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1 Introduction

Let V be a vector space over K. For each nonnegative integer k let Pk(V ) be
the set of k-subspaces of V . For positive d (≤ dimV ), let Ld(V ) be the set
of pairs (U,W ) with U ∈ Pd−1(V ), W ∈ Pd+1(V ), and U ≤ W . We also set
B−d (V ) = Pd−1(V ), B+

d (V ) = Pd+1(V ), and Bd(V ) = B−d (V ) ∪ B+
d (V ).

In the case V = K4 and d = 2, we can view P2(V ) and L2(V ) as the points
and lines of the Klein quadric. Then (B−2 (V ),P2(V ),B+

2 (V )) is the associated
rank 3 geometry of type D3 (= A3) and (P2(V ),L2(V ),B2(V )) the associated
rank 3 polar space of type C3.

We look at several geometries related to these for the Klein quadric. Let
Ad(V ) = (Pd(V ),Ld(V )). (Here and throughout, d is some positive integer
but dimKV may be infinite unless stated otherwise.) Ad(V ) is a partial linear
space with point set Pd(V ) and line set Ld(V ) whose members (U,W ) we often
identify with the 1 + |K| distinct d-spaces (that is, incident points) in between
the (d − 1)-space U and the (d + 1)-space W . Ad(V ) is called a Grassmann
space and, sometimes, a d-Grassmann space.

We associate two rank 3 geometries with Ad(V ). The first is the Grassman-
nian geometry (or d-Grassmannian geometry)

Gd(V ) = (B−d (V ),Pd(V ),B+
d (V ))

with diagram

e e ePG∗ PG
.

If d is 1 or dimKV − 1, then B−d (V ) or B+
d (V ) is empty (respectively), and we

have the rank 2 geometry of points and lines for a projective space over K or
Kop.
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The second geometry is

CGd(V ) = (Pd(V ),Ld(V ),Bd(V ))

with diagram

e e ePG G
.

Again if d is 1 or dimKV −1, one of the Bε
d(V ) is empty; so the line set and block

set of CGd(V ) are identical, being equal to the line set of Gd(V ). For this reason,
we will only consider the geometry CGd(V ) for d not equal to 1 or dimKV − 1.
With this restriction in mind, we may (when convenient) identity CGd(V ) with
the collinearity graph Γ of Ad(V ) and Gd(V ), since the three types of objects
correspond to three identifiable classes of cliques in Γ. (If d is 1 or dimKV − 1,
the collinearity graph Γ is complete.) The vertices of Γ are the points of Pd(V )
with P1 and P2 adjacent precisely when collinear in Ad(V ), that is, when P1∩P2

is a (d−1)-space or, equivalently, 〈P1, P2〉 is a (d+1)-space. The maximal cliques
in this graph are precisely the members of Bd(V ) (each identified with the set of
those points incident to it). Two distinct maximal cliques intersect trivially, in
a vertex, or in a line of Ld(V ). The diagram indicates that the residue of a point
in the geometry CGd(V ) is a grid graph. More precisely, the collinearity graph Γ
is locally a |K|-clique extension of a u× v grid, where 1+ |K|u is the number of
d-spaces containing a fixed (d−1)-space (from B−d (V ), giving maximal “minus”
cliques) and 1+ |K|v is the number of d-spaces contained in a fixed (d+1)-space
(from B+

d (V ), giving maximal “plus” cliques). A plus clique and minus clique
are either disjoint or they intersect in the |K|+ 1 points of a line.

A geometric hyperplane of Ad(V ) = (Pd(V ),Ld(V )) is a proper subset H of
Pd(V ) such that, for every line ` ∈ Ld(V ), either ` ⊆ H or |` ∩ H| = 1. If d is
1, then a geometric hyperplane is a hyperplane in the usually sense, and dually
when d = dimKV − 1. It is convenient to allow the possibility d = dimKV ,
where Ad(V ) has a single point and H is empty. A geometric hyperplane is
always a subspace of the partial linear space Ad(V ).

With H we associate the rank 3 geometry Gd(V )H = (B−H,PH,B+
H), which

has been called an affine Grassmannian. The geometry Gd(V )H consists of point
set PH = Pd(V )\H, the hyperplane complement consisting of all d-spaces not
in H, together with the set B−H of all (d− 1)-spaces contained in a point of PH
and the set B+

H of all (d + 1)-spaces containing a point of PH. For d equal to 1
or dimKV − 1 this gives the usual affine geometries for V and its dual.

When d is not 1 or dimKV − 1, the geometry Gd(V )H has diagram

e e eAG∗ AG
.

Its collinearity graph CGd(V )H is locally a (|K| − 1)-clique extension of a u× v
grid graph. The lines of LH contain only |K| points of PH, since each meetsH in
a point. Of particular note is the case K = F2. There the affine Grassmannian
Gd(V )H is a (c∗, c)-geometry, belonging to the diagram
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e e ec∗ c
,

and the collinearity graph CGd(V )H is a locally grid graph.
There are earlier papers on affine Grassmannians over arbitrary fields and

division rings [2, 7, 12, 20]. (Note that the “affine Grassmannian” terminology
has also been used elsewhere with a related but different definition.) The most
fundamental and deep result in the area is due to Shult:

( 1.1) Theorem. (Shult [20, Theorem 2].) Let V be a finite dimensional
vector space over a field, and let H be a geometric hyperplane in Ad(V ). Then
for some nonzero alternating d-linear form f on V , the set H = Hf consists of
all the f-degenerate d-subspaces of V .

Thus the study of geometric hyperplanes of Ad(V ) is equivalent to the study of
alternating bilinear forms on V .

We say that the subgroup G of Aut(Gd(V )H) is transitive on Gd(V )H if G is
transitive on PH. The subgroup G of Aut(Gd(V )H) is flag-transitive on Gd(V )H
if G is transitive on incident triples (U,P,W ) (chambers or maximal flags) with
U ∈ B−H, P ∈ PH, and W ∈ B+

H. Similarly the subgroup G of Aut(CGd(V )H)
is flag-transitive on CGd(V )H if G is transitive on incident triples (P, `,B) with
point P ∈ PH, line ` ∈ LH, and maximal clique B ∈ B−H ∪ B

+
H. If the chamber

(P, `,B) has B ∈ B−H, then it is a −-chamber, whereas when B ∈ B+
H it is a

+-chamber. The geometry is transitive (respectively, flag-transitive) if its full
automorphism group is transitive (respectively, flag-transitive) on it.

The focus of this paper is an interesting class of transitive affine Grassman-
nians.

( 1.2) Theorem. Let s : V × V −→ K be a symplectic form on V . Let
H = Hs,d be the set of all d-subspaces P of V for which s|P is degenerate.
Assume additionally that d ≥ rank(V, s) 6= 0, so that H does not consist of all
d-subspaces of V .

Then H is a geometric hyperplane of Ad(V ) = (Pd(V ),Ld(V )), and the
associated affine Grassmannian Gd(V )H is connected and transitive. Indeed
Gd(V )H is flag-transitive if and only if either

(a) s is nondegenerate or
(b) d = rank(V, s).

We then have

( 1.3) Corollary. Let 1 < d < dimKV − 1. The locally grid geometry
CGd(V )H is connected and transitive. Indeed CGd(V )H is flag-transitive if and
only if 2d = dimKV and

(a) s is nondegenerate or
(b) d = rank(V, s).

These are proved (in slightly greater detail) in Section 3. We refer to all the
geometric hyperplanes of Theorem 1.2 as being of Pfaffian type for reasons that
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will become clear in Section 4 below. Similarly the related affine Grassmannians
and locally grid geometries will be called Pfaffian.

The affine Grassmannians of Theorem 1.2(b) and Corollary 1.3(b) with d
equal to rank(V, s) are examples of attenuated spaces [21, 22]. If R is a fixed
subspace of codimension d in V , then the set of all d-subspaces of V that meet
R nontrivially is a geometric hyperplane HR of Ad(V ) called an attenuated
hyperplane. The associated affine Grassmannian and locally grid geometry will
also be called attenuated. The examples of Theorem 1.2(b) come from the
attenuated hyperplane HR for R = Rad(V, s) of codimension d (so attenuated
affine Grassmannians are Pfaffian if and only if d is even). If d is 1 or dimKV −1,
then all geometric hyperplanes are actual hyperplanes of V or V ∗ (respectively)
and so are attenuated.

The author first noted the constructions and results of Theorem 1.2 and
Corollary 1.3 early in the 1980’s in the context of locally grid graphs, which
corresponds to the case K = F2. Also in 1981 Yoshimi Egawa [9] pointed out
that attenuated spaces over F2 (presented in a slightly different form) give rise
to locally grid graphs.

Meixner and Pasini’s census of flag-transitive locally grid graphs [18] lists
attenuated spaces but not the Pfaffian examples. Shult’s work and surveys [21,
22] on (c∗, c)-geometries (and locally grid graphs) mention affine Grassmannians
over F2 as a source, but only the attenuated examples are discussed specifically.

Shult suggests that attenuated spaces might provide the only examples of
flag-transitive affine Grassmannians. As we have seen above, that is not the
case. But Shult’s feeling that the condition is highly restrictive is certainly
correct. In fact, the finite attenuated and nondegenerate Pfaffian examples are
characterized by flag-transitivity.

( 1.4) Theorem. Let H be a geometric hyperplane of Ad(V ) with V = Fn
q .

Then Gd(V )H is flag-transitive if and only if we have one of
(a) H = HR, an attenuated hyperplane with respect to some R of codimension

d in V ;
(b) d is even and H = Hs,d for some nondegenerate symplectic s form on V .

The theorem is related to Witt’s theorem [24, 7.4], since it classifies alternating
forms admitting semisimilarity groups that are transitive on all subconfigura-
tions of a certain isometry type.

( 1.5) Corollary. Let 1 < d < dimKV −1. Let H be a geometric hyperplane
of Ad(V ) with V = Fn

q . Then CGd(V )H is flag-transitive if and only if 2d = n
and we have one of

(a) H = HR, an attenuated hyperplane with respect to some R of codimension
d in V ;

(b) d is even and H = Hs,d for some nondegenerate symplectic s form on V .

Of particular interest is the locally grid graph case q = 2.
In Section 2 we give various properties of alternating bilinear forms and the

related geometric hyperplanes. Section 3 contains a proof of Theorem 1.2 and
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Corollary 1.3. In Section 4 we construct alternating d-linear forms that give rise
to the attenuated and Pfaffian examples. Section 5 is devoted to the proof of
Theorem 1.4 and Corollary 1.5.

2 Alternating forms and related hyperplanes

An alternating d-linear form f on the vector space V over the field K is a map
f : V d −→ K that is linear in each variable and is 0 whenever two arguments
are equal. We also view an alternating d-linear form as an element of (

∧d
V )∗.

A symplectic form on the K-space V is an alternating 2-linear form. The radical
of f on V is the subspace

Rad(V, f) = { v ∈ V | f(v1, . . . , vd−1, v) = 0, for all v1, . . . , vd−1 ∈ V } .

The rank of V , rank(V, f), is the codimension of its radical. When d = 2 the
rank is always even; for this and other well-known geometry, see [24].

Alternating d-linear forms with d > 2 are less familiar; see [1, 20]. After
Aschbacher [1], for each subspace P of V we set

P θ = { v ∈ V | f(p1, . . . , pd−1, v) = 0, for all p1, . . . , pd−1 ∈ P } .

Especially V θ is Rad(V, f). More generally P∩P θ = Rad(P, f |P ). The subspace
P (possibly V itself) is f-degenerate (or just degenerate if the context is clear)
when its radical Rad(P, f |P ) is nonzero. If Rad(P, f |P ) = 0, then P is f-
nondegenerate or nondegenerate.

The zero form is identically 0 on V d.

( 2.1) Lemma. Let f be an alternating d-linear form on the K-space V , and
let P be a subspace of dimension at most d. Then either f restricted to P is the
zero form and P ≤ P θ or dimKP = d, P is nondegenerate, and V = P ⊕ P θ.

Proof. The arguments of [1, (1.4-5)] for d = 3 go over to the general case.
Let v1, . . . , vd have span W with basis {wj | j ∈ J }. Then f(v1, . . . , vd)

is a K-linear combination of the f(wj1 , . . . , wjd
) with ji ≤ ji+1. In particular

f(v1, . . . , vd) = 0 if dimKW < d. Indeed, for any subspace W of dimension k,
the codimension in V of W θ is at most

(
k

d−1

)
.

If dimKP < d or P ∩ P θ 6= 0, then (with an appropriate choice of the wj)
each f(wj1 , . . . , wjd

) is 0; so the restriction of f to P is zero and P ≤ P θ.
Otherwise P ∩ P θ = 0, and nondegenerate P has dimension d =

(
d

d−1

)
; so we

have V = P ⊕ P θ.

Given an alternating d-linear form f on V and a map A ∈ ΓL(V ), semi-
linear with respect to the automorphism α of the field F , we can define a new
alternating d-linear form fA on V by

fA(v1, . . . , vi, . . . , vn) = f(v1A
−1, . . . , viA

−1, . . . , vnA−1)α .

The semilinear map A is then a semisimilarity of (V, f) if there is a nonzero
scalar c with cfA = f . It is an isometry if additionally c = 1 and α = 1.
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( 2.2) Proposition. Let f be a nonzero alternating d-linear form on V ,
and let H = Hf be the associated geometric hyperplane of Ad(V ). Then the
following groups are all equal:

(a) the stablizer ΓL(V )H of H in ΓL(V );
(b) the group of all semisimilarites of (V, f);
(c) the group of all A ∈ ΓL(V ) for which

f(v1, . . . , vi, . . . , vn) = 0 ⇐⇒ f(v1A, . . . , viA, . . . , vnA) = 0 ,

for all v1, . . . , vn ∈ V .

Proof. For any A ∈ ΓL(V ),

f(v1, . . . , vi, . . . , vn) = 0 ⇐⇒ fA(v1A, . . . , viA, . . . , vnA) = 0 .

Especially semisimilarites of (V, f) belong to the group of (c). In turn, semilinear
maps A as in (c) take f -degenerate d-spaces to f -degenerate d-spaces and so
are contained in the stabilizer ΓL(V )H.

It remains to prove that the stabilizer consists of semisimilarities. Let A ∈
ΓL(V )H. The implication of the previous paragraph shows that Hf = HfA . By
[20, Cor. 2.1.1] we have f = cfA, for some nonzero constant c. Therefore A is
a semisimilarity, as desired.

The induced semisimilarity group PΓL(V )H is clearly a subgroup of the
automorphism groups Aut(Gd(V )H) and Aut(CGd(V )H), and usually we have
equality.

( 2.3) Theorem. Let V be a K-space, and let H be geometric hyperplane of
Ad(V ). Assume also that 2 < d < dimKV − 2 or that |K| > 2. Then

Aut(Gd(V )H) = Aut(Gd(V ))H = PΓL(V )H .

This is due to Blok [2, 3] and answers a question of Shult [22]. For K = F2 there
are genuinely exceptional cases when d is any of 1, 2, dimKV −2, or dimKV −1;
see [3]. (The equality Aut(Gd(V )) = PΓL(V ) is Chow’s Theorem [6].)

Theorem 2.3 allows us largely to restrict our attention to automorphisms of
affine Grassmannians that are induced by semilinearities of the parent vector
space, that is, semisimilarities of (V, f).

Assume that V has finite dimension n > 2 over the field K. Then V possesses
many dualities. These are bijections that take i-subspaces to j-subspaces, for
i + j = n, and that respect inclusion. If δ is a duality, then δ2 belongs to
the group PΓL(V ); so PΓL(V ) has index 2 in PΓL∗(V ), its extension by all
dualities. Correspondingly the induced stabilizer PΓL∗(V )H can be twice as big
as PΓL(V )H.

( 2.4) Lemma. Let dimKV = n > d. Further let δ be a duality of V and H
a geometric hyperplane of Ad(V ).
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(1) Hδ is a geometric hyperplane of An−d(V ).
(2) If H = Hδ, then n = 2d and δ induces an automorphism of CGd(V )H

that switches B−H and B+
H. In this case PΓL∗(V )H\PΓL(V )H is the set of all

such stabilizing dualities.

Proof. (1) Let A,B,C be subspaces of V with A ≤ B ≤ C. Then Aδ ≥
Bδ ≥ Cδ. Thus (A,B,C) ∈ Ad(V ) if and only if (Cδ, Bδ, Aδ) ∈ An−d(V ).

(2) If H = Hδ, then Ad(V ) = An−d(V ) and d = n− d. Thus δ switches B−
and B+ and fixes H, so (B−H)δ = B+

H. The stabilizing dualities are those of the
coset δ PΓL(V )H.

The following important observation is essentially due to Shult [20] and has
several helpful consequences.

( 2.5) Proposition. (1) If H and J are geometric hyperplanes of Ad(V )
with H ⊆ J , then H = J .

(2) For any geometric hyperplane H of Ad(V ), the associated affine Grass-
mannian Gd(V )H and locally grid geometry CGd(V )H are connected.

Proof. It is a well-known and elementary fact that a geometric hyperplane
is maximal if and only its complement is connected. For finite dimensional V
a full proof of (2) can be found in [3, Lemma 3.3], and the infinite dimensional
case follows easily.

( 2.6) Theorem. Let H be a geometric hyperplane of Ad(V ). Then PΓL(V )H
is flag-transitive on Gd(V )H but reducible on V if and only if we have H = HR,
an attenuated hyperplane with respect to some R of codimension d in V .

Proof. Let R be a nontrivial invariant subspace.
Transitivity on incident pairs from (B−H,PH) implies, for P ∈ PH, that either

P ≤ R or P ∩ R = 0. If P ≤ R, then 〈PH〉 ≤ R. Since R is proper in V there
are (d+1)-spaces W with W ∩R = P . But then, for any hyperplane U of P , the
line (U,W ) meets PH in the unique point P , an impossibility. Thus P ∩R = 0.

Transitivity on B+
H and the existence of members of B+

H meeting R non-
trivially imply that everything in B+

H meets R nontrivially. This forces the
codimension of R to be d.

Now H contains HR, so we have equality by Proposition 2.5.

( 2.7) Lemma. Let 1 < d < dimKV − 1, and let H be a geometric hy-
perplane of Ad(V ). Then Aut(Gd(V )H) is a subgroup of of index at most 2 in
Aut(CGd(V )H). If the index is equal to 2, then 2d = n and the automorphisms
of Aut(CGd(V )H)\Aut(Gd(V )H) switch B−H and B+

H.

Proof. The lines of Gd(V )H and CGd(V )H are exactly those cliques of
CGd(V )H of size at least 2 that occur as the intersection of two distinct maximal
cliques. In particular Aut(Gd(V )H) ≤ Aut(CGd(V )H).
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The locally grid geometry CGd(V )H is connected by Proposition 2.5. On the
maximal clique set BH of CGd(V )H define a relation by B1 ∼ B2 when B1 ∩B2

contains a unique point of PH. BH then has exactly two connected components
under ∼, namely B−H and B+

H. Any automorphism g of CGd(V )H must therefore
either switch these two components or fix both. In the second case, g induces
an automorphism of Gd(V )H.

In the first case, there is a maximal clique B− ∈ B− with (B−)g = B+ ∈ B+
H.

If K = Fq, we have qd = |B−| and |B+| = qn−d, where n = dimKV . If K is not
finite, then the lines of L give B− the structure of an affine space Kd and B+

the structure of Kn−d. In either event, dimKV = n is finite and d = n − d, as
desired.

3 Proof of Theorem 1.2

This section is mainly concerned with proving of Theorem 1.2 and Corollary 1.3.
Theorem 3.5 presents similar results for attenuated hyperplanes and the asso-
ciated attenuated spaces. Also Proposition 3.6 gives the complete classification
of hyperplanes in the cases where d is one of 1, 2, dimV − 2, or dimV − 1.

The result which motivated this paper is

( 3.1) Proposition. Let V be a vector space over the field K and s a
symplectic form on V . Let d be even with 0 < d ≤ rank(V, s). Then

Hs,d = {P ≤ V |dimKP = d, Rad(P, s|P ) 6= 0 }

is a geometric hyperplane of the d-Grassmann space Ad(V ).

Proof. As even d ≤ rank(V, s), Hs,d is not all of Pd(V ). Let U ≤ P ≤ W
be a chamber of the Grassmannian Gd(V ). If the line (U,W ) is not entirely
within H, then we may choose P to be nondegenerate (under s|P ). In that case
Rad(W, s|W ) = 〈r〉 has dimension 1, and any d-space complement to 〈r〉 in W
is nondegenerate. In particular, of the |K| + 1 distinct d-spaces 〈U,w〉 ≤ W ,
only 〈U, r〉 is degenerate.

( 3.2) Lemma. Let H = Hs,d be as in Proposition 3.1. Then in its action on
Gd(V )H the group PGL(V )H has chamber orbits

{(U,P,W ) |U ∈ B−H, P ∈ PH, W ∈ B+
H, W ∩ Rad(V, s) = 0 }

and
{(U,P,W ) |U ∈ B−H, P ∈ PH, W ∈ B+

H, W ∩ Rad(V, s) 6= 0 } .

In particular PΓL(V )H is transitive on the points of Gd(V )H (and CGd(V )H).
Indeed PΓL(V )H acts flag-transitively on Gd(V )H if and only if we have one of

(a) s is nondegenerate or
(b) d = rank(V, s), the codimension of Rad(V, s).
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Proof. Clearly Sp(V, s) ≤ ΓL(V )H.
Let P ∈ PH and X = P⊥, so that V = P ⊕X.
If P1 and P2 are two points, then 〈P1, P2〉 can be embedded in a finite

dimensional subspace Y of V with Rad(Y, s|Y ) = Y ∩ Rad(V, s). A symplectic
basis for each of P1 and P2 can be extended to symplectic bases for Y . Thus
there is a g ∈ Sp(Y, s|Y ) taking P1 to P2. As Y has a perpendicular complement
in V , all members of Sp(Y, s|Y ) extend to elements of Sp(V, s).

We now need only prove that the stabilizer of P is transitive on the chambers
U ≤ P ≤W .

Any (d− 1)-space U ≤ P equals u⊥ ∩ P for a unique 1-space 〈u〉 ≤ P . Any
(d + 1)-space W ≥ P equals 〈P, x〉 for the unique 1-space 〈x〉 = X ∩W . Thus
the orbits of the stabilizer of P in ΓL(V )H are the same as the orbits on 1-
spaces within P (for B−H) and within X = P⊥ (for B+

H). As before Sp(P, s|P )×
Sp(X, s|X) ≤ ΓL(V )H. The factors act independently on P and X. Sp(P, s|P )
is then transitive on those U ∈ B−H incident to P . Sp(X, s|X) is transitive on
those 1-spaces of X contained in Rad(X, s|S) = Rad(V, s) and on those 1-spaces
of X outside of Rad(X, s|X). This gives the two orbits described. ΓL(V )H acts
flag-transitively precisely when one of these two orbits is empty. The second is
empty if and only if Rad(V, s) = 0, that is, when s is nondegenerate as in (a).
The first is empty when every (d + 1)-space that contains the nondegenerate
d-space P meets Rad(V, s). This is the case if and only if d is equal to the
codimension of Rad(V, s) as in (b).

No element of PΓL(V )H can switch B−H and B+
H; so, for 1 < d < dimKV −1,

the group PΓL(V )H can never act flag-transitively on CGd(V )H. But the group
PΓL∗(V )H sometimes can.

( 3.3) Lemma. Let H be a geometric hyperplane of Ad(V ) with 1 < d <
dimKV −1. The group PΓL(V )H acts flag-transitively on Gd(V )H if and only if
it is transitive on the set of −-chambers and the set of +-chambers of CGd(V )H.

Proof. First suppose that PΓL(V )H is flag-transitive on Gd(V )H. Let
(P1, `1, B1) and (P2, `2, B2) be two chambers of CGd(V )H, with B1, B2 ∈ B+,
say (a similar argument handling the case B1, B2 ∈ B−). Let B−

1 and B−
2 from

B− be chosen so that each line `i is contained in the line of CGd(V ) determined
by the incident pair (B−

i , Bi). By flag-transitivity, there is a g ∈ PΓL(V )H with
(B−

1 , P1, B1)g = (B−
2 , P2, B2). This forces `g

1 = `2. Therefore g is an element of
PΓL(V )H with (P1, `1, B1)g = (P2, `2, B2), as desired.

Now suppose that PΓL(V )H is transitive on the set of −-chambers and
the set of +-chambers of CGd(V )H. Let (U1, P1,W1) and (U2, P2,W2) be two
chambers of Gd(V )H. By assumption, there is a g ∈ PΓL(V )H with (P1,W1)g =
(P2,W2), so we may take P = P1 = P2 and W = W1 = W2. Each Ui ∈ B−H, with
(Ui, P, W ) a chamber of Gd(V )H, meets W in a line `i = Ui∩W , which contains
the point P ; and `i = `j if and only if i = j. Again by flag-transitivity, there
is an f ∈ PΓL(V )H with (P, `1,W )f = (P, `2,W ). But then (U1, P, W )f =
(U2, P, W ), as desired.
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( 3.4) Corollary. Let H = Hs,d be as in Proposition 3.1 with 1 < d <
dimKV −1. The group PΓL∗(V )H acts flag-transitively on CGd(V )H if and only
if PΓL(V )H is flag-transitive on Gd(V )H and dimKV = 2d.

Proof. If PΓL∗(V )H is flag-transitive on CGd(V )H, then PΓL(V )H, of index
2, has at most two orbits on the chambers of CGd(V )H. These must be the +-
chambers and the −-chambers; so, by the lemma, PΓL(V )H is flag-transitive on
Gd(V )H. As PΓL(V )H has two orbits, it is proper in PΓL∗(V )H; therefore we
have 2d = n by Lemma 2.4.

To prove the converse, we consider the two cases of Lemma 3.2 in turn. If,
as in Lemma 3.2(a), s is nondegenerate, then the polarity X 7→ X⊥ induces
an automorphism of CGd(V )H. Indeed it maps the chamber (U,P,W ) to the
chamber (W⊥, P⊥, U⊥).

In Lemma 3.2(b), let R = Rad(V, s). Then there is a duality δ of V (here
definitely not associated with s) that takes R to itself. But then δ induces an
automorphism of CGd(V )H that interchanges B−H and B+

H, as desired.

The dual of an attenuated affine Grassmannian is again attenuated. As
seen in the proof of the previous corollary, when the parent symplectic form is
nondegenerate on V , a dual Pfaffian affine Grassmannian is Pfaffian. On the
other hand, Lemma 3.2 proves that the dual of a Pfaffian affine Grassmannian
is not Pfaffian when the form is degenerate of rank larger than d.

The results on Pfaffian geometric hyperplanes are, in particular, valid for
attenuated hyperplanes for which the subspace R has even codimension in the
space V . This restriction on codimension is spurious.

( 3.5) Theorem. Let R be a nonzero subspace of finite codimension d
(0 < d < dimV ) in the space V over the field K. Set

H = HR = {P ≤ V |dimKP = d, P ∩R 6= 0 } .

(1) The set HR is a geometric hyperplane of the d-Grassmann space Ad(V ).
(2) The affine Grassmannian Gd(V )H is connected and admits PGL(V )R =

PGL(V )H acting flag-transitively.
(3) The locally grid geometry CGd(V )H is connected and transitive, and it

admits PΓL∗(V )R = PΓL∗(V )H acting flag-transitively if and only if dimKV =
2d.

Proof. (1) Let P1 and P2 be two d-spaces that are disjoint from R with
dim(P1 ∩ P2) = d − 1 and dim〈P1, P2〉 = d + 1. Then 〈P1, P2〉 ∩ R = T has
dimension 1, and Q = 〈P1 ∩ P2, T 〉 is the unique d-subspace of 〈P1, P2〉 that
meets R nontrivially. Therefore H is a geometric hyperplane.

(2) Connectivity is true in general by Proposition 2.5.
The definition of H uniquely determines R, so GL(V )H = GL(V )R. Let

v̄1, . . . v̄d be a basis of V̄ = V/R, and assume that the two d-spaces P1 and P2

of Gd(V )H have bases x1, . . . , xd and y1, . . . yd, respectively, with x̄i = v̄i = ȳi,
for all i. Then the map xi 7→ yi, for all i, extends to a member of GL(V )R that
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is trivial on R and V̄ and takes P1 to P2. As GL(V )R,P ' GL(V̄ ) × GL(R) is
transitive on the pairs of (d−1)- and (d+1)-spaces incident to the fixed d-space
P of Gd(V )H, we have the desired flag-transitivity.

(3) This follows directly from (2) as in Corollary 3.4.

Remark. Parts (1) and (2) of the theorem remain valid over arbitrary
division rings without change to either statement or proof. Part (3) must be
changed to say that PΓL∗(V )H is flag-transitive on CGd(V )H if and only if
dimKV = 2d and K has an anti-isomorphism. The backwards implication
follows as before, but the direct part requires additional proof.

As we have seen in Theorem 2.3, the cases in which d is one of 1, 2, dimKV−2,
or dimKV − 1 are exceptional. But these are the cases that admit full classifi-
cation of the geometric hyperplanes.

( 3.6) Proposition. Let V be a vector space over K and d a positive integer.
Let H be a geometric hyperplane of Ad(V ).

(1) If d = 1 or d = dimKV − 1, then H is an attenuated hyperplane and
Aut(Gd(V )H) is flag-transitive on Gd(V )H.

(2) Let d = 2. Then H = Hs,2 is a Pfaffian hyperplane for some symplectic
form s. The group Aut(Gd(V )H) is flag-transitive on Gd(V )H if and only if
either rank(V, s) = 2 or rank(V, s) = dimV . Furthermore Aut(CGd(V )H) is
flag-transitive on CGd(V )H if and only if either rank(V, s) = 2 or rank(V, s) =
dimV = 4.

(3) Let d = dimKV −2. Then H is the dual of a Pfaffian hyperplane Hs,2 for
some symplectic form s. Again Aut(Gd(V )H) is flag-transitive on Gd(V )H if and
only if either rank(V, s) = 2 or rank(V, s) = dimV . Furthermore Aut(CGd(V )H)
is flag-transitive on CGd(V )H if and only if either rank(V, s) = 2 or rank(V, s) =
dimV = 4.

Proof. Part (1) is immediate, and (3) follows directly from (2) by duality.
When d = 2, as in (2), Shult’s Theorem 1.1 implies that H = Hs,2 for some

symplectic form s. The examples given are indeed flag-transitive by Lemma 3.2
and Corollary 3.3. It remains to prove that these are the only flag-transitive
examples.

Suppose that rank(V, s) > 2 and that Gd(V )H is flag-transitive. Assume that
s is degenerate. By Lemma 3.2, PΓL(V )H has two orbits on chambers—that
of the radical chambers (B−, P, B+) with B+ ∩ Rad(V, s) 6= 0 and that of the
nonradical chambers. We must show that Aut(Gd(V )H) does not fuse these two
orbits. But this is clear, since every nonradical chamber is in a nondegenerate
Pfaffian subgeometry G2(W )H′ , for an s-nondegenerate 4-space W containing
B+ and H′ = H ∩ P2(W ), while no radical chamber is in a subgeometry with
this isomorphism type. The contradiction proves s to be nondegenerate.

The previous paragraph and Lemma 2.7 show that the only flag-transitive
CGd(V )H are the stated examples.
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Proof of Theorem 1.2 and Corollary 1.3:
Proposition 2.5(2) shows that the geometries Gd(V )H of Theorem 1.2 and

CGd(V )H of Corollary 1.3 are both connected. All other parts of Theorem 1.2
and Corollary 1.3 then follow from the various results of this section.

4 Alternating forms and Pfaffians

Shult’s Theorem 1.1 encourages us to look for alternating forms on V that give
rise to attenuated and Pfaffian geometric hyperplanes.

First consider the case of the attenuated hyperplane HR. Let P be a d-
space complement to R in V , and let e1, . . . , ed be a K-basis of P . For each
vi ∈ V , we have vi =

∑d
j=1 ai,jej + ri, for unique ri ∈ R and ai,j ∈ K. Then

f(v1, . . . , vd) = det([ai,j ]i,j) is an alternating d-linear form. The form f is 0
precisely when the span Q = 〈v1, . . . , vd〉 projects onto a proper subspace of P ,
that is, when Q intersects R nontrivially and so belongs to HR. The projection
λj of each vi onto its j-th coordinate ai,j is a linear functional on V . We can
think of the construction of f in terms of the canonical embedding of

∧d
V ∗ in

(
∧d

V )∗ given by

(v1 ∧ · · · ∧ vi ∧ · · · ∧ vd) · (λ1 ∧ · · · ∧ λj ∧ · · · ∧ λd) = det([viλj ]i,j) .

( 4.1) Proposition. Let HR be an attenuated hyperplane of Ad(V ). Let
λ1, . . . , λd be a basis of kerV ∗ R. Then λR = ∧d

j=1λj is an alternating d-
linear form on V for which the λR-degenerate d-spaces of V are exactly those of
HR. Conversely, for each pure vector λ of ∧dV ∗ (thought of as an element of
(∧dV )∗), the pure vectors of the hyperplane ker λ give an attenuated hyperplane
of Ad(V ).

We next want to find an alternating form that produces the Pfaffian exam-
ples. This is particularly easy when K = F2.

( 4.2) Proposition. Let s be a symplectic form on the F2-space V . The
map δ(v1, . . . , vd) = det([s(vi, vj)]i,j) is an alternating d-linear form on V with
δ(v1, . . . , vd) 6= 0 if and only if 〈v1, . . . , vd〉 is an s-nondegenerate d-space of V .

Proof. Since, in Theorem 4.3 below, we will prove the appropriate gener-
alization to arbitrary fields, we only sketch the proof here.

Consider the map D : V d × V d −→ K given by

D(v1, . . . , vd;w1 . . . , wd) = det([s(vi, wj)]i,j)

and the related
δ(v1, . . . , vd) = D(v1, . . . , vd; v1 . . . , vd) .

Over the field K (initially arbitrary), we use the basic properties of deter-
minants and the Gram matrix [s(vi, vj)]i,j to see that the maps D and δ have
the properties:
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(i) D(v1, . . . , vd;w1 . . . , wd) = 0 if vi = vj or wi = wj for some pair of indices
i 6= j;

(ii) D(v1, . . . , vd;w1 . . . , wd) is linear in each variable.
(iii) δ(v1, . . . , vd) 6= 0 if and only if 〈v1, . . . , vd〉 is an s-nondegenerate d-space

of V ;
By (i) and (ii) D induces a symmetric bilinear form (also denoted D) on

∧dV × ∧dV via

D(v1 ∧ · · · ∧ vd, w1 ∧ · · · ∧ wd) = D(v1, . . . , vd;w1 . . . , wd) ,

and δ is the quadratic form coming from the diagonal of D. By (iii) the pure
vectors of ∧dV that are nonsingular for δ are exactly those coming from d-spaces
that are nondegenerate for s.

In the special case K = F2, the quadratic form δ is in fact a linear form,
giving the result.

Degeneracy of a form is detected by whether or not its discriminant, the
determinant of a Gram matrix, is zero. In the proof of the previous proposition,
we have seen that the discriminant provides a symmetric bilinear and diagonal
quadratic form on the exterior power that indicate degeneracy. To find a linear
form, as desired, we wish to “take the square root” of this quadratic form. In
characteristic 2 the quadratic form is additive and thus over F2 is its own square
root, but this is an anomaly. We must instead look for a general way of finding
a square root for the discriminant. Luckily, for symplectic forms there is such
a general function, namely the Pfaffian. Our presentation of Pfaffians is similar
to that of Chevalley [5, p. 57] which uses exponentials in exterior algebras.

As before, let V be a K-vector space and s a symplectic form on V . For
every tuple (v1, . . . , vd) from V , we define an element of the exterior algebra∧

V by setting

Pf(v1, . . . , vd) =
∏

{i,j}∈U

(1 + s(vi, vj)vivj) ,

the product being over the set U of all unordered pairs {i, j} from {1, . . . , d}.
(Note that s(vi, vj)vivj = s(vj , vi)vjvi.) Every term of Pf has even degree, so
the calculation of Pf can be done within the commutative subalgebra

∧
even V

of
∧

V .
We now define a map pf : V d −→ K by looking at projection onto the d-

graded component of Pf:

pf(v1, . . . , vd)v1 · · · vd = Pf(v1, . . . , vd)|d .

Especially pf(v1, v1) = s(v1, v2). Here it is understood that pf(v1, . . . , vd) is 0
whenever v1 · · · vd is the 0 element of

∧
V . (In particular, since Pf ∈

∧
even V ,

pf is identically 0 for odd d.) We call pf(v1, . . . , vd) the Pfaffian of the ordered
set of vectors v1, . . . , vd ∈ V .

The remainder of this section is devoted to a proof of
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( 4.3) Theorem. The map pf is an alternating d-linear form on V with
pf(v1, . . . , vd) 6= 0 if and only if 〈v1, . . . , vd〉 is an s-nondegenerate d-space of V .

The map pf is indeed alternating.

( 4.4) Proposition. (1) If vi = vj for i 6= j, then pf(v1, . . . , vd) = 0.
(2) If σ ∈ Sym(d), then pf(v1, . . . , vd) = sgn(σ) pf(vσ(1), . . . , vσ(d)).

Proof. (1) is clear, since in this case v1 · · · vd is 0 in
∧

V .
For (2) we start with Pf(vσ(1), . . . , vσ(d)) = Pf(v1, . . . , vd) from the definition

and remarks following it. Therefore, the d-graded piece is

pf(vσ(1), . . . , vσ(d))vσ(1) · · · vσ(d) = pf(v1, . . . , vd)v1 · · · vd

= pf(v1, . . . , vd)sgn(σ) vσ(1) · · · vσ(d) ,

as desired.

We first prove Cayley’s theorem, showing that the Pfaffian provides the
desired square root of the discriminant. This is the fundamental property of the
Pfaffian and is crucial in our proof of Theorem 4.3.

( 4.5) Theorem. pf(v1, . . . , vd)2 = det[s(vi, vj)]i,j .

Proof. If {v1, . . . , vd} is linearly dependent, then the lefthand side is 0
by definition. But in that case, the Gram matrix [s(vi, vj)]i,j will be that of a
form with rank less than d, so its determinant will also be 0. Therefore we may
assume that v1, . . . , vd form a linearly independent set in V . Both sides are also
0 if d is odd, so we may assume d = 2m.

We begin with a standard reduction ([11, Lemma 7.2.1],[23, Prop.2.2]) in
the calculation of the discriminant

det[s(vi, vj)]i,j =
∑

σ∈Sym(d)

sgn(σ)
∏

i

s(vi, vσ(i)) .

Write Sym(d) = F ∪O∪E , where F consists of those permutations with a fixed
point, O consists of those permutations with no fixed points but with orbits of
odd length, and E consists of those permutations with all orbits of even length.

For σ ∈ F ,
∏

i s(vi, vσ(i)) = 0 as s(vj , vj) = 0 for a fixed point j. For σ ∈ O,
among the odd cycles of σ, let c be the cycle containing the point of {1, . . . d}
of smallest value. Set σ′ = c−2σ. Then

(i) σ 6= σ′ ∈ O and (σ′)′ = σ;
(ii) sgn(σ) = sgn(σ′);
(iii)

∏
i s(vi, vσ(i)) = −

∏
i s(vi, vσ′(i)).

We conclude that

det[s(vi, vj)]i,j =
∑
σ∈E

sgn(σ)
∏

i

s(vi, vσ(i)) . (1)
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We will prove that squaring the Pfaffian gives this calculation of the discrimi-
nant.

A 1-factor of the complete graph on {1, 2, . . . , d = 2m} is an m edge subgraph
of valency 1, one edge on each vertex. We let I be the set of all such 1-factors.
Starting from the definition of the Pfaffian, we find in

∧
even

pf(v1, . . . , vd)v1 · · · vd = Pf(v1, . . . , vd)|d
=

( ∏
{i,j}∈U

(1 + s(vi, vj)vivj)
)∣∣∣

d

=
∑
I∈I

∏
{i,j}∈I

s(vi, vj)vivj . (2)

Let R have dimension d. We replace V by V⊕R and extend the form s so that
R is in its radical. Assume that r1, . . . , rd are linearly independent elements of
R, and set wi = vi +ri, for i = 1, . . . , d. Then {v1, . . . , vd, w1, . . . , wd} is linearly
independent and

s(vi, vj) = s(vi, wj) = s(wi, vj) = s(wi, wj) ,

for all i, j. By definition and (2) we have

pf(v1, . . . , vd)2v1 · · · vdw1 · · ·wd =
= pf(v1, . . . , vd)v1 · · · vd · pf(w1, . . . , wd)w1 · · ·wd

=
(∑

I∈I

∏
{i,j}∈I

s(vi, vj)vivj

)(∑
J∈I

∏
{k,l}∈J

s(wk, wl)wkwl

)
. (3)

We now need a bijection between the permutations of E and ordered pairs
of 1-factors:

E ←→ IG × IW given by σ ←→ (I, J) ,

where, in order to distinguish 1-factors, we call the I from IG (= I) green and
the J from IW (= I) white.

First, let I (green) and J (white) be two 1-factors. The graph I ∪ J has
degree 2 and so is a union of cycles. Each cycle has edges of alternating colors
(green, white, green, white,...) and so has even length. To find a unique σ ∈ E ,
we only need to orient each cycle c of σ (for instance, to distinguish (1, 2, 3, 4)
from (4, 3, 2, 1)). This we do by finding the smallest value ic in c and then
orienting the cycle in the direction of the green edge on ic.

Conversely, if we begin with σ ∈ E , then each cycle c breaks into two partial
1-factors. To find unique corresponding I ∈ IG and J ∈ IW we must color each
partial 1-factor. We do this by coloring each edge ic ∼ σ(ic) green. This gives
the bijection.

From (1) and (3), we will be done when we have proven

sgn(σ)
(∏

i

s(vi, vσ(i))
)

v1 · · · vd w1 · · ·wd =∏
{i,j}∈I

s(vi, vj)vivj

∏
{k,l}∈J

s(wk, wl)wkwl , (4)
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for any fixed σ ←→ (I, J). To do this, we rewrite the righthand side.
Let zi = vi and z′σ(i) = vσ(i), if the edge i ∼ σ(i) is green. Let zi = wi and

z′σ(i) = wσ(i), if the edge i ∼ σ(i) is white. Then∏
{i,j}∈I

s(vi, vj)vivj

∏
{k,l}∈J

s(wk, wl)wkwl =
∏

i

s(zi, z
′
σ(i))

∏
i

zi z′σ(i) .

Since s(zi, z
′
σ(i)) = s(vi, vσ(i)), the proof of (4) is reduced to verification of

sgn(σ) v1 · · · vd w1 · · ·wd =
∏

i

zi z′σ(i) . (5)

We rewrite
∏

i zi z′σ(i) using a suggestive two line notation:

∏
i

zi z′σ(i) =
∏

i

zi

z′σ(i)
=

z1

z′σ(1)
· · · zi

z′σ(i)
· · · zd

z′σ(d)
.

For instance, the product abhkxy would be written
a
b

h
k

x
y

. In the exterior

algebra
∧

V , the identity

zj z′p zj+1 z′q = −zj z′q zj+1 z′p

thus becomes
zj

z′p

zj+1

z′q
= − zj

z′q

zj+1

z′p
.

Therefore∏
i

zi z′σ(i) =
z1

z′σ(1)
· · · zi

z′σ(i)
· · · zd

z′σ(d)
= sgn(σ)

z1

z′1
· · · zi

z′i
· · · zd

z′d
.

Here always {zi, z
′
i} = {vi, wi}. Half the edges of I ∪ J are white, so for

exactly m = d/2 values of i we have zi = wi and z′i = vi. Hence∏
i

zi z′σ(i) = sgn(σ)(−1)m v1

w1
· · · vi

wi
· · · vd

wd

= sgn(σ)(−1)mv1 w1 · · · vi wi · · · vd wd

= sgn(σ)(−1)m(−1)2m(2m−1)/2v1 · · · vd w1 · · ·wd

= sgn(σ)v1 · · · vd w1 · · ·wd ,

as desired for (5). This completes the proof of Theorem 4.5.

( 4.6) Corollary. Let t1, . . . , td ∈ Rad(V, s). Then

pf(v1, . . . , vd) = pf(v1 + t1, . . . , vd + td) .
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Proof. If {v1, . . . , vd} and {v1 + t1, . . . , vd + td} are both linearly indepen-
dent sets, then this is clear from the definition (and we have used this observation
in our proof of the theorem). If {v1, . . . , vd} and {v1 + t1, . . . , vd + td} are both
linearly dependent, then both sides are 0 by definition and again the result is
clear.

Suppose now that {v1, . . . , vd} is linearly dependent but {v1+t1, . . . , vd+td}
is linearly independent. Then pf(v1, . . . , vd) = 0 by definition. On the other
hand, we must use the exponential to calculate pf(v1 + t1, . . . , vd + td). By the
theorem, its square satisfies

pf(v1 + t1, . . . , vd + td)2 = det[s(vi + ti, vj + tj)]i,j = det[s(vi, vj)]i,j .

Since the vi are linearly dependent, this last is again 0, completing the proof of
the corollary.

( 4.7) Proposition. For d > 2

pf(v1, . . . , vd−1, vd) = s

(
d−1∑
k=1

αkvk, vd

)
,

where αk = (−1)k+1 pf(v1, . . . , v̂k, . . . , vd−1). Here (v1, . . . , v̂k, . . . , vd−1) is the
(d− 2)-tuple that results from deleting vk from (v1, . . . , vd−1).

Proof. By the previous corollary, we may assume that v1, . . . , vd is a lin-
early independent collection of vectors. If d is odd, then the result is trivial; so
we assume that d is even. We have

pf(v1, . . . , vd)v1 · · · vd =
( ∏
{i,j}∈U

(1 + s(vi, vj)vivj)
)∣∣∣

d

=
( ∏

d/∈{i,j}

(1 + s(vi, vj)vivj)
d−1∏
k=1

(1 + s(vk, vd)vkvd)
)∣∣∣

d

=
d−1∑
k=1

( ∏
k,d/∈{i,j}

(1 + s(vi, vj)vivj)
)∣∣∣

d−2
s(vk, vd)vkvd

=
d−1∑
k=1

pf(v1, . . . , v̂k, . . . , vd−1)v1 · · · v̂k · · · vd−1 · s(vk, vd)vkvd

=
d−1∑
k=1

(−1)d−1−k pf(v1, . . . , v̂k, . . . , vd−1)s(vk, vd) v1 · · · vk · · · vd

=
d−1∑
k=1

s
(
(−1)d−1−k pf(v1, . . . , v̂k, . . . , vd−1)vk, vd

)
v1 · · · vd ;

hence pf(v1, . . . , vd) = s
(∑d−1

k=1 αkvk, vd

)
, as claimed.
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Proof of Theorem 4.3:
As pf(v1, v2) = s(v1, v2), the map pf is linear in its last variable by Propo-

sition 4.7. Therefore pf is linear in all variables by Proposition 4.4.2. It is
alternating by Proposition 4.4. Finally, pf(v1, . . . , vd) is nonzero precisely when
〈v1, . . . , vd〉 is nondegenerate by Theorem 4.5.

Remarks. There are many treatments of Pfaffians. See Knuth [16] for his-
torical discussion. Often 1-factors (perfect matchings) with appropriate sign
conventions are used from the start [11, 13, 16, 23]. In enumerative applica-
tions [11, 23] it is appropriate to consider only characteristic 0 (from which the
general result can be derived [10, 14]).

Dress and Wentzel [8] use exterior algebra and give a recursive definition of
the Pfaffian, which is effectively the identity of Proposition 4.7 initialized by
taking pf(v1, v2) = s(v1, v2). Their Theorem 2 proves the Pfaffian, under that
definition, to be an alternating multilinear form.

Here we sought a direct construction of an alternating form having the prop-
erties of Theorem 4.3. Our version is motivated by that of Chevalley [5], which
uses the exponential, and is similar to that of [4, 19], which use derivations, and
that of [10, pp. 588-589], which uses divided powers. It is free from recursion,
restrictions on characteristic, and additional sign conventions.

5 Transitivity of finite affine Grassmannians

This section is concerned with the proofs of Theorem 1.4 and Corollary 1.5.
Theorem 1.2 shows that the Pfaffian affine Grassmannians come from ge-

ometric hyperplanes H for which PΓL(V )H is transitive on the d-spaces that
are nondegenerate for a particular alternating d-linear form. This is a Witt
type property for these forms. It seems possible that all such transitive affine
Grassmannians could be classified. Indeed we may be seeing all of them in the
Pfaffian and attenuated examples. In this section we prove that this is the case
when we restrict attention to finite, flag-transitive affine Grassmannians.

We will need a result from the literature.

( 5.1) Theorem. Let G ≤ ΓLn(q) be transitive on the 1-spaces of V = Fn
q .

Then G is also transitive on the 1-spaces of V ∗, and we have one of:
(a) n ≤ 4;
(b) G = SL2(13) with q = 3 and n = 6;
(c) G ≤ ΓL1(qn);
(d) ΓLm(qr) � G � SLm(qr) with n = mr > 4 and m ≥ 2;
(e) ΓSpm(qr) � G � Spm(qr) with n = mr > 4 and m even;
(f) ΓG2(qr) � G � G2(qr)′ with q even and n = mr for m = 6.

In cases (d), (e), and (f), V is the natural Fqr -module of dimension m viewed
as a Fq-module.

Proof. See [15, p. 68] or [17, p. 199].
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Here ΓSpm(qr) is the full group of semisimilarities of a nondegenerate sym-
plectic form on Fm

qr and consists of Spm(qr) extended by the automorphisms
and scalars of Fqr . Similarly ΓG2(qr) is G2(qr) extended by the automorphisms
and scalars of Fqr .

Proof of Corollary 1.5:
One direction is immediate from Corollary 1.3. Assume now that G =

Aut(CGd(V )H) is flag-transitive on CGd(V )H. By Lemma 2.7, n = 2d and the
subgroup H = Aut(Gd(V )H) has index 2 in G, the elements of G\H exchanging
B−H and B+

H.
If d ∈ {1, 2, n − 2, n − 1} then Proposition 3.6 gives the corollary, so we

may assume that 2 < d < n − 2. Therefore, by Theorem 2.3, we have H =
Aut(Gd(V )H) = PΓL(V )H.

As G has a single chamber orbit on CGd(V )H, the index 2 subgroup H has
at most two chamber orbits. Those must be that of the −-chambers and that
of the +-chambers of CGd(V )H. By Lemma 3.3, H is flag-transitive on Gd(V )H.
Hence by Theorem 1.4, the geometric hyperplane H is either attenuated or
nondegenerate Pfaffian, completing the corollary.

Remark. Except in its use of Theorem 1.4, our proof of Corollary 1.5 does not
require K to be finite.

The rest of the section is devoted to our proof of Theorem 1.4. The examples
are flag-transitive by Theorem 1.2, so we only need to prove that a flag-transitive
finite affine Grassmannian is either attenuated or nondegenerate Pfaffian.

We let H be a geometric hyperplane of Ad(V ), for V = Fn
q , and assume

that Aut(Gd(V )H) is transitive on the chambers of Gd(V )H. Throughout we let
G = ΓL(V )H and q = pa, where p is the characteristic of K = Fq.

We have some initial reductions.

( 5.2) Lemma. In proving Theorem 1.4 we may assume:
(1) H is not attenuated;
(2) H is the set of d-spaces that are degenerate for the alternating d-linear

form f on V ;
(3) 2 < d ≤ n/2 < n− 2, especially n ≥ 6;
(4) Aut(Gd(V )H) = PΓL(V )H;
(5) G = ΓL(V )H is irreducible on V and flag-transitive in its action on

Gd(V )H.

Proof. We may assume, as in (1), that H is not attenuated, with the goal
of proving that H is a nondegenerate Pfaffian geometric hyperplane.

By Shult’s Theorem 1.1, H is the collection of d-spaces that are degenerate
for an alternating d-linear form f as in (2).

We may take 2 < d < n − 2 by Proposition 3.6. The affine Grassmannian
Gd(V )H in Ad(V ) is isomorphic to its dual in An−d(V ), and the list of conclu-
sions to the theorem is closed under duality; so we may also assume d ≤ n/2.
This gives (3).
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By (3) and Theorem 2.3 we have Aut(Gd(V )H) = PΓL(V )H as in (4).
By (4) and assumption, the action of G = ΓL(V )H is flag-transitive. If G is

reducible on V , then H is attenuated by Theorem 2.6, counter to (1).

( 5.3) Lemma. Let S = StabG(P ) be the global stabilizer in G of P ∈ Gd(V )H.
Then S ≤ StabG(P θ), and S is transitive on the 1-spaces of P . Indeed, S is
transitive on the pairs (X, W ) where X is a 1-space of P and W is a (d+1)-space
containing P .

Proof. By Proposition 2.2, S ≤ StabG(P θ). By flag-transitivity S is
transitive on the (d − 1)-spaces B− of P , so by duality it is transitive on the
1-spaces of P . Indeed, as S is transitive on the pairs (U,W ) with U a (d− 1)-
subspace of P and W and (d + 1)-space containing P , it is also transitive on
pairs (X, W ) as described.

( 5.4) Corollary. G is transitive on the 1-spaces of V .

Proof. The group G is irreducible on V by Lemma 5.2(5), so Rad(V, f)
is trivial. That is, for every v ∈ V there is a P in PH with v ∈ V . By
the lemma, the stabilizer of P is transitive on the set of 1-spaces of P . Since
Gd(V )H is connected by Proposition 2.5, the group G is transitive on the full
set of 1-spaces of V .

( 5.5) Lemma. There is no affine Grassmanian of A3(F6
3) that admits SL2(13)

acting flag-transitively.

Proof. The number of chambers (B−, P, B+) would be 132|PH|, but 132

does not divide |SL2(13)|.

( 5.6) Lemma. The subgroup N = G(∞) is isomorphic to one of SLn(q),
Spn(q), or G2(q)′. Indeed, with an appropriate choice of notation we have, for
n = mr and m ≥ 2, one of:

(d) ΓLm(qr) � G � N = SLm(qr);
(e) ΓSpm(qr) � G � N = Spm(qr) with m even;
(f) ΓG2(qr) � G � N = G2(qr)′ with q even and m = 6.

Proof. We must eliminate cases (a)-(c) of Theorem 5.1. As n ≥ 6, case (a)
does not occur. Case (b) is disposed of in Lemma 5.5.

Now suppose as in (c) that G ≤ ΓL1(qn). Recall that q = pa, for prime p;
set b = na. Thus |G| divides (qn − 1)b.

Let (B−, P, B+) be a chamber of Gd(V )H. Then the stabilizer in G of B−

is transitive on the various P ∈ PH containing it. These form a hyperplane
complement in the quotient space V/B−, so the order of G is divisible by qn−d.
Similarly the stabilizer of B+ is transitive on {P ∈ PH |P ≤ B+ }, a hyperplane
complement in the dual of B+; so |G| is divisible by qd. Thus qbn/2c divides
(qn− 1)b, whence (pa)bn/2c divides b. This in turn implies that pb−a divides b2.
As b = na ≥ 6a, we conclude that p5b divides b12; and so 32b ≤ b12. This is
false for b ≥ 7. As 6 ≤ n and b = na, we can only have a = 1 and n = b = 6.
Since pb−a must divide b2, this yields a contradiction.
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( 5.7) Lemma. We have r = 1 and n = m.

Proof. Set F = EndK(N) = Fqr .
We first claim that P = FP for P ∈ PH. Otherwise there is a 1-dimensional

K-space X ≤ P with P < FX+P . In that case, there is a (d+1)-dimensional K-
space W0 ≤ FX+P . By Lemma 5.3, the stabilizer of X and P in G (≤ ΓLF (V ))
remains transitive on the set of (d + 1)-dimensional K-spaces W containing P .
Therefore W ≤ FX + P always, and so V = FX + P . Thus

dimKV = dimK(FX + P ) = dimKFX + dimKP − dimKFX ∩ P .

Now dimKFX = r ≤ n/2 by Lemma 5.6; and dimKP = d ≤ n/2 by Lemma
5.2; and FX ∩ P ≥ X. Therefore our dimension calculation yields

n ≤ n/2 + n/2− 1 ,

a contradiction. Thus P = FP , as claimed.
Let collinear P1, P2 ∈ PH. Then by the previous paragraph F acts on the

1-dimensional K-space P1/P1 ∩P2. Thus K = F , r = 1, and n = m, as desired.

( 5.8) Lemma. There is a subgroup N ' Spn(q) normal in G and a nonde-
generate N -invariant symplectic form s on V with H = Hs,d, as in the Pfaffian
case (b) of Theorem 1.4. In particular d is even.

Proof. From Lemmas 5.6 and 5.7, we have three possibilities: G normalizes
a subgroup N that is one of SLn(q), Spn(q), or G2(q)′ (where in the last case
n = 6 and q is even) with, respectively, SLn(q) ≤ G ≤ ΓLn(q), Spn(q) ≤ G ≤
ΓSpn(q), or G2(q)′ ≤ G ≤ ΓG2(q).

By Lemma 5.3, the stabilizer S ∩N of P ∈ PH also fixes P θ and so leaves
invariant the decomposition V = P ⊕ P θ. In particular N is not SLn(q), since
there the stabilizer of any P is transitive on the set of complements.

If G normalizes N = G2(q)′, then there is a nondegenerate symplectic form
s on V for which G induces semisimilarities [1]. As 2 < d < n − 2 we must
have d = 3. By Lemma 5.3, S is irreducible on P ; so P is totally isotropic for
s. The stabilizer S ∩N of P is then parabolic and stabilizes no complement P θ

[1]. This is a contradiction.
Finally, if G normalizes N = Spn(q), then again there is a nondegenerate

symplectic form s on V for which G induces semisimilarities. Again S is irre-
ducible on P and fixes the complement P θ, and so P is nondegenerate for s
and has even dimension d. We conclude that H contains Hs,d. By Proposition
2.5(1) we have H = Hs,d, as desired.

This lemma completes the proof of Theorem 1.4.
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