Jones polynomials and hyperbolic geometry of knots

with

D. Futer (Temple) and J. Purcell (BYU)

March 2009- OSU

Setting / Notation

For K a hyperbolic knot, $\operatorname{vol}(S^3 \setminus K) := \operatorname{the}$ volume of K.

colored Jones polynomials: Invariants

$$\{J_K^n(t) \in \mathbf{Z}[t, t^{-1}] , n = 2, 3, ...\}$$

determined by the "classical" Jones polynomials of K and the cables of K. For n=2, we have the JP of K, denoted by $J_K(t)$.

Question: [Coarse Volume Conjecture (CVC)] Are there bounded constants C_1 , C_2 , and B_K := a function of the absolute values of the coefficients of J_K^n , so that

$$C_1 B_K - C_2 < \text{vol}(S^3 \setminus K) < C_3 B_K + C_4$$
?

Motivation/context

Volume Conjecture (VC). (Kashaev, Murakami-Murakami) For every hyperbolic knot K, we have

$$2\pi \lim_{n\to\infty} \frac{\log \left|J_K^n(e^{2\pi i/n})\right|}{n} = \text{vol}(S^3 \setminus K),$$

where $e^{2\pi i/n}$ is a primitive n-th root of unity.

If the **VC** is true, one expects co-relations between $\operatorname{vol}(S^3 \setminus K)$ and the coefficients of $J_K^n(t)$, at least for large values of n. For example, for $n \gg 0$ one would have

$$\operatorname{vol}(S^3 \setminus K) < C||J_K^n||,$$

where $||J_K^n||$:=the sum of absolute values of the coefficients of $J_K^n(t)$, C is a constant independent of K.

Relations among colored JP's:

Garoufalidis-Le: The invariants J_K^n satisfy recursive relations; given K finitely many J_K^n 's determine the whole sequence of the colored JP's. From this point of view, one hopes for linear co-relations between the volume of K and a function B_K depending on the coefficients of finitely many J_K^n . This works particularly well for adequate knots (definition later):

$$J_K^n(t) = \alpha_n t^{s_n} + \beta_n t^{s_n-1} + \dots + \beta_n' t^{r_n+1} + \alpha_n' t^{r_n}$$

Dasbach-Lin: For K adequate, α_n , β_n (head) and α'_n β'_n (tail) are independent of n!

Notation. We will write α, β for the head and α', β' for the tail coefficients.

The quantity $|\beta| + |\beta'|$ gives two sided linear bounds of volume.

- Alternating knots; Dasbach-Lin using work of Lackenby on volume and **twist numbers**.
- Large classes of non-alternating knots;
 Futer-K.-Purcell

Strong CVC? Can $J_K(t)$ suffice for coarse volume estimates?

- Several results (Alternating, adequate, tangle summations, closed 3-braids;) and
- -Numerical evidence (\leq 16 crossings, "geometrically simple" knots in Snappea census)

suggest Yes.

K

How to get CVC relations

- 1. Start with a "reduced" knot diagram D := D(K) of K.
- 2. Find a diagrammatic quantity that estimates (computes) coefficients of the Jones polynomials.
- 3. Prove that the same diagrammatic quantity also estimates volume.

Two approaches; two key ingredients:

- Estimating volume change under "long"
 Dehn filling.
- Estimating volume via Guts theory (Agol-Storm-Thurston).

16

Key quantity: the twist number. We consider two crossings of a knot diagram D := D(K) equivalent if they are connected by a string of bigons. The equivalence classes are called twist regions. The total number of twist regions is the **twist number** of D.

Theorem. (Lackenby- Agol-D. Thurston) For any diagram D of a hyperbolic knot K

$$vol(S^3 \setminus K) < 10v_3(t(D) - 1),$$

where $v_3 \approx 1.015$ is the volume of a regular ideal tetrahedron.

Lower bounds: Dehn filling approach

Twist number estimates volume.

Sample result: Highly twisted knots.

Theorem. (FKP) Suppose D(K) is a prime, twist-reduced diagram of a knot K. Assume that $t(D) \geq 2$ and that each region contains at least 7 crossings. Then, K is hyperbolic and

$$\frac{v_3}{3}t(D) < \text{vol}(S^3 \setminus K) < 10v_3(t(D) - 1).$$

Other classes of knots. (1) Lackenby: Alternating knots;— FKP: (2) "long enough" closed 3-braids; (3) diagrams of two "generalized" twist regions; (4) "long enough" Conway sums of tangles.

Key Ingredient: Volume change estimate under Dehn filling with long slopes.

Theorem. Let M be a complete, finite—volume hyperbolic manifold with cusps. Suppose that $M(\mathbf{s})$ is obtained by Dehn filing along some or all the cusps of M with slopes each of length greater than 2π . Denote the minimal slope length by l_{\min} . Then, if $M(\mathbf{s})$ is hyperbolic*, we have

$$\operatorname{vol}(M) > \operatorname{vol}(M(\mathbf{s})) \ge \left(1 - \left(\frac{2\pi}{l_{\min}}\right)^2\right)^{3/2} \operatorname{vol}(M).$$

^{*} Always true by Geometrization.

Estimating $vol(S^3 \setminus K)$.

• Step 1. Represent $S^3 \setminus K$ by Dehn filling on $S^3 \setminus L$; L= "nice"

"nice" = $\operatorname{vol}(S^3 \setminus L)$ can be estimated from below in terms of twist number and the filling slopes have length $> 2\pi$.

- Step 2. Apply Dehn filling Theorem to bound the volume $vol(S^3 \setminus K)$ in terms of twist number.
- **Step 3.** Relate the coefficients of the Jones polynomial to twist number to establish the CVC.

For example. We estimate $|\beta| + |\beta'|$ in terms of t(D) to obtain.

Theorem Let $K \subset S^3$ be a link with a prime, twist-reduced, **adequate** diagram D(K). Assume that D(K) has $t(D) \geq 2$ twist regions, and that each region contains at least 7 crossings. Then K is a hyperbolic link, satisfying

$$\frac{v_3}{6}(|\beta|+|\beta'|) < \text{vol}(S^3\backslash K) < 30v_3(|\beta|+|\beta'|-1).$$

Question. Why is $|\beta| + |\beta'|$ related to hyperbolic volume?

The Guts approach provides an intrinsic explanation.

The Guts approach for Volume bounds

State graphs: A Kauffman state σ of a knot diagram is a choice of A- or B- splicing at every crossing of D:

Resolving each crossing yields a collection of circles in the projection plane. As a result, the state determines a state graph G_{σ} :

- vertices of $\mathbf{G}_{\sigma} \longleftrightarrow$ circles from D
- edges of $\mathbf{G}_{\sigma} \longleftrightarrow$ former crossings of D

Adequate states: A state σ is called adequate if its graph G_σ is loopless. For exam-

ple, both of the states below are adequate:

A diagram D is **adequate** if its all -A and all -B states are both adequate.

Every (prime, reduced) alternating diagram is adequate. Almost all Montesinos knot (more generally, arborescent knots) have A- or B- adequate diagrams.

Reduced graphs give colored JP coeffs

We take the graph G_{σ} and throw away double ("redundant") edges. This gives the **reduced graph** G'_{σ}

Theorem. (Stoimenow, Dasbach-Lin) Let D(K) be an adequate diagram and let $\mathbf{G'}_A$, $\mathbf{G'}_B$ be the reduced graphs of the all-A and all-B states. Then

$$|\alpha| = |\alpha'| = 1, |\beta| = 1 - \chi(G'_A), |\beta'| = 1 - \chi(G'_B)$$

14

Reduced graphs estimate knot volume

Theorem. (Futer-K-Purcell) Let D(K) be a reduced, adequate diagram and σ its all-A or all-B state. Assume D:=D(K) is a "Conway sum of alternating tangles" (e.g. alternating, Montesinos, arborescent.) Then,

$$-v_8 \chi(\mathbf{G}'_{\sigma}) \leq \operatorname{vol}(S^3 \setminus K),$$

where $v_8 \approx$ 3.664 is the volume of a regular ideal octahedron. Moreover,

$$t(D) \leq 2(1 - \chi(G'_A) - \chi(G'_B)).$$

Corollary. For K as above

$$1.83(|\beta|+|\beta'|-2) \le \text{vol}(S^3 \setminus K) < 20.3(|\beta|+|\beta'|-1).$$

An Example

Replacing $|\beta| + |\beta'|$ with $\max(|\beta|, |\beta'|)$ gives a better lower bound. Here

$$v_8(|\beta|-1) = -v_8 \leq 0$$

$$G_B=G_B'$$

$$N_8(|\beta'|-1) = -N_8 \chi(G'_B) = 10.99...$$

$$Vol(S^3 \setminus K) = 13.64...$$

Typical sum of alternating tangles

Mild conditions on tangles assure adequacy.

Theorem holds for more general adequate knots. In fact:

Conjecture: Theorem holds for all ade-

quate knots. (Work in progress)

1 to

Volume estimates from Guts: Let M be a hyperbolic 3-manifold and S an essential surface in M. Cut M along S to obtain a manifold with boundary, N.

(JSJ-decomposition) N cut along essential annuli, yields three kinds of pieces:

- (1). Seifert fibered pieces; (2). I-bundles;
- (3). $\operatorname{Guts}(M,S)$. By Thurston, hyperbolic.

Theorem: (Agol-Storm- W. Thurston)

$$vol(M) \ge -v_8 \chi(Guts(M,S)).$$

This estimate relies on Perelmans volume estimates for Ricci flow with surgery. Weaker estimate was earlier obtained by Agol.

1/8

For us, S is the state surface: We use the Kauffman state σ to construct a state surface S_{σ} .

A spine of S_{σ} is the graph G_{σ} .

We have $\chi(S^3 \setminus S_{\sigma}) = \chi(S_{\sigma}) = \chi(G_{\sigma})$.

Theorem:(Ozawa) Suppose σ is the all-A or all-B state of D=D(K), and is adequate. Then S_{σ} is essential in $M:=S^3\setminus K$.

(19

The guts of state surfaces

Step 1: All the I-bundle pieces of the JSJ-decomposition of $N:=S^3\setminus S_\sigma$ are of the form (pair of pants) $\times I$ and come from redundant (double) edges in $\mathbf{G}^{\mathbf{G}}_\sigma$. Removing such a piece reduces each of $-\chi(N)$ and $-\chi(\mathbf{G}_\sigma)$ by one.

Step 2: All Seifert pieces are solid tori; dont affect Euler characteristic.

Conclusion:

$$\operatorname{vol}(S^3 \backslash K) \ge -v_8 \chi(\operatorname{Guts}(M, S)) \stackrel{\P}{=} -v_8 \chi(\mathbf{G'}_{\sigma}).$$

(20

The choice of state matters!

The last equality should mean:

$$\chi(Guts(M,S)) = \min(\chi(\mathbf{G}'_{\sigma}), 0).$$

In the earlier example we have $\chi(G'_A)=1$ and $Guts(M,S)=\emptyset$. The all-A state surfaces has no Guts!

()

The surface of the B-state, S_B , has a lot of Guts! There are no I-bundles in the characteristic sub manifold of M S_B .

$$V_8(|\beta'|-1) = -V_8 \chi(G'_B) = 10.99...$$

$$Vol(S^3 \setminus K) = 13.64...$$