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Abstract: We study the initial boundary value problem for Einstein’s vacuum field
equation. We prescribe initial data on an orientable, compact, 3-dimensional manifold
S with boundaryX # () and boundary conditions on the manifdld= R§ x . We
assume the boundarigsand{0} x ¥ of S andT to be identified in the natural way.
Furthermore, we prescribe certain gauge source functions which determine the evolution
of the fields. Provided that all data are smooth and certain consistency conditions are
met onX, we show that there exists a smooth solution to Einstein’s equatiop]Ri€]

on a manifold which has (after an identification) a neighbourhoofl of 7" U S as a
boundary. The solution is such théitis space-like, the initial data are induced by the
solution onS, and, in the region of” where the solution is defined; is time-like and

the boundary conditions are satisfied.

1. Introduction

In this article we study the initial boundary value problem for Einstein’s vacuum field
equation. LetS be a smooth, orientable 3-dimensional manifold with boundary ().

The boundary of the manifoltt/ = Rj x S consiststhen of ~ {0} x Sandl’ = Rjx
which are identified along the edge~ {0} x ¥ of M. We are interested in answering
the following question: Which data do we have to prescribé& @md1 such that there
exists a (unique) smooth solutigrof Einstein’s equation

Ric[g] = 0, (1.1)

on M forwhich S is space-like7 is time-like and which is such thatinduces the given
data onS andT ?

The answer to this question will be of potential interest in any problem concerned
with solutions to (1.1) which contain a distinguished time-like hypersurface. It will
provide possibilities to construct examples or counterexamples to various conjectures
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and will give us tools to construct space-times with certain specified properties. We
mention just a few such problems.

The motion of ideal fluid bodies with exterior vacuum field is of considerable in-
terest in general relativity but its analytical properties are not well understood. The free
time-like boundary, along which the transition of the Einstein—Euler equations into the
Einstein vacuum field equations occurs, poses analytical difficulties. Though this situ-
ation is different from the one considered in the present article, the study of the initial
boundary value problem sheds some light on the problem of the floating fluid balls. Our
interest in this problem was one of the reasons to analyse the field equations in this
article in a representation which is close to the one considered in [6].

In [2] the modeling of isolated systems in terms of asymptotically flat fields has been
criticized. It has been suggested to separate instead the (massive) system of interest by a
judiciously chosen time-like cut from the rest of the universe and to study the space-time
so obtained as an object of its own. Whether such an approach leads to useful notions
characterizing the behaviour of the system as a whole (energy momentum, angular
momentum, etc.) and, in particular, whether it allows us to introduce meaningful concepts
of incoming/outgoing radiation, etc. requires the understanding of the initial boundary
value problem which has de facto been introduced in [2] without ever mentioning it.

In many numerical calculations in general relativity artificial time-like boundaries are
introduced to restrict the calculations to finite grids (cf. [7] for possibilities to avoid such
boundaries in certain relevant cases). A thorough understanding of the analytical features
of the initial boundary value problem for Einstein’s equation should be a prerequisite
for successful numerical calculations near the boundary.

There are available in the literature various discussions of the Einstein equation in
the neighbourhood of time-like boundaries (see e.g. [1, 10, 15]), but it appears that the
existence of solutions to the initial boundary value problem for Einstein’s equation has
not been discussed so far in any generality. A general study of the initial boundary value
problem for Einstein’s equation with negative cosmological constant has been given in
[4], but there the boundary data are prescribed on the conformal boundary at space-like
and null infinity. Due to the fact that this boundary is defined intrinsically by the nature
of the geometry, there occur certain simplifications which allow us to characterize the
data on the boundary in a covariant way. In contrast to this, in the situation studied in
this paper the boundary is not singled out by a geometric consideration but “is put in
by hand”. This leads to various complications in the detailed analysis of the present
problem. Nevertheless, some general ideas and some specific techniques developed in
[4] apply to the present problem.

It may be of interest to compare the methods and the results obtained in the present
article with the completely different techniques for analysing the field near time-like
boundaries used in [10]. This may give a deeper understanding of the problem and
should shed light on the relative efficiencies of the different methods.

The basic stepin our study isto reduce the geometrical initial boundary value problem
for Einstein’s equation to an initial boundary value problem for a hyperbolic system to
which the general results on “maximally dissipative” initial boundary value problems (cf.
Sect. 3) apply. A central difficulty here arises from the need to control the conservation
of the constraints if the fields are evolved by a suitable hyperbolic system of reduced
equations. In our treatment of the problem this means essentially that we have to show
that those equations in the system (2.5) which contain only derivatives in space-like
directions are preserved in the course of the evolution. This difficulty largely motivates
our choice of the basic equations in Sect. 2, our choice of the gauge conditions in Sect. 4,
and our choice of the reduced equations in Sect. 5. It is shown in Theorem 6.1 that our
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reduced problem, to which certain general results available in the mathematical literature
apply, yields in fact solutions to the Einstein equation.

Itis a most remarkable feature of Einstein’s equation that the nature of the boundary
condition does not play any role in this conclusion. This is most important for us, since
the way we prescribe the boundary conditiongodoes not allow us to check by direct
calculations ori” whether any constraints dh, either the intrinsic constraints induced
onT or the constraints mentioned above, are satisfied.on

In Sect. 7 we discuss the initial and boundary data which can be prescribed freely.
While the initial data are well known from the study of the Cauchy problem for Einstein’s
equation and while it is also clear that the initial and the boundary data will have to
satisfy certain consistency conditions on the eBlgéhe boundary conditions require a
more careful study. In the local problem the boundary conditions are suggested by the
nature of our reduced equations and by the theory of maximally dissipative boundary
value problems. The question of how to prescribe boundary conditions in regions which
cannot be handled solely in terms of one choice of gauge, sheds sharp light on some
peculiar features of our problem.

It turns out that we need to specify, in an implicit form, a time-like unit vector field
eo tangent to the boundafy. All other boundary conditions refer to this vector field in
one way or another.

The boundary hypersurface is essentially singled out (imagining our prospective
solution for the moment as a part of a larger space-time) by prescribing the mean extrinsic
curvaturey of the boundary. However, the specification)ofs tied to that ofeg and
while locally the boundary could be specified by one real function, the situation is more
complicated if long time evolutions are studied (cf. Sect. 8).

After the specification of the boundary in terms xf the basic freedom on the
boundary consists in prescribing @ntwo arbitrary real functions and their coupling to
the conformal Weyl curvature. We provide some explanation of the nature of this coupling
(cf. Sect. 7) but we avoid speaking of incoming/outgoing gravitational radiation. Any
such interpretation would depend on the time-like unit vector figldn 7', the choice
of which is rather arbitrary as long as no further assumptions are introduced.

In Theorem 8.1 we state our general existence result, which is local in time but global
along the edge&:. We do not show the uniqueness of the solution in the general case.
This is due to some open question concerning our gauge conditions (cf. Sect. 4) which
we intend to make a topic of a separate investigation. However, in the particular case
where the mean extrinsic curvature is constant on the boundary, local uniqueness of the
solution is demonstrated.

There are certainly many possibilities to discuss the initial boundary value problem
and there will be as many ways of stating boundary conditions. However, all of these
should be just modifications of the boundary conditions given in our theorem.

2. The Field Equations

We shall use a frame formalism in which the meyiwill be represented in terms of a
frame field{e, }x=0,1,2,3 Which satisfies the orthonormality conditign, = g(e;, ex) =
diag(1, —1, —1, —1) and for whichey is future directed. All fields (with the possible
exception of the fields, themselves) will be in the following expressed in terms of this
frame.
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The basic unknowns in our representation of the field equations are given by the

fields ‘ .
e, Trp'j, C'ju.

The functionse’ . = er(x") are the coefficients of the frame in a suitably chosen
coordinate systeqr* },,=0,1,2 3. In these coordinates the coefficients of the contravariant
form of the metric are then givegt” = g/*e* ;e . TheI', * ; are the connection
coefficients in our frame such th&t, e; = V., e; = I't* j ¢;, whereV denotes the
Levi—Civita connection ofy. The fact that the connection is metric is expressed by
the conditionl; * ko = =T ! ; gux- Finally, C* ., is a tensor field which is required
to possess the algebraic properties of a conformal Weyl tensor and which will in fact
represent that tensor.

The curvature of the connectidn is given by

i = e ) —eTy )+ T ™ =Ty T ™

7 m m (21)
=T (™ =T g).

For later discussions it will be convenient to introduce tensor f@ldfs7 A’ ity Hip
by setting

T % jer = —le el +(Ti" ;=T %) ex, (2.2)
A =1 g — C (2.3)
Hjj = Vi C* j. (2.9)

The Einstein equation can then be expressed by the equations
T,*;=0, A';;=0, Hju=0. (2.5)

The first of these equations implies that the connecfias torsion free and therefore,
since it is metric, that it is the Levi—Civita connection of the meyricThe equation
allows us to determine the connection coefficients in terms of the frame coefficients and
their first derivatives. The second equation requires that the curvatiWecoincides

with the Weyl curvature and thus implies Einstein’s equation (1.1). The third equation is
the once contracted vacuum Bianchi identity. We refer to it as to the Bianchi equation.

One of the reasons why we chose this representation of the Einstein equation is
that it simplifies the analysis of our problem. The equations contain direct geometric
information. They are easily adapted to our situation and then entailimmediate projection
formalisms. Moreover, certain features of the Bianchi equation which are important for
the discussion of initial boundary value problems are well understood [4]. Finally, the
evolution equations for gravitating ideal fluid bodies derived in [6], which we want to
use for analysing the problem of the “floating fluid ball”, extend the equations above.

In the frame formalism there exists a natural decomposition of the Bianchi equation.
We setn = eg and study the decomposition &f;;,; with respect to: and its orthogonal
complement, which carries the induced metric = g;; — n; n;. We denote by, the
totally antisymmetric tensor witky103 = 1 and set;;, = n €355 Furthermore we set
lij = hij — N ny.

The electric and magnetic part of the conformal Weyl tensor are defined with respect
ton by By = hi ™ hi " Crpjun? 0! and By, = h; ™ by ™ Crrjm n! with the right

dual of the conformal Weyl tensor given 5ij = % Cijmn €™" 1. We haveE;; = Ej;,
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E;;n? =0, E;* = 0. The same relations hold fds;;. With these conventions the
conformal Weyl tensor can be written

Ciji = 2 (Lite Eni — lie Enj — nie Bym €™ 15 — i Bjjm €™ k1) -
Using the symmetries of the Weyl tensor and the identities
€ijp eklp = —2hy; k hj l, €ipg €/P = —Zhij,
we get the decomposition

Hjp = 2n; Byongg + g Py + Qi (nj € — € e ng) — 2 Py g — Qi€ g,

(2.6)
where we set
. . 1 . .
Pe=nlhp'n™ YV, C iy Qr = ~5 n e, "™V, C i, 2.7)
— m n, 1 7 — 1 l mn 7

Pie =hg ™ hiy " Vi O in, - Qi = 5 he ey ™" Vit (2.8)

In terms of these fields the Bianchi equation is equivalent to
P,=0, Qr=0, Pjy.=0 Qjr=0 (2.9)

To obtain more explicit expressions we 9€t; = h; * Vi n;, K = hl K;;, a’ =
n? V;nt, Dy Eij = hg' hi ™ h;j " V| By, €tc. such that

Kij=-h*T%;, K=-h"T,°%, a' =To’.
Observing that
hi ™ h; " 0"V Enn = Ly Eij — B K;' — By K

where/L,, denotes the Lie derivative in the directionrafwe get

P, =DI Ej; + 2K €" y(; By, (2.10)
Qi =D’ Bji+&;™ 2K’ — K),”) Ey, (2.11)
Py =L, Ej+D; Byjen™ —3K(, " Ey —2K' j Eyy,
~2a; " ; By +hjy K" By, + 2K Ey, (2.12)
le = En le —D; Ek(j €]) ik oy Zai eik G El)k
—K! G Bryi — 2K i By + K Bj; — K, Bpg Pt G ek 0 (2.13)
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3. Maximally Dissipative Boundary Value Problems

We need to remove the gauge freedom in Egs. (2.5) and to extract from the resulting
equations a “reduced system” which will allow us to discuss initial boundary value
problems. To motivate our choice of gauge conditions and reduced system, we shall
outline briefly the argument which leads to maximally dissipative boundary conditions.

We consider o/ = {z € R*2° > 0, 2% > 0} a real linear symmetric hyperbolic
system

APQ,u=Bu+ f(x) (3.1)

for anRY -valued unknown: on M, i.e. the matricesA* = A*(x), u = 0,1,2,3, are
smooth functions o/ which take values in the set of symmeti¢ x N-matrices,
there exists a 1-forng,, such thatd* ¢, is positive definite,3 = B(x) is a smooth
matrix-valued function ang(z) a smoothR ¥ -valued function on\/. For convenience
we assume that the positivity condition is satisfied wjth= 50 e
Set
S={xreMz®=0}, T={xecMz®=0},

and define for- > 0 the sets
M,={zeM|0<2°<7}, S,={xecMz®=r1},
T,={x e M|0<2®<7,2%=0}.
We prescribe data as follows: We chogse C*°(S, R™V) and require as initial condition
u(z) = g(x), x= € S.

We choose a smooth mapof 7" into the set of linear subspaces®¥ and require as
boundary condition
u(z) € Qx), zeT.

The type of map§) admitted here is suggested by the structure of the equations. Suppose
thatu is a solution of (3.1) of spatially compact supportiifi Then (3.1) implies

O (fudru)="uKu+2'uf with K=B+"'B+9, A"

Integration overll, gives

/ tuA°udS=/ tquudS+/ {tuKu+2tuf}dV+/ tu A3udS.
S S M., T,

If the last term on the right-hand side were non-positive, we could use this equation
to obtain the energy estimates which are basic for proving existence and uniqueness of
solutions to symmetric hyperbolic systems. Thus the structure of the “normal matrix"
A8 plays a prominent role in formulating the boundary conditions. We shall assume the
following conditions to be satisfied:

(i) The setT is a characteristic of (3.1) of constant multiplicity, i.e.
dim(kerA3(z)) = const >0, z e T.
(i) The mapQ@ is chosen such as to ensure the desired non-positivity

b A3@)u <0, ueQ), zeT.
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(iii) The subspac&)(z), z € T, is a maximal with (ii), i.e. dim@(x)) = number of
non-positive eigenvalues of® counting multiplicity.

The last condition implies in particular that k&?(z) C Q(x).
We discuss the specification@fin terms of linear equations. Sing€ is symmetric,
we can assume, possibly after a transformation of the dependent unknowngtka at

~1,0 0
A=k | 0 00|, k>0
0 01,

wherel, is ap x p unit matrix, Q, is ak x k zero matrix, etc. ang+k& +¢ = N. Writing
u = *(a,b,c) € R? x R* x R? we find that atz the linear subspaces admitted as values
of @ are necessarily given by equations of the form

O=c—Ha,
whereH = H(x) is aq x p matrix satisfying
—tqa+t'HHa<0, acRP, ie. "THH< I,

We note that there is no freedom to prescribe data for the compémént associated
with the kernel ofA3. More specifically, if4A%® = 0 onT, energy estimates are obtained
without imposing conditions ofi’ and the solutions are determined uniquely by the
initial condition onS.

By subtracting a suitable smooth function frenand redefining the functiofi, we
can convert the homogeneous problem above to an inhomogeneous problem and vice
versa. Inhomogeneous maximal dissipative boundary conditions are of the form

q=c—Ha,

with ¢ = ¢(x), x € T, a givenR?-valued function representing the free boundary data
onT.

The linear maximally dissipative boundary value problem has been analysed by
Rauch [12] under weak smoothness assumptions, results for higher smoothness can be
found e.g. in [13] and in the literature given there. In the case of quasi-linear equations
the matricesA#* depend on the unknownas well. Thus the fact that the normal matrix
A% depends also om has to be observed in formulating the boundary conditions. Initial
boundary value problems for quasi-linear equations with a general foraf atnd
boundary conditions as indicated above have been discussed e.g. in [8, 14].

To illustrate the discussion above in a simple case we consider Maxwell fields. This
will also allow us to point out some specific features of Einstein’s equation. We assume
that a metrigy is given on the set/ above and that Maxwell's equations are expressed
in an orthonormal frame,. The notation introduced in the previous chapter will be
employed throughout. Maxwell’s equations are given by

0=H,=V’Fj,—4r J,, 0=H;=V/Fj,

with %, = L€, ' Fy. Interms of the electric field®® = —h* ; ny, F7* and the magnetic
field B® = h' ; ny, F*7* we get decompositions

Fij = —2E[i n4 + €k Bk7 F{; = €5k Ek'l'ZB[i 751,
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which entail further decompositions
Hy=Py —np P, Hp=-Qp+npQ,
with
P=D'E,+K"9B*¢ . +4rp, Q=D'B;, — K9 E¥ ¢,
Pi=L,E; —¢%"D; By, — B (K;? + K7 )+ E; K;7 +a’ B* ¢, — 47 j;,
Qi =Ly Bi+€’" D By, — B (K;7 + K7,)+ B K;7 — a’ E* ¢,

where we set = n* Jy,, j; = h; * J,,. Notice that the terms in the first two equations which
involve K;; drop out ifn is hypersurface orthogonal. It hold$ P, = 0,n* Q. = 0.

For convenience we shall assume that the normatsdce tangent td” on X. The
framee;, is now chosen o/ such thakg andes coincide onS, respectivelyl’, with
the unit normals pointing intd/. Setz® = 0 onS and letz®, o = 1, 2, 3, be coordinates
on S with 23 =0 onX andz® > 0 onS \ =. These coordinates are extended iffo
such thakg(z*) = 6# o on M. We have

63k=ek(x3)=e 353k7 633>0 on T, e‘uo:(s“o on M.

Choose now/;, on M such that the conservation law

VF I, =0,
holds onM and prescribe dat&;, B; on .S satisfying the constraints:
P=0, Q=0 on S. (3.2)

To study the time evolution we observe that by our formalism the equatipns 0,
Qo = 0 are trivially satisfied and we consider the propagation equations

P,=0, Q.=0 on M, r=1,23. (3.3)

If we write these equations in the form (3.1) with= (ug, ... ,ug), Whereu, = E,,
uz+ = B, forr =1,2 3, we find

At =16 o+ FF on M,
with
0 0 0 0 6”3 —6”2
0 0 0 —et3 0 ety
0 0 0 6”2 —6#1 0
0 —6”3 6“2 0 0 0
et 3 0 —et 1 0 0 0
76“2 6”1 0 0 0 0

Fr =

Since A* g,,, ¥ o = I, the 6x 6 unit matrix, and the matriced” are symmetric, we
see that Egs. (3.3) form a symmetric hyperbolic systemS@e haveF° = 0. We shall
assume that\® is positive definite onl/.

For the normal matrix off’ we find

I
= O

00009
o000

A3=€33

el NoNoNoNo)
I
co,0c00
Ooo0oooo
cNoloNe
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which tells us thafl” is a characteristic of constant multiplicity sinegé; > 0 onT.

To study the maximally dissipative boundary condition we perform a transformation
u — v = C'u such thatd® = *C D C with D = €33 diag(—1,-1,0,0,1,1). Such a
transformation is given by

v — Uup — us), V2= U +u. , Uz = us,
1 \/é 1 5 2 \/é 2 4 3 3

1 1
V4 = Ug, U5 = ﬁ(ul +us), ve= ﬁ(uz — ug).
As discussed above we introduce now a real matrix valued funéfiom T,

H= {(cl Z] with (avy +bu)? + (cvp +dva)? < v2+03, (v1,v2) € R?,(3.4)

to write down inhomogeneous maximally dissipative boundary conditions. Translated
back into the original unknowns these conditions read

@ =E1+ By —a(Ey— By) — b(E+ By),
2= Ey — By — c(F1— By) — d(E, + By),

whereq; and g, are smooth functions, prescribed @h In terms of the spin frame
formalism of Newman and Penrose [11] this equation takes the form

4= ¢a+ago+ o,

where we set

1 1 1
0= -5 (@+ig), a=Z+d-ib+ic, F=(a-d+ib+ic), (35)

1 1 1
= 7 (cotes), k= 7 (eo — €3), m = 7 (e1 —ie2), (3.6)
do = Fy; I'm’, 1= F ('K +m' m?), ¢=Fj;m'k’.

By picking the matrixH appropriately, we see that we could alternatively prescribe
e.g. the componentdy, E,) or (By, B,) or ¢, freely onT. The functiong, can be
interpreted as the component of the Maxwell field which is transverse to and travels in
the direction ok3. We note that all the prescriptions above depeneypfor which there
exists no privileged choice dh.

The non-positivity condition (i) implies for the Poynting vectsir = —ﬁe”kEj By
onT the relation
§%= % (E1 Bz — B3 By) = %

meds3

tuAlu <0, (3.7)

with e pointing towards\/ onT'.

Given the field equations and the data$yrwe can derive a formal expansion of the
prospective solutiom on S, in particular onx, in terms ofz°. If we want to ensure the
smoothness af, we need to give the boundary conditions such that they are consistent
with the formal expansion af on X. We shall not discuss these “consistency conditions”
(cf. [8]) any further.
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The initial boundary value problem which we have outlined here admits a unique
smooth solutiorE,, By, of (3.3) on a suitably given neighbourhoodXfn M. We still
need to show that these fields satisfy also the constr&ints0, @ = 0. In the case of
Maxwell equations the argument is straightforward. A direct calculation shows that the
fields Hy, H; satisfy for arbitrary field€Z;,, B, the identities

V¥ Hy, =-Rj, Fi*=0, V*H}=-Rj F/*=0.

On the other hand, observing the decomposition&l pf H;; given above and the fact
that our fields solve (3.3), we find fd? and@ the “subsidiary equations”

0=-V*H,=L£,P+PK;7, 0=V*H;=L,Q+QK;".

Because of (3.2) it follows from these ODE'’s thatand() also vanish offS.

In the following we shall reduce the “geometric” initial boundary value problem for
Einstein’s equation to a maximally dissipative boundary value problem for a suitably
chosen reduced system. We have seen above that at least three important conditions
have to be met by the gauge conditions and the reduced system: The system should be
symmetric hyperbolic, the resulting problem should satisfy the condition of maximal
dissipativity, and the problem should allow us to demonstrate the preservation of the
constraints. Besides studying the Bianchi equation, which is similar to the Maxwell’s
equations, we need to take care of the equations for the frame and the connection co-
efficients and we need to characterize the boundary itself in terms of some data. The
enormous freedom available here allows for reduced systems which satisfy the first two
conditions but which lead to difficulties when it comes to verifying the third condition.
This should be kept in mind when we study now the gauge conditions and then extract
the reduced system.

4. The Gauge Conditions

Consider the 4-manifold/ = Rj x .S, whereS is a smooth orientable 3-manifold with
boundary = 95 # 0. We writedM = SUT andSNT = {0} x £ = %, where
we identify S in the obvious way wit{0} x S C M and setl’ = R§ x . Letg be a
smooth Lorentz metric ot/ for which S is space-like and’ is time-like. Given a point
p € X we want to construct in some appropriate neighbourtiéad p coordinates:*
and an orthonormal frame fietd which are conveniently adapted$on U andT' N U.
It will be seen that our construction works for a suitably chosen neighbourtiaufch.
Setz® = 0 onS and letz®, o = 1, 2, 3, be local coordinates ofiN U with z° = 0
on X NU andz® > 0 elsewhere. Choose a time-like unit vector fiejdon U which
is tangent tdl" N U, orthogonal to the 2-surfacgs® = ¢ = const > 0} in SN U,
and points towardd/ on .S N U. We assume that the integral curvesgftarting on
S N U generatd/. We extend the functiong” to U such thak* g = eg(z*) = 6* ¢ on
U, i.e. 20 is the parameter on the integral curvesegfwhich vanishes ors N U and
thex® are constant on these curves. Tieprovide smooth coordinates éh The sets
T, = {«® = ¢} are smooth time-like hypersurfaceslinwith To = 7' N U. Letes be the
smooth unit vector field normal t6, which points towards$/ on 7. We denote byD
the Levi—Civita connection defined by the metric inducedIpnChoose vector fields
ea, A=12,0onSNU which are tangent td, N.S and which form witheg, e3 a smooth
orthonormal frame field o N U. Using the connectio®, we extend the fields4 to
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T, by Fermi transport o, in the direction ofey such that (in signature-independent
form)

g(eo0, €0) Dey ea + g(ea, Dey €0) eo — glea, e0) Deyeo =0 on U. 4.1)

The ¢, form a smooth orthonormal frame field éh We shall refer the type of gauge
considered above as an “adapted gauge”.

In the further discussion we will have to consider three types of projections. Since
our frame is well adapted to our geometrical situation we can avoid the introduction
of corresponding projection formalisms by distinguishing four groups of indices. The
latter are given, together with the values they take, as follows:

a,c,d,e, f=0,1,2; 4,5,k l,mn=0123;
p7Q7r7s7t:17273; A,B,C,D=1,2.

We assume the summation rule for each group.
The frame coefficients . satisfy

eto=06"0, €2,=0 €3>0 on U. (4.2)
A part of the connection coefficients defines the inner connedliam 7., we have
Dye.=D., e. =T, b ep. (4.3)
The condition (4.1) reads in terms of the connection coefficients
To?p=0. (4.9)
As a consequence the fields satisfy onT, the equations
Degeo=To?0ea, Degea=—gapTo®oeo. (4.5)

Given the hypersurfaceg,, the coefficientd’y 4 ¢ can be considered as gauge source
functions (cf. [5]) which govern the evolution of the coordinates and the frame field off
S.

Lemma 4.1. Suppose that the hypersurfacgsare given o/ and let the coordinates
z* and the frame field;, described above be given ghn U. If F'4 = F'A(z'),
A = 1,2, are smooth functions ofu’ € R*2'® > 0,23 > 0}, there exist unique
coordinatesz * and unique frame vector fieldg on some neighbourhodd’ of p in
U which represent an adapted gauge and which are such thaf onU’ z'# = z#,
e}, = ey, holds, and o/’ z3 = 23, Tj A o(z'*) = F'4(z'*) holds, wherd™; 7 ;, denote
the connection coefficients with respectto

Proof. The new coordinates and frame vector fields would need to satisfy the equations
Deep=FAa'")ely, Deels=—gap FP")ep,
eola ) = 0o,
with 2’3 = c on the hypersurfacgé, N U’, ¢ > 0. Since the connectioP on T, can be

considered as known, we can read the equations above as a system of ODEf®N
the coordinates “(z?, ) and the coefficients * ,(z?, ¢) of the vector fielde!, in the
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coordinates:“, wherea, 5 = 0, 1, 2. For the given data ofi N U this system of ODE’s
has a unique solution in some neighbourh@df p which depends smoothly on the
initial data and the parameterWe sete 3 , (2%, ¢) = 0 and express the frame in the new
coordinates. Equations (4.5) imply a system of ODE'’s for the quanti(i€s e;) which
allows us to show that the frame is indeed orthonormall

The second fundamental form &f in the framee,, is given by
Xab = 9(Ve, €3:e) =Ta? 3955 =Ta >y =T 2, (4.6)
the mean extrinsic curvature of the hypersurfdtess given by

3, =V, el 4.7

X =9 Xab = g7" T

Lemma 4.2. Consider the smooth functiongz®, 0), I'o “ o(z*, 0), a = 0, 1, 2, which
are implied ori’NU in the adapted gauge considered above at*ehe smooth functions
onSNU withz® = 0and such that?, 22, 22 are local coordinates o8 N U withz3 = 0
onXNU andz® > 0 elsewhere. Lefey }=o,... 3 be a smooth orthonormal frame field
on S with the following properties. The vector fiedd points towardsV/, it is tangent
toT on X N U, and for given number, 0 < ¢ < sup, 23, it is orthogonal to the sets
S. = {x®=c} C S. The vector fields 4 are tangent to the sets. and the vector field
e3 points towards\/ onZ N U.

If f = f(z"), FA = FA@@"), A = 1,2, are smooth functions ofw € R*z° >
0, 23 > 0} satisfying

f@™,0)=x(z*,0), F4x*,0)=Io"z*0),

then, if there exists a smooth extension of the functiirend the vector fields, to some
neighbourhood/’ of p in U such thatz*, e, represent the coordinates and the frame
field in an adapted gauge di’ for which y(z#) = f(z*) andTo 4 o(z*) = F4(2*) on
U’, the extension is unique. {f(z*, 0) = xo = const and f is chosen to be constant
and equal toyo, there exists a smooth extensionw6fande;, with the properties listed
above.

Remark 4.1.We shall in the following consider the functio#s® and, forz® > 0, the
function f as gauge source functions which determine the foliation by hypersurfaces
{2® = const} and the evolution of the fieldy on these hypersurfaces. Therefore the
existence of the extensions of thé, e, is important for us also in the case of general
functions x(z%, 0), f(«*) (cf. Sect. 8). Since the general existence proof appears to
require techniques which are different from the ones used in this article we will make it
a topic of separate investigation.

Proof. Let 2+ be coordinates ofy such that we have*' = 2 for 1/ = ; as well as
eo(z¥) = 0onSNU andz® = 0onT’NU. Inthe following indicesy, 3, o/, 3’ take values
0,1, 2. For given numbee we wish to construct a hypersurfage = {z® = ¢} such
that7. N S = S, and the mean extrinsic curvatureff satisfiesy(x®, ¢) = f(z?, ¢).
The hypersurface will be given as the graph of a smooth functiart’, ¢). We set
oz, c) = 2% — $(z*, ¢) and require

peT. iff d@” (p),c)=c. (4.8)

In the following the dependence of the various quantities on the parameiti#irnot
always be written out explicitly but it should be kept in mind.
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The unit normalV#' to 7., with N3 > 0 on S will be given by
N =NV* &, with N=—(-V,, V" &) 2.

It will be ensured by condition (4.11) that # O close taSNU. The second fundamental
form of T, will be given by

X = Pl N V, Ny =Nk, P g N V,y Vi ®. (4.9)
Here indices are raised and lowered by using the metaied we denote by
kulul = gMIVI + NH/ Nl/,

the metric which will be induced on the hypersurfage
The equation which relates the functigmo the mean extrinsic curvature’tf takes
the form

Vo N =NEY' VYV, &= =Nk 8, 0 ¢+ Wa® | ¢, 03 ¢) = f(xa(, o), )
4.10

with some smooth functioh. To ensure that® = ¢ on 7. N S andey is tangent tdl,,
we require

$=0, 0=ex(®)=¢o— e 0= —pa e o ON S (4.11)

In (4.9), (4.10) and (4.11) it is assumed thdt = ¢ + ¢(z*') in the arguments of
the background fieldg,.,., [, ', e*’ o entering the equations. It follows from (4.11)
that N, = —(—¢¥¥)~26% ,, # 0 atS.. The metric induced by, on the tangent
spaces off, at points ofS.. is Lorentzian and this property will be preserved in some
neighbourhood of. in T, if ¢ is smooth.

The quasilinear wave equation (4.10) and the initial conditions (4.11) suggest to find
T, by solving a Cauchy problem fa#. In the particular case wherg= const = yq,
the existence of a uniqgue smooth solution can be inferred from general theorems (cf.
[9]) which also entail the smooth dependence of the solution from the initial data. This
allows us to construct (sufficiently close &) a family of hypersurfacd,. with mean
extrinsic curvatureyo, which can be described as the set of level hypersurfaces of a
smooth functionz® with d2® # 0 andz® = 0 on the intersection of its domain of
definition with7". In view of Lemma 4.1 this entails the last statement of the lemma
above.

However, ifd, f # 0, = 0,1, 2, we cannot proceed in this way. While the left hand
side of (4.10) is expressed in terms of the coordinatesthe functionf on the far right
hand side is given in terms of the coordinat€swhich still need to be determined as
functions of thez*'. This leads us to consider Egs. (4.5) again.

We begin with a few basic remarks. A vector figlds tangent tdl,. if and only if
s(®) = 0 or, equivalently, if

$¥ = o s (4.12)

Thus we only need to determigeands®’ to find s*' onT,.
We shall consider equations, for unknownsi¢nin which vector fieldg,, tangent to
T, actas operators. Any such unknoiwwill be thought of as being induced by a function
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H defined on some neighbourhoodf In our coordinates*’, which are not adapted
to T¢., the usual expressian,(h) = h ./ e, is not directly defined. By our procedure
above,T. is parametrized by the®” and we haveh = h(z®) = H(z, ¢ + ¢(z*)),
which entails

!’ ! ’ ’ /
ho e” o= H o e’ 4 +Hz ¢,o¢’ e o= H o e o +Hy e a = ea(H).

Therefore, any expressian,(h) with h defined onT, ande, tangent to7, will be
interpreted in the following by

ea(h) = h o e . (4.13)

Since the connectioP induced ol is not known yet, we expreds in terms of
the derivative operatdv and the second fundamental foip,» on7,. For any vector
fieldseg, s tangent tdl’, we should have off.,

’ ’ ’ ’ ’
Dy st =V s — NF xpar s° N o.

Because of (4.12) it is sufficient to consider tiecomponents of this equation, the 3
component will be a consequence.
Thus Egs. (4.5) take the form

Vepe® 0= N xo0 = F*(z*,c) e 4, (4.14)
Veo e 4 — N¥ xoa = —gan FB(z?,¢) e 0, (4.15)

with
63I a = ¢,o¢’ ea' a (416)

being used wherever' , occurs in the equations. The transformatich = z*(z®')
will be obtained as solution to

eo(z®) = 6% . (4.17)

In Egs. (4.14), (4.15) we seV* = ¢ 3 = N V¥ &. However, writingxq, =
Xuw € o€y, with the expression (4.9) of the second fundamental form, would intro-
duce terms of second orderdnwhich would spoil the hyperbolicity of the system. We
shall derive instead propagation equationsyfgy.

On the hypersurfacé,. we will have Codazzi's and Gauss’ equations which will
take in the frame, on T, the form

Db Xeca — Dc Xba = R3 abes (418)
ec(rdab)_ed(rcab)*-rcaer‘deb_Fdaerceb (419)
ey (Ce®a—=Ta%e)+ xe " Xab — Xa “ Xeb = R ped,

respectively, with",, ¢, denoting the connection coefficients Bfin the framee,. We

write as usualDy xco = €p(Xea) — T'p € ¢ Xea — b € o Xce @and assume the interpreta-
tion (4.13) of directional derivatives.
Equation (4.18) implies the system
Do xo1 — D1x11 — D2 x12 = ea(f) + 9*° R® i, (4.20)
Do Xo2 — D1x12 — D2 x22 = ea(f) + g°° R® i, (4.21)
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Do x11 — D1 xo1 = R 101, (4.22)
2 Do x12 — D1 x02 — D2 xo1 = R® 102+ B> 201, (4.23)
Do x22 — D2 x02 = R® 202, (4.24)

where we setf = ¢® v, and assume that the functiopo, of which no deriva-

tive is taken in the equations, is given Ryo = f + x11 + x22. We write Rjqp. =

Ruyiag e je”’ o yer . and use (4.12) to expresd , in terms of¢ , ande®’ .
With the gauge conditionSy “ 5z = 0,04 o = F4, Eq. (4.19) implies the system

eo(Ta®o)=ea(FP)—TcPola%
~TaBcFY —FPFguc —x0® xa0+xa® xoo+ R 004, (4.25)
eoTaBc)=—FBTa% —TaPoFP gop
~I'pPeTaPo—x0"xac+xa® xoc+RE coa. (4.26)

It remains to explain the meaning of the expressionéf), e 4 (¥ 7). We should have

— gzt ITi— I a
ea(f)_f,ume a_f,ue a_f,ae as

wheree# , denotes the coefficients of the frame fieldn the coordinates*. We derive
equations for the quantitie$' 4.
Because the intrinsic connection @nwill be torsion free we should have
0=D., D.,z% — D¢, D, % = D, " — De, €* 4,

wheree® , is considered for given as the expression afz® in our frame. Observing
our gauge conditions, in particular their implicatighg = 6¢ o, we get the equation

eo(e® 4) = —gap FP 6“9 —T4 P oe® 5. (4.27)
In the equations above we set now
ea(f)=fae®a, ea(FP)=FLe" 4. (4.28)

With the interpretations and gauge conditions given above Egs. (4.10), (4.14), (4.15),
(4.17), (4.20) to (4.27), form a quasi-linear system of equations for the unknowns
ea' as ma(xa/), Xab» 1—‘a b cy e a-

The initial data for the coordinates'(z*") and the frame coefficients’ , are given
in the statement of the lemma. The initial datag@re given by (4.11). Using Eqg. (4.10),
we can calculate to second order 0., which allows us to obtain the initial data for
Xab from (4.9) and the data for the frame. From Eqgs. (4.14), (4.15) we can determine the
frame coefficients to first order of). which allows us to calculate the coefficefits’ ..
Finally, we get from (4.17) the coordinate transformation to first order, which allows us
to determine the coefficients' , on S...

Equation (4.10) is of wave equation type while the remaining equations form a
symmetric hyperbolic system f is thought to as being given. The coupled system can
be dealt with either directly or by using the well known procedure to write the wave
equation as a symmetric hyperbolic system. Then the whole system will be symmetric
hyperbolic and the existence and unigueness of smooth solutions to this system for the
given data follows from known results [9]. This implies in particular the first assertion
ofthelemma. 0O
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We comment on the open problem. The data as well as the coefficients of our dif-
ferential system depend smoothly on the coordinatesand the parameter Thus the
solutions will be jointly smooth in:" andc in some neighbourhootl’ of p. Choosing
U’ small enough, we can define the hypersurfates U’ to be the level hypersurfaces
{x® = ¢} of a smooth function:® which together with the functions® on 7. N U’
provides a smooth coordinate systethonU’.

To solve the existence problem with this type of argument we would need to show
e.g. thaty,, = Xa» ONT,, Wherey,, denotes the symmetric tensor obtained as solution
to Egs. (4.20) to (4.24), whilg,;, = xu. e” 4”4, with x,.,, denoting the second
fundamental form off’. given by (4.9). This will be discussed elsewhere.

5. The Reduced Equations

While the constraints induced by the Einstein equations on space- or time-like hypersur-
faces are defined uniquely, there are many ways to extract evolution equations from the
Einstein equations. Our choice of “reduced equations” or “propagation equations” (and
in fact also the representation of the field equations and the gauge conditions introduced
in the previous sections) is motivated by the following observations:

(i) Our propagation equations are symmetric hyperbolic and allow us to formulate a
maximally dissipative boundary value problem.

(i) The constraints are preserved by our propagation equations irrespective of the
chosen maximal dissipative boundary condition.

While the requirements in (i) are met by many systems, property (ii) imposes strong
restriction on the choice of propagation equations. There appears to be no systematic
way to derive such equations and a priori there appears to be no reason why propagation
equations satisfying (ii) should exist at all.

Observing (2.2) and (4.2), we obtain for the coefficients the propagation equa-
tions

0=-To", et =0me, —(To?, —Tp%0)e" y — 0%, 6" 0. (5.1)

The functionsF"4(z#) = T'o 4 o(x*) and, forz® > 0, f(z*) = x(=*) will be consid-
ered in the following as gauge source functions. They are to be prescribed in accordance
with the boundary conditions but are free otherwise. Observing (4.4), (4.6), and the sym-
metries of the connection coefficients, we have to derive equations for the connection
coefficientsT'4 ® ., xa» = I's 34, andI'37 . The Gauss equations with respect to the
hypersurface§’, provide the equations

0=A"00a =eo(TaB0) —ea(FP)+TcPola %%
~T4BcFC+FBF gac+x0" xa0 — xa ® x00 — CF o4, (5.2)
0=A8con=eoTaP )+ FPT4c+Ta%0FP gop
+Ip B eTaPo+x0”% xac — xa? xoc — CF coa. (5.3)

Codazzi’s equations, 0 A% . = Dy Xea — De Xva — C® ape, imply propagation
equations

0=9"" A% .1 = Do xo01 — D1 x11 — D2 x12 — D1(f), (5.4)
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0=g" A% 442 = Do xo2 — D1x12 — D2 x22 — Da(f), (5.5)
0=A%101= Do x11 — D1 xo1 — C®101, (5.6)
0=A%501+A%102=2Dox12 — D1xo2 — D2 xo1 — C% 200 — C2102,  (5.7)
0= A%202= Do x22 — D2 X02 — C202. (5.8)

In these equations it is understood that the componestwhich appears only
in undifferentiated form, is given byoo = x11 + x22 + f. Using again the relation
g™T, 3, = f, we get for the coefficientSs 7 ;, the equations

0=A"poa=eo(T3? p)+ FAT3% 5+ T34 0 FC gpc + T4 pT3%

+T34 T30+ x0* 335 —T3axos — T Bx0” — C* pos,  (5.9)

0=A"003=eo(l3?0) —ea(F) +x0* T330 - T3 g FE+Tp 435

+T340T3% 0~ T ox0? —T3% 5 9% xo0o— F* xo0— C* 003,  (5.10)

0=A% 403+ A%034 = eo(T32 4) — ea(l3%0)

+0330FP gpa+T33cT4 %, (5.11)

0=g"" A3 3 = eo(T330) + 9P ea(T33 5) — ea(f)
—g T3 0+ g T 3D o+ g% T 20 (D™ — Ty ™3).  (5.12)

There are various ways to extract symmetric hyperbolic propagation equations from the
overdetermined Bianchi equation. We shall use the boundary adapted system introduced
in [4] because this is particularly well suited for the discussion of initial boundary value
problems. We denote by = e3 the vector orthogonal to the family of hypersurfa@és
and write agaim = eo, €;;r = n' €1

Using the fact that the electric and magnetic parts of the conformal Weyl tensor are
symmetric and trace-free, the boundary adapted system is written as a system for the
unknowns

Eij, By, 1<i<j, i<3.

Itis understood that the relatiop§ E;; = 0 andg™ B;; = 0 are used everywhere in the
following equations to replace the field%s and B3z by our unknowns. The boundary
adapted system is then given by

P+ Niep" NiQ1 =0, Qij— Nuyep* N,P =0 1<i<j i<3.

(5.13)
Writing it in the equivalent form
P11 — P =0, Q11— Q22=0,
2P12:07 2@12:07
P11+ Py =0, Qu+Q2=0, (5.14)
P13 = 3Qo, Q3= —3P,,
Pz = —3Q1, Q23 = 3P,

as a system for the unknown “vectar'which is the transpose of
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((E—7 2E127 E+7 E137 E23)7 (B—7 28127 B+7 Bl3a B23))’
whereE. = Eq1 £ Ey, andB4 = By & By, it takes the form

(I* + A#) O, u="b, (5.15)
with
W:_P‘O] Au:{ 0 A*‘}
o I~ | tAR 0 |
where
10000] 0 76'“3 0 6‘“2 6‘“1
01000 et 3 0 0 —etq ety
=69 (00100, AP = 0 0 0 ety —et1|. (5.16)
00010 76“2 6“1 76“2 0 0
0000 1] —etqy —ets ey 0 0

The reduced equations consisting of (5.1) to (5.13), in which our gauge conditions, in
particular (4.2), (4.4), are assumed, is thus seen to form a symmetric hyperbolic system.
The following specific feature of the system (5.13) should be noticed here. As discussed
in [4], we could have taken the systeR), = 0, Q;r = 0, suitably interpreted, as
propagation equations. This would also have resulted in a symmetric hyperbolic system
of propagation equations. However, in that case the rank of the ntrand with it the
freedom to prescribe boundary data for the reduced system, would have been larger than
in the present case. Another important reason for the choice of (5.13) will be pointed
out in our discussion of the subsidiary system.

6. The Subsidiary System

We show now that solutions to the reduced system which satisfy the constrasitren
indeed solutions to the full Einstein equations. kebe a time-oriented Lorentz metric
on M for whichT is time-like andS is space-like and such that it is in the pasiof, S.
For a given subset” of T U S and an open subsét of M we define the domain of
dependence df in U with respect tq;’ as the set of points € U such that (i)~ (p),
the chronological past af in (), ¢’), is contained inU, (ii) every past inextendible
¢'-causal curve throughmeetslV N U.

Theorem 6.1. Suppose that the fields j, T'; 7 ,, C? i, With xu = 'y 3, Symmetric,
are smooth on some open neighbourhdddf p € ¥ in M and satisfy the gauge
conditions (4.2), (4.4) as well as the reduced equations (5.1) to (5.13) aetg be the
metric for which the frame, is orthonormal and denote by the domain of dependence
of (SUT)NU in U with respect tg;. Then the Einstein equations (2.5) will be satisfied
on D if they are satisfied o6 N U.

Remark 6.1.It is a remarkable feature of Einstein’s equation that it admits a hyperbolic
reduced system which allows us to draw such a conclusion without any reference to the
behaviour of the fields off'.

Proof. Since we have to show that the tensor fields defined by the left-hand sides of
Egs. (2.2),(2.3), (2.4) vanish dn, we shall refer to these fields as to the “zero quantities”.
The reduced equations are equivalent to the equations

To*; =0, (6.1)
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A%k =0, A3 404=0, g A3,3=0, (6.2)
A3 03+ A%034 =0, A3+ A%10,=0, g A3,,4=0,
Pij+Nuey" N, Q =0, Qij — Nuejy™ Ny, P =0. (6.3)

We get slightly more information on the torsion tensor. Observing the assumed
symmetry ofy.,, we get

—Ti'set ;=€ 10,el 2 —€"20,e"1—(T1%2—T2%1)e! .

Evaluating this expression for = 3 we getTy 3, ¢33 = 0, from which we conclude
by (4.2) that

TA 3 B = 0. (64)
Sincerl';;;, = —TI'ix;, we know that the connection defined by the connection coefficients
is metric. However, it is not clear at this stage whether it is torsion free, since so far we

only know that (6.1) holds. For this reason the curvature tensor defined by the connection
coefficients is not given by" ;i; but by

Rju=er (') —e(Tr' )+ T mTi™
N A M | R WAL AL §
which is equivalent to
R i = Ay +Cl g+ T 5 T ™0
Furthermore, it is not known at this stage whether the te%gj;; is indeed the con-

formal Weyl tensor of the metric defined by the frame coefficietits. Together with
the torsion tensor the curvature tensor satisfies the Bianchi identities

ZVkail=Z(Rijm+ijleim)7

(k1) (7k1)
Z Vj ]%2 mkl = — Z RZ mnj Tk " 1y
(k) (kD)

Wherez(jkl) denotes the sum over the cyclic permutation of the indjéésObserving

that we assumed the symmelry,;,, C* ju = 0, the first identity can be written in the
form

Zvakil:Z(Aijkl"'rmikaml+ijleim)- (6.5)
(GK1) Gk

Again, observing this equation and that the terSby; has the algebraic properties of
a conformal Weyl tensor, we get the relation

. l 10 ’ v
E V;iC it = ) U ™ Vi C
(5K1)
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This allows us to write the second Bianchi identity in the form

Z VA okt = L' i, (6.6)
(GK1)
where we set
. 1 . .
L' o = > e’ Hjpy — Z {0 A” i (6.7)

kD

. . . , . ’
+(lenj+vjrnzm+rn/lmrnn j)Tknl+FnlmTjn kcrlnn’}a

withV,; Tt = e (D i) =T L T+ 4 Ty by =T 14 T 4. Notice that the
field L' .1 is a polynomial in the zero quantities which vanishes if the zero quantities
vanish.

The identities above will be used to derive certain systems of differential equations,
the “subsidiary systems”, which are satisfied by the zero quantities. In view of (6.1), we
get from (6.5) the equation

Vol 't +ViTo ks + Vi T o= Ao + Al jor + Al o+ T "0 T ™1, (6.8)
which can be rewritten

eoTk 1) = Ao + Al jor + A" ko + (T "o — To ) Tie ™ (6.9)

+ (™o —=To™ )Tk + Tk ™ 0= To™ &) T -
With (6.2), (6.4) this implies in our gauge
eo(Ta®s) = -Ta P 0T %3
from which we conclude th&E, 2 3 = 0. Combined with (6.1), (6.4) this gives
T;3;=0. (6.10)

Using this equation in (6.5) we get the relation

DA% =Y (03 =T )T, (6.11)
(5 Kl) (5K1)
which implies
A3 o1+ A3 01+ A% 120=0, (6.12)
A3 1p3+ A3 31 =T33, T1%,. (6.13)

We shall show now that the “vectot’which is the transpose of
(T1%2, A 012, A 221, A% 001, A% 002, A% 012),

vanishes orD. For this purpose we derive a homogeneous symmetric hyperbolic system
for v as follows.
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The equations fof; ¢ », obtained from (6.9), are given by
eo(T1%2) = A0+ (Ta“0—To* A)T1 2 — (M1t +T2%0)T1 %2 (6.14)

The equations for the remaining components afre obtained by observing (6.2), the
symmetry ofl", 3, as well as the results obtained so far, and by writing out in detail the
six equations of (6.6) where the quantities

1 2 1 3 3 3
L 0012, L%0012, L 2021, L0012, L®2210, L7 1120,

occur on the left-hand sides. It is important to note that there is one component of the
tensorH ;;,; for each component of the tensb"rmjkl coming frome*'V'é, ejklj/ Hjipp.
For the quantities mentioned above these components are respectively,

Hazpz Hzzy Hzzg Haio Hzox Haio

However all these quantities vanish due to the reduced equations (6.3). A straightforward
calculation shows us that

1 1
H3pz=Quz+ Epz =0, Hzp=Pi3—5Q2=0,

2
1 1

H3z31= Q23— EPl:O’ H302:P23+§Q1:07
Hz30= P33=0, H312=0Q33=0,

where the last two equations follow from the reduced equations gtycand(Q);; are
trace free. After a somewhat lengthy though straightforward calculation we get

3
eo(A' 012) = EF031A3012_ (To%0+T1%1) A%g0p+ 231 A%001  (6.15)
—To?0A 221 — (21 o+ T2%0) Atorz— T2 Mo A% 012
— (R'oao+ Voo o+ T 1ol o) T1 >,
3
eo(A?010) = ér‘osz A%01o+ (To20+T23%2) A%001—T1%2A%02  (6.16)
+To 0 A 221 — (T2t 0+ 212 %0) A%012— 1 %0 At o1z
— (RP0a0+ Vola 20+ T 20T, F o) T1 72,
eo(A'221) =T0° 1 A% 001+ T0% 2 A%002— (To?0 —T1t2) Al (6.17)
+(Toto+T2t2) A% — (M1 to+T2%0) Al
+(R'200+ Volg 2+ T 12T 7o) T1 %2,
eo(A%012) — e1(A%002) +e2(A%001) = — (M0 0+ T1t2) A%gor  (6.18)
3
+(2F010+F221)A3002—2F03AAA012—é(F110+F220)A3012

— (RP0a0+ Vola 20+ T30 " 0) 1172,
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1
eo(A% 001) + 562(A3 012) = — (M1 to+2I2%0) A%001 +T1%0 A%, (6.19)

3
2 A3 3 A2 3 AA 3 A1
—Ero 0A%012+T0" 0 A% 012+ TA 2 A% 012+ T0 1 A" 201

+ (R340 + Volo 22+ T, 22T, ¥ o) T1 %,
1
eo(A% 002) — Eel(AsolZ) =T 0A%01— (21 1o+ T220) A%, (6.20)

3
+§F010A3012— (To%0 +T131) Alora— T231A% 010 — To 32 Al oy
— (R 100+ Vol 21+ 31T M) Th .

Multiplying the last two equations by 2 we obtain a systemfahich is symmetric
hyperbolic. A calculation shows that its characteristics are non-space-like Kbore-
over, it does not contain the directional derivative operatorAs pointed out in our
discussion of maximally dissipative boundary value problems this allows us to obtain
energy estimates for our solution regardless of its behaviodt.@incev = 0 on S by
assumption, it follows that vanishes inD. Thus we have

T 2 =0,
Ato12=0, Al21=0, A%001=0, A%p0p=0, A%p,=0,
whence, by (6.2), (6.12), (6.13),
A%01=0, A%02=0, A%153+ A%, =0
To write out the equations for the “vector’which is the transpose of
(A%103, A%05, A%123, A%113, A%29),

it will be convenient to use the following notation. For any tensor figtét ;. we
write

T T o 1=V —em) T o =T T g+ =T ™ T

which is a bi-linear expression in the components of the tensor field and the connection
coefficients.
Observing the results obtained so far, we get, again from (6.6), the equations

eo(A3 10) — e1(A%113) — e2(A% 129) (6.21)
=g [L303— (T A%+ Ta A% +T1 A% 35)]

eo(A% 203) — 1(A%123) — e2(A3% 229) (6.22)
=g [Lsij23 — (T A% 3+ T3 A% o+ T A® i35)]

2e0(A% 123) — e1(A% 203) — e2(A%103) = L2 1023+ L2 2130 (6.23)
— (To A% 123+ T3 A% 102+ T2 A% 150) — (M1 A% 230+ T A% 213+ T3 A% 01)
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eo(A3 113) — e1(A%109) = L3 1013 (6.24)
— (To A% 113+ T3 A% 101+ T A% 159)

eo(A® 229) — e2(A% 209) = L2 2023 (6.25)
— (Fo A% 223+ '3 A% 500+ T'p A% p30) -

The system (6.21) to (6.25) fartakes the formd* J,, u = b with

6”0 0 —6“2 —6“1 0

0 ety —et1 0 —ets
A = —6'”2 —6'”1 26”0 0 0
—6”1 0 0 6“0 0

0 —et 2 0 0 et 0
Using finally the definition off;;; we set
Nkl = Vjij;l = V’i Vj Cijkl- (626)

Observing that our solutio@;;x; has by definition all the symmetries of a conformal
Weyl ten_s_or, i.eCijkl = C[ij][kl]! Cijkl = Clclija Cijkj =0, Ci[jkl] = 0, which |mply
Cijie ™C* g, = 0, we find

N =Ry ™ j O 3y — Rijie ™ O gy — %T’z iV CY gy (6.27)
=A™ O =T, T ™ CY g + Ay ™ CY i,
—Tyij O™ Ty ™ 1, + % T;™ iV C gy
We note that the expression on the far right-hand side is linear in the zero quantities.

On the other hand we obtain from the identity (2.6) and the reduced equations (5.13)
a relation

Hjp = Piu’ jig + Qi v" jrr, (6.28)
with
gk = =2nnphy " Ry byt — Ny €)™ Ny € 11,

v Gkl =Ny € — € Gkt N(j €k) "™ N,, — Nk N(j €] ™ N,,.

Contracting (6.28) with 2, ¥ n! and—e¢,, *' respectively, we finally get

2L, P, + (egji + 2Ny €qymi N™) D7 Q' (6.29)
=2K,"Pi—2P;hy*n' VI ji —2Qi by ¥ 0 VI 0 s + 2R, P 0l Ny,

2L, Qp — (epji + 2Ny €pymi N™) D’ P? (6.30)
= 2KqLQl + P; €p kit Vj u gkl t Qz €p “Vj ’Uijkl —€p kl Ny

If we write these equations as a system for the unknawmhich is the transpose of
((Pla P27 P3)7 (Q17 QZ» Q3))1 they take the form



642 H. Friedrich, G. Nagy

"0, w+A" 9, w="b,

with
_|I* 0 | 0 A+
[52] we[4 5]
2¢9 O 0 0 0 e*)
" = 0 2etg 0 |, AP = 0 0 —etq
0 0 ety —eto ety 0

Equations (6.9) for the remaining components of the torsion tensor, Egs. (6.21)
to (6.25), and Egs. (6.29), (6.30) provide the subsidiary system for those zero quantities
of which we do not know yet whether they vanish. The system is symmetric hyperbolic
and a calculation shows that its characteristics are non-space-likg farhe derivative
operatorez does not occur in the system. Since the zero quantities vanish ore
conclude that they vanishan. O

The requirement that the operatgrdoes not occur in the subsidiary systems was
one of our main criteria for choosing the reduced system. Otherwise we would have
been confronted with the task to analyse in detail the structure of boundary data for the
subsidiary systems which are determined by the reduced system from the datson
well as onT'.

7. Initial and Boundary Data

In the following we discuss how to prepare initial and boundary data for the reduced
equations. The discussion of the initial data is somewhat complicated by the fact that we
do not require the unit norma} of X in 7" to be orthogonal t&. Without this generality

our results would be of rather restricted applicability.

7.1. The construction of initial dataExperience with the standard Cauchy problem for
Einstein’s vacuum field equation tells us that we have to assume as initial da&ta on
a smooth (negative) Riemannian metfigz and a smooth symmetric tensor fields
satisfying the Hamiltonian and the momentum constraint

R — (K a2+ kP kg =0, 6% kag— 05K 0 =0, (7.1)

on S. Hered’ denotes the Levi—Civita connection aRdthe Ricci scalar of the metric

~. To derive initial data for the reduced equations we shall first determine data in terms
of coordinates: * and a frame;, which are suitably adapted to the initial hypersurface

S and shall then express these data in the coordingtesd the frame field; which
satisfy the conditions described in Sect. 4.

Letz'# be functions orf N U with 2° = 0onSNU,z*=00onTNU, 2" > 0 on
(S\ Z)NU, suchthatthe ¢, « = 1,2, 3, define a smooth coordinate systemsn U
and thex'®, o = 1,2, are constant along the integral curves of the gradient®fFor
numbers: > 0 in the range of:® we setS. = {z® = c}. Let{e, },-123 be a smooth
frame field onS N U such thatk} is orthogonal to the surfaceés, pointing towardsS
on Sy = £ NU, and such that

Y(ey, €n) = gpg = diag (=1, -1, -1).
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The information on the metrig is contained in the coefﬁcien'&é"‘p = e;(;z:""). We
write ;,, = Kag €o,el,

Imagine now the initial data seb(~, k) as being isometrically embedded into a
solution (M, g,,,,) of the field equations and denote Bythe connection defined ly.
Let ef, be the (future directed) unit normal 8f We assume that the orthonormal frame
field {} }x=0... 3 and the functions:'* on S are extended off such that the frame
is parallely propagated in the direction ¢f and that the coordinates®, o = 1,2, 3,
are constant on the integral curvesajf while 2 is a natural parameter on these
curves. The connection coefficients defmed(hy e = I, * j €} then satisfy oS (cf.
condition (7.27) added below)

8, eg=T0"gen, To';=0, T7% =—x (7.2)

€p p 4a Crs rq’
and we have for the coefficients’ ;, = e/ (z'#),
’ ’ ! ’
Ko=0"g, €0p=o, 6”32(5M3€337 633>0.

The electric part of the conformal Weyl tensor with respeat to e then follows
under our assumptions from the Gauss equatiofi.dhis given by
1 1 1
Ezlvq = 1/70110 = ;q T4 R gz/oq —{r" (’i/ T4 K ® gzlnq) - ’iszi “:1 g 4 Kok g;q}V
whereR;,, denotes the Ricci tensor of the metsién the framee;, and R’ is the Ricci
scalar oty. The tensor above is obviously symmetric, the Hamiltonian constraint ensures
that it is trace free.

The magnetic part follows under our assumptions from the Codazzi equation. It is
given by

1
B, =5 0k €40 = = -, 52;, Kips
wheree;,, is totally antisymmetricsy; 3 = 1, ande,,,,. = =vie, ipgr- 1he symmetry of the

tensor above is a consequence of the momentum constralnt it is trace free because of
the symmetry of:;, . These fields together determine the conformal Weyl te@%q&

in the framee’; by the formula

Clywa = 2 (g Bl — Ui By — vy Bl €™ 15 = vy By € ™ 1)

where we set}; = g;; — 2v;v

Only prOJectlons mtoS of/ expressions (2.1) to (2.4) can be determlned from our
datae’# j, T, 7, By Bhgs Ciipy- Using the prOJectoh’J =g/l —viv 'i and the fact
that in 3 dlmenS|0ns the R|emann tensor is given in terms of the Ricci tensor, we find
by the way we derived our data frofnand« that

hLURLITIR =0, (7.3)
hOFRLTAT =0, (7.4)

e~ ’ ! 1 ! ’ .
=vIh vV C i =0, Q;:—éwe;lmveéc'ﬂm:o, (7.5)

i.e. the constraints induced by Eqs. (2.5)%n U are satisfied by our data.
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If the normaln of X N U in T' were orthogonal tc&5, we could sek; = e} on
S N U and use the data determined above as initial data for the reduced field equations.
To include the case wheredoes not necessarily coincide with on ¥ we proceed as

follows. We choose functions* such that-* = z'# onSNU. We see 4 = ¢y, A = 1,2,
and

eo = coshf) ey + sinh@) €5, ez = sinh@) e + coshg) e, (7.6)

with & € C°°(S N U) chosen such thap = n on X N U. We write the relations above
in the forme, = A7, e; with a Lorentz transformation” .

We note here tha = 0|sp is a free datum which determines in part the geometry
of the space-time we wish to construct, while on the remaining paftdf the function
6 must be regarded as a gauge source function.

NearsS the coordinates* will be chosen such that' g = eg(x#) = 6 ¢. Thisimplies
on S the relation

IJ’ !
8" o = eg(z*) = coshf) ep(x") + sinh@) e5(z*) = cosh@) % +sinh@) e * 3,

which allows us to determingj—‘: and thus the frame coefficients , = e (z*) on
SNU.

The transformation law between the connection coefficients defined.by; =
I';7 1 e; and the connection coefficient§ 7 ,, reads

Flkj Zei(Amj) Amk‘l‘AliAnJ‘ F; mnAmk, (77)

with A; * = g;; A7 g'*, which satisfies\; * A*; = §% ;. To determine the left hand side
of (7.7) we need to determine the derivatives\df,. The requirement that the latter is
a Lorentz transformation implies(A™ ;) Apk + €i(A™ &) Ay = 0, which translates
into the equivalent conditions
(A" B) = —ei(A” 4), (7.8)
ei(A* o) = coshf) e;(A° 4) — sinh@) e; (A3 4),
ei(A” 3) = sinh@) e;(A° 4) — coshp) e;(A® 1),
ei(A%0) = €i(A%3), ei(A%0) = ei(A3), (7.9)
coshf) e;(A° o) = sinh@) e;(A% o).
Observing thato(A’ ;) = cosh@) ej(A” ;) + sinh@) e5(A’ ;) and that we can calculate
the tangential derivativeq?(Aij) forp = 1,2,3, onS N U, we find from the gauge
conditionl'c“ 5 = 0 and (7.7),
eo(A? p) =Ty p —tanh@) I3 * 5.
The gauge conditiofip® 4 = —gas F'Z gives with (7.8),
cosh) ep(A® o) = —gap FZ — AF o) 4 A

The requirement thats is hypersurface orthogonal &t., i.e. xo4 = x40, iIMplies
with (7.8)
coshf) eg(Atg) = —e/4(0) — A" o (Ty ' — T3P 4) AL,
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Using again (7.8) we obtain from these relations the quanties’ ;) withi = A = 1, 2,
orj = B =1,2. The gauge conditiog®® T", 3, = f impliesonS N U,

eo(A%0) = —sinh@) e5(0) + f — g* AF o ATy T} 71 AP,

from which we determine the quantitie{A* ;) with i, j = 0, 3, by using (7.9). We note
that the quantity” 4 2 5 is indeed symmetric because of the relation

r,35=—sinh@)1r’,° 5 +coshf) 1, 3 5,

implied by (7.7). The terms on the right hand side are symmetric beegusele} are
orthogonal toS N U andS. respectively.
Finally, the conformal Weyl tensor is given in our gauge by
Oijktl = C’L{/j/k/l' Ai/ '3 A]/ 7 Ak/ k All 1y

where the primed indices take values Q , 3.
The data so obtained are useful for our purpose because we have

Lemma 7.1. Suppose* i, I'; 7 1, Cijr coincide onS N U with the data determined
above and satisfy the reduced field equations (5.1) to (5.13) as well as our gauge con-
ditions in some neighbourhood 6f N U ~ {0} x (SNU) C R x (SN U). Thene* x,

;7 g, Ciji satisfy Egs. (2.5) 0.

Proof. We have to show that the tensor fielfis* s A’ ikt Hj vanishonSNU. Given
the metric for whicke” ;, is orthonormal, we can extend the coordinatésand the frame
ej, off SN U as described above and express the tensor fields in terms of this gauge. We
haven = n' ¢, with n'* = cosh) v + sinh@) 6" 5. In terms of I/ 7 ;, = T/ y[e/, T"]
Eq. (5.1)reads 0 ®'* T} 7 , = cosh@) v/ T/ 7 ;. + sinh@) T4 ;.. Using (7.3) we obtain
from this relation that? TZ-’? r = 0 onS NU. This equation and (7.3) imply by the
tensorial nature of thatT;7 ., =0onSNU.
We have a decomposition

A" g =D g + 2D i ny,
with fields
Dijrt = Nijmn W™k h" 1, Diji = Ayjen nF A"y,
which are anti-symmetric in the indiceg;.

If the torsion tensor vanished to first order 8§m U we could use the first Bianchi
identity to deduce the identity

2D a5 = D3ouB.

However, observing the assumed symmetry of = T",, 3, this relation can be verified
in our case by a direct calculation. The reduced equations (6.2) can then be rewritten in
the form

1
D, =0, D30, =g D30, D3ap= > D3oan, D*a3=D3043. (7.10)
Equation (7.4) reads\’ j,.,, ™, h™; = 0, whereh’ ,, = g7 — v 1, with v* =

cosh@) n’ — sinh@) N*. Transvecting this equation suitably with ;, andn’® we find
that it is equivalent to
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D" jJAB = 0, D’ j3A = tanh(9) Dt GA- (711)

It is now a matter of straightforward algebra to show that Egs. (7.10), (7.11) imply
D' jp = O_’Dl ipq :_O- ) )
Consider the field?;;, = H],,[¢’, I, C'] decomposed with respect toaccording

to the rule (2.6). The fact that the constraints (7.5) are satisfiesl o/ is expressed
equivalently by the equation H{jk =0, which is in turn equivalent to

0= I/i Hijk = COShe) TLi Hijk — Slnh(e) Ni Hijka

on S N U. On the other hand we have by our assumptions the relation (6.28). Together
these two equations imply

0 = cosh@) (P u’ jju + Qi m? v’ jiy) — sinh@) (P N7 u’ iy + Q; N7 v 1)
= cosh@) (—2ng, Py + Q' €irt) — sinh@) 2 N Py,
which entailsP, =0 andQ, =0onSNU. O
7.2. The boundary conditionsThe boundary conditions for the reduced system are
determined by the rules described in Sect. 3. In the reduced system the only contribution

to the normal matrix comes from (5.15) and the boundary conditions thus only involve
the conformal Weyl tensor. By (5.16) we find

twAlu=4B_FEyy—4FE_Byp= —{% (E_ +2B1p)}% - {% (B_ — 2E1)}?
+{\% (B~ 2B))?+ {% (B_ +2E1))2.

Choosing a smooth matrix-valued functiéhon 7" as in (3.4), we can thus write the
boundary conditions in the form

@1 = FE11— Ep» —2B12 — a(E11 — Exp+2B1p) — b(B11 — B2 — 2 E1),
(7.12)
q2 = B11 — B+ 2 E1p — ¢ (E11 — Ep2 + 2 B12) — d(B11 — B2z — 2 E12),(7.13)
with some given smooth functionsg, ¢» onT'.
The components of the conformal Weyl tensor which enter these conditions are

obtained by projecting itey-electric anckg-magnetic parts into the plane orthogonal to
ez and by taking then the trace-free parts. The resulting tensors are given in our notation

by
1 1
naB = Eap — 9B ¢“P Ecp, Bap=DBap — 9B g“P Bep.

In terms of the null frame defined by (3.6), the relevant components of the conformal
Weyl tensor are given in NP notation by

Vo = Chpor I m”17m™ =n11+ P12+ (811 — 112),
Wy = Cpuor m BV m® E™ =011 — P12+ (811 + n12),

and the boundary conditions (7.12), (7.13) take the form
q=—Ws+a W+ 3, (7.14)
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whereg, «, 3 are defined as in (3.5).

The form of (7.14) can be understood as follows. In our frame the compowgnts
v, of the conformal Weyl tensor can be interpreted as parts of the field transverse to
es, traveling into the directions-es, e3 respectively (cf. also [5]). Assume there were a
family of outgoing null hypersurfaces tangent to the vector fietth T'. Then the field
equations would imply on these hypersurfaces propagation equations of the form

lI"O,p kt — “Ill,p mt = L(F’LJ k> \pl)

This shows clearly that the valuesw§ will be determined ofI” by the evolution equa-
tions once the other fields are given. This is consistent with the fact that the conditions
ona, B prevent us from prescribinglo on 7. On the other hand, if there were a family

of ingoing null hypersurfaces tangentitonT', the field equations would imply on these
hypersurfaces propagation equations of the form

Wy, 1M — Wy, mt = L0 5, W),

and the quantityy would in fact represent the null datum on these hypersurfaces.
Therefore it is natural that we can prescribe the valuggireely onT" and couple parts
of Wg, Wg back to it as itis realized in (7.14).

In trying to give along these lines any explanation of (7.14) in terms of “ingo-
ing/outgoing gravitational radiation” it should be observed that our gauge conditions, in
particular the component®,, ¥, of the conformal Weyl tensor, depend on the choice
of the vector fielckg onT', which so far is rather arbitrary. This situation should be com-
pared with that at null infinity, where one causal direction is singled out by the causal
nature of the boundary and a natural concept of “radiation field” is obtained.

The condition on the coefficients @f in (3.4) can be expressed in termsafs,
andv = (vy, v2) in the form

1- |04|2 - |B|2 t
2
where the symmetric bi-linear form imon the left hand side is defined by the matrix

twBuv < vv, veR? (7.15)

) _ [Re(@p) Im(ap)
B = B(a, ) = Ini(%ﬁ) —ge(oé_&ﬁ) '

Sincev # 0 can always be chosen such that the term on the left-hand side of (7.15) is
non-negative, it follows thaty|? + | 3|2 < 1. Moreover, since is arbitrary in (7.15), it
follows then thafa|? + |32 = 1 if and only ifa =0 or3 = 0.

We take this opportunity to correct a mistake in [4] (which is of no consequence in
that article). Equation (5.49) in [4] should be replaced (observing the different notation)
by (7.15).

The closest analogue to (3.7) appears to be the following. Observing that the Bel—
Robinson tensor is given in spinor notation By, ppce'dar = Yabed Yarvrerar, We find
that the non-positivity condition (ii) in Sect. 3 takes the form

bu A3 u = —Wo Wo + Wy Wy = —2 (Tozas+ Ts000) < O,

where we assume the Bel-Robinson tensor to be given in the Fame

7.3. Boundary conditions and gauge conditior®o far our considerations were based
on a fixed choice of a local gauge. If we want to go beyond the study of local solutions,
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we have to glue together different local solutions and therefore need to discuss the trans-
formation behaviour of the initial and boundary conditions under changes of the gauge.
The transformation behaviour of the initial data is obvious and will not be considered any
further. The transformation behaviour of the boundary conditions is more complicated.

Since the time-like unit vector fieley is assumed to be given dh andes is by
definition the inward pointing unit normal &f, the remaining gauge freedom @h
consists of smooth coordinate transformations

¢ — mlﬁ(xa), a,3=12, (7.16)
and rotations of the frame
cos® —sin @
= AT e (AP )=A@ = | Se SO )
or, in terms of the null frame (3.6),
m—m' =e'®m. (7.18)

Since we assume the vectarg to be Fermi-propagated in the direction @f with
respect to the intrinsic connection @h the functiond® in (7.17) is independent af°.
Further, the coordinates an are dragged along withy. Thus the remaining gauge
transformation can be specified @hcompletely in terms of their behaviour ah
The connection coefficientd “ o, which are specified in terms of the gauge source
functionsF'4, transform under (7.17) according to
To%o—= T 0=A(®)s"To" 0.
It will be convenient to giveF“ in terms of the complex function
F=F'+iF? (7.19)
The transformation behaviour above is then reflected by
F S F =¢®F (7.20)
The components of the conformal Weyl tensor transform under (7.18) according to
Wo — W =e2® Wy, Wy - Wy =e 210y,
To make sense of the boundary condition (7.14) in a covariant way we require that the
functions onl" which enter this condition transform under (7.18) as

g—q=e?% a—ad=

e 40, -6 =5 (7.21)
It is important to note that (7.15) is invariant under (7.21). This follows from the facts
that B transforms according to

B(d, f) = "A(=®) B(a, B) A(—®),

under (7.21) and that the quadratic expressions on the right-hand side of (7.15) are
invariant under (7.21) and rotations«f

To describe the boundary conditions in a covariant way we introduce some tensor
fields which contract to zero with any vector orthogonal 1o A = 1, 2. We refer to such



Initial Boundary Value Problem for Einstein’s Vacuum Field Equation 649

tensors as toés-tensors”. The symmetric trace-freg-tensors of rank 2 are generated
by tensorg;;, s;; with non-trivial (i.e. not necessarily vanishing) components

tap =0 40 g —0246%p, sap =0 a0%p+6% 40",
respectively. The 4-tensorJ;;;; with non-trivial components

Re(a Im(a
Japcp = % (taptcp —saBscp)+ 2( ) (taBscp +saptep),(71.22)

is completely symmetric and trace-free. In fact, any symmetric trace=frdensor of

rank 4 has this form with certain coefficiem®(«), Im(«). Therefore the form is nec-
essarily preserved under the transformations (7.17) and it turns out that the coefficients
transform under (7.17) int®Re(e=%? «), Im(e~*? «), in accordance with (7.21). We
finally need the tensar, = N ¢;;; and the induced metric on the subspaces orthogonal
to eg, e3, Which is represented by, 5. We use these tensors and the functiprvhich
transforms under (7.17) according to (7.21), to definethéensorl; ;;; with nontrivial
components

Iap “P = Re(B) ga © gmy P + Im(B) ga © ep) . (7.23)

It is invariant under (7.17) and contracts with a symmetric tracedretensor of rank
2 to yield another such tensor. Setting now

phip =nas % Bac €€ b, (7.24)

and introducing as the free datum @hthe symmetric trace-free,-tensorg;; with
non-trivial components

qap = Re(q)tap + Im(q) saB, (7.25)

we find that the boundary conditions (7.12), (7.13) can be written as a tensor equation
onT which has non-trivial components

qap = —pag+1as P pp+Jas P pip. (7.26)

The main property of the tensor fieldsx;, ;;:, g;; is that the form of their expressions
in the frameey, is universal, that they do not depend on the vectgres; orthogonal to
e a, and that they are uniquely determined by the functions, q.

Consider a neighbourhod#l of ¥ in 7. Assume a fixed orientation &f, and denote
by O.(%) the bundle of oriented orthonormal framesXrBecause of the transformation
laws (7.20), (7.21) the complex-valued functidnsy, 3, ¢ should at= not be considered
as functions ork but as spin weighted functions @n.(%).

Suppose that the time-like vector fielglis given onl¥/, the flow lines ok generate
W, andz® maps each flow line onto the interval, [P, wherex? is a fixed positive
number or infinity. Fop € W denote byp* € X the point at which the flow line oay
passing througlp meetsx. For givene 4 atp denote by* the frame ofz atp* which
is transported inte 4 by T-intrinsic Fermi transport along the flow line.

With the values of, o, 3, ¢ in the 2-framee 4 atp we associate the same complex
numbersF(z%(p)), a(z%(p)), B(@°(p)), q(z°(p)) in the 2-framee* at p*. For given
2% € [0, 29[ we thus get a set of smooth complex-valued functidhse, 3, ¢ on
[0, 29[ xO+(X) of spin weight 1,—4, 0, —2 respectively. Giving these functions is
equivalent to giving the tensor field$;.:, I;;.:, g;; on W because of the universal form
of the local expressions (7.22), (7.23), (7.25).

We will need to extend the gauge source functfointo a neighbourhood df in
the prospective solution space-time.
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Definition 7.1. We call a smooth function® defined on some open neighbourhdod
of ¥ in S a boundary defining function ol if

dz®#0, 2%3=0, 2%g5>0,

andifthe set$. = {2 = ¢} C S are diffeomorphict® for0 < ¢ < 22 = sup, 2% and
are obtained by pushing forwawith the flow of the vector field (|d 2°3|,) =2 grad.,°.

Given a boundary defining functiar®, we denote by the smooth unit vector field
which is orthogonal t&,. on U and points towards on Sy = . Using the flow lines of
e we can mays. diffeomorphically ontas and get the representatioh= X x [0, 23[.
Following our discussion in Sect. 4, we consider time-like hypersurfdtdsaving
intersectionS.. with S. The hypersurfaceg. and the coordinate® on them are generated
by a time-like vector fieltkg. Repeating the discussion above, we find that for given
the gauge source functiodd* on 7, can be represented by a smooth complex-valued
function on [Q 29[ x 0.(S,) of spin weight 1. Usings-intrinsic Fermi-transport of local
framese on X in the direction ofe} and parametrizing the integral curves b3,
we obtain bundle morphisms of tl.(S.) onto O.(X). This allows us to specify the
information about the gauge source functidisin a neighbourhood ¢f in M in terms
of a smooth complex-valued functidn on [0, 2°[ x O+(X) x [0, 23[ of spin-weight 1.
We shall say thaf” is based on the boundary defining functiohon S.

Conversely, givert” as above and a local section@f(X), i.e. an oriented orthonor-
mal framee 4 on some open subsgt of X, we can use Fermi-transport ef in the
directions ofej andeg to obtain the gauge source functiéh' in the framee 4 (resp.
ek).

The requirement that the fields, be Fermi-transported along should be added
to (7.2) in the form

r,45=0 on U. (7.27)

The following (where we s&{ = [0, oc[) summarizes our main observations about
the initial and boundary data and the gauge source functions.

Definition 7.2. A smooth initial boundary data set for Einstein’s vacuum field equation
consists of the following.

A smooth, orientable, compa@;dimensional initial manifoldS with boundary
¥ # ()and the boundary manifolfl = R x X (with this product structure distinguished).
The boundariex and{0} x X of these manifolds are identified in the natural way.

A smooth (negative) Riemannian metyigs and a smooth symmetric tensor fields
on S which satisfy the constraints (7.1).

A smooth real functio® on X.

A smooth real functiofi’ 5 (2, p) — x(2°,p) € R.

Smooth complex functionB, «, 3, ¢ on Rj x O+(X) of spin weightl, —4, 0, —2
respectively, such that the functionss satisfy condition (7.15).

It may be surprising that the functiafi is listed as part of the initial data set. The
somewhat complicated situation concerning the gaif” will be discussed in the next
section.

Definition 7.3. Given an initial boundary data set as in Definition 7.2, an associated
set of gauge source functions consists of:
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A smooth real functiofl on S with 4|x = ©.

A smooth real functiofRf x = x [0,23[> (20 p, %) — f(z° p,2%) € R such that
(0 p,0) = x(z° p), p € =. Here we use a boundary defining functiehon S to
represent a neighbourhodd of X in S in the formU = £ x [0, z3[ with somez2 > 0.

A smooth complex function
F 1 [0,22[x04(%) x [0,23[> (%, p, 2°) = F(2° p, 2% € C,

of spin-weightl, based on the boundary defining functiohabove, which coincides on
[0, 22[ x O+(X) x {0} with the functionF” given in Definition 7.2.

7.4. The consistency conditio®iven the datg,  in Definition 7.2 and the gauge source
function f, 6, F in Definition 7.3, we can, by taking formal derivatives of the reduced
field equations, determine a formal expansion in terms’asn a neighbourhood at

in S for the fieldse* , ;7 1, Cijr, and thus in particular fog 4 g, G45. On the other
hand, we also have at a formal expansion of the functions 3, ¢ onT' in terms ofz°.
Therefore, to obtain a smooth solution, the formal expansions obtained for the quantities
entering the two sides of the boundary condition (7.26) should coincide at any order, i.e.
the data need to satisfy a certain “consistency condition”. To meet this condition we may
e.g. choose all fields excegtdetermine the formal expansion of the expression on the
right-hand side of (7.26), and choogen T such that it has the same formal expansion
atx.

8. The Existence Result

Given an initial boundary data set as in Definition 7.2, welget R x .S such thats and

T, identified along their boundaiy, can be considered in a natural way as the boundary
of M. We define the functiom® on A such that it induces the natural coordinate on the
factorRg. ThenS = {z° = 0}. We can now formulate our main result.

Theorem 8.1. Suppose we are given a smooth initial boundary data set as in Definition
7.2 and an associated set of smooth gauge source functions as in Definition 7.3 such that
the consistency conditions ahare satisfied at any order. Then we can find some open
setM’ in M, with {p € M|2%(p) < 7} C M’ for somer > 0, and onM’ a solution

g to Einstein’s field equatiofRic[g] = 0 such thatM’ coincides with the domain of
dependence #UT" in (M’, g), whereT” = TN M’, and the following properties hold.

(i) S isspace-like and” is time-like forg. The first and second fundamental form in-
duced by on S is given (up to a common diffeomeorphism)tandx respectively.
The mean extrinsic curvature inducedggnT” is given byy.

(i) The curvesRf > 2° — (2% p) € T, p € =, induce curves off” whose tangent
vectors define a smooth time-like unit vector fieddon 7’ orthogonal toX. If
e denotes the unit normal a in S pointing towardsS, we haveg(eg, €5) =
—sinh@®).

(iii) Denote byes the inward pointingg-unit normal of 7”. Letes, A = 1,2, be an
oriented frame on some open subBedf X such thate,, k£ = 0, 1, 2, 3, defines an
orthonormal frame foiM/’ on V. Extencke 4 into 7" by T’ -intrinsic Fermi-transport
in the direction ofeg. For the componentg“ of F in the framee 4, we have then
FA = g4B ¢(V,, eo, ep). If a, 3, q are given in the frame 4 the associated 4-
tensors (cf. (7.22), (7.23), (7.25)) satisfy the boundary condition (7.26).
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(iv) In the particular case wherg = o is constant and® = 0 on 7' the solution is
locally (geometrically) unique ne&.

Remark 8.1.(i) That the solution is (geometrically) unique in the domain of dependence
ofthe setS is well known from the study of the standard Cauchy problem. To demonstrate
in general the uniqueness of the solution locally in time of our initial-boundary value
problem, we would have to show that the solution is independent of the choice of gauge
source functions. To show this we would need the existence statement which is missing
in Lemma 4.2.

(i) We have includedF' as a datum in Definition 7.2. Given a solution, we can
according to Lemma 4.1 always redefine the vector tighhd the associated coordinates
onT close toX to achieve a transition

(X(z), F(z%) = (' (z*), F' = 0). (8.1)

This shows that locally the freedom encoded in the gaif corresponds to that of one
real-valued function and Theorem 8.1 tells us that this function is not restricted by any
condition if questions concerning the life-time of the solutions are ignored.

(iii) If we could perform the transition (8.1) globally dff, irrespective of the life
time of the solution, it would be natural to use the particular gauge Wit 0 and
specifyy’ as the part of the data which characterizes the nature of the boundary. However,
the integral curves of the vector fiedg will then beT”-intrinsic geodesics. In general,
we can therefore expect that the gauge witb= 0 will, due to focussing phenomena of
the geodesics, have a lifetime much shorter than the lifetime of the solution which was
specified in terms of and .

(iv) This suggests to consider as a datum equivalence classes of palf} to
characterize the boundary. However, which pairs are equivalentin this sense does depend
also on the other data (which, incidentally, are related on the boundayy 9 py the
vector fieldeg which is specified implicitly in terms of’) and can only be decided after
the solutions are available. There appears to be no way to compare different pairs by
calculations oril” solely in terms of the data prescribed @n For the same reason it
is not possible to determined which paisg ¢) are particularly “good” for specifying
a space-time and which pairs are locally equivalent but not particularly useful because
they refer to a gauge which breaks down quickly.

(v) These difficulties, which are intrinsic to the initial-boundary value problem and
do not represent a peculiar feature of our specific type of analysis, arise because the
coordinates on the boundary in whighis given are related in a direct way to the
evolution of the fields.

(vi) In the case of the Anti-de Sitter-type space-times studied in [4] boundary data
are prescribed on the boundary at infinity which is singled out in a geometric way. There
the difficulties pointed out above do not arise due to the special geometric features of
the boundary.

(vii) For convenience we assume all data to be smooth and we obtain smooth solu-
tions. If weaker smoothness requirements are imposed on the data, a loss of smoothness
along the boundary may occur for the solution to the reduced equations. We do not anal-
yse whether due to particular features of the Einstein equations (such as the presence
of constraints) more smoothness will be preserved than suggested by the general results
(cf. [8, 14]).

(viii) From the following proof it can be seen immediately that a result similar to
Theorem 8.1 is obtained in the case whgtes only inner boundaries and asymptotically
flat ends or asymptotically hyperboloidal (cf. [3]) ends with smooth asymptotics.
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(ix) We finally remark that all smooth solutions to Einstein’s vacuum field equations
on a region bounded by a space-like and a time-like hypersurface as considered in the
introduction can be characterized in terms of data as considered above. Furthermore, if
the boundaryl” and the boundary conditions are extended suitably “backward in time”,
the existence of a solution characterized by such data also follows from our result.

Proof. Since we are dealing with a hyperbolic problem, we can show the existence of a
solution by patching together local solutions. A basic step consists in solving the initial
boundary value problem in some neighbourh®bdf a given poinp € X in M. Letz?,

x? be coordinates and, a smooth oriented-orthonormal frame field on some open
neighbourhood” of p in X. Let e5 be the smooth unit normal to the surfacgsin S
defined by the boundary defining functied such thak} points towardsS on %. We
extend the coordinates', 2 into S such that they are constant on the integral curves
of e§ and form together with:® a coordinate system on some neighbourhoogliaf.S
which is denoted in our notation By x [0, 23[. We assume the frame, to be extended

to V' x [0, 23[ by S-intrinsic Fermi-transport along the integral curvegfThe vector
fieldse 4 are then tangent t8..

Observing now the gauge conditions in Sect. 4 and the meaning of the gauge source
functions, we use the gauge source functions in the gauge determined by the coordinates
x*, 2% and the frame 4 on V' to obtain the reduced equations described in Sect. 5. The
initial data onV x [0, 23[C S and the boundary conditions &}, x V' C T for the
reduced equations are determined as described in Sect. 7.

With the help of suitable cut-off functions we can put the initial boundary value
problem so obtained into the setting considered in [8] (cf. [4] for the details of such a
procedure). The results in [8] then imply the existence of some neighbouthadg
in M,with SNU C V x [0,2z3[andT NU C R x V, on which there exists a unique
smooth solution: = (e i, T';7 1, C* i) of the reduced field equations which satisfies
our gauge conditions o and the initial and boundary conditions Sm U andT N U
respectively. We assume that the neighbourhidasl chosen such that it coincides with
the domain of dependence of the s&t(7") N U in U with respect to the metrig for
which the framee,, is orthonormal. By Theorem 6.1 and Lemma 7.1 we concluded that
u satisfies indeed Egs. (2.5) and thus Rjcf 0.

The local solutions can be patched together to yield a solution on some neighbour-
hood ofx in M. Considep, ¢ € X and solutions,, u, to (2.5) on neighbourhoods,,

U, of these points respectively which are obtained as described abbyetf,Nx =

we have als@/, NU, = (. If U,NU,N X # 0, the initial data given o/, N.S andU, N S

can be related on their intersectid N U, N S by the explicitly known simple gauge
transformations (7.16), (7.17) which also relatelgm U, N S the boundary conditions
given onU, N T andU, N T'. These transformations imply also transformations of the
gauge source functions. Using the uniqueness property for the solution of the initial
boundary value problem for the reduced equations (which is an immediate consequence
of the energy estimates) we can thus show that the solution indueggddsythe domain

of dependenc®),, (with respect tas,,) of U, N U, N(SUT)in U, is related by a gauge
transformation to the solution induced by on the domain of dependend#, (with
respect tau,) of U, N U, N (S UT) in U,. Thus we can identifyl{,, u,), (U, uy) ON

U, NU, viathe gauge tranformation to obtain a solution.gyu U,. Since the time-like
frame vectors o/, andU, are not affected by the gauge transformations (7.16), (7.17)
they are also identified ofi, N U, and we obtain a unique time-like vector fielglon

U, UU,. Proceeding along these lines we can construct a neighboufhodd in M

on which there exists a smooth solutiarof (2.5) such that the initial and boundary
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conditions are satisfied ahn.S andZ N1 respectively and coincides with the domain
of dependence of N (S U T') with respect tou. Furthermore we get o0& a unique
time-like unit vector fieldeg which is in particular tangent tg N 7.

It is well known from the study of the Cauchy problem for Einstein’s field equation
thatthe datg, x on.S'\ £ determine a (geometrically) unique, smooth, maximal, globally
hyperbolic solution §/s, gs) to the vacuum field equations. Denote By the domain
of dependence of\ X) N Z in (Z, g), with ¢ the metric determined from, and by
D the domain of dependence &f { ) N Z in (Mg, gs). The results on the Cauchy
problem then allow us to conclude that there must exist an isometric embeddihg
Dy into D. Using1 to identify D, with ¢(D ), we obtain a solutionX/’, g) to the
vacuum field equations. We can, possibly after shrinkifigslightly, extend the vector
field eg given in a neighbourhood df N T to a time-like unit vector fieldg in (M, g)
and define a smooth functiar? which vanishes o$ and satisfiesc ep, dz® >= 1 on
M'. Choosingr > 0 small enough, the integral curves @f starting onS will have
length not smaller than. This proves assertions (i)—(iii) of the theorem.

The proof of assertion (iv) relies on the fact that we can bring the solutions into a
standard form neaX if the mean extrinsic curvature is constant on the boundary.

Assume thak = xo = const and that /', g), (M’, g) are solutions of the vacuum
equations satisfying conditions (i)—(iii). Denote By D the domain of dependence of
S\ Zin (M, g), (M, g) respectively. We can assume, possibly after shrinkind
in time, that there exists an isometgyof (D, g|p) onto @7§|ﬁ) which induces the
identity onS \ X.

Letz be a boundary defining function Ghwith level setsS, andd a smooth function
on S with 6|5 = ©. Denote byej the normalized gradient af® pointing towardsS on
3. Notice thatit does not matter whether we ysar g here.

The following constructions will be done od/’, g). Let eg be the time-like unit
vector field onS, which is orthogonal t&.. and satisfieg(eo, e5) = — sinh@). Following
the discussion in Sect. 4 we can construct a slicing of a neighbourRboflT in M’
by hypersurface$., 0 < ¢ < supz®, suchthafl,, N S = S., eg is tangent tdl, on S,

T, has constant mean extrinsic curvatygethe vector fieldg on S.. can be extended to
aT.-intrinsic geodesics vector fielg onT,. with connected integral curves. We denote
by z° the function onk’ which vanishes o8 and induces the natural (affine) parameter
on the integral curves af. Leth € C*°(R, R) be a decreasing function witt{(0) > 0,
h(a) = 0 for somea, 0 < a < supz? such that the sek which is bounded by”, S
and{p € M'| z° < h(2®)} is relative compact i/’ and coincides with the domain of
dependence dR N (SUT’) in M'. R

We can repeat this discussion with/(, g) replacing (/’, g) to obtain analogous
setsT, (with mean extrinsic curvature equal @), R, vector fieldey, and functionz®
based on:® andd. By a suitable choice df we can assume that the same functions are
used to defing? andR.  _ R

We define now a mag from R ontoR. If p € R, there is a unique numberand a
uniqueq € S, such thel-intrinsic geodesic off’, with tangent vectoey atq meetsp.

We definey(p) to be the unigue point on tHE -intrinsic geodesic througtfor which
29((p)) = 2%p). The mapy then defines a bijection which implies the identity on
RNS=RNS. R

By Lemma 4.2 we can express the solutiongymR locally in terms of a gauge as
described in Sect. 4 with the gauge source function being in both cases gi#eh by0,

f = xo- In terms of such a gauge the data related/bgre identical and the reduced
field equations take the same form. The uniqueness of the local solutions, implied by
the energy estimates, allows us to conclude thitin fact an isometry.
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We show that the restrictions gfandy to RN D define identical maps frol N D
ontoR N D. Sincey is an isometry which leaves(\ ) N R pointwise invariant, the
setsT. = ¥(T,. N D N R) have constant mean extrinsic curvature equa{dosatisfy
T.NnS = S., and are tangent iy on S.., because(T'(v) eo, e3) = G(T'(v)) eo, T(1)) e3) =
g(eo, €5) = — sinh) entailsep = T'(1)) eo. This implies thafl. C T.. Since isometries
map geodesic vector fields again onto such vector fields, it followsthateg = €9 on
T... Since isometries preserve affine parameters, we hawei® o ) onT,. N D N R.
This implies our assertion. R o

Defining the map¥ from M” = RU D ontoM” = RU D to be equal ta) on D
and equal ta) elsewhere, we get an isometry for the metrics induceg &ydg on M"
andM" respectively. This proves assertion (iv). O
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