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Geometric estimates from spanning surfaces

Stephan D. Burton and Efstratia Kalfagianni

Abstract

We derive bounds on the length of the meridian and the cusp volume of hyperbolic knots in
terms of the topology of essential surfaces spanned by the knot. We provide an algorithmically
checkable criterion that guarantees that the meridian length of a hyperbolic knot is below a given
bound. As applications we find knot diagrammatic upper bounds on the meridian length and
the cusp volume of hyperbolic adequate knots and we obtain new large families of knots with
meridian lengths bounded above by four. We also discuss applications of our results to Dehn
surgery.

1. Introduction

An important goal in knot theory is to relate the geometry of knot complements to topological
and combinatorial quantities and invariants of knots. In this paper we derive bounds of slope
lengths on the maximal cusp and of the cusp volume of hyperbolic knots in terms of the
topology of essential surfaces spanned by the knots. Our results are partly motivated by the
open question of whether there exist hyperbolic knots in S3 whose meridian length exceeds four.
We show that there is an algorithmically checkable criterion to decide whether a hyperbolic
knot has meridian length less than a given bound, and we use it to we obtain large families of
knots with meridian lengths bounded above by four. Our results are particularly interesting in
the case of knots that project on closed embedded surfaces in an alternating fashion and admit
essential checkerboard surfaces. In this case our bounds are purely combinatorial and can be
read directly from a knot diagram. We also discuss applications of our results to Dehn surgery.

Given a hyperbolic knot K in S3, there is a well-defined notion of a maximal cusp C of
the complement M = S3 \K. The interior of C is neighborhood of the missing K and the
boundary ∂C is a torus that inherits a Euclidean structure from the hyperbolic metric. Each
slope σ on ∂C has a unique geodesic representative. The length of σ, denoted by �(σ), is the
length of its geodesic representative. By Motsow–Prasad rigidity, these lengths are topological
invariants of K.

By abusing notation and terminology we will also refer to ∂C as the boundary of M . We
will sometimes use the alternative notation ∂M . For a slope σ on ∂M let M(σ) denote the
3-manifold obtained by Dehn filling M along σ. By the knot complement theorem of Gordon
and Luecke [19], there is a unique slope μ, called the meridian of K, such that M(μ) is S3. A
λ-curve of K is a slope on ∂M that intersects μ exactly once and a spanning surface of K is a
properly embedded surface in M whose boundary is a λ-curve.

Theorem 1.1. Let K be a hyperbolic knot with meridian length �(μ). Suppose that K
admits essential spanning surfaces S1 and S2 such that

|χ(S1)| + |χ(S2)| �
b

6
· i(∂S1, ∂S2), (1.1)
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where b is a positive real number and i(∂S1, ∂S2) the minimal intersection number of ∂S1, ∂S2

on ∂M . Then the meridian length satisfies �(μ) � b.
Moreover, given a hyperbolic knot K and b > 0, there is an algorithm to determine if there

are essential surfaces S1 and S2 satisfying (1.1).

A slope σ on ∂M is called exceptional if the 3-manifold M(σ) is not hyperbolic. The Gromov–
Thurston ‘2π-theorem’ [7] asserts that if �(σ) > 2π then M(σ) admits a Riemannian metric of
negative curvature. This combined with the proof of Thurston’s geometrization conjecture [30]
implies that actually M(σ) is hyperbolic. The work of Agol [5] and Lackenby [25], that has
improved 2π to 6, asserts that exceptional slopes must have length less than or equal to six.
Examples of exceptional slopes with length six are given in [5] and in [3]. Since the meridian
curve of every hyperbolic knot in S3 is an exceptional slope, we have �(μ) � 6. The work of
Adams, Colestock, Fowler, Gillam, and Katerman [4] shows that that �(μ) < 6. Examples of
knots whose meridian length approach four from below are given in [5] and by Purcell in
[33]. An open conjecture in the area is that for all hyperbolic knots in S3 we should have
�(μ) � 4.

Theorem 1.1 provides a criterion for checking algorithmically whether a given knot satisfies
this conjecture. Indeed, given a hyperbolic knot K there is an algorithm using normal surface
theory to decide whether K admits essential spanning surfaces S1, S2 such that

|χ(S1)| + |χ(S2)| � 4
6 · i(∂S1, ∂S2),

and thus whether �(μ) � 4.
Next we will discuss applications of Theorem 1.1. As a warm up example, we first mention the

hyperbolic 3-pretzel knots P (a,−b,−c) with a, b, c > 1 and all odd. For these knots Theorem 1.1
applies to give �(μ) � 3. See example 4.2 for details and for generalizations.

1.1. Knots with essential checkerboard surfaces

Theorem 1.1 can be applied to knots that admit alternating projections on closed surfaces
so that they define essential checkerboard surfaces. A large such class of knots is the class
of adequate knots, that admit alternating projections with essential checkerboard surfaces on
certain Turaev surfaces. In this case, we have the following theorem, where the terms involved
are defined in detail in Sections 2 and 3.

Theorem 1.2. Let K be an adequate hyperbolic knot in S3 with crossing number c = c(K)
and Turaev genus gT . Let C denote the maximal cusp of S3 \K and let Area(∂C) denote the
cusp area. Finally let �(μ) and �(λ) denote the length of the meridian and the shortest λ-curve
of K. Then we have

(1) �(μ) � 3 + 6gT−6
c ,

(2) �(λ) � 3c + 6gT − 6,
(3) Area(∂C) � 9c(1 + 2gT−2

c )2.

A knot is alternating precisely when gT = 0. In this case, the bounds of Theorem 1.2 agree
with the bounds of [4]. The technique of the proof of Theorems 1.1 and 1.2, as well as the
proof of results in [4], is reminiscent of arguments with pleated surfaces that led to the proof
of the ‘6-Theorem’ [5, 25]. The algorithm for checking criterion (1.1) involves normal surface
theory and in particular the work of Jaco and Sedgwick [22].

Similar estimates to those of Theorem 1.2 below should work for the class of weakly
alternating knots studied in [31]. See Remark 4.5.
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1.2. Knots with meridian length bounded by four

As mentioned earlier, it has been conjectured that the meridian length of every hyperbolic
knot in S3 is at most four. The conjecture is known for several classes of knots. Adams [2]
showed that the meridian of a 2-bridge hyperbolic knot has length less than 2. By [4] when
K is an alternating hyperbolic knot then �(μ) < 3. Agol [5] found families of knots whose
meridian lengths approach four from below and Purcell [33] generalized his construction to
construct families of knots whose meridian length approach four from below. She also showed
that ‘highly twisted’ knots have meridian lengths less than four. Our results in this paper allow
us to verify the meridian length conjecture for additional broad classes of hyperbolic knots.
Again restricting to adequate knots for simplicity, we give two sample results. Note that, by
Theorem 1.2, if c � 6gT − 6 then �(μ) � 4. Thus, for every Turaev genus there can be at most
finitely many adequate knots with �(μ) > 4. In particular if gT � 3, then �(μ) � 4 unless c � 12.
Since the knots up to 12 crossings are known to have meridian lengths less than two [11], in
fact, we have:

Corollary 1.3. Given gT > 0, there can be at most finitely many hyperbolic adequate
knots of Turaev genus gT and with �(μ) > 4. In particular, if K is a hyperbolic adequate knot
with gT � 3, then we have �(μ) < 4.

Note that for gT = 1, we actually get �(μ) � 3. Knot diagrams of Turaev genus one were
recently classified [6, 24]. The case of adequate diagrams includes Conway sums of strongly
alternating tangles (see [28]). We therefore have that if a knot K is a Conway sum of strongly
alternating links, then the length of the meridian of K is less or equal to three.

Another instance where our length bounds work well is to show that knots admitting
diagrams with large ratio of crossings to twist regions have small meridian length. We have the
following result which in particular applies to closed positive braids. See Corollary 4.3.

Theorem 1.4. Let K be a hyperbolic knot with an adequate diagram with c crossings and
t twist regions. Then we have

�(μ) � 3 +
3t
c
− 6

c
.

In particular if c � 3t then we have �(μ) < 4.

1.3. Slope length bounds, Dehn filling and volume

Let K be a hyperbolic knot with maximal cusp C and slopes σ, σ′ on ∂C. Calculating area in
Euclidean geometry on ∂C (see, for example, the proof of [5, Theorem 8.1]), we have

�(σ)�(σ′) � Area(∂C)Δ(σ, σ′), (1.2)

where Δ(σ, σ′) denotes the absolute value of the intersection number of σ, σ′. Work of Cao and
Meyerhoff [10, Proposition 5.8] shows that Area(∂C) � 3.35. Given an adequate hyperbolic
knot K, we will apply (1.2) for σ′ = μ. Using the upper bound for �(μ) from Theorem 1.2, we
have

�(σ) >
3.35Δ(μ, σ)c
3c + 6gT − 6

=
3.35
3

· Δ(μ, σ)
1 + δ

, (1.3)

where δ = (2gT − 2)/c. We note that δ is an invariant of K that can be calculated from any
adequate diagram (see Theorem 3.4). Now (1.3) implies that if

Δ(μ, σ) >
18

3.35
(1 + δ) > 5.37 (1 + δ) ,

then �(σ) > 6 and thus σ cannot be an exceptional slope.
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Note that if σ is a slope represented by p/q ∈ Q in H1(∂C) then Δ(μ, σ) = |q|. Hence if
|q| > 6(1 + δ), inequality (1.3) implies that �(σ) > 3.35

3 · 6 > 2π. In this case, we may apply a
result of Futer, Kalfagianni and Purcell [16, Theorem 1.1] to estimate the change of volume
under Dehn filling of adequate knots. We have the following.

Theorem 1.5. Let K be a hyperbolic adequate knot and let δ be as above. If |q| � 6(1 + δ),
then the 3-manifold N obtained by p/q surgery along K is hyperbolic and the volume satisfies
the following:

vol(S3 \K) > vol(N) �
(

1 − 36(1 + δ)2

q2

)3/2

vol(S3 \K).

The assertion that N is hyperbolic follows immediately from above discussion. The left hand
side inequality is due to the result of Thurston that the hyperbolic volume drops under Dehn
filling [34]. The right hand side follows by [16, Theorem 1.1].

Theorem 5.14 of [17], and its corollaries, give diagrammatic bounds for vol(S3 \K) in terms
any adequate diagram of K. This combined with Theorem 1.5 implies that the volume of N can
be estimated from any adequate diagram of K. For example, Montesinos knots with a reduced
diagrams that contains at least two positive tangles and at least two negative tangles are
adequate and have δ � 0. Combining Theorem 1.5 with [17, Theorem 9.12; 15, Theorem 1.2]
we have the following.

Corollary 1.6. Let K ⊂ S3 be a Montesinos link with a reduced diagram D(K) that
contains at least two positive tangles and at least two negative tangles. If |q| � 6, then the
3-manifold N obtained by p/q surgery along K is hyperbolic and we have

2v8 t > vol(N) �
(

1 − 36
q2

)3/2
v8

4
(t− 9) ,

where t = t(D) is the twist number of D(K), and v8 = 3.6638 . . . is the volume of a regular
ideal octahedron.

1.4. Organization

In Section 2 we recall the hyperbolic geometry terminology we need for this paper, and
the results and facts about pleated surfaces we will use. In Section 3 we recall results and
terminology about adequate knots and their Turaev surfaces we need in subsequent sections.
In Section 4 we derive the bound of the meridian length in Theorem 1.1 and corresponding
bounds for the length of the shortest λ-curve and cusp volume. See Theorem 4.1. Then we
prove Theorem 1.2 and its corollaries. In Section 5 we show that given K and b > 0 there is
an algorithm which determines if there are essential spanning surfaces S1 and S2 satisfying
inequality (1.1). This completes the proof of Theorem 1.1.

2. Hyperbolic geometry tools

In this section we review some notions and results in hyperbolic geometry that we will need in
this paper. Let M be a 3-manifold whose interior has a hyperbolic structure of finite volume. Let
H3 denote the 3-dimensional hyperbolic space model and let ρ : H3 → M be the covering map.
Then M has ends of the form T 2 × [1,∞), where T 2 denotes a torus. Each end is geometrically
realized as the image of some C = ρ(H) of some horoball H ∈ H3. The pre-image ρ−1(C) is
a collection of horoballs in H3. For each end there is a 1-parameter cusp family obtained by
expanding the horoballs of ρ−1(C) while keeping the same limiting points on the sphere at
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infinity. By expanding the cusps until in the pre-image ρ−1(C) each horosphere is tangent
to another, we obtain a choice of maximal cusps. The choice depends on the horoballs H.
If M has a single end then there is a well-defined maximal cusp referred to as the maximal
cusp of M .

Definition 2.1. Given a hyperbolic knot K the complement M = S3 \K is a hyperbolic
3-manifold with one end. The cusp of K, denoted by C, is the maximal cusp of M . The
boundary RH of the horoball H is a horosphere and the boundary of C, denoted by ∂C, inherits
a Euclidean structure from ρ|RH : RH −→ ∂C. The cusp area of K, denoted by Area(∂C) is
the Euclidean area of ∂C and the cusp volume of K, denoted by Vol(C) is the volume of C.
Note that we have Area(∂C) = 2Vol(C).

The length of the meridian of M = S3 \K, denoted by �(μ), is defined to be the Euclidean
length of the geodesic representative on ∂C of a meridian curve μ of K. Recall that a λ-curve
on ∂C is one that intersects the meridian exactly once. The length of a geodesic representative
of a shortest λ-curve on ∂C will be denoted by �(λ). Note that there may be multiple shortest
λ-curves. Nevertheless, they all have the same length and we will refer to it as the length of
the shortest λ-curve on ∂C.

The cusp area is bounded above by �(μ)�(λ), where equality holds if μ and λ are
perpendicular.

An embedded surface (possibly non-orientable) S ⊂ M , with each component of ∂S embed-
ded on ∂C is called essential if the oriented double of S is incompressible and ∂-incompressible.
See, for example, [17, Definition 1.3].

Consider a (possibly non-connected) surface S (possibly with boundary) and a singular
continuous map f : S −→ M that embeds each component of ∂S in ∂C. We will say that f is
homotopically essential if (i) the image of no essential simple closed loop on S is homotopically
trivial in M ; and (ii) the image of no essential embedded arc on S can be homotoped (relatively
its endpoints) on ∂C. If S ⊂ M is an essential (that is, π1-injective) embedded surface, the
inclusion map is homotopically-essential.

Next we recall Thurston’s notion of pleated surface. See Thurston’s notes [34] or the
exposition by Canary, Epstein and Green [9] for more details.

Definition 2.2. A singular continuous map f : (S, ∂S) −→ (M,∂C) is called pleated if
the following are true: (i) the components of ∂S map to geodesics on ∂C; (ii) the interior of S,
denoted by int(S), is triangulated so that each triangle maps under f to a subset of M that
lifts to an ideal hyperbolic geodesic triangle in H3; and (iii) the 1-skeleton of the triangulation
forms a lamination on S.

Given a pleated map f we may pull-back the path metric from M by f to obtain a hyperbolic
metric on int(S), where the 1-skeleton lamination is geodesic.

We need the following lemma. For a proof the reader is referred to [9, 34] or to
[5, Lemma 4.1].

Lemma 2.3. Let M = S3 \K be a hyperbolic knot complement and let S be a surface with
boundary and χ(S) < 0. Let f : (S, ∂S) −→ (M,∂C) be a homotopically essential map and
suppose that each component of ∂S is mapped to a geodesic in ∂C. Then there is a pleated
map g : (S, ∂S) −→ (M,∂C), such that g|int(S) is homotopic to f |int(S) and a hyperbolic
metric on S so that g|∂S is an isometry.

Let M = S3 \K be a hyperbolic knot complement with maximal cusp C and let
f : (S, ∂S) −→ (M,∂C) be a homotopically essential map that is pleated. In this paper we
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Figure 3.1 (colour online). The two resolutions of a crossing, the arcs recording them, and
their contribution to state surfaces. The left frame depicts the A-resolution; the right depicts the
B-resolution.

are interested in the case that S is the disjoint union of spanning surfaces of K. Suppose that
∂S has s components. The geometry of f(S) ∩ C can be understood using arguments of [5,
Theorem 5.1; 25, Lemma 3.3]. By the argument in the proof of [5, Theorem 5.1], we can find
disjoint horocusp neighborhoods H = ∪s

i=1Hi of S, such that f(Hi) ⊂ C, �(∂Hi) = Area(Hi)
and such that �(∂Hi) is at least as big as the length of f(∂Hi) measured on C. Thus we have

�C(S) �
s∑

i=1

�(∂Hi) = Area(H),

where �C(S) denotes the total length of the intersection curves in f(S) ∩ ∂C. Since, for all
i �= j, we have Hi ∩Hj = ∅, a result of Böröczky [8] on horocycle packings in the hyperbolic
place applies. Using this result one obtains

s∑
i=1

Area(Hi) �
6
2π

Area(S) =
6
2π

(2π|χ(S)|),

where the last equation follows by the Gauss–Bonnet theorem. The above inequality is also
proven in [25, Lemma 3.3]. Combining all these leads to the following Theorem which is a
special case of [5, Theorem 5.1; 25, Lemma 3.3].

Theorem 2.4. Let M = S3 \K be a hyperbolic knot complement with maximal cusp C.
Suppose that f : (S, ∂S) −→ (M,∂C) is a homotopically essential map that is pleated and let
�C(S) denote the total length of the intersection curves in f(S) ∩ ∂C. Then we have

�C(S) � 6|χ(S)|.

3. Knots with essential checkerboard surfaces

A setting where pairs of spanning surfaces of knots occur naturally is the checkerboard
surfaces of knot projections on surfaces. We are interested in knots with projections where
the checkerboard surfaces are essential in the knot complement. A well-known class of knots
admitting such surfaces are knots that admit alternating projections on a 2-sphere (alternating
knots). Generalizations include the class of adequate knots that arose in the study of Jones
type invariants. Below we will review some terminology and results about such knots that we
need in this paper.

3.1. Adequate diagrams and knots

Let D be a diagram for a knot K. At each crossing of the diagram D one may resolve the
crossing in one of two ways: the A-resolution and the B-resolution as depicted in Figure 3.1.
A choice of resolutions of crossings of D is called a state σ. The result of applying the state σ
to D, denoted sσ(D), is a collection of disjoint circles called state circles. One may then form
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the state graph Gσ where vertices correspond to state circles of sσ(D) and edges correspond
to former crossings in D.

Definition 3.1. A diagram D is called adequate if the state graphs of the all-A and
all-B-resolutions have no 1-edge loops. A knot is called adequate if it has an adequate diagram.

Given a diagram D of a knot K, one may form a surface SA as follows. The state circles
of the all-A resolution of D bound disks on the projection plane. Isotope these disks slightly
off the projection plane so they become disjoint. For each crossing of D, attach a half-twisted
band so that the resulting surface SA has boundary ∂SA = K. One may form the surface SB

similarly. See Figure 3.1.
The following theorem is due to Ozawa [32]. A different proof is given by Futer, Kalfagianni

and Purcell [17, Theorem 3.19].

Theorem 3.2. Let D(K) be an adequate link diagram of a knot K. Then the all-A state
and the all-B state surfaces corresponding to D(K) are essential in S3\K.

3.2. Turaev surfaces

The Turaev genus of a knot diagram D = D(K) with c crossings is defined by gT (D) =
(2 − vA − vB + c)/2, where vA, vB denotes the number of the state circles in the all-A and
all-B resolutions of D, respectively. The Turaev genus of a knot K is defined by

gT (K) = min {gT (D) | D = D(K)} .

The genus gT (D) is the genus of the Turaev surface F (D) corresponding to D. This surface
is constructed as follows. Let Γ ⊂ S2 be the planar, 4-valent graph defined by D. Thicken
the (compactified) projection plane to S2 × [−1, 1], so that Γ lies in S2 × {0}. Outside a
neighborhood of the vertices (crossings), Γ × [−1, 1] will be part of F (D).

In the neighborhood of each vertex, we insert a saddle, positioned so that the boundary circles
on S2 × {1} are the components of the A–resolution and the boundary circles on S2 × {−1}
are the components of the B–resolution.

The following is proved in [12].

Lemma 3.3. The Turaev surface F (D) has the following properties.

(i) It is a Heegaard surface of S3.
(ii) D is alternating on F (D); in particular D is an alternating diagram if and only if

gT (F (D)) = 0. See Figure 3.2.
(iii) The 4-valent graph underlying D defines a cellulation of F (D) for which the 2-cells can

be colored in a checkerboard fashion.
(iv) The checkerboard surfaces defined by D on F (D) are the state surfaces SA and SB .

We note that an adequate diagram realizes the crossing number of the knot; thus it is a knot
invariant. The following result of Abe [1, Theorem 3.2] shows that the same is true for the
Turaev genus.

Theorem 3.4. Suppose that D is an adequate diagram of a knot K. Then,

2gT (K) = 2gT (D) = 2 − vA(D) − vB(D) + c(D). �



GEOMETRIC ESTIMATES FROM SPANNING SURFACES 701

Figure 3.2. Saddles of F (D) corresponding to two successive over-crossing of D. The third
picture illustrates how D is alternating on F (D). The figure is taken from [12].

4. Lengths of curves on the maximal cusp boundary

In this section, we prove the main results of this paper. We begin by giving a general bound for
lengths of curves in the boundary of a maximal cusp neighborhood of a hyperbolic knot. We
then apply this bound to the special cases of adequate knots and three-string pretzel knots.

Theorem 4.1. Let K be a hyperbolic knot with maximal cusp C. Suppose that S1 and
S2 are essential spanning surfaces in M = S3 \K and let i(∂S1, ∂S2) �= 0 denote the minimal
intersection number of ∂S1, ∂S2 in ∂C. Let �(μ) and �(λ) denote the length of the meridian
and the shortest λ-curve of K, respectively. Then we have:

(1) �(μ) � 6(|χ(S1)|+|χ(S2)|)
i(∂S1,∂S2)

,

(2) �(λ) � 3(|χ(S1)| + |χ(S2)|),
(3) Area(∂C) � 18 (|χ(S1)|+|χ(S2)|)2

i(∂S1,∂S2)
.

Proof. Consider S to be the disjoint union of S1, S2, and let f : S −→ M , where f(S) is
the union of S1, S2 in the complement of K. Since f |Si is an embedding for i = 1, 2, and each
Si is essential, f is a homotopically essential map. Hence, by Lemma 2.3, we may pleat f and
then apply Theorem 2.4. With the notation as in that theorem we have

�C(S) � 6|χ(S)|,

where �C(S) is the total length of the curves f(S) ∩ ∂C.
To find bounds of this total length, we orient ∂S1, ∂S2 and μ so that ∂S1, ∂S2 have

opposite algebraic intersection numbers with μ. Let [∂S1], [∂S2], and [μ] denote their classes in
π1(∂C) = H1(∂C). Since S1 is a spanning surface, we know that [∂S1] and [μ] generate π1(∂C).

Recall the covering π := ρ|RH : RH −→ ∂C, where RH is the boundary of a horoball
at infinity, say H ⊂ ∪ρ−1(C). To fix ideas, assume that ∂S1 lifts to the horizontal lines
π−1(∂S1) = {(x, n) : x ∈ R} for each n ∈ Z and where μ lifts to the vertical lines
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Figure 4.1 (colour online). The arcs αk are each homotopic to the meridian,
and their union projects to ∂S1 ∪ ∂S2.

π−1(μ) = {(n, y) : y ∈ R} for each n ∈ Z. We may apply a homotopy to μ so that ∂S1 ∩ ∂S2 ∩
μ = {x0}, where π−1(x0) = Z2.

Since [∂S1] and [μ] generate π1(∂C), we can write [∂S2] = α[μ] + β[∂S1] for some α, β ∈ Z.
The fact that S2 is a spanning surface implies |β| = 1 and |α| = i(∂S1, ∂S2). Therefore [∂S2]
can be represented as a curve which lifts to the segment {(x, αx) : x ∈ [0, 1]} ⊂ R2 = RH .

The collection of arcs

αk = {(x, αx) : x ∈ [k/α, (k + 1)/α]} ∪ {(x, k + 1) : x ∈ [k/α, (k + 1)/α]}

for k = 0, 1, . . . , α− 1 is mapped to ∂S1 ∪ ∂S2 by π. Moreover, each π(αk) is a loop in ∂C
homotopic to a meridian. See Figure 4.1, where each αk is indicated in a different color.
Therefore ∂S1 ∪ ∂S2 can be decomposed into a collection of simple closed curves that contain
|α| meridians. Hence we obtain

i(∂S1, ∂S2)�(μ) � �C(S) � 6|χ(S1)| + 6|χ(S2)|.

The decomposition of ∂S1 ∪ ∂S2 described above can be also seen by resolving all the
intersections of ∂S1, ∂S2 in a way consistent with the orientations chosen above.

To prove part (2), consider ∂S1 and ∂S2 oriented as above in ∂C. By resolving the crossings
of ∂S1 with ∂S2 in a manner not consistent with the orientations of ∂S1 and ∂S2, one obtains
two �-curves in ∂C. Thus 2�(λ) � �C(S) and Theorem 2.4 now implies that

2�(λ) < 6|χ(S1)| + 6|χ(S2)|.

To prove part (3), observe that Area(∂C) � �(μ)�(λ). �

As an example, we apply Theorem 4.1 to 3-string pretzel knots. Note that non-alternating
3-string pretzel knots are not adequate as it follows from the work of Lee and van der Veen
[27].

Example 4.2. Let K be the pretzel knot P (a,−b,−c) with a, b, c all positive and odd. The
standard 3-pretzel diagram of K is A-adequate. Hence the corresponding all-A state surface
SA is essential in the complement of K. Moreover, the 3-pretzel surface SP is a minimum genus
Seifert surface for K and thus also essential. The boundary slope of the spanning surface SA of
K is given by s(SA) = −2b− 2c. On the other hand, s(SP ) = 0. The difference in slopes of two
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Figure 4.2 (colour online). The intersection of the surfaces SA

and SB with ∂C. Taken from [26].

surfaces is equal to the geometric intersection number, so we obtain that i(∂SA, ∂SP ) = 2b + 2c.
An easy calculation shows that χ(SA) = 1 − b− c and χ(SP ) = −1. Using Theorem 4.1 we have
�(μ) � 3.

The same process will apply to any knot that admits an essential state surface that has
non-zero slope. Large families of such knots are the semi-adequate knots or more generally the
σ-adequate and σ-homogeneous knots [17, Definition 2.22].

We now consider an application of Theorem 4.1 to the case of adequate knots, and we derive
Theorem 1.2 stated in the introduction. For the convenience of the reader, we restate the
theorem.

Theorem 1.2. Let K be an adequate hyperbolic knot in S3 with crossing number c = c(K)
and Turaev genus gT . Let C denote the maximal cusp of S3 \K and let Area(∂C) denote the
cusp area. Finally let �(μ) and �(λ) denote the length of the meridian and the shortest λ-curve
of K. Then we have

(1) �(μ) � 3 + 6gT−6
c ,

(2) �(λ) � 3c + 6gT − 6,
(3) Area(∂C) � 9c(1 + 2gT−2

c )2.

Proof. Let D be an adequate diagram for K and let SA and SB be the corresponding all-A
and all-B state surfaces respectively. By Theorem 3.2, SA, SB are essential in M = S3 \K.
Now ∂SA and ∂SB intersect transversely exactly twice per crossing in D. We show that this
number of intersections is in fact minimal. To do so, we use the well-known ‘bigon criterion’
(see, for example, [14, Proposition 1.7]) which states that two transverse simple closed curves
in a surface are in minimal position if and only if they do not form a bigon.

Consider the curves ∂SA and ∂SB near two consecutive crossings of D. If one crossing is an
over-crossing and the other crossing is an under-crossing in the diagram D, then the intersection
curves will be as in Figure 4.2. Note that this forms a diamond pattern on ∂C near alternating
crossings, hence there are no bigons near alternating crossings.

Consider the Turaev surface F (D) corresponding to D. Recall that D is alternating on F (D)
and that SA, SB are the checkerboard surfaces of this projection (Lemma 3.3).

We turn to the case where two consecutive crossings in D are over-crossings. The Turaev
surface T of K in a neighborhood of these two crossings may be visualized as in Figure 3.2. The
neighborhood may be straightened as shown in Figure 3.2, and we then see that the intersection
of ∂C with SA ∪ SB in a neighborhood of these two crossings is as in Figure 4.2. Therefore we
get an intersection pattern similar to that of 4.2 near pairs of consecutive over-crossings, and
it follows that there are no bigons near pairs of over-crossings. Similarly there are no bigons
near pairs of under-crossings. Thus we have i(∂SA, ∂SB) = 2c.
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On the other hand, by construction of the state surface and using the notation of § 3.2,
we have χ(SA) = vA − c and χ(SB) = vB − c. Note that if χ(SA) = 0 or χ(SB) = 0 then SA

or SB is a Möbius band. But then D is a diagram of the (2, p) torus knot contradicting the
assumption that K is hyperbolic. Thus χ(SA), χ(SB) < 0. Now by the definition of gD(T ) and
Theorem 3.4 we have

|χ(SA)| + |χ(SB)| = 2c− vA − vB = c + 2gT − 2.

Using these observations, claims (1)–(3) of the statement follow immediately from Theo-
rem 4.1. We note that since i(∂SA, ∂SB) = 2c, the coefficient 18 in the bound of the cusp area
in Theorem 4.1, becomes 9 here. That is, we have

Area(∂C) � 18
(c + 2gT − 2)2

2c
= 9c

(
1 +

2gT − 2
c

)2

,

as claimed in the statement above. �

An immediate consequence of Theorem 1.2 is that the meridian length of a knot with Turaev
genus 1 never exceeds 3. Also as noted in Corollary 1.3 for every Turaev genus there can be at
most finitely many adequate knots where �(μ) � 4.

The next result, stated in the introduction, shows that in a certain sense ‘most’ adequate
hyperbolic knots have meridian length less than 4.

Before we state our result, we need bit of terminology. A twist region of a knot diagram D
is a collection of bigons in D that are adjacent end to end, such that there are no additional
adjacent bigons on either end. A single crossing adjacent to no bigons is also a twist region.
We require twist regions to be alternating, for if D contains a bigon that is not alternating,
then a Reidemeister move removes both crossings without altering the rest of the diagram.
The number of distinct twist regions in a diagram D, denoted by t = t(D), is defined to be the
twist number of that diagram.

Theorem 1.4. Let K be a hyperbolic knot with an adequate diagram D with c crossings
and t twist regions. Then we have

�(μ) � 3 +
3t
c
− 6

c
.

In particular if c � 3t then we have �(μ) < 4.

Proof. Let gT be the Turaev genus of K and let vA and vB be the number of A and B state
circles arising from D. Recall that 2gT − 2 = c− vA − vB . Now vA + vB = vbi + vnb where vbi
is the number of bigon regions in D and vnb is the number of non-bigon regions. Then

c− vbi = t (4.1)

Since D is adequate and hyperbolic, both the A and B resolutions must have a state circle
corresponding to a non-bigon region. For if all the regions in one of the resolutions are bigons
then D represents a (2, p) torus knots, which is not hyperbolic. Therefore vnb � 2 and it follows
that

2gT − 2 = c− vbi − vnb = t− vnb � t− 2

Now by Theorem 1.2 we see that

�(μ) < 3 + 3
(

2gT − 2
c

)
� 3 + 3

(
t− 2
c

)
� 3 +

3t
c
− 6

c
.
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Now if c � 3t, say for example if D has at least three crossings per twist region, then 3t/c � 1,
so we see that

�(μ) < 3 + 1 − 6
c
< 4. �

Theorem 1.4 applies to positive/negative closed braids. Let Bn be the braid group
on n strands, with n � 3, and let σ1, . . . , σn−1 be the elementary braid generators. Let
b = σr1

i1
σr2
i2

· · ·σrk
ik

be a braid in Bn. It is straightforward to check that if either rj � 2 for
all j, or else rj � −2 for all j, then the braid closure Db of b is an adequate diagram. In
particular we have the following.

Corollary 4.3. Suppose that a knot K is represented by a braid closure Db such that
either rj � 3 for all j, or else rj � −3 for all j. Additionally, suppose Db is a prime diagram.
Then K is hyperbolic and the meridian length satisfies �(μ) < 4.

Proof. The fact that K is hyperbolic follows by [18, Corollary 1.2] and the claim about the
meridian follows from Theorem 1.4. �

Remark 4.4. The twist number of any diagram of a hyperbolic knot K bounds Area(∂C)
from above. More precisely, if a hyperbolic knot with maximal cusp C admits a diagram with
t twist regions then Area(∂C) � 10

√
3 · (t− 1) ≈ 17.32 · (t− 1). The derivation of this bound

is explained for example in [4]. Note that if c � t, this general bound does better than the one
of Theorem 1.2. On the other hand if c = t and gT is small the upper bound of Theorem 1.2
is sharper than the general bound. For instance if gT � 1 and c = t, then Theorem 1.2 gives
Area(∂C) � 9t which for t � 3 is sharper than the general bound.

Remark 4.5. Theorem 4.1 more generally applies to knots that admit alternating
projections on surfaces so that they define essential checkerboard surfaces. Specifically, let
F be closed surface that is embedded in S3 in a standard or non-standard way. Let K be a
knot and suppose that there is a projection p : S3 −→ F such that: (i) p(K) is alternating and
it separates F ; (ii) the components of F \ p(K) are disks that can be colored in two different
colors so that the colors at each crossing of p(K) meet in a checkerboard fashion; and (iii)
the surface F \ p(K) is essential in S3 \K. For instance, results similar to Theorem 1.2 and
Corollary 1.3 should also hold for weakly alternating knots considered by Ozawa [31] and
further discussed in [21]. In this case one should replace gT with the genus of the surface F
and the crossing number of the knot with the number of crossings of the alternating projection
on F .

5. Algorithm

In this section we will finish the proof of Theorem 1.1. The proof of the first part of the Theorem
follows from part (a) of Theorem 4.1. That is, if a hyperbolic knot K in S3 admits essential
spanning surfaces S1, S2 such that

|χ(S1)| + |χ(S2)| <
b · i(∂S1, ∂S2)

6
, (5.1)

for some real number b > 0, then

�(μ) <
6(|χ(S1)| + |χ(S2)|)

i(∂S1, ∂S2)
< b.

The proof of Theorem 1.1 will be complete once we show the following.
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Theorem 5.1. Given any hyperbolic knot K and positive real number b, there is an
algorithm which determines if there are spanning surfaces S1 and S2 satisfying inequality
(5.1).

Proof. We now show that the condition of equation (5.1) is algorithmically checkable. Start
with a triangulation of the complement M = S3 \K. There is an algorithm [23] to turn the
triangulation to one that has a single vertex that lies on the boundary of M . Moreover, by
Jaco and Sedgwick [22] there is an algorithm that ‘layers’ this triangulation so that a meridian
of K is a single edge on ∂M that is connected to the vertex of the triangulation. Call the
latter triangulation T . For normal surface background and terminology the reader is referred
to Matveev [29] or the introduction of [22].

Lemma 5.2. Suppose that there are essential spanning surfaces S1, S2 that satisfy (5.1).
Then we can find essential spanning surfaces that satisfy condition (5.1) and, in addition, are
normal fundamental surfaces with respect to T .

Proof. Suppose that one of S1, S2, say S1 is not connected. Then since S1 is a spanning
surface, and hence has a single boundary component, one of the connected components must be
a closed surface F . Since K is hyperbolic and F is essential χ(F ) � 0, so taking S = S1\F we
see that |χ(S)| � |χ(S1)|, and i(∂S, ∂S2) = i(∂S1, ∂S2). Replacing S1 with S, we may assume
S1 (and likewise S2) is connected.

Any essential surface in S3\K may be isotoped to a normal surface with respect to T .
Moreover, this normal surface may be taken to be minimal in the sense of [29, Definition
4.1.6]. This means that the number of intersections of the surface with the edges of T is
minimal in the (normal) isotopy class of the surface. We will show that S1 and S2 may be
taken to be fundamental normal surfaces.

Suppose that S1 is not fundamental. Then S1 can be represented as a Haken sum
S1 = Σ1 ⊕ . . .⊕ Σn ⊕ F1 ⊕ . . .⊕ Fk where each Σi is a fundamental normal surface with
boundary, and each Fi is a closed fundamental normal surface. A theorem of Jaco and Sedgwick
[22] states that each Σi has the same slope. Since S1 is a spanning surface, and hence it has
a single boundary component, this implies that n = 1. Since K is hyperbolic, we know that
either χ(Fi) < 0 or Fi is a boundary parallel torus for all i. In the latter case, it is known, as
noted in [20] that Σ1 ⊕ Fi is isotopic in S3\N(K) to Σ1. In the event that χ(Fi) < 0, we note
that |χ(Σ1)| < |χ(S1)| and equation (5.1) will hold with S1 replaced by Σ1. Moreover, Matveev
[29, Corollary 4.1.37] shows that Σ1 must be incompressible. Therefore we can ignore the other
terms of the Haken sum and assume that S1 is fundamental. Similarly, we can assume that S2

is fundamental. �

By Lemma 5.2, in order to decide whether there are spanning surfaces that satisfy (5.1), it
is enough to decide whether there are fundamental normal spanning surfaces with the same
property. Given K, there are only finitely many fundamental surfaces in M , and there is an
algorithm, due to Haken, to find them. Let F denote the list of all fundamental surfaces. Since
one of the boundary edges of the triangulation is a meridian, we may create a subset FSpan ⊂ F
of fundamental normal surfaces which are spanning by finding the surfaces that intersect the
meridian exactly once. There is an algorithm to compute χ(F ) for all surfaces F ∈ F , and
to compute the minimal intersection number of two fundamental normal surfaces [23]. The
algorithm now works by computing |χ(S1)| + |χ(S2)| and i(∂S1, ∂S2) for all pairs of surfaces
S1, S2 ∈ FSpan and checking whether inequality (5.1) holds. If the condition holds, then use
the algorithm of Haken to check that S1 and S2 are incompressible. If the condition fails for
all pairs S1, S2 ∈ FSpan, then inequality (5.1) does not hold for any pair of essential spanning
surfaces of K.
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Knots with pairs of essential spanning surfaces S1, S2 with i(∂S1, ∂S2) �= 0 are abundant.
Note however that not all knots have distinct essential spanning surfaces S1, S2 for which
i(∂S1, ∂S2) �= 0. An example of such a knot is given by Dunfield in [13]. In this case, the
algorithm outlined above will return that inequality (5.1) cannot be satisfied. This may be
seen as follows. In this case, either

(1) the set FSpan contains only one member, in which case there are no pairs for which to
test, or

(2) the intersection number i(∂S1, ∂S2) = 0 for all pairs S1, S2 ∈ FSpan, and inequality (5.1)
will always fail since K is hyperbolic implies |χ(S1)| > 0. �
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