- Recently, progress in this direction was made my Chris Cornwell; he shows that in every Lens space, and with an appropriate choice of the "trivial links", the power series of Theorem 2 are polynomials. So we have a HOMFLY polynomial for links in Lens spaces. He uses techniques employed in works of Baker-Grigsby- Hedden and Baker-Grigsby to study Legendrian links in Lens spaces and ideas underlying the combinatorial structure of the Ozsvath-Szabo Homology link invariants.
- \bullet Cornwell also shows that there are applications to contact topology in Lens spaces: He finds inequalities generalizing those discovered by Franks-Williams, Morton, Fuchs-Tabachnikov for links in S^3 .

Inequalities for Legendrian links in Lens spaces: M = L(p, q). There is a "tight" contact structure ξ_M on M that pulls back to the standard contact structure on S^3 ; ξ_M is "unique" up to a certain co-orientation ambiguity. The TB invariant of Legendrian links and the self-linking invariant of transversal links in (M, ξ_M) are rational numbers!

- L=topological type in M = L(p, q);
- $P_M(L) \in \mathbb{C}[v^{\pm 1}, z^{\pm 1}]$ the HOMFLY polynomial of L.
- $e_w(L)$ =minimum degree in w, $v := w^p$.

Theorem. (Cornwell) (a) For every Legendrian representative L_l of L in $(M,\ \xi_M)$ we have

$$TB(L_l) \le \frac{e_w(L)-1}{p}$$

(b) For every transversal representative L_t of L we have $sl(L_t) \leq \frac{e_w(L)-1}{p}$

Constructing the power series: M-rational homology sphere as before. From a link invariant $F: \mathbb{L} \longrightarrow \mathbf{C}$ we derive a singular link invariant $f: \mathbb{L}^1 \longrightarrow \mathbf{C}$ by

$$f(L_{\times}) = F(L_{+}) - F(L_{-}) \tag{1}$$

When can the process be reversed?

Key step: An integration theorem. A singular link invariant $f: \mathbb{L}^1 \longrightarrow \mathbf{C}$ is derived from a link invariant F via (1) if and only if f satisfies

$$f(X) = 0$$
 (I_1) $f(L_{\times +}) - f(L_{\times -}) = f(L_{+\times}) - f(L_{-\times})$ (I_2)

Note: In (I_2) we start with *any* singular link $L_{\times\times}\in\mathbb{L}^2$. The four singular links in \mathbb{L}^1 are obtained by resolving one double point of $L_{\times\times}$ at a time.

Applying the integration theorem. To construct a Jones (formal) power-series

$$J_M(L) = \sum_{m=0}^{\infty} v_n^m(L) x^m \text{ such that for } t :=$$

$$e^x := 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots \text{ we have}$$

$$t^{-1}J_M(L_+) - tJ_M(L_-) = (\sqrt{t} - \frac{1}{\sqrt{t}})J_M(L_0).$$

Step 1. Define J_M on the "trivial links".

Step 2. Define v_0 on all links in M.

Step 3. Assume $J_M^n(L) = \sum_{m=0}^n v_m(L) x^m$ has been defined so that

$$t^{-1}J_M(L_+)-tJ_M(L_-) \equiv (\sqrt{t}-\frac{1}{\sqrt{t}})J_M(L_0) \mod n.$$

Guided by the skein relation we define

$$J_M^{n+1}(L_{\times}) := J_M^n(L_+) - J_M^n(L_-) \ mod(n+1)$$

which is the mod(n+1) part of

$$(t^2-1)J_M^n(L_-)+t(\sqrt{t}-\frac{1}{\sqrt{t}})J_M^n(L_0).$$

This is a polynomial of degree n+1. The coefficients of terms of degree $\leq n$ are singular link invariants derived by v_0, \ldots, v_n . However, the coefficient of x^{n+1} is a "new" invariant of singular links. Call it $V_n(L_{\times})$.

Step 4. Apply the Integration theorem to V_n : Check $(I_1) - (I_2)$ are satisfied (easy); conclude it integrates to a link invariant $v_n(L)$.

Step 5. Check that $J_M^{n+1}(L) := \sum_{m=0}^{n+1} v_m(L) x^m$ satisfies the crossing change formula mod(n+1).

17

Main ingredients of the proof Integration theorem:

- Toroidal Decompositions of Haken 3-manifolds;
 Characteristic sub-manifolds (Jaco-Shalen,
 Johannson) [JSJ-decompositions]
- Results of Johannson and Scott on the classification of essential tori in Seifert fibered spaces up to homotopy.
- Torus Theorem (Gabai, Casson-Jungreis)

Summary: Let M be a rational homology sphere without sub-manifolds that fiber over non-orientable surfaces. Suppose $\Phi:T:=S^1\times S^1\longrightarrow M$ is an essential map. Then, there is an essential Seifert fibered summanifold $S\subseteq M$ such that Φ is homotopic to a map $\Phi_1:T\longrightarrow S$ that is vertical w.r.t. the fibration of S. [i.e. $p^{-1}(p(\Phi_1(T)))=\Phi_1(T)$]

18

Outline of the proof. The hard direction is to show that a singular link invariant that satisfies

$$f(X) = 0$$
 (I_1)
 $f(L_{\times +}) - f(L_{\times -}) = f(L_{+\times}) - f(L_{-\times})$ (I_2)

integrates to a link invariant via

$$f(L_{\times}) = F(L_{+}) - F(L_{-})$$
 (1).

Define F on the trivial links (integration constants). Let $P := \coprod S^1$.

For a (fixed) "trivial link" $\lambda: P \longrightarrow M$ define $\mathbb{M}_{\lambda} := \{L: P \longrightarrow M; \ p.l. \ \text{map}\}.$ Given $L \in \mathbb{M}_{\lambda}$, choose a homotopy $\varphi_t: P \times [0,1] \longrightarrow M$ from L to λ . After a small perturbation, we can assume

- For only finitely many points $0 < t_1 < t_2 < \cdots < t_n < 1$, φ_t is not an embedding.

 $-\varphi_{t_i}$ is a singular link with one double point and the links on "right: and "left" side of φ_{t_i} are the two resolutions of the double point.

Define
$$F(L) = F(\lambda) + \sum_{i=1}^n \epsilon_i f(\varphi_{t_i}),$$

where $\epsilon_i = \pm 1$ as determined by (1).

Now F is well defined iff , modulo $F(\lambda)$, F(L) is independent of the choice of the homotopy. Enough to show that for any closed homotopy $\Phi: P \times S^1 \longrightarrow M$, from λ to itself,

$$X_{\Phi} := \sum_{i=1}^{n} \epsilon_i f(\varphi_{t_i}) = 0.$$

where $\epsilon_i = \pm 1$ is determined by the same rule as above.

Step 1. Let $\pi_{\lambda} := \pi_1(\mathbb{M}_{\lambda})$. Show that the assignment $\Phi \to X_{\Phi}$ gives a group homomorphism $\psi : \pi_{\lambda} \longrightarrow \mathbf{C}$.

That is $(I_1) - (I_2)$ imply the following:

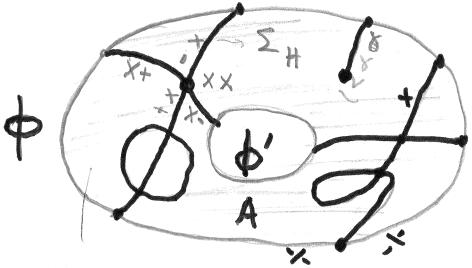
If Φ, Φ' are freely homotopic loops in \mathbb{M}_{λ} then $X_{\Phi} = X_{\Phi'}$.

• π_{λ} is a subgroup of $\pi_1(M)$; the centralizer of the class of λ .

Example. If $<\lambda>=1$ in $\pi_1(M)$ then $\pi_\lambda=\pi_1(M)$. Thus we have homomorphism ψ : $\pi_1(M)\longrightarrow {\bf C}$. Since ${\bf C}$ is abelian ψ factors to homomorphism $H_1(M)\longrightarrow {\bf C}$ which must be zero since $H_1(M)$ is finite! Thus, in this case, $X_\Phi=0$ holds.

Note. This proves the result in S^3 .

"Cerf type" argument: Put a free homotopy $H:A:=P\times [0,\ 1]\longrightarrow \mathbb{M}_{\lambda}$ from Φ to Φ' into a "nice" generic position:

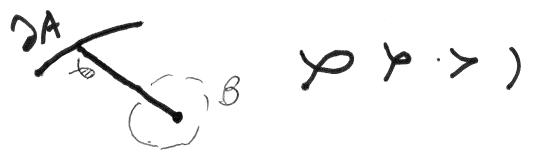


The singular set Σ_H of a generic H

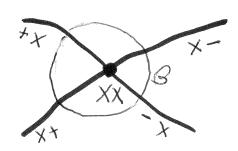
- ullet components of $A\setminus \Sigma_H \longrightarrow$ isotopy classes of links
- ullet points on $\Sigma_H \cap \partial A \longleftrightarrow s$ -links along $\Phi \cup \Phi'$
- ullet edges of $\Sigma_H \longrightarrow$ isotopy classes of s-links
- ullet vertices of valence 1 \longrightarrow condition (I_1)
- ullet vertices of valence 4 \longrightarrow singular links with two double points (condition (I_2))

Now
$$X_{\Phi} - X_{\Phi'} = \sum_{\beta} (\pm X_{\beta}),$$

 β small loops each encircling once an interior vertex of Σ_H . Now $(I_1)-(I_2)$, imply $X_\beta=0$. Hence $X_\Phi=X_{\Phi'}$.



1-valent vertex: $X_{\beta} = f()$



4-valent: $X_{\beta} = f(L_{\times +}) - f(L_{\times -}) - f(L_{+\times}) + f(L_{-\times})$

Handling Tori: Loops $\Phi: S^1 \longrightarrow \mathbb{M}_{\lambda}$ are viewed as maps from the torus $\Phi: T:= S^1 \times S^1 \longrightarrow M$. Since X_{Φ} is unchanged under homotopy, we to apply the JSJ-type results to homotope Φ into a "nice" position.

- If Φ is *inessential* then we may extend $\Phi: S^1 \times D^2 \longrightarrow M$. This gives the starting point for apply a "Cerf type" argument.
- If Φ is *essential* then homotope to Φ' that is vertical with respect to a fibration of the characteristic sub-manifold. Then in some cases one can deduce $X_{\Phi'}=0$, directly. In the remaining cases we extend $\Phi':S^1\times F\longrightarrow M$ where F is a "nice" surface and apply the "Cerf type" argument again.