
REMARKS ON JONES SLOPES AND SURFACES OF KNOTS

EFSTRATIA KALFAGIANNI

Abstract. We show that the strong slope conjecture implies that the degrees of
the colored Jones knot polynomials detect the figure eight knot. Furthermore, we
propose a characterization of alternating knots in terms of the Jones period and the
degree span of the colored Jones polynomial.

1. Introduction

The colored Jones polynomial of a knot K ⊂ S3 is a collection of Laurent polyno-
mials {JK(n) := JK(n, t)}∞n=1 in a variable t, such that JK(1) = 1 and JK(2) is the
classical Jones polynomial. In this note we use the normalization

Junknot(n) =
tn/2 − t−n/2

t1/2 − t−1/2
.

Let d+[JK(n)] and d−[JK(n)] denote the maximal and minimal degrees of JK(n)
in t, respectively. These degrees are quadratic quasi-polynomials in n. The strong
slope conjecture asserts that they contain information about essential surfaces in knot
exteriors. More specifically, the coefficients of the quadratic terms are boundary slopes
of K and the linear terms encode information about the topology of essential surfaces
that realize these boundary slopes.

In [17] we observed that the strong slope conjecture implies that d+[JK(n)] and
d−[JK(n)] detect the unknot and in [16] we show that they detect all the torus knots.
In this note we show the following.

Theorem 1.1. Let K be knot that satisfies the strong slope conjecture. If the degrees
d+[JK(n)] and d−[JK(n)] are the same as these of the figure eight knot then K is
isotopic to the figure eight knot.

Theorem 1.1 implies that the degrees d+[JK(n)] and d−[JK(n)] detect the figure
eight knot within the classes of knots for which the strong slope conjecture is known
(e.g. the class of adequate knots). The proof of the theorem relies on Gordon’s result
[10] that gives bounds of the distance between boundary slopes of punctured tori in
irreducible 3–manifolds with toroidal boundary.

We also observe that results on the strong slope conjecture, together with a result
of Howie [14], suggest the following conjecture that proposes a characterization of
alternating knots in terms of their colored Jones polynomial.
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Conjecture 1.2. Given a knot K let pK denote the Jones period of K. Then, K is
alternating if and only if we have

(1) pK = 1 and 2d+[JK(n)]− 2d−[JK(n)] = cn2 + (2− c)n− 2,

for some c ∈ Z.

Alternating knots satisfy Equation (1) with c = c(K), the crossing number of K.
Conversely, by [15] if K is knot that satisfies Equation (1) with c = c(K), then K
must be alternating. See Proposition 4.7. Conjecture 1.2 is seeking to remove the knot
diagrammatic reference to crossing numbers and provide a characterization only in
terms of properties of the degree of JK(n)]. The conjecture is known to be true for all
the knots for which the strong slope conjecture holds. These include adequate knots,
large classes of non-adequate Montesinos knots, graph knots, and knots obtained from
these classes by certain satellite operations. See Section 2 for more details.

There are non-alternating knots with Jones period one. For instance, for any
adequate knot K we have pK = 1 but there exist also families of non-adequate knots
that have this property. On the other hand, alternating knots are the only knots with
zero Turaev genus and they form a sub-class of adequate knots. The degree span of
the colored Jones polynomial of adequate knots is known to satisfy an analogue of
Equation (1) involving the Turaev genus. See Equation (2) in Section 4. We show
that this generalized equation, however, does not characterize adequate knots. See
Proposition 4.8.

Acknowledgement. The author thanks Christine Lee for useful conversations
and in particular for help with Proposition 4.8. This material is based on research
supported by NSF grants DMS-1708249 and DMS-2004155 and by a grant from the
Institute for Advanced Study School of Mathematics.

2. Background

2.1. Slopes Conjectures. Garoufalidis [7] proved that the degrees d+[JK(n)] and
d−[JK(n)] are quadratic quasi-polynomials: Given a knot K, there is nK ∈ N such
that for all n > nK we have

d+[JK(n)] = a(n)n2 + b(n)n+ c(n) and d−[JK(n)] = a∗(n)n2 + b∗(n)n+ c∗(n),

where the coefficients are periodic functions from N to Q. For a sequence {xn}, let
{xn}′ denote the set of its cluster points.

Definition 2.1. The Jones period of K, denoted by pK , is the least common multiple
of the periods of these coefficient functions a(n), b(n), c(n).

The elements of the sets

jsK :=
{

4n−2d+[JK(n)]
}′

and js∗K :=
{

4n−2d−[JK(n)]
}′

are called Jones slopes of K.
Let `d+[JK(n)] and `d−[JK(n)] denote the linear terms of d+[JK(n)] and d−[JK(n)],

respectively. Now we set
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jxK :=
{

2n−1`d+[JK(n)]
}′

and jx∗K :=
{

2n−1`d−[JK(n)]
}′
.

Given a knot K ⊂ S3, let n(K) denote a tubular neighborhood of K and let

MK := S3 \ n(K) denote the exterior of K. Let 〈µ, λ〉 be the canonical meridian–
longitude basis of H1(∂n(K)).

Definition 2.2. A properly embedded surface (S, ∂S) ⊂ (MK , ∂n(K)), is called
essential if it’s π1-injective and it is not a boundary parallel annulus. An element
α/β ∈ Q ∪ {1/0}, where α and β are relatively prime integers, is called a boundary
slope of K if there is an essential surface (S, ∂S) ⊂ (MK , ∂n(K)), such that each
component of ∂S represents αµ+ βλ ∈ H1(∂n(K)).

The longitude λ of every knot bounds an essential orientable surface in the exterior
of K. Thus 0 = 0/1 is a boundary slope of every knot in S3. Hatcher showed that
every knot K ⊂ S3 has finitely many boundary slopes [12].

For a surface (S, ∂S) ⊂ (MK , ∂n(K)) we will use the notation |∂S| to denote the
number of boundary components of S.

Garoufalidis conjectured [8, Conjecture 1.2], that the Jones slopes of any knot K
are boundary slopes. The following statement, which is a refinement of the original
conjecture, was stated by the author and Tran in [18, Conjecture 1.6].

Conjecture 2.3. (Strong slope conjecture)

• Given a Jones slope a(n) = α/β ∈ jsK, with β > 0 and gcd(α, β) = 1, there
is an essential surface S in MK such that each component of ∂S has slope

α/β and we have 2b(n) =
χ(S)

|∂S|β
∈ jxK.

• Given a Jones slope a∗(n) = α∗/β∗ ∈ js∗K, with β∗ > 0 and gcd(α∗, β∗) = 1,
there is an essential surface S∗ in MK such that each component of ∂S∗ has

slope α∗/β∗ and we have 2b∗(n) = − χ(S∗)

|∂S∗|β∗
∈ jx∗K.

Remark 2.4. Strictly speaking in [18, Conjecture 1.6] we only required that
χ(S)

|∂S|β
∈

jxK and − χ(S∗)

|∂S∗|β∗
∈ jx∗K without specifying that these values should correspond to

points that correspond to the same values of n for which the slopes a(n) and a∗(n)
occur. We don’t know if the seemingly stronger version statement of [18, Conjecture
1.6] is stronger than Conjecture 2.3. A related point is that, at the moment we don’t
know if there exist knots for which the sets jsK or js∗K contain more than one point.
In all cases for which the Jones slopes are computed, we have exactly one Jones slope
in each of jsK or js∗K .
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2.2. Progress. Conjecture 2.3 is known for the following families of knots:

• Adequate knots and in particular alternating knots [4, 5].
• Iterated torus knots and iterated cables of adequate knots [1, 18, 26].
• Graph knots [2].
• Families of non-alternating 3-tangle pretzel knots [22, 21] .
• Families of non-adequate Montesinos knots [9, 23, 21].
• Knots with up to 9 crossings [8, 13, 18].
• Near-alternating knots [20] constructed by taking Murasugi sums of an alter-

nating diagram with a non-adequate diagram.
• Iterated untwisted generalized Whitehead doubles of adequate knots and torus

knots [2].
• Knots obtained by any finite sequence of cabling, connect sums, and untwisted

generalized Whitehead doubles of adequate knots and torus knots [1, 18, 26].

Under certain conditions Conjecture 2.3 is known to be closed under cabling opera-
tions and Whitehead doubling operations [2, 18].

3. Exceptional surgeries and the figure eight knot

In [16] we noted that Conjecture 2.3 implies that the degrees of the colored Jones
polynomial distinguish torus knots and in particular the unknot:

Theorem 3.1. Suppose that K is a knot that satisfies the strong slope conjecture
and let Tp,q denote the (p, q)-torus knot. If d+[JK(n)] = d+[JTp,q(n)] and d−[JK(n)] =
d−[JTp,q(n)], for all n, then, up to orientation change, K is isotopic to Tp,q.

The proof of Theorem 3.1 begins with the observation that one of the Jones surfaces
for Tp,q is an annulus (the cabling annulus). This implies that K also admits a Jones
surface of zero Euler characteristic, which in turn implies that K must be a cable knot.
The proof of the next theorem is similar in flavor as it begins with the observation
that both the Jones surfaces of the figure eight knot are punctured Klein bottles.

Theorem 3.2. Suppose that K is a knot that satisfies the strong slope conjecture
and let F8 denote the figure eight knot. If d+[JK(n)] = d+[JF8(n)] and d−[JK(n)] =
d−[JF8(n)], for all n, then K is isotopic to F8.

Proof. The degrees d±[JF8(n)] are known (see, for example, [8, 4]). We have

d−[JK(n)] = d−[JF8(n)] = −n2 +
1

2
n+

1

2
,

and

d+[JK(n)] = d+[JF8(n)] = n2 − 1

2
n− 1

2
.

Thus we obtain

jsK :=
{

4n−2d+[JK(n)]
}′

= {4} and js∗K :=
{

4n−2d−[JK(n)]
}′

= {−4} ,
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Figure 1. From left to right: A crossing, the A-resolution and the B-resolution.

and

jxK :=
{

2n−1`d+[JK(n)]
}′

= {−1} and jx∗K :=
{

2n−1`d−[JK(n)]
}′

= {−1} .
Since K satisfies the strong slope conjecture we have essential surfaces S, S∗ in the
exterior of K such that

(1) the boundary slope of S is 4 and
χ(S)

|∂S|
= −1, and

(2) the boundary slope of S∗ is -4 and
χ(S∗)

|∂S∗|
= −1.

This implies that χ(S) = −|∂S| and χ(S∗) = −|∂S∗|. Thus S, S∗ are either punc-
tured tori or punctured Klein bottles. By passing to the orientable double we can
assume that each component of S, S∗ is a punctured torus. Thus the knot exterior
MK contains punctured tori with boundary slopes s = 4 and s∗ = −4. Let i(s, s∗)
denote the geometric intersection of s, s∗ on ∂MK . In this case we have i(s, s∗) = 8.
By a result of Gordon [10, Theorem 1.1] there are only two irreducible 3-manifolds
M such that a toroidal component of ∂M contains two boundary slopes s, s∗ of punc-
tured tori with i(s, s∗) = 8. These are the lowest volume hyperbolic 3-manifolds with
one cusp. From these two, the only one that is a knot complement in S3 is the com-
plement of the figure eight knot. Thus we conclude that MK is homeomorphic to the
complement of F8. By the Gordon-Luecke Knot Complement theorem [11], K has to
be isotopic to F8. �

To continue, we briefly recall the definition and some notation about adequate
knots: Let D be a link diagram, and x be a crossing of D. Associated to D and
x are two link diagrams, called the A–resolution and B–resolution of the crossing.
See Figure 1. A state on D is a function σ = σ(D) that assigns one of these two
resolution to each crossing of D. Applying the A–resolution (resp. B–resolution) to
each crossing leads to a collection of disjointly embedded circles sA(D) (resp. sB(D)).

Definition 3.3. The diagram D is called A–adequate (resp. B–adequate) if for each
crossing of D the two arcs of sA(D) (resp. sB(D)) resulting from the resolution of
the crossing lie on different circles. A knot diagram D is adequate if it is both A– and
B–adequate. Finally, a knot that admits an adequate diagram is also called adequate.

Starting with a state σ = σ(D) we construct a state surface Sσ = Sσ(D) as follows:
Each circle of σ(D) bounds a disk on the projection sphere S2 ⊂ S3. This collection
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of disks can be disjointly embedded in the ball below the projection sphere. At each
crossing of D, we connect the pair of neighboring disks by a half-twisted band to
construct a surface whose boundary is K. For details see [4, 5].

The state surfaces corresponding to sA(D) and sB(D) are denoted by SA(D) and
SB(D), respectfully. In [27] Ozawa showed that the state surface SA(D) is essential
in the exterior of K if and only if D is an A-adequate diagram. Similarly, SB(D)
is essential in the exterior of K if and only if D is an B-adequate diagram. For a
different proof of these results see [5]. Thus, in particular, if D is an adequate diagram
of a knot K then, SA(D) and SB(D) are essential surfaces in the exterior of K.

To continue we recall the following well known definition.

Definition 3.4. A slope s for a hyperbolic knot is called exceptional if the 3-manifold
obtained by filling MK along s is not hyperbolic.

The proof of Theorem 3.1 shows that both the Jones slopes of the knot F8 are
exceptional. Next we will see that F8 is the only adequate knot that has this property.

Corollary 3.5. Suppose that K is a hyperbolic adequate knot such that both the Jones
slopes of K are exceptional. Then K = F8.

Proof. It is known that the number of negative crossings c−(D) of an A–adequate knot
diagram is a knot invariant. Similarly, the number of positive crossings c+(D) of a B-
adequate knot diagram is a knot invariant. In fact, if K is adequate, then the crossing
number of K is realized by the adequate diagram; that is we have c(K) = c(D) =
c−(D) + c+(D) [24]. Let vA(D) and vB(D) be the numbers of circles in sA(D) and
sB(D), respectively. The boundary slope of SA is−2c−(D) and χ(SA) = vA(D)−c(D).
The boundary slope of SB is 2c+(D) and χ(SB) = vB(D)− c(D). By [4], the surfaces
SA = SA(D) and SB = SB(D) satisfy the strong slope conjecture for K.

That is we have

4 d−[JK(n)] = −2c−(D)n2 + 2(c(D)− vA(D))n+ 2vA(D)− 2c+(D),

and

4 d+[JK(n)] = 2c+(D)n2 + 2(vB(D)− c(D))n+ 2c−(D)− 2vB(D).

Thus the distance of the two Jones slopes is i(2c+(D), −2c−(D)) = |2c+(D) +
2c−(D)| = 2c(D).

Gordon’s conjecture, proved by Lackenby and Meyerhoff [19], states that if s, s∗ are
exceptional boundary slopes for K then i(s, s∗) ≤ 8. Thus in order for s = 2c+(D)
and s∗ = −2c−(D) to be exceptional we must have c(D) ≤ 4. Since K is hyperbolic,
K = F8. �

Example 3.6. Consider the 3-string pretzel knots K = P (r, s, t) such that r <
0 < s, t and −2r < s, t. It has exactly two Jones slopes with distance 2(s + t) (see
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Proposition 4.8 below). Since by assumption s, t > 2, we cannot have 2(s + t) ≤ 8.
Thus not both of the Jones slopes can be exceptional.

As another example, let us mention the knot pretzel knot P (−2, 3, 7), which is
known to have seven exceptional slopes. The Jones slopes of P (−2, 3, 7) are {37

2
, 0}

and from these only 37
2

is exceptional.

Question 3.7. Are there hyperbolic knots, other than the figure eight, that have more
than one exceptional Jones slopes?

4. Characteristic Jones surfaces and alternating knots

We begin by recalling from [17] that in all the cases where Conjecture 2.3 is proved,
for each Jones slope we can find a Jones surface where the number of sheets b|∂S|
divides the Jones period pK . This observation led to the following definition [17,
Definition 3.2].

Definition 4.1. We call a Jones surface S of a knot K characteristic if the number
of sheets of S divides the Jones period of K.

Example 4.2. An adequate knot (and thus in particular an alternating knot) has
Jones period pK = 1, two Jones slopes and two corresponding Jones surfaces each
with a single boundary component [6, 4]. Note, that the characteristic Jones surfaces
are spanning surfaces that are often non-orientable. In these cases the orientable
double cover is also a Jones surface but it is no longer characteristic since it has two
boundary components.

Question 4.3. Is it true that for every Jones slope of a knot K we can find a char-
acteristic Jones surface?

If K is an alternating knot then we have

pK = 1 and 2d+[JK(n)]− 2d−[JK(n)] = cn2 + (2− c)n− 2,

where c = c(K) is the crossing number of K. Thus, one direction Conjecture 1.2
is known. Furthermore, an alternating knot K satisfies the strong slope conjecture
and every Jones slope is realized by a characteristic Jones surface. This follows,
for example, from the discussion in the proof of Corollary 3.5. The state surfaces
SA(D), SB(D) corresponding to any reduced alternating diagram D = D(K) are in
fact the checkerboard surfaces of D.

We have the following converse:

Theorem 4.4. Suppose that K is a knot that satisfies the strong slope conjecture and
such that every Jones slope is realized by a characteristic Jones surface. Suppose,
moreover, that we have

pK = 1 and 2d+[JK(n)]− 2d−[JK(n)] = cn2 + (2− c)n− 2,

for some c ∈ Z. Then, K is alternating and c is the crossing number of K.
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Proof. Since we have pK = 1, for each of d±[JK(n)] we have exactly one Jones slope.
That is, we have jsK = {s} and js∗K = {s∗}. Furthermore, since knots of period one
have integer Jones slopes ([8, Lemma 1.11], [17, Propositrion 3.1]), both of s, and s∗

are integers.
Since we assumed that each Jones slope of K is realized by a characteristic Jones

surface, we conclude that we can take the Jones surfaces, say S, S∗, corresponding to
s, s∗, respectively, to be spanning surfaces of K.

Finally, since we assumed that 2d+[JK(n)]− 2d−[JK(n)] = cn2 + (2− c)n− 2, for
some c ∈ Z, we conclude that i(∂S, ∂S∗) = s− s∗ = 2c, where i(∂S, ∂S∗) denotes the
geometric intersection of the curves ∂S, ∂S∗ on ∂MK , and that χ(S) +χ(S∗) = 2− c.
Thus in particular, we have

χ(S) + χ(S∗) +
1

2
i(∂S, ∂S∗) = 2.

By Howie’s result [14, Theorem 2] it follows that K is alternating and in fact S, S∗

are the checkerboard surfaces corresponding to an alternating diagram of K. But
then c = c(K) by the discussion before the statement of the theorem. �

As a corollary of Theorem 4.4 we have the following.

Corollary 4.5. Suppose that K is an adequate knot. Then K is alternating if and
only if we have

2d+[JK(n)]− 2d−[JK(n)] = cn2 + (2− c)n− 2,

for some c ∈ Z.

Proof. Conjecture 2.3 has been proved for adequate knots [18]. Furthermore, as
discussed earlier, adequate knots have period one and for every Jones slope we can
find a characteristic Jones surface. Thus, the conclusion follows from Theorem 4.4.

�

Remark 4.6. Theorem 4.4 shows that the strong slope conjecture together with a
positive answer to Question 4.3 implies Conjecture 1.2 stated in the Introduction.
We also note, that if Conjecture 1.2 is true then the degrees d±[JK(n)] would detect
an alternating knot as long as they detect it among alternating knots with the same
crossing number. That is, if we had a knot K such that d±[JK(n)] = d±[JK′(n)], where
K ′ is alternating, then by Theorem 4.4 we would conclude that K is also alternating
with c(K) = c(K ′). So if d±[JK(n)] distinguishes K ′ among alternating knots of
the same crossing number, it will detect it among all knots. Given a prime reduced
alternating diagram D = D(K), the degrees d±[JK(n)] are completely determined
by the quantities c−(D), c+(D), vB(D), vA(D), introduced in the proof of Corollary
3.5. Thus, since vB(D), vA(D) are also the numbers of the checkerboard regions of D,
given two reduced alternating diagrams of the same crossing number one can decide
whether they are distinguished by the degree of their colored Jones polynomial by a
direct diagrammatic inspection. We illustrate these points with a few examples. We
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already know that Conjecture 2.3 implies that d±[JK(n)], detect the trefoil and figure
eight knots.

• If Conjecture 1.2 is true then the degrees d±[JK(n)], would detect the 52 knot:
For, suppose that for a knot K the degrees d±[JK(n)] are the same as these of
the knot 52. Then by Theorem 4.4 K is alternating, and we have c(K) = 5.
Thus K = T2,5 or K = 52. Since T2,5 is distinguished from 52 by the degrees
of the colored Jones polynomial we conclude that K = 52.
• Now we discuss alternating knots with crossing number six: The degrees
d±[JK(n)] distinguish the knots 61, 62, 63 from each other. More specifically,
the quantities c−(D), c+(D) (a.k.a. the Jones slopes) distinguish 61 from 62

and 63, while the quantities vB(D), vA(D) distinguish 62 and 63 from each
other. Hence, if Conjecture 1.2 is true then, the degrees d±[JK(n)] would
detect any of 61, 62, 63.

The next proposition shows that in order to prove Conjecture 1.2, it is enough to
show that if K is a knot that satisfies equation 1, then we must have c = c(K).

Proposition 4.7. If K is a knot such that

2d+[JK(n)]− 2d−[JK(n)] = c(K)n2 + (2− c(K))n− 2,

then K is alternating.

Proof. Let D be a knot diagram of K that realizes c(K) and let gT (D) denote the
Turaev genus of D [3]. Then we have

2d+[JK(n)]− 2d−[JK(n)] ≤ c(K)n2 + (2− c(K)− 2gT (D))n+ 2gT (K)− 2,

for all n ∈ N. See for example [15]. Thus we must have 2−c(K) ≤ 2−c(K)−2gT (D),
which implies gT (D) = 0. Now by [3, Corollary 4.6], D must be an alternating
diagram. �

As mentioned above, alternating knots are the only knots that have Turaev genus
zero [3, Corollary 4.6]. Thus the degree span condition in the statement of Conjecture
1.2 can be reformulated to say

(2) 2d+[JK(n)]− 2d−[JK(n)] = cn2 + (2− 2gT (K)− c)n+ 2gT (K)− 2,

where gT (K) denotes the Turaev genus of K and c is an integer. By [15] adequate
knots satisfy condition (2) above, and they have Jones period equal to one. One can
ask whether these conditions characterize adequate knots. The following proposition,
shown to me by Christine Lee, shows that this is not the case.

Proposition 4.8. Consider any 3-string pretzel knot K = P (r, s, t) with r < 0 < s, t
and −2r < s, t. Then we have pK = 1 and

2d+[JK(n)]− 2d−[JK(n)] = cn2 + (2− 2gT (K)− c)n+ 2gT (K)− 2,

but K is non-adequate.
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Proof. The standard 3-string pretzel diagram D of K = P (r, s, t) has s+t−r crossings
and by [25] this is the crossing number of K. That is c(K) = c(D) = s+ t− r. The
diagram D is also B-adequate with c+(D) = c(D) = s + t− r and vB(D) = −r + 1.
Thus we have

2 d+[JK(n)] = (s+ t− r)n2 + (−s− t+ 1)n+ (r − 1).

On the other hand, Lee [20] shows that

• the Jones slope coming from d+[JK(n)] is equal to 2c−(D)− 2r = −2r;
• it is realized by a Jones surface that is actually the state surface Sσ corre-

sponding to the state σ that assigns the −r crossings the B-resolution and
the s+ t crossings the A-resolution.

Note that the hypothesis −2r < s, t is needed for these claims.
The number of state circles for above state σ is given by vσ(D) = −r− 1 + s− 1 +

t− 1 + 2 = −r + s+ t− 1. We have

−χ(Sσ) = −(vσ(D)− c(D)) = −(−r + s+ t− 1− s− t+ r) = 1,

and

2 d−[JK(n)] = −rn2 + n+ (r − 1).

It follows that

2 d+[JK(n)]− 2 d−[JK(n)] = (s+ t)n2 − (s+ t)n.

The Turaev genus of non-alternating 3-string pretzel knots is known to be one and
hence 2 − 2gT (K) = 0. With this observation we see that the last equation can be
written in the form of Equation (2) where c = s + t ∈ Z. Finally since s + t <
s+ t− r = c(K), the knot K is not adequate. �

Remark 4.9. In [15] we show that if in Equation (2) we require that the constant c
is actually the crossing number of K, then K must be adequate. Proposition 4.8 and
its proof show that the condition c = c(K) is necessary.

Remark 4.10. The proof of Proposition 4.8 shows, in particular, that there are
non-adequate knots K that admit spanning surfaces S, S∗ such that

χ(S) + χ(S∗) +
1

2
i(∂S, ∂S∗) = 2− 2gT (K).

This should be compared with the main result of [14] that states that for gT (K) = 0
this equation characterizes alternating knots and with [15, Problem 1.3].
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