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Abstract: We study the initial boundary value problem for Einstein’s vacuum field
equation. We prescribe initial data on an orientable, compact, 3-dimensional manifold
S with boundary6 6= ∅ and boundary conditions on the manifoldT = R

+
0 × 6. We

assume the boundaries6 and{0} × 6 of S andT to be identified in the natural way.
Furthermore, we prescribe certain gauge source functions which determine the evolution
of the fields. Provided that all data are smooth and certain consistency conditions are
met on6, we show that there exists a smooth solution to Einstein’s equation Ric[g] = 0
on a manifold which has (after an identification) a neighbourhood ofS in T ∪ S as a
boundary. The solution is such thatS is space-like, the initial data are induced by the
solution onS, and, in the region ofT where the solution is defined,T is time-like and
the boundary conditions are satisfied.

1. Introduction

In this article we study the initial boundary value problem for Einstein’s vacuum field
equation. LetS be a smooth, orientable 3-dimensional manifold with boundary6 6= ∅.
The boundary of the manifoldM = R

+
0×S consists then ofS ' {0}×S andT = R

+
0×6

which are identified along the edge6 ' {0} × 6 ofM . We are interested in answering
the following question: Which data do we have to prescribe onS andT such that there
exists a (unique) smooth solutiong of Einstein’s equation

Ric[g] = 0, (1.1)

onM for whichS is space-like,T is time-like and which is such thatg induces the given
data onS andT ?

The answer to this question will be of potential interest in any problem concerned
with solutions to (1.1) which contain a distinguished time-like hypersurface. It will
provide possibilities to construct examples or counterexamples to various conjectures
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and will give us tools to construct space-times with certain specified properties. We
mention just a few such problems.

The motion of ideal fluid bodies with exterior vacuum field is of considerable in-
terest in general relativity but its analytical properties are not well understood. The free
time-like boundary, along which the transition of the Einstein–Euler equations into the
Einstein vacuum field equations occurs, poses analytical difficulties. Though this situ-
ation is different from the one considered in the present article, the study of the initial
boundary value problem sheds some light on the problem of the floating fluid balls. Our
interest in this problem was one of the reasons to analyse the field equations in this
article in a representation which is close to the one considered in [6].

In [2] the modeling of isolated systems in terms of asymptotically flat fields has been
criticized. It has been suggested to separate instead the (massive) system of interest by a
judiciously chosen time-like cut from the rest of the universe and to study the space-time
so obtained as an object of its own. Whether such an approach leads to useful notions
characterizing the behaviour of the system as a whole (energy momentum, angular
momentum, etc.) and, in particular, whether it allows us to introduce meaningful concepts
of incoming/outgoing radiation, etc. requires the understanding of the initial boundary
value problem which has de facto been introduced in [2] without ever mentioning it.

In many numerical calculations in general relativity artificial time-like boundaries are
introduced to restrict the calculations to finite grids (cf. [7] for possibilities to avoid such
boundaries in certain relevant cases).A thorough understanding of the analytical features
of the initial boundary value problem for Einstein’s equation should be a prerequisite
for successful numerical calculations near the boundary.

There are available in the literature various discussions of the Einstein equation in
the neighbourhood of time-like boundaries (see e.g. [1, 10, 15]), but it appears that the
existence of solutions to the initial boundary value problem for Einstein’s equation has
not been discussed so far in any generality. A general study of the initial boundary value
problem for Einstein’s equation with negative cosmological constant has been given in
[4], but there the boundary data are prescribed on the conformal boundary at space-like
and null infinity. Due to the fact that this boundary is defined intrinsically by the nature
of the geometry, there occur certain simplifications which allow us to characterize the
data on the boundary in a covariant way. In contrast to this, in the situation studied in
this paper the boundary is not singled out by a geometric consideration but “is put in
by hand”. This leads to various complications in the detailed analysis of the present
problem. Nevertheless, some general ideas and some specific techniques developed in
[4] apply to the present problem.

It may be of interest to compare the methods and the results obtained in the present
article with the completely different techniques for analysing the field near time-like
boundaries used in [10]. This may give a deeper understanding of the problem and
should shed light on the relative efficiencies of the different methods.

The basic step in our study is to reduce the geometrical initial boundary value problem
for Einstein’s equation to an initial boundary value problem for a hyperbolic system to
which the general results on “maximally dissipative” initial boundary value problems (cf.
Sect. 3) apply. A central difficulty here arises from the need to control the conservation
of the constraints if the fields are evolved by a suitable hyperbolic system of reduced
equations. In our treatment of the problem this means essentially that we have to show
that those equations in the system (2.5) which contain only derivatives in space-like
directions are preserved in the course of the evolution. This difficulty largely motivates
our choice of the basic equations in Sect. 2, our choice of the gauge conditions in Sect. 4,
and our choice of the reduced equations in Sect. 5. It is shown in Theorem 6.1 that our
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reduced problem, to which certain general results available in the mathematical literature
apply, yields in fact solutions to the Einstein equation.

It is a most remarkable feature of Einstein’s equation that the nature of the boundary
condition does not play any role in this conclusion. This is most important for us, since
the way we prescribe the boundary conditions onT does not allow us to check by direct
calculations onT whether any constraints onT , either the intrinsic constraints induced
onT or the constraints mentioned above, are satisfied onT .

In Sect. 7 we discuss the initial and boundary data which can be prescribed freely.
While the initial data are well known from the study of the Cauchy problem for Einstein’s
equation and while it is also clear that the initial and the boundary data will have to
satisfy certain consistency conditions on the edge6, the boundary conditions require a
more careful study. In the local problem the boundary conditions are suggested by the
nature of our reduced equations and by the theory of maximally dissipative boundary
value problems. The question of how to prescribe boundary conditions in regions which
cannot be handled solely in terms of one choice of gauge, sheds sharp light on some
peculiar features of our problem.

It turns out that we need to specify, in an implicit form, a time-like unit vector field
e0 tangent to the boundaryT . All other boundary conditions refer to this vector field in
one way or another.

The boundary hypersurface is essentially singled out (imagining our prospective
solution for the moment as a part of a larger space-time) by prescribing the mean extrinsic
curvatureχ of the boundary. However, the specification ofχ is tied to that ofe0 and
while locally the boundary could be specified by one real function, the situation is more
complicated if long time evolutions are studied (cf. Sect. 8).

After the specification of the boundary in terms ofχ, the basic freedom on the
boundary consists in prescribing onT two arbitrary real functions and their coupling to
the conformalWeyl curvature.We provide some explanation of the nature of this coupling
(cf. Sect. 7) but we avoid speaking of incoming/outgoing gravitational radiation. Any
such interpretation would depend on the time-like unit vector fielde0 onT , the choice
of which is rather arbitrary as long as no further assumptions are introduced.

In Theorem 8.1 we state our general existence result, which is local in time but global
along the edge6. We do not show the uniqueness of the solution in the general case.
This is due to some open question concerning our gauge conditions (cf. Sect. 4) which
we intend to make a topic of a separate investigation. However, in the particular case
where the mean extrinsic curvature is constant on the boundary, local uniqueness of the
solution is demonstrated.

There are certainly many possibilities to discuss the initial boundary value problem
and there will be as many ways of stating boundary conditions. However, all of these
should be just modifications of the boundary conditions given in our theorem.

2. The Field Equations

We shall use a frame formalism in which the metricg will be represented in terms of a
frame field{ek}k=0,1,2,3 which satisfies the orthonormality conditiongik ≡ g(ei, ek) =
diag(1,−1,−1,−1) and for whiche0 is future directed. All fields (with the possible
exception of the fieldsek themselves) will be in the following expressed in terms of this
frame.
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The basic unknowns in our representation of the field equations are given by the
fields

eµ
k , 0k

i
j , Ci

jkl.

The functionseµ
k = ek(xµ) are the coefficients of the frame in a suitably chosen

coordinate system{xµ}µ=0,1,2,3. In these coordinates the coefficients of the contravariant
form of the metric are then givengµν = gjk eµ

j e
ν

k. The 0k
i

j are the connection
coefficients in our frame such that∇k ej ≡ ∇ek

ej = 0k
i

j ei, where∇ denotes the
Levi–Civita connection ofg. The fact that the connection is metric is expressed by
the condition0i

l
k glj = −0i

l
j glk. Finally,Ci

jkl is a tensor field which is required
to possess the algebraic properties of a conformal Weyl tensor and which will in fact
represent that tensor.

The curvature of the connection∇ is given by

ri
jkl = ek(0l

i
j) − el(0k

i
j) + 0k

i
m0l

m
j − 0l

i
m0k

m
j

− 0m
i

j(0k
m

l − 0l
m

k).
(2.1)

For later discussions it will be convenient to introduce tensor fieldsTi
k

j , 1i
jkl,Hjkl

by setting

Ti
k

j ek = −[ei, ej ] + (0i
k

j − 0j
k

i) ek, (2.2)

1i
jkl = ri

jkl − Ci
jkl, (2.3)

Hjkl = ∇i C
i

jkl. (2.4)

The Einstein equation can then be expressed by the equations

Ti
k

j = 0, 1i
jkl = 0, Hjkl = 0. (2.5)

The first of these equations implies that the connection∇ is torsion free and therefore,
since it is metric, that it is the Levi–Civita connection of the metricg. The equation
allows us to determine the connection coefficients in terms of the frame coefficients and
their first derivatives. The second equation requires that the curvature of∇ coincides
with the Weyl curvature and thus implies Einstein’s equation (1.1). The third equation is
the once contracted vacuum Bianchi identity. We refer to it as to the Bianchi equation.

One of the reasons why we chose this representation of the Einstein equation is
that it simplifies the analysis of our problem. The equations contain direct geometric
information.They are easily adapted to our situation and then entail immediate projection
formalisms. Moreover, certain features of the Bianchi equation which are important for
the discussion of initial boundary value problems are well understood [4]. Finally, the
evolution equations for gravitating ideal fluid bodies derived in [6], which we want to
use for analysing the problem of the “floating fluid ball”, extend the equations above.

In the frame formalism there exists a natural decomposition of the Bianchi equation.
We setn = e0 and study the decomposition ofHjkl with respect ton and its orthogonal
complement, which carries the induced metrichij = gij −ni nj . We denote byεlijk the
totally antisymmetric tensor withε0123 = 1 and setεijk = nl εlijk. Furthermore we set
lij = hij − ni nj .

The electric and magnetic part of the conformal Weyl tensor are defined with respect
to n by Eik = hi

m hk
n Cmjnl n

j nl andBik = hi
m hk

n C∗
mjnl n

j nl with the right
dual of the conformal Weyl tensor given byC∗

ijkl = 1
2 Cijmn ε

mn
kl. We haveEij = Eji,
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Eij n
j = 0, Ei

i = 0. The same relations hold forBij . With these conventions the
conformal Weyl tensor can be written

Cijkl = 2
(
lj[k El]i − li[k El]j − n[k Bl]m εm ij − n[iBj]m εm kl

)
.

Using the symmetries of the Weyl tensor and the identities

εijp ε
klp = −2h[i

k hj]
l, εipq ε

jpq = −2hi
j ,

we get the decomposition

Hjkl = 2nj P[k nl] + hj[k Pl] +Qi (nj ε
i

kl − εi j[k nl] ) − 2Pj[k nl] −Qjiε
i

kl,
(2.6)

where we set

Pk = nj hk
l nm ∇i C

i
jlm, Qk = −1

2
nj εk

lm ∇i C
i

jlm, (2.7)

Pjk = h(j
m hk)

n nl ∇i C
i

mln, Qjk =
1
2
h(j

lεk)
mn∇iC

i
lmn. (2.8)

In terms of these fields the Bianchi equation is equivalent to

Pk = 0, Qk = 0, Pjk = 0, Qjk = 0. (2.9)

To obtain more explicit expressions we setKij = hi
k ∇k nj , K = hij Kij , ai =

nj ∇j n
i, Dk Eij = hk

l hi
m hj

n ∇lEmn, etc. such that

Kij = −hi
k 0k

0
j , K = −hpq 0p

0
q, ai = 00

i
0.

Observing that

hi
m hj

n nk ∇k Emn = LnEij − Elj Ki
l − EilKj

l,

whereLn denotes the Lie derivative in the direction ofn, we get

Pi = Dj Eji + 2Kjl εk l(iBj)k, (2.10)

Qi = Dj Bji + εi
kl (2Kj

k −Kk
j)Elj , (2.11)

Pjl = LnEjl + DiBk(j εl)
ik − 3K(j

iEl)i − 2Ki
(j El)i

−2ai ε
ik

(j Bl)k + hjlK
ik Eik + 2KEjl, (2.12)

Qjl = LnBjl − DiEk(j εl)
ik + 2ai ε

ik
(j El)k

−Ki
(j Bl)i − 2K(j

iBl)i +KBjl −Kik Bpq ε
pi

(j ε
kq

l). (2.13)
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3. Maximally Dissipative Boundary Value Problems

We need to remove the gauge freedom in Eqs. (2.5) and to extract from the resulting
equations a “reduced system” which will allow us to discuss initial boundary value
problems. To motivate our choice of gauge conditions and reduced system, we shall
outline briefly the argument which leads to maximally dissipative boundary conditions.

We consider onM = {x ∈ R
4|x0 ≥ 0, x3 ≥ 0} a real linear symmetric hyperbolic

system

Aµ∂µ u = B u + f (x) (3.1)

for anR
N -valued unknownu onM , i.e. the matricesAµ = Aµ(x), µ = 0,1,2,3, are

smooth functions onM which take values in the set of symmetricN × N -matrices,
there exists a 1-formξµ such thatAµ ξµ is positive definite,B = B(x) is a smooth
matrix-valued function andf (x) a smoothRN -valued function onM . For convenience
we assume that the positivity condition is satisfied withξµ = δ0

µ.
Set

S = {x ∈ M |x0 = 0}, T = {x ∈ M |x3 = 0},
and define forτ ≥ 0 the sets

Mτ = {x ∈ M |0 ≤ x0 ≤ τ}, Sτ = {x ∈ M |x0 = τ},
Tτ = {x ∈ M |0 ≤ x0 ≤ τ, x3 = 0}.

We prescribe data as follows: We chooseg ∈ C∞(S,RN ) and require as initial condition

u(x) = g(x), x ∈ S.

We choose a smooth mapQ of T into the set of linear subspaces ofR
N and require as

boundary condition
u(x) ∈ Q(x), x ∈ T.

The type of mapsQ admitted here is suggested by the structure of the equations. Suppose
thatu is a solution of (3.1) of spatially compact support inM . Then (3.1) implies

∂µ(tuAµ u) = tuK u + 2 tu f with K = B + tB + ∂µA
µ.

Integration overMτ gives∫
Sτ

tuA0 u dS =
∫

S

tuA0 u dS +
∫

Mτ

{tuK u + 2 tu f} dV +
∫

Tτ

tuA3 u dS.

If the last term on the right-hand side were non-positive, we could use this equation
to obtain the energy estimates which are basic for proving existence and uniqueness of
solutions to symmetric hyperbolic systems. Thus the structure of the “normal matrix"
A3 plays a prominent role in formulating the boundary conditions. We shall assume the
following conditions to be satisfied:
(i) The setT is a characteristic of (3.1) of constant multiplicity, i.e.

dim(kerA3(x)) = const. > 0, x ∈ T.

(ii) The mapQ is chosen such as to ensure the desired non-positivity

tuA3(x)u ≤ 0, u ∈ Q(x), x ∈ T.
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(iii) The subspaceQ(x), x ∈ T , is a maximal with (ii), i.e. dim(Q(x)) = number of
non-positive eigenvalues ofA3 counting multiplicity.

The last condition implies in particular that kerA3(x) ⊂ Q(x).
We discuss the specification ofQ in terms of linear equations. SinceA3 is symmetric,

we can assume, possibly after a transformation of the dependent unknown, that atx ∈ T ,

A3 = κ


−Ip 0 0

0 0k 0
0 0 Iq


 , κ > 0,

whereIp is ap×p unit matrix, 0k is ak×k zero matrix, etc. andp+k +q = N . Writing
u = t(a, b, c) ∈ R

p × R
k × R

q we find that atx the linear subspaces admitted as values
of Q are necessarily given by equations of the form

0 = c−H a,

whereH = H(x) is aq × p matrix satisfying

− ta a + ta tHH a ≤ 0, a ∈ R
p, i.e. tHH ≤ Ip.

We note that there is no freedom to prescribe data for the componentb of u associated
with the kernel ofA3. More specifically, ifA3 ≡ 0 onT , energy estimates are obtained
without imposing conditions onT and the solutions are determined uniquely by the
initial condition onS.

By subtracting a suitable smooth function fromu and redefining the functionf , we
can convert the homogeneous problem above to an inhomogeneous problem and vice
versa. Inhomogeneous maximal dissipative boundary conditions are of the form

q = c−H a,

with q = q(x), x ∈ T , a givenR
q-valued function representing the free boundary data

onT .
The linear maximally dissipative boundary value problem has been analysed by

Rauch [12] under weak smoothness assumptions, results for higher smoothness can be
found e.g. in [13] and in the literature given there. In the case of quasi-linear equations
the matricesAµ depend on the unknownu as well. Thus the fact that the normal matrix
A3 depends also onu has to be observed in formulating the boundary conditions. Initial
boundary value problems for quasi-linear equations with a general form ofA0 and
boundary conditions as indicated above have been discussed e.g. in [8, 14].

To illustrate the discussion above in a simple case we consider Maxwell fields. This
will also allow us to point out some specific features of Einstein’s equation. We assume
that a metricg is given on the setM above and that Maxwell’s equations are expressed
in an orthonormal frameek. The notation introduced in the previous chapter will be
employed throughout. Maxwell’s equations are given by

0 =Hk ≡ ∇j Fjk − 4π Jk, 0 =H∗
k ≡ ∇j F ∗

jk,

with F ∗
jk = 1

2εjk
ilFil. In terms of the electric fieldEi = −hi

j nk F
jk and the magnetic

fieldBi = hi
j nk F

∗jk we get decompositions

Fij = −2E[i nj] + εijk B
k, F ∗

ij = εijk E
k + 2B[i nj] ,
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which entail further decompositions
Hk = Pk − nk P, H∗

k = −Qk + nk Q,

with
P = DiEi +Kij Bk εijk + 4π ρ, Q = DiBi −Kij Ek εijk,

Pi = LnEi − εi
jk Dj Bk − Ej (Ki

j +Kj
i) +EiKj

j + aj Bk εjki − 4π ji,

Qi = LnBi + εi
jk Dj Ek −Bj (Ki

j +Kj
i) +BiKj

j − aj Ek εjki,

where we setρ = nk Jk,jl = hl
k Jk. Notice that the terms in the first two equations which

involveKij drop out ifn is hypersurface orthogonal. It holdsnk Pk = 0,nk Qk = 0.
For convenience we shall assume that the normals toS are tangent toT on 6. The

frameek is now chosen onM such thate0 ande3 coincide onS, respectivelyT , with
the unit normals pointing intoM . Setx0 = 0 onS and letxα,α = 1,2,3, be coordinates
onS with x3 = 0 on6 andx3 > 0 onS \ 6. These coordinates are extended intoM
such thate0(xµ) = δµ

0 onM . We have

e3
k = ek(x3) = e3

3 δ
3

k, e3
3 > 0 on T, eµ

0 = δµ
0 on M.

Choose nowJk onM such that the conservation law

∇k Jk = 0,

holds onM and prescribe dataEi,Bi onS satisfying the constraints:

P = 0, Q = 0 on S. (3.2)

To study the time evolution we observe that by our formalism the equationsP0 = 0,
Q0 = 0 are trivially satisfied and we consider the propagation equations

Pr = 0, Qr = 0 on M, r = 1,2,3. (3.3)

If we write these equations in the form (3.1) withu = t(u1, . . . , u6), whereur = Er,
u3+r = Br for r = 1,2,3, we find

Aµ = I δµ
0 + Fµ on M,

with

Fµ =




0 0 0 0 eµ
3 −eµ

2
0 0 0 −eµ

3 0 eµ
1

0 0 0 eµ
2 −eµ

1 0
0 −eµ

3 eµ
2 0 0 0

eµ
3 0 −eµ

1 0 0 0
−eµ

2 eµ
1 0 0 0 0



.

SinceAµ gµν e
ν

0 = I, the 6× 6 unit matrix, and the matricesAµ are symmetric, we
see that Eqs. (3.3) form a symmetric hyperbolic system. OnS we haveF 0 = 0. We shall
assume thatA0 is positive definite onM .

For the normal matrix onT we find

A3 = e3
3




0 0 0 0 1 0
0 0 0−1 0 0
0 0 0 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0



,
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which tells us thatT is a characteristic of constant multiplicity sincee3
3 > 0 onT .

To study the maximally dissipative boundary condition we perform a transformation
u → v = C u such thatA3 = tC DC with D = e3

3 diag (−1,−1,0,0,1,1). Such a
transformation is given by

v1 =
1√
2

(u1 − u5), v2 =
1√
2

(u2 + u4), v3 = u3,

v4 = u6, v5 =
1√
2

(u1 + u5), v6 =
1√
2

(u2 − u4).

As discussed above we introduce now a real matrix valued functionH onT ,

H =

[
a b
c d

]
with (a v1 + b v2)2 + (c v1 + d v2)2 ≤ v2

1 + v2
2, (v1, v2) ∈ R

2, (3.4)

to write down inhomogeneous maximally dissipative boundary conditions. Translated
back into the original unknowns these conditions read

q1 = E1 +B2 − a (E1 −B2) − b (E2 +B1),

q2 = E2 −B1 − c (E1 −B2) − d (E2 +B1),

whereq1 and q2 are smooth functions, prescribed onT . In terms of the spin frame
formalism of Newman and Penrose [11] this equation takes the form

q = φ2 + αφ0 + β φ̄0,

where we set

q = −1
2

(q1 + i q2), α =
1
2

(a + d− i b + i c), β =
1
2

(a− d + i b + i c), (3.5)

l =
1√
2

(e0 + e3), k =
1√
2

(e0 − e3), m =
1√
2

(e1 − i e2), (3.6)

φ0 = Fij l
imj , φ1 = Fij (li kj + m̄imj), φ2 = Fij m̄

i kj .

By picking the matrixH appropriately, we see that we could alternatively prescribe
e.g. the components (E1, E2) or (B1, B2) or φ2 freely onT . The functionφ2 can be
interpreted as the component of the Maxwell field which is transverse to and travels in
the direction ofe3. We note that all the prescriptions above depend one0, for which there
exists no privileged choice onT .

The non-positivity condition (ii) implies for the Poynting vectorSi = − 1
4π ε

ijkEjBk

onT the relation

S3 =
1

4π
(E1B2 − E2B1) =

1
8π e3

3

tuA3 u ≤ 0, (3.7)

with e3 pointing towardsM onT .
Given the field equations and the data onS, we can derive a formal expansion of the

prospective solutionu onS, in particular on6, in terms ofx0. If we want to ensure the
smoothness ofu, we need to give the boundary conditions such that they are consistent
with the formal expansion ofu on6. We shall not discuss these “consistency conditions”
(cf. [8]) any further.
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The initial boundary value problem which we have outlined here admits a unique
smooth solutionEk,Bk of (3.3) on a suitably given neighbourhood of6 inM . We still
need to show that these fields satisfy also the constraintsP = 0,Q = 0. In the case of
Maxwell equations the argument is straightforward. A direct calculation shows that the
fieldsHk,H∗

k satisfy for arbitrary fieldsEk,Bk the identities

∇k Hk = −Rjk F
jk = 0, ∇k H∗

k = −Rjk F
jk = 0.

On the other hand, observing the decompositions ofHk, H∗
k given above and the fact

that our fields solve (3.3), we find forP andQ the “subsidiary equations”

0 = −∇k Hk = Ln P + P Kj
j , 0 = ∇k H∗

k = LnQ +QKj
j .

Because of (3.2) it follows from these ODE’s thatP andQ also vanish offS.
In the following we shall reduce the “geometric” initial boundary value problem for

Einstein’s equation to a maximally dissipative boundary value problem for a suitably
chosen reduced system. We have seen above that at least three important conditions
have to be met by the gauge conditions and the reduced system: The system should be
symmetric hyperbolic, the resulting problem should satisfy the condition of maximal
dissipativity, and the problem should allow us to demonstrate the preservation of the
constraints. Besides studying the Bianchi equation, which is similar to the Maxwell’s
equations, we need to take care of the equations for the frame and the connection co-
efficients and we need to characterize the boundary itself in terms of some data. The
enormous freedom available here allows for reduced systems which satisfy the first two
conditions but which lead to difficulties when it comes to verifying the third condition.
This should be kept in mind when we study now the gauge conditions and then extract
the reduced system.

4. The Gauge Conditions

Consider the 4-manifoldM = R
+
0 × S, whereS is a smooth orientable 3-manifold with

boundary6 ≡ ∂ S 6= ∅. We write∂M = S ∪ T andS ∩ T = {0} × 6 ≡ 6, where
we identifyS in the obvious way with{0} × S ⊂ M and setT = R

+
0 × 6. Let g be a

smooth Lorentz metric onM for whichS is space-like andT is time-like. Given a point
p ∈ 6 we want to construct in some appropriate neighbourhoodU of p coordinatesxµ

and an orthonormal frame fieldek which are conveniently adapted toS ∩U andT ∩U .
It will be seen that our construction works for a suitably chosen neighbourhoodU of p.

Setx0 = 0 onS and letxα, α = 1,2,3, be local coordinates onS ∩ U with x3 = 0
on 6 ∩ U andx3 > 0 elsewhere. Choose a time-like unit vector fielde0 onU which
is tangent toT ∩ U , orthogonal to the 2-surfaces{x3 = c = const. > 0} in S ∩ U ,
and points towardsM onS ∩ U . We assume that the integral curves ofe0 starting on
S ∩ U generateU . We extend the functionsxµ to U such thateµ

0 ≡ e0(xµ) = δµ
0 on

U , i.e. x0 is the parameter on the integral curves ofe0 which vanishes onS ∩ U and
thexα are constant on these curves. Thexµ provide smooth coordinates onU . The sets
Tc = {x3 = c} are smooth time-like hypersurfaces inU with T0 = T ∩ U . Let e3 be the
smooth unit vector field normal toTc which points towardsM onT0. We denote byD
the Levi–Civita connection defined by the metric induced onTc. Choose vector fields
eA,A = 1,2, onS∩U which are tangent toTc ∩S and which form withe0, e3 a smooth
orthonormal frame field onS ∩ U . Using the connectionD, we extend the fieldseA to
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Tc by Fermi transport onTc in the direction ofe0 such that (in signature-independent
form)

g(e0, e0)De0 eA + g(eA, De0 e0) e0 − g(eA, e0)De0 e0 = 0 on U. (4.1)

Theek form a smooth orthonormal frame field onU . We shall refer the type of gauge
considered above as an “adapted gauge”.

In the further discussion we will have to consider three types of projections. Since
our frame is well adapted to our geometrical situation we can avoid the introduction
of corresponding projection formalisms by distinguishing four groups of indices. The
latter are given, together with the values they take, as follows:

a, c, d, e, f = 0,1,2; i, j, k, l,m, n = 0,1,2,3;

p, q, r, s, t = 1,2,3; A,B,C,D = 1,2.

We assume the summation rule for each group.
The frame coefficientseµ

k satisfy

eµ
0 = δµ

0, e3
a = 0, e3

3 > 0 on U. (4.2)

A part of the connection coefficients defines the inner connectionD onTc, we have

Da ec ≡ Dea
ec = 0a

b
c eb. (4.3)

The condition (4.1) reads in terms of the connection coefficients

00
A

B = 0. (4.4)

As a consequence the fieldsea satisfy onTc the equations

De0 e0 = 00
A

0 eA, De0 eA = −gAB 00
B

0 e0. (4.5)

Given the hypersurfacesTc, the coefficients00
A

0 can be considered as gauge source
functions (cf. [5]) which govern the evolution of the coordinates and the frame field off
S.

Lemma 4.1. Suppose that the hypersurfacesTc are given onU and let the coordinates
xµ and the frame fieldek described above be given onS ∩ U . If F

′A = F
′A(x

′µ),
A = 1,2, are smooth functions on{x′ ∈ R

4|x′0 ≥ 0, x
′3 ≥ 0}, there exist unique

coordinatesx
′µ and unique frame vector fieldse′

k on some neighbourhoodU ′ of p in
U which represent an adapted gauge and which are such that onS ∩ U ′ x

′µ = xµ,
e′

k = ek holds, and onU ′ x
′3 = x3, 0′

0
A

0(x
′µ) = F

′A(x
′µ) holds, where0′

i
j

k denote
the connection coefficients with respect toe′

k.

Proof. The new coordinates and frame vector fields would need to satisfy the equations

De′
0
e′

0 = F
′A(x

′µ) e′
A, De′

0
e′
A = −gAB F

′B(x
′µ) e′

0,

e′
0(x

′µ) = δµ
0,

with x
′3 = c on the hypersurfaceTc ∩ U ′, c ≥ 0. Since the connectionD onTc can be

considered as known, we can read the equations above as a system of ODE’s onTc for
the coordinatesx

′α(xβ , c) and the coefficientse
′α

a(xβ , c) of the vector fieldse′
a in the
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coordinatesxα, whereα, β = 0,1,2. For the given data onS ∩U this system of ODE’s
has a unique solution in some neighbourhoodU ′ of p which depends smoothly on the
initial data and the parameterc. We sete

′3
a(xα, c) = 0 and express the frame in the new

coordinates. Equations (4.5) imply a system of ODE’s for the quantitiesg(e′
a, e

′
b) which

allows us to show that the frame is indeed orthonormal.�

The second fundamental form ofTc in the frameea is given by

χab ≡ g(∇ea
e3, eb) = 0a

j
3 gjb = 0a

3
b = 0(a

3
b), (4.6)

the mean extrinsic curvature of the hypersurfacesTc is given by

χ ≡ gab χab = gjk 0j
3

k = ∇µ e
µ

3. (4.7)

Lemma 4.2. Consider the smooth functionsχ(xα,0), 00
A

0(xα,0), α = 0,1,2, which
are implied onT ∩U in the adapted gauge considered above. Letxµ be smooth functions
onS∩U withx0 = 0and such thatx1,x2,x3 are local coordinates onS∩U withx3 = 0
on6 ∩ U andx3 > 0 elsewhere. Let{ek}k=0,... ,3 be a smooth orthonormal frame field
onS with the following properties. The vector fielde0 points towardsM , it is tangent
to T on 6 ∩ U , and for given numberc, 0 ≤ c ≤ supU x

3, it is orthogonal to the sets
Sc ≡ {x3 = c} ⊂ S. The vector fieldseA are tangent to the setsSc and the vector field
e3 points towardsM on6 ∩ U .

If f = f (xµ), FA = FA(xµ), A = 1,2, are smooth functions on{x ∈ R
4|x0 ≥

0, x3 ≥ 0} satisfying

f (xα,0) = χ(xα,0), FA(xα,0) = 00
A

0(xα,0),

then, if there exists a smooth extension of the functionsxµ and the vector fieldsek to some
neighbourhoodU ′ of p in U such thatxµ, ek represent the coordinates and the frame
field in an adapted gauge onU ′ for whichχ(xµ) = f (xµ) and00

A
0(xµ) = FA(xµ) on

U ′, the extension is unique. Ifχ(xα,0) = χ0 = const. andf is chosen to be constant
and equal toχ0, there exists a smooth extension ofxµ andek with the properties listed
above.

Remark 4.1.We shall in the following consider the functionsFA and, forx3 > 0, the
function f as gauge source functions which determine the foliation by hypersurfaces
{x3 = const.} and the evolution of the fielde0 on these hypersurfaces. Therefore the
existence of the extensions of thexµ, ek is important for us also in the case of general
functionsχ(xα,0), f (xµ) (cf. Sect. 8). Since the general existence proof appears to
require techniques which are different from the ones used in this article we will make it
a topic of separate investigation.

Proof. Let xµ′
be coordinates onU such that we havexµ′

= xµ for µ′ = µ as well as
e0(x3′

) = 0 onS∩U andx3′
= 0 onT∩U . In the following indicesα, β, α′, β′ take values

0,1,2. For given numberc we wish to construct a hypersurfaceTc = {x3 = c} such
thatTc ∩ S = Sc and the mean extrinsic curvature ofTc satisfiesχ(xα, c) = f (xα, c).
The hypersurface will be given as the graph of a smooth functionφ(xα′

, c). We set
8(xµ′

, c) = x3′ − φ(xα′
, c) and require

p ∈ Tc iff 8(xµ′
(p), c) = c. (4.8)

In the following the dependence of the various quantities on the parameterc will not
always be written out explicitly but it should be kept in mind.
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The unit normalNµ′
to Tc with N3′

> 0 onS will be given by

Nµ′
= N ∇µ′

8. with N = −(−∇ν′ 8 ∇ν′
8)−

1
2 .

It will be ensured by condition (4.11) thatN 6= 0 close toS∩U . The second fundamental
form of Tc will be given by

χµ′ν′ = kµ′ ρ′
kν′ λ′ ∇ρ′ Nλ′ = N kµ′ ρ′

kν′ λ′ ∇ρ′ ∇λ′ 8. (4.9)

Here indices are raised and lowered by using the metricg and we denote by

kµ′ν′ = gµ′ν′ +Nµ′ Nν′

the metric which will be induced on the hypersurfaceTc.
The equation which relates the functionf to the mean extrinsic curvature ofTc takes

the form

∇µ′ Nµ′
= N kµ′ν′ ∇µ′ ∇ν′ 8 = −N kα′β′

∂α′ ∂β′ φ + h(xα′
, φ, ∂β′ φ) = f (xα, c),

(4.10)

with some smooth functionh. To ensure thatx3 = c onTc ∩ S ande0 is tangent toTc,
we require

φ = 0, 0 = e0(8) = e3′
0 − φ,α′ eα′

0 = −φ,α′ eα′
0 on Sc. (4.11)

In (4.9), (4.10) and (4.11) it is assumed thatx3′
= c + φ(xα′

) in the arguments of
the background fieldsgµ′ν′ , 0µ′ ρ′

ν′ , eµ′
0 entering the equations. It follows from (4.11)

thatNµ′ = −(−g3′3′
)−

1
2 δ3′

µ′ 6= 0 atSc. The metric induced bykµ′ν′ on the tangent
spaces ofTc at points ofSc is Lorentzian and this property will be preserved in some
neighbourhood ofSc in Tc if φ is smooth.

The quasilinear wave equation (4.10) and the initial conditions (4.11) suggest to find
Tc by solving a Cauchy problem forφ. In the particular case wheref = const. = χ0,
the existence of a unique smooth solution can be inferred from general theorems (cf.
[9]) which also entail the smooth dependence of the solution from the initial data. This
allows us to construct (sufficiently close toS) a family of hypersurfaceTc with mean
extrinsic curvatureχ0, which can be described as the set of level hypersurfaces of a
smooth functionx3 with d x3 6= 0 andx3 = 0 on the intersection of its domain of
definition withT . In view of Lemma 4.1 this entails the last statement of the lemma
above.

However, if∂αf 6= 0,α = 0,1,2, we cannot proceed in this way. While the left hand
side of (4.10) is expressed in terms of the coordinatesxα′

, the functionf on the far right
hand side is given in terms of the coordinatesxα which still need to be determined as
functions of thexµ′

. This leads us to consider Eqs. (4.5) again.
We begin with a few basic remarks. A vector fields is tangent toTc if and only if

s(8) = 0 or, equivalently, if

s3′
= φ,α′ sα′

. (4.12)

Thus we only need to determineφ andsα′
to findsµ′

onTc.
We shall consider equations, for unknowns onTc, in which vector fieldsea tangent to

Tc act as operators.Any such unknownhwill be thought of as being induced by a function
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H defined on some neighbourhood ofTc. In our coordinatesxµ′
, which are not adapted

to Tc, the usual expressionea(h) = h,µ′ eµ′
a is not directly defined. By our procedure

above,Tc is parametrized by thexα′
and we haveh = h(xα′

) = H(xα′
, c + φ(xα′

)),
which entails

h,α′ eα′
a = H,α′ eα′

a +H,3′ φ,α′ eα′
a = H,α′ eα′

a +H,3′ e3′
a = ea(H).

Therefore, any expressionea(h) with h defined onTc and ea tangent toTc will be
interpreted in the following by

ea(h) = h,α′ eα′
a. (4.13)

Since the connectionD induced onTc is not known yet, we expressD in terms of
the derivative operator∇ and the second fundamental formχµ′ν′ onTc. For any vector
fieldse0, s tangent toTc we should have onTc,

De0 s
µ′

= ∇e0 s
µ′ −Nµ′

χρ′λ′ sρ′
eλ′

0.

Because of (4.12) it is sufficient to consider theα′-components of this equation, the 3′
component will be a consequence.

Thus Eqs. (4.5) take the form

∇e0 e
α′

0 −Nα′
χ00 = FA(xα, c) eα′

A, (4.14)

∇e0 e
α′

A −Nα′
χ0A = −gAB F

B(xα, c) eα′
0, (4.15)

with
e3′

a = φ,α′ eα′
a (4.16)

being used wherevere3′
a occurs in the equations. The transformationxα = xα(xα′

)
will be obtained as solution to

e0(xα) = δα
0. (4.17)

In Eqs. (4.14), (4.15) we setNµ′
= eµ′

3 = N ∇µ′
8. However, writingχab =

χµ′ν′ eµ′
a e

ν′
b with the expression (4.9) of the second fundamental form, would intro-

duce terms of second order inφ which would spoil the hyperbolicity of the system. We
shall derive instead propagation equations forχab.

On the hypersurfaceTc we will have Codazzi’s and Gauss’ equations which will
take in the frameea onTc the form

Db χca −Dc χba = R3
abc, (4.18)

ec(0d
a

b) − ed(0c
a

b) + 0c
a

e 0d
e

b − 0d
a

e 0c
e

b (4.19)

−0e
a

b (0c
e

d − 0d
e

c) + χc
a χdb − χd

a χcb = Ra
bcd,

respectively, with0a
c

b denoting the connection coefficients ofD in the frameea. We
write as usualDb χca = eb(χca) − 0b

e
c χea − 0b

e
a χce and assume the interpreta-

tion (4.13) of directional derivatives.
Equation (4.18) implies the system

D0χ01 −D1χ11 −D2χ12 = e1(f ) + gabR3
ab1, (4.20)

D0χ02 −D1χ12 −D2χ22 = e2(f ) + gabR3
ab2, (4.21)
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D0χ11 −D1χ01 = R3
101, (4.22)

2D0χ12 −D1χ02 −D2χ01 = R3
102 +R3

201, (4.23)

D0χ22 −D2χ02 = R3
202, (4.24)

where we setf = gab χab and assume that the functionχ00, of which no deriva-
tive is taken in the equations, is given byχ00 = f + χ11 + χ22. We writeRjabc =
Rµ′ν′λ′ρ′ eµ′

j e
ν′

a e
λ′

b e
ρ′

c and use (4.12) to expresse3′
a in terms ofφ,α andeα′

a.
With the gauge conditions00

A
B = 0,00

A
0 = FA, Eq. (4.19) implies the system

e0(0A
B

0) = eA(FB) − 0C
B

0 0A
C

0

−0A
B

C F
C − FB FC gAC − χ0

B χA0 + χA
B χ00 +RB

00A, (4.25)

e0(0A
B

C) = −FB 0A
0

C − 0A
B

0F
D gCD

−0D
B

C 0A
D

0 − χ0
B χAC + χA

B χ0C +RB
C0A. (4.26)

It remains to explain the meaning of the expressionseA (f ), eA(FB). We should have

ea(f ) = f,µ
∂ xµ

∂ xµ′ e
µ′

a = f,µ e
µ

a = f,α e
α

a,

whereeµ
a denotes the coefficients of the frame fieldea in the coordinatesxµ. We derive

equations for the quantitieseα
A.

Because the intrinsic connection onTc will be torsion free we should have

0 =Dea
Deb

xα −Deb
Dea

xα = Dea
eα

b −Deb
eα

a,

whereeα
a is considered for givenα as the expression ofd xα in our frame. Observing

our gauge conditions, in particular their implicationeα
0 = δα

0, we get the equation

e0(eα
A) = −gAB F

B δα
0 − 0A

B
0 e

α
B . (4.27)

In the equations above we set now

eA (f ) = f,α e
α

A, eA(FB) = FB
,α e

α
A. (4.28)

With the interpretations and gauge conditions given above Eqs. (4.10), (4.14), (4.15),
(4.17), (4.20) to (4.27), form a quasi-linear system of equations for the unknownsφ,
eα′

a, xα(xα′
), χab, 0a

b
c, eα

a.
The initial data for the coordinatesxα(xα′

) and the frame coefficientseα′
a are given

in the statement of the lemma. The initial data forφ are given by (4.11). Using Eq. (4.10),
we can calculateφ to second order onSc, which allows us to obtain the initial data for
χab from (4.9) and the data for the frame. From Eqs. (4.14), (4.15) we can determine the
frame coefficients to first order onSc which allows us to calculate the coefficents0a

b
c.

Finally, we get from (4.17) the coordinate transformation to first order, which allows us
to determine the coefficientseα

a onSc.
Equation (4.10) is of wave equation type while the remaining equations form a

symmetric hyperbolic system ifφ is thought to as being given. The coupled system can
be dealt with either directly or by using the well known procedure to write the wave
equation as a symmetric hyperbolic system. Then the whole system will be symmetric
hyperbolic and the existence and uniqueness of smooth solutions to this system for the
given data follows from known results [9]. This implies in particular the first assertion
of the lemma. �
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We comment on the open problem. The data as well as the coefficients of our dif-
ferential system depend smoothly on the coordinatesxα′

and the parameterc. Thus the
solutions will be jointly smooth inxα′

andc in some neighbourhoodU ′ of p. Choosing
U ′ small enough, we can define the hypersurfacesTc ∩U ′ to be the level hypersurfaces
{x3 = c} of a smooth functionx3 which together with the functionsxα on Tc ∩ U ′
provides a smooth coordinate systemxµ onU ′.

To solve the existence problem with this type of argument we would need to show
e.g. thatχab = χ̂ab onTc, whereχab denotes the symmetric tensor obtained as solution
to Eqs. (4.20) to (4.24), while ˆχab = χµ′ν′ eµ′

a e
ν′

b with χµ′ν′ denoting the second
fundamental form onTc given by (4.9). This will be discussed elsewhere.

5. The Reduced Equations

While the constraints induced by the Einstein equations on space- or time-like hypersur-
faces are defined uniquely, there are many ways to extract evolution equations from the
Einstein equations. Our choice of “reduced equations” or “propagation equations” (and
in fact also the representation of the field equations and the gauge conditions introduced
in the previous sections) is motivated by the following observations:

(i) Our propagation equations are symmetric hyperbolic and allow us to formulate a
maximally dissipative boundary value problem.

(ii) The constraints are preserved by our propagation equations irrespective of the
chosen maximal dissipative boundary condition.

While the requirements in (i) are met by many systems, property (ii) imposes strong
restriction on the choice of propagation equations. There appears to be no systematic
way to derive such equations and a priori there appears to be no reason why propagation
equations satisfying (ii) should exist at all.

Observing (2.2) and (4.2), we obtain for the coefficientseµ
p the propagation equa-

tions

0 = −T0
k

p e
µ

k = ∂x0 eµ
p − (00

q
p − 0p

q
0) eµ

q − 00
0

p δ
µ

0. (5.1)

The functionsFA(xµ) = 00
A

0(xµ) and, forx3 > 0, f (xµ) = χ(xµ) will be consid-
ered in the following as gauge source functions. They are to be prescribed in accordance
with the boundary conditions but are free otherwise. Observing (4.4), (4.6), and the sym-
metries of the connection coefficients, we have to derive equations for the connection
coefficients0A

b
c, χab = 0a

3
b, and03

j
b. The Gauss equations with respect to the

hypersurfacesTc provide the equations

0 = 1B
00A = e0(0A

B
0) − eA(FB) + 0C

B
0 0A

C
0

−0A
B

C F
C + FB FC gAC + χ0

B χA0 − χA
B χ00 − CB

00A, (5.2)

0 = 1B
C0A = e0(0A

B
C) + FB 0A

0
C + 0A

B
0F

D gCD

+0D
B

C 0A
D

0 + χ0
B χAC − χA

B χ0C − CB
C0A. (5.3)

Codazzi’s equations, 0 =13
abc = Db χca − Dc χba − C3

abc, imply propagation
equations

0 = gab 13
ab1 = D0χ01 −D1χ11 −D2χ12 −D1(f ), (5.4)
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0 = gab 13
ab2 = D0χ02 −D1χ12 −D2χ22 −D2(f ), (5.5)

0 = 13
101 = D0χ11 −D1χ01 − C3

101, (5.6)

0 = 13
201 + 13

102 = 2D0χ12 −D1χ02 −D2χ01 − C3
201 − C3

102, (5.7)

0 = 13
202 = D0χ22 −D2χ02 − C3

202. (5.8)

In these equations it is understood that the componentχ00, which appears only
in undifferentiated form, is given byχ00 = χ11 + χ22 + f . Using again the relation
gab0a

3
b = f , we get for the coefficients03

j
b the equations

0 = 1A
B03 = e0(03

A
B) + FA 03

0
B + 03

A
0F

C gBC + 0C
A

B 03
C

0

+03
A

B 03
3

0 + χ0
A 03

3
B − 03

A
3χ0B − 0C

A
B χ0

C − CA
B03, (5.9)

0 = 1A
003 = e0(03

A
0) − e3(FA) + χ0

A 03
3

0 − 03
A

B F
B + 0B

A
0 03

B
0

+03
A

0 03
3

0 − 0B
A

0χ0
B − 03

3
B g

BA χ00 − FA χ00 − CA
003, (5.10)

0 = 13
A03 + 13

03A = e0(03
3

A) − eA(03
3

0)

+03
3

0F
B gBA + 03

3
C 0A

C
0, (5.11)

0 = gab 13
ab3 = e0(03

3
0) + gAB eA(03

3
B) − e3(f )

−gab 03
3

k0b
k

a + gab 0b
3

k03
k

a + gab 0m
3

a(03
m

b − 0b
m

3). (5.12)

There are various ways to extract symmetric hyperbolic propagation equations from the
overdetermined Bianchi equation. We shall use the boundary adapted system introduced
in [4] because this is particularly well suited for the discussion of initial boundary value
problems. We denote byN = e3 the vector orthogonal to the family of hypersurfacesTc

and write againn = e0, εijk = nl εlijk.
Using the fact that the electric and magnetic parts of the conformal Weyl tensor are

symmetric and trace-free, the boundary adapted system is written as a system for the
unknowns

Eij , Bij , 1 ≤ i ≤ j, i < 3.

It is understood that the relationsgij Eij = 0 andgij Bij = 0 are used everywhere in the
following equations to replace the fieldsE33 andB33 by our unknowns. The boundary
adapted system is then given by

Pij +N(i εj)
kl Nk Ql = 0, Qij −N(i εj)

kl Nk Pl = 0, 1 ≤ i ≤ j, i < 3.
(5.13)

Writing it in the equivalent form

P11 − P22 = 0, Q11 −Q22 = 0,
2P12 = 0, 2Q12 = 0,

P11 + P22 = 0, Q11 +Q22 = 0,
P13 = 1

2Q2, Q13 = − 1
2P2,

P23 = − 1
2Q1, Q23 = 1

2P1,

(5.14)

as a system for the unknown “vector”u which is the transpose of
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((E−,2E12, E+, E13, E23), (B−,2B12, B+, B13, B23)),

whereE± = E11 ± E22, andB± = B11 ±B22, it takes the form

(Iµ + Aµ ) ∂µ u = b, (5.15)
with

Iµ =

[
Iµ 0
0 Iµ

]
, Aµ =

[
0 Aµ

tAµ 0

]
,

where

Iµ = δµ
0




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


 , Aµ =




0 −eµ
3 0 eµ

2 eµ
1

eµ
3 0 0 −eµ

1 eµ
2

0 0 0 eµ
2 −eµ

1
−eµ

2 eµ
1 −eµ

2 0 0
−eµ

1 −eµ
2 eµ

1 0 0


 . (5.16)

The reduced equations consisting of (5.1) to (5.13), in which our gauge conditions, in
particular (4.2), (4.4), are assumed, is thus seen to form a symmetric hyperbolic system.
The following specific feature of the system (5.13) should be noticed here. As discussed
in [4], we could have taken the systemPjk = 0, Qjk = 0, suitably interpreted, as
propagation equations. This would also have resulted in a symmetric hyperbolic system
of propagation equations. However, in that case the rank of the matrixA3, and with it the
freedom to prescribe boundary data for the reduced system, would have been larger than
in the present case. Another important reason for the choice of (5.13) will be pointed
out in our discussion of the subsidiary system.

6. The Subsidiary System

We show now that solutions to the reduced system which satisfy the constraints onS are
indeed solutions to the full Einstein equations. Letg′ be a time-oriented Lorentz metric
onM for whichT is time-like andS is space-like and such that it is in the past ofM \S.
For a given subsetV of T ∪ S and an open subsetU of M we define the domain of
dependence ofV in U with respect tog′ as the set of pointsp ∈ U such that (i)I−(p),
the chronological past ofp in (M, g′), is contained inU , (ii) every past inextendible
g′-causal curve throughp meetsV ∩ U .

Theorem 6.1. Suppose that the fieldseµ
k, 0i

j
k,Ci

jkl, withχab ≡ 0a
3

b symmetric,
are smooth on some open neighbourhoodU of p ∈ 6 in M and satisfy the gauge
conditions (4.2), (4.4) as well as the reduced equations (5.1) to (5.13) onU . Letg be the
metric for which the frameek is orthonormal and denote byD the domain of dependence
of (S ∪T ) ∩U in U with respect tog. Then the Einstein equations (2.5) will be satisfied
onD if they are satisfied onS ∩ U .

Remark 6.1.It is a remarkable feature of Einstein’s equation that it admits a hyperbolic
reduced system which allows us to draw such a conclusion without any reference to the
behaviour of the fields onT .

Proof. Since we have to show that the tensor fields defined by the left-hand sides of
Eqs. (2.2), (2.3), (2.4) vanish onD, we shall refer to these fields as to the “zero quantities”.
The reduced equations are equivalent to the equations

T0
k

j = 0, (6.1)
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1a
b0k = 0, 13

A0A = 0, gab 13
ab3 = 0, (6.2)

13
A03 + 13

03A = 0, 13
201 + 13

102 = 0, gab 13
abA = 0,

Pij +N(i εj)
kl Nk Ql = 0, Qij −N(i εj)

kl Nk Pl = 0. (6.3)

We get slightly more information on the torsion tensor. Observing the assumed
symmetry ofχab, we get

−T1
i

2 e
µ

i = eν
1 ∂ν e

µ
2 − eν

2 ∂ν e
µ

1 − (01
a

2 − 02
a

1) eµ
a.

Evaluating this expression forµ = 3 we getT1
3

2 e
3

3 = 0, from which we conclude
by (4.2) that

TA
3

B = 0. (6.4)

Since0ijk = −0ikj , we know that the connection defined by the connection coefficients
is metric. However, it is not clear at this stage whether it is torsion free, since so far we
only know that (6.1) holds. For this reason the curvature tensor defined by the connection
coefficients is not given byri

jkl but by

Ri
jkl = ek (0l

i
j) − el (0k

i
j) + 0k

i
m 0l

m
j

−0l
i

m 0k
m

j − 0m
i

j (0k
m

l − 0l
m

k − Tm
kl),

which is equivalent to

Ri
jkl = 1i

jkl +Ci
jkl + 0m

i
j Tk

m
l.

Furthermore, it is not known at this stage whether the tensorCi
jkl is indeed the con-

formal Weyl tensor of the metric defined by the frame coefficientseµ
k. Together with

the torsion tensor the curvature tensor satisfies the Bianchi identities
∑
(jkl)

∇j Tk
i

l =
∑
(jkl)

(Ri
jkl + Tj

m
k Tl

i
m),

∑
(jkl)

∇j R
i

mkl = −
∑
(jkl)

Ri
mnj Tk

n
l,

where
∑

(jkl) denotes the sum over the cyclic permutation of the indicesjkl. Observing
that we assumed the symmetry

∑
(jkl) C

i
jkl = 0, the first identity can be written in the

form
∑
(jkl)

∇jTk
i

l =
∑
(jkl)

(1i
jkl + 0m

i
j Tk

m
l + Tj

m
k Tl

i
m). (6.5)

Again, observing this equation and that the tensorCi
jkl has the algebraic properties of

a conformal Weyl tensor, we get the relation

∑
(jkl)

∇jC
i

mkl = −1
2
εk

′l′i
mεjkl

m′ ∇i′ Ci′
m′k′l′ .
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This allows us to write the second Bianchi identity in the form

∑
(jkl)

∇j1
i

mkl = Li
mjkl, (6.6)

where we set

Li
mjkl =

1
2
εk

′l′i
m εjkl

j′
Hj′k′l′ −

∑
(jkl)

{
0n

i
m 1n

jkl (6.7)

+(Ri
mnj + ∇j 0n

i
m + 0n′ i

m 0n
n′

j)Tk
n

l + 0n
i

m Tj
n′

k Tl
n

n′
}
,

with ∇j 0n
i

m = ej(0n
i

m)−0j
l

n 0l
i

m +0j
i

l 0n
l

m −0j
l

m 0n
i

l. Notice that the
fieldLi

mjkl is a polynomial in the zero quantities which vanishes if the zero quantities
vanish.

The identities above will be used to derive certain systems of differential equations,
the “subsidiary systems”, which are satisfied by the zero quantities. In view of (6.1), we
get from (6.5) the equation

∇0 Tk
i

l + ∇l T0
i

k + ∇k Tl
i

0 = 1i
0kl + 1i

l0k + 1i
kl0 + 0m

i
0 Tk

m
l, (6.8)

which can be rewritten

e0(Tk
i

l) = 1i
0kl + 1i

l0k + 1i
kl0 + (0m

i
0 − 00

i
m)Tk

m
l (6.9)

+ (0l
m

0 − 00
m

l)Tm
i

k + (0k
m

0 − 00
m

k)Tl
i

m.

With (6.2), (6.4) this implies in our gauge

e0(TA
3

3) = −0A
B

0 TB
3

3,

from which we conclude thatTA
3

3 = 0. Combined with (6.1), (6.4) this gives

Ti
3

j = 0. (6.10)

Using this equation in (6.5) we get the relation

∑
(jkl)

13
jkl =

∑
(jkl)

(0j
3

a − 0a
3

j)Tk
a

l, (6.11)

which implies
13

012 + 13
201 + 13

120 = 0, (6.12)

13
123 + 13

231 = 03
3

a T1
a

2. (6.13)

We shall show now that the “vector”v which is the transpose of

(T1
a

2, 1A
012, 11

221, 13
001, 13

002, 13
012),

vanishes onD. For this purpose we derive a homogeneous symmetric hyperbolic system
for v as follows.
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The equations forT1
a

2, obtained from (6.9), are given by

e0(T1
a

2) = 1a
012 + (0A

a
0 − 00

a
A)T1

A
2 − (01

1
0 + 02

2
0)T1

a
2. (6.14)

The equations for the remaining components ofv are obtained by observing (6.2), the
symmetry of0a

3
b as well as the results obtained so far, and by writing out in detail the

six equations of (6.6) where the quantities

L1
0012, L2

0012, L1
2021, L3

0012, L3
2210, L3

1120,

occur on the left-hand sides. It is important to note that there is one component of the
tensorHjkl for each component of the tensorLi

mjkl coming fromεk
′l′i

m εjkl
j′
Hj′k′l′ .

For the quantities mentioned above these components are respectively,

H323 H331 H330 H310 H302 H312.

However all these quantities vanish due to the reduced equations (6.3).A straightforward
calculation shows us that

H323 = Q13 +
1
2
P2 = 0, H310 = P13 − 1

2
Q2 = 0,

H331 = Q23 − 1
2
P1 = 0, H302 = P23 +

1
2
Q1 = 0,

H330 = P33 = 0, H312 = Q33 = 0,

where the last two equations follow from the reduced equations sincePij andQij are
trace free. After a somewhat lengthy though straightforward calculation we get

e0(11
012) =

3
2
00

3
1 13

012 − (
00

3
0 + 01

3
1
)
13

002 + 02
3

1 13
001 (6.15)

−00
2

0 11
221 − (

201
1

0 + 02
2

0
)
11

012 − 02
1

0 12
012

− (
R1

0a0 + ∇00a
1

0 + 0k
1

0 0a
k

0
)
T1

a
2,

e0(12
012) =

3
2
00

3
2 13

012 +
(
00

3
0 + 02

3
2
)
13

001 − 01
3

2 13
002 (6.16)

+00
1

0 11
221 − (

01
1

0 + 202
2

0
)
12

012 − 01
2

0 11
012

− (
R2

0a0 + ∇00a
2

0 + 0k
2

0 0a
k

0
)
T1

a
2,

e0(11
221) = 00

3
1 13

001 + 00
3

2 13
002 − (

00
2

0 − 01
1

2
)
11

012 (6.17)

+
(
00

1
0 + 02

1
2
)

12
012 − (

01
1

0 + 02
2

0
)
11

221

+
(
R1

2a0 + ∇00a
1

2 + 0k
1

2 0a
k

0
)
T1

a
2,

e0(13
012) − e1(13

002) + e2(13
001) = − (

200
2

0 + 01
1

2
)
13

001 (6.18)

+
(
200

1
0 + 02

2
1
)
13

002 − 200
3

A 1A
012 − 3

2

(
01

1
0 + 02

2
0
)
13

012

− (
R3

0a0 + ∇00a
3

0 + 0k
3

0 0a
k

0
)
T1

a
2,
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e0(13
001) +

1
2
e2(13

012) = − (
01

1
0 + 202

2
0
)
13

001 + 01
2

0 13
002 (6.19)

−3
2
00

2
0 13

012 + 00
3

0 12
012 + 0A

3
2 1A

012 + 00
3

1 11
221

+
(
R3

2a0 + ∇00a
3

2 + 0k
3

2 0a
k

0
)
T1

a
2,

e0(13
002) − 1

2
e1(13

012) = 02
1

0 13
001 − (

201
1

0 + 02
2

0
)

13
002 (6.20)

+
3
2
00

1
0 13

012 − (
00

3
0 + 01

3
1
)
11

012 − 02
3

11
2

012 − 00
3

2 11
221

− (
R3

1a0 + ∇00a
3

1 + 0k
3

1 0a
k

0
)
T1

a
2.

Multiplying the last two equations by 2 we obtain a system forv which is symmetric
hyperbolic. A calculation shows that its characteristics are non-space-like forg. More-
over, it does not contain the directional derivative operatore3. As pointed out in our
discussion of maximally dissipative boundary value problems this allows us to obtain
energy estimates for our solution regardless of its behaviour onT . Sincev = 0 onS by
assumption, it follows thatv vanishes inD. Thus we have

T1
a

2 = 0,

1A
012 = 0, 11

221 = 0, 13
001 = 0, 13

002 = 0, 13
012 = 0,

whence, by (6.2), (6.12), (6.13),

13
201 = 0, 13

102 = 0, 13
123 + 13

231 = 0.

To write out the equations for the “vector”u which is the transpose of

(13
103,1

3
203,1

3
123,1

3
113,1

3
223),

it will be convenient to use the following notation. For any tensor fieldT ij...
kl... we

write

0m T i...j
k...l ≡ (∇m − em)T i...j

k...l = 0m
i

n T
n...j

k...l + . . .− 0m
n

l T
i...j

k...n,

which is a bi-linear expression in the components of the tensor field and the connection
coefficients.

Observing the results obtained so far, we get, again from (6.6), the equations

e0(13
103) − e1(13

113) − e2(13
123) (6.21)

= gij
[
L3

ij13 − (
0j 13

i13 + 03 13
ij1 + 01 13

i3j

)]
,

e0(13
203) − e1(13

123) − e2(13
223) (6.22)

= gij
[
L3

ij23 − (
0j 13

i23 + 03 13
ij2 + 02 13

i3j

)]
,

2e0(13
123) − e1(13

203) − e2(13
103) = L3

1023+L3
2130 (6.23)

− (
00 13

123 + 03 13
102 + 02 13

130
) − (

01 13
230 + 00 13

213 + 03 13
201

)
,
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e0(13
113) − e1(13

103) = L3
1013 (6.24)

− (
00 13

113 + 03 13
101 + 01 13

130
)
,

e0(13
223) − e2(13

203) = L3
2023 (6.25)

− (
00 13

223 + 03 13
202 + 02 13

230
)
.

The system (6.21) to (6.25) foru takes the formAµ ∂µ u = b with

Aµ =



eµ

0 0 −eµ
2 −eµ

1 0
0 eµ

0 −eµ
1 0 −eµ

2
−eµ

2 −eµ
1 2eµ

0 0 0
−eµ

1 0 0 eµ
0 0

0 −eµ
2 0 0 eµ

0


 .

Using finally the definition ofHjkl we set

Nkl = ∇jHjkl = ∇i ∇j Cijkl. (6.26)

Observing that our solutionCijkl has by definition all the symmetries of a conformal
Weyl tensor, i.e.Cijkl = C[ij][kl] , Cijkl = Cklij , Cijk

j = 0,Ci[jkl] = 0, which imply
Cij[k

mCij
l]m = 0, we find

Nkl = Rmi
m

j C
ij

kl −Rij[k
m Cij

l]m − 1
2
Ti

m
j ∇m Cij

kl (6.27)

= −1mi
m

j C
ij

kl − 0m
n

i Tn
m

j C
ij

kl + 1ij[k
m Cij

l]m

−0mij C
ijn

[lTk]
m

n +
1
2
Ti

m
j ∇m Cij

kl.

We note that the expression on the far right-hand side is linear in the zero quantities.
On the other hand we obtain from the identity (2.6) and the reduced equations (5.13)

a relation

Hjkl = Pi u
i

jkl +Qi v
i

jkl, (6.28)
with

ui
jkl = −2nj n[k hl]

i + hj[k hl]
i −N(j εn)

miNm εn kl,

vi
jkl = nj ε

i
kl − εi j[k nl] + nlN(j εk)

miNm − nk N(j εl)
miNm.

Contracting (6.28) with 2hq
k nl and−εp kl respectively, we finally get

2Ln Pq + (εqji + 2N(j εq)miN
m) Dj Qi (6.29)

= 2Kq
i Pi − 2Pi hq

k nl ∇j ui
jkl − 2Qi hq

k nl ∇j vi
jkl + 2hq

k nlNkl,

2LnQp − (εpji + 2N(j εp)miN
m) Dj P i (6.30)

= 2Kq
iQi + Pi εp

kl ∇j ui
jkl +Qi εp

kl∇j vi
jkl − εp

kl Nkl.

If we write these equations as a system for the unknownw which is the transpose of
((P1, P2, P3), (Q1, Q2, Q3)), they take the form
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Iµ ∂µ w + Aµ ∂µ w = b,
with

Iµ =

[
Iµ 0
0 Iµ

]
, Aµ =

[
0 Aµ

tAµ 0

]
,

Iµ =


2eµ

0 0 0
0 2eµ

0 0
0 0 eµ

0


 , Aµ =


 0 0 eµ

2
0 0 − eµ

1
− eµ

2 eµ
1 0


 .

Equations (6.9) for the remaining components of the torsion tensor, Eqs. (6.21)
to (6.25), and Eqs. (6.29), (6.30) provide the subsidiary system for those zero quantities
of which we do not know yet whether they vanish. The system is symmetric hyperbolic
and a calculation shows that its characteristics are non-space-like forgµν . The derivative
operatore3 does not occur in the system. Since the zero quantities vanish onS, we
conclude that they vanish onD. �

The requirement that the operatore3 does not occur in the subsidiary systems was
one of our main criteria for choosing the reduced system. Otherwise we would have
been confronted with the task to analyse in detail the structure of boundary data for the
subsidiary systems which are determined by the reduced system from the data onS as
well as onT .

7. Initial and Boundary Data

In the following we discuss how to prepare initial and boundary data for the reduced
equations. The discussion of the initial data is somewhat complicated by the fact that we
do not require the unit normale0 of 6 in T to be orthogonal toS. Without this generality
our results would be of rather restricted applicability.

7.1. The construction of initial data.Experience with the standard Cauchy problem for
Einstein’s vacuum field equation tells us that we have to assume as initial data onS
a smooth (negative) Riemannian metricγαβ and a smooth symmetric tensor fieldκαβ

satisfying the Hamiltonian and the momentum constraint

R′ − (κα
α)2 + καβ καβ = 0, δ

′α καβ − δ′
β κ

α
α = 0, (7.1)

onS. Hereδ′ denotes the Levi–Civita connection andR′ the Ricci scalar of the metric
γ. To derive initial data for the reduced equations we shall first determine data in terms
of coordinatesx

′µ and a framee′
k which are suitably adapted to the initial hypersurface

S and shall then express these data in the coordinatesxµ and the frame fieldek which
satisfy the conditions described in Sect. 4.

Letx
′µ be functions onS ∩U with x

′0 = 0 onS ∩U , x
′3 = 0 on6 ∩U , x

′3 > 0 on
(S \ 6) ∩U , such that thex

′α, α = 1,2,3, define a smooth coordinate system onS ∩U
and thex

′α, α = 1,2, are constant along the integral curves of the gradient ofx
′3. For

numbersc ≥ 0 in the range ofx
′3 we setSc = {x′3 = c}. Let {e′

p}p=1,2,3 be a smooth
frame field onS ∩ U such thate′

3 is orthogonal to the surfacesSc, pointing towardsS
onS0 = 6 ∩ U , and such that

γ(e′
p, e

′
q) = g′

pq = diag (−1,−1,−1).
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The information on the metricγ is contained in the coefficientse
′α

p = e′
p(x

′α). We

write κ′
pq = καβ e

′α
p e

′β
q.

Imagine now the initial data set (S, γ, κ) as being isometrically embedded into a
solution (M, gµν) of the field equations and denote by∇ the connection defined byg.
Let e′

0 be the (future directed) unit normal ofS. We assume that the orthonormal frame
field {e′

k}k=0,... ,3 and the functionsx
′µ on S are extended offS such that the frame

is parallely propagated in the direction ofe′
0 and that the coordinatesx

′α, α = 1,2,3,
are constant on the integral curves ofe′

0, while x
′0 is a natural parameter on these

curves. The connection coefficients defined by∇e′
k
e′
j = 0′

k
i

j e
′
i then satisfy onS (cf.

condition (7.27) added below)

δ′
e′

p
e′q = 0′

p
r

q e
′
r, 0′

0
i

j = 0, 0′
p

0
q = −κ′

pq, (7.2)

and we have for the coefficientse
′µ

k = e′
k(x

′µ),

e
′µ

0 = δµ
0, e

′0
p = 0, e

′µ
3 = δµ

3 e
′3

3, e
′3

3 > 0.

The electric part of the conformal Weyl tensor with respect toν = e′
0 then follows

under our assumptions from the Gauss equation onS. It is given by

E′
pq = C ′

p0q0 = R′
pq − 1

4
R′ g′

pq − {κ′
r

r (κ′
pq − 1

4
κ′

s
s g′

pq) − κ′
sp κ

′
q

s +
1
4
κ′

rs κ
′rs
g′

pq},

whereR′
pq denotes the Ricci tensor of the metricγ in the framee′

p andR′ is the Ricci
scalar ofγ. The tensor above is obviously symmetric, the Hamiltonian constraint ensures
that it is trace free.

The magnetic part follows under our assumptions from the Codazzi equation. It is
given by

B′
pq =

1
2
C ′

p0ik ε
′
q0

ik = −ε′q rs δ′
e′

r
κ′

sp,

whereε′ijkl is totally antisymmetric,ε′0123 = 1, andε′pqr = ν
′i ε′ipqr. The symmetry of the

tensor above is a consequence of the momentum constraint, it is trace free because of
the symmetry ofκ′

pq. These fields together determine the conformal Weyl tensorC ′
ijkl

in the framee′
j by the formula

C ′
ijkl = 2

(
l′j[k E

′
l]i − l′i[k E

′
l]j − ν′

[k B
′
l]m ε

′m
ij − ν′

[iB
′
j]m ε

′m
kl

)
,

where we setl′ij = g′
ij − 2ν′

i ν
′
j .

Only projections intoS of expressions (2.1) to (2.4) can be determined from our
datae

′µ
k, 0′

i
j

k, E′
pq, B′

pq, C ′
ijkl. Using the projector̂h′

i
j = g′

i
j − ν′

i ν
′j and the fact

that in 3 dimensions the Riemann tensor is given in terms of the Ricci tensor, we find
by the way we derived our data fromγ andκ that

ĥ′
p

i ĥ′
q

j T ′
i

k
j = 0, (7.3)

ĥ′
p

k ĥ′
q

l 1
′i

jkl = 0, (7.4)

P ′
s = ν

′j ĥ′
s

l ν
′m ∇e′

i
C

′i
jlm = 0, Q′

s = −1
2
ν

′j ε′s
lm ∇e′

i
C

′i
jlm = 0, (7.5)

i.e. the constraints induced by Eqs. (2.5) onS ∩ U are satisfied by our data.
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If the normaln of 6 ∩ U in T were orthogonal toS, we could setek = e′
k on

S ∩U and use the data determined above as initial data for the reduced field equations.
To include the case wheren does not necessarily coincide withe′

0 on6 we proceed as
follows. We choose functionsxµ such thatxµ = x

′µ onS∩U . We seteA = e′
A,A = 1,2,

and

e0 = cosh(θ) e′
0 + sinh(θ) e′

3, e3 = sinh(θ) e′
0 + cosh(θ) e′

3, (7.6)

with θ ∈ C∞(S ∩ U ) chosen such thate0 = n on6 ∩ U . We write the relations above
in the formek = 3j

k e
′
j with a Lorentz transformation3j

k.
We note here that2 ≡ θ|6∩U is a free datum which determines in part the geometry

of the space-time we wish to construct, while on the remaining part ofS∩U the function
θ must be regarded as a gauge source function.

NearS the coordinatesxµ will be chosen such thateµ
0 = e0(xµ) = δµ

0. This implies
onS the relation

δµ
0 = e0(xµ) = cosh(θ) e′

0(xµ) + sinh(θ) e′
3(xµ) = cosh(θ)

∂xµ

∂x′0 + sinh(θ) e
′µ

3,

which allows us to determine∂xµ

∂x′ν and thus the frame coefficientseµ
k = ek(xµ) on

S ∩ U .
The transformation law between the connection coefficients defined by∇ei

ek =
0i

j
k ej and the connection coefficients0′

i
j

k reads

0i
k

j = ei(3
m

j) 3m
k + 3l

i 3n
j 0′

l
m

n 3m
k, (7.7)

with 3i
k = gji 3j

l g
lk, which satisfies3i

k 3i
l = δk

l. To determine the left hand side
of (7.7) we need to determine the derivatives of3i

k. The requirement that the latter is
a Lorentz transformation impliesei(3

m
j) 3mk + ei(3

m
k) 3mj = 0, which translates

into the equivalent conditions

ei(3
A

B) = −ei(3
B

A), (7.8)

ei(3
A

0) = cosh(θ) ei(3
0

A) − sinh(θ) ei(3
3

A),

ei(3
A

3) = sinh(θ) ei(3
0

A) − cosh(θ) ei(3
3

A),

ei(3
0

0) = ei(3
3

3), ei(3
3

0) = ei(3
0

3), (7.9)

cosh(θ) ei(3
0

0) = sinh(θ) ei(3
3

0).

Observing thate0(3i
j) = cosh(θ) e′

0(3i
j) + sinh(θ) e′

3(3i
j) and that we can calculate

the tangential derivativese′
p(3i

j) for p = 1,2,3, onS ∩ U , we find from the gauge
condition00

A
B = 0 and (7.7),

e′
0(3A

B) = −0′
0

A
B − tanh(θ) 0′

3
A

B .

The gauge condition00
0

A = −gAB F
B gives with (7.8),

cosh(θ) e′
0(3A

0) = −gAB F
B − 3k

0 0′
k

l
A 3l

0.

The requirement thate3 is hypersurface orthogonal atSc, i.e. χ0A = χA0, implies
with (7.8)

cosh(θ) e′
0(3A

3) = −e′
A(θ) − 3k

0 (0′
A

l
k − 0′

k
l

A) 3l
3.
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Using again (7.8) we obtain from these relations the quantitiese′
0(3i

j) with i = A = 1,2,
or j = B = 1,2. The gauge conditiongab 0a

3
b = f implies onS ∩ U ,

e′
0(33

0) = − sinh(θ) e′
3(θ) + f − gab 3k

a 3l
b 0′

k
i

l 3i
3,

from which we determine the quantitiese′
0(3i

j) with i, j = 0,3, by using (7.9). We note
that the quantity0A

3
B is indeed symmetric because of the relation

0A
3

B = − sinh(θ) 0′
A

0
B + cosh(θ) 0′

A
3

B ,

implied by (7.7). The terms on the right hand side are symmetric becausee′
0 ande′

3 are
orthogonal toS ∩ U andSc respectively.

Finally, the conformal Weyl tensor is given in our gauge by

Cijkl = C ′
i′j′k′l′ 3i′

i 3j′
j 3k′

k 3l′
l,

where the primed indices take values 0, . . . ,3.
The data so obtained are useful for our purpose because we have

Lemma 7.1. Supposeeµ
k, 0i

j
k, Cijkl coincide onS ∩ U with the data determined

above and satisfy the reduced field equations (5.1) to (5.13) as well as our gauge con-
ditions in some neighbourhood ofS ∩ U ' {0} × (S ∩ U ) ⊂ R × (S ∩ U ). Theneµ

k,
0i

j
k, Cijkl satisfy Eqs. (2.5) onS.

Proof. We have to show that the tensor fieldsTi
k

j , 1i
jkl,Hjkl vanish onS∩U . Given

the metric for whicheµ
k is orthonormal, we can extend the coordinatesx

′µ and the frame
e′

k off S ∩U as described above and express the tensor fields in terms of this gauge. We
haven = n

′i e′
i with n

′i = cosh(θ) ν
′i + sinh(θ) δi

3. In terms ofT ′
i

j
k = T ′

i
j

k[e′,0′]
Eq. (5.1) reads 0 =n

′i T ′
i

j
k = cosh(θ) ν

′i T ′
i

j
k + sinh(θ)T ′

3
j

k. Using (7.3) we obtain
from this relation thatν

′i T ′
i

j
k = 0 onS ∩ U . This equation and (7.3) imply by the

tensorial nature ofT thatTi
j

k = 0 onS ∩ U .
We have a decomposition

1i
jkl = Di

jkl + 2Di
j[l nk] ,

with fields
Dijkl = 1ijmn h

m
k h

n
l, Dijl = 1ijkn n

k hn
l,

which are anti-symmetric in the indicesi, j.
If the torsion tensor vanished to first order onS ∩ U we could use the first Bianchi

identity to deduce the identity

2D3
[AB] = D3

0AB .

However, observing the assumed symmetry ofχab = 0 a
3

b, this relation can be verified
in our case by a direct calculation. The reduced equations (6.2) can then be rewritten in
the form

Da
bp = 0, D3

0p = gab D3
apb, D3

AB =
1
2

D3
0AB , D3

A3 = D3
0A3. (7.10)

Equation (7.4) reads1i
jmn ĥ

m
k ĥ

n
l = 0, whereĥj

k = gj
k − νj νk with νi =

cosh(θ)ni − sinh(θ)N i. Transvecting this equation suitably withhj
k andni we find

that it is equivalent to
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Di
jAB = 0, Di

j3A = tanh(θ) Di
jA. (7.11)

It is now a matter of straightforward algebra to show that Eqs. (7.10), (7.11) imply
Di

jp = 0,Di
jpq = 0.

Consider the fieldH ′
ijk = H ′

ijk[e′,0′, C ′] decomposed with respect toν according
to the rule (2.6). The fact that the constraints (7.5) are satisfied onS ∩ U is expressed
equivalently by the equationν

′iH ′
ijk = 0, which is in turn equivalent to

0 = νiHijk = cosh(θ)niHijk − sinh(θ)N iHijk,

onS ∩ U . On the other hand we have by our assumptions the relation (6.28). Together
these two equations imply

0 = cosh(θ) (Pi n
j ui

jkl +Qi n
j vi

jkl) − sinh(θ) (PiN
j ui

jkl +QiN
j vi

jkl)

= cosh(θ) (−2n[k Pl] +Qi εikl) − sinh(θ) 2N[k Pl] ,

which entailsPl = 0 andQk = 0 onS ∩ U . �

7.2. The boundary conditions.The boundary conditions for the reduced system are
determined by the rules described in Sect. 3. In the reduced system the only contribution
to the normal matrix comes from (5.15) and the boundary conditions thus only involve
the conformal Weyl tensor. By (5.16) we find

tuA3 u = 4B−E12 − 4E−B12 = −{ 1√
2

(E− + 2B12)}2 − { 1√
2

(B− − 2E12)}2

+{ 1√
2

(E− − 2B12)}2 + { 1√
2

(B− + 2E12)}2.

Choosing a smooth matrix-valued functionH on T as in (3.4), we can thus write the
boundary conditions in the form

q1 = E11 − E22 − 2B12 − a (E11 − E22 + 2B12) − b (B11 −B22 − 2E12),
(7.12)

q2 = B11 −B22 + 2E12 − c (E11 − E22 + 2B12) − d (B11 −B22 − 2E12),(7.13)

with some given smooth functionsq1, q2 onT .
The components of the conformal Weyl tensor which enter these conditions are

obtained by projecting itse0-electric ande0-magnetic parts into the plane orthogonal to
e3 and by taking then the trace-free parts. The resulting tensors are given in our notation
by

ηAB = EAB − 1
2
gAB g

CD ECD, βAB = BAB − 1
2
gAB g

CD BCD.

In terms of the null frame defined by (3.6), the relevant components of the conformal
Weyl tensor are given in NP notation by

90 = Cµνσπ l
µmν lσ mπ = η11 + β12 + i (β11 − η12),

94 = Cµνσπ m̄
µ kν m̄σ kπ = η11 − β12 + i (β11 + η12),

and the boundary conditions (7.12), (7.13) take the form

q = −94 + α90 + β 9̄0, (7.14)
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whereq, α, β are defined as in (3.5).
The form of (7.14) can be understood as follows. In our frame the components90,

94 of the conformal Weyl tensor can be interpreted as parts of the field transverse to
e3, traveling into the directions−e3, e3 respectively (cf. also [5]). Assume there were a
family of outgoing null hypersurfaces tangent to the vector fieldk onT . Then the field
equations would imply on these hypersurfaces propagation equations of the form

90,µ k
µ − 91,µm

µ = L(0i
j

k,9l).

This shows clearly that the values of90 will be determined onT by the evolution equa-
tions once the other fields are given. This is consistent with the fact that the conditions
onα, β prevent us from prescribing90 onT . On the other hand, if there were a family
of ingoing null hypersurfaces tangent tol onT , the field equations would imply on these
hypersurfaces propagation equations of the form

94,µ l
µ − 93,µ m̄

µ = L′(0i
j

k,9l),

and the quantity90 would in fact represent the null datum on these hypersurfaces.
Therefore it is natural that we can prescribe the value of94 freely onT and couple parts
of 90, 9̄0 back to it as it is realized in (7.14).

In trying to give along these lines any explanation of (7.14) in terms of “ingo-
ing/outgoing gravitational radiation” it should be observed that our gauge conditions, in
particular the components90, 94 of the conformal Weyl tensor, depend on the choice
of the vector fielde0 onT , which so far is rather arbitrary. This situation should be com-
pared with that at null infinity, where one causal direction is singled out by the causal
nature of the boundary and a natural concept of “radiation field” is obtained.

The condition on the coefficients ofH in (3.4) can be expressed in terms ofα, β,
andv = (v1, v2) in the form

tv B v ≤ 1 − |α|2 − |β|2
2

tv v, v ∈ R
2, (7.15)

where the symmetric bi-linear form inv on the left hand side is defined by the matrix

B = B(α, β) =

[
Re(ᾱ β) Im(ᾱ β)
Im(ᾱ β) −Re(ᾱ β)

]
.

Sincev 6= 0 can always be chosen such that the term on the left-hand side of (7.15) is
non-negative, it follows that|α|2 + |β|2 ≤ 1. Moreover, sincev is arbitrary in (7.15), it
follows then that|α|2 + |β|2 = 1 if and only ifα = 0 orβ = 0.

We take this opportunity to correct a mistake in [4] (which is of no consequence in
that article). Equation (5.49) in [4] should be replaced (observing the different notation)
by (7.15).

The closest analogue to (3.7) appears to be the following. Observing that the Bel–
Robinson tensor is given in spinor notation byTaa′bb′cc′dd′ = 9abcd 9̄a′b′c′d′ , we find
that the non-positivity condition (ii) in Sect. 3 takes the form

tuA3 u = −90 9̄0 + 94 9̄4 = −2 (T0333+ T3000) ≤ 0,

where we assume the Bel–Robinson tensor to be given in the frameek.

7.3. Boundary conditions and gauge conditions.So far our considerations were based
on a fixed choice of a local gauge. If we want to go beyond the study of local solutions,
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we have to glue together different local solutions and therefore need to discuss the trans-
formation behaviour of the initial and boundary conditions under changes of the gauge.
The transformation behaviour of the initial data is obvious and will not be considered any
further. The transformation behaviour of the boundary conditions is more complicated.

Since the time-like unit vector fielde0 is assumed to be given onT ande3 is by
definition the inward pointing unit normal ofT , the remaining gauge freedom onT
consists of smooth coordinate transformations

xα → x
′β(xα), α, β = 1,2, (7.16)

and rotations of the frame

eA → e′
A = 3B

A eB , (3B
A) = 3(8) =

[
cos8 − sin 8

sin 8 cos8

]
, (7.17)

or, in terms of the null frame (3.6),

m → m′ = ei 8m. (7.18)

Since we assume the vectorseA to be Fermi-propagated in the direction ofe0 with
respect to the intrinsic connection onT , the function8 in (7.17) is independent ofx0.
Further, the coordinates on6 are dragged along withe0. Thus the remaining gauge
transformation can be specified onT completely in terms of their behaviour on6.

The connection coefficients00
A

0, which are specified in terms of the gauge source
functionsFA, transform under (7.17) according to

00
A

0 → 0′
0

A
0 = 3(8)B

A 00
B

0.

It will be convenient to giveFA in terms of the complex function

F = F 1 + i F 2. (7.19)

The transformation behaviour above is then reflected by

F → F ′ = ei 8 F. (7.20)

The components of the conformal Weyl tensor transform under (7.18) according to

90 → 9′
0 = e2 i 8 90, 94 → 9′

4 = e−2 i 8 94.

To make sense of the boundary condition (7.14) in a covariant way we require that the
functions onT which enter this condition transform under (7.18) as

q → q′ = e−2 i 8 q, α → α′ = e−4 i 8 α, β → β′ = β. (7.21)

It is important to note that (7.15) is invariant under (7.21). This follows from the facts
thatB transforms according to

B(α′, β′) = t3(−8)B(α, β) 3(−8),

under (7.21) and that the quadratic expressions on the right-hand side of (7.15) are
invariant under (7.21) and rotations ofv.

To describe the boundary conditions in a covariant way we introduce some tensor
fields which contract to zero with any vector orthogonal toeA,A = 1,2. We refer to such
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tensors as to “eA-tensors”. The symmetric trace-freeeA-tensors of rank 2 are generated
by tensorstij , sij with non-trivial (i.e. not necessarily vanishing) components

tAB = δ1
A δ

1
B − δ2

A δ
2

B , sAB = δ1
A δ

2
B + δ2

A δ
1

B ,

respectively. TheeA-tensorJijkl with non-trivial components

JABCD =
Re(α)

2
(tAB tCD − sAB sCD) +

Im(α)
2

(tAB sCD + sAB tCD),(7.22)

is completely symmetric and trace-free. In fact, any symmetric trace-freeeA-tensor of
rank 4 has this form with certain coefficientsRe(α), Im(α). Therefore the form is nec-
essarily preserved under the transformations (7.17) and it turns out that the coefficients
transform under (7.17) intoRe(e−4i8 α), Im(e−4i8 α), in accordance with (7.21). We
finally need the tensorεjk = N i εijk and the induced metric on the subspaces orthogonal
to e0, e3, which is represented bygAB . We use these tensors and the functionβ, which
transforms under (7.17) according to (7.21), to define theeA-tensorIijkl with nontrivial
components

IAB
CD = Re(β) g(A

C gB)
D + Im(β) g(A

C εB)
D. (7.23)

It is invariant under (7.17) and contracts with a symmetric trace-freeeA-tensor of rank
2 to yield another such tensor. Setting now

ρ±
AB = ηAB ± βAC ε

C
B , (7.24)

and introducing as the free datum onT the symmetric trace-freeeA-tensorqij with
non-trivial components

qAB = Re(q) tAB + Im(q) sAB , (7.25)

we find that the boundary conditions (7.12), (7.13) can be written as a tensor equation
onT which has non-trivial components

qAB = −ρ−
AB + IAB

CD ρ+
CD + JAB

CD ρ+
CD. (7.26)

The main property of the tensor fieldsJijkl, Iijkl, qij is that the form of their expressions
in the frameek is universal, that they do not depend on the vectorse0, e3 orthogonal to
eA, and that they are uniquely determined by the functionsα, β, q.

Consider a neighbourhoodW of 6 in T .Assume a fixed orientation of6, and denote
byO+(6) the bundle of oriented orthonormal frames on6. Because of the transformation
laws (7.20), (7.21) the complex-valued functionsF ,α,β, q should at6 not be considered
as functions on6 but as spin weighted functions onO+(6).

Suppose that the time-like vector fielde0 is given onW , the flow lines ofe0 generate
W , andx0 maps each flow line onto the interval [0, x0

∗[, wherex0
∗ is a fixed positive

number or infinity. Forp ∈ W denote byp∗ ∈ 6 the point at which the flow line one0
passing throughp meets6. For giveneA atp denote bye∗

A the frame of6 atp∗ which
is transported intoeA by T -intrinsic Fermi transport along the flow line.

With the values ofF , α, β, q in the 2-frameeA atp we associate the same complex
numbersF (x0(p)), α(x0(p)), β(x0(p)), q(x0(p)) in the 2-framee∗

A at p∗. For given
x0 ∈ [0, x0

∗[ we thus get a set of smooth complex-valued functionsF , α, β, q on
[0, x0

∗[×O+(6) of spin weight 1,−4, 0, −2 respectively. Giving these functions is
equivalent to giving the tensor fieldsJijkl, Iijkl, qij onW because of the universal form
of the local expressions (7.22), (7.23), (7.25).

We will need to extend the gauge source functionF into a neighbourhood ofT in
the prospective solution space-time.
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Definition 7.1. We call a smooth functionx3 defined on some open neighbourhoodU
of 6 in S a boundary defining function onS if

d x3 6= 0, x3|6 = 0, x3|S\6 > 0,

and if the setsSc = {x3 = c} ⊂ S are diffeomorphic to6 for 0 ≤ c < x3
∗ ≡ supU x

3 and
are obtained by pushing forward6with the flow of the vector field−(|d x3|γ)−2 gradγx

3.

Given a boundary defining functionx3, we denote bye′
3 the smooth unit vector field

which is orthogonal toSc onU and points towardsS onS0 = 6. Using the flow lines of
e′

3 we can mapSc diffeomorphically onto6 and get the representationU = 6× [0, x3
∗[.

Following our discussion in Sect. 4, we consider time-like hypersurfacesTc having
intersectionSc withS. The hypersurfacesTc and the coordinatex0 on them are generated
by a time-like vector fielde0. Repeating the discussion above, we find that for givenc
the gauge source functionsFA onTc can be represented by a smooth complex-valued
function on [0, x0

∗[×O+(Sc) of spin weight 1. UsingS-intrinsic Fermi-transport of local
frameseA on 6 in the direction ofe′

3 and parametrizing the integral curves byx3,
we obtain bundle morphisms of theO+(Sc) ontoO+(6). This allows us to specify the
information about the gauge source functionsFA in a neighbourhood ofT inM in terms
of a smooth complex-valued functionF on [0, x0

∗[×O+(6) × [0, x3
∗[ of spin-weight 1.

We shall say thatF is based on the boundary defining functionx3 onS.
Conversely, givenF as above and a local section ofO+(6), i.e. an oriented orthonor-

mal frameeA on some open subsetV of 6, we can use Fermi-transport ofeA in the
directions ofe′

3 ande0 to obtain the gauge source functionFA in the frameeA (resp.
ek).

The requirement that the fieldseA be Fermi-transported alonge′
3 should be added

to (7.2) in the form

0′
3

A
B = 0 on U. (7.27)

The following (where we setR+
0 = [0,∞[) summarizes our main observations about

the initial and boundary data and the gauge source functions.

Definition 7.2. A smooth initial boundary data set for Einstein’s vacuum field equation
consists of the following.

A smooth, orientable, compact,3-dimensional initial manifoldS with boundary
6 6= ∅and the boundary manifoldT = R

+
0×6 (with this product structure distinguished).

The boundaries6 and{0} × 6 of these manifolds are identified in the natural way.

A smooth (negative) Riemannian metricγαβ and a smooth symmetric tensor fieldκαβ

onS which satisfy the constraints (7.1).

A smooth real function2 on6.

A smooth real functionT 3 (x0, p) → χ(x0, p) ∈ R.

Smooth complex functionsF , α, β, q on R
+
0 × O+(6) of spin weight1, −4, 0, −2

respectively, such that the functionsα, β satisfy condition (7.15).

It may be surprising that the functionF is listed as part of the initial data set. The
somewhat complicated situation concerning the pairχ, F will be discussed in the next
section.

Definition 7.3. Given an initial boundary data set as in Definition 7.2, an associated
set of gauge source functions consists of:
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A smooth real functionθ onS with θ|6 = 2.

A smooth real functionR+
0 × 6 × [0, x3

∗[3 (x0, p, x3) → f (x0, p, x3) ∈ R such that
f (x0, p,0) = χ(x0, p), p ∈ 6. Here we use a boundary defining functionx3 on S to
represent a neighbourhoodU of 6 in S in the formU = 6 × [0, x3

∗[ with somex3
∗ > 0.

A smooth complex function

F : [0, x0
∗[×O+(6) × [0, x3

∗[3 (x0, p, x3) → F (x0, p, x3) ∈ C,

of spin-weight1, based on the boundary defining functionx3 above, which coincides on
[0, x0

∗[×O+(6) × {0} with the functionF given in Definition 7.2.

7.4. The consistency condition.Given the dataγ,κ in Definition 7.2 and the gauge source
functionf , θ, F in Definition 7.3, we can, by taking formal derivatives of the reduced
field equations, determine a formal expansion in terms ofx0 on a neighbourhood of6
in S for the fieldseµ

k, 0i
j

k, Cijkl, and thus in particular forηAB , βAB . On the other
hand, we also have at6 a formal expansion of the functionsα, β, q onT in terms ofx0.
Therefore, to obtain a smooth solution, the formal expansions obtained for the quantities
entering the two sides of the boundary condition (7.26) should coincide at any order, i.e.
the data need to satisfy a certain “consistency condition”. To meet this condition we may
e.g. choose all fields exceptq, determine the formal expansion of the expression on the
right-hand side of (7.26), and chooseq onT such that it has the same formal expansion
at6.

8. The Existence Result

Given an initial boundary data set as in Definition 7.2, we setM = R
+
0×S such thatS and

T , identified along their boundary6, can be considered in a natural way as the boundary
ofM . We define the functionx0 onM such that it induces the natural coordinate on the
factorR+

0. ThenS = {x0 = 0}. We can now formulate our main result.

Theorem 8.1. Suppose we are given a smooth initial boundary data set as in Definition
7.2 and an associated set of smooth gauge source functions as in Definition 7.3 such that
the consistency conditions on6 are satisfied at any order. Then we can find some open
setM ′ in M , with {p ∈ M |x0(p) < τ} ⊂ M ′ for someτ > 0, and onM ′ a solution
g to Einstein’s field equationRic[g] = 0 such thatM ′ coincides with the domain of
dependence ofS∪T ′ in (M ′, g), whereT ′ = T ∩M ′, and the following properties hold.

(i) S is space-like andT ′ is time-like forg. The first and second fundamental form in-
duced byg onS is given (up to a common diffeomeorphism) byγ andκ respectively.
The mean extrinsic curvature induced byg onT ′ is given byχ.

(ii) The curvesR+
0 3 x0 → (x0, p) ∈ T , p ∈ 6, induce curves onT ′ whose tangent

vectors define a smooth time-like unit vector fielde0 on T ′ orthogonal to6. If
e′

3 denotes the unit normal of6 in S pointing towardsS, we haveg(e0, e
′
3) =

− sinh(2).
(iii) Denote bye3 the inward pointingg-unit normal ofT ′. Let eA, A = 1,2, be an

oriented frame on some open subsetV of 6 such thatek, k = 0,1,2,3, defines an
orthonormal frame forM ′ onV . ExtendeA intoT ′ byT ′-intrinsic Fermi-transport
in the direction ofe0. For the componentsFA of F in the frameeA we have then
FA = gAB g(∇e0 e0, eB). If α, β, q are given in the frameeA the associatedeA-
tensors (cf. (7.22), (7.23), (7.25)) satisfy the boundary condition (7.26).
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(iv) In the particular case whereχ = χ0 is constant andF = 0 on T the solution is
locally (geometrically) unique nearS.

Remark 8.1.(i) That the solution is (geometrically) unique in the domain of dependence
of the setS is well known from the study of the standard Cauchy problem.To demonstrate
in general the uniqueness of the solution locally in time of our initial-boundary value
problem, we would have to show that the solution is independent of the choice of gauge
source functions. To show this we would need the existence statement which is missing
in Lemma 4.2.

(ii) We have includedF as a datum in Definition 7.2. Given a solution, we can
according to Lemma 4.1 always redefine the vector fielde0 and the associated coordinates
onT close to6 to achieve a transition

(χ(xα), F (xα)) → (χ′(xα′
), F ′ ≡ 0). (8.1)

This shows that locally the freedom encoded in the pairχ, F corresponds to that of one
real-valued function and Theorem 8.1 tells us that this function is not restricted by any
condition if questions concerning the life-time of the solutions are ignored.

(iii) If we could perform the transition (8.1) globally onT ′, irrespective of the life
time of the solution, it would be natural to use the particular gauge withF ′ = 0 and
specifyχ′ as the part of the data which characterizes the nature of the boundary. However,
the integral curves of the vector fielde0 will then beT ′-intrinsic geodesics. In general,
we can therefore expect that the gauge withF ′ = 0 will, due to focussing phenomena of
the geodesics, have a lifetime much shorter than the lifetime of the solution which was
specified in terms ofχ andF .

(iv) This suggests to consider as a datum equivalence classes of pairs (χ, F ) to
characterize the boundary. However, which pairs are equivalent in this sense does depend
also on the other data (which, incidentally, are related on the boundary to (χ, F ) by the
vector fielde0 which is specified implicitly in terms ofF ) and can only be decided after
the solutions are available. There appears to be no way to compare different pairs by
calculations onT solely in terms of the data prescribed onT . For the same reason it
is not possible to determined which pairs (χ, F ) are particularly “good” for specifying
a space-time and which pairs are locally equivalent but not particularly useful because
they refer to a gauge which breaks down quickly.

(v) These difficulties, which are intrinsic to the initial-boundary value problem and
do not represent a peculiar feature of our specific type of analysis, arise because the
coordinates on the boundary in whichχ is given are related in a direct way to the
evolution of the fields.

(vi) In the case of the Anti-de Sitter-type space-times studied in [4] boundary data
are prescribed on the boundary at infinity which is singled out in a geometric way. There
the difficulties pointed out above do not arise due to the special geometric features of
the boundary.

(vii) For convenience we assume all data to be smooth and we obtain smooth solu-
tions. If weaker smoothness requirements are imposed on the data, a loss of smoothness
along the boundary may occur for the solution to the reduced equations. We do not anal-
yse whether due to particular features of the Einstein equations (such as the presence
of constraints) more smoothness will be preserved than suggested by the general results
(cf. [8, 14]).

(viii) From the following proof it can be seen immediately that a result similar to
Theorem 8.1 is obtained in the case whereS has only inner boundaries and asymptotically
flat ends or asymptotically hyperboloidal (cf. [3]) ends with smooth asymptotics.
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(ix) We finally remark that all smooth solutions to Einstein’s vacuum field equations
on a region bounded by a space-like and a time-like hypersurface as considered in the
introduction can be characterized in terms of data as considered above. Furthermore, if
the boundaryT and the boundary conditions are extended suitably “backward in time”,
the existence of a solution characterized by such data also follows from our result.

Proof. Since we are dealing with a hyperbolic problem, we can show the existence of a
solution by patching together local solutions. A basic step consists in solving the initial
boundary value problem in some neighbourhoodU of a given pointp ∈ 6 inM . Letx1,
x2 be coordinates andeA a smooth orientedγ-orthonormal frame field on some open
neighbourhoodV of p in 6. Let e′

3 be the smooth unit normal to the surfacesSc in S
defined by the boundary defining functionx3 such thate′

3 points towardsS on 6. We
extend the coordinatesx1, x2 into S such that they are constant on the integral curves
of e′

3 and form together withx3 a coordinate system on some neighbourhood ofp in S
which is denoted in our notation byV × [0, x3

∗[. We assume the frameeA to be extended
toV × [0, x3

∗[ by S-intrinsic Fermi-transport along the integral curves ofe′
3. The vector

fieldseA are then tangent toSc.
Observing now the gauge conditions in Sect. 4 and the meaning of the gauge source

functions, we use the gauge source functions in the gauge determined by the coordinates
x1, x2 and the frameeA onV to obtain the reduced equations described in Sect. 5. The
initial data onV × [0, x3

∗[⊂ S and the boundary conditions onR+
0 × V ⊂ T for the

reduced equations are determined as described in Sect. 7.
With the help of suitable cut-off functions we can put the initial boundary value

problem so obtained into the setting considered in [8] (cf. [4] for the details of such a
procedure). The results in [8] then imply the existence of some neighbourhoodU of p
in M , with S ∩U ⊂ V × [0, x3

∗[ andT ∩U ⊂ R
+
0 × V , on which there exists a unique

smooth solutionu = (eµ
k, 0i

j
k, C

i
jkl) of the reduced field equations which satisfies

our gauge conditions onU and the initial and boundary conditions onS ∩U andT ∩U
respectively. We assume that the neighbourhoodU is chosen such that it coincides with
the domain of dependence of the set (S ∪ T ) ∩ U in U with respect to the metricg for
which the frameek is orthonormal. By Theorem 6.1 and Lemma 7.1 we concluded that
u satisfies indeed Eqs. (2.5) and thus Ric[g] = 0.

The local solutions can be patched together to yield a solution on some neighbour-
hood of6 inM . Considerp, q ∈ 6 and solutionsup, uq to (2.5) on neighbourhoodsUp,
Uq of these points respectively which are obtained as described above. IfUp∩Uq ∩6 = ∅
we have alsoUp ∩Uq = ∅. If Up ∩Uq ∩6 6= ∅, the initial data given onUp ∩S andUq ∩S
can be related on their intersectionUp ∩ Uq ∩ S by the explicitly known simple gauge
transformations (7.16), (7.17) which also relate onUp ∩Uq ∩S the boundary conditions
given onUp ∩ T andUq ∩ T . These transformations imply also transformations of the
gauge source functions. Using the uniqueness property for the solution of the initial
boundary value problem for the reduced equations (which is an immediate consequence
of the energy estimates) we can thus show that the solution induced byup on the domain
of dependenceDp (with respect toup) of Up ∩Uq ∩ (S ∪T ) in Up is related by a gauge
transformation to the solution induced byuq on the domain of dependenceDq (with
respect touq) of Uq ∩ Up ∩ (S ∪ T ) in Uq. Thus we can identify (Up, up), (Uq, uq) on
Up ∩Uq via the gauge tranformation to obtain a solution onUp ∪Uq. Since the time-like
frame vectors onUp andUq are not affected by the gauge transformations (7.16), (7.17)
they are also identified onUp ∩ Uq and we obtain a unique time-like vector fielde0 on
Up ∪ Uq. Proceeding along these lines we can construct a neighbourhoodZ of 6 in M
on which there exists a smooth solutionu of (2.5) such that the initial and boundary
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conditions are satisfied onZ∩S andZ∩T respectively andZ coincides with the domain
of dependence ofZ ∩ (S ∪ T ) with respect tou. Furthermore we get onZ a unique
time-like unit vector fielde0 which is in particular tangent toZ ∩ T .

It is well known from the study of the Cauchy problem for Einstein’s field equation
that the dataγ,κonS\6 determine a (geometrically) unique, smooth, maximal, globally
hyperbolic solution (MS , gS) to the vacuum field equations. Denote byDZ the domain
of dependence of (S \ 6) ∩ Z in (Z, g), with g the metric determined fromu, and by
D the domain of dependence of (S \ 6) ∩ Z in (MS , gS). The results on the Cauchy
problem then allow us to conclude that there must exist an isometric embeddingψ of
DZ into D. Usingψ to identifyDZ with ψ(DZ), we obtain a solution (M ′, g) to the
vacuum field equations. We can, possibly after shrinkingM ′ slightly, extend the vector
field e0 given in a neighbourhood ofZ ∩ T to a time-like unit vector fielde0 in (M ′, g)
and define a smooth functionx0 which vanishes onS and satisfies< e0, d x

0 >= 1 on
M ′. Choosingτ > 0 small enough, the integral curves ofe0 starting onS will have
length not smaller thanτ . This proves assertions (i)–(iii) of the theorem.

The proof of assertion (iv) relies on the fact that we can bring the solutions into a
standard form near6 if the mean extrinsic curvature is constant on the boundary.

Assume thatχ = χ0 = const. and that (M ′, g), (M̂ ′, ĝ) are solutions of the vacuum
equations satisfying conditions (i)–(iii). Denote byD, D̂ the domain of dependence of
S \ 6 in (M ′, g), (M̂ ′, ĝ) respectively. We can assume, possibly after shrinkingD, D̂
in time, that there exists an isometryψ of (D, g|D) onto (D̂, ĝ|D̂) which induces the
identity onS \ 6.

Letx3 be a boundary defining function onSwith level setsSc andθ a smooth function
onS with θ|6 = 2. Denote bye′

3 the normalized gradient ofx3 pointing towardsS on
6. Notice thatit does not matter whether we useg or ĝ here.

The following constructions will be done on (M ′, g). Let e0 be the time-like unit
vector field onSc which is orthogonal toSc and satisfiesg(e0, e

′
3) = − sinh(θ). Following

the discussion in Sect. 4 we can construct a slicing of a neighbourhoodR′ of 6 in M ′
by hypersurfacesTc, 0 ≤ c < supx3, such thatTc ∩ S = Sc, e0 is tangent toTc onSc,
Tc has constant mean extrinsic curvatureχ0, the vector fielde0 onSc can be extended to
aTc-intrinsic geodesics vector fielde0 onTc with connected integral curves. We denote
byx0 the function onR′ which vanishes onS and induces the natural (affine) parameter
on the integral curves ofe0. Leth ∈ C∞(R,R) be a decreasing function withh(0)> 0,
h(a) = 0 for somea, 0 < a < supx3 such that the setR which is bounded byT ′, S
and{p ∈ M ′|x0 < h(x3)} is relative compact inM ′ and coincides with the domain of
dependence ofR ∩ (S ∪ T ′) in M ′.

We can repeat this discussion with (M̂ ′, ĝ) replacing (M ′, g) to obtain analogous
setsT̂c (with mean extrinsic curvature equal toχ0), R̂, vector field ˆe0, and function ˆx0

based onx3 andθ. By a suitable choice ofh we can assume that the same functions are
used to defineR andR̂.

We define now a map̄ψ fromR ontoR̂. If p ∈ R, there is a unique numberc and a
uniqueq ∈ Sc such theTc-intrinsic geodesic onTc with tangent vectore0 at q meetsp.
We defineψ̄(p) to be the unique point on thêTc-intrinsic geodesic throughq for which
x̂0(ψ̄(p)) = x0(p). The mapψ̄ then defines a bijection which implies the identity on
R ∩ S = R̂ ∩ S.

By Lemma 4.2 we can express the solutions onR, R̂ locally in terms of a gauge as
described in Sect. 4 with the gauge source function being in both cases given byθ,F = 0,
f = χ0. In terms of such a gauge the data related byψ̄ are identical and the reduced
field equations take the same form. The uniqueness of the local solutions, implied by
the energy estimates, allows us to conclude thatψ̄ is in fact an isometry.
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We show that the restrictions of̄ψ andψ toR∩D define identical maps fromR∩D
ontoR̂ ∩ D̂. Sinceψ is an isometry which leaves (S \ 6) ∩ R pointwise invariant, the
setsT̄c = ψ(Tc ∩ D ∩ R) have constant mean extrinsic curvature equal toχ0, satisfy
T̄c∩S = Sc, and are tangent to ˆe0 onSc, because ˆg(T (ψ) e0, e

′
3) = ĝ(T (ψ) e0, T (ψ) e′

3) =
g(e0, e

′
3) = − sinh(θ) entailsê0 = T (ψ) e0. This implies thatT̄c ⊂ T̂c. Since isometries

map geodesic vector fields again onto such vector fields, it follows thatT (ψ) e0 = ê0 on
T̄c. Since isometries preserve affine parameters, we havex0 = x̂0 ◦ ψ onTc ∩D ∩ R.
This implies our assertion.

Defining the map9 fromM ′′ = R ∪D ontoM̂ ′′ = R̂ ∪ D̂ to be equal toψ onD
and equal toψ̄ elsewhere, we get an isometry for the metrics induced byg andĝ onM ′′
andM̂ ′′ respectively. This proves assertion (iv). �
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