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General theme

Three phases of 3-manifold/knot theory:

1 Hyperbolic geometry
2 Quantum topology
3 “Combinatorial presentations/models” (e.g. knot diagrams, triangulations

of 2 and 3-dimensional manifolds, pants decompositions...)

Relations?

Constructions of quantum invariants use combinatorial models in low
dimensional topology

Research has shed light on relations between hyperbolic geometry and
combinatorial models/descriptions in LDT

Question (vague) Do these relations reflect on the “quantum side”?
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General theme of talk

Talk: Relations between features of SU(2)-Witten-Reshetikhin-Turaev TQFT
and hyperbolic geometry via the pants graph.

Surface pant decompositions
Quantum Topology: relate to bases of the TQFT spaces
Geometry: Form a metric space that “coarsely models” the WP metric
geometry of the Teichmüller space

TQFT features
“Large-r ” asymptotics of curve
operators on TQFT spaces

Hyperbolic geometry features
WP geometry of Teichmüller space
volumes of hyperbolic 3-manifolds
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Outline
Σ =closed orientable surface of genus g := g(Σ) > 1.

1 TQFT prelims. Work with skein theoretic version of SU(2)-WRT-TQFT
(Blanchet, Habegger, Masbaum and Vogel ).

2 For r ≥ 3, and ζr = −e
πi
2r , we have a finite dimensional Hermitian vector

space Vr (Σ); and
3 curve operators: Hermitian operators T γ

r : Vr (Σ) −→ Vr (Σ), for any
multicurve γ on Σ.

A pairing. Data from “large-r ” asymptotics analysis of curve operators
gives a pairing, called quantum intersection number, on the set of pants
decompositions of Σ.

Geometric content of quantum intersection number.
1 Relates to geometric intersection number of curves.
2 Leads to two sided bounds of volumes of hyperbolic surface bundles.
3 leads to a metric space that is quasi-isometric to the Teichmüller space

with its Weil-Petersson metric.
4 Relations with Nielsen-Thurston classification of mapping classes.
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Prelims

P=pants decomposition: 3g-3 disjointly embedded curves decomposing
Σ into pants (3-holed 2-spheres).

Dual graph Γ = ΓP : trivalent graph; each vertex of Γ lies in single pants of
P, and each edge of Γ intersects a single curve of P exactly once.

Figure: Elementary moves: blue curve γ−→ red curve intersecting γ

Elementary moves : Replace a single γ curve in a pants decomposition
by one that intersects γ minimally.

A-move happens on a 4-holed subsurface Σ0,4 of Σ (Top row of figure).

S-move happens on one-holed torus subsurface Σ1,1 of Σ (Bottom row).
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Skein theoretic SU(2)-TQFT by BHMV

P=pants decomposition of Σ with dual (banded) Γ with edge set E .

For r ≥ 3, let Cr = {1,2, . . . , r − 1} and let ζr = −e
πi
2r .

TQFT spaces. Vr (Σ) finite v. space w. non-degenerate Hermitian pairing

〈 〉 : Vr (Σ)× Vr (Σ) −→ C.

Vr (Σ)= certain quotient of a version the Kauffman skein algebra K (H, ζr ),
where H=handlebody with ∂H = Σ

Bases. Given an admissible coloring, c : E −→ Cr , BHMV constructs a
vector φc ∈ Vr (Σ) and gets an orthonormal basis

BP = {φc}c.

Curve operators. For a multicurve γ on Σ there are Hermitian operators

T γ
r : Vr (Σ) −→ Vr (Σ),

defined by descend of the product on K (H, ζr ).

The map K (Σ, ζr ) −→ End(Vr (Σ)) where γ −→ T γ
r is an algebra

morphism.
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Asymptotics of curve operators
Key: Given γ,P, for r “large enough” the presentation matrix of T γ

r in the
basis BP = {φc}c, has the same number of diagonals containing non-zero
entries.

For admissible colorings c : E −→ Cr,
c
r
∈ RE := {set of functions E −→ [0,1]}.

Theorem (Detcherry, 2015)
Given P and γ, there are analytic functions

Gγ
k = Gγ

k (
c
r
,

1
r

) : certain subset of RE × [0,1] −→ C,

indexed by functions k : E −→ Z, so that

T γ
r (φc) =

∑
k

Gγ
k (

c
r
,

1
r

)φc+k,

and only finitely many of {Gγ
k}k6=0 are non-zero functions.

E. Kalfagianni (MSU) 7 / 26



Asymptotics of curve operators
Key: Given γ,P, for r “large enough” the presentation matrix of T γ

r in the
basis BP = {φc}c, has the same number of diagonals containing non-zero
entries.

For admissible colorings c : E −→ Cr,
c
r
∈ RE := {set of functions E −→ [0,1]}.

Theorem (Detcherry, 2015)
Given P and γ, there are analytic functions

Gγ
k = Gγ

k (
c
r
,

1
r

) : certain subset of RE × [0,1] −→ C,

indexed by functions k : E −→ Z, so that

T γ
r (φc) =

∑
k

Gγ
k (

c
r
,

1
r

)φc+k,

and only finitely many of {Gγ
k}k6=0 are non-zero functions.

E. Kalfagianni (MSU) 7 / 26



Quantum intersection number

Definition. The quantum intersection number of γ with respect to P is

n(γ,P) := the number of k 6= 0 such that Gγk 6= 0.

Question: (vague) What is the geometric content of n(γ,P)?

We get a pairing n : C0
P(Σ)× C0

P(Σ) −→ Z, where C0
P(Σ)=isotopy classes

of pants decompositions of Σ

Question: (vague) Does this pairing see any of the geometric
connections of the pants graph of Σ? (more later).

Total geometric intersection number. For simple curves α, β on Σ, we
denote I(α, β) the minimum geometric intersection number within the
isotopy classes of α, β. We have

I(γ,P) :=
∑

α∈γ and β∈P

I(α, β).
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Quantum vs geometric intersection

Theorem (Detcherry-K., 2021)
For any γ and P, on a surface Σ of genus g > 1, we have

I(γ,P)

3g − 3
≤ n(γ,P) ≤ (I(γ,P) + 1)3g−3 − 1.

We get a skein theoretic proof of the following.

Corollary (Charles- Marché, 2012)
n(γ,P) = 0 if and only if I(γ,P) = 0.

....and a glimpse of hyperbolic geometry:(Why volume?)

Corollary (Detcherry-K., 2021)
There is a constant N > 0, only depending on the topology of Σ, so that for
any pseudo-Anosov mapping class φ ∈ Mod(Σ) and any P ∈ C0

P(Σ) we have

n(P, φ(P)) ≥ N Vol (Mφ).
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Pants graph prelims

Pants graph of Σ. (Hatcher-Thurston) Abstract graph C1
P(Σ) with

vertices C0
P(Σ) are in one-to-one correspondence with pants

decompositions of Σ.

Two vertices are connected by an edge if they are related by a single
elementary move (i.e. an A-move or an S-move).

Figure: Elementary moves of pants decompositions and dual graphs.
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The path metric and a model of the Teichmüller space

Path metric. The metric dπ : C1
P(Σ)× C1

P(Σ)→ [0,∞), where

it assigns the length 1 to each edge of the pants graph; and

dπ(P,Q)= minimum number of edges over all paths in C1
P(Σ) from P to Q.

Some properties: C1
P(Σ) is connected; Mod(Σ) acts by isometries.

(C0
P(Σ), dπ) is “combinatorial model” for coarse geometry of T (Σ)=

Teichmüller space of Σ.

Theorem (Brock, 2001)
The metric space (C0

P(Σ), dπ) is quasi-isometric to T (Σ) equipped with the
Weil-Petersson metric .

That is there is a map g : C0
P(Σ) −→ T (Σ), so that

1 g(C0
P(Σ)) is uniformly dense in T (Σ);

2 there are constants B1,B2 > 0, so that for all P,Q ∈ C0
P(Σ),

1
B1

dπ(P,Q)− B2 ≤ dWP(g(P),g(Q)) ≤ B1dπ(P, Q) + B2,
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A metric from TQFT on the pants graph

TQFT properties imply that the quantum intersection number
n : C0

P(Σ)× C0
P(Σ)→ [0,∞), is invariant under the action of Mod(Σ):

n(f (P), f (Q)) = n(P, Q),

for any φ ∈ M and P,Q ∈ C0
P(Σ).

We use “metrification” to promote the function n to a metric
dqt : C0

P(Σ)× C0
P(Σ)→ [0,∞), so that

1 For any P,Q ∈ C0
P(Σ), we have dqt (P, Q) ≤ n(P, Q).

2 Mod(Σ) acts on (C0
P(Σ), dqt ) by isometries.

3 The metric dqt coarsely records the geometry of the Weil-Petersson metric
on the Teichmüller T (Σ):

Theorem (Detcherry-K, 2001)
The metric space (C0

P(Σ), dqt ) is quasi-isometric to the Teichmüller space
equipped with its the Weil-Petersson metric.
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We use “metrification” to promote the function n to a metric
dqt : C0

P(Σ)× C0
P(Σ)→ [0,∞), so that

1 For any P,Q ∈ C0
P(Σ), we have dqt (P, Q) ≤ n(P, Q).

2 Mod(Σ) acts on (C0
P(Σ), dqt ) by isometries.

3 The metric dqt coarsely records the geometry of the Weil-Petersson metric
on the Teichmüller T (Σ):

Theorem (Detcherry-K, 2001)
The metric space (C0

P(Σ), dqt ) is quasi-isometric to the Teichmüller space
equipped with its the Weil-Petersson metric.
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A closer look at the quasi-isometry

The Teichmüller space: T (Σ) parametrizes finite area hyperbolic
structures on Σ.

Points in T (Σ): =equivalence classes of pairs (X , φ), of a finite area
hyperbolic surface and a homomorphism φ : X −→ Σ, up to isometry.

Ber’s constant: L := L(Σ) > 0, so that given X ∈ T (Σ) there is
PX ∈ C0

P(Σ), with lengthX (γ) < L, for each γ ∈ PX .

We get a cover {V (P)}P∈C0
P (Σ) of T (Σ), with

V (P) := {X ∈ T (Σ) | max
γ∈P
{lengthX (γ)} < L}.

Any map g : C0
P(Σ) −→ T (Σ), with P −→ g(P) ∈ V (P), is a

quasi-isometry of (C0
P(Σ), dqt ) to (T (Σ), dWP). That is,

there are constants A1,A2 > 0, only depending on Σ, such that

1
A1

dqt (PX ,PY )− A2 ≤ dWP(X ,Y ) ≤ A1dqt (PX , PY ) + A2,

for any X ,Y ∈ T (Σ).
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Key ingredients

To prove that the pants graph with the TQFT metric dqt is quasi-isometric
to the Teichmüller T (Σ) with the Weil-Petersson metric dWP :

1 Use the relation of quantum and geometric intersection numbers of pants
decompositions, and a result of Aougab, Taylor and Webb to relate the
path metric dπ and the quantum metric dqt .

2 We show that there is a constant A, only depending on the topology of
the surface Σ, such that

A
3g − 3

dπ(P,Q) ≤ dqt (P,Q) ≤ 2dπ(P,Q), (1)

for any P,Q ∈ C0
P(Σ).

3 Combine Brock’s theorem that (C0
P(Σ), dπ) is quasi-isometric to

(T (Σ), dWP) with (1) above.
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Sample applications: Volumes of surface bundles

The translation length of an isometry φ on a metric space (X , d) is

Ld (φ) := inf{d(φ(x), x) | x ∈ X}.

Mapping classes φ ∈ Mod(Σ) act as isometries on (C0
P(Σ), dqt ); we can

consider the translation lengths Ldqt (φ).

Mapping classes φ ∈ Mod(Σ) act as isometries on (T (Σ), dWP); we can
consider the translation lengths LdWP (φ).

If φ is a pseudo-Anosov mapping class, the mapping torus

Mφ := F × [0,1]/(x,1)∼(φ(x),0),

is a hyperbolic 3-manifold that fibers over the circle.

Main Theorem implies that for any φ ∈ Mod(Σ) the translation lengths
Ldqt (φ) and LdWP (φ) are within bounded ratios from each other, with
bounds depending only on the topology of Σ.

E. Kalfagianni (MSU) 15 / 26



Sample applications: Volumes of surface bundles

The translation length of an isometry φ on a metric space (X , d) is

Ld (φ) := inf{d(φ(x), x) | x ∈ X}.

Mapping classes φ ∈ Mod(Σ) act as isometries on (C0
P(Σ), dqt ); we can

consider the translation lengths Ldqt (φ).

Mapping classes φ ∈ Mod(Σ) act as isometries on (T (Σ), dWP); we can
consider the translation lengths LdWP (φ).

If φ is a pseudo-Anosov mapping class, the mapping torus

Mφ := F × [0,1]/(x,1)∼(φ(x),0),

is a hyperbolic 3-manifold that fibers over the circle.

Main Theorem implies that for any φ ∈ Mod(Σ) the translation lengths
Ldqt (φ) and LdWP (φ) are within bounded ratios from each other, with
bounds depending only on the topology of Σ.

E. Kalfagianni (MSU) 15 / 26



Sample applications: Volumes of surface bundles

The translation length of an isometry φ on a metric space (X , d) is

Ld (φ) := inf{d(φ(x), x) | x ∈ X}.

Mapping classes φ ∈ Mod(Σ) act as isometries on (C0
P(Σ), dqt ); we can

consider the translation lengths Ldqt (φ).

Mapping classes φ ∈ Mod(Σ) act as isometries on (T (Σ), dWP); we can
consider the translation lengths LdWP (φ).

If φ is a pseudo-Anosov mapping class, the mapping torus

Mφ := F × [0,1]/(x,1)∼(φ(x),0),

is a hyperbolic 3-manifold that fibers over the circle.

Main Theorem implies that for any φ ∈ Mod(Σ) the translation lengths
Ldqt (φ) and LdWP (φ) are within bounded ratios from each other, with
bounds depending only on the topology of Σ.

E. Kalfagianni (MSU) 15 / 26



Sample applications: Volumes of surface bundles

The translation length of an isometry φ on a metric space (X , d) is

Ld (φ) := inf{d(φ(x), x) | x ∈ X}.

Mapping classes φ ∈ Mod(Σ) act as isometries on (C0
P(Σ), dqt ); we can

consider the translation lengths Ldqt (φ).

Mapping classes φ ∈ Mod(Σ) act as isometries on (T (Σ), dWP); we can
consider the translation lengths LdWP (φ).

If φ is a pseudo-Anosov mapping class, the mapping torus

Mφ := F × [0,1]/(x,1)∼(φ(x),0),

is a hyperbolic 3-manifold that fibers over the circle.

Main Theorem implies that for any φ ∈ Mod(Σ) the translation lengths
Ldqt (φ) and LdWP (φ) are within bounded ratios from each other, with
bounds depending only on the topology of Σ.

E. Kalfagianni (MSU) 15 / 26



Sample applications: Volumes of surface bundles

The translation length of an isometry φ on a metric space (X , d) is

Ld (φ) := inf{d(φ(x), x) | x ∈ X}.

Mapping classes φ ∈ Mod(Σ) act as isometries on (C0
P(Σ), dqt ); we can

consider the translation lengths Ldqt (φ).

Mapping classes φ ∈ Mod(Σ) act as isometries on (T (Σ), dWP); we can
consider the translation lengths LdWP (φ).

If φ is a pseudo-Anosov mapping class, the mapping torus

Mφ := F × [0,1]/(x,1)∼(φ(x),0),

is a hyperbolic 3-manifold that fibers over the circle.

Main Theorem implies that for any φ ∈ Mod(Σ) the translation lengths
Ldqt (φ) and LdWP (φ) are within bounded ratios from each other, with
bounds depending only on the topology of Σ.

E. Kalfagianni (MSU) 15 / 26



Volumes of surface bundles, cont’

Corollary (D-K, ’21)
There exist a positive constant N, depending only on Σ, so that for any
pseudo-Anosov mapping class φ ∈ Mod(Σ) we have

1
N

Ldqt (φ) ≤ Vol (Mφ) ≤ N Ldqt (φ).

Proof ingredients:

A result of Brock (2003) states that the hyperbolic volume Vol (Mφ) and
the translation length LdWP (φ) are within bounded ratios from each other,
with bounds depending only on Σ.

Combining Brock’s result with Main Theorem gives that the hyperbolic
volume Vol (Mφ) and the translation length of TQFT metric Ldqt (φ) are
within bounded ratios from each other, with bounds depending only on Σ.

Remark. Corollary gives relation of quantum intersection number and volume
mentioned earlier. (next)
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Sample applications: Detecting pseudo-Anosov’s

Recall that we have Ldqt (φ) ≤ n(P, φ(P)), for any pants decomposition P
of Σ.

Hence, we have

Corollary
There is a constant N > 0, only depending on the topology of Σ, so that for
any pseudo-Anosov mapping class φ ∈ Mod(Σ) and any P ∈ C0

P(Σ) we have

n(P, φ(P)) ≥ N Vol (Mφ).

Looking at the behavior of quantum intersection numbers under iteration
in Mod(Σ) we derive a characterization of PA mapping classes:

Corollary
A mapping class φ ∈ Mod(Σ) is pseudo-Anosov if and only if for any
multicurve γ, we have

lim
k→∞

n(φk (γ),P) =∞,

for all P ∈ C0
P(Σ).
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Applications con’t: Norms and stretch factor

P= pants decomposition of Σ, BP = {φc}c corresponding bases of Vr (Σ).

Consider the l1 and l2-norms of T γ
r , with respect to BP , (s = 1,2)

||T γ
r ||{ls,P} =

( ∑
c,d∈Ur

|〈T γ
r φc, φd〉|2

) 1
s .

||T γ
r ||{ls,P} is independent of P; write ||T γ

r ||l2 , and

T (γ,P) := lim sup
r→∞

||T γ
r ||{l1,P}
||T γ

r ||l2
.

Corollary
Let φ ∈ Mod(Σ) be a pseudo-Anosov mapping class with stretch factor λφ.
Then, for any P ∈ C0

P(Σ) and any simple closed curve γ, we have

lim sup
k→∞

k
√

T (φk (γ),P) ≤ λ
3g−3

2
φ .
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Proof outline of Main Theorem

Given P ∈ C0
P(Σ) and γ= a multicurve,

We have
I(γ,P)

3g − 3
≤ n(γ,P) ≤ (I(γ,P) + 1)3g−3 − 1.

Upper bound follows easily from Detcherry’s work. Lower bound takes
work.

Γ := ΓP=dual graph, E=edges of Γ, c=admissible coloring of E . Recall
asymptotic expansion

T γ
r (φc) =

∑
k

Gγ
k (

c
r
,

1
r

)φc+k,

where Gγ
k = Gγ

k ( c
r ,

1
r ) are finitely many analytic functions indexed by

functions k : E −→ Z.
Must show: Gγ

k 6= 0, for at least I(γ,P)
3g−3 functions k.
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P(Σ) and γ= a multicurve,

We have
I(γ,P)

3g − 3
≤ n(γ,P) ≤ (I(γ,P) + 1)3g−3 − 1.

Upper bound follows easily from Detcherry’s work. Lower bound takes
work.

Γ := ΓP=dual graph, E=edges of Γ, c=admissible coloring of E . Recall
asymptotic expansion
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How matrix coefficients computed?

Recall
take P ′=parallel copies of curves in P so P ∪ P ′ gives decomposition
system of Σ: Pieces are pairs of pants or annuli.

Put γ in Thurston-Dehn position with respect to the decomposition
system. The portions of γ on each piece look like:

Black : γ in Dehn-Thurston position on pieces of a decomposition system
Red: The dual graph Γ.

Use Masbaum-Vogel fusion rules for SU(2)-skein theory to compute
matrix coefficients of curve operators.
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Outline:

1 For γ in Dehn-Thurston position set

M(γ, P) := max
α∈P
{I(γ, α)}.

2 Consider the limit of the functions Gγ
k , when r →∞, and ce = a for all

edges e ∈ E , and a
r → θ , ( 0 ≤ θ ≤ 1). This computes GQ

k (θ,0).

3 Define states on the endpoints of arcs of γ on pieces of decomposition
system, and weights on the arcs themselves, and obtain state-sum
expressions for GQ

k (θ,0).
4 Show that functions GQ

k (θ,0) are determined by certain Laurent
polynomials with rational coefficients.

5 Analyze structure of these Laurent polynomials to produce M(γ,P)
non-zero functions GQ

k (θ,0).
6 Get M(γ,P) non-zero funtions GQ

k ( c
r ,

1
r ), giving that M(P,Q) ≤ n(Q,P).

7 Since I(Q,P) ≤ (3g − 3). M(Q,P) result follows.
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More detail: Fusing at a limit

At the limit of Gγ
k , as r →∞, ce = a for all edges e ∈ E and a

r → θ, we
work with “limit versions” of fusion rules.

Sample of Fusion rules at the limit (〈θ〉 = sin(πθ).)

Â

−a
a + 1 a− 1

a

a + 1 a + 1

aa

a

Â

a + 1a + 1

a

a± 1

a± 1
= ±

a

a− 1a− 1

a

a− 1a + 1

a

a + 1 a− 1
aa

a

a− 1 a− 1

aa

a + 1

a

= (−1)a+1ei πθ
2

a

a + 1 a− 1

a

= −(−1)a+1e−i πθ
2

a

a− 1

=
〈 θ2 〉
〈θ〉

=

Â

=
(〈 3θ

2 〉〈
θ
2 〉)

1
2

〈θ〉

= − (〈 3θ
2 〉〈

θ
2 〉)

1
2

〈θ〉

a

a± 1

a∓ 1 = 0a± 1
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Fusing at a limit: two identities

P={αe|e ∈ E}. Use fusion for Γ ∪ γ rules and the following two key
identities that hold at the limit to calculate the limits coefficients of
matrices for curve operators.

The color on black edges is 2.

First Identity: Sliding Lemma. For ε, µ ∈ {±1}, we have

a
a + ε

a + ε+ µ

=
a
a + µ

a + ε+ µ

a
a + ε

= −

a + ε+ µ

a
a + µ

a + ε+ µ

and

Second Identity: We have ( z = ei πθ
2 , t=# of black arcs)

a + ε
a

a + µ

a + ε

= (−1)(a+1)tεt+1zεtδε,µ
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The process in Pictures

Patterns γ ∪ Γ on pieces of a decomposition system of Σ.

1 Top. Patterns of γ on an annulus piece: Before fusion rules (left), after
fusion rules (middle) and after Slidding Lemma (right).

2 Bottom. Patterns of γ on a pair of pants piece.
3 Apply more fusion rules and “second identity” on right side to complete

the computation.
E. Kalfagianni (MSU) 24 / 26



Restricted colorings

Decomposition system P ∪ P ′ = {αe, α
′
e |e ∈ E} of Σ, where α′e=parallel

copy of αe.

γ= multicurve in Dehn-Thurston position with respect to P ∪ P ′.

Pick edge e0 ∈ E so that dual curve in P realizes maximum geometric
intersection number M(γ,P) = I(γ, αe0 ).

For integers δ, with |δ| ≤ M(γ,P) consider coloring functions k : E −→ Z
given by

kδ(e) =

{
δ if e = e0,

I(γ, αe) if e 6= e0.
,

where αe ∈ P= dual to the edge e ∈ Γ.

Non-vanishing coefficient functions are obtained by showing:

Theorem
For each |δ| ≤ M(γ,P) with δ ≡ M(γ,P)(mod 2), we have Gγ

kδ
6= 0.
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How is done
1 Use state-sum expressions for Gγ

kδ
to show that there is a Laurent

polynomial Pδ(z) ∈ Q[z±1] so that

Gγ
kδ

= A(θ)Pδ(ei πθ
2 ),

for some A(θ) 6= 0 and z = ei πθ
2 .

2 Show that for each |δ| ≤ M(γ,P) with δ ≡ M(γ,P)(mod 2), we have
Pδ(z) 6= 0 in Q[z±1].

3 Suppose that Gγ
kδ

= Pδ(ei πθ
2 ) = 0.

4 We can choose θ so that ei πθ
2 is a transcendental number.

5 Since Pδ(z) 6= 0 is a polynomial with rational coefficients and ei πθ
2 is a

root, we conclude that ei πθ
2 is an algebraic number (contradiction).

Remark.
In Goldman’s picture: P induces torus-action on SU(2)-moduli space.
Trace functions fγ admit a Fourier decomposition w.r.t. to this torus action.
By Detcherry’s work, GQ

k (θ,0) compute these Fourier coefficients.

E. Kalfagianni (MSU) 26 / 26



How is done
1 Use state-sum expressions for Gγ

kδ
to show that there is a Laurent

polynomial Pδ(z) ∈ Q[z±1] so that

Gγ
kδ

= A(θ)Pδ(ei πθ
2 ),

for some A(θ) 6= 0 and z = ei πθ
2 .

2 Show that for each |δ| ≤ M(γ,P) with δ ≡ M(γ,P)(mod 2), we have
Pδ(z) 6= 0 in Q[z±1].

3 Suppose that Gγ
kδ

= Pδ(ei πθ
2 ) = 0.

4 We can choose θ so that ei πθ
2 is a transcendental number.

5 Since Pδ(z) 6= 0 is a polynomial with rational coefficients and ei πθ
2 is a

root, we conclude that ei πθ
2 is an algebraic number (contradiction).

Remark.
In Goldman’s picture: P induces torus-action on SU(2)-moduli space.
Trace functions fγ admit a Fourier decomposition w.r.t. to this torus action.
By Detcherry’s work, GQ

k (θ,0) compute these Fourier coefficients.

E. Kalfagianni (MSU) 26 / 26



How is done
1 Use state-sum expressions for Gγ

kδ
to show that there is a Laurent

polynomial Pδ(z) ∈ Q[z±1] so that

Gγ
kδ

= A(θ)Pδ(ei πθ
2 ),

for some A(θ) 6= 0 and z = ei πθ
2 .

2 Show that for each |δ| ≤ M(γ,P) with δ ≡ M(γ,P)(mod 2), we have
Pδ(z) 6= 0 in Q[z±1].

3 Suppose that Gγ
kδ

= Pδ(ei πθ
2 ) = 0.

4 We can choose θ so that ei πθ
2 is a transcendental number.

5 Since Pδ(z) 6= 0 is a polynomial with rational coefficients and ei πθ
2 is a

root, we conclude that ei πθ
2 is an algebraic number (contradiction).

Remark.
In Goldman’s picture: P induces torus-action on SU(2)-moduli space.
Trace functions fγ admit a Fourier decomposition w.r.t. to this torus action.
By Detcherry’s work, GQ

k (θ,0) compute these Fourier coefficients.
E. Kalfagianni (MSU) 26 / 26


