ; a ,b〉〉〈〈kx ; c , b〉〉
∈ (P a,c)〈〈kx ; c ,b〉〉 = P c,4 .

Step (6). L = H ∪Hx and UT(L, 3) =
⋃

d,e P d,e.

Proof. The subset P =
⋃

d,e P d,e of UT(L, 3) is closed under conjugation by
the previous step. Therefore by Lemma 4.5 if G = 〈P 〉, then P = G∩UT(L, 3)
and there is a subloop H1 of L with P = { 〈〈h ; a , b〉〉 |h ∈ H1 }. But L =
〈H,x〉 ≤ H1, so L = H1 and P = UT(L, 3).
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Step (7). The subloop H of the Moufang loop L is a subgroup. There is an
isomorphism UWr(H, 4) −→ UWr(L, 3) with ρπU

4 = πU
3 .

Proof. By Step (5), the map taking each member of P d,e to (d, e) ∈ Sym(4)
extends to a homomorphism πU

4 from G = 〈UT(L, 3)〉 = UWr(L, 3) (by Step
(6)) onto Sym(4) in which each element g of UWr(L, 3) permutes the six P d,e

according to πU
4 (g). By construction πU

3 = ρπU
4 .

Furthermore, for t, r ∈ UT(L, 3), if πU
4 (t) 6= πU

4 (r), then |πU
4 (t)πU

4 (r)| = |tr|
by (∗) if πU

3 (t) 6= πU
3 (r) and by Step (1) if πU

3 (t) = πU
3 (r). Therefore, by The-

orem 3.7 there is a group K with UT(L, 3) isomorphic to a central quotient
of UWr(K, 4), the homomorphism inducing a bijection between UT(K, 4) and
UT(L, 3). Thus UWr(K, 4) and UWr(L, 3) have isomorphic transform tables
relative to these two classes. Since each group has been defined as the corre-
sponding relative universal central extension, the central kernel is trivial and
the homomorphism is an isomorphism.

Again by Theorem 3.7, this isomorphism takes the base group of UWr(K, 4)
to that of UWr(L, 3), which is to say that the projection map of UWr(K, 4)
onto Sym(4) factors through πU

4 . In particular, if we look at the subgroup of of
UWr(K, 4) that projects onto Sym(3), then by Lemma 4.5 it is a central quotient
of UWr(K, 3) that the isomorphism carries to a central quotient of UWr(H, 3).
This group with triality is therefore coordinatized both by the group K and
by the Moufang loop H. By Theorem 4.1, a coordinatizing Moufang loop is
unique up to isotopy. Since, as noted above, a loop isotopic to a group is in
fact an isomorphic group, we conclude that H is a group isomorphic to K. This
concludes this step and so our proof of (b) and Theorem 4.6.

Remark. We are not claiming that our arguments are easier than those of
Chein, only that the construction and treatment via wreath products reveal how
naturally the generalized dihedral loops arise: the wreath products Wr(H, 4) are
groups with triality, so they are coordinatized by an interesting class of Moufang
loops.

4.2 A cautionary tale

The question arises: can we classify all groups with symmetric quotient of degree
at least 4 subject only to Hypothesis 3.1.5, that is, respecting transposition
products of order 3?

While a solution is conceivable, there are many examples that are somewhat
removed from the full wreath product.

( 4.7) Theorem. Let finite |Ω| ≥ 3, and further let K be a group with
{ k3 | k ∈ K } 6= 1. Then, for a faithful transitive Sym(Ω)-space ∆, the wreath
product K o∆ Sym(Ω) satisfies Hypothesis 3.1.5 if and only if ∆ is isomorphic
to the Sym(Ω)-space of i-subsets,

(
Ω
i

)
, for some 0 < i ≤ |Ω|/2.

Here we should more properly speak of that subgroup of K o∆ Sym(Ω) normally
generated by the transpositions of Sym(Ω).
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We only sketch a proof of Theorem 4.7. Let Σ be an orbit for the subgroup
S, a “transposition Sym(3)” of Sym(Ω), in the action on ∆. Then results of [6]
imply that, with K as described, the transpositions of K oΣ S generate a group
with triality with base in K3 if and only if |Σ| is 1 or 3. Therefore all orbits of
S on ∆ have length 1 or 3. However, the faithful and transitive permutation
representations of Sym(Ω) with this property are exactly those isomorphic to(
Ω
i

)
, for some 0 < i ≤ |Ω|/2.
The usual full wreath product, as in Theorem 1.2, corresponds to the case

i = 1. The Sym(4)-space
(
Ω
2

)
leads once again to triality groups. The first

new example is thus |Ω| = 5, i = 2, and |K| = 2. The transposition class
of the corresponding group 210 : Sym(5) generates a subgroup 29 : Sym(5). As
F2 Sym(5)-module, the base 29 has a submodule 25 that is the usual permutation
module. The quotient 24 is the natural module F2

4 for ΣL2(4) ' Sym(5), and
so F2

4 : ΣL2(4) satisfies Hypothesis 3.1.5.
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