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ABSTRACT

A classical result states that the determinant of an alternating link is equal to the
number of spanning trees in a checkerboard graph of an alternating connected projection
of the link. We generalize this result to show that the determinant is the alternating sum
of the number of quasi-trees of genus j of the dessin of a non-alternating link.

Furthermore, we obtain formulas for coefficients of the Jones polynomial by counting
quantities on dessins. In particular we will show that the j-th coefficient of the Jones
polynomial is given by sub-dessins of genus less or equal to j.
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1. Introduction

A classical result in knot theory states that the determinant of an alternating link

is given by the number of spanning trees in a checkerboard graph of an alternating,

connected link projection (see e.g. [BZ85]). For non-alternating links one has to

∗We regretfully inform you that Xiao-Song Lin passed away on the 14th of January, 2007.

1



April 28, 2010 19:10 WSPC/INSTRUCTION FILE dessindeterm

2 O. Dasbach, D. Futer, E. Kalfagianni, X.-S. Lin, N. Stoltzfus

assign signs to the trees and count the trees with signs, where the geometric meaning

of the signs is not apparent. Ultimately, these theorems are reflected in Kauffman’s

spanning tree expansion for the Alexander polynomial (see [Kau87,OS03]) as well

as Thistlethwaite’s spanning tree expansion for the Jones polynomial [Thi87]; the

determinant is the absolute value of the Alexander polynomial as well as of the

Jones polynomial at −1.

The first purpose of this paper is to show that the determinant theorem for

alternating links has a very natural, topological/geometrical generalization to non-

alternating links, using the framework that we developed in [DFK+08]: Every link

diagram induces an embedding of the link into an orientable surface, its Turaev sur-

face, such that the projection is alternating on that surface. Now the two checker-

board graphs are graphs embedded on surfaces, i.e. dessins d’enfant (aka. combi-

natorial maps or ribbon graphs), and these two graphs are dual to each other. The

minimal genus of all surfaces coming from that construction is the Turaev genus of

the link. However, as in [DFK+08] one doesn’t need the reference to the surface to

construct the dessin directly from the diagram and to compute its genus. The Jones

polynomial can then be considered as an evaluation of the Bollobás–Riordan–Tutte

polynomial [BR01] of the dessin [DFK+08]. Alternating non-split links are precisely

the links of Turaev genus zero. Our determinant formula recovers the classical de-

terminant formula in that case.

For a connected link projection of higher Turaev genus we will show that the

determinant is given as the alternating sum of the number of spanning quasi-trees

of genus j, as defined below, in the dessin of the link projection. Thus the sign

has a topological/geometrical interpretation in terms of the genus of sub-dessins.

In particular, we will show that for Turaev genus 1 projections the determinant is

the difference between the number of spanning trees in the dessin and the number

of spanning trees in the dual of the dessin. The class of Turaev genus one knots and

links includes for example all non-alternating pretzel knots.

Every link can be represented as a dessin with one vertex, and we will show

that with this representation the numbers of j-quasi-trees arise as coefficients of the

characteristic polynomial of a certain matrix assigned to the dessin. In particular

we will obtain a new determinant formula for the determinant of a link which comes

solely from the Jones polynomial. Recall that the Alexander polynomial – and thus

every evaluation of it – can be expressed as a determinant in various ways. The

Jones polynomial, however, is not defined as a determinant.

The second purpose of the paper is to develop dessin formulas for coefficients

of the Jones polynomial. We will show that the j-th coefficient is completely deter-

mined by sub-dessins of genus less or equal to j and we will give formulas for the

coefficients. Again, we will discuss the simplifications in the formulas if the dessin

has one vertex. Starting with the work of the first and fourth author [DL07] the

coefficients of the Jones polynomial have recently gained a new significance because

of their relationship to the hyperbolic volume of the link complement. Under cer-
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tain conditions, the coefficients near the head and the tail of the polynomial give

linear upper and lower bounds for the volume. In [DL06,DL07] this was done for

alternating links and in [FKP08,FKP09] it was generalized to a larger class of links.

The paper is organized as follows: Section 2 recalls the pertinent results of

[DFK+08]. In Section 3 we develop the alternating sum formula for the determinant

of the link. Section 4 shows a duality result for quasi-trees and its application to

knots of Turaev genus one. In Section 5 we look at the situation when the dessin

has one vertex. Section 6 shows results on the coefficients of the Jones polynomial

within the framework of dessins.

2. The Dessin d’enfant coming from a link diagram

We recall the basic definitions of [DFK+08]:

A dessin d’enfant (combinatorial map, oriented ribbon graph) can be viewed as a

multi-graph (i.e. loops and multiple edges are allowed) equipped with a cyclic order

on the edges at every vertex. Isomorphisms between dessins are graph isomorphisms

that preserve the given cyclic order of the edges.

Equivalently, dessins correspond to graphs embedded on an orientable surface

such that every region in the complement of the graph is a disk. We call the regions

the faces of the dessins. Thus the genus g(D) of a dessin D with v(D) vertices, e(D)

edges, f(D) faces and k components is determined by its Euler characteristic:

χ(D) = v(D) − e(D) + f(D) = 2k − 2g(D).

For each Kauffman state of a (connected) link diagram a dessin is constructed

as follows: Given a link diagram P (K) of a link K we have, as in Figure 1, an

A-splicing and a B-splicing at every crossing. For any state assignment of an A or

B at each crossing we obtain a collection of non-intersecting circles in the plane,

together with embedded arcs that record the crossing splice. Again, Figure 1 shows

this situation locally. In particular, we will consider the state where all splicings are

A-splicings. The collection of circles will be the set of vertices of the dessin.

To define the desired dessin associated to a link diagram, we need to define an

orientation on each of the circles resulting from the A or B splicings, according to

a given state assignment. We orient the set of circles in the plane by orienting each

component clockwise or anti-clockwise according to whether the circle is inside an

odd or even number of circles, respectively. Given a state assignment s : E → {A, B}
on the crossings (the eventual edge set E(D) of the dessin), the associated dessin is

constructed by first resolving all the crossings according to the assigned states and

then orienting the resulting circles according to a given orientation of the plane.

The vertices of the dessin correspond to the collection of circles and the edges

of the dessin correspond to the crossings. The orientation of the circles defines the

orientation of the edges around the vertices. We will denote the dessin associated

to state s by D(s). Of particular interest for us will be the dessins D(A) and D(B)
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A crossing in D

A-splicing B-splicing

Fig. 1. Splicings of a crossing, A-graph and B-graph.

coming from the states with all-A splicings and all-B splicings. For alternating

projections of alternating links D(A) and D(B) are the two checkerboard graphs of

the link projection. In general, we showed in [DFK+08] that D(A) and D(B) are

dual to each other.

We will need several different combinatorial measurements of the dessin:

Definition 2.1. Denote by v(D), e(D) and f(D) the number of vertices, edges and

faces of a dessin D. Furthermore, we define the following quantities:

k(D) = the number of connected components of D,

g(D) =
2k(D) − v(D) + e(D) − f(D)

2
, the genus of D,

n(D) = e(D) − v(D) + k(D), the nullity of D.

The following spanning sub-dessin expansion was obtained in [DFK+08] by using

results of [BR02]. A spanning sub-dessin is obtained from the dessin by deleting

edges. Thus, it has the same vertex set as the dessin.

Theorem 2.2. Let 〈P 〉 ∈ Z[A, A−1] be the Kauffman bracket of a connected link

projection diagram P and D := D(A) be the dessin of P associated to the all-A-

splicing. The Kauffman bracket can be computed by the following spanning sub-

dessin H expansion:

A−e(D)〈P 〉 = A2−2v(D)(X − 1)−k(D)
∑

H⊂D

(X − 1)k(H)Y n(H)Zg(H)

under the following specialization: {X → −A4, Y → A−2δ, Z → δ−2} where δ :=

(−A2 − A−2).

Theorem 2.2, after substitution, yields the following sub-dessin expansion for

the Kauffman bracket of P :

Corollary 2.3.

〈P 〉 =
∑

H⊂D

Ae(D)−2e(H)
(

−A2 − A−2
)f(H)−1

.
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3. Dessins determine the determinant

The determinant of a link is ubiquitous in knot theory. It is the absolute value of

the Alexander polynomial at -1 as well as the Jones polynomial at -1. Furthermore,

it is the order of the first homology group of the double branched cover of the link

complement. For other interpretations, see e.g. [BZ85].

We find the following definition helpful:

Definition 3.1. Let D be a connected dessin that embeds into a surface S. A

spanning quasi-tree of genus j or spanning j-quasi-tree in D is a sub-dessin H of D

with v(H) vertices and e(H) edges such that H is connected and spanning and

(1) H is of genus j.

(2) S − H has one component, i.e. f(H) = 1.

(3) H has e(H) = v(H) − 1 + 2j edges.

In particular the spanning 0-quasi-trees are the regular spanning trees of the

graph. Note that by Definition 2.1 either two of the three conditions in Definition

3.1 imply the third one.

Theorem 2.2 now leads to the following formula for the determinant det(K) of

a link K:

Theorem 3.2. Let P be a connected projection of the link K and D := D(A) be

the dessin of P associated to the all-A splicing. Suppose D is of genus g(D).

Furthermore, let s(j, D) be the number of spanning j-quasi-trees of D.

Then

det(K) =

∣

∣

∣

∣

∣

∣

g(D)
∑

j=0

(−1)j s(j, D)

∣

∣

∣

∣

∣

∣

.

Proof. Recall that the Jones polynomial JK(t) can be obtained from the Kauffman

bracket, up to a sign and a power of t, by the substitution t := A−4.

By Theorem 2.2 we have for some power u = u(D):

±JK(A−4) = Au
∑

H⊂D

(X − 1)k(H)−1Y n(H)Zg(H)

= Au
∑

H⊂D

A−2−2e(H)+2v(H)δf(H)−1 (3.1)

We are interested in the absolute value of JK(−1). Thus, δ = 0 and, since



April 28, 2010 19:10 WSPC/INSTRUCTION FILE dessindeterm

6 O. Dasbach, D. Futer, E. Kalfagianni, X.-S. Lin, N. Stoltzfus

k(H) ≤ f(H):

|JK(−1)| =

∣

∣

∣

∣

∣

∣

∑

H⊂D,f(H)=1

A−2−2e(H)+2v(H)

∣

∣

∣

∣

∣

∣

(3.2)

=

∣

∣

∣

∣

∣

∣

∑

H⊂D,f(H)=1

A−4g(H)

∣

∣

∣

∣

∣

∣

(3.3)

Collecting the terms of the same genus and setting A−4 := −1 proves the claim.

Remark 3.3. For genus j = 0 we have s(0, D) is the number of spanning trees in

the dessin D. Recall that a link has Turaev genus zero if and only if it is alternating.

Thus, in particular, we recover the well-known theorem that for alternating links

the determinant of a link is the number of spanning trees in a checkerboard graph

of an alternating connected projection.

Theorem 3.2 is a natural generalization of this theorem for non-alternating link

projections.

Example 3.4. Figure 2 shows the non-alternating 8-crossing knot 821, as drawn

by Knotscape (http://www.math.utk.edu/∼morwen/knotscape.html), and Figure

3 the all-A associated dessin.

The dessin in Figure 3 is of genus 1. Thus, the only quasi-trees are of genus 0

and of genus 1. The quasi-trees of genus 0 are the spanning trees of the dessin. The

dessin in the example contains 9 spanning trees, i.e. s(0, D) = 9. A quasi-tree of

genus 1 must have 4 edges. Furthermore, it must contain either of the two loops,

otherwise it would not be of genus 1. Two of the remaining three edges must form

a cycle which interlinks with that loop. A simple count yields 24 of these and thus

the determinant of the knot is 24 − 9 = 15.

4. Duality

The following theorem is a generalization of the result that for planar graphs the

spanning trees are in one-one correspondence to the spanning trees of the dual

graphs:

Theorem 4.1. Let D = D(A) be the dessin of all-A splicings of a connected link

projection of a link L. Suppose D is of genus g(D) and D
∗ is the dual of D.

We have: The j-quasi-trees of D are in one-one correspondence to the (g(D)−j)-

quasi-trees of D
∗. Thus

s(j, D) = s(g(D) − j, D∗).

Proof. Let H be a spanning j-quasi-tree in D. Denote by D − H the sub-dessin of

D obtained by removing the edges of H from D, and by (D − H)∗ the sub-dessin of
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Fig. 2. The eight-crossing knot 821 with its all-A splicing projection diagram.

the dual D
∗ obtained by removing the edges dual to the edges in H. From f(H) = 1

it follows that (D−H)∗ is connected and spanning. Furthermore, f((D−H)∗) = 1.

We have:

v(H) − e(H) + f(H) = v(D) − e(H) + 1 = 2 − 2j

v(D) − e(D) + f(D) = 2 − 2g(D)

Thus,

v((D − H)∗) − e((D − H)∗) + f((D − H)∗) = f(D) − (e(D) − e(H)) + 1

= 2 − 2g(D) − v(D) + e(H) + 1

= 2 − 2(g(D) − j).
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Fig. 3. All-A splicing dessin for 821.

Hence, (D − H)∗ is a (g(D) − j)-quasi-tree in D
∗.

Recall that the Turaev genus zero links are precisely the alternating links. The

following corollary generalizes to the class of Turaev genus one links the aforemen-

tioned, classical interpretation of the determinant of connected alternating links as

the number of spanning trees in its checkerboard graph:

Corollary 4.2. Let D = D(A) be the all-A dessin of a connected link projection of

a link L and D
∗ its dual. Suppose D is of Turaev genus one. Then

det(L) = |#{spanning trees in D} − #{spanning trees in D
∗}|.

We apply Corollary 4.2 to compute the determinants of non-alternating pretzel

links. The Alexander polynomial as well as the Jones polynomial, and consequently

the determinant is invariant under mutations (see e.g. [Lic97]). Hence, it is sufficient

to consider the case of K(p1, . . . , pn,−q1, . . . ,−qm) pretzel links, as depicted in

Figure 4. We assume that the links are non-alternating, i.e. n ≥ 1 and m ≥ 1.

Example 4.3. Consider the pretzel link K(p1, . . . , pn,−q1, . . . ,−qm), where n ≥
1, m ≥ 1 and pi, qi > 0 for all i. The determinant of K(p1, . . . , pn,−q1, . . . ,−qm),

is

det(K(p1, . . . , pn,−q1, . . . ,−qm)) =

∣

∣

∣

∣

∣

∣

n
∏

i=1

pi

m
∏

j=1

qj





n
∑

i=1

1

pi

−
m

∑

j=1

1

qj





∣

∣

∣

∣

∣

∣
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p1
p

2 q
m-1

q
m

Fig. 4. The K(p1, . . . , pn,−q1, . . . ,−qm) pretzel link.

p1
p

2 q    -1
m-1

q  -1
m

Fig. 5. The all-A splicings of the K(p1, . . . , pn,−q1, . . . ,−qm) pretzel link.

Proof. Figure 5 shows the all-A splicing diagram of these links. The all-A dessin

D = D(A) has

v(D) = n +

m
∑

j=1

(qj − 1) = n − m +

m
∑

j=1

qj

vertices and e(D) =
∑n

i=1 pi +
∑m

j=1 qj edges. For the numbers of faces we have to

count the vertices in the all-B dessin. We compute:

f(D) = m − n +

n
∑

i=1

pi.
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Now we get for the Euler characteristic:

χ(D) = v(D) − e(D) + f(D) = 0

and thus the Turaev genus is one.

It remains to compute the difference between the number of spanning trees in

the dessin and the number of spanning trees in its dual. This is a simple counting

argument.

Remark 4.4. The class of Turaev genus one knots and links is quite rich. For

example, it contains all non-alternating Montesinos links. It also contains all semi-

alternating links (whose diagrams are constructed by joining together two alternat-

ing tangles, and thus have exactly two over-over crossing arcs and two under-under

arcs).

5. Dessins with one vertex

5.1. Link projection modifications

Here we show that every knot/link admits a projection with respect to which the

all-A dessin has one vertex. Such dessins are useful for computations.

Lemma 5.1. Let P̃ be a projection of a link L with corresponding all-A dessin D̃.

Then P̃ can be modified by Reidemeister moves to a new a projection P such that

the corresponding dessin D = D(A) has one vertex. Furthermore, we have:

(1) e(D̃) + 2v(D̃) − 2 = e(D)

(2) g(D̃) + v(D̃) − 1 = g(D).

Proof. For a connected projection of the link L consider the collection of circles

that we obtain by an all-A splicing of the crossings. If there is only one circle we

are done. Otherwise, one can perform a Reidemeister move II near a crossing on

two arcs that lie on two neighbor circles as in Figure 6.

Fig. 6. Reduction of the number of vertices by a Reidemeister II move

The new projection will have one circle less in its all-A splicing diagram. Also

two crossings were added and a new face was created. If the link projection is
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non-connected one can transform it by Reidemeister II moves into a connected

link projection. It is easy to check that the genus behaves as predicted. The claim

follows.

Remark 5.2. Dessins with one vertex are equivalent to Manturov’s “d-diagrams”

[Man00]. Note that the procedure of using just Reidemeister moves of type II is

similar in spirit to Vogel’s proof of the Alexander theorem [Vog90,BB05].

5.2. The determinant of dessins with one vertex

Dessins with one vertex can also described as chord diagrams. The circle of the

chord diagram corresponds to the vertex and the chords correspond to the edges.

In our construction the circle of the chord diagram is the unique circle of the state

resolution, and the chords correspond to the crossings. The cyclic orientation at the

vertex induces the order of the chords around the circle. For each chord diagram D

one can assign an intersection matrix [CDL94,BNG96] as follows: Fix a base point

on the circle, disjoint from the chords and number the chords consecutively.

The intersection matrix is given by:

IM(D)ij =

{

sign(i − j) if the i-th chord and the j-th chord intersect

0 else

Recall that the number of spanning j-quasi trees in D was denoted by s(j, D).

Now:

Theorem 5.3. For a dessin D with one vertex the characteristic polynomial of

IM(D) satisfies:

det(IM(D) − xI) = (−1)m

⌊m

2
⌋

∑

j=0

s(j, D)xm−2j ,

where m = e(D) is the number of chords, i.e. the number of edges in the dessin.

In particular

det(D) = | det(IM(D) −
√
−1I)|.

Proof. The result follows from combining Theorem 3.2 and a result of Bar-Natan

and Garoufalidis [BNG96]. Bar-Natan and Garoufalidis use chord diagrams to study

weight systems coming from Vassiliev invariant theory, thus in a different set-

ting than we do. However, by [BNG96] for a chord diagram D the determinant

det(IM(D)) is either 0 or 1 and, translated in our language, it is 1 precisely if

f(D) = 1.
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Furthermore, since f(D) − 1 and the number of edges have the same parity, we

know that det(IM(D)) = 0 for an odd number of edges.

The matrix IM(D) has zeroes on the diagonal. Thus the coefficient of xm−j

in det(IM(D) − xI) is (−1)m−j times the sum over the determinants of all j × j

submatrices that are obtained by deleting m− j rows and the m− j corresponding

columns in the matrix IM(D). Those submatrices are precisely IM(H) for H a sub-

dessin of D with j edges. In particular the determinant of IM(H) is zero for j odd.

For j even we know that det(IM(H))) = 1 if f(H) = 1 and 0 otherwise. Since for

1-vertex dessins D the genus 2g(D) = e(D) − f(D) + 1 those H with f(H) = 1 are

precisely the j/2-quasi-trees. This, together with Theorem 3.2 implies the claim.

Example 5.4. The (p, q)-twist knots as in Figure 7 have an all-A-dessin with one

vertex.

p

p

q

q

Fig. 7. The (p, q)-twist knot and its all-A splicing dessin in chord diagram form.

The figure-8 knot is given as the (2, 3)-twist knot. Its intersection matrix is

IM(D) =













0 0 −1 −1 −1

0 0 −1 −1 −1

1 1 0 0 0

1 1 0 0 0

1 1 0 0 0













The characteristic polynomial of IM(D) is −6x3−x5. In particular, the determinant

of the figure-8 knot is 6 − 1 = 5.

5.3. The Jones polynomial at t = −2.

By work of Jaeger, Vertigan and Welsh [JVW90] evaluating the Jones polynomial

is #P -hard at all points, except at eight points: All fourth and sixth roots of unity.

In particular, the determinant arises as one of these exceptional points. However,
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letting computational complexity aside, Theorem 2.2 gives an interesting formula

in terms of the genus for yet another point: t = A−4 = −2:

Lemma 5.5. Let P be the projection of a link K with dessin D = D(A) such that

D has one vertex. Then the Kauffman bracket at t = A−4 := −2 evaluates to

〈P 〉 = Ae(D)
∑

H⊂D

(A−4)g(H).

Proof. By Corollary 2.3 we have the following sub-dessin expansion for the Kauff-

man bracket of P :

〈P 〉 =
∑

H⊂D

Ae(D)−2e(H)
(

−A2 − A−2
)f(H)−1

.

The term

A−2(−A2 − A−2) = (−1 − A−4)

is 1 at t = A−4 = −2 and, with v(D) = v(H) for all spanning sub-dessin H of D,

the claim follows.

6. Dessins and the coefficients of the Jones Polynomial

Let P be a connected projection of a link L, with corresponding all-A dessin D :=

D(A) and let

〈P 〉 =
∑

H⊂D

Ae(D)−2e(H)(−A2 − A−2)f(H)−1 (6.1)

denote the spanning sub-dessin expansion of the Kauffman bracket of P as obtained

earlier. Let H0 ⊂ D denote the spanning sub-dessin that contains no edges (so

v(H0) = v(D) and e(H0) = 0) and let M := M(P ) and m := m(P ) denote the

maximum and minimum powers of A that occur in the terms that lead to 〈P 〉. We

have

M(P ) ≤ e(D) + 2v(D) − 2,

and the exponent e(D)+2v(D)−2 is realized by H0; see Lemma 7.1, [DFK+08]. Let

aM denote the coefficient of the extreme term Ae(D)+2v(D)−2 of 〈P 〉. Below we will

give formulae for aM ; similar formulae can be obtained for the lowest coefficient,

say am, if one replaces the the all-A dessin with the all-B dessin in the statements

below. We should note that aM is not, in general, the first non-vanishing coefficient

of the Jones polynomial of L. Indeed, the exponent e(D) + 2v(D) − 2 as well as the

expression for aM we obtain below, depends on the projection P and it is not, in

general, an invariant of L. In particular, aM might be zero and, for example, we

will show that this is the case in Example 6.2.
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The following theorem extends and recovers results of Bae and Morton, and

Manchón [BM03,Man04] within the dessin framework.

Theorem 6.1. We have

(1) For l ≥ 0 let aM−l denote the coefficient of Ae(D)+2v(D)−2−4l in the Kauffman

bracket 〈P 〉. Then, the term aM−l only depends on spanning sub-dessins H ⊂ D

of genus g(H) ≤ l.

(2) The highest term is given by

aM =
∑

H⊂D, g(H)=0=k(H)−v(D)

(−1)v(D)+e(H)−1. (6.2)

In particular, if D does not contain any loops then aM = (−1)v(D)−1 and the

only contribution comes from H0.

Proof. The contribution of a spanning H ⊂ D to 〈P 〉 is given by

XH := Ae(D)−2e(H)(−A2 − A−2)f(H)−1. (6.3)

A typical monomial of XH is of the form Ae(D)−2e(H)+2f(H)−2−4s, for

0 ≤ s ≤ f(H) − 1.

For a monomial to contribute to aM−l we must have

e(D) − 2e(H) + 2f(H)− 2 − 4s = e(D) + 2v(D) − 2 − 4l, (6.4)

or

f(H) = v(D) + e(H) + 2s − 2l, (6.5)

Now we have

2g(H) = 2k(H) − v(D) + e(H) − f(H)

= 2k(H) − 2v(D) + 2l − 2s,

or g(H) = k(H)− v(D)+ l− s. But since v(D) ≥ k(H) (every component must have

a vertex) and s ≥ 0 we conclude that

l = g(H) + v(D) − k(H) + s ≥ g(H),

as desired. Now to get the claims for aM : Note that for a monomial of XH to

contribute to aM we must have

g(H) = k(H) − v(D) − s (6.6)

which implies that s = g(H) = 0 and v(D) = k(H). It follows that H contributes to

aM if and only if all of the following conditions are satisfied:
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(1) f(H) = v(D) + e(H).

(2) k(H) = v(D). Thus H consists of k := k(H) components each of which has

exactly one vertex and either H has no edges or every edge is a loop.

(3) g(H) = 0.

(4) the contribution of H to aM is (−1)f(H)−1.

This finishes the proof of the theorem.

Example 6.2. The all-A dessin of Figure 3 contains one sub-dessin with no edges,

two sub-dessins with exactly one loop and one sub-dessin of genus zero with two

loops. Thus aM = 0.

A connected link projection is called A-adequate iff the all-A dessin D(A) con-

tains no loops; alternating links admit such projections. We consider two edges as

equivalent if they connect the same two vertices. Let e′ = e′(D(A)) denote the

number of equivalence classes of edges.

The following is an extension in [Sto04] to the class of adequate links of a result

in [DL07] for alternating links. We will give the dessin proof for completeness, since

it shows a subtlety when dealing with dessins in our context: Not all dessins can

occur as a dessin of a link diagram.

Corollary 6.3. For A-adequate diagrams aM−1 = (−1)v(e′ − v + 1)

Proof. With the notation and setting of the proof of Theorem 6.1 we are looking

to calculate the coefficient of the power Ae(D)+2v(D)−6. The analysis in the proof of

Theorem 6.1 implies that a spanning sub-dessin H ⊂ D contributes to aM−1 if it

satisfies one of the following:

(1) v(H) = k(H) and g(H) = 1.

(2) v(H) = k(H) and g(H) = 0.

(3) v(H) = k(H) + 1 and g(H) = 0.

Since the link is adequate D(A) contains no loops and we cannot have any H as

in (1). Furthermore, the only H with the properties of (2) is the sub-dessin H0 that

contains no edges. Finally the only case that occurs in (3) consists of those sub-

dessins H1 that are obtained from H0 by adding edges between a pair of vertices.

The dessin is special since it comes from a link diagram. Each vertex in the dessin

represents a circle in the all-A splicing diagram of the link and each edge represents

an edge there. Because these edges do not intersect H1 must have genus 0.

Note that any sub-dessin H
′ ⊂ H1 is either H0 or is of the sort described in

(3). We will call H1 maximal if its not properly contained in one of the same type

with more edges. Thus there are e′ maximal H1 for D(A). The contribution of H1

to aM−1 is (−1)v(D)−3+e(H1). Thus the contribution of all H
′ ⊂ H1 that are not H0

is
e(H1)
∑

j=1

(

e(H1)

j

)

(−1)v(D)−3+j = (−1)v(D).
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Thus, the total contribution in aM−1 of all such terms is (−1)ve′.

To finish the proof, observe that the contribution of H0 comes from the second

term of the binomial expansion

XH0
:= Ae(D)(−A2 − A−2)f(H0)−1. (6.7)

Since f(H0) = v this later contribution is (−1)v−1(v − 1).

The expression in Theorem 6.1 becomes simpler, and the lower order terms

easier to express, if the dessin D has only one vertex. By Lemma 5.1 the projection

P can always be chosen so that this is the case.

Corollary 6.4. Suppose P is a connected link projection such that D = D(A) has

one vertex. Then,

aM−l =

g(H)=l
∑

H⊂D, g(H)=0

(−1)e(H)

(

e(H) − 2g(H)

l − g(H)

)

. (6.8)

In particular,

aM =
∑

H⊂D, g(H)=0

(−1)e(H) (6.9)

and

aM−1 =
∑

H⊂D, g(H)=1

(−1)e(H) +
∑

H⊂D, g(H)=0

(−1)e(H)e(H) (6.10)

Proof. For a 1-vertex dessin D we have

k(D) = v(D) = 1 and, thus 2g(D) = e(D) − f(D) + 1.

Now Equation (6.1) simplifies to

〈P 〉 =
∑

H⊂D

Ae(D)−2e(H)+2f(H)−2
(

−1 − A−4
)f(H)−1

=
∑

H⊂D

Ae(D)−4g(H)
(

−1 − A−4
)e(H)−2g(H)

.

The claim follows from collecting the terms.

Parallel edges, i.e. neighboring edges that are parallel in the chord diagram, in

a dessin are special since they correspond to twists in the diagram. It is useful to

introduce weighted dessins: Collect all edges, say µ(c)− 1 edges parallel to a given

edge c and replace this set by c weighted with weight µ(c). Note, that D̃ has the

same genus as D.

Corollary 6.5. For a knot projection with a 1-vertex dessin D and weighted dessin

D̃ we have:

〈P 〉 =
∑

H̃⊂D̃

Ae(D)−4g(H̃)(−1 − A−4)−2g(H̃)
∏

c∈H̃

(−1 − A−4µ(c)).
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Proof. For a given edge c collect in

〈P 〉 =
∑

H⊂D

Ae(D)−4g(H)
(

−1 − A−4
)e(H)−2g(H)

all terms where H contains an edge parallel to c. This sub-sum is

∑

H⊂D, H contains edge parallel to c

Ae(D)−4g(H)
(

−1 − A−4
)e(H)−2g(H)

=

∑

H⊂D, H̃=H−{edges parallel to c}∪c

µ(c)
∑

j=1

(

µ(c)

j

)

Ae(D)−4g(H)
(

−1 − A−4
)e(H̃)−1+j−2g(H)

=

∑

H⊂D, H̃=H−{edges parallel to c}∪c

Ae(D)−4g(H)
(

−1 − A−4
)e(H̃)−1−2g(H)

(

−1 − A−4µ(c)
)

The claim follows by repeating this procedure for each edge c.

Example 6.6. The (p, q)-twist knot is represented by the weighted, 1-vertex dessin

with two intersecting edges, one with weight p and one with weight q. By Corollary

6.5 its Kauffman bracket is:

A−p−q〈P 〉 = 1+(−1−A−4p)+(−1−A−4q)+A−4(−1−A−4)−2(−1−A−4p)(−1−A−4q).

Remark 6.7. Corollary 6.4 implies the following for the first coefficient aM . Sup-

pose D is a 1-vertex, genus 0 dessin with at least one edge. Then every sub-dessin

also has genus 0.

Thus,

∑

H⊂D, g(H)=0

(−1)e(H) =

e(D)
∑

j=0

(

e(D)

j

)

(−1)j = 0.

For an arbitrary dessin let H1, . . . , Hn be the maximal genus 0 sub-dessins of

D. Define a function φ on dessins which is 1 if the dessin contains no edges and 0

otherwise.

Then

aM =
∑

i

φ(Hi) −
∑

i,j, i<j

φ(Hi ∩ Hj) +
∑

i,j,k, i<j<k

φ(Hi ∩ Hj ∩ Hk) − . . .
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