e Recently, progress in this direction was
made my Chris Cornwell; he shows that in
every Lens space, and with an appropriate
choice of the “trivial links", the power series
of Theorem 2 are polynomials. So we have a

HOMFLY polynomial for links in Lens spaces.

He uses techniques employed in works of
Baker-Grigsby- Hedden and Baker-Grigsby
to study Legendrian links in Lens spaces and
ideas underlying the combinatorial structure
of the Ozsvath-Szabo Homology link invari-
ants.

e Cornwell also shows that there are appli-
cations to contact topology in Lens spaces:
He finds inequalities generalizing those dis-
covered by Franks-Williams, Morton, Fuchs-
Tabachnikov for links in S3.



Inequalities for Legendrian links in Lens
spaces: M = L(p, q). There is a “tight”
contact structure &3, on M that pulls back
to the standard contact structure on S3; Enr
is “unique” up to a certain co-orientation
ambiguity. The TB invariant of Legendrian

links and the self-linking invariant of transver-

sal links in (M, &) are rational numbers!
e L=topological type in M = L(p, q);

e Py (L) € Clv*l, z*1] the HOMFLY poly-
nomial of L.

e ¢y(L)=minimum degree in w, v := wP.

Theorem. (Cornwell) (a) For every Legen-
drian representative L; of L in (M, &) we
have

TB(L;) < 9‘-"%

(b) For every transversal representative Ly
of L we have sl(L;) < ew—(Lp)Ll
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Constructing the power series: M-rational
homology sphere as before. From a link in-
variant F : L. — C we derive a singular link
invariant f: L1 — C by

f(Lx)=F(Ly)—-F(L-) (1)
When can the process be reversed?

Key step: AN integration theorem. A
singular link invariant f : L — C is derived
from a link invariant F' via (1) if and only if
f satisfies

F =0 (1)

fLy)—f(Lx—) = f(Lyy)—f(L-x) (Ip)

Note: In (Ip) we start with any singular link
Lyx € L2. The four singular links in L1 are
obtained by resolving one double point of
Ly« at a time.



Applying the integration theorem. To
construct a Jones (formal) power-series

oo

Iy (L) = > u(L)z™ such that for ¢t :=

m=0

et 1= 1+x+x—;+%§—|—m we have
t~ Iy (Ly) — tIpy(L-) = (VE - %)JM(LO)-
Step 1. Define Jj; on the “trivial links".

Step 2. Define vg on all links in M.

n
Step 3. Assume JJ, (L) = > vm(L)z™ has

m=0

been defined so that

t= I (L)~ (L) = (\/%—-%)JM(LO) mod n.



Guided by the skein relation we define
TR Ly) i= I (Ly) — J% (L) mod(n+ 1)

which is the mod (n + 1) part of
(% = 1)J3 (L) + t(vVE = ) I5(Lo).

This is a polynomial of degree n+ 1. The
coefficients of terms of degree < n are sin-
gular link invariants derived by vq, ..., vn. HOw-
ever, the coefficient of z"t1 is a “new"” in-
variant of singular links . Call it Vp(Ly).

Step 4. Apply the Integration theorem to
Vn: Check (I1) — (Io) are satisfied (easy);
conclude it integrates to a link invariant v, (L).

n+1
Step 5. Check that JIH (L) := S um(L)z™

m=0

satisfies the crossing change formula mod(n+1).
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Main ingredients of the proof Integra-
tion theorem:

e Toroidal Decompositions of Haken 3-manifolds:;
Characteristic sub-manifolds (Jaco-Shalen,
Johannson) [JSJ-decompositions]

e Results of Johannson and Scott on the
classification of essential tori in Seifert fibered
spaces up to homotopy.

e Torus Theorem ( Gabai, Casson-Jungreis)

Summary: Let M be a rational homology
sphere without sub-manifolds that fiber over
non-orientable surfaces. Suppose & : T =
S1 xSl — M is an essential map. Then,
there is an essential Seifert fibered sum-
manifold S C M such that & is homotopic
to a map ;1 : T"— S that is vertical w.r.t.
the fibration of S. [i.e. p~I(p(1(T))) =
®1(1)]
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Outline of the proof. The hard direction
is to show that a singular link invariant that
satisfies

= (I1)
fLyy)—f(Lx-) = f(Lyy)—f(L-x) (I2)

integrates to a link invariant via

f(Lx) =F(Ly) — F(L-) (1).

Define F on the trivial links (integration
constants). Let P :=]]S1.

For a (fixed) “trivial link" X\ : P — M define
My :={L: P — M; pl. map}. Given L €
M, choose a homotopy ¢; : Px[0,1] — M
from L to A. After a small perturbation, we
can assume

— For only finitely many points 0 < t1 < to <
e < tp < 1, o IS NOt an embedding.

'8



5\%

— ¢, IS @ singular link with one double point
and the links on “right: and “left” side of ¢y,
are the two resolutions of the double point.

Gect == Pei furs

‘ >Klfﬁf)( ‘><'
t

Define g

F(L)y=F\)+ > €&f(e),

=1

where ¢, = £1 as determined by (1).

Now F' is well defined iff , modulo F()\),
F(L) is independent of the choice of the
homotopy. Enough to show that for any
closed homotopy & : P x S — M, from )\
to itself,

n

Xo = ) €f(pt;) =0.

=1

where ¢;, = £1 is determined by the same
rule as above.



Step 1. Let 7y := 71 (M,). Show that the
assighment & — Xg gives a group homo-
morphism ¢ : 7w, — C.

That is (I1) — (I2) imply the following:

If &, are freely homotopic loops in M,
then Xq) = ch/.

e 7, iS a subgroup of w1 (M) ; the centralizer
of the class of .

Example. If <A >=1in m1(M) then 7w, =
m1(M). Thus we have homomorphism 2 :
(M) — C. Since C is abelian ¢ factors
to homomorphism H{ (M) — C which must
be zero since H{(M) is finite! Thus, in this
case, X¢ = 0 holds.

Note. This proves the result in SS3.



“Cerf type” argument: Put a free homo-
topy H: A:=P x [0, 1] — M, from & to
@’ into a “nice” generic position:

The singular set > of a generic H

e components of A\ X — isotopy classes
of links

e points on g NOA «— s-links along ®»UP’
e cdges of > i — isotopy classes of s-links
e vertices of valence 1 — condition (I7)

e vertices of valence 4 — singular links with
two double points (condition (1))



Now Xg — Xq)/ — Z(iXﬁ)’
B

B small loops each encircling once an inte-
rior vertex of Xgy. Now (I1) — (I»), imply
X/@ = 0. Hence X¢ = X@/.

L, P )

4-valent: Xg= f(Lyy)— f(Lx—) — f(Lyx)+ f(L-x)
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Handling Tori: Loops @ : S1 — M, are
viewed as maps from the torus & : T =
S1xS1 — M. Since X4 is unchanged under
homotopy, we to apply the JSJ-type results
to homotope & into a “nice” position.

e If ® is inessential then we may extend
®: St x D2 — M. This gives the starting
point for apply a “Cerf type"” argument.

e If ® is essential then homotope to @’ that
is vertical with respect to a fibration of the
characteristic sub-manifold. Then in some
Cases one can deduce X4, = 0, directly. In
the remaining cases we extend @’ : S x
F'— M where F is a “nice"” surface and
apply the “Cerf type” argument again.
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