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Modifications of Modified Jacobi Sequences
Tingyao Xiong, and Jonathan I. Hall, Member, IEEE,

Abstract—The known families of binary sequences having
asymptotic merit factor 6.0 are modifications to the families of
Legendre sequences and Jacobi sequences. In this paper, we show
that at N = pq, there are many suitable modifications other than
the Jacobi or Modified Jacobi sequences. Furthermore, we will
give three new modifications to the character sequences of length
N = pq. Based on these new modifications, for any pair of large
p and q, we can construct a binary sequence of length 2pq so
that such families of sequences have asymptotic merit factor 6.0
without cyclic shifting of the base sequences.

Index Terms—aperiodic correlation, character sequences,
merit factor, primitive characters.

I. INTRODUCTION

Let x = (x0, x1, . . . , xN−1) and y = (y0, y1, . . . , yN−1)
be sequences of length N . The aperiodic crosscorrelation
function between x and y at shift i is defined to be

Ax,y(i) =
N−i−1∑
j=0

xjyj+i , i = 1, ..., N − 1 . (1)

When x = y, denote

Ax(i) = Ax,x(i) =
N−i−1∑
j=0

xjxj+i , i = 1, ..., N − 1 , (2)

the aperiodic autocorrelation function of x at shift i.
The periodic crosscorrelation function between x and y at

shift i is defined to be

Px,y(i) =
N−1∑
j=0

xj yj+i, i = 0, ..., N − 1 , (3)

where all the subscripts are taken modulo N . Similarly, when
x = y, put

Px(i) =
N−1∑
j=0

xj xj+i, i = 0, ..., N − 1 , (4)

the periodic autocorrelation function of x at shift i where all
the subscripts are taken modulo N .

If the sequence x is binary, which means that all the xj’s
are +1 or −1, the merit factor of the sequence x, introduced
by Golay [1], is defined as

Fx =
N2

2
∑N−1
i=1 A2

x(i)
. (5)
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Moreover, for a family of sequences

S = {x1, x2, . . . , xn, . . . } ,

where for each i ≥ 1, xi is a binary sequence of increasing
length Ni, if the limit of Fxi exists as i approaches the infinity,
we call

F = lim
i→∞

Fxi ,

the asymptotic merit factor of the sequence family S.

Since Golay proposed the merit factor concept, finding
binary sequences with high merit factor has become a very
active research area. Specifically, there are many important
results on the asymptotic behavior of Legendre sequences and
Jacobi sequences.

For p an odd prime, a Legendre sequence of length p is
defined by the Legendre symbols

αj =
(
j

p

)
, j = 0, . . . , p− 1,

where
(
j

p

)
=
{

1, if j is a square modulo p ;
−1, otherwise. (6)

In 1988, Høholdt and Jensen [2] proved the following
theorem:

Theorem 1.1: The asymptotic merit factor F of Legendre
sequences of length p offset by the factor f is

1/F = 2/3− 4|f |+ 8f2, |f | ≤ 1/2 . (7)

By Theorem 1.1, offset Legendre sequences have an asymp-
totic merit factor 6.0 at the fraction |f | = 1

4 . In [3], J.M.
Jensen, and H.E. Jensen and Høholdt proved that the formula
(7) is also correct for Jacobi sequences and Modified Jacobi
sequences of length pq provided p and q satisfy

(p+ q)5 log4N

N3
→ 0, for N →∞ . (8)

We use (i,N) to represent the greatest common divisor of
integers i and N . Given an odd prime p, the real primitive
character modulo p takes the form

χp(j) =

{ (
j
p

)
, if (j, p) = 1 ;

0 , otherwise.
(9)

where
(
j
p

)
is the Legendre symbol as defined in expression

(6). More generally, for an odd number N , where N =
p1p2 . . . pr with p1 < p2 < · · · < pr distinct odd primes,
the real primitive character modulo N takes the form

χN (j) = χP1(j) · χP2(j) . . . χPr−1(j) · χPr (j) . (10)
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Results such as Theorem 1.1 are proved using Gauss Sums,
(see, for instance, [12] page 233).

Theorem 1.2: (Gauss Sum) For any j ∈ Z, let ξj = e
2πj
N i.

The Gauss sum χN [ξj ] associated to the primitive character
χ mod N of (10) is defined to be the complex number

χN [ξj ] =
∑N−1
m=0 χN (m)ξmj .

Then

|χN [ξj ]| =
{ √

N, if (j,N) = 1 ;
0, otherwise .

(11)

TABLE I
PRIMITIVE CHARACTERS AND SEQUENCES OF LEGENDRE FAMILIES

xk (k,N) = 1 p | k q | k
Legendre sequence χN (k) +1 −

Jacobi sequence χN (k) χq(k/p) χp(k/q)

Modified Jacobi sequence χN (k) +1 −1

The Legendre sequences, Jacobi and Modified Jacobi se-
quences just redefine the value at the i-th position where
(i,N) > 1. In this sense, all of the Legendre sequences, Jacobi
and Modified Jacobi sequences are modifications of character
sequences. TABLE I shows the close connection between the
two categories.

So far, all the known families of sequences with high
asymptotic merit factor are highly related to the primitive char-
acter sequences as defined in (10). For instance, performing
calculations on the character forms ( which are actually triple-
valued ), Borwein and Choi [4] proved that (7) is correct for all
the sequences defined as in (10) under an improved restriction
on pi’s

N ε

p1
→∞ for any ε small enough . (12)

Particularly, when N = pq for p < q distinct odd primes,
according to condition (8), we can give an upper bound of ε
in (12) as

N ε

p
→∞ for any 0 < ε <

2
5
.

This statement will be used frequently in later sections.
Recently, inspired by Parker’s work, an extension technique

has been used to construct sequences with high asymptotic
merit factor 6.0 of families of length 2p([13]), 4p ([14]),
2pq([13]), though there was some restriction to the values of
p, q (mod 4)) and as both p and q approach ∞. Specifically,
for the families of length 2p and 4p, the merit factor values
for all the rotations of the above two constructions are
computed in [15].

From the discussion above, we see that research on binary
sequences with high asymptotic merit factor has been focused
on the modification of Legendre sequences and Jacobi
sequences. However, Legendre sequences, Jacobi or modified
Jacobi sequences are just modifications of character sequences
by putting new definitions at positions i, with (i,N) > 1.
When N = pq, since the number of those positions is greater
than

√
N , people have been hesitant to change the values

at those positions ([15], Proposition 1, page 138). However,

surprisingly, we show in the following theorem that we
are free to put any new values at those position i’s with
(i,N) > 1. The following theorem is the first result of this
paper.

Theorem 1.3: Let N = pq, where p < q are distinct
odd primes. Then for each N , let the binary sequences
uN = (u0, u1, . . . , uN−1) satisfy

ui =
{
χN (i), if (i,N) = 1 ;
±1, otherwise .

(13)

where the sequence χN is as defined in expression (10). Now
construct any infinite sequence of such sequences

u = {uN1 , uN2 , . . . , uNi , . . . },

where Ni = piqi for pi < qi distinct odd primes. Then u has
the same asymptotic merit factor value F form as character
sequence χ, given by

1
F

=
2
3
− 4|f |+ 8f2, |f | ≤ 1/2 ,

whenever
N ε

pi
→ 0 when Ni →∞, (14)

where f is the fraction of shifting and ε is any positive number
satisfying 0 < ε < 2

5 .
We first give a proof of Theorem 1.3 in Section 2.

In Section 3, we will give three constructions of binary
sequences of length N = pq. Meanwhile, some results from
[13] will be reviewed. In Section 4, we will give an upper
bound for periodic autocorrelations of all the sequences
constructed in Section 3. In Section 5, we will prove that
all the sequences constructed in Section 3 can be doubled to
obtain new sequences of length 2N with the high asymptotic
merit factor 6.0 provided the condition (14) is satisfied.

II. PROOF TO THEOREM 1.3

Given a sequence x = (x0, x1, . . . , xN−1) of length N , we
have the Discrete Fourier Transform (DFT) of the sequence,
that is,

x[ξj ] =
N−1∑
k=0

xkξ
k
j , j = 0, 1, . . . , N − 1, (15)

where ξj = e
2πj
N i.

Furthermore, for 0 ≤ t < N , let xt =
(xt, xt+1, . . . , xN−1, x0, x1, . . . , xt−1) be the offset x
sequence arising from t cyclic left shifts of sequence x. The
Discrete Fourier Transform (DFT) of xt is then

xt[ξj ] =
N−1∑
k=0

xk+tξ
k
j , j = 0, 1, . . . , N − 1, (16)

where all the subscripts are taken modulo N .
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Property 2.1: Let x = (x0, x1, . . . , xN−1) be a real-valued
sequence of length N , ξj = e

2πj
N i. For x[ξj ] the DFT of x as

defined above,

N−1∑
j=0

|x[ξj ]|2 = N‖x‖2 ,

where ‖x‖2 =
∑N−1
k=0 x2

k.
Proof. This is a well-known application of Parseval’s Theorem
in the form of the Discrete Fourier Transform (DFT). Readers
can find the proof in many references, for instance, [6], page
33 and page 53.

Property 2.2: Suppose we have sequences
a = (a0, a1, . . . , am−1), and b = (b0, b1, . . . , bn−1)
with (m,n) = 1. Let N = mn and consider

∑N−1
j=0 ajbj ,

where the subscripts are taken modulo m and n respectively.
Then

N−1∑
j=0

ajbj =

(
m−1∑
k=0

ak

)
·

(
n−1∑
s=0

bs

)
.

Proof.
N−1∑
j=0

ajbj =
m−1∑
k=0

n−1∑
s=0

akn+sbs

=
n−1∑
s=0

bs

m−1∑
k=0

akn+s =

(
m−1∑
k=0

ak

)
·

(
n−1∑
s=0

bs

)
,

where the last equality follows from (m,n) = 1.

Proof of Theorem 1.3

For each N , write uN = χN + vN , where the sequence
χN is the character sequence of (10) and uN is as defined
in (13). In the following proof, in order to simplify the
notation, we write u, χ and v instead of uN , χN and vN .
Then for each N , 0 ≤ t < N , put ut = χt + vt, where
ut = ( ut, ut+1, . . . , uN−1, u0, u1, . . . , ut−1 ) and similarly
for χt and vt.

For ξj = e
2πj
N i, where 0 ≤ j ≤ N − 1, for a fixed t, from

the Discrete Fourier Transform as shown in (16),

ut[ξj ] = χt[ξj ] + vt[ξj ] = χt[ξj ] + aj , (17)

ut[−ξj ] = χt[−ξj ] + vt[−ξj ] = χt[−ξj ] + bj , (18)

where aj = vt[ξj ] and bj = vt[−ξj ].

Let F̃Nt be the merit factor of χt. Then by Theorem 1.2 of
[4] (page 35), when condition (14) is satisfied,

lim
N→∞

1

F̃Nt
= lim
N→∞

1
2N3

N−1∑
j=0

(
|χt[ξj ]|4 + |χt[−ξj ]|4

)
− 1

=
2
3
− 4|f |+ 8f2 ,

where f = b tN c is the offset fraction.

Let FNt be the merit factor of ut. Then from ([3], (5.4) page
624),

1
FNt

=
1

2N3

N−1∑
j=0

(
|ut[ξj ]|4 + |ut[−ξj ]|4

)
− 1 .

Put 1/FNt − 1/F̃Nt = G/2N3. Our goal is to prove that the
limit of FNt takes exactly the same form as F̃Nt . In other
words,

lim
N→∞

1
FNt

=
2
3
− 4|f |+ 8f2 ,

provided condition (14) is satisfied, where f = b tN c is the
offset fraction. So it suffices to prove that

G/2N3 → 0 as N →∞.

Again, using the form ([3], (5.10), page 624),

|G| ≤
N−1∑
j=0

Sj +
N−1∑
j=0

Tj (19)

where

Sj = |aj |4+6|χt[ξj ]|2·|aj |2+4( |χt[ξj ]|2+|aj |2 )·|aj |·|χt[ξj ]|

and

Tj = |bj |4 + 6|χt[−ξj ]|2 · |bj |2

+ 4( |χt[−ξj ]|2 + |bj |2 ) · |bj | · |χt[−ξj ]|

Now we look at the values of aj and bj , where 0 ≤ j ≤ N−1.

aj = vt[ξj ] = ξ−tj

[
p−1∑
m=0

vmqe
2πmj
p i +

q−1∑
k=1

vkpe
2πkj
q i

]
,

bj = vt[−ξj ] = ξ−tj

[
p−1∑
m=0

v′mqe
2πmj
p i +

q−1∑
k=1

v′kpe
2πkj
q i

]
,

(20)

where vmq, vkp, v′mq, v
′
kp ∈ {+1,−1}, for 1 ≤ m < q, 1 ≤

k < p. Denote∣∣∣∣∣ξ−tj
p−1∑
m=0

vmqe
2πmj
p i

∣∣∣∣∣ = |vjp|,
∣∣∣∣∣ξ−tj

q−1∑
k=1

vkpe
2πkj
q i

∣∣∣∣∣ = |vjq |;
∣∣∣∣∣ξ−tj

p−1∑
m=0

v′mqe
2πmj
p i

∣∣∣∣∣ = |ṽjp|,
∣∣∣∣∣ξ−tj

q−1∑
k=1

v′kpe
2πkj
q i

∣∣∣∣∣ = |ṽjq |.
For any j,

e
2πm(j+p)

p i = e
2πmj
p i and e

2πk(j+q)
q i = e

2πkj
q i,

so we have for any j,

|vjp| = |vj+pp |, |ṽjp| = |ṽj+pp |; (21)

|vjq | = |vj+qq |, |ṽjq | = |ṽj+qq |.

From Property 2.1, we have
p−1∑
j=0

|vjp|2 =
p−1∑
j=0

|ṽjp|2 = p2, (22)
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and
q−1∑
j=0

|vjq |2 =
q−1∑
j=0

|ṽjq |2 = q(q − 1). (23)

Now we estimate the upper bound of
∑N−1
j=0 Sj in expres-

sion (19).
Note that |aj | ≤ |vjp| + |vjq |, |bj | ≤ |ṽjp| + |ṽjq |. Then for

1 ≤ s ≤ 4,

N−1∑
j=0

|aj |s ≤
N−1∑
j=0

(|vjp|+ |vjq |)s

=
s∑

m=0

N−1∑
j=0

(
s
m

)
|vjp|m · |vjq |s−m,

N−1∑
j=0

|bj |s ≤
N−1∑
j=0

(|ṽjp|+ |ṽjq |)s

=
s∑

m=0

N−1∑
j=0

(
s
m

)
|ṽjp|m · |ṽjq |s−m.

The following calculations are the upper estimates to the
values of

∑s
m=0

∑N−1
j=0 |vjp|m · |vjq |s−m, for 1 ≤ s ≤ 4.

Suppose r is either p or q. Applying the result from (21),
(22) and (23), we have

N−1∑
j=0

|vjr |2 =
N

r
·
r−1∑
k=0

|vkr |2 ≤ Nr ; (24)

N−1∑
j=0

|vjr |4 =
N

r
·
r−1∑
k=0

|vkr |4 ≤
N

r
· (
r−1∑
k=0

|vkr |2)2 ≤ Nr3 ;

N−1∑
j=0

|vjr | =
N

r
·
r−1∑
k=0

|vkr | ≤
N

r
·

√√√√r−1∑
k=0

|vkr |2 · r ≤ N
√
r .

Note that (r,N/r) = 1. By Property 2.2 we have

N−1∑
j=0

|vjr | · |v
j
N/r| (25)

=

[
r−1∑
k=0

|vkr |

]
·

 N/r−1∑
m=0

|vmN/r|



≤

√√√√r−1∑
k=0

|vkr |2 · r ×

√√√√N/r−1∑
m=0

|vmN/r|2 ·
N

r
≤ N 3

2 .

Furthermore, since (r,N/r) = 1, from (21), Property 2.2
and the estimate shown in (24) and (25), we obtain

N−1∑
j=0

|vjr |3 =
N

r
·
r−1∑
k=0

|vkr |3

≤N
r
·

(
r−1∑
k=0

|vkr |2
)
·

(
r−1∑
k=0

|vkr |

)
≤ Nr 5

2 ;

N−1∑
j=0

|vjr |3 · |v
j
N/r|

=

(
r−1∑
k=0

|vkr |3
)
·

 N/r−1∑
m=0

|vmN/r|

 ≤ N 3
2 r2 ;

N−1∑
j=0

|vjr |2 · |v
j
N/r|

2

=

(
r−1∑
k=0

|vkr |2
)
·

 N/r−1∑
m=0

|vmN/r|
2

 ≤ N2 ;

N−1∑
j=0

|vjr |2 · |v
j
N/r|

=

(
r−1∑
k=0

|vkr |2
)
·

 N/r−1∑
m=0

|vmN/r|

 ≤ N 3
2 r

1
2 . (26)

Combine all the results above, noting that we assume p < q.
Then when p and q are large enough, we have
N−1∑
j=0

|aj |4 ≤
N−1∑
j=0

(
|vjp|+ |vjq |

)4
(27)

=
N−1∑
j=0

(
|vjp|4 + |vjq |4 + 4|vjp|3 · |vjq |

)

+
N−1∑
j=0

(
4|vjp| · |vjq |3 + 6|vjp|2 · |vjq |2

)
≤ Np3 +Nq3 + 4N

3
2 (p2 + q2) + 6N2 < 10Nq3.

Similarly, under the same conditions for p and q, we get
N−1∑
j=0

|aj |3 ≤
N−1∑
j=0

( |vjp|+ |vjq | )3 < 3Nq
5
2 ;

N−1∑
j=0

|aj |2 ≤
N−1∑
j=0

( |vjp|+ |vjq | )2 < 4Nq ;

N−1∑
j=0

|aj | ≤
N−1∑
j=0

( |vjp|+ |vjq | ) < 2Nq
1
2 . (28)

In the calculation above, if we replace vjp with ṽjp, and
vjq with ṽjq , then for 0 ≤ m ≤ s ≤ 4, the upper bounds
for

∑N−1
j=0 |vjp|m · |vjq |s−m as in (24) and (26) are also the

upper bounds for
∑N−1
j=0 |ṽjp|m ·|ṽjq |s−m. As a result, the upper

bounds for
∑N−1
j=0 |aj |s are also upper bounds for

∑N−1
j=0 |bj |s,

for each 1 ≤ s ≤ 4. By Theorem 1.2,

|χt[ξj ]| = |ξ−tj χN [ξj ]| = |χN [ξj ]| ≤
√
N . (29)

Using the interpolation formula ([2], (2.5), page 162)

χt[−ξj ] =
2
N

N−1∑
k=0

ξk
ξk + ξj

χt[ξk] ,



5

and the inequality (for instance, [3], page 625),
N−1∑
k=0

∣∣∣∣ ξk
ξk + ξj

∣∣∣∣ ≤ N logN ,

combined with the result in (29), we have

|χt[−ξj ]| ≤ 2
√
N logN, for 0 ≤ j ≤ N − 1 . (30)

Combining the results from (29) and (30), we can write

|χt[±ξj ]| ≤ 2
√
N logN, for 0 ≤ j ≤ N − 1 . (31)

Now we give an upper bound to
∑N−1
j=0 Sj and

∑N−1
j=0 Tj

of form (19) simultaneously. We use symbol cj to represent
either aj or bj . Using (27), (28) and (31), we have that there
exists a positive constant C independent of N , such that

N−1∑
j=0

|cj |4 < CNq3 ;

N−1∑
j=0

6|χt(±ξj)|2 · |cj |2 ≤ 24N log2N ·

N−1∑
j=0

|cj |2


< CN2q log2N ;

N−1∑
j=0

4|χt(±ξj)|3 · |cj | ≤ 32N
3
2 log3N ·

N−1∑
j=0

|cj |


< CN

5
2 q

1
2 log3N ;

N−1∑
j=0

4|χt(±ξj)| · |cj |3 ≤ 8
√
N logN ·

N−1∑
j=0

|cj |3


< CN
3
2 q

5
2 logN . (32)

Thus equation (19) becomes

|G| ≤
N−1∑
j=0

Sj +
N−1∑
j=0

Tj = o(N3) ,

provided the condition (14) is satisfied. This finishes the
proof of Theorem 1.3.

The proof for Theorem 1.3 uses similar notation and
technique to the proof of Theorem 5.1 of [3], but Theorem
1.3 is a more general result since in the sequence u, uj’s are
randomly defined when (j,N) > 1.

III. CONSTRUCTION

In this section, starting from Theorem 1.3, we will give
three new and specific modifications at the positions j, with
(j,N) > 1, based on the character sequence χN as defined
in equation (10). These will be used in the construction of
sequences of sequences with asymptotic merit factor 6.0.

Definition 3.1: Suppose r is an integer. For any 1 ≤ i ≤ r,
if (i, r) = 1, then there exists a unique ir, with 1 ≤ ir ≤
r, such that i · ir ≡ 1 (mod r). Put ĩr = kr, where k =
min{i, r − i}.

For instance, when r = 5, i = 3, then ir = 35 = 2, because
3 × 2 ≡ 1 (mod 5). While ĩr = 3̃5 = 25 = 3, because
2 = min{3, 5− 3}.

As (r − i)(r − ir) ≡ 1 (mod) r, we have

Lemma 3.2: Suppose r is a positive integer. For any integer
i, if (i, r) = 1, then (r − i)r = r − ir.

For example, if r = 5, i = 3, then (r − i)r = (5− 3)5 =
25 = 5− 35 = 3.

Definition 3.3: A sequence α = (α0, α1, . . . , αN−1) of odd
length N is symmetric if αi = αN−i, for 1 ≤ i ≤ N − 1, and
antisymmetric if αi = −αN−i, for 1 ≤ i ≤ N − 1.

Lemma 3.4: Suppose N is an odd integer. We define a
sequence s = (s0, s1, . . . , sN−1) of length N by

sj =
{

(−1)jN , if (j,N) = 1;
0 , otherwise .

(33)

Then the sequence s is antisymmetric.

Proof. For 1 ≤ j ≤ N − 1, via Lemma 3.2 and 3.4,
sN−j = (−1)N−j = (−1)N−j = −(−1)j = −sj since N is
odd. Therefore, s is antisymmetric.

Let the character sequence χN be as defined in expression
(10). Then we have the following lemma:

Lemma 3.5: χN is symmetric if N ≡ 1 (mod 4), and
antisymmetric if N ≡ 3 (mod 4). In particular, χN (−1) =
(−1)

N−1
2 is 1 if N ≡ 1 (mod 4) and −1 if N ≡ 3 (mod 4).

Proof. First of all, we assume N = p, so r = 1. But in Z∗p ,
−1 is a square if and only if p ≡ 1 (mod 4), as desired.

Now suppose N = p1p2 . . . pr with r ≥ 2. Without loss of
generality, suppose p1 ≡ p2 ≡ · · · ≡ pk ≡ 3 (mod 4), and
pk+1 ≡ pk+2 ≡ · · · ≡ pr ≡ 1 (mod 4). Then by the r = 1
case,

χN (−i) = χp1(−i) · · · · χpk(−i) · χpk+1(−i) · · · · χpr (−i)
= (−1)kχp1(i) · · · · · χpk(i) · χpk+1(i) · · · · χpr (i)
= (−1)kχN (i) .

Therefore, if k is even, then N ≡ 1 (mod 4), χN (−i) =
χN (i), and χN is symmetric; while if k is odd, then N ≡ 3
(mod 4), χN (−i) = −χN (i), and χN is antisymmetric.

Property 3.6: Suppose N is odd. For the sequence α =
(α0, α1, . . . , αN−1) of length N , let the sequence β =
(β0, β1, . . . , βN−1) with βj = (−1)jαj . If α is symmetric,
then β is antisymmetric, while if α is antisymmetric, then β
is symmetric.

Proof. If α is symmetric, then αj = αN−j , for 1 ≤
j ≤ N − 1. Therefore, βj = (−1)jαj = (−1)jαN−j =
−(−1)N−jαN−j = −βN−j since N is odd. So β is anti-
symmetric. Interchanging the roles of α and β gives the other
case.

We define the triple-valued sequence V of length N to be

Vj =
{
χN (j) , j = 1, . . . , N − 1 ;

1 , j = 0 . (34)
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From Lemma 3.5, the sequence V is symmetric when N ≡
1 (mod 4) and antisymmetric when N ≡ 3 (mod 4). Our
goal is to construct specific families of binary sequences based
on the triple-valued sequence V . These new sequences have
the same symmetric type as the sequence V , depending upon
the values of N modulo 4.

Definition 3.7: Suppose N = pq, where p and q are distinct
odd primes. Let the sequence V of length N be as defined in
(34). Then we define the binary sequences x, y and z of length
N with

xj = yj = zj = Vj , for j = 0 and (j,N) = 1.

Otherwise, for {r, d} = {p, q} and 1 ≤ k ≤ r − 1, put

xkd =

 (−1)kr , if N ≡ 3 (mod 4) ;

(−1)k̃r , if N ≡ 1 (mod 4).

ykd =

{
χr(k) , if k ≤ r−1

2 ;

χd(−1) · χr(k) , if k > r−1
2 .

zkd = (χd(−1))k · χr(k).
To better understand the definitions of sequences x, y, and

z, we will study a concrete example.

Example 1: Suppose N = 3 × 5 = 15, the sequence V
of length 15 is as defined in expression (34), and the Jacobi
sequence J of length 15 is as shown in TABLE I. Then we
put values of Vj’s and Jj’s in TABLE II:

TABLE II
V , AND J OF LENGTH N = 15.

position j 0 1 2 3 4 5 6 7
Vj +1 +1 +1 0 +1 0 0 −1
Jj +1 +1 +1 +1 +1 +1 −1 −1

↑
χ5(1)

↑
χ5(2)

position j 8 9 10 11 12 13 14
Vj +1 0 0 −1 0 −1 −1
Jj +1 −1 −1 −1 +1 −1 −1

↑
χ5(3)

↑
χ5(4)

Here V is antisymmetric because 15 ≡ 3 (mod 4). But the
Jacobi sequence J is neither symmetric nor antisymmetric;
indeed, the positions 0, 3, 6, 9, and 12 give a subsequence
(1, χ5(1), χ5(2), χ5(3), χ5(4)) which is symmetric since 5 ≡
1 (mod 4). The new sequences x, y, and z as defined in
Definition 3.7 give new values on positions j, with (j, 15) > 1
as shown in TABLE III.

Therefore, we have the sequences x, y and z as shown in
TABLE IV.

Note that in Example 1, x, y and z only differ at
positions j, where (j,N) > 1, and all are antisymmetric, as is
V . This is a concrete example of the following general result.

Lemma 3.8: Suppose N = pq, where p and q are distinct
odd primes. Let the three binary sequences x, y and z of

TABLE III
COMPARISON AMONG Jj , xj , yj , AND zj FOR (J,N) > 1.

position j 3 5 6

Jj χ5(1) = 1 χ3(1) = 1 χ5(2) = −1

xj (−1)15 = −1 (−1)13 = −1 (−1)25 = −1

yj χ5(1) = 1 χ3(1) = 1 χ5(2) = −1

zj (−1)1χ5(1) = −1 χ3(1) = 1 (−1)2χ5(2) = −1

position j 9 10 12

Jj χ5(3) = −1 χ3(2) = −1 χ5(4) = 1

xj (−1)35 = 1 (−1)23 = 1 (−1)45 = 1

yj −χ5(3) = 1 χ3(2) = −1 −χ5(4) = −1

zj (−1)3χ5(3) = 1 χ3(2) = −1 (−1)4χ5(4) = 1

TABLE IV
x, y, AND z FOR LENGTH N = 15.

position j 0 1 2 3 4 5 6 7 8
Vj +1 +1 +1 0 +1 0 0 −1 +1
Jj +1 +1 +1 +1 +1 +1 -1 −1 +1
xj +1 +1 +1 -1 +1 -1 -1 −1 +1
yj +1 +1 +1 +1 +1 +1 -1 −1 +1
zj +1 +1 +1 -1 +1 +1 -1 −1 +1

position j 9 10 11 12 13 14
Vj 0 0 −1 0 −1 −1
Jj -1 -1 −1 +1 −1 −1
xj +1 +1 −1 +1 −1 −1
yj +1 -1 −1 -1 −1 −1
zj +1 -1 −1 +1 −1 −1

length N be as defined in Definition 3.7. Then x, y and z
are symmetric if N ≡ 1( mod 4), and antisymmetric if N ≡
3( mod 4).
Proof. To shorten the proof, we use the notation uj to represent
one of xj , yj , or zj .

If (j,N) = 1, uj = Vj , thus by Lemma 3.5, we have

uj = uN−j , if N ≡ 1 (mod 4) ;
uj = −uN−j , if N ≡ 3 (mod 4) .

We wish to prove this for all j’s with 1 ≤ j ≤ N − 1.
By Lemma 3.5, for m ∈ {p, q,N}, we have χm(−1) =

(−1)
m−1

2 . In particular, the two equalities above are equivalent
to the single equality

uj · uN−j = χN (−1).

Let {r, d} = {p, q}, so that N = rd and N−kd = (r−k)·d.
Therefore to complete the proof of the lemma, it is enough to
verify

ukd · u(r−k)d = χN (−1).

for all 1 ≤ k ≤ r−1
2 . We do this in cases.

First,

ykd · y(r−k)d = χr(k) · χd(−1) · χr(r − k)
= χd(−1) · χr(k) · χr(−k)
= χd(−1) · χr(−1) · (χr(k))2 = χN (−1).
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Next,

zkd · z(r−k)d = (χd(−1))k · χr(k) · (χd(−1))r−k · χr(r − k)
= (χd(−1))r · χr(k) · χr(−k)
= χd(−1) · χr(−1) · (χr(k))2 = χN (−1),

since when r is odd, (χd(−1))r = χd(−1).

Finally, if N ≡ 1 (mod 4),

xkd · x(r−k)d = (−1)k̃r · (−1)
˜(r−k)r

= (−1)kr · (−1)kr = 1 = χN (−1) ,

while if N ≡ 3 (mod 4), then by Lemma 3.2

xkd · x(r−k)d = (−1)kr · (−1)(r−k)r

= (−1)kr · (−1)r−kr

= (−1)r = −1 = χN (−1).

Combing all the results above, we have that x, y and z are
symmetric when N ≡ 1( mod 4), and antisymmetric when
N ≡ 3( mod 4). In other words, x, y and z have the same
symmetric type as the sequence V .

Definition 3.9: Given two sequences u =
(u0, u1, . . . , uN−1) and e = (e0, e1, . . . , eN−1), we define the
product sequence b = u∗e by bi = uiei, for i = 0, 1, ..., N−1.

Definition 3.10: For δ = 0, 1, let the four sequences ±e(δ)
be given by

e
(δ)
j = (−1)

(
j+δ
2

)
. (35)

In [13], certain sequences b = (u, u) ∗ (±e(δ)) give rise
to sequences with asymptotic merit factor 4 × F once the
following are demonstrated:
(a) u is symmetric or antisymmetric ;
(b) the sequences u have asymptotic merit factor F ;
(c) the periodic autocorrelations have

∑N−1
i=1 P 2

u(i) =
o(N2) .

Here Lemma 3.8 provides (a), and Theorem 1.3 gives (b)
with F = 1.5. Therefore we will be able to prove the following
theorem, the second main result of this paper, once we have
studied autocorrelations in the next section.

Theorem 3.11: For each N = pNqN , where pN < qN are
distinct odd primes, let uN be any one of the binary sequences
x, y and z as in Definition 3.7. Let the sequence eN of length
2N be one of the four sequences ±e(δ) from the Definition
3.10. Let bN = {uN , uN} ∗ eN , be a sequence of length 2N .
Then the sequence of sequences {bN} has asymptotic merit
factor 6.0 provided

N ε

pN
→ 0 when N →∞ , (36)

where ε satisfies 0 < ε < 2
5 .

Note that condition (36) in Theorem 3.11 is the same as
condition (14) in Theorem 1.3.

IV. PERIODIC AUTOCORRELATION OF SEQUENCES X, Y
AND Z

The following well known number theoretic result can be
found in many references, for instance, Lemma 2 in [7].

Lemma 4.1: Suppose χp is as defined in form (9), then the
periodic autocorrelations of χp are

Pχp(k) =
p−1∑
n=0

χp(n)χp(n− k) =
{
p− 1 , if p|k;
−1 , otherwise.

Let N = pq, where p < q are odd primes. For 1 ≤
j ≤ N − 1, by Property 2.2 and Lemma 4.1, the periodic
autocorrelations of χN are

PχN (j) = Pχp(j)× Pχq (j) =

 1− p , if p | j ;
1− q , if q | j ;

+1 , otherwise .

Therefore, the periodic autocorrelations of the sequence V
of (34) satisfy

|PV (j)| ≤

 1 + p , if p | j ;
1 + q , if q | j ;
+ 3 , otherwise .

(37)

Property 4.2: For p an odd prime, let χp be the primitive
character modulo p as defined in form (9). Then for any k,
we have∣∣∣∣∣
p−1∑
n=0

(−1)nχp(n)χp(n+ k)

∣∣∣∣∣ ≤
{

36p
1
2 log p + 1, if p - k;

0, if p | k.

Proof. The result is obviously correct when p|k. So now
suppose p - k.

From Lemma 4.1,

|
p−1∑
n=0

(−1)nχp(n)χp(n+ k)|

= |

p−1
2∑
j=1

χp(2j)χp(2j + k)−

p−1
2∑
j=1

χp(2j − 1)χp(2j − 1 + k)|

≤ |

p−1
2∑
j=1

χp(2j)χp(2j + k)|

+ |

p−1
2∑
j=1

χp(2j − 1)χp(2j − 1 + k)|

≤ 2|

p−1
2∑
j=1

χp(2j)χp(2j + k)|+ 1

= 2|

p−1
2∑
j=1

χp(j(j + 2−1k))|+ 1 .

Weil [9] proved that the Riemann Hypothesis is true for the
zeta-function of an algebraic function field over a finite field.
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A specifically useful consequence is that, for any integers u
and v with v > 0,

|
∑

u<j<u+v

χp(f(j))| ≤ 9mp
1
2 log p , (38)

where f(x) ∈ Fp[x] is a polynomial of degree m not of the
form b(g(x))2 with b ∈ Fp, g(x) ∈ Fp[x]. (The readers can
find a detailed proof for equation (38) in [8] Corollary 1.)
When p - k, the polynomial x(x+ 2−1k) is not the square of
any polynomial over Fp[x], so

|

p−1
2∑
j=1

χp(j(j + 2−1k))| ≤ 18p
1
2 log p ,

hence

|
p−1∑
n=0

(−1)nχp(n)χp(n+ k)| ≤ 36p
1
2 log p+ 1 .

For the triple-valued sequence V defined in (34), write uj =
Vj +vuj , where u could be any one of the binary sequences x,
y or z of length N as defined in Definition 3.7. For instance,
for {r, d} = {p, q} and 1 ≤ k ≤ r − 1, when u = x,

vxj =


(−1)kr , if j = kd, and N ≡ 3 (mod 4) ;
(−1)k̃r , if j = kd, and N ≡ 1 (mod 4) ;

0 , otherwise;

and if u = z,

vzj =

 (χd(−1))k · χr(k) , if j = kd ;

0 , otherwise.

(39)

In all three cases, we have
N−1∑
j=0

|vuj | ≤ pq − (p− 1)(q − 1) = p+ q − 1 < 2q . (40)

as p < q. As remarked in the previous section, we wish to
prove that

∑N−1
i=1 P 2

u(i) = o(N2). The most important part
of that is the following technical lemma.

Lemma 4.3: Suppose N = pq, where p, q are distinct odd
primes with p < q. Let the sequence V be as defined in form
(34), and write uj = Vj+vuj , where u could be any one of the
binary sequences x, y or z of length N as defined in Definition
3.7. Then when p and q are large enough, for {r, d} = {p, q},
we have

|Pvu(i)| ≤

{
2, if (i,N) = 1,

4r
1
2 log3(r), if (i,N) = d.

Proof. For any 1 ≤ i ≤ N−1, Pvu(i) =
∑N−1
j=0 vuj v

u
j+i, while

from the definition

vuj v
u
j+i 6= 0⇔ (j,N) = m1 > 1, and (j+i,N) = m2 > 1 .

We break the proof into cases:

Case 1 m1 6= m2, and (i,N) = 1.
Case 2 m1 = m2 = (i,N) = d, with {r, d} = {p, q}.

We first note that this handles all situations in which nonzero
coefficients occur. Clearly if m1 = m2, then (i,N) = m1 =
m2. If m1 6= m2, there must be 0 < k < q and 0 < s < p
with

kp± i ≡ sq (mod N) .

As p - s we have p - i, and similarly q - i as q - k. Therefore
m1 6= m2 implies (i,N) = 1.

Case 1 m1 6= m2 and (i,N) = 1.

First suppose p = m1, q = m2. Then as above there exist
0 < k < q and 0 < s < p, such that

kp+ i = j + i ≡ sq (mod N) , (41)

Such a pair k and s is unique. Indeed if there exists another
pair 0 < k′ < q and 0 < s′ < p, such that

k′p+ i ≡ s′q (mod N) ,

then (k−k′)p ≡ (s−s′)q (mod N). As p|N and p|(k−k′)p,
we find p|(s− s′) with 0 < s, s′ < p. Therefore, s = s′, and
similarly, k = k′.

In addition, if expression (41) is satisfied, then kp+ i ≡ sq
(mod N) implies (p− s)q+ i ≡ (q− k)p (mod N), and this
must give the unique solution pair when q = m1 and p = m2.
Therefore, when (i,N) = 1,

|Puv (i)| ≤ |vukpvusq + vu−kpv
u
−sq| ≤ 2 .

Case 2 m1 = m2 = (i,N) = d with {r, d} = {p, q}.
There is an s with 0 < s < r, and

Pvu(i) =
r−1∑
j=1

vujdv
u
(s+j)d . (42)

Case 2.1 (i,N) = d and u = x.

In 1998, W. Zhang [16] proved that for any integer t,

r−1∑
n=1
r-n+t

(−1)nr+(n+t)r ≤
√
r log2 r . (43)

where nr is as in Definition 3.1.
More generally, for any integers t, t1 and t2 with t > 0, H.

Liu proved [17]

|
∑

t1<n<t2
r-n,n+t

(−1)nr+(n+t)r | ≤
√
r log3 r . (44)

In the following proof, to simplify the notations, we use
notation j instead of jr.

When N ≡ 3 (mod 4), from (43),

Pvx(i) =
r−1∑
j=1

vxjdv
x
(s+j)d =

r−1∑
j=1
r-j+s

(−1)j+s+j ≤
√
r log2 r ,
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When N ≡ 1 (mod 4), suppose s ≤ (r− 1)/2. Then from
Lemma 3.2 and expression (44),

|Pvx(i)| = |
r−1∑
j=1

vxjdv
x
(s+j)d |

= | (

r−1
2 −s∑
j=1

+

r−1
2∑

j= r−1
2 −s+1

+
r−1−s∑
j= r−1

2 +1

+
r−1∑
j=r−s

) vxjdv
x
(s+j)d |

= |

r−1
2 −s∑
j=1

(−1)j+s+j −

r−1
2∑

j= r−1
2 −s+1

(−1)j+s+j

+
r−1−s∑
j= r−1

2 +1

(−1)j+s+j −
r−1∑
j=r−s

(−1)j+s+j |

≤ |

r−1
2 −s∑
j=1

(−1)j+s+j |+ |

r−1
2∑

j= r−1
2 −s+1

(−1)j+s+j |

+ |
r−1−s∑
j= r−1

2 +1

(−1)j+s+j |+ |
r−1∑
j=r−s

(−1)j+s+j |

≤ 4
√
r log3 r .

Case 2.2 (i,N) = d and u = y.

If d ≡ 1 (mod 4), then from Lemma 4.1, expression (42)
is

Pvy (i) =
r−1∑
j=1

vyjdv
y
(s+j)d =

r−1∑
j=1

χr(j)χr(j + s) = −1 .

If d ≡ 3 (mod 4), then expression (42) becomes

|Pvy (i)| = |
r−1∑
j=1

vyjdv
y
(s+j)d|

=|(

r−1
2 −s∑
j=1

+

r−1
2∑

j= r−1
2 −s+1

+
r−1−s∑
j= r−1

2 +1

+
r−1∑
j=r−s

)vyjdv
y
(s+j)d|

≤|

r−1
2 −s∑
j=1

χr(j)χr(s+ j)|+ |

r−1
2∑

j= r−1
2 −s+1

χr(j)χr(s+ j)|

+|
r−1−s∑
j= r−1

2 +1

χr(j)χr(s+ j)|+ |
r−1∑
j=r−s

χr(j)χr(s+ j)|

≤72
√
r log r ,

The last inequality follows from equation (38) by taking
the degree m = 2.

Case 2.3 (i,N) = d and u = z.

Equation (42) becomes

|Pvz (i)| = |
r−1∑
j=1

vzjdv
z
(s+j)d|

= |
r−1∑
j=1

(χd(−1))j · χr(j) · (χd(−1))(s+j)r · χr(s+ j)|,

where 0 ≤ (s+ j)r ≤ r − 1, and (s+ j)r ≡ s+ j (mod r).

Now we study the values of ζj = (χd(−1))j+(s+j)r . From
Definition 3.7, we have

1) ζj = 1, if d ≡ 1 (mod 4).

2) ζj = (−1)j+(s+j)r , if d ≡ 3 (mod 4).

If d ≡ 1 (mod 4),

|
r−1∑
j=1

χr(j) · χr(s+ j)| = 1 , since d - s.

If d ≡ 3 (mod 4), let j1 be the number such that s+j1 < r,
but s+ j1 + 1 ≥ r. Then

|Pvz (i)| = |
j1∑
j=1

χr(j)χr(s+ j)−
r−1∑

j=j1+1

χr(j)χr(s+ j)|

≤ |
j1∑
j=1

χr(j)χr(s+ j)|+ |
r−1∑

j=j1+1

χr(j)χr(s+ j)|

≤ 36
√
r log r .

Again, the last inequality comes from equation (38) by
putting the degree m = 2.

Now we are ready to prove that
∑N−1
i=1 P 2

u(i) = o(N2):

Lemma 4.4: Suppose N = pq, where p < q are distinct
odd primes. Then when q ≤ p2, and both p and q are large
enough, we have

N−1∑
i=1

P 2
u(i) ≤ cNq ,

where u may be any one of binary sequences x, y and z
of length N as defined in Definition 3.7 and c is a constant
independent of N .

Proof. Again, using the notation of Lemma 4.3, we write
u = V + v, where v may be any one of sequences vx, vy ,
or vz . Then we can separate the summation

∑N−1
i=1 P 2

u(i) as
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following:
N−1∑
i=1

P 2
u(i) =

N−1∑
i=1

(
N−1∑
j=0

ujuj+i)2

=
N−1∑
i=1

[
N−1∑
j=0

(Vj + vj)(Vj+i + vj+i) ]2

=
N−1∑
i=1

[ PV (i) + PV,v(i) + Pv,V (i) + Pv(i) ]2

=
N−1∑
i=1

P 2
V (i) +

N−1∑
i=1

P 2
v (i) + 2

N−1∑
i=1

PV (i)Pv(i)

+
N−1∑
i=1

[ 2PV (i)PV,v(i) + 2PV (i)Pv,V (i) ]

+
N−1∑
i=1

[ 2Pv(i)PV,v(i) + 2Pv(i)Pv,V (i) ]

+
N−1∑
i=1

[
2PV,v(i)Pv,V (i) + P 2

V,v(i) + P 2
v,V (i)

]
= A+B + C +D + E + F (45)

In expression (45), we have separated the summands into
six groups. For instance A =

∑N−1
i=1 P 2

V (i), and F =∑N−1
i=1 [ 2PV,v(i)Pv,V (i) + P 2

V,v(i) + P 2
v,V (i) ]. In the fol-

lowing, each of the sums X ∈ {A,B,C,D,E, F} will be
bounded above by cX ·N · q for appropriate constants cX . To
simplify the notation, it should be understood that all of the
following statements are valid when p and q are large enough.

For group A, from equation (37),
N−1∑
i=1

P 2
V (i)

=
N−1∑

(i,N)=1

P 2
V (i) +

N−1∑
(i,N)=p

P 2
V (i) +

N−1∑
(i,N)=q

P 2
V (i)

≤ 9φ(N) + q × (1 + p)2 + p× (1 + q)2 < 3Nq . (46)

For group B, using Lemma 4.3, we have
N−1∑
i=1

P 2
v (i) =

∑
(i,N)=1

P 2
v (i) +

∑
(i,N)=p

P 2
v (i) +

∑
(i,N)=q

P 2
v (i)

≤ 4φ(N) + 16q2 log6 q + 16p2 log6 p < Nq .

Also from Lemma 4.3,

|C| ≤ 2
N−1∑
i=1

|PV (i)Pv(i)|

= 2
∑

(i,N)=1

|PV (i)Pv(i)|+ 2
∑

(i,N)=p

|PV (i)Pv(i)|

+ 2
∑

(i,N)=q

|PV (i)Pv(i)|

≤ 12φ(N) + 9Np
1
2 log3 p+ 9Nq

1
2 log3 q

< 19Nq
1
2 log3 q < Nq .

For group D, by equations (37) and (40), the absolute value
of the first item is

|
N−1∑
i=1

PV (i)PV,v(i)| =

∣∣∣∣∣
N−1∑
i=1

PV (i)

(
N−1∑
m=0

vmVm−i

)∣∣∣∣∣
≤

N−1∑
i=1

|PV (i)|
N−1∑
m=0

|vm| < 2q ×
N−1∑
i=1

|PV (i)| ;

Similarly, we can show that any other item in group D is
bounded above by 2q ×

∑N−1
i=1 |PV (i)|. Again from (37), we

have

|D| ≤8q ×
N−1∑
i=1

|PV (i)|

≤8q × [
N−1∑
i=1

(i,N)=1

|PV (i)|+
N−1∑
i=1

(i,N)>1

|PV (i)| ]

≤8q × [3φ(N) + 3N ] < 48Nq .

Now for group E. Again, consider the absolute value of item

|
N−1∑
i=1

Pv,V (i)Pv(i)| = |
N−1∑
i=1

Pv(i)(
N−1∑
j=0

vjVj+i)|

≤
N−1∑
i=1

|Pv(i)|

N−1∑
j=0

|vj |


< 2q

N−1∑
i=1

|Pv(i)| .

Similarly any other item in group E has absolute value
bounded above by 2q

∑N−1
i=1 |Pv(i)|. Thus using Lemma 4.3

and expression (40),

|E| ≤ 8q
N−1∑
i=1

|Pv(i)|

≤ 8q × [
∑

(i,N)=1

|Pv(i)|+
∑

(i,N)=p

|Pv(i)|+
∑

(i,N)=q

|Pv(i)| ]

≤ 8q × [2φ(N) + 4p
3
2 log3 p+ 4q

3
2 log3 q]

≤ 17Nq ,

where the last inequality follows from the assumption that
q ≤ p2.

Finally, we consider the first item in group F.
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|
N−1∑
i=1

PV,v(i)Pv,V (i)| = |
N−1∑
i=1

N−1∑
j=0

N−1∑
m=0

Vjvj+ivmVm+i|

= |
N−1∑
i=1

N−1∑
j=0

N−1∑
m=0

vjvmVj−iVm+i|

= |χN (−1)
N−1∑
j=0

N−1∑
m=0

vjvm(
N−1∑
i=1

Vi−jVm+i)|

= |
N−1∑
j=0

N−1∑
m=0

vjvmPV (m+ j)|

= |
N−1∑
s=0

N−1∑
j=0

v−jvs−jPV (s)| where s = m+ j

= |
N−1∑
s=0

Pv(s)PV (s)| .

Similarly, we can prove that any other item in group F has
the same absolute value |

∑N−1
s=0 Pv(s)PV (s)|. So

|F | ≤ 4|
N−1∑
s=0

Pv(s)PV (s)|

≤ 4×

(
|Pv(0)PV (0)|+ |

N−1∑
s=1

Pv(s)PV (s)|

)
.

From equation (40),

Pv(0)PV (0) < 2Nq ; (47)

From the estimate for group C, we know that

|
N−1∑
s=1

Pv(s)PV (s)| < 19Nq
1
2 log3 q < Nq ; (48)

Now (47) and (48) imply that

|F | < 12Nq .

Combining all of the inequalities above, we obtain the
desired result.

Lemma 4.4 shows that when condition (36) is satisfied,∑N−1
i=1 P 2

u(i) = O(Nq) = o(N2), where u may be any one
of the binary sequences x, y and z as defined in Definition
3.7. Therefore, as remarked at the end of the previous section,
we are now ready to prove Theorem 3.11.

V. PROOF OF THEOREM 3.11
The following is Lemma 2.7 of [13], page 933.
Lemma 5.1: Suppose α = ( α0, α1, ....αN−1 ) is a sym-

metric or antisymmetric binary sequence of odd length N .
Let the sequence e of length 2N be one of the four sequences
±e(δ) from the Definition 3.10. Put b = ( α, α ) ∗ e, then

2N−1∑
k=1

A2
b(k) =N +

N−1∑
k=1

A2
α(k)

+ 2
N−1∑
k=1

even k

Pα(k)Aα(k) +
N−1∑
k=1

even k

P 2
α(k) .

Proof of Theorem 3.11.
For each odd N = pNqN with pN < qN , Lemma 3.8 shows

that each of the three sequences x, y and z is symmetric or
antisymmetric. Let

bN = ( uN , uN ) ∗ e ,

where uN = x, y or z as defined in Definition 3.7. In the
following, without confusion, we use b and u instead of bN
and uN . Then Lemma 5.1 gives

2N−1∑
k=1

A2
b(k) =N +

N−1∑
k=1

A2
u(k)

+ 2
N−1∑
k=1

even k

Pu(k)Au(k) +
N−1∑
k=1

even k

P 2
u(k) .

When condition (36) holds, Theorem 1.3 shows that

2
N−1∑
k=1

A2
u(k) ∼

2
3
N2 , (49)

If the condition (36) holds, Lemma 4.4 shows that
N−1∑
k=1

even k

P 2
u(k) ≤

N−1∑
k=1

P 2
u(k) = O(Nq) .

Then given condition (36), by the Cauchy-Schwarz inequal-
ity ∣∣∣∣∣

N−1∑
k=1

Pu(k)Au(k)

∣∣∣∣∣ ≤
√√√√[N−1∑

k=1

A2
u(k)

]
×O(Nq)

∼N 3
2 q

1
2 = o(N2) .

Therefore, for p and q subject to (36), the asymptotic merit
factor of the sequence {bN} is

lim
N→∞

(FbN ) = lim
N→∞

(2N)2

2(
∑2N−1
k=1 A2

bN
(k))

= lim
N→∞

4N2

2
∑N−1
k=1 A2

u(k)

= 4× 3
2

= 6 .

This finishes the proof of Theorem 3.11.

VI. CONCLUSION

For a character sequence of length N = pq, the number
of positions j with (j,N) > 1 is larger than

√
N , so those

“modified” positions are large enough to make a difference in
the merit factor. However, Theorem 1.3 shows that subject to
condition (14), any modification on these positions will give
the same asymptotic merit factor values as the character se-
quences. The authors were informed recently that Jedwab and
Schmidt have obtained the same result independently under
an improved condition ([19]). In [13], the doubling technique
shown in Lemma 5.1 was only applied to some of the Jacobi
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or modified Jacobi sequences with additional restriction to
the values of p, q (mod 4). Here we have constructed new
sequences considerably different from the canonical Jacobi
or modified Jacobi sequences and with no restrictions on the
values of p, q (mod 4), yet achieving the same asymptotic
merit factor, as seen in Theorem 3.11.
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