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A relationship between the geometry of knot complements and the
colored Jones polynomial is given in this monograph. The writing is
well organized and comprehensive, and the book is accessible to both
researchers and graduate students with some background in geometric
topology and Jones-type invariants.

In the late 1970’s, the Jaco-Shalen-Johannson (JSJ) decomposition
provided a method of decomposing a 3-manifold along surfaces of
small genus [W. H. Jaco and P. B. Shalen, Mem. Amer. Math. Soc. 21
(1979), no. 220, viii+192 pp.; MR0539411 (81c:57010); K. Johannson,
Homotopy equivalences of 3-manifolds with boundaries, Lecture Notes
in Mathematics, 761, Springer, Berlin, 1979; MR0551744 (82c:57005)].
Thurston’s geometrization conjecture stated that the pieces of this
decomposition should admit homogeneous geometric structures. In
the mid 1980’s, the Jones polynomial [V. F. R. Jones, Bull. Amer.
Math. Soc. (N.S.) 12 (1985), no. 1, 103–111; MR0766964 (86e:57006)]
was introduced, which can be computed using the combinatorics of
the link diagram via Kauffman’s bracket formulation. Subsequently,
Witten’s work on (2 + 1)-dimensional topological quantum field the-
ory (TQFT) provided a framework relating the Jones polynomial and
the geometric structures of a 3-manifold. However, Reshetikhin and
Turaev’s rigorous definition of a TQFT relied on representations of
quantum groups and did not provide insight as to the interaction
between the Jones polynomial and the geometry of the knot comple-
ment. This was followed by Kashaev’s family of invariants of links
in 3-manifolds, which led to the volume conjecture—which proposes
that the volume of a hyperbolic knot is determined by the large N
asymptotics of the colored Jones polynomial.

More recently, researchers have studied the relationship between
the coefficients of the Jones (and colored Jones) polynomials and
the volume of hyperbolic links. Work of A. Champanerkar, I. Kof-
man and E. Patterson provides numerical evidence of this relationship
[J. Knot Theory Ramifications 13 (2004), no. 7, 965–987; MR2101238
(2005k:57010)] as does work of O. T. Dasbach and X.-S. Lin [Com-
pos. Math. 142 (2006), no. 5, 1332–1342; MR2264669 (2007g:57018)].
The authors of this monograph have several articles—relating twist
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numbers to coefficients of the Jones polynomial and relating twist
numbers to hyperbolic volume—that rely on properties of Turaev
surfaces to relate twist numbers and coefficients of the Jones poly-
nomial [J. Differential Geom. 78 (2008), no. 3, 429–464; MR2396249
(2009c:57010); Math. Res. Lett. 16 (2009), no. 2, 233–253; MR2496741
(2010k:57011); Int. Math. Res. Not. IMRN 2010, no. 23, 4434–4497;
MR2739802 (2011k:57027)].

In this monograph, the authors establish a relationship between
the topology of incompressible surfaces in the knot complement and
the colored Jones polynomial. Specifically, they measure how far the
surface is from a fiber, using the reduced state graph G′

A, by relating
the negative Euler characteristic of the guts with the reduced state
graph. In the conclusion, the authors propose some directions for
future work. One possible direction is an analysis of essential surfaces
in S3\K using the decomposition as an approach to the cabling
conjecture. They also propose a coarse volume conjecture.

We provide an overview of the monograph. Basic definitions from
low-dimensional topology are included in Chapter 1 along with a
summary of the results. The main results of the monograph are
presented in Chapters 5 and 9; technical lemmas used in the theorems
are given in Chapters 3, 4, and 6–8. The main result in Chapter 5
is Theorem 5.11, which relates a reduced state graph of the Jones
polynomial G′

A and the topology of the complement of the knot and
its spanning surface (SA). This result leads to a relation between
χ−(guts(S3\\SA)) and χ−(G′

A) for the spanning surface SA. Work by
I. Agol, P. A. Storm and W. P. Thurston established that computation
of lower bounds on χ−(guts) of an essential surface in S3\K leads
to a lower bound on the volume of S3\K [J. Amer. Math. Soc. 20
(2007), no. 4, 1053–1077; MR2328715 (2008i:53086)]. Hence, Chapter
9 focuses on the relationship between the second-to-last coefficients
of the Jones polynomial and the guts calculations to establish volume
bounds.

In Chapter 1, terminology arising from the colored Jones poly-
nomial and geometric topology is recalled. For a knot diagram K,
HA (respectively HB) is the graph obtained from the all-A state (re-
spectively the all-B state). The notation GA denotes the state graph
obtained by collapsing the state circles of the state A to vertices; G′

A

denotes the reduced state graph obtained by removing all multiple
edges from GA. The nth colored Jones polynomial of K is written as

Jn
K(t) = αnt

mn +βnt
mn−1 · · ·β′

nt
rn+1 +α′

nt
rn

where rn is the lowest degree and mn is the highest. The authors
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consider semi-adequate links (links that contain no self-touching loops
in either the all-A state or the all-B state) throughout the monograph.
The notation M = S3\K denotes the three-manifold obtained by
removing a tubular neighborhood of K, SA denotes the all-A state
surface and M\\SA denotes the path-metric closure of M\SA. S3\\SA

(which is homeomorphic to M\\SA) is denoted as MA.
In Chapter 2, the authors describe how to cut the link complement

along the state surface SA, thereby forming MA. The state surface
is used to decompose the handlebody into topological balls with a
checkerboard coloring. We state key points of Lemma 2.21. The de-
composition of MA along a collection of non-prime arcs α1, α2, . . . , αn

consists of an upper ball and a collection of lower balls. The boundary
of the balls consists of white faces and shared regions. Since the lower
3-balls are in one-to-one correspondence with complementary regions
of SA ∪ (

⋃n
i=1 αi), the lower 3-balls are ideal polyhedrons. The upper

3-ball (with its faces and vertices) is projected onto the state graph
HA.

In Chapter 3, the authors prove that the shaded regions of the
upper 3-ball are simply connected and conclude that the upper 3-
ball is an ideal polyhedron. The main method of proof consists of
“tentacle chasing”—the shaded faces of the upper polyhedron have
tentacles extending along the graph HA. A sequence of arguments
about tentacles extending from the shaded faces proves that the
shaded regions are simply connected. This leads to the conclusion that
the upper polyhedron is a checkerboard colored, ideal polyhedron. The
definitions of normal surfaces and compression disks are provided. In
Proposition 3.18, the authors show that the polyhedra do not contain
normal bigons and that all of the ideal polyhedra are prime. This
result is used to give a new proof of the following result of Ozawa: Let
D be a connected diagram of a link K. The surface SA is essential in
S3\K if and only if D is A-adequate [M. Ozawa, J. Aust. Math. Soc.
91 (2011), no. 3, 391–404;MR2900614].

In Chapter 4, MA is decomposed using the JSJ decomposition along
essential annuli. This decomposition divides MA into the characteristic
submanifold and the guts, which admit a hyperbolic metric with
totally geodesic boundary. The authors prove that the characteristic
submanifold consists of I-bundles and Seifert fibered pieces. The pieces
of the characteristic submanifold that affect Euler characteristic are
I-bundles and these are spanned by essential product disks. (An
essential product disk (EPD) is a properly embedded essential disk
in MA whose boundary meets the parabolic locus twice.) Each EPD
embeds in a single polyhedra. The main result of the chapter is
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Theorem 4.4: Let B be a nontrivial component of the characteristic
submanifold of MA. Then B is spanned by a collection of essential
product disks D1, D2, . . . , Dn with the property that each Di is
embedded in a single polyhedron in the polyhedral decomposition of
MA.

Chapter 5 focuses on the problem of computing the Euler character-
istic of the guts of MA, and the computation of the Euler characteristic
is reduced to the problem of counting how many complex EPDs are
required to span the I-bundle. The main results of this chapter are
given in Theorem 5.14 and Theorem 5.11. We introduce some termi-
nology used in the chapter. A collection of EPDs span the I-bundle of
MA if their complement is a collection of prisms and tori. An EPD is
simple if it is the boundary of a regular neighborhood of a white bigon
face. An EPD is semi-simple if it can be parabolically compressed to
a union of simple disks. An EPD is complex if it is neither simple
nor semi-simple. Theorem 5.11 states that if D(K) is any link dia-
gram, and SA is the spanning surface determined by the all-A state
of this diagram, then the following are equivalent: (1) The reduced
graph G′

A is a tree. (G′
A is obtained from the state graph by remov-

ing multiple edges between pairs of vertices.) (2) S3\K fibers over S1

with fiber SA. (3) MA is an I-bundle over SA.
The authors prove that the EPDs embedded in the lower poly-

hedra are in one-to-one correspondence with 2-edge loops in GA.
Theorem 5.14 states that if D(K) is an A-adequate diagram and SA

is the essential spanning surface determined by the diagram, then
χ−(guts(MA)) = χ−(G′

A)−‖Ec‖.
The key result in Chapter 6 states that normal squares (EPDs)

correspond to 2-edge loops in GA. The technical theorems rely on
tentacle chasing arguments. The authors prove that the EPDs corre-
spond to only 7 subgraphs of HA, which allows them to count complex
EPDs for large classes of link complements. In Chapter 7, attention
is restricted to the special case of A-adequate diagrams D(K) with
no non-prime arcs or switches. This special case simplifies the esti-
mate on the guts of MA. The majority of Chapter 7 is devoted to
proving the following theorem: Let D(K) be a prime, A-adequate dia-
gram with essential spanning surface SA determined by the diagram.
Suppose that the polyhedral decomposition of MA contains no non-
prime arcs. Then χ−(G′

A)− 8mA ≤ χ−(guts(MA)) ≤ χ−(G′
A) where

the lower bound is an equality if and only if mA = 0.
Chapters 8 and 9 contain applications of the guts calculations.

Montesinos links are described along with rational tangles. In Theorem
8.6, the authors prove that if K is a Montesinos link with a reduced
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admissible diagram D(K), and at least three tangles of positive slope,
then D(K) is A-adequate and χ−(guts(MA)) = χ−(G′

A). In Chapter
9, the calculation of χ−(guts(MA)) leads to a relationship between
the geometry of A-adequate links and diagrammatic quantities and
the Jones polynomial and the construction of diagrammatic estimates
for the volume of Montesinos links. Next, the quantity χ−(guts(MA))
is related to coefficients of the Jones and colored Jones polynomials.
As an application, the authors show that the second lowest coefficient
of the Jones polynomial (β′

K ) detects whether a state surface is a fiber
in the knot complement. In Section 9.4, the authors obtain relations
between the Jones polynomial and volume and give new, stronger,
two-sided bounds on both the positive braids and the Montesinos
links.
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