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Hyperbolic semi-adequate links
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We provide a diagrammatic criterion for semi-adequate links to be
hyperbolic. We also give a conjectural description of the satellite
structures of semi-adequate links. One application of our result
is that the closures of sufficiently complicated positive braids are
hyperbolic links.
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1. Introduction

The problem of determining the geometric structure of a link complement
from a link diagram is both important and hard. A related, similarly difficult,
problem asks for relations between geometric and diagrammatic invariants
of a link. The purpose of this paper is to discuss these problems for the
class of semi-adequate links. We give diagrammatic criteria for such links
to be hyperbolic, and state a conjecture about their satellite structures.
Semi-adequate links form a very broad class of links that first appeared
in the study of Jones—type invariants [23, 29], and have since been studied
considerably from the point of view of both quantum topology and geometric
topology; see [14] and references therein.

In [13], we developed a framework for establishing relations between geo-
metric and combinatorial link invariants. In particular, to a semi-adequate
link diagram we associate a certain graph (state graph) and a surface spanned
by the link, and construct a certain ideal polyhedral decomposition of the
surface complement. We use normal surface theory to show that combi-
natorial properties of the state graph dictate the structure of the JSJ-
decomposition of the surface complement, and encode geometric informa-
tion of the link complement. For instance we show that, for hyperbolic semi-
adequate links, graph theoretic invariants coarsely determine the volume of
the link [13] and the geometric types of certain essential surfaces in the link
complement [15]. The machinery of [13] lends itself naturally to the study
of essential surfaces in link complements via normal surface theory.

In this paper, we focus on essential tori and annuli in link complements,
and give a diagrammatic criterion that rules them out, implying the link is
hyperbolic. For links that fail this criterion, we give a conjectural descrip-
tion of the satellite structures. Our results place several known classes of
hyperbolic links under a common umbrella and lead to new constructions of
such links.

To state our results, we need to briefly explain the related terminology;
we give precise definitions in Section 2. For every semi-adequate link diagram
there is a corresponding state graph G. The edges of G are in one-to-one
correspondence with the crossings of the link diagram. One way to obtain
2—edge loops in G is from crossings in the same twist region of the link
diagram, where edges of G corresponding to crossings of that twist region
are parallel between two vertices of G. Our result concerns link diagrams for
which all the 2—edge loops of G are obtained this way.
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Figure 1: Left: the (—2,3,3) pretzel knot. Right: the graph of the all-A
resolution contains 2-edge loops that do not belong to a single twist region.

Theorem 1.1. Suppose that D(K) is a connected, prime, semi-adequate
diagram with at least two twist regions, such that for each 2—edge loop in the
corresponding state graph, the edges belong to the same twist region. Then
the link K depicted by this diagram is hyperbolic.

Figure 1 shows an example of a connected, prime, semi-adequate diagram
that doesn’t satisfy the 2—edge loop hypothesis of Theorem 1.1. This diagram
represents the (—2, 3, 3) pretzel knot, which is known to be equivalent to the
(3,4) torus knot, hence is not hyperbolic. This shows that the 2—edge loop
condition is necessary for Theorem 1.1. The class of links with semi-adequate
diagrams that don’t satisfy the 2—edge loop condition is quite large, and
contains plenty of hyperbolic knots (e.g. the (—2,3,7) pretzel) and satellite
knots (see Example 1.5).

Theorem 1.1 is reminiscent of a result of Menasco, which states that
any link admitting a connected, prime, alternating diagram with at least
two twist regions is hyperbolic [24]. In fact, the hypotheses of Theorem 1.1
apply in particular to prime, alternating, twist-reduced diagrams. In this
setting, the statement of the theorem reduces to Menasco’s result.

In addition, Theorem 1.1 generalizes Menasco’s result to large classes of
non-alternating links. For a warm-up example, consider the non-alternating
pretzel link diagram of the form P(aq,...,a,,b1,...,bs) that has r vertical
bands containing a1, ..., a, positive crossings, and s vertical bands contain-
ing by,...,bs negative crossings. See Figure 1 for the example of P(—2,3, 3),
and [23, Figures 1 and 2| for the general case. If r, s > 3 and a;,b; > 3, for all
1, then the diagrams satisfy the hypothesis of Theorem 1.1. More generally,
one may obtain families of non-alternating Montesinos or arborescent links
by imposing similar restrictions on the rational tangles involved. Note that
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a classification of hyperbolic arborescent links is already known by the work
of Bonahon and Siebenmann [6, 9].

For a sample class of non-alternating links whose hyperbolicity can be
established for the first time using Theorem 1.1, consider the family of pos-
itive or negative closed braids with at least 3 crossings per twist region.

Corollary 1.2. Let B,, be the braid group on n strands, with n > 3, and
let o1,...,0n-1 be the elementary braid generators. Let b= o;'0;> --- o, be
a braid in B,,. Suppose that either r; > 3 for all j, or else r; < —3 for all j.
Suppose moreover that the braid closure Dy of b is a prime diagram. Then

the link K depicted by this diagram is hyperbolic.

Several other applications of Theorem 1.1 are given by Giambrone [17].
For instance, he proves that for a sufficiently complicated braid b, the plat
closure of b is hyperbolic.

The problem of determining the geometric structures of link comple-
ments from link diagrams has been studied considerably in the literature. In
addition to the work of Menasco on alternating links, Bonahon and Sieben-
mann [6] classified the geometric types of arborescent links and showed that
with some explicitly described exceptions, these links are hyperbolic. See also
Futer and Guéritaud [9] for a direct proof. Adams showed that augmented
alternating links are hyperbolic [1]. He also showed that toroidally alter-
nating links are either composite, torus knots, or hyperbolic [2], although
determining which of the three occurs is difficult. More recently, Futer and
Purcell showed that prime link diagrams in which each twist region has at
least six crossings represent either (2, q) torus links or hyperbolic links [16].
Purcell investigated the geometric structures of certain families of links with
multiply twisted regions [27, 28]. For similar results on other classes of knots
and links, we refer the reader to Adams’ survey paper [3].

As a corollary of Theorem 1.1, we conclude that the primality of a link
can be easily read off from a diagram.

Corollary 1.3. Let D(K) be a connected, semi-adequate diagram without
nugatory crossings. Suppose that for each 2—edge loop in the corresponding
state graph, the edges belong to the same twist region of D(K). Then K is
a prime link if and only if D(K) is prime.

Corollary 1.3 is reminiscent of some prior results for more restricted
link families. For instance, it generalizes a theorem of Menasco: if D(K) is a
connected alternating diagram, then K is prime if and only if D(K) is prime
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[24]. Similarly, Ozawa proved that if D(K) is a connected positive diagram,
then K is prime if and only if D(K) is prime [25].

In fact, the hypothesis on 2—edge loops in Corollary 1.3 should be unnec-
essary. It is conjectured that a connected, prime, semi-adequate diagram
must always represent a prime link (see [13, Problem 10.6] and [26]). Corol-
lary 1.3 gives a partial solution to this conjecture.

Finally, we note that a connected, semi-adequate diagram always repre-
sents a non-split link. See Thistlethwaite [29, Corollary 3.2] for the original
proof, relying on properties of link polynomial invariants, and Ozawa [26,
Theorem 2.15] for an alternate, geometric proof. Thus for the rest of the
paper, we will assume our diagrams are connected, and hence the link is
non-split.

1.1. Volume bounds and relations

The machinery of [13] allows for connections between geometric invariants of
a link complement, combinatorial properties of its diagram, and stable coef-
ficients of its colored Jones polynomials. The class of links of Theorem 1.1 is
particularly well suited for such applications. For instance, [13, Corollary 9.4]
relates the hyperbolic volume of these links to the Euler characteristic of the
corresponding reduced state graph. (See Definition 2.2 for the terminology
and notation.)

Corollary 1.4. Suppose that K is a link with prime, semi-adequate dia-
gram D(K) as in the statement of Theorem 1.1. Then

vol(S3\K) > —wg x(G),

where vg = 3.6638 - -+ is the volume of a reqular ideal octahedron and G’ is
/

'y or G5 according to whether D(K) is A-adequate or B-adequate.

This corollary has applications in two directions. First, coupled with the
upper volume bounds given by Lackenby, Agol, and Thurston, [22], and com-
bined with additional work of Giambrone [17], it leads to two-sided bounds
on vol(S3\K) in terms of the twist number of a semi-adequate diagram.
This extends a result of Lackenby [22] and results of the authors [10-12]
to new link families. Second, it leads to two-sided bounds on vol(S3\ K) in
terms of stable coefficients of the colored Jones polynomials of K, as pre-
dicted by the Coarse Volume Conjecture [13, Question 10.13]. Details are
given in Giambrone [17].
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1.2. Satellite semi-adequate links

As we mentioned above, there is a conjectural strengthening of Corollary 1.3,
which removes the hypothesis on 2—edge loops. Formulating the right con-
jectural strengthening of Theorem 1.1 requires some care, as there are many
non-hyperbolic semi-adequate links. For example, it is well-known that all
torus links are semi-adequate. Similarly, all planar cables of a semi-adequate
diagram are semi-adequate [7]. There are also many semi-adequate satellites,
as the following construction illustrates.

Example 1.5. Recall that a satellite link is constructed from a companion
knot J C S3, a pattern link K' C D? x S', and an embedding f : D? x S' —
N(J). The image K = f(K') will be a non-trivial satellite whenever .J is non-
trivial, and K’ is not the core of the solid torus or contained in a ball in
the solid torus. The whole construction can be performed diagrammatically:
given a diagram D(J) C R? and a diagram D(K') C [0,1] x S!, the black-
board framing of D(J) specifies a way to immerse the annulus I x S* into
R?, which gives a diagram D(K). See Figure 2.

Suppose D(J) C R? and D(K') C I x S! are both A-adequate diagrams.
Consider the graph H4(K') coming from K’ (see Definitions 2.1 and 2.2).
Suppose that there is a rectangle R = I x I C I x S!, such that if we remove
the state circles and segments of H4 that lie entirely in R, what remains is
n > 1 copies of the core curve {*} x S*.

Now, suppose that we use the blackboard framing of D(.J) to immerse the
annulus I x S' into R?, so that the image rectangle f(R) lies in a crossing—
free region of D(J). Outside the image rectangle f(R), the graph Hy4 of the
resulting diagram D(K') will look identical to the graph of the n—fold planar
cable of J, which is known to be A-adequate. Inside f(R), the diagram is
A-adequate because D(K') is A-adequate. See Figure 2 for an example,
which produces the Whitehead double of the trefoil.

Conjecture 1.6. Suppose D(K) is a semi-adequate diagram of a satellite
link K. Then D(K) or its mirror image can be obtained using the construc-
tion of Example 1.5. In particular, the satellite torus must be visible in D(K)
as the reqular neighborhood of an immersed annulus.

1.3. Organization

The paper is organized as follows. In Section 2, we summarize definitions and
the main tools from [13] that are needed in this paper. To a semi-adequate
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Figure 2: Left: a diagram D(K’) in an annulus. State circles of the all-A
resolution are shown in green. After removing state circles in a rectangle R,
what remains is two parallel copies of the core. Right: an embedding of this
annulus into a regular neighborhood of the trefoil produces an A-adequate
diagram of a Whitehead double.

diagram D(K), we associate a state surface S4 that is essential in the com-
plement of K. Its complement M4 = S3\\S4 admits a checkerboard ideal
polyhedral decomposition (see §2.2). The intersection of an essential torus
in S3\K with M, is a collection of essential annuli that can be studied
using normal surface theory with respect to the polyhedral decomposition.
We discuss this in Section 3, where we also show that the resulting essen-
tial annuli in M4 fall into two types: diagrammatically compressible and
diagrammatically incompressible (see Definition 3.2).

In Sections 4 and 5, we analyze the two types of annuli and conclude
that under the hypotheses of Theorem 1.1, neither of the two types arise
as part of an essential torus. We note that our analysis of diagrammatically
incompressible annuli in Section 4 does not require the hypotheses of The-
orem 1.1. It leads to a classification of such annuli in complements of all
semi-adequate links. We expect that these results will have further appli-
cations, including in approaching Conjecture 1.6. In Section 5, where we
study diagrammatically compressible annuli, a key ingredient is a classifi-
cation of essential product disks in polyhedra from [13]. The main result in
Sections 4 and 5 is Theorem 5.10: if a diagram D(K) is as in the statement
of Theorem 1.1, then S3\ K is atoroidal.

In Section 6, we complete the proof of Theorem 1.1 and Corollaries 1.2
and 1.3. Our approach in this section is to rule out the possibility that S3~ K
might be Seifert fibered, using Gromov norm estimates and Turaev surface
methods.
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2. Background and tools

We begin this section by recalling definitions of semi-adequate knots and
related terms. We also review some constructions from [13] that we will be
using throughout the paper.

2.1. Definitions

For any crossing of a link diagram D := D(K), there are two resolutions,
called the A-resolution and B-resolution of the crossing, as in Figure 3.

X I M

A-resolution B-resolution

Figure 3: A— and B-resolutions of a crossing.

A choice of A— or B-resolution for each crossing of D is called a Kauff-
man state [20]. The result of applying a state to D a collection of circles
disjointly embedded in the projection plane. These are called state circles.

Throughout this paper, we will be concerned only with the all-A and
all-B states, which correspond to making a uniform choice of A or B at all
crossings.

Definition 2.1. Given a diagram D(K) and the all-A state of D, we con-
struct a trivalent graph H4 as follows. For each resolved crossing of D, add
an edge between resulting state circles, shown dashed in Figure 3. Every
edge of H 4 either belongs to a state circle of the all-A resolution, or comes
from a crossing. The latter edges are called segments.

Similarly, we define a trivalent graph Hp, whose edges consist of state
circles and segments of the B-resolution. Observe that the original link
diagram D(K) can be reconstructed from the graph H4 or Hp.

Definition 2.2. The state graphs G4 and Gp are obtained from H 4 and
Hp, respectively, by collapsing each state circle to a vertex. Removing redun-
dant edges between vertices, we obtain the reduced state graphs G'; and G'5.

Following Lickorish and Thistlethwaite [23, 29], a diagram D is said to
be A-adequate if every edge of G4 has its endpoints on distinct vertices.
Similarly, one can define B-adequate diagrams using Gp. A link diagram
that is either A-adequate or B—adequate is called semi-adequate.
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A link K will be called A-adequate (B-adequate) if it admits an A—
adequate (B-adequate) diagram. A link that is either A-adequate or B—
adequate is called semi-adequate.

Definition 2.3. A link diagram D is called prime if any closed curve in the
projection plane that meets the diagram transversely exactly twice bounds
a region of the diagram with no crossings.

A twist region of D is a collection of bigons in D that are adjacent end
to end, such that there are no additional adjacent bigons on either end.
An example of such a twist region is shown at the top of Figure 4. A single
crossing adjacent to no bigons is also a twist region. We require twist regions
to be alternating, for if D contains a bigon that is not alternating, then a
Reidemeister move removes both crossings without altering the rest of the
diagram. The number of distinct twist regions in a diagram is defined to
be the twist number of that diagram. Note that if D has exactly one twist
region, it is a closed 2-braid; i.e. the standard diagram of a (2, q) torus link.

To understand the statement of Theorem 1.1, we need to explain the
hypothesis that for each 2—edge loop in the state graph, the edges belong to
the same twist region of D(K). To make this precise, we need the following
definition.

Definition 2.4. Suppose R is a twist region of a link diagram D such
that R contains cp > 1 crossings. Consider the all-A and all-B resolutions
applied to R. One of the state graphs, say Gp, will inherit cg — 1 vertices
from the cp — 1 bigons contained in R. We say that this is the long resolution
of R. The other graph, say G 4, contains cp parallel edges only one of which
survives in G';. This is the short resolution of R. See Figure 4.

Throughout the paper, we will be concerned with semi-adequate dia-
grams where the 2—edge loops in the corresponding state graph come from
short resolutions of twist regions.

Definition 2.5. Suppose that the state graph, say G4, contains a 2—-edge
loop. We say that the two edges of that loop belong to the same twist region
R of the diagram if first, the edges come from resolving two crossings in R,
and second, the resolution of R in G4 is the short one. If every 2—edge loop
in G4 has its edges in the same twist region, we say that G4 satisfies the
2—edge loop condition. See Figure 1 for an example that fails the 2—edge loop
condition.
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000
»0-0-0< 00T

long short

Figure 4: Resolutions of a twist region R.

Suppose 7 is a simple closed curve meeting the diagram D(K) exactly
twice in two crossings x1, zo. Adjust v in a neighborhood of each crossing, so
that after the adjustment v meets the diagram exactly four times, and has a
subarc ~; in the neighborhood of x;, with endpoints on the projection of K.
Now consider the A— and B-resolutions of the two crossings. For each z;,
exactly one of these resolutions will produce a segment that is parallel to ~;.
When v meets two crossings in a twist region, then the resolution producing
the segment parallel to ; is the short resolution of the twist region.

Figure 5: The property of being A-twist reduced. Whenever there is a closed
curve v meeting the diagram as shown on the left, the crossings x; and x»
must belong to the same twist region, as shown on the right. Note that the
twist region containing x1,xo can lie on either side of ~.

Definition 2.6. We say that a diagram is A—twist reduced if it satisfies
the following property. Suppose 7 is a simple closed curve vy meeting the
diagram exactly four times adjacent to two crossings, as above, such that
the all-A state produces segments parallel to subarcs of . Then v bounds
a subdiagram consisting of a (possibly empty) collection of bigons arranged
in a row between the two crossings. See Figure 5.
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The property of being B—twist reduced is defined in the same way, with
the all-B state replacing the all-A state. Adequate diagrams that are both
A- and B-twist reduced are twist reduced in the sense of Lackenby [22].

In the sequel, we will consider A—adequate diagrams for simplicity. The
same results hold for B—adequate diagrams, by taking a mirror image.

Lemma 2.7. Let D(K) be an A-adequate diagram such that G satisfies
the 2—edge loop condition. Then D(K) is A—twist reduced.

Proof. Suppose that v is a closed curve as in Definition 2.6, meeting the
diagram exactly four times adjacent to two crossings, 1 and zs. Let
denote the subarc of v which runs between two points on the diagram and
lies in a neighborhood of the crossing x;. Suppose that the A-resolution of
x1 and xo produces segments parallel to y; and 5. Consider how the state
circles of the all-A state intersect the region inside .

First, note that if some state circle runs from x; back to x;, this state
circle will violate the definition of A-adequacy. Therefore, there must be two
state circles running from x; to x9, and the two edges of G4 corresponding
to those crossings give a 2—edge loop. By hypothesis, the edges belong to
the same twist region R, which means the edges come from resolving two
crossings of the twist region R in G4. Then by definition there must be a
(possibly empty) collection of bigons between x1 and x5, as desired. U

2.2. Polyhedral toolbox

The main technical tool that we use is a decomposition of the link comple-
ment into an /-bundle over a surface and a collection of ideal polyhedra [13,
Chapters 2-4]. In order to make this paper as self-contained as possible, we
will review the definitions and constructions from there that are relevant to
this paper. We will also recall the statements of some key results that are
needed below. On those occasions when we rely on results from [13] that are
not restated in this section, we will refer the reader to the exact statement of
the result we are using in that monograph. The background we provide here
should suffice for checking and absorbing the statements in these cases. The
reader need only consult the monograph [13] in order to learn the detailed
proofs.

For a reader who is new to this material, we also recommend consulting
the survey paper [14] for a quick guide to the key features of the polyhedral
decomposition.



1004 D. Futer, E. Kalfagianni and J. Purcell

Definition 2.8. A diagram D(K) determines a state surface Sy, con-
structed as follows. Each state circle of H4 bounds a disk, and the disks
associated to all the state circles can be disjointly embedded in the 3-ball
below the projection plane. (Note this collection of disks in the lower 3-ball
is unique up to isotopy.) Every crossing of D(K) gives a segment of Hy,
which runs between two state circles. We connect the corresponding disks
by a half-twisted band, twisted in the direction of the original crossing. The
result is a (possibly non-orientable) surface S4, whose boundary is K.

When D(K) is an A-adequate diagram, Ozawa [26] showed that S4 is
an essential surface in S*\ K. A different proof is given in [13].

Definition 2.9. Let M4 := S>\N(S4) denote the complement of an open
regular neighborhood of S 4. When convenient, we will also use the shorthand
notation S®\\S4 instead of S*\\N(S4). The boundary of M, decomposes
into the parabolic locus (the remnants in M, of the boundary tori of .S 3NK),
and a surface S4 that can be identified as the frontier of N(S4) in S3\K.
Note that S4 is a double cover of S4, connected if and only if S is non-
orientable.

The main technical tool of [13] that we use is a decomposition of M4
into ideal polyhedra. The faces of these polyhedra are checkerboard colored,
white and shaded. The white faces of each polyhedron are glued to another
polyhedron, while the shaded faces lie on S4. There is exactly one upper
polyhedron, which occupies the 3—ball above the projection plane. There are
multiple lower polyhedra, each of which is glued along its white faces to the
upper polyhedron only. All the polyhedra are prime, in the sense that a pair
of faces share at most one edge.

The precise combinatorics of the ideal polyhedra can be read off from the
diagram D(K) and the graph Hy4. (See [13, Chapter 2] and [14, Section 5]
for details on how to do this.) Here, we describe the features that are salient
for this paper.

The first feature we will need is information about the combinatorics
of the lower polyhedra. This information comes from subgraphs of H 4, or
slight modifications of subgraphs, which we call polyhedral regions. Their
precise definition is as follows.

Definition 2.10. Suppose « is an arc in the complement of H4 with both
endpoints on a state circle C'. Consider the subgraph of H4 consisting of
C and all state circles and segments which lie on the same side of C' as a.
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Figure 6: Left: A graph H4 with a maximal collection of non-prime arcs
(shown in dashed red). Right: This example breaks into four distinct poly-
hedral regions, as shown.

Note that « cuts the subgraph into two components, one on either side of
«. If both components contain segments, then we say « is a non-prime arc.
A collection of non-prime arcs is maximal if, once we cut along all such arcs
and all state circles, the graph decomposes into subgraphs that each contain
a segment, and no larger collection of non-prime arcs has this property.
Figure 6, left, shows an example of a graph H4 with a maximal collection
of non-prime arcs.

Let {a1,...,ay} denote a maximal collection of non-prime arcs. A poly-
hedral region is a nontrivial region of the complement of the state circles
and the «;, where by nontrivial we mean the region contains segments. Each
lower polyhedron corresponds to precisely one of these polyhedral regions.
Note that if H4 admits no non-prime arcs, then a polyhedral region is just
a region of the complement of the state circles which contains segments.
Figure 6 shows an example.

Each white face of the polyhedra corresponds to a nontrivial (i.e. non-
innermost disk) complementary region of H4 U (U] ;). The white faces
that belong to a lower polyhedron are glued to corresponding white faces in
the unique upper polyhedron.

Associated to each polyhedral region R, and a corresponding lower poly-
hedron P, we have a clockwise map. Loosely speaking, the clockwise map
¢ gives us a way to associate the lower polyhedron P with a section of the
upper polyhedron.

Definition 2.11. The clockwise map ¢ is a homeomorphism from the white
faces of the upper polyhedron belonging to the polyhedral region R to the
white faces of the corresponding lower polyhedron P. On each white face, ¢
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In S3\K Upper polyhedron  (a) Gluing map (b) Clockwise map

Figure 7: An edge (in red) in the link complement is shown, along with its
position in the upper polyhedron, and images under the gluing and clockwise
maps.

is defined by composing the gluing map to a white face of P with a single
clockwise rotation in that face.

Figure 7 shows an example of how the clockwise map compares to the
gluing map.

There is a way to extend the domain of definition of the clockwise map to
normal squares, that is, normal disks with 4 sides. We will use this multiple
times in this paper. The following is a restatement of [13, Lemma 4.8].

Lemma 2.12. Let S be a normal square in the upper polyhedron, with arcs
By and By in white faces V, W that belong to a polyhedral region R. Let P be
the lower polyhedron corresponding to R, with clockwise map ¢. Then there
is a normal square ¢(S) C P, unique up to normal isotopy, which contains
white sides ¢(By) and ¢(LBw ).

Furthermore, if S is glued along V' to a squareT" in the lower polyhedron,
then ¢(S) NV will differ from T NV by a single clockwise rotation of V.. [

3. Tori, annuli, and squares

In this section, we will consider essential tori embedded in the complement
of a semi-adequate knot. We will see that the state surface S4 cuts these
into annuli, and we will consider properties of these annuli. In particular, we
will show that the annuli decompose into squares, all of which are either dia-
grammatically compressible or diagrammatically incompressible. This sets
the stage for the next two sections, in which these two cases are analyzed
separately.
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Lemma 3.1. Let D(K) be an A-adequate diagram, with all-A state surface
Sa. Let T be an essential torus. Then we may isotope T such that TS 4 is
an even number of essential annuli, half embedded in M4 and half embedded
in the I-bundle N(S4).

Furthermore, those essential annuli in M are cut into normal squares
by the white faces of the polyhedral decomposition of M 4, where each square
has two opposite sides on shaded faces and two opposite sides on white faces.

Proof. Isotope T to be transverse to S4 and minimize the number of curves
of intersection with S4. Because S4 and T are both essential, this ensures
that all intersections 7'M S 4 are nontrivial simple closed curves on T'. Hence
TNN(Sa) and T\N(S4) consist of annuli, which are essential because T’
is essential.

Because the annuli in the closure of T\\N(S4) in M4 are essential, we
can put them into normal form with respect to the polyhedral decomposition
of M 4. This may involve isotopy of the boundary components of the annuli.
We may isotope the adjacent annuli in N (S4) to ensure that when we isotope
annuli into normal form, we actually isotope the entire torus.

Let £ C T'N M4 be an essential annulus in normal form. Since E cannot
be contained in a single polyhedron (because it is essential), it must intersect
the white faces. We claim that no arc of intersection between E and a white
face can be parallel to the boundary of E. This is because an outermost such
arc would cut off a normal bigon in an ideal polyhedron, and our prime ideal
polyhedra do not contain normal bigons [13, Proposition 3.18]. Therefore,
every arc of intersection between E and a white face runs across E, from one
boundary circle to the other. These arcs cut E into normal squares, finishing
the lemma. [

We will investigate the annuli and squares of Lemma 3.1. The study of
these surfaces will naturally break into two cases: whether the squares cut
off a single ideal vertex in a white face, or whether each edge in a white face
cuts off multiple ideal vertices on both sides. This is encoded in the following
definition.

Definition 3.2. Let S C M4 be a surface in normal form. We say that .S
is diagrammatically compressible if, in some white face W of the polyhedral
decomposition, an arc of SN W runs between two adjacent edges of W. In
other words, S is diagrammatically compressible in W if S N W cuts off an
ideal vertex of W. See Figure 8. Otherwise, if no such white face exists, we
call S diagrammatically incompressible.
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Figure 8: Shown is a white face W of the polyhedral decomposition. Red arcs
(dashed) cut off a single ideal vertex of W. A surface meeting W in such an
arc is diagrammatically compressible. A surface meeting W in the blue arc
(dot-dashed) is diagrammatically incompressible, provided its intersections
with other white faces also do not cut off a single ideal vertex.

If S is diagrammatically compressible in some white face W, it cuts off
a disk U ¢ W with two sides on shaded faces, one side on S, and one side
on an ideal vertex. Such a disk U is an example of what Lackenby calls
a parabolic compression disk. In other words, diagrammatically compress-
ible surfaces are also parabolically compressible (see [22, Page 209] for a
definition). For annuli, the converse also holds: by [13, Proposition 4.21], a
parabolically compressible annulus A C M 4 must be diagrammatically com-
pressible. Because we will be working with annuli below, we will not need
the notion of parabolic compressibility in this paper.

Lemma 3.3. Let QQ be a square in the upper polyhedron, glued to normal
squares in lower polyhedra at each of its white sides. If the white sides of Q
come from different polyhedral regions, then they each cut off a single ideal
vertex in that white face. Hence @QQ diagrammatically compresses in both of
its white faces in the upper polyhedron.

Proof. This is a restatement of [13, Proposition 4.13]. O

In this paper, normal squares appear in decompositions of essential
annuli. A square @ in the upper polyhedron will be glued to normal squares
in the lower polyhedra at each of its white sides, and so Lemma 3.3 will be
useful.

The next two sections include two cases: first, that the squares making
up the annulus are diagrammatically incompressible, and second, that they
are diagrammatically compressible. Lemma 3.3 puts restrictions on the dia-
grammatically incompressible case, and so we investigate such annuli first.
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Figure 9: A fused unit and an example of a cycle of three fused units.

4. Diagrammatically incompressible annuli

In this section, we determine the form of any essential annulus that inter-
sects a polyhedral region in a diagrammatically incompressible way. Then,
in Lemma 4.4, we determine how diagrammatically incompressible annuli
can fit into essential tori in the link complement. We emphasize that all of
the results of this section work for general A-adequate diagrams, without
any extra hypotheses.

Following Lackenby [22], we define a fused unit to be a portion of a
checkerboard colored graph with the following property. Its boundary is an
essential square, with two opposite sides in black regions and the other two
sides each intersecting a white region adjacent to a crossing, as on the left of
Figure 9. In the figure, the question marks can represent any checkerboard
graph corresponding to an alternating tangle.

Lemma 4.1. Let D(K) be an A-adequate diagram, and let (E,0F) C
(Ma,Sa) be a diagrammatically incompressible annulus. Then E lies in a
single polyhedral region, and the lower polyhedron in that region is a cycle of
n > 2 fused units. Moreover, portions of E that lie in the lower polyhedron
are squares encircling a fused unit, as the blue curves in Figure 9.

Proof. Put E into normal form with respect to the polyhedral decomposition
of M 4. This will cut F into a sequence of squares, alternating in upper and
lower polyhedra.

Consider a square S C E in the upper polyhedron. If the two white
sides of S lie in different polyhedral regions, Lemma 3.3 implies that it
cuts off an ideal vertex in some white face, contradicting the hypothesis



1010 D. Futer, E. Kalfagianni and J. Purcell

of diagrammatic incompressibility. Hence all squares of E have their white
sides in a single polyhedral region.

For a square S C FE in the upper polyhedron, Lemma 2.12 lets us apply
the clockwise map and obtain a square ¢(5) in the lower polyhedron. Con-
sider these squares, as well as the squares of F originally in the lower poly-
hedron. Label the squares in the lower polyhedron Sy, .59, ..., Ss,, where .S;
with even i are the clockwise images of squares from the upper polyhedron.

By [13, Lemma 4.10], if any pair of adjacent squares Sy and Si41 does not
have intersecting white sides, then those squares must cut off single vertices
in each of their white sides, implying both are diagrammatically compressible
to essential product disks, which again contradicts the hypotheses.

So suppose that each Si and Sj41 intersect in one, hence by [13, Lemma
4.10], both white sides. By Lemma 2.12, the white sides of odd-numbered
squares differ from those of even-numbered squares by a clockwise rotation.
This allows us to sketch the form of the diagram, essentially following Lack-
enby’s proof of [22, Theorem 14].

First, suppose there are just two squares S1 and Sy. Then they intersect
in exactly two white faces of the same lower polyhedron. In each white face,
Sy differs from S by a single clockwise rotation, as shown in Figure 10, left.
Moreover, the white sides of the squares glue up with orientations shown
in that figure. But now, note that these two squares glue to form a Md&bius
band, not an annulus, which is a contradiction.

So there must be at least four squares. Then Sy differs from S5 in one of
its white faces by a single clockwise rotation, and Sy differs from S5, in the
other white face of S] by a single clockwise rotation. The fact that Sy and
Soy, are disjoint [13, Lemma 4.8 (3)] implies that they must lie in the lower
polyhedron as shown in Figure 10, right. Note this implies that S; bounds
a fused unit.

Ve
0] T

Figure 10: Left: If annulus is formed of only two squares. Right: Squares S,
S, and Sy, must be as shown.
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Applying the same argument to S3, Sy, and S, and continuing through
all squares with odd indices, we find each odd square bounds a fused unit,
and these are arranged in a cycle as claimed in the lemma. U

Lemma 4.2. Let D(K) be an A-adequate diagram. Suppose (E,0F) C
(Ma,S4) is an embedded essential annulus such that E is diagrammatically
incompressible. Then there is a solid torus V. C My whose boundary consists
of E and an annulus F© C S4.

Further, each of the annuli E, F C 0V winds once around the meridian
of V and n times around the longitude of V', for the same integer n > 2 as
in Lemma 4.1. In other words, the two curves of ENF have slope 1/n on
the boundary of V.

Proof. By Lemma 3.1, white faces of the polyhedral decomposition of M4
cut F into squares, alternating between lying in the upper and lower poly-
hedra. Denote the squares by S1,S9, ..., S2,, where .S; for even ¢ lies in the
upper polyhedron. (Note that in the previous proof, S; for even ¢ indicated
the images of these squares in the lower polyhedron.)

By Lemma 4.1, the lower polyhedron P associated to F is a cycle of
at least two fused units, as in Figure 9. Moreover, the squares S; for ¢ odd
encircle a fused unit.

Now recall from Section 2.2 that a lower polyhedron corresponds to a
polyhedral region, i.e. a nontrivial region of the complement of the state
circles and a maximal collection of non-prime arcs. A white face in a lower
polyhedron P is glued via homeomorphism to exactly one white face in
the upper polyhedron. However, shaded faces are not glued. In a region of
the upper polyhedron corresponding to a shaded face of P, there may be
additional segments and state circles in the graph H 4. However, we may use
information on white faces, as well as positions of state circles appearing in
the given lower polyhedron, to sketch portions of the graph Ha. Figure 11
shows the most general possible graph.

Figure 11: The graph H4 must have the form shown when one of the lower
polyhedra is a cycle of fused units.
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SQn N Sl

Son N Son—_1 Sa NSy

Figure 12: Upper polyhedron with squares Sy is as above.

Note in particular that the white faces above and below the diagram in
Figure 11 are mapped to the white faces inside and outside the cycle of fused
units. Hence they only meet segments of H 4 that correspond to ideal vertices
of the lower polyhedron. Thus the only possible segments in these white faces
are either between state circles as shown, or inside the blocks labeled with
question marks. However, a priori, there may be segments on the other
sides of the state circles meeting these two white faces. Such segments are
illustrated in blue in Figure 11.

The combinatorics of the upper polyhedron can be read off of the graph
H 4, as described in [13, Chapter 2] or [14]. What is relevant to this discussion
is that shaded faces run along segments in so—called tentacles. A tentacle
is a portion of shaded face that begins on one side of a state circle (the
“head”), runs along the right side of a segment when the head is oriented
to be up, and then runs to the right along the adjacent state circle until it
terminates at a segment. Examples of tentacles in different colors are shown
in Figure 12.

The boundaries of these tentacles make up the edges of the white faces
in our fused units. Hence, we use what we know of the positions of white
sides of S; for ¢ odd to sketch white sides of S; for j even into the upper
polyhedron. In particular, white sides in the lower polyhedron are glued to
those in the upper, with Sy glued to S; on one side, and S3 on the other
side. Therefore, these edges are as shown in Figure 12. A pair of endpoints
of white edges connect to an edge in a shaded face. Thus we may color the
shaded faces at the ends of white edges in the same color. This is also shown
in Figure 12.

Consider the shaded face shown in the center of Figure 12, which is
shaded green. Note that S, and S must both run through this green face,
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and both meet the same pair of tentacles on either side. Because shaded faces
are simply connected [13, Theorem 3.12], these arcs on Se and S, must run
parallel to each other, bounding a strip of green shaded face between them.
The same argument implies So; and Sy;4.1) bound a strip of shaded face
between them, for all k.

Now, notice that squares S; with even index cut out a prism from the
upper polyhedron. This prism has n sides coming from the Sy, an additional
n sides coming from these strips of shaded face, and a top and bottom white
face, each a polygon with 2n sides.

From Lemma 4.1 and Figure 9, we see that the 5; with odd index also
cut out a prism from the lower polyhedron, with n sides coming from squares
S9i11, and n sides coming from strips of shaded face, and a top and bottom
white face, each a polygon with 2n sides.

These two prisms glue along the white faces to give a solid torus V,
with boundary consisting of the annulus F, as well as an annulus F C Sy
obtained by gluing the strips coming from shaded faces end to end. The
white faces of the prisms form meridian disks of the solid torus V.

Observe from Figure 12 that the annulus E intersects each meridian
disk n times. Observe as well that as we travel around FE, the square Ss,
in the upper polyhedron is glued to S7 in the lower, then S5 in the upper
polyhedron, and so on — with Sy, differing from S, by a single 1/n clockwise
twist of the white face. Therefore, the annulus F composed of these squares
will intersect the longitude of V once. Since the core curve of E intersects
the meridian n times and the longitude once, with clockwise twisting, its
slope on 9V is 1/n. The core curve of F' is parallel to that of F, and has the
same slope. O

Now recall that we are interested in an essential torus 7', which is cut
into annuli in M4 by Lemma 3.1.

Definition 4.3. Let T'C S>\K be an essential torus, decomposed into
annuli as in Lemma 3.1. We say that an annulus £ C M4 is adjacent to
E' C My if there is a single annulus in N(Sy4) between them.

Lemma 4.4. Let D(K) be an A-adequate diagram. Let T C S3\K be an
essential torus in S3\K, and let E,E' C T N Ma be adjacent annuli. Then
at least one of E,E' must be diagrammatically compressible. In particular,
if E is adjacent to itself, then it must be diagrammatically compressible.

Proof. Suppose F is diagrammatically incompressible. We will examine more
closely the solid torus V and the annulus F' of Lemma 4.2. Since T is a
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torus in S3, it is separating. Let X be the component of (S*\ K)\\T that
contains V, and let X\\S4 denote the remnants of X in $*\\S4. The man-
ifold X\\\S4 contains V' as one of its components. The annulus F' C Sa\\T
projects to some component R of S4\\7.

__ Case 1. Suppose R is orientable. Then it is an annulus. When we glue
S4 to itself, to undo the cutting along S4 and recover S3\ K, the annulus
F C S4N AV must be glued to another annulus F”, which is the boundary
of some other component of X\\S4. Assuming that the adjacent annulus
E' C TN My is also diagrammatically incompressible, Lemma 4.2 implies
there must be a solid torus V' C X\\S4, with boundary oV’ = E' U F’,
such that the core curve of E’ has slope 1/n. By Lemma 4.1, n is at least
2. But then OF and OF' are both glued onto OR, hence E and E’ form all
of T'N M 4. Hence X consists of exactly two solid tori, glued along annuli of
slopes 1/n; on their respective boundaries.

Case 2. Suppose R is non-orientable. Then, since F' C N (R) C Sy is a
double cover of R, it follows that R must be a Mobius band. To form S3~\ K
from S3\\S4, we glue appropriate boundary components of N(S4). The
annulus F'; as the boundary of a regular neighborhood of a M&bius band,
must be glued to itself, with the regular neighborhood N(R) collapsing onto
R. But then under this gluing, the boundary components of the annulus £
are glued only to boundary components of the annulus E. This means Sy
cuts T into only the annulus F, and V is the only component of X\\S4.
Therefore, X must be the result of gluing V' to itself along an annulus with
slope 1/n on its boundary.

Here is another way to think of this gluing. The regular neighborhood
N(R) C N(Sa) is a solid torus. Since F' double-covers the Mébius band R
and runs around this solid torus twice, the slope of F' on ON(R) is 1/2. We
conclude that X is obtained by gluing together two solid tori along annuli
whose slopes are 1/n and 1/2.

In both cases, X consists of two solid tori V; and Vs, glued along annuli
of slopes 1/n;, where each n; is at least 2. This means that X is a Seifert
fibered space with base space a disk and two singular fibers. (See Hatcher
[19] for background.)

Next, we will calculate the Seifert invariants of X. For simple, oriented
curves x,y on T; = dV;, let (x,y) denote their algebraic intersection number.
Also abusing notation, we will use the same symbol to denote a curve on 7;
and its homology class in Hy(7T;). Let Q;, H; denote a pair of a cross-section
curve and fiber of the fibration on 7;, oriented so that (Q;, H;) = 1. Let
i, Aj be a meridian and longitude of Tj, chosen so that u; bounds a disk
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in V; and (u;, A;) = 1. Furthermore, we can normalize \; so that the gluing
annulus, which is foliated by fibers parallel to H;, satisfies H; = u; + n;\;.
Since Q; = a;u; + b;\; for some coefficients a;, b;, it follows that

(1) (Qi, H;j) = nsa; — by = 1.

Solving for u;, we have u; = n;Q; — b; H;. Thus the slope of each singular
fiber of X is —b;/n;, making the Euler number of X equal to
() e b1 b2 —mobi—bem
ni N2 ning

Since T'= 0X is incompressible, X cannot be a solid torus. Thus X
admits a unique Seifert fibration [19, Theorem 2.3], which means that its
Seifert invariants are uniquely determined modulo 1 [19, Proposition 2.1].
Since X embeds in S% and 0.X is a single torus, X must be the complement of
a torus knot, say H. On 90X, H may be identified with a regular fiber of the
fibration of X. Let i, A denote the meridian and canonical longitude of 0.X,
again with the convention that (i, A\) = 1. Since the geometric intersection
of the meridian and H is 1, if ) is a cross section curve on 0.X, then

(3) p=Q+xH,

so that (u, H) =(Q,H) = 1. A minimum genus Seifert surface for A will
be horizontal with respect to the Seifert fibration of X. By the Claim in
the proof of [19, Proposition 2.2], the boundary slope of this surface with
respect to the (Q, H) framing is equal to the Euler number e. Therefore, by
Equation (2),

(4) A =nina@ + (—ngby — bony ) H.
Since (i, A\) = 1, Equations (3) and (4) imply
(5) —Irning — ngbl — bgm =1.

By (1), we obtain ninsay + nanias — (n1be + bing) = (ny + ng), which com-
bined with (5) gives
1 1 1

n1n2(al+a2+$)+1:(n1+n2) = ar+ay+r=—+— — ,
n n2 ning

which is impossible since a;, x are integers and n; > 2. ]
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Remark 4.5. Lemma 4.4 can also be proved using diagrammatic tech-
niques. The idea is as follows. From Figures 9 and 12, one can determine
how the annulus F' C S, lies in the diagram. If two annuli F' and F’ as
above are mapped to a single annulus in S4 (Case 1 of the above proof),
then their cores must map to the same curve on S4. A careful analysis of
annuli F' and F”, each lying in the diagram as specified by Figures 9 and 12,
yields a contradiction. Similarly, if F' is glued to itself when S4 is mapped
to S4 (Case 2 of the above proof), then the core of F' must wrap around
the same curve on S4 twice. Again a diagrammatic analysis will reveal that
this is impossible.

5. Diagrammatically compressible annuli

Lemma 4.4 implies that the intersection of an essential torus with the corre-
sponding polyhedral decomposition must contain components that intersect
the decomposition in a diagrammatically compressible way. In this section,
we determine information on such annuli under the hypothesis of Theo-
rem 1.1.

Suppose an annulus decomposes into a square that is diagrammatically
compressible in one white face, i.e. it cuts off a single ideal vertex there.
Then it must be diagrammatically compressible in every white face, either
by Lemma 3.3, or by an application of the clockwise map, Lemma 2.12, and
[13, Lemma 4.10]. Diagrammatically compressible squares are closely related
to essential product disks.

Definition 5.1. An essential product disk, or EPD, is a properly embedded
essential disk in M4 whose boundary meets the parabolic locus of M 4 twice.

When an essential product disk R lies in a single polyhedron in the
polyhedral decomposition of M4, we may think of it as a quadrilateral with
two sides on shaded faces, coming from S,4, and two sides running over
ideal vertices of the polyhedron, which correspond to the parabolic locus.
We may pull R off the ideal vertices into adjacent white faces, obtaining a
normal square @), with two sides on shaded faces and two sides on white
faces. The two sides of () on white faces each cut off a single ideal vertex;
that is, the square is diagrammatically compressible in both of its white
faces. Conversely, if @ is a normal square, each of whose white sides cuts off
a single ideal vertex of the ambient white face, then pulling () onto those
ideal vertices (that is, performing a parabolic compression) produces either
an EPD or a square encircling a single ideal vertex.
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Figure 13: Possible forms of squares parabolically compressing to an EPD.
The square on the left is called a square in a twist region (Definition 5.5).
The right—-most white face satisfies Convention 5.3.

Remark 5.2. Throughout this section, we will assume that the sides of
normal squares in shaded faces run monotonically through tentacles, without
unnecessary backtracking. This assumption can be easily satisfied by normal
isotopy. The precise terminology from [13] is that the sides of squares are
simple with respect to the shaded faces, as in [13, Definition 3.2].

Convention 5.3. Let @) be a normal square, and W a white face in which
Q@ cuts off a single ideal vertex. We may color the shaded faces met by @
orange and green, so that the single vertex of W cut off by @ is a triangle
whose three edges, in counter—clockwise order, are orange-green—white. For
instance, the right-most white face in Figure 13 satisfies this convention.

The next lemma places strict restrictions on the form of a square coming
from an EPD in the upper polyhedron. The proof relies on the hypothesis
that 2—edge loops in G4 belong to twist regions (Definition 2.5), as well as
the classification of EPDs into seven combinatorial types [13, Theorem 6.4].
This proof is likely the most technical argument of this paper, and can be
omitted without missing the thread of the argument.

Lemma 5.4. Suppose a prime, A—adequate diagram is such that Ga satis-
fies the 2-edge loop condition. Suppose that a normal square Q) parabolically
compresses to an EPD in the upper polyhedron. Then, possibly after sliding
one white side of Q past an ideal vertex, we obtain a normal square P with
one of the two forms shown in Figure 13. In particular, the boundary of
P runs over distinct segments of the same twist region, with two sides on
shaded faces adjacent to the same state circle on a side of that twist region.

Proof. Given a diagrammatically compressible square (), select one of the
sides that cuts off a single ideal vertex in a white face W. Color the two
adjacent shaded faces according to Convention 5.3.

With this labeling of shaded faces, consider the side of @ in its other
white face, W’. This side also cuts off a single ideal vertex, but that ideal
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vertex may be a triangle with opposite orientation compared to that of
Convention 5.3. If this occurs, replace ) with a new square P by sliding the
white side Q N W' across the adjacent ideal vertex, so that it lies in a new
white face W and cuts off a triangle oriented in the opposite direction. This
new square P must satisfy Convention 5.3 in both of its white faces.

We now apply [13, Theorem 6.4], which applies to normal squares such as
P that satisfy Convention 5.3 in both white faces (equivalently, satisfy [13,
Lemma 6.1]). This theorem implies that the normal square P is of one of
seven types, shown in [13, Figure 6.1]. Assuming that 2—edge loops of G4
belong to twist regions, we may rule out all these types except the first two,
labeled A and B in [13, Figure 6.1]. These are exactly the two types shown
in Figure 13. We now describe how to rule out the remaining types.

Type C. Suppose the normal square is of type C, reproduced in Fig-
ure 14, left. The 2—edge loop shown belongs to a twist region by hypothesis,
and so a twist region must lie either on the inside of the segments shown
or the outside. Note there is a segment meeting the lower state circle on
the opposite side of the 2—edge loop on the inside. This cannot happen if
the twist region lies on the inside. Hence the twist region must lie on the
outside of the two segments shown, as in Figure 14, middle. Then the orange
face must run all the way across the outside of the twist region, meeting no
tentacles or non-prime arcs, as shown in that figure. Draw an arc through
the orange face all the way across the twist region. On the far side, connect
the arc across the state circle to the portion of the square P in the green
face. Now continue to follow P to the right. It crosses the state circle once
more, before joining the orange face where we began, as in Figure 14, right.
Replace segments of H4 by crossings. We obtain a simple closed curve in
the diagram of the link that meets the link exactly twice, with crossings on
either side. This contradicts the hypothesis that the diagram is prime.

In the interest of space, we do not reproduce [13, Figure 6.1] for the
analysis of the rest of the cases. However, all the cases are handled by a
variation of the above argument.

Type €. This can also be ruled out by an appeal to the primeness of the
diagram. Because the 2—edge loop in type £ comes from a twist region, the
orange face shown, adjacent to the state circle at the bottom, must continue
across the bottom of that state circle, meeting no segments or non-prime
arcs, until it lies directly opposite the green face running next to the second
sement of the 2—edge loop. Note that the orange face is also directly opposite
the green face on the left side of the green non-prime arc. Now we may draw
an arc through the orange face, from the point where it is opposite the
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NN

Figure 14: Left: A normal square of type C runs over a portion of the upper
polyhedron of the form shown. Middle: The precise form imposed by 2-edge
loop condition. Right: Dotted line gives a contradiction to the primeness of
the diagram.

non-prime arc to the point where it is opposite the segment of the 2—edge
loop. Connect the arc across the state circle to the portion of P lying in the
green face. This gives a simple closed curve meeting H4 exactly twice on
state circles, which in turn gives a loop in the diagram meeting the diagram
exactly twice, again contradicting the hypothesis that the diagram is prime.

Type G. The segments forming the 2-edge loop shown in that figure
must belong to a twist region by hypothesis, meaning there can be only
segments and state circles of the short resolution of a twist region between
those two segments on one side. But on one side of the two segments there
is a segment on the opposite side of the state circle, and on the other side
there is a non-prime arc. Hence type G cannot occur.

Types D and F. Because the 2—edge loop shown belongs to a twist
region, one green tentacle must terminate in a bigon, with no additional
green tentacles or non-prime arcs connected to it. For type D, this green
tentacle lies to the right in [13, Figure 6.1]. For type F, it lies ot the left. In
either case, since P runs through that tentacle, it must meet its second ideal
vertex at the end of that green tentacle shown. In other words, at the end
of that green tentacle it must cut off a single vertex in a white face, which
defines a triangle. However, note that the triangle will have the opposite
orientation from Convention 5.3, contradicting our assumption.

It follows that our normal square P is of type A or B. To obtain Fig-
ure 13, we make the following observations. First, because the 2—edge loop
shown in either figure belongs to a twist region, the two segments shown
must bound a string of bigons, i.e. segments and state circles from the short
resolution of a twist region. In particular, there can be no segments on the
opposite side of the state circles shown between these two segments. This
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implies that some face runs straight across the top of the twist region, meet-
ing no additional segments or state circles, and the orange face runs straight
across the bottom of the twist region, meeting no additional segments or
state circles.

For type A, the green face must run across the top of the twist region.
If the boundary of P runs into the green face at the top, then it must run
straight across the top, and straight across the bottom through the orange
face, and hence P is as shown on the left of Figure 13. It may be the case for
type A that the boundary of P runs down a green tentacle, without running
across the top. Then in this case, a portion of P in the orange face runs
between these segments, so the two segments form a bigon, and the EPD
must meet the ideal vertices of the bigon. Given our choice of orientation,
the normal square P will have the form of Figure 13, right.

For type B, we need to show that the green face runs across the top
of the twist region. This follows because the portion of P adjacent to the
orange segment on the right is running downstream in a tentacle which forms
a bigon of the twist region. No other tentacles or non-prime arcs can meet
this bigon, or the 2—edge loop would not belong to a twist region. Hence P
meets the white face at the end of this tentacle, and joins the green on the
opposite side. It follows that the green face must run across the twist region,
with P running across as well to meet in this vertex. Thus the normal square
P is as shown on the right of Figure 13. OJ

The square on the left of Figure 13 has a particularly relevant form.

Definition 5.5. A diagrammatically compressible square Q with sides @1,
()2 in shaded faces is defined to be a square in a twist region R if it is of the
form shown on the left of Figure 13. More precisely, there are state circles C
and O’ and segments sq, so of Hy between C' and C’, determining R, such
that:

(i) @1 and Q2 run on adjacent shaded faces near C';
(ii) @1 and Q2 run on adjacent shaded faces near C;

(iii) one side of @, say @1, runs on the top of the twist region along C’ and
then along s1, while Q)2 runs along so and then on the bottom of R
along C.

Lemma 5.6. Suppose a prime, A-adequate diagram is such that G4 sat-
isfies the 2-edge loop condition. Suppose T C S>3~ K is an essential torus,
ECTnNMy is a diagrammatically compressible annulus, and Q C E is a
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normal square that parabolically compresses to an EPD in the upper poly-
hedron. Then we may perturb E by a normal isotopy that extends to T, so
that QQ becomes a square in a twist region.

Proof. Suppose ) parabolically compresses to an EPD. Then, by Lemma 5.4,
there is a related normal square P that has one of the two forms of Figure 13.
For each of the forms, P may either agree with () or be obtained from @ by
moving one white side across an ideal vertex of the upper polyhedron.

Suppose P is as on the left of Figure 13. If P and () agree, then we are
finished. Otherwise, P differs from ) in that one of its white sides is on the
opposite side of an ideal vertex from ). We may assume that this white side
is located to the right of the figure shown. If the ideal vertex in question does
not contain the right—most segment of the twist region of Figure 13, left, then
adjusting P to form @ has no effect on the region shown, and the diagram
is as claimed. If the ideal vertex does contain the right—most segment, then
@ must have a white side on the opposite side of the corresponding ideal
vertex, which lies in the right—-most bigon of the twist region shown, and Q
now has the form of a square on the right of Figure 13.

Now suppose that @Q is as shown on the right of Figure 13, and either
P agrees with ), or P is as on the left of Figure 13, as in the previous
paragraph. Then the white side of the square on the right of the figure lies in
a bigon white face. This white face is glued to a bigon in a lower polyhedron,
and the annulus runs through the bigon. Isotope the annulus through the
bigon, isotoping @ to have a white side cutting off a vertex on the opposite
side of the bigon. This pulls the shaded sides of ) along as well, pulling
the side of @ in the right—most orange tentacle to only meet the head of
that tentacle, and pulling the side in the green to run downstream adjacent
to a green tentacle. The isotopy can be performed in a neighborhood of
the white face in M4, affecting only the square ) and the square in the
lower polyhedron glued to @ at this face, but only in a neighborhood of
this single white face. Moreover, the isotopy may be extended into a small
neighborhood of Sy, to extend to all of T'. After this isotopy, @ has the form
claimed in the lemma.

The only remaining case is that the square P has the form on the right
of Figure 13, but it differs from the original square ) in that we slid a
white side of @) through an ideal vertex. Because we were able to choose the
orientation on one vertex, we may assume that the ideal vertex in question
is at the right of that figure. Notice that the side of P that must be adjusted
lies in a bigon in a twist region, with state circle C’ on top, and C' on bottom
of the twist region. The ideal vertex cut off by P is a portion of the graph
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H, consisting of a small arc on C’, a segment s connecting C’ and C, a
portion of C, and possibly more segments. Hence when we slide over this
ideal vertex, the portion of P running through the orange tentacle adjacent
s slides out of this tentacle, and a portion of the square in the green face
will be pulled through the green tentacle adjacent to s. When finished, the
result will be as claimed in the statement of the lemma. O

The next lemma will allow us to show that, assuming the 2-edge loop
condition, no diagrammatically incompressible annuli in M4 come from
essential tori. This is done in Lemmas 5.8 and 5.9.

Lemma 5.7. Let D(K) be an A-adequate diagram, with all-A state surface
Sa, and let T be an incompressible torus. Suppose that a normal square
Q C TN My lies in the upper polyhedron, with sides Q1 and Q2 in shaded
faces, which satisfies the following property. There exists a point p on a state
circle and arcs g1 C Q1 and ga C Q2 that can be isotoped to lie on either side
of an € neighborhood of p, while maintaining the condition that Q1 and Q2
are simple with respect to their shaded faces (Remark 5.2).

Then T\.S4 consists of exactly two annuli, one in M and one in the
I-bundle N(Sy4). Moreover, subarcs of q1 and g2 are glued together in T
when we glue opposite sides of N(Sa), to recover S3\K.

Proof. The point p on a state circle corresponds to a point, which we will
also call p, on the knot K. Let NN, be a tubular neighborhood of p in S3.
We may take this neighborhood small enough that N, N M4 lies entirely in
the upper polyhedron, and N, N N(Sy4) is a trivial /-bundle, of the form
D x [—1,1] for some disk D in S4. Moreover, we may isotope ¢; and g2
(and all of T'), if necessary, so that ¢; and g» each run through V,. Since
@ has opposite sides containing ¢; and g2, and since @ lies in a ball (the
upper polyhedron), we may isotope @ relative to its boundary so that a
sub-rectangle @’ of ) has opposite sides on ¢; and g, and lies completely
in Np,.

Now consider ’. This is a rectangle in the tube NNV, surrounding the point
p on the knot K. It has one boundary component, say g1, on D x {—1}, and
one boundary component, g2, on D x {1}. Notice it almost encircles K to
form an annulus whose core is a single meridian, except that it is cut by
N(Sa4). Inside N(S4), both ¢1 and g2 are glued to annuli which are isotopic
to vertical annuli in the I-bundle. The proof will be complete when we show
that ¢; and g2 are glued to the same vertical annulus in the 7-bundle.
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So suppose not. Suppose ¢ is glued to the annulus F; and ¢s is glued
to the annulus Fs. Since Fy and Es are both subsets of T', they are dis-
joint. They are also compact, connected, and they lie inside the compact set
N(Sa)~\N;(K), where Ns(K) is a sufficiently small tubular neighborhood of
K. Consider the projection m: N(S4)\Ns(K) — S4. This is a continuous
map on a compact set, hence 7(E) and m(FE2) are compact in S4. Since E;
is the image of a vertical annulus, it lies in a bounded neighborhood of a
core curve 7; on Sa, i =1,2.

Now, let o be a simple arc in Sy with one endpoint on p, exiting N, NS4
by crossing through 7 (F;) and 7w(FE>), and such that o meets each of 71, 7
transversely exactly once, and the final endpoint of ¢ is disjoint from 7(E})
and 7(FE>). Note that if we restrict the I-bundle N(S4) to o, we obtain
a trivial /-bundle over a line, which is a rectangle R = ¢ x [—1,1]. Note
also that R intersects both F; and F> in RN N,. In particular, an arc of
intersection of £y N R has endpoint in N, at a point on ¢ x {—1}, and an
arc of intersection of Ey N R has an endpoint in N, on o x {1}.

Consider the other endpoint of £1 N R. By choice of o, this endpoint
must be either on o x {—1} or on o x {1}. If E1 N R has both endpoints
on o x {—1}, then there is a disk in R with boundary on E; N R and on
o x {—1}. We may isotope E; through this disk, removing the intersection
of E1 with R, hence pushing the arc ¢; away from p. Such an isotopy is
impossible under the assumption that the sides of () were simple. Hence
E; N R has one endpoint on o x {—1} and one on o x {1}. Similarly, Eo N R
has one endpoint on o x {1} and one on o x {—1}.

Because Fp and E5 are embedded, these endpoints cannot interleave.
Thus either both endpoints of £ N R will lie in N, N R or both endpoints
of F» N R will lie in N, N R. Say both endpoints of E3 lie in N, N R.

Now, F5 must connect to an annulus in M4 on both of its boundary
components. One boundary component connects to an annulus containing
(. The other cannot connect to () because its initial endpoint on R lies
interior to ¢; N R. So it connects to some new rectangle Q”. But consider
the shaded sides of @". One lies parallel to g1, but interior to ¢ (i.e. closer
to K) on S4. The other cannot also be parallel to ¢; in N,, or we could
eliminate an intersection of T" with S4. But @Q” cannot intersect @, hence
Q" must lie parallel to Q" in N,, and its opposite boundary component is
parallel to gs on S‘;, but closer to K.

Now we may repeat the entire above argument with Q”, to obtain a
square interior to Q" in N,. Since each square we pick up at each step is
interior to all previous squares, we obtain an infinite sequence of squares,
each lying on 7. This is a contradiction.
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Thus ¢; and g2 are connected by a single annulus E C N(S4), which can
be isotoped to be vertical. O

Lemma 5.8. Suppose a prime, A-adequate is such that G4 satisfies the
2—-edge loop condition. Then each diagrammatically compressible square in
the upper polyhedron coming from an essential torus must bound a single
ideal vertez.

Proof. Suppose we have a square ) C T'N M 4 that does not encircle a single
ideal vertex. Then @) parabolically compresses to an EPD. By Lemma 5.6,
we may isotope the torus T containing @ so that @) is a square in a twist
region. By parts (i)-(ii) of Definition 5.5, there are points p € C and p’ € C’
for which the hypotheses of Lemma 5.7 are satisfied. By the conclusion of
that lemma, there is only one annulus of T'N My, and the shaded sides of
@ that run near p’ (resp. p) are glued to each other in T

However, note that between these two pairs of glued arcs, the sides of
the square run adjacent to distinct segments of H 4: @1 runs along s1, while
@2 runs along so. By the above paragraph, these sides of @) are glued to
each other when we collapse N (S4) to Sa to recover the torus 7". Hence
the shaded sides of () on S4 have homotopic projection to S4. The graph
G4 is a spine for Sy, so we may homotope the arcs in S4 to run over the
same edges of G4 in the same order. But because the arcs run adjacent
to distinct segments of H 4, they run over distinct edges (corresponding to
these segments) in G 4. This is a contradiction. U

Lemma 5.9. Suppose D(K) is is a prime, A-adequate diagram such that
G 4 satisfies the 2—edge loop condition. Suppose an essential torus T contains
a diagrammatically compressible annulus E CT N Ma. Then E is the only
component of T'N My, and every normal square comprising E encircles a
single ideal vertex in its ambient polyhedron.

Proof. By Lemma 5.8, each diagrammatically compressible square in the
upper polyhedron bounds a single ideal vertex. It follows from Lemma 5.7
that each such square has one side in a shaded face glued to the other side
when we re-glue N(S4). Thus E is the only annulus of 7N May4.

Each square ) in the upper polyhedron is attached to a diagrammati-
cally compressible square @’ in the lower polyhedron. A diagrammatically
compressible square in the lower polyhedron intersects the diagram graph
exactly four times, adjacent to crossings. Because the diagram is A-twist
reduced (Lemma 2.7), the square must encircle either an ideal vertex or a
string of bigons.
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Suppose the square @' encircles a nonempty string of bigons. Because
each side in a white face is glued to a square in the upper polyhedron,
and each square in the upper polyhedron has shaded sides glued when we
reattach sides of N(S4) to form S\ K, the square in the lower polyhedron
must also have its sides in shaded faces glued when we form S\ K.

But now consider the way these sides run through the graph G 4, which
forms a spine for the surface S4. One of the curves runs through a vertex
associated with a state circle on one side of the twist region, and the other
runs through a distinct vertex on the other side of the twist region. Because
the sides in white faces are adjacent to distinct crossings, the curves can-
not be homotopic in S4, hence they cannot be glued in the square. This
contradiction implies that the square Q' runs over a single ideal vertex. [

We are now ready to show that semi-adequate links that satisfy the
hypothesis of Theorem 1.1 have atoroidal complements.

Theorem 5.10. If D(K) is a prime, A—adequate diagram such that G4
satisfies the 2—edge loop condition, then S®~K contains no embedded essen-
tial tori.

Proof. Suppose T' is an embedded essential torus in §E ~NK. By Lemma 3.1,
we may take T" to be embedded in such a way that S4 cuts it into an even
number of essential annuli, half embedded in M4 and half embedded in the
I-bundle N(S4). By Lemma 4.4, T'N M4 must contain a diagrammatically
compressible annulus F.

But by Lemma 5.9, if the essential torus gives rise to a diagrammatically
compressible annulus F, then F is the only component of T'N M4, and every
normal square of E encircles a single ideal vertex in its polyhedron. In that
case, when we glue opposite sides of N(S4) to recover S3\ K, the sides of
FE will be identified to encircle knot strands, and it follows that the torus T°
is actually boundary parallel, and not essential. U

6. Seifert fibered link complements

Our work in the previous sections reduces the proof of the main result to the
case of atoroidal link complements. As we remarked in the introduction, the
diagram D(K) is assumed connected, which implies that K is non-split and
S3\K is irreducible. By work of Thurston [30], an irreducible, atoroidal
3-manifold is either hyperbolic or Seifert fibered. To finish the proof of
Theorem 1.1 we need to treat the case of Seifert fibered link complements.
This is done in the following theorem.
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Theorem 6.1. Let D(K) be a prime, connected, A-adequate diagram such
that G 4 satisfies the 2-edge loop condition. If S\ K is Seifert fibered, then
D(K) is the standard diagram of a (2,q) torus link.

Proof. Let G'; denote the reduced state graph of D(K), obtained from G4
by removing all the duplicate edges. Recall that the guts of S3~\ K relative to
the surface S, denoted guts(S3~\ K, S4), is the complement of the maximal
I-bundle in M4 = S3\\S4. In [13, Corollary 5.19] we proved that, when all
2—edge loops in G 4 belong to twist regions,

—x(guts(S3\K, S4)) = max{—x(G"y),0}.

Furthermore, the work of Agol [4], as generalized by Kuessner [21], says
that guts can be used to estimate the Gromov norm of S?~\ K:

[S*\K|| > =2 x(guts(S°\K, Sa)) > —2x(G)y).

Recall that the Gromov norm || M]|| of a 3-manifold M is positive when-
ever the JSJ decomposition has one or more hyperbolic pieces [5, 18]. In par-
ticular, if S3\ K is Seifert fibered, we have ||S®\ K| = 0, hence x(G';) > 0.

Next, recall that the graph G4 can be given the structure of a ribbon
graph [8], and as such it can be embedded on a standard closed orientable
surface (called the Turaev surface of D(K)) so that it defines a cellulation
[8, 31]. The genus of this surface is called the Turaev genus of D(K). The
Turaev genus g(D) satisfies

29(D) =2 —v(Ga) +e(Ga) — f(Ga)
=2 —x(G)y) + (e(Ga) — e(Gl)) — f(Ga),

where v(G4),e(Ga), f(Ga) denote the number of vertices, edges and faces,
respectively, of the aforementioned cellulation, and e(G’,) is the number of
edges of G;.

Since 2-edge loops in G4 belong to twist regions of D(K), for every
edge in e(Ga) —e(G/y)) there is a bigon face in f(Ga) that cancels that
edge. Furthermore, if D(K) has more than one twist region — if it is not
the standard diagram of a (2, ¢) torus link — there must also be at least one
non-bigon face. Therefore,

(e(Ga) — e(Gl)) - f(Ga) < -1
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Furthermore, we have seen above that x(G’;) > 0, hence
29(D) = 2 —x(G)) + (e(Ga) — e(G)) — f(Ga)) < 2-0-1.

Since g(D) is a non-negative integer, we conclude that g(D) = 0.

This in turn, implies that the diagram D is alternating; see Corollary
4.6 of [8]. Thus D is a prime, alternating diagram that represents a Seifert
fibered link. Now the work of Menasco [24] implies that D is the standard
diagram of a (2, q) torus link. O

Theorem 1.1 follows immediately by combining Theorem 5.10, Theo-
rem 6.1, and Thurston’s hyperbolization theorem for link complements [30].
Now we finish the proofs of Corollaries 1.2 and 1.3.

Proof of Corollary 1.2. Without loss of generality, assume r; > 3 for all j.
Then the diagram Dy, is a prime, A—adequate diagram and the corresponding
state graph G4 contains no 2—edge loops at all. Thus Theorem 1.1 implies
that K is hyperbolic. O

Proof of Corollary 1.5. In [13, Corollary 3.21], we show that for a non-split,
prime link K, any semi-adequate diagram D(K) without nugatory crossings
must be prime.

Conversely, if D(K) is prime and semi-adequate, then Theorem 1.1
implies K is hyperbolic or a (2, ¢) torus link. Hence the link must also be
prime. O
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