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Preface

Around 1980, W. Thurston proved that every knot complement satisfies the
geometrization conjecture: it decomposes into pieces that admit locally homo-
geneous geometric structures. In addition, he proved that the complement of
any non-torus, non-satellite knot admits a complete hyperbolic metric which,
by the Mostow–Prasad rigidity theorem, is is necessarily unique up to isome-
try. As a result, geometric information about a knot complement, such as its
volume, gives topological invariants of the knot.

Since the mid-1980’s, knot theory has also been invigorated by ideas from
quantum physics, which have led to powerful and subtle knot invariants, in-
cluding the Jones polynomial and its relatives, the colored Jones polynomials.
Topological quantum field theory predicts that these quantum invariants are
very closely connected to geometric structures on knot complements, and par-
ticularly to hyperbolic geometry. The volume conjecture of R. Kashaev, H. Mu-
rakami, and J. Murakami, which asserts that the volume of a hyperbolic knot
is determined by certain asymptotics of colored Jones polynomials, fits into the
context of these predictions. Despite compelling experimental evidence, these
conjectures are currently verified for only a few examples of hyperbolic knots.

This monograph initiates a systematic study of relations between quantum
and geometric knot invariants. Under mild diagrammatic hypotheses that arise
naturally in the study of knot polynomial invariants (A– or B–adequacy), we
derive direct and concrete relations between colored Jones polynomials and the
topology of incompressible spanning surfaces in knot and link complements.
We prove that the growth of the degree of the colored Jones polynomials is a
boundary slope of an essential surface in the knot complement, and that certain
coefficients of the polynomial measure how far this surface is from being a fiber
in the knot complement. In particular, the surface is a fiber if and only if a
certain coefficient vanishes.

Our results also yield concrete relations between hyperbolic geometry and
colored Jones polynomials: for certain families of links, coefficients of the poly-
nomials determine the hyperbolic volume to within a factor of 4. Our methods
here provide a deeper and more intrinsic explanation for similar connections
that have been previously observed.

Our approach is to generalize the checkerboard decompositions of alter-
nating knots and links. For A– or B–adequate diagrams, we show that the
checkerboard knot surfaces are incompressible, and obtain an ideal polyhedral
decomposition of their complement. We use normal surface theory to estab-
lish a dictionary between the pieces of the JSJ decomposition of the surface
complement and the combinatorial structure of certain spines of the checker-
board surface (state graphs). In particular, we give a combinatorial formula
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for the complexity of the hyperbolic part of the JSJ decomposition (the guts)
of the surface complement in terms of the diagram of the knot, and use this
to give lower bounds on volumes of several classes of knots. Since state graphs
have previously appeared in the study of Jones polynomials, our setting and
methods create a bridge between quantum invariants and geometries of knot
complements.
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[43] Stavros Garoufalidis and Thang T. Q. Lê. The colored Jones function is q-holonomic.
Geom. Topol., 9:1253–1293 (electronic), 2005. [15, 169]

[44] Michael Gromov. Volume and bounded cohomology. Inst. Hautes Études Sci. Publ. Math.,
(56):5–99 (1983), 1982. [8]
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