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General theme

Three phases of 3-manifold/knot theory:

@ Hyperbolic geometry

© Quantum topology

© “Combinatorial presentations/models” (e.g. knot diagrams, triangulations
of 2 and 3-dimensional manifolds, pants decompositions...)

Relations?

@ Constructions of quantum invariants use combinatorial models in low
dimensional topology

@ Research has shed light on relations between hyperbolic geometry and
combinatorial models/descriptions in LDT

@ Question (vague) Do these relations reflect on the “quantum side”?
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General theme of talk

Talk: Relations between features of SU(2)-Witten-Reshetikhin-Turaev TQFT
and hyperbolic geometry via the pants graph.

Surface pant decompositions

@ Quantum Topology: relate to bases of the TQFT spaces

@ Geometry: Form a metric space that “coarsely models” the WP metric
geometry of the Teichmller space
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General theme of talk

Talk: Relations between features of SU(2)-Witten-Reshetikhin-Turaev TQFT
and hyperbolic geometry via the pants graph.

Surface pant decompositions

@ Quantum Topology: relate to bases of the TQFT spaces

@ Geometry: Form a metric space that “coarsely models” the WP metric
geometry of the Teichmller space

j TQFT features

@ “Large-r’ asymptotics of curve
operators on TQFT spaces

Hyperbolic geometry features

@ WP geometry of Teichmller space
@ volumes of hyperbolic 3-manifolds
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Y =closed orientable surface of genus g := g(X) > 1.

@ TQFT prelims. Work with skein theoretic version of SU(2)-WRT-TQFT
(Blanchet, Habegger, Masbaum and Vogel ).

@ Forr>3,and ¢, = —e% , we have a finite dimensional Hermitian vector
space V,(X); and

@ curve operators: Hermitian operators T, : V,(¥) — V,(X), for any
multicurve v on ¥.
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Y =closed orientable surface of genus g := g(X) > 1.

@ TQFT prelims. Work with skein theoretic version of SU(2)-WRT-TQFT
(Blanchet, Habegger, Masbaum and Vogel ).

@ Forr>3,and ¢, = —e% , we have a finite dimensional Hermitian vector
space V,(X); and

@ curve operators: Hermitian operators T, : V,(¥) — V,(X), for any
multicurve v on L.

@ A pairing. Data from “large-r” asymptotics analysis of curve operators
gives a pairing, called quantum intersection number, on the set of pants
decompositions of ¥.

@ Geometric content of quantum intersection number.
@ Relates to geometric intersection number of curves.
@ Leads to two sided bounds of volumes of hyperbolic surface bundles.

@ leads to a metric space that is quasi-isometric to the Teichmdller space
with its Weil-Petersson metric.

© Relations with Nielsen-Thurston classification of mapping classes.

E. Kalfagianni (MSU) 4/26



Prelims

@ P=pants decomposition: 3g-3 disjointly embedded curves decomposing
¥ into pants (3-holed 2-spheres).

@ Dual graph T = I'p : trivalent graph; each vertex of I lies in single pants of
P, and each edge of I' intersects a single curve of P exactly once.

Srh
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Prelims

@ P=pants decomposition: 3g-3 disjointly embedded curves decomposing
¥ into pants (3-holed 2-spheres).

@ Dual graph T = I'p : trivalent graph; each vertex of I lies in single pants of
P, and each edge of I' intersects a single curve of P exactly once.

m \\] 6\

Figure: Elementary moves: blue curve v— red curve intersecting

\

@ Elementary moves : Replace a single v curve in a pants decomposition
by one that intersects ~ minimally.

@ A-move happens on a 4-holed subsurface X 4 of X (Top row of figure).
@ S-move happens on one-holed torus subsurface X1 1 of X (Bottom row).
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Skein theoretic SU(2)-TQFT by BHMV

@ P=pants decomposition of ¥~ with dual (banded) I with edge set E.

@ Forr>3,letC,={1,2,...,r—1}andlet( = —e%.

@ TQFT spaces. V,/(X) finite v. space w. non-degenerate Hermitian pairing
(): V(X)) x V(X)) — C.

@ V,(X)= certain quotient of a version the Kauffman skein algebra K(H, ¢),
where H=handlebody with 0H = ¥
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Skein theoretic SU(2)-TQFT by BHMV

@ P=pants decomposition of ¥~ with dual (banded) I with edge set E.

@ Forr>3,letC,={1,2,...,r—1}andlet( = —e.

@ TQFT spaces. V,/(X) finite v. space w. non-degenerate Hermitian pairing
(): V(2)x V(X)) — C.

@ V,(X)= certain quotient of a version the Kauffman skein algebra K(H, ¢),

where H=handlebody with 0H = ¥

@ Bases. Given an admissible coloring, ¢ : E — C,, BHMV constructs a
vector ¢¢ € V,(X) and gets an orthonormal basis

Bp = {¢c}c-

@ Curve operators. For a multicurve v on X there are Hermitian operators
T V(X)) — Vi (Y),

defined by descend of the product on K(H, ¢;).

@ The map K(X,¢;) — End(V,(X)) where v — T, is an algebra

morphism.
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Asymptotics of curve operators

Key: Given v, P, for r “large enough” the presentation matrix of T, in the

basis Bp = {¢c}¢, has the same number of diagonals containing non-zero
entries.
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Asymptotics of curve operators

Key: Given v, P, for r “large enough” the presentation matrix of T, in the
basis Bp = {¢c}¢, has the same number of diagonals containing non-zero
entries.

@ For admissible colorings ¢ : E — C;,

% € RE := {set of functions E — [0,1]}.

Theorem (Detcherry, 2015)
Given P and ~, there are analytic functions

Gl = Glz(g, 17)  certain subset of RE x [0,1] — C,
indexed by functionsk : E — 7Z, so that

= S GE Do

and only finitely many of { G| }xo are non-zero functions.
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Quantum intersection number

Definition. The quantum intersection number of ~ with respect to P is

n(7y, P) := the number of K # 0 such that G, # 0.
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Quantum intersection number

Definition. The quantum intersection number of ~ with respect to P is

n(~y, P) := the number of K # 0 such that G, # 0.

@ Question: (vague) What is the geometric content of n(v, P)?

@ We get a pairing n: C%(X) x C%(X) — Z, where C3(X)=isotopy classes
of pants decompositions of ©

@ Question: (vague) Does this pairing see any of the geometric
connections of the pants graph of X? (more later).

@ Total geometric intersection humber. For simple curves o, 5 on &, we
denote /(«, 5) the minimum geometric intersection number within the
isotopy classes of «, 5. We have

I(v,P):=" > Ila,B).

a€c~y and BEP
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Quantum vs geometric intersection

Theorem (Detcherry-K., 2021)

For any v and P, on a surface ¥ of genus g > 1, we have

A < (3, P) < (I3, P) + 19972 1.
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Quantum vs geometric intersection

Theorem (Detcherry-K., 2021)

For any ~ and P, on a surface ¥ of genus g > 1, we have

A < (3, P) < (I3, P) + 19972 1.

@ We get a skein theoretic proof of the following.

Corollary (Charles- Marché, 2012)

n(~y, P) =0 if and only if I(-y, P) = 0.

@ ....and a glimpse of hyperbolic geometry:(Why volume?)
Corollary (Detcherry-K., 2021)

There is a constant N > 0, only depending on the topology of ¥, so that for
any pseudo-Anosov mapping class ¢ € Mod(X) and any P € C3(%) we have

n(P,$(P)) = N Vol (M,).
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Pants graph prelims

@ Pants graph of . (Hatcher-Thurston) Abstract graph CL(X) with

e vertices C3(X) are in one-to-one correspondence with pants
decompositions of ¥.

@ Two vertices are connected by an edge if they are related by a single
elementary move (i.e. an A-move or an S-move).

= ) (U— 71U

Figure: Elementary moves of pants decompositions and dual graphs.
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The path metric and a model of the Teichmuller space

@ Path metric. The metric d. : C5(X) x CL(X) — [0, 0), where
@ it assigns the length 1 to each edge of the pants graph; and
@ d.(P, Q)= minimum number of edges over all paths in C}(X) from P to Q.

E. Kalfagianni (MSU) 11/26



The path metric and a model of the Teichmuller space

@ Path metric. The metric d. : C5(X) x CL(X) — [0, 0), where

@ it assigns the length 1 to each edge of the pants graph; and

@ d.(P, Q)= minimum number of edges over all paths in C}(X) from P to Q.
@ Some properties: CL(X) is connected; Mod(X) acts by isometries.

E. Kalfagianni (MSU) 11/26



The path metric and a model of the Teichmuller space

@ Path metric. The metric d. : C5(X) x CL(X) — [0, 0), where

@ it assigns the length 1 to each edge of the pants graph; and

@ d.(P, Q)= minimum number of edges over all paths in C}(X) from P to Q.
@ Some properties: CL(X) is connected; Mod(X) acts by isometries.

@ (CY(X), d,)is “combinatorial model” for coarse geometry of 7(X)=
Teichmiller space of ¥.

E. Kalfagianni (MSU) 11/26



The path metric and a model of the Teichmuller space

@ Path metric. The metric d. : C5(X) x CL(X) — [0, 0), where

@ it assigns the length 1 to each edge of the pants graph; and

@ d.(P, Q)= minimum number of edges over all paths in C}(X) from P to Q.
@ Some properties: CL(X) is connected; Mod(X) acts by isometries.

@ (CY(X), d,)is “combinatorial model” for coarse geometry of 7(X)=
Teichmiller space of ¥.

Theorem (Brock, 2001)

The metric space (C3(X), d,) is quasi-isometric to T(X) equipped with the
Weil-Petersson metric .

E. Kalfagianni (MSU) 11/26



The path metric and a model of the Teichmuller space

@ Path metric. The metric d. : C5(X) x CL(X) — [0, 0), where

@ it assigns the length 1 to each edge of the pants graph; and

@ d.(P, Q)= minimum number of edges over all paths in C}(X) from P to Q.
@ Some properties: CL(X) is connected; Mod(X) acts by isometries.

@ (CY(X), d,)is “combinatorial model” for coarse geometry of 7(X)=
Teichmiller space of ¥.

Theorem (Brock, 2001)

The metric space (C3(X), d,) is quasi-isometric to T(X) equipped with the
Weil-Petersson metric .

@ That is there isa map g : C5(X) — T(X), so that
@ 9(CY(%)) is uniformly dense in T(X);

E. Kalfagianni (MSU) 11/26



The path metric and a model of the Teichmuller space

@ Path metric. The metric d. : C5(X) x CL(X) — [0, 0), where

@ it assigns the length 1 to each edge of the pants graph; and

@ d.(P, Q)= minimum number of edges over all paths in C}(X) from P to Q.
@ Some properties: CL(X) is connected; Mod(X) acts by isometries.

@ (CY(X), d,)is “combinatorial model” for coarse geometry of 7(X)=
Teichmiller space of ¥.

Theorem (Brock, 2001)

The metric space (C3(X), d,) is quasi-isometric to T(X) equipped with the
Weil-Petersson metric .

@ That is there isa map g : C5(X) — T(X), so that
@ 9(CY(%)) is uniformly dense in T(X);
@ there are constants By, B, > 0, so that for all P, Q € C%(X),

1
Edﬂ'(Pa Q) — B2 < dwp(9(P), 9(Q)) < B1d=(P, Q) + Bz,
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A metric from TQFT on the pants graph

@ TQFT properties imply that the quantum intersection number
n: C%(X) x CY(X) — [0, ), is invariant under the action of Mod(X):

n(f(P), 1(Q)) = n(P, Q)
forany ¢ € Mand P, Q € C3(X).
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n: CY%(X) x CY(X) — [0, ), is invariant under the action of Mod(X):
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A metric from TQFT on the pants graph

@ TQFT properties imply that the quantum intersection number
n: CY%(X) x CY(X) — [0, ), is invariant under the action of Mod(X):

n(f(P), #(Q)) = n(P, Q),

forany ¢ € Mand P, Q € C3(X).

@ We use “metrification” to promote the function n to a metric
dgt : C3(X) x CY(X) — [0, c0), so that
@ Forany P,Q e C3(X), we have du(P, Q) < n(P, Q).
@ Mod(X) acts on (C(X), dy) by isometries.
@ The metric dy coarsely records the geometry of the Weil-Petersson metric
on the Teichmdiller 7(X):

Theorem (Detcherry-K, 2001)

The metric space (C3(X), dy) is quasi-isometric to the Teichmdiller space
equipped with its the Weil-Petersson metric.
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A closer look at the quasi-isometry

@ The Teichmiiller space: 7(X) parametrizes finite area hyperbolic
structures on X.

@ Points in 7(X): =equivalence classes of pairs (X, ¢), of a finite area
hyperbolic surface and a homomorphism ¢ : X — ¥, up to isometry.
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A closer look at the quasi-isometry

@ The Teichmiiller space: 7(X) parametrizes finite area hyperbolic
structures on X.

@ Points in 7(X): =equivalence classes of pairs (X, ¢), of a finite area
hyperbolic surface and a homomorphism ¢ : X — ¥, up to isometry.

@ Ber’s constant: L= [(X) > 0, so that given X € T(X) there is
Px € CS(X), with length () < L, for each v € Px.

@ We get a cover {V(P)}Pecg(Z) of T(X), with
V(P)={XeT(X)]| mea;{lengthx(’y)} < L}.
v
@ Any map g : C3(X) — T(X), with P — g(P) € V(P),is a

quasi-isometry of (C%(X), dy) to (T(X), dwe). That is,
@ there are constants Ay, A2 > 0, only depending on ¥, such that

1
A71dqt(PX7 Py) — A2 < dwe(X, Y) < A1dg(Px, Py)+ Az,

forany X,Y € T(X).
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Key ingredients

@ To prove that the pants graph with the TQFT metric dy is quasi-isometric
to the Teichmuller 7(X) with the Weil-Petersson metric dye:
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Key ingredients
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to the Teichmuller 7(X) with the Weil-Petersson metric dye:

@ Use the relation of quantum and geometric intersection numbers of pants
decompositions, and a result of Aougab, Taylor and Webb to relate the
path metric d. and the quantum metric dg;.

@ We show that there is a constant A, only depending on the topology of
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Key ingredients

@ To prove that the pants graph with the TQFT metric dy is quasi-isometric
to the Teichmuller 7(X) with the Weil-Petersson metric dye:

@ Use the relation of quantum and geometric intersection numbers of pants
decompositions, and a result of Aougab, Taylor and Webb to relate the
path metric d. and the quantum metric dg;.

@ We show that there is a constant A, only depending on the topology of
the surface ¥, such that

A

,-o,gi_sdﬂ'(Pa Q) S dqt(P7 Q) S 2d7r(Pa 0)7 (1)

forany P, Q € C3(%).

@ Combine Brock's theorem that (C3(X), d,) is quasi-isometric to
(T(X), dwp) with (1) above.
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Sample applications: Volumes of surface bundles

@ The translation length of an isometry ¢ on a metric space (X, d) is

L9(6) = inf{d(6(x),x) | x € X}.
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Sample applications: Volumes of surface bundles

@ The translation length of an isometry ¢ on a metric space (X, d) is
L9(¢) := inf{d(6(x),x) | x € X}.

@ Mapping classes ¢ € Mod(X) act as isometries on (C5(X), dg); we can
consider the translation lengths L% (¢).
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Sample applications: Volumes of surface bundles

@ The translation length of an isometry ¢ on a metric space (X, d) is

L9(6) = inf{d(6(x),x) | x € X}.

@ Mapping classes ¢ € Mod(X) act as isometries on (C5(X), dg); we can
consider the translation lengths L% (¢).

@ Mapping classes ¢ € Mod(X) act as isometries on (7(X), dwp); we can
consider the translation lengths L9 (¢).

@ If ¢ is a pseudo-Anosov mapping class, the mapping torus
My = F x[0,1]/(x,1)~(6(x),0)>

is a hyperbolic 3-manifold that fibers over the circle.

@ Main Theorem implies that for any ¢ € Mod(X) the translation lengths
L% (¢) and L9 (¢) are within bounded ratios from each other, with
bounds depending only on the topology of .
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Volumes of surface bundles, cont’

Corollary (D-K, ’21)

There exist a positive constant N, depending only on ¥, so that for any
pseudo-Anosov mapping class ¢ € Mod(X) we have

1

N L7(@) < Vol (My) < N L%(9).

E. Kalfagianni (MSU) 16/26



Volumes of surface bundles, cont’

Corollary (D-K, ’21)

There exist a positive constant N, depending only on ¥, so that for any
pseudo-Anosov mapping class ¢ € Mod(X) we have

1N L% ($) < Vol (My) < N L%(g).
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Volumes of surface bundles, cont’

Corollary (D-K, ’21)

There exist a positive constant N, depending only on ¥, so that for any
pseudo-Anosov mapping class ¢ € Mod(X) we have

1

N L7(@) < Vol (My) < N L%(9).

Proof ingredients:

@ Aresult of Brock (2003) states that the hyperbolic volume Vol (M) and
the franslation length L% (¢) are within bounded ratios from each other,
with bounds depending only on X.

@ Combining Brock’s result with  Main Theorem gives that the hyperbolic
volume Vol (My) and the translation length of TQFT metric L% () are
within bounded ratios from each other, with bounds depending only on .

Remark. Corollary gives relation of quantum intersection number and volume
mentioned earlier. (next)
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Sample applications: Detecting pseudo-Anosov’s

@ Recall that we have L% ($) < n(P, ¢(P)), for any pants decomposition P
of X.
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Sample applications: Detecting pseudo-Anosov’s

@ Recall that we have L% ($) < n(P, ¢(P)), for any pants decomposition P
of . Hence, we have

There is a constant N > 0, only depending on the topology of ¥, so that for
any pseudo-Anosov mapping class ¢ € Mod(X) and any P € C,%(Z) we have

n(P,(P)) > N Vol (My).

@ Looking at the behavior of quantum intersection numbers under iteration
in Mod(X) we derive a characterization of PA mapping classes:

A mapping class ¢ € Mod(X) is pseudo-Anosov if and only if for any
multicurve v, we have

Jim n(¢#(2), P) = o0,

for all P € C3(%).
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Applications con’t: Norms and stretch factor
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Applications con’t: Norms and stretch factor

@ P=pants decomposition of X, Bp = {¢¢}c corresponding bases of V,(X).
@ Consider the /' and /2-norms of T, with respect to Bp, (s = 1,2)

wl=

1T gy = (Y (T de, da)P)°.

c,deUr

@ || T/||ss,py is independent of P; write || T/|| 2, and

TY
T(y,P) :=lim sup 17 lerPy

roo (1T e

Let ¢ € Mod(X) be a pseudo-Anosov mapping class with stretch factor A.
Then, for any P € C%(X) and any simple closed curve ~, we have

limsup{/T(6k(7), P) < A, .

k— o0
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Proof outline of Main Theorem

@ Given P € CY(X) and y= a multicurve,

@ We have . P)
2k 3g-3
< < —1.
3g_3 = "0 P) = v, P)+1) 1

@ Upper bound follows easily from Detcherry’s work. Lower bound takes
work.
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Proof outline of Main Theorem

@ Given P € CY(X) and y= a multicurve,
@ We have
I(v,P)

39 — 3_

n(y.P) < (I(y, P) +1)%7% - 1.

@ Upper bound follows easily from Detcherry’s work. Lower bound takes
work.

@ I :=Ip=dual graph, E=edges of I', c=admissible coloring of E. Recall
asymptotic expansion

T’Y ¢C Z G’y ¢C+k7

where GJ = G/ (&, 1) are finitely many analytic functions indexed by
functionsk: E — Z.

@ Must show: G, # 0, for at least gg P) functions k.
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How matrix coefficients computed?

Recall

@ take P’=parallel copies of curves in P so P U P’ gives decomposition
system of : Pieces are pairs of pants or annuli.
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How matrix coefficients computed?

Recall
@ take P’=parallel copies of curves in P so P U P’ gives decomposition
system of : Pieces are pairs of pants or annuli.
@ Put ~ in Thurston-Dehn position with respect to the decomposition
system. The portions of v on each piece look like:

@ Black : v in Dehn-Thurston position on pieces of a decomposition system
e Red: The dual graph T.

@ Use Masbaum-Vogel fusion rules for SU(2)-skein theory to compute
matrix coefficients of curve operators.

E. Kalfagianni (MSU) 20/26



@ For v in Dehn-Thurston position set
M(vy, P):=max{l(y,a)}.
aEP

@ Consider the limit of the functions G}, when r — ~o, and ¢, = a for all
edgesec E,and 2 — ¢, (0 <6 <1). This computes G,?(G,O).
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@ For v in Dehn-Thurston position set
M(vy, P):=max{l(y,a)}.
aEP

@ Consider the limit of the functions G}, when r — ~o, and ¢, = a for all
edgesec E,and 2 — ¢, (0 <6 <1). This computes G,?(H,O).
@ Define states on the endpoints of arcs of v on pieces of decomposition

system, and weights on the arcs themselves, and obtain state-sum
expressions for GZ(0,0).

@ Show that functions GZ(6,0) are determined by certain Laurent
polynomials with rational coefficients.

@ Analyze structure of these Laurent polynomials to produce M(+, P)
non-zero functions G2(6, 0).

@ Get M(~, P) non-zero funtions GZ(¢, 1), giving that M(P, Q) < n(Q, P).

T

@ Since /(Q, P) < (3g — 3). M(Q, P) result follows.
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More detail: Fusing at a limit

@ Atthe limit of G}, as r — oo, ce = afor alledges e € E and 2 — ¢, we
work with “limit versions” of fusion rules.
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More detail: Fusing at a limit

@ Atthe limit of G}, as r — oo, ce = afor alledges e € E and 2 — ¢, we
work with “limit versions” of fusion rules.

@ Sample of Fusion rules at the limit ((¢) = sin(76).)

A N NV
ia+1 ia_1
a |— B
AN A a AN
a / a /a
_ (_1)a+1ei%9 ‘ — (1)a+1ei7'29Y
a—|—1 a+1 a—1 a—1
a a
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Fusing at a limit: two identities

@ P={a¢le € E}. Use fusion for I' U v rules and the following two key
identities that hold at the limit to calculate the limits coefficients of
matrices for curve operators.

@ The color on black edges is 2.
@ First Identity: Sliding Lemma. For ¢, n € {41}, we have

ate+p ate+pu atetp ate+p
a+te a+p and a+te :_\\ a+tu
a B a a a

@ Second Identity: We have ( z = %", t=t# of black arcs)

a-+e a+e
a

_ (71 )(a+1)t5t+1 Zst(gs)‘u

a-tu
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The process in Pictures

@ Patterns v U T on pieces of a decomposition system of L.

@ Top. Patterns of v on an annulus piece: Before fusion rules (left), after
fusion rules (middle) and after Slidding Lemma (right).
© Bottom. Patterns of v on a pair of pants piece.

@ Apply more fusion rules and “second identity” on right side to complete
the computation.
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Restricted colorings

@ Decomposition system PU P’ = {«e, o, |e € E} of X, where a=parallel
copy of ae.

@ ~= multicurve in Dehn-Thurston position with respectto PU P’.
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Restricted colorings

@ Decomposition system PU P’ = {«e, o, |e € E} of X, where a=parallel
copy of ae.

@ ~= multicurve in Dehn-Thurston position with respectto PU P’.

@ Pick edge ¢y € E so that dual curve in P realizes maximum geometric
intersection number M(v, P) = (v, ag,)-

@ For integers 4§, with |5| < M(~, P) consider coloring functionsk : E — Z
given by

ks(€) = é if e= ey,
T U ae) it e # e

where ae € P=dualtothe edge e € T.
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Restricted colorings

@ Decomposition system PU P’ = {«e, o, |e € E} of X, where a=parallel
copy of ae.

@ ~= multicurve in Dehn-Thurston position with respect to P U P'.

@ Pick edge ¢y € E so that dual curve in P realizes maximum geometric
intersection number M(v, P) = (v, ag,)-

@ For integers 4§, with |5| < M(~, P) consider coloring functionsk : E — Z
given by

I(7, ae) if e # e.

where ae € P=dualtothe edge e € T.

é if e= ey,
ka(e)={ °

@ Non-vanishing coefficient functions are obtained by showing:

For each |5| < M(~, P) with 6 = M(~, P)(mod 2), we have G| # 0.
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How is done

@ Use state-sum expressions for Gy to show that there is a Laurent
polynomial Ps(z) € Q[z*'] so that

Gy, = A(9)Ps(e'?),

for some A(#) #0and z = &%
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How is done

@ Use state-sum expressions for Gy to show that there is a Laurent

polynomial Ps(z) € Q[z*'] so that
Gy, = A(0)Ps(/?),

for some A(#) #0and z = &%

@ Show that for each [5| < M(~, P) with § = M(~, P)(mod 2), we have
Ps(z) # 0 in Q[z*].

@ Suppose that G, = P;(e'%) = 0.

@ We can choose 6 so that &% is a transcendental number.

@ Since P;(z) # 0 is a polynomial with rational coefficients and &% is a
root, we conclude that /%" is an algebraic number (contradiction).
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How is done

@ Use state-sum expressions for Gy to show that there is a Laurent
polynomial Ps(z) € Q[z*'] so that

Gy, = A(9)Ps(e'?),

for some A(#) #0and z = &%

@ Show that for each |6| < M(~, P) with 6 = M(~, P)(mod 2), we have
P;(z) # 0in Q[z*"].

@ Suppose that G = Ps(e'7 ) = 0.

@ We can choose 6 so that g% is a transcendental number.

@ Since P;(z) # 0 is a polynomial with rational coefficients and &% is a
root, we conclude that /%" is an algebraic number (contradiction).

Remark.
@ In Goldman’s picture: P induces torus-action on SU(2)-moduli space.
@ Trace functions £, admit a Fourier decomposition w.r.t. to this torus action.
@ By Detcherry’s work, GZ(#,0) compute these Fourier coefficients.
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