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Setting /Notation

For K a hyperbolic knot, vol(S3\ K):= the

volume of K.
colored Jones polynomials: Invariants
{JE(t) € Zit,t71] n= 2,3,...}

determined by the “classical” Jones polyno-
mials of K and the cables of K. Forn= 2,

we have the JP of K, denoted by Jx(t).

Question: [ Coarse Volume Conjecture (CVC)]
Are there bounded constants C;, C», and
B = a function of the absolute values of

the coefficients of J}”‘&;, so that

C1 B —Co <VOI(S3\K) < C3 Bre+Cy 7
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Motivation /context

‘Volume Conjecture (VC). (Kashaev, Murakami-

Murakami) For every hyperbolic knot K, we

have

log

n (.27t /n
JKe /

27 My — oo

n

>} = vol(S3\ K),

where 27/ is 3 primitive n-th root of unity.

It the VC is true, one expects co—relations
between vol(S3\ K) and the coefficients of
Ji-(t), at least for large values of n. For

example, for n > 0 one would have
vol(S3\ K) < Cl| I,

where [|J%-|| :=the sum of absolute values
of the coefficients of JE-(t), C is a constant

independent of K.



Relations among colored JP’s:

Garoufalidis-Le: The invariants Jr- satisfy
recursive relations; given K finitely many

J}’g’s determine the whole sequence of the

colored JP's. From this point of view, one

hopes’for linear co—relations between the
volume of K and a function By depending
on the coefficients of finitely many Ji-. This

works particularly well for adequate knots
(definition later):

Dasbach-Lin: For K adequate, an, 8n (head)

and «j, G, (tail) are independent of n!

Notation. We will write «, 3 for the head

and o', 3 for the tail coefficients.
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The quantity |5|+|3/| gives two sided linear
bounds of volume.

- Alternating knots; Dasbach-Lin using work

of Lackenby on volume and twist numbers.

— Large classes of non-alternating knots:
Futer-K.-Purcell

Strong CVC? Can Jg(t) suffice for coarse

volume estimates?

— Several results (Alternating, adequate,

tangle summations, closed 3-braids;) and

—Numerical evidence (< 16 crossings, “ge-

ometrically simple” knots in Snappea cen-

sus)

suggest Yes.



How to get CVC relations

1. Start with a “reduced” knot diagram
D .= D(K) of K.

2. Find a diagrammatic quantity that esti-
mates (computes) coefficients of the Jones

polynomials.

3. Prove that the same diagrammatic quan-

tity also estimates volume.
TwO approaches; two key ingredients:

— Estimating volume change under “long”

Dehn Tilling.

— Estimating volume via Guts theory (Agol-

Storm-Thurston).
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Key quantity: the twist number. We
consider two crossings of a knot diagram
D = D(K) equivalent if they are connected
by a string of bigons. The equivalence classes
are called twist regions. The total number

of twist regions is the twist number of D.

Theorem. (Lackenby- Agol-D. Thurston)
For any diagram D of a hyperbolic knot K

VoI(S3\ K) < 10v3(t(D) — 1),

where vz ~ 1.015 is the volume of a regular

ideal tetrahedron.

[6))



Lower bounds: Dehn filling approach
Twist number estimates volume.
Sample result: Highly twisted knots.

Theorem. (FKP) Suppose D(K) is a prime,
twist—reduced diagram of a knot K. As-
sume that t(D) > 2 and that each region
contains at least 7 crossings. Then, K is

hyperbolic and

%t(D) < vol(S3\ K) < 10wz (#(D) — 1).

Other classes of knots. (1) Lackenby: Al-
ternating knots;— FKP: (2) “long enough”
Closed 3-braids; (3) diagrams of two “gen-
eralized” twist regions; (4)"“long enough”

Conway sums of tangles.



Key Ingredient: Volume change estimate

under Dehn filling with long slopes.

Theorem. Let M be a complete, finite—
volume hyperbolic manifold with cusps. Sup-
pose that M(s) is obtained by Dehn filing
along some or all the cusps of M with slopes
each of length greater than 2x. Denote the

minimal slope length by lpin. Then, if M(s)
is hyperbolic*, we have

5\ 2\ 32
vOI(M) > vol(M(s)) > (1 — (l . ) ) vol(M).

min

* Always true by Geometrization.



Estimating vol(S3\ K).

e Step 1. Represent S3\ K by Dehn filling
on S3\ L; L="nice"

“nice” = vol(S3\ L) can be estimated from
below in terms of twist number and the fill-

ing slopes have length > 27,

e Step 2. Apply Dehn filling Theorem to
bound the volume vol(S3\ K) in terms of

twist number.

e Step 3. Relate the coefficients of the
Jones polynomial to twist number to estab-
lish the CVC.



For example. We estimate |3]| + |5'] in
terms of ¢(D) to obtain.

Theorem Let K C S3 be a link with a
prime, twist—reduced, adequate diagram D(K).
Assume that D(K) has t(D) > 2 twist re-
gions, and that each region contains at least

7 crossings. Then K is a hyperbolic link,
satisfying

2 (B1+18) < vol(S*\K) < 30v3 (|8+(8-1).

Question. Why is |3| 4 |3/| related to hy-
perbolic volume?

The Guts approach provides an intrinsic ex-
planation.
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The Guts approach for Volume bounds

State graphs: A Kauffman state ¢ of a
knot diagram is a choice of A— or B— splic-

ing at every crossing of D:

£ X4

Resolving each crossing vields a collection of

circles in the projection plane. As a result,

the state determines a state graph Gg:

— vertices of G, —— circles from D

— edges of G4 «—— former crossings of D



Adequate states: A state ¢ is called ade-

guate if its graph Gg Is loopless. For exam-

ple,both of the states below are adequate:

Seifert state O all-A state
Gs
<.> ' ,/ \ ’ \,

A diagram D is adequate ifits all — 4

and all — B states are both adequate.

Every (prime, reduced) alternating diagram
IS adequate. Almost all Montesinos knot
(more generally, arborescent knots) have A—

or B— adequate diagrams.

Go*
A



f o—
{

Reduced graphs give colored JP coeffs

We take the graph G, and throw away dou-

ble (“redundant”) edges. This gives the re-

duced graph G/,

~ ~ } U

D(K) all-A state

- o

&)~ ()~L-14

Theorem. (Stoimenow, Dasbach-Lin) Let
D(K) be an adequate diagram and let G/ 4,

G’p be the reduced graphs of the all-A4 and
all-B states. Then

af =o'} = 1,18] = 1-x(G' ), |5 = 1-x(Gg)



Reduced graphs estimate knot volume

Theorem. (Futer-K-Purcell) Let D(K) be a
reduced, adequate diagram and o its all-A4 or
all-B state. Assume D = D(K) is a “Con-
way sum of alternating tangles”' (e.g. al-

ternating, Montesinos, arborescent.) Then,

—vg x(G's) < vol(S3\ K),

where vg ~ 3.664 is the volume of a regular

ideal octahedron. Moreover,

t(D) < 2(1-x(G'4) —x(G'B)).

Corollary. For K as above

1.83(|8|+8'1-2) < voI(SP\K) < 20.3(|8]+|5'|-1).
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An Example

Replacing |3| + |38'| with max(|3],|3]) gives
a better lower bound. Here

w(f]-1)= -Vg & 0

D(K) all-B state
(8] |88

Sl

ns (18] = 1) = % x(G5) = 10.99...

Gs = G,

Vol (8% W K) = 13.64...

UN



Typical sum of alternating tangles

Mild conditions on tangles assure adeguacy.

Theorem holds for more general adequate

knots. In fact:

Conjecture: Theorem holds for all ade-

quate knots. (Work in progress)



Vvolume estimates from Guts: Let M be
a hyperbolic 3—manifold and S an essential
surface in M. Cut M along S to obtain a

manifold with boundary, N.

(JSJ-decomposition) N cut along essen-

tial annuli, vields three kinds of pieces:
(1). Seifert fibered pieces; (2). I-bundles;
(3). Guts(M,S). By Thurston, hyperbolic.
Theorem: (Agol—Storm- W. Thurston)

vol(M) > —vg x(Guts(M,S)).

This estimate relies on Perelmans volume
ostimates for Ricci flow with surgery. VWeaker

estimate was earlier obtained by Agol.
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For us, S i1s the state surface: \We use

the Kauffman state o to construct a state

surface S;.

D(K) all-A state ¢ So

A spine of S5 is the graph G,.

We have x(S° \ So) = x(Ss) = x(Go).

Theorem:(Ozawa) Suppose o is the all-A4

orall-B state of D = D(K), and is adequate.
Then Sy is essential in M 1= S3\ K.
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The guts of state surfaces

Step 1: All the I-bundle pieces of the JSJ-
decomposition of N := S3\ S, are of the
form ( pair of pants)x7 and come from
redundant (double) edges in G%,. Removing
such a piece reduces each of —x(N) and

—x(Gs) by one,

Gs G,

A A

Step 2: All Seifert pieces are solid tori: dont

affect Euler characteristic.

Conclusion:

VOI(S3\K) > —ugx(Guts(M, 5)) = —vgr(Go)
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The choice of state matters!
The last equality should mean:
x(Guts(M, S)) = min(x(G',),0).

In the earlier example we have x(G/4) =1
and Guts(M,S) = (. The all-A4 state sur-

faces has no Guts!
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S
B i

‘The surface of the B-state, Sg, has a lot of
Guts! There are no I-bundles in the char-

acteristic sub manifold of M Sg.

D(K) all-B state
O
Sl

Vs (18" 1) = Ve x(G5) = 10.99...

Vol (S° W K) = 13.64...



