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Locally finite simple Moufang loops

J.I. Hall∗

Abstract

A Moufang loop is a binary system that satisfies a particular weak form of the

associative law. Doro and Glauberman observed that there is a direct connection

between simple Moufang loops and simple groups with triality. Using this corre-

spondence, Liebeck proved that nonassociative finite simple Moufang loops arise

from split octonion algebras over finite fields. We extend Liebeck’s theorem to the

case of locally finite simple Moufang loops.
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1. Introduction

A loop (L, ◦) is a set L equipped with a binary multiplication “◦” having a two-sided
identity element and with left and right multiplication always a permutation of L. That
is, a loop is a “not necessarily associative group.” We will usually write ax in place of
a ◦ x and so forth.
AMoufang loop (after Ruth Moufang [21]) is a loop that satifies theMoufang property:

(ax)(ya) = a((xy)a) for all a, x, y ∈ L .

This is a weak associativity law, so the class of associative Moufang loops is exactly the
class of groups. A simple loop is one for which every surjective loop homomorphism is
either trivial or an isomorphism.
Our starting point is the following theorem due to Martin Liebeck [19].
2000 AMS Mathematics Subject Classification: 20N05, 20D06.
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Theorem 1.1 A finite simple Moufang loop is either associative (and so a finite simple
group) or is isomorphic to a Paige loop PSOct(F) for F a finite field.

Here Oct(F) is the algebra of split octonions over the field F. The units of Oct(F)
form a Moufang loop, and SOct(F) is the subloop consisting of those octonions of norm 1.
The loop PSOct(F) then results from factoring out the normal subloop {±1} of SOct(F)
and is a simple Moufang loop, as first noted by Paige [24].
An algebraic system is locally finite if the subsystem generated by any finite subset is

itself finite. The main result of this paper is the direct extension of Liebeck’s theorem to
include locally finite simple Moufang loops.

Theorem 1.2 A locally finite simple Moufang loop is either associative (and so a locally
finite simple group) or is isomorphic to a Paige loop PSOct(F) for F a locally finite field.

A locally finite field is isomorphic to a subfield of the algebraic closure Fp, for some
prime p, and so is countable. The octonions Oct(F) are an eight dimensional algebra over
F, so the theorem gives us immediately a surprising corollary.

Corollary 1.3 An uncountable locally finite simple Moufang loop is associative and so
is a locally finite simple group.

Our general references for group theory are Aschbacher [1] and Robinson [27]; for loop
theory Bruck [5] and Pflugfelder [26]; and for the octonions Springer and Veldkamp [28].

2. Moufang loops

Over the field F a nondegenerate 8-dimensional split composition algebra [28, Chap.1]
is uniquely determined up to isomorphism as the F-algebra of split octonions Oct(F).
These can be conveniently written as Zorn’s vector matrices

m =

[
a 	b

	c d

]

with a, d ∈ F and 	b, 	c ∈ F
3. Multiplication is given by

[
a 	b

	c d

][
x 	y

	z w

]
=

[
ax+	b · 	z a	y + w	b− 	c× 	z

x	c+ d	z +	b× 	y 	c · 	y + dw

]
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using the standard dot and cross products of 3-vectors. The associated quadratic form,
which admits composition, is the norm (or determinant) δ(m) = ad−	b · 	c.
In Oct(F) an element m is invertible if and only if δ(m) 	= 0, and the loop of units

GOct(F) is a Moufang loop. This possesses a normal subloop SOct(F) consisting of all
units with norm 1. The scalars {±1} of SOct(F) form a normal subloop {±I}, and the
Paige loop is the quotient PSOct(F) = SOct(F)/{±I}.
The two loops (L, ◦) and (O, 
) are isotopic provided there are bijections α, β, and γ

from L to O with

x ◦ y = z ⇐⇒ xα 
 yβ = zγ .

They are isomorphic if it is additionally possible to choose α = β = γ taking 1L to 1O. It
is well-known that isotopic groups are isomorphic ([5, (i), p.57], [26, Corollary III.2.3]),
but this is not in general true for loops and even Moufang loops. Nevertheless

Proposition 2.1 PSOct(F ) is a simple Moufang loop and is isomorphic to all its loop
isotopes.

Proof. Paige [24, Theorem 4.1] proved simplicity. Every Paige loop contains elements
of order 2, for instance that represented by

[
0 (1, 0, 0)

(−1, 0, 0) 0

]
.

Therefore PSOct(F ) is isomorphic to all its loop isotopes by [26, IV.4.8]. ✷

3. Groups with triality

Let D be a conjugacy class of involutions (that is, elements of order 2) in the group
G = 〈D〉; and let π : G −→ Sym(3), the symmetric group on {1, 2, 3}, be a homomorphism
in which π(D) is the transposition (that is, 2-cycle) class of Sym(3). Further assume that,
for all t, r ∈ D, if π(t) 	= π(r), then |tr| = 3. Then we say that (G,D, π) is a group with
triality or triality group. (We may abuse this by calling G itself a triality group when
D and π are evident.) A subgroup T = 〈T ∩ D〉 � Sym(3) with π(T ) = Sym(3) is
a complementing subgroup in G. A G-conjugate of a complementing subgroup is also
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complementing. If T is a complementing subgroup, then D is the G-class containing the
transpositions of T and π factors through the isomorphism of T with Sym(3).
The motivating example (and the source of the name) is Cartan’s triality group

G = PΩ+
8 (F) : Sym(3) with D the class of G containing the symmetries of PO+

8 (F) and
π the map G −→ G/G′′ � Sym(3). A more elementary example is G = Sym(4) with D
the class of transpositions and ker π = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉.
The study of abstract groups with triality was initiated by Doro [7] following Glauber-

man [9]. Doro’s formulation was different but essentially equivalent to that given here,
which follows [12, 13, 14]. In particular, if (G,D, π) is a group with triality in the present
sense, then Doro’s corresponding “group with triality” would be a pair (ker π, T ) where
T is some complementing subgroup in G.
For a general group with triality (G,D, π), each ofG, D, and π need not determine the

other two uniquely. Of particular interest here will be a certain strong type of uniqueness.
Let T be a complementing subgroup in G, whence G is the split extension kerπ � T .
Suppose that ker π admits an action of T0 � Sym(3) for which T0 is a complementing
subgroup in the group with triality G0 = ker π � T0. We say that the conjugacy class of
complementing subgroups is uniquely determined by kerπ if, in this case, there is always
an isomorphism of G with G0 that takes kerπ to itself and T to T0.
The group with triality (G,D, π) is triality-simple if kerπ is nontrivial and a minimal

normal subgroup of G. That is, if ker π is T -simple for any complementing subgroup T

of G.

Lemma 3.1 Let S be a nonabelian simple group. Then S �Sym(3) is a group with triality
with kerπ the base group S1 × S2 × S3 and D the class containing the tranpositions of
Sym(3). For distinct a, b ∈ {1, 2, 3}

(a, b)ker π = { hah
−1
b (a, b) | h ∈ S }

hence

[kerπ, (a, b)] = Sa × Sb .

S �Sym(3) is triality-simple, and its class of complementing subgroups Sym(3) is uniquely
determined by ker π = S1 × S2 × S3.

Proof. For nonabelian simple S the wreath product

S � Sym(3) = (S1 × S2 × S3)� Sym(3)

4



HALL

has base group S1 × S2 × S3 with automorphism group

Aut(S) � Sym(3) = (Aut(S1)× Aut(S2) ×Aut(S3))� Sym(3) .

In any wreath product H � Sym(3) = (H1 ×H2 ×H3)� Sym(3) the involutions of the
coset (H1 ×H2 ×H3)(a, b) are exactly the elements hah

−1
b kc(a, b) with h arbitrary in H

and k ∈ H arbitrary subject to k2 = 1.
Let r = h1h

−1
2 k3(1, 2) and t = m1n2n

−1
3 (2, 3) be involutions of Aut(S) � Sym(3). The

element rt has order 3 if and only if rtr = trt if and only if k = m and [k, nh] = 1
in Aut(S). Suppose that 〈r, t〉 � Sym(3) is a complementing subgroup within the
group with triality (S1 × S2 × S3) � 〈r, t〉. The calculation of |rts1| = 3 then re-
veals that k = ms for every s ∈ S. This is true precisely when k = m = 1 (in
which case [k, nh] = 1 is immediate). But now 〈r, t〉 is conjugate to 〈(1, 2), (2, 3)〉 by
h−1

1 n−1
3 ∈ Aut(S1)× Aut(S2) ×Aut(S3) ≤ Aut(ker π). ✷

Remark 3.2 (1) For p prime, the transpositions of Zp � Sym(3) generate a subgroup
Z2

p � Sym(3) of index p that is a group with triality (as the calculations of the previous
proof reveal). This group is triality-simple except when p = 3 where there is a central
subgroup of order 3. Also for p 	= 3 there is a unique class of subgroups complementing
the base Z2

p in Z2
p � Sym(3) (by Sylow’s Theorem), while for p = 3 there are three such

classes, all conjugate within the normalizer of the base subgroup in Aut(Z2
3 � Sym(3)).

(The base subgroup Z2
3 is not characteristic in Z2

3 � Sym(3).)
(2) If the triality-simple group (G,D, π) is solvable, then the T -simple subgroup ker π

must be an elementary abelian p-group, for some prime p. It is an easy exercise to prove
that when p 	= 3 we have the above subgroup (Zp × Zp) � Sym(3) of Zp � Sym(3). When
p = 3 we have its central quotient Z3 �Sym(3) = Z2

3 �Z2, an element of order 2 inverting
an elementary abelian group of order 9.

Lemma 3.3 (Doro [7], Nagy and Valsecchi [22]) Let (G,D, π) be a nonsolvable
triality-simple group. Then one of:
(a) G � S � Sym(3) for a nonabelian simple group S;
(b) kerπ is a nonabelian simple group. ✷

Doro assumed G to be finite, but he used this assumption only in showing that
ker π cannot be a direct product of two isomorphic nonabelian simple groups. Nagy and
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Valsecchi showed that finiteness was not necessary to rule out this possibility. All these
arguments were elementary. In contrast, Liebeck used the classification of finite simple
groups to prove:

Theorem 3.4 (Liebeck [19]) Let (G,D, π) be finite triality-simple group with ker π
nonabelian and simple. Then G � PΩ+

8 (F) : Sym(3) for a finite field F. The class of
complementing subgroups is uniquely determined by kerπ � PΩ+

8 (F).

Proof. This first part is [19, Proposition] while uniqueness is [19, Theorem 4.1]. ✷

4. Moufang loops and groups with triality

Doro [7], motivated by work of Glauberman [9], showed that Moufang loops and
groups with triality are essentially the same thing.

Definition 4.1 For a loop L, the group U(L) has the following presentation:

Generators:
〈〈k ; a , b〉〉 for arbitrary k ∈ L and distinct a, b ∈ {1, 2, 3};
Relations:

for arbitrary k, h ∈ L and distinct a, b, c ∈ {1, 2, 3}:
(1) 〈〈k ; a , b〉〉2 = 1;
(2) 〈〈k ; a , b〉〉 = 〈〈k−1 ; b , a〉〉;
(3) 〈〈k ; a , b〉〉〈〈h ; b ,c〉〉 = 〈〈kh ; a , c〉〉.

Lemma 4.2 In U(L) we have always 〈〈k ; a , b〉〉〈〈h ; a ,b〉〉 = 〈〈h(k−1h) ; a , b〉〉.
Proof.

〈〈k ; a , b〉〉〈〈h ; a ,b〉〉 = 〈〈k−1 ; b , a〉〉〈〈h ; a ,b〉〉

=
(〈〈k−1 ; c , a〉〉〈〈1 ; b , c〉〉〈〈k−1 ; c , a〉〉)〈〈h ; a ,b〉〉

= 〈〈k−1 ; c , a〉〉〈〈h; a ,b〉〉〈〈1 ; c , b〉〉〈〈h−1 ; b ,a〉〉〈〈k−1 ; c , a〉〉〈〈h; a,b〉〉

= 〈〈k−1h ; c , b〉〉〈〈h−1 ; c , a〉〉〈〈k−1h ; c , b〉〉
= 〈〈k−1h ; c , b〉〉〈〈h ; a , c〉〉〈〈k−1h ; c , b〉〉
= 〈〈h(k−1h) ; a , b〉〉 .
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✷

We say that U(L) is faithful on L if

k �→ 〈〈k ; a , b〉〉

is a bijection of L with { 〈〈k ; a , b〉〉 | k ∈ L } for each fixed 2-subset {a, b} of {1, 2, 3}.

Theorem 4.3 (1) The group U(L) is a group with triality with respect to the conjugacy
class D(L) = { 〈〈k ; a , b〉〉 | k ∈ L, a, b ∈ {1, 2, 3} } and the homomorphism πL determined
by πL(〈〈k ; a , b〉〉) = (a, b) ∈ Sym(3). It is faithful on L if and only if L has the Moufang
property.
(2) Let (G,D, π) be a group with triality. Then there is a Moufang loop L = L(G,D, π)

(unique up to isotopy) and a central subgroup Z of U(L) with G � U(L)/Z . Here the
class D is the bijective image of the class D(L) and the map πL factors through π.

Proof. See [12, Theorem 4.1] and [13, Theorem 4.5]. ✷

As a direct consequence of this:

Corollary 4.4 If (G,D, π) −→ (G0, D0, π0) is a homomorphism of groups with triality
(in that the image of D is within D0 and π factors through π0), then there is a corre-
sponding natural loop homomorphism L(G,D, π) −→ L(G0, D0, π0).

Conversely if L −→ K is a loop homomorphism, then there is a canonically induced
homomorphism of groups with triality (U(L),D(L), πL) −→ (U(K),D(K), πK). ✷

In particular

Corollary 4.5 The Moufang loop L is simple if and only if the group U(L)/Z(U(L)) is
triality-simple. ✷

Doro also, starting from a Moufang loop L, defined via presentation a universal group
with triality G(L) and noted its “functoriality” as in Corollary 4.4. It is easy to see
that his G(L) is our ker πL, with the presentation for U(L) leading naturally to the Doro
presentation for its subgroup kerπL via the usual Reidermeister-Schreier methodology
[27, 6.1.8]. Therefore the previous corollary is a restatement of Doro’s [7, Cor.2.2].
Similarly, Doro’s [7, Proposition 1] essentially contains

7



HALL

Proposition 4.6 (1) For S a nonabelian simple group, U(S)/Z(U(S)) � S � Sym(3).
(2) For p prime, the group U(Zp)/Z(U(Zp)) is Z2

p � Sym(3) when p 	= 3 and Z3 �

Sym(3) when p = 3.

Proof. By Lemma 3.1 the map 〈〈h ; a , b〉〉 �→ hah
−1
b (a, b) is a bijection from D(S) that

extends to a homomorphism η : U(S) −→ S � Sym(3) with central kernel as in Theorem
4.3 and Corollary 4.4.
If S is nonabelian, then S3 is is generated by the image of D(S); so η is surjective and

its kernel is exactly Z(U(S)).
If S � Zp then the image of η is the transposition generated subgroup Z2

p � Sym(3)
of the wreath product Zp � Sym(3), as discussed in Remark 3.2. This has trivial center
except for p = 3 where its center has order 3. ✷

Theorem 4.7 Let L be a simple Moufang loop for which U(L)/Z(U(L)) is either solvable
or isomorphic to S � Sym(3) for a nonabelian simple group S. Then L is associative and
isomorphic to the simple group S, where in the solvable case S is Zp for some prime p.

Proof. If U(L) is solvable, then by Remark 3.2 and Proposition 4.6 the group
U(L)/Z(U(L)) is isomorphic to U(S)/Z(U(S)), where S = Zp for some prime p, via
an isomorphism that respects complementing subgroup classes.
If U(L)/Z(U(L)) � S � Sym(3) for a nonabelian simple group S, then by Proposition

4.6 we have U(L)/Z(U(L)) � U(S)/Z(U(S)); and the isomorphism respects the classes
of complementing subgroups by Lemma 3.1.
In both cases by Theorem 4.3 the loop L is isotopic to the group S. Therefore by [5,

(i), p.57] or [26, Corollary III.2.3], the loop L is in fact isomorphic to the group S and,
in particular, is associative. ✷

Proposition 4.8 U(PSOct(F))/Z(U(PSOct(F))) � PΩ+
8 (F) : Sym(3).

Proof. Versions of this are well-known; see [23, 30]. We sketch a proof. By Lemma 3.3,
Corollary 4.5, and Theorem 4.7 the group K = ker πPSOct(F)/Z(U(PSOct(F))) is simple.
In particular K is faithful in its permutation action on { 〈〈m ; a , b〉〉 |m ∈ PSOct(F) } for
fixed a, b. We must identify K as PΩ+

8 (F).
Consider the Moufang loop PGOct(F) of units in the octonions Oct(F) modulo

scalars. As a consequence of Lemma 4.2, the involution 〈〈k ; a , b〉〉 has the same ac-
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tion on X = { 〈〈m ; a , b〉〉 |m ∈ PGOct(F) } as the orthogonal symmetry with center k
has on PGOct(F). By the Cartan-Dieudonné Theorem [6, I.5.1] PO+

8 (F) is generated by
these symmetries; so 〈X〉 acts as PO+

8 (F) on X. As in Theorem 4.3 and Corollary 4.4,
the embedding of PSOct(F) as a normal subloop of PGOct(F) here gives us a nontrivial
homomorphism of K into PO+

8 (F) with normal image. As PO
+
8 (F) has the unique mini-

mal normal subgroup PΩ+
8 (F), we find K � PΩ+

8 (F) as desired. ✷

5. Locally finite Moufang loops and groups

An algebraic object is locally finite if each subobject generated by a finite subset is
itself finite. For example the algebraic closure Fp of any finite field Fp is a locally finite
field since any finite subset of Fp lies in a extension that has finite degree over Fp and so
is itself finite. Indeed a field is locally finite precisely when it is isomorphic to a subfield
of Fp for some prime p.

Proposition 5.1 The Moufang loop L is locally finite if and only if the associated uni-
versal triality group U(L) is locally finite.

Proof. First let L be a locally finite Moufang loop and E a finite subset of the
associated group U(L). The group U(L) is generated by the various 〈〈h ; a , b〉〉 for
h ∈ L and distinct a, b ∈ {1, 2, 3}. Therefore there is a finite subset E0 of L with
E ⊆ 〈 〈〈h ; a , b〉〉 | h ∈ E0, a, b ∈ {1, 2, 3} 〉. Let K be the finite subloop of L generated by
E0, so E ⊆ H = 〈 〈〈h ; a , b〉〉 | h ∈ K, a, b ∈ {1, 2, 3} 〉. By Theorem 4.3 and Corollary 4.4
the subgroup H of U(L) is a central quotient of U(K). The group U(K)/Z(U(K)) is a
faithful permutation group of the conjugacy class D(K) of finite size 3|K| and so is finite.
As Z(U(K)) ≤ kerπK ≤ U(K)′, this implies [27, 10.1.4] that U(K) and its image H are
finite, as desired.
Next suppose that U(L) is locally finite and E a finite subset of L. Then the subgroup

H = 〈 〈〈h ; a , b〉〉 | h ∈ E ∪ {1}, a, b ∈ {1, 2, 3} 〉

of U(L) is finitely generated and so finite. But then it is easy to see [8, Proposition 2.6]
that K = { h ∈ L | 〈〈h ; a , b〉〉 ∈ H } is a subloop of L that contains E. The subloop K is
finite as H is. ✷
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Let T be a finite group of automorphisms of the locally finite group H . A T -sectional
cover T = { (Hi, Ni) | i ∈ I } of H is a set of T -invariant finite subgroup pairs (Hi, Ni)
with Ni normal in Hi and such that:

for each finite subgroup E of H there is an i ∈ I with E ≤ Hi and E∩Ni = 1.

The indexing set I then becomes a directed set (I,≺) under the partial order given by

i ≺ j ⇐⇒ Hi < Hj with Hi ∩Nj = 1 .

If I0 is a subset of I with the property that T0 = { (Hi, Ni) | i ∈ I0 } is itself a T -
sectional cover of H , then we call T0 a subcover of T .

Proposition 5.2 If H is locally finite and T -simple, for finite T , then H has a T -
sectional cover { (Hi, Ni) | i ∈ I } with Hi/Ni a T -simple group for each i ∈ I.

Proof. For T = 1 this is a well-known and important observation of Kegel [17]. The
various proofs of Kegel’s result all extend easily to the case of finite T ; see [10, 17, 18,
20, 25]. ✷

6. Locally finite triality-simple groups

This section is devoted to a proof of:

Theorem 6.1 Let (G,D, π) be a nonsolvable and locally finite triality-simple group.
Then we have one of:
(a) G � S � Sym(3) for a nonabelian locally finite simple group S;
(b) G � PΩ+

8 (F) : Sym(3) for a locally finite field F.
Furthermore, in each case the class of complementing subgroups is determined uniquely
by kerπ.

Throughout this section, let (G,D, π) be a nonsolvable and locally finite triality-sim-
ple group. Set H = kerπ. If G is finite, then the theorem is true by Lemmas 3.1 and 3.3
and Theorem 3.4; so we may assume that G and H are infinite.
Choose a complementing subgroup T = 〈T ∩ D〉 � Sym(3) with π(T ) = Sym(3).

In particular H is T -simple, so by Proposition 5.2 there is a T -sectional cover T =
{ (Hi, Ni) | i ∈ I } in which every section Hi/Ni is T -simple.
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Lemma 6.2 We may assume that Hi/Ni is nonabelian for all i ∈ I.

Proof. As G is nonsolvable, H is not abelian. Select x, y ∈ H with [x, y] 	= 1. Let I0 be
the set of those i ∈ I with 〈x, y〉 ≤ Hi and 〈x, y〉 ∩Ni = 1. Then T0 = { (Hi/Ni) | i ∈ I0 }
is itself a T -sectional cover of H with nonabelian T -simple sections. We now may replace
T with the subcover T0. ✷

Lemma 6.3 For i ∈ I we have one of:
(a) Hi/Ni � S3

i for a finite nonabelian simple group Si;
(b) Hi/Ni � PΩ+

8 (Fi) for Fi a finite field of order qi.

Proof. As Hi and Ni are T -invariant with Hi/Ni being T -simple, the group (Hi/Ni)�
T is finite and triality-simple. By Lemma 3.3 and Theorem 3.4 we must have either (a)
or (b). ✷

Let I = IA∪IB where IA is the set of indices withHi/Ni as in (a) of the lemma and IB

is the set of indices with Hi/Ni as in (b) of the lemma. Then set TA = { (Hi, Ni) | i ∈ IA }
and TB = { (Hi, Ni) | i ∈ IB }.

Lemma 6.4 Either TA or TB is a T -sectional cover of H.

Proof. Otherwise there is a finite subgroup EA ofH not covered by any of the sections
of TA and a finite subgroup EB ofH not covered by any of the sections of TB. Then the fi-
nite subgroup E = 〈EA, EB〉 is not covered by any of the sections of T , a contradiction. ✷

Proposition 6.5 If TB is a T -sectional cover of H, then there is a locally finite field
F with H � PΩ+

8 (F). Furthermore the class of complementing subgroups is uniquely
determined by H.

Proof. By Mal’cev’s Representation Theorem [10, Theorem C.4], H has a faithful
representation as a linear group. The proposition then largely comes from the BBHST
Theorem [10, Theorem 1.2] of Belyaev [2, 3], Borovik [4], Hartley and Shute [16], and
Thomas [29].
As these authors showed, under the hypothesis of the proposition there is a linearly

ordered subset (J,≺) of (IB ,≺) such that
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• the subcover TJ = { (Hj, Nj) | j ∈ J } of TB has Nj = 1, for all j ∈ J , and

• qj divides qk, for all j ≺ k of J , with Hj � PΩ+
8 (Fqj ) naturally embedded in

Hk � PΩ+
8 (Fqk ).

The group H is then the ascending union
⋃

j Hj and is naturally isomorphic to PΩ+
8 (F)

for F the ascending union of the fields Fqj .

Let T [0] and T [1] be two subgroups Sym(3) of Aut(H) such that both groups G[i] =
H � T [i] are groups with triality with ker π[i] = H . Our work up to this point shows that
each T [i] leaves invariant natural subgroups PΩ+

8 (Fp∗) of H , where p is the characteristic
of F. By Liebeck’s Theorem 3.4 both leave invariant natural subgroups PΩ+

8 (Fp). Since
all such subgroups are conjugate in Aut(H), we may assume that the T [i] leave invariant
the same subgroup O � PΩ+

8 (Fp). Now Liebeck’s theorem applied again shows that the
T [i] are conjugate in Aut(O) ≤ Aut(H). ✷

In view of the proposition, we may now assume that TA = { (Hi, Ni) | i ∈ IA } is a
subcover of T .
For i ∈ IA and t ∈ T ∩D with π(t) = (a, b) ∈ Sym(3) we define H{a,b}

i = [H, t] and

then set H{a}
i = H

{a,b}
i ∩H

{a,c}
i .

Lemma 6.6 (1) For i ≺ j in IA and a ∈ {1, 2, 3} we have 1 	= H
{a}
i ≤ H

{a}
j ✂ Hj.

(2) For all i ∈ IA we have

〈H{1}
i , H

{2}
i , H

{3}
i 〉 � H

{1}
i ×H

{2}
i ×H

{3}
i .

Proof. (1) As Hi ≤ Hj, we have H
{a,b}
i = [Hi, t] ≤ [Hj, t] = H

{a,b}
j ✂Hj. It remains

to prove 1 	= H
{a}
i .

Set {a, b, c} = {1, 2, 3}. As 〈(a, b), (b, c)〉 = Sym(3), we have

H
{a,c}
i ≤ [Hi, T ] = H

{a,b}
i H

{b,c}
i .

Suppose that 1 = H
{a}
i = H

{a,b}
i ∩H

{a,c}
i . Then by the action of T we also have

1 = H
{a,b}
i ∩H

{b,c}
i = H

{a,c}
i ∩H

{b,c}
i ,

12
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and therefore

1 = [H{a,b}
i , H

{a,c}
i ] = [H{a,b}

i , H
{b,c}
i ] = [H{a,c}

i , H
{b,c}
i ] .

But then

H
{a,c}
i ≤ [Hi, T ] ∩ C(H{a,b}

i H
{b,c}
i ) = Z([Hi, T ]) .

Similarly H{a,b}
i ≤ Z([Hi, T ]), and so indeed [Hi, T ] = Z([Hi, T ]) is abelian. But this

is not the case since by Lemma 3.1 the subgroup [Hi, T ] of Hi covers the nonsolvable
quotient Hi/Ni � S3

i .

We conclude that 1 	= H
{a,b}
i ∩H

{a,c}
i = H

{a}
i .

(2) Choose i ≺ j and set

H̄j = Hj/Nj � Sj,1 × Sj,2 × Sj,3

for Sj nonabelian simple since j ∈ IA. As TA is a sectional cover, the map Hi −→ H̄j is

an injection. By Lemma 3.1 we have H{a,b}
i = [Hi, t] mapped into [H̄j, t] = Sj,a × Sj,b

hence H̄{a}
i ≤ Sj,a. ✷

Lemma 6.7 For each a ∈ {1, 2, 3}, set H{a} =
⋃

i∈IA
H

{a}
i . Then 1 	= H{a} ✂ H and

[H{a}, H{b}] = 1 for a 	= b.

Proof. By Lemma 6.6(1) H{a} is a nontrivial subgroup of H .

Let g ∈ G. For each h ∈ H{a} there is an i ∈ IA with h ∈ H
{a}
i . Choose i ≺ j with

g ∈ Hj. Then by Lemma 6.6(1) we have

[h, g] ≤ [H{a}
i , g] ≤ [H{a}

j , g] ≤ H
{a}
j ≤ H{a} .

Therefore g normalizes H{a}, as desired.

For g ∈ H{a} and h ∈ H{b} (with a 	= b), choose i, j ∈ IA with g ∈ H
{a}
i and h ∈ H

{b}
j .

Next select k ∈ IA with i ≺ k and j ≺ k. Then by Lemma 6.6

[g, h] ∈ [H{a}
i , H

{b}
j ] ≤ [H{a}

k , H
{b}
k ] = 1 .

We conclude that [H{a}, H{b}] = 1. ✷

13
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Our proof of Theorem 6.1 is then completed by

Proposition 6.8 If TA is a T -sectional cover of H, then there is a nonabelian locally
finite simple group S with H � S3 and G � S � Sym(3). Furthermore the class of
complementing subgroups T is uniquely determined by H.

Proof. The T -simple group H is not simple by Lemma 6.7. Therefore by Lemma 3.3
we have H � S3 and G � S � Sym(3) for a nonabelian simple group S, which must be
locally finite as G and H are. By Lemma 3.1 the class of complementing subgroups such
as T is uniquely determined by H . ✷

Remark 6.9 With only a small amount of additional effort we could have proven directly
that H = H{1} × H{2} × H{3} with H{1} � S locally finite and simple and that G =
H � T � S � Sym(3).

7. Locally finite simple Moufang loops

We are now in a position to prove Theorem 1.2 and Corollary 1.3.
Let L be a locally finite simple Moufang loop. By Proposition 5.1 the group with

triality (U(L),D(L), πL) is then locally finite, and U(L)/Z(U(L)) is triality-simple by
Corollary 4.5.
Either U(L) is solvable or we are under Theorem 6.1(a) or (b). If either U(L) is

solvable or, as in Theorem 6.1(a), U(L)/Z(U(L)) � S � Sym(3) for a nonabelian locally
finite simple group S, then L is associative by Theorem 4.7.
Under Theorem 6.1(b) U(L)/Z(U(L)) � PΩ+

8 (F) : Sym(3) for a locally finite field F,
and furthermore the class of complementing subgroups is uniquely determined by the
kernel PΩ+

8 (F). By Proposition 4.8 we have

U(L)/Z(U(L)) � U(PSOct(F))/Z(U(PSOct(F)))

with the isomorphism respecting the classes of complementing subgroups. Therefore by
Theorem 4.3 the loops L and PSOct(F) are isotopic, and so by Proposition 2.1 the loop
L is in fact isomorphic to the Paige loop PSOct(F).
This completes the proof of Theorem 1.2.

14
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All locally finite fields are countable as they are subfields of some algebraic closure
Fp, a countable field; and a finite dimensional algebra over a countable field is countable.
Therefore over the locally finite field F the octonions Oct(F) and the associated Paige loop
PSOct(F) are countable. Corollary 1.3 is thus an immediate consequence of Theorem 1.2.
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