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Given: Diagram of a knot or link

= 4–valent graph with over/under
crossing info at each vertex.

Quantum Topology
Colored Jones polynomials

Geometric topology
Incompressible surfaces in
knot complements

Geometric structures and data
esp. hyperbolic geometry and
volume

Goal: Describe a setting to study
both sides and relate them.
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Outline

Setting:
Given knot diagram construct state graphs (ribbon graphs)..
Build state surfaces spanned by the knot...
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hyperbolic part (“the Guts”)
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Boundary slopes relate to degrees of CJP.
Coefficients

measure how far certain surfaces are from being fibers
detect geometric types (in the sense of Thurston) of surfaces

Guts → relate CJP to volume of hyperbolic knots.

Method-Tools:
Create ideal polyhedral decomposition of surface complements...
Use normal surface theory to get correspondence
JSJ-decompositions ↔ state graph topology
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Given: Diagram of a knot or link

Two choices for each crossing, A or B resolution.

Choice of A or B resolutions for all crossings: state σ.

Result: Planar link without crossings. Components: state circles.

Form a graph by adding edges at resolved crossings. Call this graph Hσ.
( Note: n crossings → 2n state graphs)
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Example states

Link diagram All A state All B state

Above: HA and HB .
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Example states

Link diagram All A state All B state

Above: HA and HB .

The Jones polynomial of the knot can be calculated from HA or HB :
spanning graph expansion arising from the Bollobas-Riordan ribbon
graph polynomial (Dasbach-Futer-K-Lin-Stoltzfus, 2006).
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Colored Jones polynomial prelims

For a knot K we write its n-colored Jones polynomial:

JK ,n(t) := αntmn + βntmn−1 + · · · + β′

ntkn+1 + α′

ntkn .

Some properties:

JK ,n(t) is determined by the Jones polynomials of certain cables of K .

The sequence {JK ,n(t)}n is q-holonomic: for every knot the CJP’s satisfy
linear recursion relations in n (Garoufalidis-Le, 2004). Then, for every K ,

Degrees mn, kn are quadratic (quasi)-polynomials in n.

Coefficients αn, βn . . . satisfy recursive relations in n.
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ntkn+1 + α′

ntkn .

Some properties:

JK ,n(t) is determined by the Jones polynomials of certain cables of K .

The sequence {JK ,n(t)}n is q-holonomic: for every knot the CJP’s satisfy
linear recursion relations in n (Garoufalidis-Le, 2004). Then, for every K ,

Degrees mn, kn are quadratic (quasi)-polynomials in n.

Coefficients αn, βn . . . satisfy recursive relations in n.

Note. Properties manifest themselves in strong forms for knots with state
graphs that have no edge with both endpoints on a single state circle!—–
that is when K is A-adequate (next)
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Semi-adequate links

Lickorish–Thistlethwaite 1987: Introduced A–adequate links (B–adequate
links) in the context of Jones polynomials.

Definition
A link is A–adequate if has a diagram with its graph HA has no edge with both
endpoints on the same state circle. Similarly B-adequate.

Some examples:
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“Who” are they?

Semi-adequate (=A or B adequate) links are abundant! Thy are the “generic”
class of links to the eyes of CJP.

Some familiar classes and their geometry:

all but two of prime knots up to 11 crossings.

all alternating knots, (prime are torus links or hyperbolic),

all Montesinos knots (mostly hyperbolic),

all positive (negative) knots (lots of hyperbolic),

many arborescent knots (mostly hyperbolic),

all closed 3-braids (prime are torus knots or hyperbolic (Stoimenow),

large families of hyperbolic braid and plat closures (A. Giambrone),

blackboard cables and Whitehead doubles of semi-adequate knots
(satellites)
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Colored Jones polynomials for A-adequate links

HA=state graph from an A-adequate diagram of link K .

Definition
Collapse each state circle of HA to a vertex to obtain the state graph GA.
Remove redundant edges to obtain the reduced state graph G′

A.

JK ,n(t) := αntmn + βntmn−1 + · · · + β′

ntkn+1 + α′

ntkn .

Extreme Coefficients stabilize; they depend only on G′

A!
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Colored Jones polynomials for A-adequate links

HA=state graph from an A-adequate diagram of link K .

Definition
Collapse each state circle of HA to a vertex to obtain the state graph GA.
Remove redundant edges to obtain the reduced state graph G′

A.

JK ,n(t) := αntmn + βntmn−1 + · · · + β′

ntkn+1 + α′

ntkn .

Extreme Coefficients stabilize; they depend only on G′

A!
(Lickorish-Thistlethwaite) |α′

n| = 1; independent of n
(Dasbach-Lin/ Stoimenow) β′

K := |βn| = 1 − χ(G′

A), n > 1.
Note: In example above G′

A is a tree so β′

K = 0. The surface SA is fiber of
the knot complement (later).
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CJP for A-adequate links, con’t

In fact, all coefficients of JK ,n(t) stabilize:

(C. Armond) (the abs. values of the) k -th to last coefficients of JK ,n(t) is
independent on n as long as n ≥ l.
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(C. Armond) (the abs. values of the) k -th to last coefficients of JK ,n(t) is
independent on n as long as n ≥ l.
This gives the Tail TK (t) of CJP; a power series in t .

(Armond-Dasbach) TK (t) only depends on reduced state graph, G′

A

(Garoufalidis-Le) Extended and generalized Armond’s result. They
discovered higher order stability phenomena in CJP (“higher order tails”);
gave closed formulae for the tails.

Extreme degrees of CJP

(L-T) D any diagram of K , c−=number of negative crossings in D. Then

kn ≥ −n22c− + O(n),

kn :=min deg JK ,n(t). If D is A-adequate then we have equality!. Thus kn

is a quadratic polynomial in n; can be calculated explicitly.
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State surface

Given a state σ, using graph Hσ and link diagram, form the state surface Sσ.

Each state circle bounds a disk in Sσ (nested disks drawn on top).

At each edge (for each crossing) attach twisted band.

A–resolution

B–resolution
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Example state surfaces

Fig-8 knot SA SB Seifert surface

For alternating diagrams: SA and SB are checkerboard surfaces.
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When are state surfaces essential?

Essential=π1-injective
( May define as incompressible, ∂-incompressible. Warning.If SA is
non-orientabe use double: N(SA) − N(∂SA).)
The only trouble. If HA has edge with both endpoints on a single state circle
(boundary compression disk for double):

...

...

Theorem
(Ozawa, Futer-K-Purcell)The following are equivalent:

D(K) is A–adequate (no edge of GA is a loop)

SA is essential.

Ozawa proof was first.— We see a lot more about SA.
David Futer, Effie Kalfagianni, and Jessica S. Purcell () 13 / 26



Boundary slopes and CJP

SA= state surface with K = ∂SA an A-adequate knot (one component). The
class [K ] in H1(∂(S3 r K )) is determined by an element in Q∪ {∞}, called the
boundary slope of SA.

Theorem (FKP)
For an A–adequate diagram,

bdry slope of SA = lim
n→∞

−4
n2 kn,

kn :=min deg JK ,n(t).
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boundary slope of SA.

Theorem (FKP)
For an A–adequate diagram,

bdry slope of SA = lim
n→∞

−4
n2 kn,

kn :=min deg JK ,n(t).

Slopes Conjecture. (Garoufalidis) For every knot K the sequence

{
−4
n2 kn}n,

has finitely many cluster points, each of which is a boundary slope of K .
There is a similar statement for B-adequate knots.
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What’s known

For knots that are A and B-adequate (a.k.a. adequate), slopes conjecture
is know for “both sides”.

(Garoufalidis) torus knots, certain 3-string pretzel knots ( these are
semi-adequate but not adequate)
For pretzel knots the boundary slopes are all known./ For torus knots CJP
has been calculated.

(Dunfield–Garoufalidis) Verified conjecture for the class of 2-fusion
knots.— (normal surface theory+character variety techniques to get the
incompressible surface).

(van der Veen) Formulated a Slopes conjecture for the multi-colored CP
of links. Showed that SA verifies it A-adequate links.
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CJP detects fibers in state surfaces

Recall the reduced state graph G′

A corresponding to an A-adequate diagram
and β′

K the (abs. value of) stabilized penultimate coefficient of the CJP of the
corresponding knot K . They are related via β′

K = 1 − χ(G′

A).

Theorem (FKP)
The following are equivalent:

The complement S3 r K fibers over S1 with fiber SA.

The reduced graph G′

A is a tree.

We have β′

K = 0.

Remark If β′

K 6= 0 then SA doesn’t lift to a fiber in any finite cover!.

Next. If K is hyperbolic, β′

K determines the geometric type of SA in the
Thurston trichotomy.
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Essential surfaces in cusped hyperbolic 3-manifolds

M=a hyperbolic link complement in 3-sphere: M admits complete,
Riemannian metric of constant curvature −1.

H
3 hyperbolic 3-space; C=plane at infinity.

Γ = π1(M) is identified with a discrete torsion-free subgroup of PSL(2, C).
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Definitions of types

Under ρ : π1(S) →֒ π1(M) ⊂ PSL(2, C), the conjugacy class of [∂S] is mapped
to a parabolic element of PSL(2, C). (parabolics fix a horosphere).

An accidental parabolic is a non-peripheral element of π1(S) (i.e. a
non-conjugate of [∂S]) that is is mapped by ρ to a parabolic in π1(M).

Equivalently, accidental parabolic on S: a free homotopy class of a closed
curve not ∂–parallel on S but can be homotoped to the boundary of M.
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Under ρ : π1(S) →֒ π1(M) ⊂ PSL(2, C), the conjugacy class of [∂S] is mapped
to a parabolic element of PSL(2, C). (parabolics fix a horosphere).

An accidental parabolic is a non-peripheral element of π1(S) (i.e. a
non-conjugate of [∂S]) that is is mapped by ρ to a parabolic in π1(M).

Equivalently, accidental parabolic on S: a free homotopy class of a closed
curve not ∂–parallel on S but can be homotoped to the boundary of M.

The surface S is a semi-fiber if it is a fiber in M or covered by a fiber in a
two-fold cover of M. If S is a semi-fiber but not a fiber, we call it a strict
semi-fiber.

S is called quasifuchsian if the embedding S →֒ M lifts to a topological
plane in H

3 whose limit set Λ ⊂ ∂H
3 is a Jordan curve (topological circle).
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Limit sets of surface groups:

Recall π1(S) identified with discrete infinite subgroup of PSL(2, C). The orbits
of the action on H

3 accumulate on plane at infinity to give the limit set.

Limit sets of quasifuchsian surface groups are Jordan curves:

Note. Jordan curve is fixed by by isometries corresponding to π1(S). If S
non-orientable the two disks bounded by the Jordan curve will be be
interchanged by these isometries.
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Limit sets of semi-(fiber) surface groups is all of C = ∂H
3 (space filling

curve).
Example. The limit set of the fiber group of the complement of figure-8
knot is the entire plane at infinity.

Picture above and the one on previous slide are borrowed from Jos Leys
Kleinian Groups art gallery http://www.josleys.com/galleries.php
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Types of surfaces: A trichotomy

Every properly embedded, essential surface S in a hyperbolic cusped
3–manifold M falls into exactly one of the three types above (Marden,
Thurston, Bonahon...)

Theorem
Let S be an essential, properly embedded surface in a hyperbolic link
complement in S3. Then exactly one of the following is true:

contains accidental parabolics

semi-fibers

quasifuchsian

We will apply this to state surfaces of A-adequate knots. But first...
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Bibliographical Remarks

Types of surfaces in hyperbolic link complements.

1 No alternating link complement contains embedded quasifuchsian closed
surfaces. (Menasco- Reid).

2 There are closed, immersed quasifuchsian surfaces in any hyperbolic link
complement (Masters-Zhang).

3 There are closed accidental surfaces in a wide range of link complements
( Finkelstein- Moriah, Wu...)

4 Minimum genus Seifert surfaces are not accidental ( Cooper-Long,
Fenley).

5 There are hyperbolic knots with accidental Seifert surfaces (Tsutsumi...).
6 Checkerboard surfaces in alternating link complements are not virtual

fibers (Wise); they are always quasifuchsian (Adams, Futer-K.-Purcell).
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CJP determines the geometric type of state surfaces

Recall the reduced state graph G′

A corresponding to an A-adequate diagram
and β′

K the stabilized penultimate coefficient of the CJP of the corresponding
knot K .

Theorem (FKP)
Suppose K is hyperbolic. Then, β′

K determines the geometric type of the all–A
surface SA, as follows:

SA is a fiber in S3 r K iff β′

K = 0 or equivalently G′

A is a tree.

SA is quasifuchsian iff β′

K 6= 0 or equivalently G′

A is not a tree.

Remark. We have large families of quasifuchsian surfaces that fit nicely with
recent work of Thistlethwaite-Tsvietkova, who proposed an algorithm to
construct the hyperbolic structure on a link complement directly from a
diagram. Their algorithm works whenever a link diagram admits a
non-accidental state surface, which is exactly what our results ensure
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Is there more in β ′
K ? How about in the whole tail?

In general, β′

K measures the “size” (in the sense of Guts) of the
hyperbolic part in Jaco-Shalen-Johannson decomposition SA. This,
combined with work of Agol- W. Thurston- Storm,
large β′

K implies large hyperbolic volume for S3
r K (See next talk).

What about the tail?

Recall TK (t) = 1 ± β′

K t + O(t2).

Theorem (Armond-Dasbach)
Suppose K A-adequate. Then, TK (t) = 1 if and only if β′

K = 0.

Note: if β′

K = 0 then G′

A is a tree

Thus (in particular): TK (t) = 1 if and only if SA is a fiber in S3
r K .

Question. Does TK (t) contain more information about the complement of
SA and the geometry of K than β′

K ?
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The method: A “nice” polyhedral decomposition.

MA = S3\\SA is obtained by removing a neighborhood of SA from S3. On ∂MA

we have the parabolic locus (what remains from ∂(S3 r K ) after cutting along
SA).

Result:
Starting with an A-adequate diagram, we obtain an ideal polyhedral
decomposition of S3\\SA.
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Use these polyhedra and normal surface theory to study geometry of SA.
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Tools: A word on the proofs

By the Thurston-Bonahon trichotomy,

SA is never a semi-fiber (FKP, 2010).

SA doesn’t contain any accidental parabolics (FKP, 2012).

A word on ruling out parabolics:

Existence of an accidental parabolic implies the existence of an essential,
embedded annulus A in MA = S3\\SA, with one ∂-component on SA and
one on the parabolic locus.

Put the embedded annulus in normal form and analyze its intersections
with the polyhedral decomposition of MA.—- Get contradiction– annulus
cannot exist if link to start with K , is hyperbolic.

Example. Suppose K is a knot (one component): On any white face W , of
the decomposition, Σ intersect in arcs such that

each arc in A ∩W runs from an ideal vertex of W to a side of W ; and

A ∩W passes through every ideal vertex of W .

Then an arc in A ∩W runs from an ideal vertex to an adjacent side of W .
Contradiction to normal form!

David Futer, Effie Kalfagianni, and Jessica S. Purcell () 26 / 26


